Maslova, S V; Shirman, G A; Gavrilovskaia, I N
1977-01-01
Reproduction of mouse encephalomyocarditis virus (EMC) was studied in 5 continuous primate cell lines: HeLa, Fl, Detroit-6, P/7, and MIO inoculated with guanidine-dependent variant of poliomyelitis virus in the absence of guanidine. Poliomyelitis virus stimulated EMC virus reproduction in all cell lines under study. This stimulation effect was studied at length in HeLa and MIO cells. In HeLa cells, stimulation was observed at a low and moderate multiplicity of infection of EMC virus but not at a high (100 PEU/cell) multiplicity. Also, when EMC virus reproduction was stimulated, a shortening of the latent period of its multiplication cycle, an increase in the number of antigen-containing cells and the number of infectious centers were observed. In MIO cells, stimulation was found to occur both with low and high doses of EMC virus but not to be accompanied by a shortening in the latent period of EMC reproduction cycle, or any increase in the antigen-containing cells or number of infectious centers. In both cell types upon mixed infection the synthesis of virus-specific RNA's of EMC virus was enhanced. It is suggested that the stimulating effect of poliomyelitis virus is realized in HeLa and MIO cells at different stages of EMC virus reproduction.
Nguyen-Pham, Thanh-Nhan; Im, Chang-Min; Nguyen, Truc-Anh Thi; Lim, Mi-Seon; Hong, Cheol Yi; Kim, Mi-Hyun; Lee, Hyun Ju; Lee, Youn-Kyung; Cho, Duck; Ahn, Jae-Sook; Yang, Deok-Hwan; Kim, Yeo-Kyeoung; Chung, Ik-Joo; Kim, Hyeoung-Joon; Lee, Je-Jung
2011-09-01
The interaction between dendritic cells (DCs) and natural killer (NK) cells plays a key role in inducing DC maturation for subsequent T-cell priming. We investigated to generate potent DCs by stimulated with NK cells to induce myeloma-specific cytotoxic T lymphocytes (CTLs). NK cells-stimulated-DCs exhibited high expression of costimulatory molecules and high production of IL-12p70. These DCs induce high potency of Th1 polarization and exhibit a high ability to generate myeloma-specific CTLs responses. These results suggest that functionally potent DCs can be generated by stimulation with NK cells and may provide an effective source of DC-based immunotherapy in multiple myeloma. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dong, Hongli; Carlton, Michael E; Lerner, Adam; Epstein, Paul M
2015-01-01
Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad.
Li, Min; Cortez, Shirley; Nakamachi, Tomoya; Batuman, Vecihi; Arimura, Akira
2006-09-01
Multiple myeloma represents a malignant proliferation of plasma cells in the bone marrow, which often overproduces immunoglobulin light chains. We have shown previously that pituitary adenylate cyclase-activating polypeptide (PACAP) markedly suppresses the release of proinflammatory cytokines from light chain-stimulated human renal proximal tubule epithelial cells and prevents the resulting tubule cell injury. In this study, we have shown that PACAP suppresses the proliferation of human kappa and lambda light chain-secreting multiple myeloma-derived cells. The addition of PACAP suppressed light chain-producing myeloma cell-stimulated interleukin 6 (IL-6) secretion by the bone marrow stromal cells (BMSCs). A specific antagonist to either the human PACAP-specific receptor or the vasoactive intestinal peptide receptor attenuated the suppressive effect of PACAP on IL-6 production in the adhesion of human multiple myeloma cells to BMSCs. The secretion of IL-6 by BMSCs was completely inhibited by 10(-9) mol/L PACAP, which also attenuated the phosphorylation of both p42/44 and p38 mitogen-activated protein kinases (MAPK) as well as nuclear factor-kappaB (NF-kappaB) activation in response to the adhesion of multiple myeloma cells to BMSCs, whereas the inhibition of p42/44 MAPK signaling attenuated PACAP action. The signaling cascades involved in the inhibitory effect of PACAP on IL-6-mediated paracrine stimulation of light chain-secreting myeloma cell growth was mediated through the suppression of p38 MAPK as well as modulation of activation of transcription factor NF-kappaB. These findings suggest that PACAP may be a new antitumor agent that directly suppresses light chain-secreting myeloma cell growth and indirectly affects tumor cell growth by modifying the bone marrow milieu of the multiple myeloma.
Transient stimulation expands superior antitumor T cells for adoptive therapy.
Kagoya, Yuki; Nakatsugawa, Munehide; Ochi, Toshiki; Cen, Yuchen; Guo, Tingxi; Anczurowski, Mark; Saso, Kayoko; Butler, Marcus O; Hirano, Naoto
2017-01-26
Adoptive cell therapy is a potentially curative therapeutic approach for patients with cancer. In this treatment modality, antitumor T cells are exponentially expanded in vitro prior to infusion. Importantly, the results of recent clinical trials suggest that the quality of expanded T cells critically affects their therapeutic efficacy. Although anti-CD3 mAb-based stimulation is widely used to expand T cells in vitro, a protocol to generate T cell grafts for optimal adoptive therapy has yet to be established. In this study, we investigated the differences between T cell stimulation mediated by anti-CD3/CD28 mAb-coated beads and cell-based artificial antigen-presenting cells (aAPCs) expressing CD3/CD28 counter-receptors. We found that transient stimulation with cell-based aAPCs, but not prolonged stimulation with beads, resulted in the superior expansion of CD8 + T cells. Transiently stimulated CD8 + T cells maintained a stem cell-like memory phenotype and were capable of secreting multiple cytokines significantly more efficiently than chronically stimulated T cells. Importantly, the chimeric antigen receptor-engineered antitumor CD8 + T cells expanded via transient stimulation demonstrated superior persistence and antitumor responses in adoptive immunotherapy mouse models. These results suggest that restrained stimulation is critical for generating T cell grafts for optimal adoptive immunotherapy for cancer.
Transient stimulation expands superior antitumor T cells for adoptive therapy
Kagoya, Yuki; Nakatsugawa, Munehide; Ochi, Toshiki; Guo, Tingxi; Anczurowski, Mark; Saso, Kayoko; Butler, Marcus O.
2017-01-01
Adoptive cell therapy is a potentially curative therapeutic approach for patients with cancer. In this treatment modality, antitumor T cells are exponentially expanded in vitro prior to infusion. Importantly, the results of recent clinical trials suggest that the quality of expanded T cells critically affects their therapeutic efficacy. Although anti-CD3 mAb-based stimulation is widely used to expand T cells in vitro, a protocol to generate T cell grafts for optimal adoptive therapy has yet to be established. In this study, we investigated the differences between T cell stimulation mediated by anti–CD3/CD28 mAb–coated beads and cell-based artificial antigen-presenting cells (aAPCs) expressing CD3/CD28 counter-receptors. We found that transient stimulation with cell-based aAPCs, but not prolonged stimulation with beads, resulted in the superior expansion of CD8+ T cells. Transiently stimulated CD8+ T cells maintained a stem cell–like memory phenotype and were capable of secreting multiple cytokines significantly more efficiently than chronically stimulated T cells. Importantly, the chimeric antigen receptor–engineered antitumor CD8+ T cells expanded via transient stimulation demonstrated superior persistence and antitumor responses in adoptive immunotherapy mouse models. These results suggest that restrained stimulation is critical for generating T cell grafts for optimal adoptive immunotherapy for cancer. PMID:28138559
Active skin as new haptic interface
NASA Astrophysics Data System (ADS)
Vuong, Nguyen Huu Lam; Kwon, Hyeok Yong; Chuc, Nguyen Huu; Kim, Duksang; An, Kuangjun; Phuc, Vuong Hong; Moon, Hyungpil; Koo, Jachoon; Lee, Youngkwan; Nam, Jae-Do; Choi, Hyouk Ryeol
2010-04-01
In this paper, we present a new haptic interface, called "active skin", which is configured with a tactile sensor and a tactile stimulator in single haptic cell, and multiple haptic cells are embedded in a dielectric elastomer. The active skin generates a wide variety of haptic feel in response to the touch by synchronizing the sensor and the stimulator. In this paper, the design of the haptic cell is derived via iterative analysis and design procedures. A fabrication method dedicated to the proposed device is investigated and a controller to drive multiple haptic cells is developed. In addition, several experiments are performed to evaluate the performance of the active skin.
Gold nanoparticle-mediated laser stimulation causes a complex stress signal in neuronal cells
NASA Astrophysics Data System (ADS)
Johannsmeier, Sonja; Heeger, Patrick; Terakawa, Mitsuhiro; Kalies, Stefan; Heisterkamp, Alexander; Ripken, Tammo; Heinemann, Dag
2017-07-01
Gold nanoparticle mediated laser stimulation of neuronal cells allows for cell activation on a single-cell level. It could therefore be considered an alternative to classical electric neurostimulation. The physiological impact of this new approach has not been intensively studied so far. Here, we investigate the targeted cell's reaction to a laser stimulus based on its calcium response. A complex cellular reaction involving multiple sources has been revealed.
Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells.
Rettenmaier, Alexander; Lenarz, Thomas; Reuter, Günter
2014-04-01
Optical stimulation of the inner ear has recently attracted attention, suggesting a higher frequency resolution compared to electrical cochlear implants due to its high spatial stimulation selectivity. Although the feasibility of the effect is shown in multiple in vivo experiments, the stimulation mechanism remains open to discussion. Here we investigate in single-cell measurements the reaction of spiral ganglion neurons and model cells to irradiation with a nanosecond-pulsed laser beam over a broad wavelength range from 420 nm up to 1950 nm using the patch clamp technique. Cell reactions were wavelength- and pulse-energy-dependent but too small to elicit action potentials in the investigated spiral ganglion neurons. As the applied radiant exposure was much higher than the reported threshold for in vivo experiments in the same laser regime, we conclude that in a stimulation paradigm with nanosecond-pulses, direct neuronal stimulation is not the main cause of optical cochlea stimulation.
Wang, D; Fløisand, Y; Myklebust, C V; Bürgler, S; Parente-Ribes, A; Hofgaard, P O; Bogen, B; Taskén, K; Tjønnfjord, G E; Schjesvold, F; Dalgaard, J; Tveita, A; Munthe, L A
2017-10-01
Multiple myeloma (MM) is a plasma cell malignancy where MM cell growth is supported by the bone marrow (BM) microenvironment with poorly defined cellular and molecular mechanisms. MM cells express CD40, a receptor known to activate autocrine secretion of cytokines and elicit proliferation. Activated T helper (Th) cells express CD40 ligand (CD40L) and BM Th cells are significantly increased in MM patients. We hypothesized that activated BM Th cells could support MM cell growth. We here found that activated autologous BM Th cells supported MM cell growth in a contact- and CD40L-dependent manner in vitro. MM cells had retained the ability to activate Th cells that reciprocated and stimulated MM cell proliferation. Autologous BM Th cells supported MM cell growth in xenografted mice and were found in close contact with MM cells. MM cells secreted chemokines that attracted Th cells, secretion was augmented by CD40-stimulation. Within 14 days of culture of whole BM aspirates in autologous serum, MM cells and Th cells mutually stimulated each other, and MM cells required Th cells for further expansion in vitro and in mice. The results suggest that Th cells may support the expansion of MM cells in patients.
Pogrmic-Majkic, Kristina; Fa, Svetlana; Samardzija, Dragana; Hrubik, Jelena; Kaisarevic, Sonja; Andric, Nebojsa
2016-08-10
Atrazine (ATR) is an endocrine disruptor that affects steroidogenic process, resulting in disruption of reproductive function of the male and female gonads. In this study, we used the primary culture of peripubertal Leydig cells to investigate the effect of ATR on the rapid androgen production stimulated by human chorionic gonadotropin (hCG). We demonstrated that ATR activated multiple signaling pathways enhancing the rapid hCG-stimulated androgen biosynthesis in Leydig cells. Low hCG concentration (0.25ng/mL) caused cAMP-independent, but ERK1/2-dependent increase in androgen production after 60min of incubation. Co-treatment with ATR for 60min enhanced the cAMP production in hCG-stimulated cells. Accumulation of androgens was prevented by addition of U0126, N-acetyl-l-cysteine and AG1478. Co-treatment with hCG and ATR for 60min did not alter steroidogenic acute regulatory protein (Star) mRNA level in Leydig cells. After 120min, hCG further increased androgenesis in Leydig cells that was sensitive to inhibition of the cAMP/PKA, ERK1/2 and ROS signaling pathways. Co-treatment with ATR for 120min further enhanced the hCG-induced androgen production, which was prevented by inhibition of the calcium, PKC and EGFR signaling cascades. After 120min, ATR enhanced the expression of Star mRNA in hCG-stimulated Leydig cells through activation of the PKA and PKC pathway. Collectively, these data suggest that exposure to ATR caused perturbations in multiple signaling pathways, thus enhancing the rapid hCG-dependent androgen biosynthesis in peripubertal Leydig cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Multiple Signals Regulate PLC beta 3 in Human Myometrial Cells
Zhong, Miao; Murtazina, Dilyara A.; Phillips, Jennifer; Ku, Chun-Ying; Sanborn, Barbara M.
2008-01-01
Summary The regulation of PLCB3-Serine1105 phosphorylation by both negative feedback and negative crosstalk facilitates the integration of multiple signaling pathways in myometrial cells. Phospholipase CB3 (PLCB3) Serine1105, a substrate for multiple protein kinases, represents a potential point of convergence of several signaling pathways in the myometrium. To explore this hypothesis, the regulation of PLCB3-Serine1105 phosphorylation (P-S1105) was studied in immortalized and primary human myometrial cells. CPT-cAMP and calcitonin gene-related peptide (CALCA) transiently increased P-S1105. Relaxin also stimulated P-S1105; this effect was partially blocked by the protein kinase A (PRKA) inhibitor Rp-8-CPT-cAMPS. Oxytocin, which stimulates Gαq-mediated pathways, also rapidly increased P-S1105, as did PGF2α and ATP. Oxytocin-stimulated phosphorylation was blocked by the protein kinase C (PRKC) inhibitor Go6976 and by pretreatment overnight with a phorbol ester. Cypermethrin, a PP2B phosphatase inhibitor, but not okadaic acid, a PP1/PP2A inhibitor, prolonged the effect of CALCA on P-S1105, whereas the reverse was the case for the oxytocin-stimulated increase in P-S1105. PLCB3 was the predominant PLC isoform expressed in the myometrial cells and PLCB3 shRNA constructs significantly attenuated oxytocin-stimulated increases in intracellular calcium. Oxytocin-induced phosphatidylinositol (PI) turnover was inhibited by CPT-cAMP and okadaic acid but enhanced by pretreatment with Go6976. CPT-cAMP inhibited oxytocin-stimulated PI turnover in the presence of overexpressed PLCB3, but not overexpressed PLCB3-S1105A. These data demonstrate that both negative crosstalk from the cAMP/PRKA pathway and a negative feedback loop in the oxytocin/G protein/PLCB pathway involving PRKC operate in myometrial cells and suggest that different protein phosphatases predominate in mediating P-S1105 dephosphorylation in these pathways. The integration of multiple signal components at the level of PLCB3 may be important to its function in the myometrium. PMID:18322273
Cellular Decision Making by Non-Integrative Processing of TLR Inputs.
Kellogg, Ryan A; Tian, Chengzhe; Etzrodt, Martin; Tay, Savaş
2017-04-04
Cells receive a multitude of signals from the environment, but how they process simultaneous signaling inputs is not well understood. Response to infection, for example, involves parallel activation of multiple Toll-like receptors (TLRs) that converge on the nuclear factor κB (NF-κB) pathway. Although we increasingly understand inflammatory responses for isolated signals, it is not clear how cells process multiple signals that co-occur in physiological settings. We therefore examined a bacterial infection scenario involving co-stimulation of TLR4 and TLR2. Independent stimulation of these receptors induced distinct NF-κB dynamic profiles, although surprisingly, under co-stimulation, single cells continued to show ligand-specific dynamic responses characteristic of TLR2 or TLR4 signaling rather than a mixed response, comprising a cellular decision that we term "non-integrative" processing. Iterating modeling and microfluidic experiments revealed that non-integrative processing occurred through interaction of switch-like NF-κB activation, receptor-specific processing timescales, cell-to-cell variability, and TLR cross-tolerance mediated by multilayer negative feedback. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Fulop, Tiberiu; Smith, Corey
2007-11-30
Adrenal chromaffin cells release multiple transmitters in response to sympathetic stimulation. Modest cell firing, matching sympathetic tone, releases small freely soluble catecholamines. Elevated electrical firing rates matching input under sympathetic stress results in release of catecholamines as well as semi-soluble vaso- and neuro-active peptides packaged within the dense core of the secretory granule. This activity-dependent differential transmitter release has been shown to rely on a mechanistic shift in the mode of exocytosis through the regulated dilation of the secretory fusion pore between granule and cell surface membranes. However, biochemical description of the mechanism regulating fusion pore dilation remains elusive. In the experimental setting, electrical stimulation designed to mimic sympathetic input, is achieved through single-cell voltage-clamp. While precise, this approach is incompatible with biochemical and proteomic analysis, both of which require large sample sizes. We address this limitation in the current study. We describe a bulk chemical stimulation paradigm calibrated to match defined electrical activity. We utilize calcium and single-cell amperometric measurements to match extracellular potassium concentrations to physiological electrical stimulation under sympathetic tone as well as acute stress conditions. This approach provides larger samples of uniformly stimulated cells for determining molecular players in activity-dependent differential transmitter release from adrenal chromaffin cells.
Evans, Heather M.; Simpson, Andrew; Shen, Shu; Stromberg, Arnold J.; Pickett, Carol L.
2017-01-01
ABSTRACT The life cycle of the opportunistic fungal pathogen Pneumocystis murina consists of a trophic stage and an ascus-like cystic stage. Infection with the cyst stage induces proinflammatory immune responses, while trophic forms suppress the cytokine response to multiple pathogen-associated molecular patterns (PAMPs), including β-glucan. A targeted gene expression assay was used to evaluate the dendritic cell response following stimulation with trophic forms alone, with a normal mixture of trophic forms and cysts, or with β-glucan. We demonstrate that stimulation with trophic forms downregulated the expression of multiple genes normally associated with the response to infection, including genes encoding transcription factors. Trophic forms also suppressed the expression of genes related to antigen processing and presentation, including the gene encoding the major histocompatibility complex (MHC) class II transactivator, CIITA. Stimulation of dendritic cells with trophic forms, but not a mixture of trophic forms and cysts, reduced the expression of MHC class II and the costimulatory molecule CD40 on the surface of the cells. These defects in the expression of MHC class II and costimulatory molecules corresponded with a reduced capacity for trophic form-loaded dendritic cells to stimulate CD4+ T cell proliferation and polarization. These data are consistent with the delayed innate and adaptive responses previously observed in immunocompetent mice inoculated with trophic forms compared to responses in mice inoculated with a mixture of trophic forms and cysts. We propose that trophic forms broadly inhibit the ability of dendritic cells to fulfill their role as antigen-presenting cells. PMID:28694293
Zhang, C; Chen, X-H; Zhang, X; Gao, L; Gao, L; Kong, P-Y; Peng, X-G; Sun, A-H; Gong, Y; Zeng, D-F; Wang, Q-Y
2010-06-01
Unmanipulated haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised peripheral blood stem cells (G-PBSCs) and granulocyte-colony stimulating factor-mobilised bone marrow (G-BM) has been developed as an alternative transplantation strategy for patients with haematologic malignancies. However, little information is available about the factors predicting the outcome of peripheral blood stem cell (PBSC) collection and bone marrow (BM) harvest in this transplantation. The effects of donor characteristics and procedure factors on CD34(+) cell yield were investigated. A total of 104 related healthy donors received granulocyte-colony stimulating factor (G-CSF) followed by PBSC collection and BM harvest. Male donors had significantly higher yields compared with female donors. In multiple regression analysis for peripheral blood collection, age and flow rate were negatively correlated with cell yield, whereas body mass index, pre-aphaeresis white blood cell (WBC) and circulating immature cell (CIC) counts were positively correlated with cell yields. For BM harvest, age was negatively correlated with cell yields, whereas pre-BM collection CIC counts were positively correlated with cell yield. All donors achieved the final product of >or=6 x10(6) kg(-1) recipient body weight. This transplantation strategy has been shown to be a feasible approach with acceptable outcomes in stem cell collection for patients who received HLA-haploidentical/mismatched transplantation with combined G-PBSCs and G-BM. In donors with multiple high-risk characteristics for poor aphaeresis CD34(+) cell yield, BM was an alternative source.
KAP1 promotes proliferation and metastatic progression of breast cancer cells.
Addison, Joseph B; Koontz, Colton; Fugett, James H; Creighton, Chad J; Chen, Dongquan; Farrugia, Mark K; Padon, Renata R; Voronkova, Maria A; McLaughlin, Sarah L; Livengood, Ryan H; Lin, Chen-Chung; Ruppert, J Michael; Pugacheva, Elena N; Ivanov, Alexey V
2015-01-15
KAP1 (TRIM28) is a transcriptional regulator in embryonic development that controls stem cell self-renewal, chromatin organization, and the DNA damage response, acting as an essential corepressor for KRAB family zinc finger proteins (KRAB-ZNF). To gain insight into the function of this large gene family, we developed an antibody that recognizes the conserved zinc fingers linker region (ZnFL) in multiple KRAB-ZNF. Here, we report that the expression of many KRAB-ZNF along with active SUMOlyated KAP1 is elevated widely in human breast cancers. KAP1 silencing in breast cancer cells reduced proliferation and inhibited the growth and metastasis of tumor xenografts. Conversely, KAP1 overexpression stimulated cell proliferation and tumor growth. In cells where KAP1 was silenced, we identified multiple downregulated genes linked to tumor progression and metastasis, including EREG/epiregulin, PTGS2/COX2, MMP1, MMP2, and CD44, along with downregulation of multiple KRAB-ZNF proteins. KAP1-dependent stabilization of KRAB-ZNF required direct interactions with KAP1. Together, our results show that KAP1-mediated stimulation of multiple KRAB-ZNF contributes to the growth and metastasis of breast cancer. ©2014 American Association for Cancer Research.
Koido, Shigeo; Homma, Sadamu; Okamoto, Masato; Namiki, Yoshihisa; Takakura, Kazuki; Takahara, Akitaka; Odahara, Shunichi; Tsukinaga, Shintaro; Yukawa, Toyokazu; Mitobe, Jimi; Matsudaira, Hiroshi; Nagatsuma, Keisuke; Kajihara, Mikio; Uchiyama, Kan; Arihiro, Seiji; Imazu, Hiroo; Arakawa, Hiroshi; Kan, Shin; Hayashi, Kazumi; Komita, Hideo; Kamata, Yuko; Ito, Masaki; Hara, Eiichi; Ohkusa, Toshifumi; Gong, Jianlin; Tajiri, Hisao
2013-01-01
The therapeutic efficacy of fusion cell (FC)-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs) requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF)-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC) class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT) on the cell surface and released immunostimulatory factors such as heat shock protein (HSP)90α and high-mobility group box 1 (HMGB1). A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist) and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist) led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs) inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.
Electrophysiologic studies of neronal activities under ischemia condition.
Huang, Shun-Ho; Wang, Ping-Hsien; Chen, Jia-Jin Jason
2008-01-01
Substrate with integrated microelectrode arrays (MEAs) provides an alternative electrophysiological method. With MEAS, one can measure the impedance and elicit electrical stimulation from multiple sites of MEAs to determine the electrophysiological conditions of cells. The aims of this research were to construct an impedance and action potential measurement system for neurons cultured on MEAs for observing the electrophysiological signal transmission in neuronal network during glucose and oxygen deprivation (OGD). An extracellular stimulator producing the biphasic micro-current pulse for neuron stimulation was built in this study. From the time-course recording of impedance, OGD condition effectively induced damage in neurons in vitro. It is known that the results of cell stimulation are affected by electrode impedance, so does the result of neuron cells covered on the electrode can measure the sealing resistance. For extracellular stimulation study, cortical neuronal activity was recorded and the suitable stimulation window was determined. However, the stimulation results were affected by electrode impedance as well as sealing impedance resulting from neuron cells covering the electrode. Further development of surface modification for cultured neuron network should provide a better way for in vitro impedance and electrophysiological measurements.
A number of allergic and autoimmune disorders, such as Crohn’s disease, asthma, type I diabetes and multiple sclerosis, are associated with polymorphisms in a gene encoding the transcription factor, BACH2. Despite this, the mechanism Bach2 uses to prevent immune-mediated diseases was not known. To function appropriately, the immune system relies on a delicate balance between immune-stimulating and immune-regulating cells. When immune-stimulating cells become too active, or immune-regulating cells become ineffective, autoimmune and allergic diseases can ensue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke
Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period ofmore » pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8{sup +} CAR-T cells had antigen-specific cytotoxic activity. • CD4{sup +} CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.« less
Smith, Veronica R.; Popat, Uday; Ciurea, Stefan; Nieto, Yago; Anderlini, Paolo; Rondon, Gabriela; Alousi, Amin; Qazilbash, Muzaffar; Kebriaei, Partow; Khouri, Issa; de Lima, Marcos; Champlin, Richard; Hosing, Chitra
2014-01-01
Plerixafor, a recently approved peripheral blood progenitor cell mobilizing agent, is often added to granulocyte-colony stimulating factor (G-CSF) to mobilize peripheral blood progenitor cells in patients with lymphoma or myeloma who cannot mobilize enough CD34+ cells with G-CSF alone to undergo autologous stem cell transplantation. However, data are lacking regarding the feasibility and efficacy of just-in-time plerixafor in combination with chemotherapy and G-CSF. We reviewed the peripheral blood stem cell collection data of 38 consecutive patients with lymphoma (Hodgkin’s and non-Hodgkin’s) and multiple myeloma who underwent chemomobilization and high-dose G-CSF and just-in-time plerixafor to evaluate the efficacy of this treatment combination. All patients with multiple myeloma and all but 1 patient with lymphoma collected the minimum required number of CD34+ cells to proceed with autologous stem cell transplantation (>2 × 106/kilogram of body weight). The median CD34+ cell dose collected in patients with non-Hodgkin lymphoma was 4.93 × 106/kilogram of body weight. The median CD34+ cell dose collected for patients with multiple myeloma was 8.81 × 106/kilogram of body weight. Plerixafor was well tolerated; no grade 2 or higher non- hematologic toxic effects were observed. PMID:23749720
Holographic Photolysis for Multiple Cell Stimulation in Mouse Hippocampal Slices
Papagiakoumou, Eirini; Ventalon, Cathie; Angulo, María Cecilia; Emiliani, Valentina
2010-01-01
Background Advanced light microscopy offers sensitive and non-invasive means to image neural activity and to control signaling with photolysable molecules and, recently, light-gated channels. These approaches require precise and yet flexible light excitation patterns. For synchronous stimulation of subsets of cells, they also require large excitation areas with millisecond and micrometric resolution. We have recently developed a new method for such optical control using a phase holographic modulation of optical wave-fronts, which minimizes power loss, enables rapid switching between excitation patterns, and allows a true 3D sculpting of the excitation volumes. In previous studies we have used holographic photololysis to control glutamate uncaging on single neuronal cells. Here, we extend the use of holographic photolysis for the excitation of multiple neurons and of glial cells. Methods/Principal Findings The system combines a liquid crystal device for holographic patterned photostimulation, high-resolution optical imaging, the HiLo microscopy, to define the stimulated regions and a conventional Ca2+ imaging system to detect neural activity. By means of electrophysiological recordings and calcium imaging in acute hippocampal slices, we show that the use of excitation patterns precisely tailored to the shape of multiple neuronal somata represents a very efficient way for the simultaneous excitation of a group of neurons. In addition, we demonstrate that fast shaped illumination patterns also induce reliable responses in single glial cells. Conclusions/Significance We show that the main advantage of holographic illumination is that it allows for an efficient excitation of multiple cells with a spatiotemporal resolution unachievable with other existing approaches. Although this paper focuses on the photoactivation of caged molecules, our approach will surely prove very efficient for other probes, such as light-gated channels, genetically encoded photoactivatable proteins, photoactivatable fluorescent proteins, and voltage-sensitive dyes. PMID:20195547
Pan, C-H; Yang, P-M; Hwang, L-H; Kao, Shing-F; Chen, P-J; Chiang, B-L; Chen, D-S
2002-07-01
The aim of this study was to further investigate the role of T-helper cells in hepatitis C virus (HCV) infection, focusing on the T-cell antigenic determinants and cytokine profiles of nonstructural 3 (NS3) protein-stimulated peripheral blood mononuclear cells (PBMCs) of HCV patients. A total of 12 recombinant proteins of theNS3 region were purified and used to test T-cell proliferative response and antigenic determinants of HCV-seropositive patients. In addition, cytokines produced by antigen stimulated PBMCs were measured. Our data showed that PBMCs from 55.7% (34/61) of HCV patients proliferated to at least one antigen, but PBMCs of HCV seronegative patients did not. In addition, PBMCs from about 82.0% (32/39) HCV-seropositive patients produced significant amounts of cytokines (10 pg/mL). Interestingly, PBMCs from 66% of patients produced TH2-related cytokines such as interleukin (IL)-4 and IL-5. In mappingexperiments, the data showed multiple T-cell antigenic determinants. Our data demonstrated that NS3 antigen-stimulated PBMCs of HCV patients recognized multiple T-cell antigenic determinants and produced significant amounts of TH0 or TH2-related cytokines, which might play a critical role in the chronicity of HCV infection.
Harmon, Thomas C; Magaram, Uri; McLean, David L; Raman, Indira M
2017-01-01
To study cerebellar activity during learning, we made whole-cell recordings from larval zebrafish Purkinje cells while monitoring fictive swimming during associative conditioning. Fish learned to swim in response to visual stimulation preceding tactile stimulation of the tail. Learning was abolished by cerebellar ablation. All Purkinje cells showed task-related activity. Based on how many complex spikes emerged during learned swimming, they were classified as multiple, single, or zero complex spike (MCS, SCS, ZCS) cells. With learning, MCS and ZCS cells developed increased climbing fiber (MCS) or parallel fiber (ZCS) input during visual stimulation; SCS cells fired complex spikes associated with learned swimming episodes. The categories correlated with location. Optogenetically suppressing simple spikes only during visual stimulation demonstrated that simple spikes are required for acquisition and early stages of expression of learned responses, but not their maintenance, consistent with a transient, instructive role for simple spikes during cerebellar learning in larval zebrafish. DOI: http://dx.doi.org/10.7554/eLife.22537.001 PMID:28541889
PHAGE FORMATION IN STAPHYLOCOCCUS MUSCAE CULTURES
Price, Winston H.
1949-01-01
1. A non-dialyzable fraction from fresh bakers' yeast stimulates the formation of S. muscae virus in cells in synthetic medium in the log phase of multiplication. 2. A similar fraction was not found in calf thymus, pancreas, or liver. 3. The active substance in this fraction has been partially purified. 4. This substance is taken up by the cells. In the absence of virus the added substance is metabolized to a form no longer available for virus formation. 5. A purified yeast fraction, which stimulates adaptive enzyme formation in yeast, has been found to stimulate virus formation in the S. muscae system. 6. The similarities between the yeast fraction that stimulates adaptive enzyme formation and the yeast fraction that stimulates virus formation are discussed. PMID:18123312
Keyamura, Kenji; Fujikawa, Norie; Ishida, Takuma; Ozaki, Shogo; Su’etsugu, Masayuki; Fujimitsu, Kazuyuki; Kagawa, Wataru; Yokoyama, Shigeyuki; Kurumizaka, Hitoshi; Katayama, Tsutomu
2007-01-01
Escherichia coli DiaA is a DnaA-binding protein that is required for the timely initiation of chromosomal replication during the cell cycle. In this study, we determined the crystal structure of DiaA at 1.8 Å resolution. DiaA forms a homotetramer consisting of a symmetrical pair of homodimers. Mutational analysis revealed that the DnaA-binding activity and formation of homotetramers are required for the stimulation of initiation by DiaA. DiaA tetramers can bind multiple DnaA molecules simultaneously. DiaA stimulated the assembly of multiple DnaA molecules on oriC, conformational changes in ATP–DnaA-specific initiation complexes, and unwinding of oriC duplex DNA. The mutant DiaA proteins are defective in these stimulations. DiaA associated also with ADP–DnaA, and stimulated the assembly of inactive ADP–DnaA–oriC complexes. Specific residues in the putative phosphosugar-binding motif of DiaA were required for the stimulation of initiation and formation of ATP–DnaA-specific–oriC complexes. Our data indicate that DiaA regulates initiation by a novel mechanism, in which DiaA tetramers most likely bind to multiple DnaA molecules and stimulate the assembly of specific ATP–DnaA–oriC complexes. These results suggest an essential role for DiaA in the promotion of replication initiation in a cell cycle coordinated manner. PMID:17699754
The Antimicrobial Peptide Lysozyme Is Induced after Multiple Trauma
Klüter, Tim; Fitschen-Oestern, Stefanie; Lippross, Sebastian; Weuster, Matthias; Pufe, Thomas; Tohidnezhad, Mersedeh; Beyer, Andreas; Seekamp, Andreas; Varoga, Deike
2014-01-01
The antimicrobial peptide lysozyme is an important factor of innate immunity and exerts high potential of antibacterial activity. In the present study we evaluated the lysozyme expression in serum of multiple injured patients and subsequently analyzed their possible sources and signaling pathways. Expression of lysozyme was examined in blood samples of multiple trauma patients from the day of trauma until 14 days after trauma by ELISA. To investigate major sources of lysozyme, its expression and regulation in serum samples, different blood cells, and tissue samples were analysed by ELISA and real-time PCR. Neutrophils and hepatocytes were stimulated with cytokines and supernatant of Staphylococcus aureus. The present study demonstrates the induction and release of lysozyme in serum of multiple injured patients. The highest lysozyme expression of all tested cells and tissues was detected in neutrophils. Stimulation with trauma-related factors such as interleukin-6 and S. aureus induced lysozyme expression. Liver tissue samples of patients without trauma show little lysozyme expression compared to neutrophils. After stimulation with bacterial fragments, lysozyme expression of hepatocytes is upregulated significantly. Toll-like receptor 2, a classic receptor of Gram-positive bacterial protein, was detected as a possible target for lysozyme induction. PMID:25258475
NASA Astrophysics Data System (ADS)
Li, Yi-Chao; Cui, Wan-Xing; Wang, Xu-Jing; Amthor, Franklin; Yao, Xin-Cheng
2011-03-01
Intrinsic optical signal (IOS) imaging has been established for noninvasive monitoring of stimulus-evoked physiological responses in the retina and other neural tissues. Recently, we extended the IOS imaging technology for functional evaluation of insulin secreting INS-1 cells. INS-1 cells provide a popular model for investigating β-cell dysfunction and diabetes. Our experiments indicate that IOS imaging allows simultaneous monitoring of glucose-stimulated physiological responses in multiple cells with high spatial (sub-cellular) and temporal (sub-second) resolution. Rapid image sequences reveal transient optical responses that have time courses comparable to glucose-evoked β-cell electrical activities.
NASA Astrophysics Data System (ADS)
Balikov, Daniel A.; Fang, Brian; Chun, Young Wook; Crowder, Spencer W.; Prasai, Dhiraj; Lee, Jung Bok; Bolotin, Kiril I.; Sung, Hak-Joon
2016-07-01
The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of electrophysical stimuli regulate stem cell behavior and helps to clarify the potential for graphene substrates in tissue engineering applications.
Barathan, Muttiah; Mohamed, Rosmawati; Vadivelu, Jamuna; Chang, Li Yen; Vignesh, Ramachandran; Krishnan, Jayalakshmi; Sigamani, Panneer; Saeidi, Alireza; Ram, M Ravishankar; Velu, Vijayakumar; Larsson, Marie; Shankar, Esaki M
2017-03-01
Hepatitis C virus (HCV)-specific CD4+ and CD8+ T cells are key to successful viral clearance in HCV disease. Accumulation of exhausted HCV-specific T cells during chronic infection results in considerable loss of protective functional immune responses. The role of T-cell exhaustion in chronic HCV disease remains poorly understood. Here, we studied the frequency of HCV peptide-stimulated T cells expressing negative immune checkpoints (PD-1, CTLA-4, TRAIL, TIM-3 and BTLA) by flow cytometry, and measured the levels of Th1/Th2/Th17 cytokines secreted by T cells by a commercial Multi-Analyte ELISArray™ following in vitro stimulation of T cells using HCV peptides and phytohemagglutinin (PHA). HCV peptide-stimulated CD4+ and CD8+ T cells of chronic HCV (CHC) patients showed significant increase of CTLA-4. Furthermore, HCV peptide-stimulated CD4+ T cells of CHC patients also displayed relatively higher levels of PD-1 and TRAIL, whereas TIM-3 was up-regulated on HCV peptide-stimulated CD8+ T cells. Whereas the levels of IL-10 and TGF-β1 were significantly increased, the levels of pro-inflammatory cytokines IL-2, TNF-α, IL-17A and IL-6 were markedly decreased in the T cell cultures of CHC patients. Chronic HCV infection results in functional exhaustion of CD4+ and CD8+ T cells likely contributing to viral persistence. Copyright © 2016 Elsevier Inc. All rights reserved.
Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways.
Won, Yen-Kim; Lin, Connie B; Seiberg, Miri; Chen, Nannan; Hu, Yaping; Rossetti, Dianne; Saliou, Claude; Loy, Chong-Jin
2014-01-01
The endogenous electrical field of human skin plays an important role in many skin functions. However, the biological effects and mechanism of action of externally applied electrical stimulation on skin remain unclear. Recent study showed that galvanic zinc-copper microparticles produce electrical stimulation and reduce inflammatory and immune responses in intact skin, suggesting the important role of electrical stimulation in non-wounded skin. The objective of this study is to investigate the biological effect of galvanic zinc-copper microparticles on skin pigmentation. Our findings showed that galvanic zinc-copper microparticles inhibited melanogenesis in a human melanoma cell line (MNT-1), human keratinocytes and melanoma cells co-cultures, and in pigmented epidermal equivalents. Treatment of galvanic zinc-copper microparticles inhibited melanogenesis by reducing the promoter transactivation of tyrosinase and tyrosinase-related protein-1 in human melanoma cells. In a co-culture Transwell system of keratinocytes and melanoma cells, galvanic zinc-copper microparticles reduced melanin production via downregulation of endothelin-1 secretion from keratinocytes and reduced tyrosinase gene expression in melanoma cells. In addition, exposure of pigmented epidermal equivalents to galvanic zinc-copper microparticles resulted in reduced melanin deposition. In conclusion, our data demonstrated for the first time that galvanic zinc-copper microparticles reduced melanogenesis in melanoma cells and melanin deposition in pigmented epidermal equivalents by affecting multiple pigmentary pathways.
Vasileiou, Spyridoula; Baltadakis, Ioannis; Delimpasi, Sosanna; Karatza, Maria-Helena; Liapis, Konstantinos; Garofalaki, Maria; Tziotziou, Eirini; Poulopoulou, Zoe; Karakasis, Dimitri; Harhalakis, Nicholas
2017-09-01
The introduction of novel agents has significantly expanded treatment options for multiple myeloma (MM), albeit long-term disease control cannot be achieved in the majority of patients. Vaccination with MM antigen-loaded dendritic cells (DCs) represents an alternative strategy that is currently being explored. The aim of this study was to assess the immunogenic potential of ex vivo-generated monocyte-derived DCs (moDCs), following stimulation with the whole-antigen array of autologous myeloma cells (AMC). MoDCs were loaded with antigens of myeloma cells by 2 different methods: phagocytosis of apoptotic bodies from γ-irradiated AMC, or transfection with AMC total RNA by square-wave electroporation. Twenty patients with MM were enrolled in the study. Following stimulation and maturation, moDCs were tested for their capacity to induce T-helper 1 and cytotoxic T lymphocyte responses in vitro. Both strategies were effective in the induction of myeloma-specific cytotoxic T lymphocyte and T-helper 1 cells, as demonstrated by cytotoxicity and ELISpot assays. On the whole, T-cell responses were observed in 18 cases by either method of DC pulsing. We conclude that both whole-tumor antigen approaches are efficient in priming autologous antimyeloma T-cell responses and warrant further study aiming at the development of individualized DC vaccines for MM patients.
Vasir, Baldev; Uhl, Lynne; Blotta, Simona; MacNamara, Claire; Somaiya, Poorvi; Wu, Zekui; Joyce, Robin; Levine, James D.; Dombagoda, Dilani; Yuan, Yan Emily; Francoeur, Karen; Fitzgerald, Donna; Richardson, Paul; Weller, Edie; Anderson, Kenneth; Kufe, Donald; Munshi, Nikhil; Avigan, David
2011-01-01
We have developed a tumor vaccine in which patient-derived myeloma cells are chemically fused with autologous dendritic cells (DCs) such that a broad spectrum of myeloma-associated antigens are presented in the context of DC-mediated costimulation. We have completed a phase 1 study in which patients with multiple myeloma underwent serial vaccination with the DC/multiple myeloma fusions in conjunction with granulocyte-macrophage colony-stimulating factor. DCs were generated from adherent mononuclear cells cultured with granulocyte-macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor-α and fused with myeloma cells obtained from marrow aspirates. Vaccine generation was successful in 17 of 18 patients. Successive cohorts were treated with 1 × 106, 2 × 106, and 4 × 106 fusion cells, respectively, with 10 patients treated at the highest dose level. Vaccination was well tolerated, without evidence of dose-limiting toxicity. Vaccination resulted in the expansion of circulating CD4 and CD8 lymphocytes reactive with autologous myeloma cells in 11 of 15 evaluable patients. Humoral responses were documented by SEREX (Serologic Analysis of Recombinant cDNA Expression Libraries) analysis. A majority of patients with advanced disease demonstrated disease stabilization, with 3 patients showing ongoing stable disease at 12, 25, and 41 months, respectively. Vaccination with DC/multiple myeloma fusions was feasible and well tolerated and resulted in antitumor immune responses and disease stabilization in a majority of patients. PMID:21030562
Smith, Veronica R; Popat, Uday; Ciurea, Stefan; Nieto, Yago; Anderlini, Paolo; Rondon, Gabriela; Alousi, Amin; Qazilbash, Muzaffar; Kebriaei, Partow; Khouri, Issa; de Lima, Marcos; Champlin, Richard; Hosing, Chitra
2013-09-01
Plerixafor, a recently approved peripheral blood progenitor cell mobilizing agent, is often added to granulocyte-colony stimulating factor (G-CSF) to mobilize peripheral blood progenitor cells in patients with lymphoma or myeloma who cannot mobilize enough CD34+ cells with G-CSF alone to undergo autologous stem cell transplantation. However, data are lacking regarding the feasibility and efficacy of just-in-time plerixafor in combination with chemotherapy and G-CSF. We reviewed the peripheral blood stem cell collection data of 38 consecutive patients with lymphoma (Hodgkin's and non-Hodgkin's) and multiple myeloma who underwent chemomobilization and high-dose G-CSF and just-in-time plerixafor to evaluate the efficacy of this treatment combination. All patients with multiple myeloma and all but one patient with lymphoma collected the minimum required number of CD34+ cells to proceed with autologous stem cell transplantation (>2 × 10(6) /kg of body weight). The median CD34+ cell dose collected in patients with non-Hodgkin lymphoma was 4.93 × 10(6) /kg of body weight. The median CD34+ cell dose collected for patients with multiple myeloma was 8.81 × 10(6) /kg of body weight. Plerixafor was well tolerated; no grade 2 or higher non-hematologic toxic effects were observed. Copyright © 2013 Wiley Periodicals, Inc.
Kavanagh, Brian; Ko, Andrew; Venook, Alan; Margolin, Kim; Zeh, Herbert; Lotze, Michael; Schillinger, Brian; Liu, Weihong; Lu, Ying; Mitsky, Peggie; Schilling, Marta; Bercovici, Nadege; Loudovaris, Maureen; Guillermo, Roy; Lee, Sun Min; Bender, James; Mills, Bonnie; Fong, Lawrence
2007-10-01
Developing a process to generate dendritic cells (DCs) applicable for multicenter trials would facilitate cancer vaccine development. Moreover, targeting multiple antigens with such a vaccine strategy could enhance the efficacy of such a treatment approach. We performed a phase 1/2 clinical trial administering a DC-based vaccine targeting multiple tumor-associated antigens to patients with advanced colorectal cancer (CRC). A qualified manufacturing process was used to generate DC from blood monocytes using granulocyte macrophage colony-stimulating factor and IL-13, and matured for 6 hours with Klebsiella-derived cell wall fraction and interferon-gamma (IFN-gamma). DCs were also loaded with 6 HLA-A*0201 binding peptides derived from carcinoembryonic antigen (CEA), MAGE, and HER2/neu, as well as keyhole limpet hemocyanin protein and pan-DR epitope peptide. Four planned doses of 35x10(6) cells were administered intradermally every 3 weeks. Immune response was assessed by IFN-gamma enzyme-linked immunosorbent spot (ELISPOT). Matured DC possessed an activated phenotype and could prime T cells in vitro. In the trial, 21 HLA-A2+ patients were apheresed, 13 were treated with the vaccine, and 11 patients were evaluable. No significant treatment-related toxicity was reported. T-cell responses to a CEA-derived peptide were detected by ELISPOT in 3 patients. T cells induced to CEA possessed high avidity T-cell receptors. ELISPOT after in vitro restimulation detected responses to multiple peptides in 2 patients. All patients showed progressive disease. This pilot study in advanced CRC patients demonstrates DC-generated granulocyte macrophage colony-stimulating factor and IL-13 matured with Klebsiella-derived cell wall fraction and IFN-gamma can induce immune responses to multiple tumor-associated antigens in patients with advanced CRC.
Classroom Voting Questions to Stimulate Discussions in Precalculus
ERIC Educational Resources Information Center
Cline, Kelly; Zullo, Holly; Huckaby, David A.; Storm, Christopher; Stewart, Ann
2018-01-01
Classroom voting can be an effective way to stimulate student discussions. In this pedagogy, the instructor poses a multiple-choice question to the class, and then allows a few minutes for consideration and small-group discussion before students vote, either with clickers, cell phones, or a non-electronic method. After the vote the instructor…
Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng
2016-06-15
Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Montero, Rosa M; Bhangal, Gurjeet; Pusey, Charles D; Frankel, Andrew H; Tam, Frederick W K
2016-09-29
Diabetic nephropathy is the leading cause of end stage kidney disease worldwide. The pathogenesis of this disease remains elusive and multiple factors have been implicated. These include the effects of hyperglycaemia, haemodynamic and metabolic factors, and an inflammatory process that stimulates cellular signalling pathways leading to disease progression and severe fibrosis. Fibronectin (Fn) is an important protein of the extracellular matrix that is essential in fibrosis and its presence in increased amounts has been identified in the kidney in diabetic nephropathy. Proximal tubuloepithelial (HK-2) cells were stimulated with high glucose (30 mM D-glucose) or glycated albumin (500 μg/mmol) + 4 mM D-glucose or their controls, Mannitol (26 mM + 4 mM D-glucose) and 4 mM D-glucose, respectively. Following 48 h of stimulation the supernatant was collected and MTT [3-(4,5-dimethylthiazole-2,5-diphenyltetrazolium bromide] assay performed to assess cell viability. HK-2 cells were also stimulated in the above environments with recombinant CCL18 (rCCL18) or MCP-1 (rMCP-1) for 48 h with quantification of Fn levels using ELISA. Co-stimulation of HK-2 cells with high concentrations of glucose and rCCL18 significantly increased Fn (p < 0.001), in comparison to high concentrations of glucose alone. HK-2 cells stimulated with glycated albumin consistently produced Fn and this did not alter following co-stimulation with rCCL18 or rMCP-1. This study demonstrates how stimulation with a specific chemokine CCL18 in high glucose upregulates the production of Fn from proximal tubuloepithelial cells. This may be relevant to the development of renal fibrosis in diabetic nephropathy.
McClintock, Jennifer L; Ceresa, Brian P
2010-07-01
PURPOSE. The goal of this study was to determine the molecular mechanism by which transforming growth factor-alpha (TGF-alpha) is a more potent activator of epidermal growth factor receptor (EGFR)-mediated corneal wound healing than epidermal growth factor (EGF). METHODS. Telomerase immortalized human corneal epithelial (hTCEpi) cells and primary human corneal epithelial cells were tested for their ability to migrate in response to EGF and TGF-alpha. In parallel, the endocytic trafficking of the EGFR in response to these same ligands was examined using indirect immunofluorescence, immunoblots, and radioligand binding. RESULTS. TGF-alpha, compared with EGF, is a more potent activator of corneal epithelial cell migration. Although both TGF-alpha and EGF were able to induce EGFR internalization and phosphorylation, only those receptors that were stimulated with EGF progressed to lysosomal degradation. EGFRs stimulated with TGF-alpha recycled back to the plasma membrane, where they could be reactivated with ligand. CONCLUSIONS. This study reveals that EGFR-mediated cell migration is limited by ligand-stimulated downregulation of the EGFR. This limitation can be overcome by treating cells with TGF-alpha because TGF-alpha stimulates EGFR endocytosis, but not degradation. After internalization of the TGF-alpha/EGFR complex, EGFR recycles back to the plasma membrane, where it can be restimulated. This sequence of events provides the receptor multiple opportunities for stimulation. Thus, stimulation with TGF-alpha prolongs EGFR signaling compared with EGF.
Howard, M; Jiang, X; Stolz, D B; Hill, W G; Johnson, J A; Watkins, S C; Frizzell, R A; Bruton, C M; Robbins, P D; Weisz, O A
2000-08-01
Channel gating of the cystic fibrosis transmembrane conductance regulator (CFTR) is activated in response to cAMP stimulation. In addition, CFTR activation may also involve rapid insertion of a subapical pool of CFTR into the plasma membrane (PM). However, this issue has been controversial, in part because of the difficulty in distinguishing cell surface vs. intracellular CFTR. Recently, a fully functional, epitope-tagged form of CFTR (M2-901/CFTR) that can be detected immunologically in nonpermeabilized cells was characterized (Howard M, Duvall MD, Devor DC, Dong J-Y, Henze K, and Frizzell RA. Am J Physiol Cell Physiol 269: C1565-C1576, 1995; and Schultz BD, Takahashi A, Liu C, Frizzell RA, and Howard M. Am J Physiol Cell Physiol 273: C2080-C2089, 1997). We have developed replication-defective recombinant adenoviruses that express M2-901/CFTR and used them to probe cell surface CFTR in forskolin (FSK)-stimulated polarized Madin-Darby canine kidney (MDCK) cells. Virally expressed M2-901/CFTR was functional and was readily detected on the apical surface of FSK-stimulated polarized MDCK cells. Interestingly, at low multiplicity of infection, we observed FSK-stimulated insertion of M2901/CFTR into the apical PM, whereas at higher M2-901/CFTR expression levels, no increase in surface expression was detected using indirect immunofluorescence. Immunoelectron microscopy of unstimulated and FSK-stimulated cells confirmed the M2-901/CFTR redistribution to the PM upon FSK stimulation and demonstrates that the apically inserted M2-901/CFTR originates from a population of subapical vesicles. Our observations may reconcile previous conflicting reports regarding the effect of cAMP stimulation on CFTR trafficking.
Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types
Hong, In-Sun
2016-01-01
Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a ‘danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications. PMID:27364892
Field, K A; Apgar, J R; Hong-Geller, E; Siraganian, R P; Baird, B; Holowka, D
2000-10-01
Characterization of defects in a variant subline of RBL mast cells has revealed a biochemical event proximal to IgE receptor (Fc epsilon RI)-stimulated tyrosine phosphorylation that is required for multiple functional responses. This cell line, designated B6A4C1, is deficient in both Fc epsilon RI-mediated degranulation and biosynthesis of several lipid raft components. Agents that bypass receptor-mediated Ca(2+) influx stimulate strong degranulation responses in these variant cells. Cross-linking of IgE-Fc epsilon RI on these cells stimulates robust tyrosine phosphorylation but fails to mobilize a sustained Ca(2+) response. Fc epsilon RI-mediated inositol phosphate production is not detectable in these cells, and failure of adenosine receptors to mobilize Ca(2+) suggests a general deficiency in stimulated phospholipase C activity. Antigen stimulation of phospholipases A(2) and D is also defective. Infection of B6A4C1 cells with vaccinia virus constructs expressing constitutively active Rho family members Cdc42 and Rac restores antigen-stimulated degranulation, and active Cdc42 (but not active Rac) restores ganglioside and GPI expression. The results support the hypothesis that activation of Cdc42 and/or Rac is critical for Fc epsilon RI-mediated signaling that leads to Ca(2+) mobilization and degranulation. Furthermore, they suggest that Cdc42 plays an important role in the biosynthesis and expression of certain components of lipid rafts.
Salinthone, Sonemany; Schillace, Robynn V.; Marracci, Gail H.; Bourdette, Dennis N.; Carr, Daniel W.
2008-01-01
The antioxidant lipoic acid (LA) treats and prevents the animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). In an effort to understand the therapeutic potential of LA in MS, we sought to define the cellular mechanisms that mediate the effects of LA on human natural killer (NK) cells, which are important in innate immunity as the first line of defense against invading pathogens and tumor cells. We discovered that LA stimulates cAMP production in NK cells in a dose-dependent manner. Studies using pharmacological inhibitors and receptor transfection experiments indicate that LA stimulates cAMP production via activation of the EP2 and EP4 prostanoid receptors and adenylyl cyclase. In addition, LA suppressed interleukin (IL)-12/IL-18 induced IFNγ secretion and cytotoxicity in NK cells. These novel findings suggest that LA may inhibit NK cell function via the cAMP signaling pathway. PMID:18562016
Romano, Emanuela; Rossi, Marco; Ratzinger, Gudrun; de Cos, Maria-Angeles; Chung, David J.; Panageas, Katherine S.; Wolchok, Jedd D.; Houghton, Alan N.; Chapman, Paul B.; Heller, Glenn; Yuan, Jianda; Young, James W.
2013-01-01
Purpose We compared the efficacy of human Langerhans cells (LCs) as tumor immunogens in vivo with monocyte-derived DCs (moDCs) and investigated how IL15 supports optimal DC-stimulated antitumor immunity. Experimental Design AJCC stage III/IV melanoma patients participated in this first clinical trial comparing melanoma peptide-pulsed LC with moDC vaccines (NCT00700167,www.ClinicalTrials.gov). Correlative studies evaluated mechanisms mediating IL15 support of DC-stimulated antitumor immunity. Results Both DC vaccines were safe and immunogenic for melanoma antigens. LC-based vaccines stimulated significantly greater tyrosinase-HLA-A*0201 tetramer reactivity than did moDC-based vaccines. The two DC subtypes were otherwise statistically comparable, in contrast to extensive prior data in vitro demonstrating LC superiority. LCs synthesize much more IL15 than moDCs and stimulate significantly more antigen-specific lymphocytes with a cytolytic IFN-gamma profile even without exogenous IL15. When supplemented by low dose IL15, instead of IL2, moDCs stimulate 5-6 logs more tumor antigen-specific effector memory T-cells (TEMRA) over 3-4 weeks in vitro. IL2 and IL15 can be synergistic in moDC stimulation of cytolytic T-cells. IL15 promotes T-cell expression of the antiapoptotic bcl-2 and inhibits candidate regulatory T-cell (Treg) expansion after DC stimulation, countering two effects of IL2 that do not foster tumor immunity. Conclusions MoDC-based vaccines will require exogenous IL15 to achieve clinical efficacy. Alternatively, LCs can couple the endogenous production of IL15 with potent T-cell stimulatory activity. Optimization of full length tumor antigen expression for processing into multiple immunogenic peptides for presentation by both class I and II MHC therefore merits emphasis to support more effective antitumor immunity stimulated by LCs. PMID:21355077
Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood.
Hohmann, Christopher; Milles, Bianca; Schinke, Michael; Schroeter, Michael; Ulzheimer, Jochen; Kraft, Peter; Kleinschnitz, Christoph; Lehmann, Paul V; Kuerten, Stefanie
2014-09-16
B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40%) with a pattern II and three of 14 patients (21.4%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95% confidence interval 1.87-19.77). Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients.
Jasiulewicz, Aleksandra; Lisowska, Katarzyna A; Pietruczuk, Krzysztof; Frąckowiak, Joanna; Fulop, Tamas; Witkowski, Jacek M
2015-11-01
The mechanisms of maintenance of adequate numbers of B lymphocytes and of protective levels of immunoglobulins in the absence of antigenic (re)stimulation remain not fully understood. Meanwhile, our results presented here show that both peripheral blood naive and memory B cells can be activated strongly and non-specifically (in a mitogen-like fashion) in 5-day in vitro cultures of anti-CD3- or concanavalin A (Con A)-stimulated peripheral blood mononuclear cells of healthy people. This polyclonal, bystander activation of the B cells includes multiple divisions of most of them (assessed here by the flow cytometric technique of dividing cell tracking) and significant antibody [immunoglobulin M (IgM) and IgG] secretion. Observed proliferation of the CD19(+) B cells depends on contact with stimulated T helper (Th) cells (via CD40-CD40L interaction) and on the response of B cells to secreted interleukins IL-5, IL-10 and IL-4, and is correlated with the levels of these Th-derived molecules, while it does not involve the ligation of the BCR/CD19 complex. We suggest that the effect might reflect the situation occurring in vivo as the homeostatic proliferation of otherwise non-stimulated, peripheral B lymphocytes, providing an always ready pool for efficient antibody production to any new (or cognate) antigen challenge. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chemokine receptor binding and signal transduction in native cells of the central nervous system.
Davis, Christopher N; Chen, Shuzhen; Boehme, Stefen A; Bacon, Kevin B; Harrison, Jeffrey K
2003-04-01
Chemokine receptors belong to the superfamily of seven-transmembrane-spanning, G-protein-coupled receptors, and their expression by central nervous system cells is clearly documented. As this gene family has become the target of novel therapeutic development, the analysis of these receptors requires radioligand binding techniques as well as methods that entail assessing receptor stimulation of signal transduction pathways. Herein, we describe specific protocols for measuring radiolabeled chemokine binding to their cognate receptors on cultured glial cells as well as to receptors expressed in heterologous cell systems. Multiple downstream signaling pathways, including intracellular calcium influx and receptor-dependent kinase activation, are associated with chemokine receptor stimulation. Protocols for measuring these signaling events in chemokine-receptor-expressing cells are also presented.
van Langelaar, Jamie; van der Vuurst de Vries, Roos M; Janssen, Malou; Wierenga-Wolf, Annet F; Spilt, Isis M; Siepman, Theodora A; Dankers, Wendy; Verjans, Georges M G M; de Vries, Helga E; Lubberts, Erik; Hintzen, Rogier Q; van Luijn, Marvin M
2018-05-01
Interleukin-17-expressing CD4+ T helper 17 (Th17) cells are considered as critical regulators of multiple sclerosis disease activity. However, depending on the species and pro-inflammatory milieu, Th17 cells are functionally heterogeneous, consisting of subpopulations that differentially produce interleukin-17, interferon-gamma and granulocyte macrophage colony-stimulating factor. In the current study, we studied distinct effector phenotypes of human Th17 cells and their correlation with disease activity in multiple sclerosis patients. T helper memory populations single- and double-positive for C-C chemokine receptor 6 (CCR6) and CXC chemokine receptor 3 (CXCR3) were functionally assessed in blood and/or cerebrospinal fluid from a total of 59 patients with clinically isolated syndrome, 35 untreated patients and 24 natalizumab-treated patients with relapsing-remitting multiple sclerosis, and nine patients with end-stage multiple sclerosis. Within the clinically isolated syndrome group, 23 patients had a second attack within 1 year and 26 patients did not experience subsequent attacks during a follow-up of >5 years. Low frequencies of T helper 1 (Th1)-like Th17 (CCR6+CXCR3+), and not Th17 (CCR6+CXCR3-) effector memory populations in blood strongly associated with a rapid diagnosis of clinically definite multiple sclerosis. In cerebrospinal fluid of clinically isolated syndrome and relapsing-remitting multiple sclerosis patients, Th1-like Th17 effector memory cells were abundant and showed increased production of interferon-gamma and granulocyte macrophage colony-stimulating factor compared to paired CCR6+ and CCR6-CD8+ T cell populations and their blood equivalents after short-term culturing. Their local enrichment was confirmed ex vivo using cerebrospinal fluid and brain single-cell suspensions. Across all pro-inflammatory T helper cells analysed in relapsing-remitting multiple sclerosis blood, Th1-like Th17 subpopulation T helper 17.1 (Th17.1; CCR6+CXCR3+CCR4-) expressed the highest very late antigen-4 levels and selectively accumulated in natalizumab-treated patients who remained free of clinical relapses. This was not found in patients who experienced relapses during natalizumab treatment. The enhanced potential of Th17.1 cells to infiltrate the central nervous system was supported by their predominance in cerebrospinal fluid of early multiple sclerosis patients and their preferential transmigration across human brain endothelial layers. These findings reveal a dominant contribution of Th1-like Th17 subpopulations, in particular Th17.1 cells, to clinical disease activity and provide a strong rationale for more specific and earlier use of T cell-targeted therapy in multiple sclerosis.
Alevizos, Michail; Karagkouni, Anna; Vasiadi, Magdalini; Sismanopoulos, Nikolaos; Makris, Michael; Kalogeromitros, Dimitrios; Theoharides, Theoharis C
2013-12-01
Mast cells are involved in allergy and inflammation by the secretion of multiple mediators, including histamine, cytokines, and platelet-activating factor (PAF), in response to different triggers, including emotional stress. PAF has been associated with allergic inflammation, but there are no clinically available PAF inhibitors. To investigate whether PAF could stimulate human mast cell mediator release and whether rupatadine (RUP), a dual histamine-1 and PAF receptor antagonist, could inhibit the effect of PAF on human mast cells. Laboratory of allergic diseases 2 cultured mast cells were stimulated with PAF (0.001, 0.01, and 0.1 μmol/L) and substance P (1 μmol/L) with or without pretreatment with RUP (2.5 and 25 μmol/L), which was added 10 minutes before stimulation. Release of β-hexosaminidase was measured in supernatant fluid by spectrophotoscopy, and histamine, interleukin-8, and tumor necrosis factor were measured by enzyme-linked immunosorbent assay. PAF stimulated a statistically significant release of histamine, interleukin-8, and tumor necrosis factor (0.001-0.1 μmol/L) that was comparable to that stimulated by substance P. Pretreatment with RUP (25 μmol/L) for 10 minutes inhibited this effect. In contrast, pretreatment of laboratory of allergic diseases 2 cells with diphenhydramine (25 μmol/L) did not inhibit mediator release, suggesting that the effect of RUP was not due to its antihistaminic effect. PAF stimulates human mast cell release of proinflammatory mediators that is inhibited by RUP. This action endows RUP with additional properties in treating allergic inflammation. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Endothelial microparticles interact with and support the proliferation of T cells
Wheway, Julie; Latham, Sharissa L; Combes, Valery; Grau, Georges ER
2014-01-01
Endothelial cells (EC) closely interact with circulating lymphocytes. Aggression or activation of the endothelium leads to an increased shedding of EC microparticles (MP). Endothelial MP (EMP) are found in high plasma levels in numerous immunoinflammatory diseases, e.g. atherosclerosis, sepsis, multiple sclerosis and cerebral malaria, supporting their role as effectors and markers of vascular dysfunction. Given our recently described role for human brain microvascular endothelial cells (HBEC) in modulating immune responses we investigated how HBEC-derived MP could interact with and support the proliferation of T cells. Like their mother cells, EMP expressed molecules important for antigen presentation and T cell co-stimulation, i.e., β2-microglobulin, MHC II, CD40 and ICOSL. HBEC were able to take up fluorescently labeled antigens with EMP also containing fluorescent antigens suggestive of antigen carryover from HBEC to EMP. In co-cultures, fluorescently labeled EMP from resting or cytokine-stimulated HBEC formed conjugates with both CD4+ and CD8+ subsets, with higher proportions of T cells binding EMP from cytokine stimulated cells. The increased binding of EMP from cytokine stimulated HBEC to T cells was VCAM-1 and ICAM-1-dependent. Finally, in CFSE T cell proliferation assays using anti-CD3 mAb or T cell mitogens, EMP promoted the proliferation of CD4+ T cells and that of CD8+ T cells in the absence of exogenous stimuli and in the T cell mitogenic stimulation. Our findings provide novel evidence that EMP can enhance T cell activation and potentially ensuing antigen presentation, thereby pointing towards a novel role for MP in neuro-immunological complications of infectious diseases. PMID:25187656
Simvastatin Potently Induces Calcium-dependent Apoptosis of Human Leiomyoma Cells*
Borahay, Mostafa A.; Kilic, Gokhan S.; Yallampalli, Chandrasekha; Snyder, Russell R.; Hankins, Gary D. V.; Al-Hendy, Ayman; Boehning, Darren
2014-01-01
Statins are drugs commonly used for the treatment of high plasma cholesterol levels. Beyond these well known lipid-lowering properties, they possess broad-reaching effects in vivo, including antitumor effects. Statins inhibit the growth of multiple tumors. However, the mechanisms remain incompletely understood. Here we show that simvastatin inhibits the proliferation of human leiomyoma cells. This was associated with decreased mitogen-activated protein kinase signaling and multiple changes in cell cycle progression. Simvastatin potently stimulated leiomyoma cell apoptosis in a manner mechanistically dependent upon apoptotic calcium release from voltage-gated calcium channels. Therefore, simvastatin possesses antitumor effects that are dependent upon the apoptotic calcium release machinery. PMID:25359773
Fiber-array based optogenetic prosthetic system for stimulation therapy
NASA Astrophysics Data System (ADS)
Gu, Ling; Cote, Chris; Tejeda, Hector; Mohanty, Samarendra
2012-02-01
Recent advent of optogenetics has enabled activation of genetically-targeted neuronal cells using low intensity blue light with high temporal precision. Since blue light is attenuated rapidly due to scattering and absorption in neural tissue, optogenetic treatment of neurological disorders may require stimulation of specific cell types in multiple regions of the brain. Further, restoration of certain neural functions (vision, and auditory etc) requires accurate spatio-temporal stimulation patterns rather than just precise temporal stimulation. In order to activate multiple regions of the central nervous system in 3D, here, we report development of an optogenetic prosthetic comprising of array of fibers coupled to independently-controllable LEDs. This design avoids direct contact of LEDs with the brain tissue and thus does not require electrical and heat isolation, which can non-specifically stimulate and damage the local brain regions. The intensity, frequency, and duty cycle of light pulses from each fiber in the array was controlled independently using an inhouse developed LabView based program interfaced with a microcontroller driving the individual LEDs. While the temporal profile of the light pulses was controlled by varying the current driving the LED, the beam profile emanating from each fiber tip could be sculpted by microfabrication of the fiber tip. The fiber array was used to stimulate neurons, expressing channelrhodopsin-2, in different locations within the brain or retina. Control of neural activity in the mice cortex, using the fiber-array based prosthetic, is evaluated from recordings made with multi-electrode array (MEA). We also report construction of a μLED array based prosthetic for spatio-temporal stimulation of cortex.
1989-01-01
The relationship between receptor-mediated increases in the intracellular free calcium concentration [( Ca]i) and the stimulation of ion fluxes involved in fluid secretion was examined in the rat parotid acinar cell. Agonist-induced increases in [Ca]i caused the rapid net loss of up to 50-60% of the total content of intracellular chloride (Cli) and potassium (Ki), which is consistent with the activation of calcium-sensitive chloride and potassium channels. These ion movements were accompanied by a 25% reduction in the intracellular volume. The relative magnitudes of the losses of Ki and the net potassium fluxes promoted by carbachol (a muscarinic agonist), phenylephrine (an alpha-adrenergic agonist), and substance P were very similar to their characteristic effects on elevating [Ca]i. Carbachol stimulated the loss of Ki through multiple efflux pathways, including the large-conductance Ca-activated K channel. Carbachol and substance P increased the levels of intracellular sodium (Nai) to more than 2.5 times the normal level by stimulating the net uptake of sodium through multiple pathways; Na-K-2Cl cotransport accounted for greater than 50% of the influx, and approximately 20% was via Na-H exchange, which led to a net alkalinization of the cells. Ionomycin stimulated similar fluxes through these two pathways, but also promoted sodium influx through an additional pathway which was nearly equivalent in magnitude to the combined uptake through the other two pathways. The carbachol- induced increase in Nai and decrease in Ki stimulated the activity of the sodium pump, measured by the ouabain-sensitive rate of oxygen consumption, to nearly maximal levels. In the absence of extracellular calcium or in cells loaded with the calcium chelator BAPTA (bis[o- aminophenoxy]ethane-N,N,N',N'-tetraacetic acid) the magnitudes of agonist- or ionomycin-stimulated ion fluxes were greatly reduced. The parotid cells displayed a marked desensitization to substance P; within 10 min the elevation of [Ca]i and alterations in Ki, Nai, and cell volume spontaneously returned to near baseline levels. In addition to quantitating the activation of various ion flux pathways in the rat parotid acinar cell, these results demonstrate that the activation of ion transport systems responsible for fluid secretion in this tissue is closely linked to the elevation of [Ca]i. PMID:2467962
Interleukin 6 protects pancreatic β cells from apoptosis by stimulation of autophagy.
Linnemann, Amelia K; Blumer, Joseph; Marasco, Michelle R; Battiola, Therese J; Umhoefer, Heidi M; Han, Jee Young; Lamming, Dudley W; Davis, Dawn Belt
2017-09-01
IL-6 is a pleiotropic cytokine with complex roles in inflammation and metabolic disease. The role of IL-6 as a pro- or anti-inflammatory cytokine is still unclear. Within the pancreatic islet, IL-6 stimulates secretion of the prosurvival incretin hormone glucagon-like peptide 1 (GLP-1) by α cells and acts directly on β cells to stimulate insulin secretion in vitro Uncovering physiologic mechanisms promoting β-cell survival under conditions of inflammation and stress can identify important pathways for diabetes prevention and treatment. Given the established role of GLP-1 in promoting β-cell survival, we hypothesized that IL-6 may also directly protect β cells from apoptosis. Herein, we show that IL-6 robustly activates signal transducer and activator of transcription 3 (STAT3), a transcription factor that is involved in autophagy. IL-6 stimulates LC3 conversion and autophagosome formation in cultured β cells. In vivo IL-6 infusion stimulates a robust increase in lysosomes in the pancreas that is restricted to the islet. Autophagy is critical for β-cell homeostasis, particularly under conditions of stress and increased insulin demand. The stimulation of autophagy by IL-6 is regulated via multiple complementary mechanisms including inhibition of mammalian target of rapamycin complex 1 (mTORC1) and activation of Akt, ultimately leading to increases in autophagy enzyme production. Pretreatment with IL-6 renders β cells resistant to apoptosis induced by proinflammatory cytokines, and inhibition of autophagy with chloroquine prevents the ability of IL-6 to protect from apoptosis. Importantly, we find that IL-6 can activate STAT3 and the autophagy enzyme GABARAPL1 in human islets. We also see evidence of decreased IL-6 pathway signaling in islets from donors with type 2 diabetes. On the basis of our results, we propose direct stimulation of autophagy as a novel mechanism for IL-6-mediated protection of β cells from stress-induced apoptosis.-Linnemann, A. K., Blumer, J., Marasco, M. R., Battiola, T. J., Umhoefer, H. M., Han, J. Y., Lamming, D. W., Davis, D. B. Interleukin 6 protects pancreatic β cells from apoptosis by stimulation of autophagy. © FASEB.
Liu, Jianbo; Khalil, Hassan K; Oweiss, Karim G
2011-10-01
In bi-directional brain-machine interfaces (BMIs), precisely controlling the delivery of microstimulation, both in space and in time, is critical to continuously modulate the neural activity patterns that carry information about the state of the brain-actuated device to sensory areas in the brain. In this paper, we investigate the use of neural feedback to control the spatiotemporal firing patterns of neural ensembles in a model of the thalamocortical pathway. Control of pyramidal (PY) cells in the primary somatosensory cortex (S1) is achieved based on microstimulation of thalamic relay cells through multiple-input multiple-output (MIMO) feedback controllers. This closed loop feedback control mechanism is achieved by simultaneously varying the stimulation parameters across multiple stimulation electrodes in the thalamic circuit based on continuous monitoring of the difference between reference patterns and the evoked responses of the cortical PY cells. We demonstrate that it is feasible to achieve a desired level of performance by controlling the firing activity pattern of a few "key" neural elements in the network. Our results suggest that neural feedback could be an effective method to facilitate the delivery of information to the cortex to substitute lost sensory inputs in cortically controlled BMIs.
Dominov, J A; Stenzler, L; Lee, S; Schwarz, J J; Leisner, S; Howell, S H
1992-01-01
Both cytokinin (N6-benzyladenine [BA]) and auxin (2,4-dichlorophenoxyacetic acid [2,4-D]) stimulate the accumulation of an mRNA, represented by the cDNA pLS216, in Nicotiana plumbaginifolia suspension culture cells. The kinetics of RNA accumulation were different for the two hormones; however, the response to both was transient, and the magnitude of the response was dose dependent. Runoff transcription experiments demonstrated that the transient appearance of the RNA could be accounted for by feedback regulation of transcription and not by the induction of an RNA degradation system. The feedback mechanism appeared to desensitize the cells to further exposure of the hormone. In particular, cells became refractory to the subsequent addition of 2,4-D after the initial RNA accumulation response subsided. A very different response was observed when the second hormone was added to cells that had been desensitized to the first hormone. Under such conditions, BA produced a heightened response in cells desensitized to 2,4-D and vice versa. These findings support a model in which cytokinin further enhances the auxin response or prevents its feedback inhibition. The hormone-induced RNA accumulation was blocked by the protein kinase inhibitor staurosporin. On the other hand, the protein phosphatase inhibitor okadaic acid stimulated expression, and, in particular, okadaic acid was able to stimulate RNA accumulation in cells desensitized to auxin. This suggests that hormone activation involves phosphorylation of critical proteins on the hormone signaling pathway, whereas feedback inhibition may involve dephosphorylation of these proteins. The sequence of pLS216 is similar to genes in other plants that are stimulated by multiple agonists such as auxins, elicitors, and heavy metals, and to the gene encoding the stringent starvation protein in Escherichia coli. It is proposed that this gene family in various plants be called multiple stimulus response (msr) genes. PMID:1498603
Muller, Joséphine; Bolomsky, Arnold; Dubois, Sophie; Duray, Elodie; Stangelberger, Kathrin; Plougonven, Erwan; Lejeune, Margaux; Léonard, Angélique; Marty, Caroline; Hempel, Ute; Baron, Frédéric; Beguin, Yves; Cohen-Solal, Martine; Ludwig, Heinz; Heusschen, Roy; Caers, Jo
2018-05-10
Multiple myeloma bone disease is characterized by an uncoupling of bone remodeling in the multiple myeloma microenvironment, resulting in the development of lytic bone lesions. Most myeloma patients suffer from these bone lesions, which not only causes morbidity but also negatively impacts survival. The development of novel therapies, ideally with a combined anti-resorptive and bone-anabolic effect, is of great interest because lesions persist with the current standard of care, even in patients in complete remission. We have previously shown that MELK plays a central role in proliferation-associated high-risk multiple myeloma and its inhibition with OTSSP167 resulted in decreased tumor load. MELK inhibition in bone cells has not yet been explored, although some reports suggest factors downstream of MELK stimulate osteoclast activity and inhibit osteoblast activity, which makes MELK inhibition a promising therapeutic approach. Therefore, we assessed the effect of OTSSP167 on bone cell activity and the development of myeloma-induced bone disease. OTSSP167 inhibited osteoclast activity in vitro by decreasing progenitor viability as well as via a direct anti-resorptive effect on mature osteoclasts. In addition, OTSSP167 stimulated matrix deposition and mineralization by osteoblasts in vitro. This combined anti-resorptive and osteoblast-stimulating effect of OTSSP167 resulted in the complete prevention of lytic lesions and bone loss in myeloma-bearing mice. Immunohistomorphometric analyses corroborated our in vitro findings. In conclusion, we show that OTSSP167 has a direct effect on myeloma-induced bone disease in addition to its anti-multiple myeloma effect, which warrants further clinical development of MELK inhibition in multiple myeloma. Copyright © 2018, Ferrata Storti Foundation.
Analysis of autophagic flux in response to sulforaphane in metastatic prostate cancer cells
Watson, Gregory W; Wickramasekara, Samanthi; Fang, Yufeng; Palomera-Sanchez, Zoraya; Maier, Claudia S; Williams, David E; Dashwood, Roderick H; Perez, Viviana I; Ho, Emily
2015-01-01
Scope The phytochemical sulforaphane has been shown to decrease prostate cancer metastases in a genetic mouse model of prostate carcinogenesis, though the mechanism of action is not fully known. Sulforaphane has been reported to stimulate autophagy, and modulation of autophagy has been proposed to influence sulforaphane cytotoxicity; however, no conclusions about autophagy can be drawn without assessing autophagic flux, which has not been characterized in prostate cancer cells following sulforaphane treatment. Methods and Results We conducted an investigation to assess the impact of sulforaphane on autophagic flux in two metastatic prostate cancer cell lines at a concentration shown to decrease metastasis in vivo. Autophagic flux was assessed by multiple autophagy related proteins and substrates. We found that sulforaphane can stimulate autophagic flux and cell death only at high concentrations, above what has been observed in vivo. Conclusion These results suggest that sulforaphane does not directly stimulate autophagy or cell death in metastatic prostate cancer cells under physiologically relevant conditions, but instead supports the involvement of in vivo factors as important effectors of sulforaphane- mediated prostate cancer suppression. PMID:26108801
Chen, Ding; Ireland, Sara J; Remington, Gina; Alvarez, Enrique; Racke, Michael K; Greenberg, Benjamin; Frohman, Elliot M; Monson, Nancy L
2016-12-01
CD40 interacts with CD40L and plays an essential role in immune regulation and homeostasis. Recent research findings, however, support a pathogenic role of CD40 in a number of autoimmune diseases. We previously showed that memory B cells from relapsing-remitting multiple sclerosis (RRMS) patients exhibited enhanced proliferation with CD40 stimulation compared with healthy donors. In this study, we used a multiparameter phosflow approach to analyze the phosphorylation status of NF-κB and three major MAPKs (P38, ERK, and JNK), the essential components of signaling pathways downstream of CD40 engagement in B cells from MS patients. We found that memory and naive B cells from RRMS and secondary progressive MS patients exhibited a significantly elevated level of phosphorylated NF-κB (p-P65) following CD40 stimulation compared with healthy donor controls. Combination therapy with IFN-β-1a (Avonex) and mycophenolate mofetil (Cellcept) modulated the hyperphosphorylation of P65 in B cells of RRMS patients at levels similar to healthy donor controls. Lower disease activity after the combination therapy correlated with the reduced phosphorylation of P65 following CD40 stimulation in treated patients. Additionally, glatiramer acetate treatment also significantly reduced CD40-mediated P65 phosphorylation in RRMS patients, suggesting that reducing CD40-mediated p-P65 induction may be a general mechanism by which some current therapies modulate MS disease. Copyright © 2016 by The American Association of Immunologists, Inc.
Radisic, Milica; Park, Hyoungshin; Shing, Helen; Consi, Thomas; Schoen, Frederick J; Langer, Robert; Freed, Lisa E; Vunjak-Novakovic, Gordana
2004-12-28
The major challenge of tissue engineering is directing the cells to establish the physiological structure and function of the tissue being replaced across different hierarchical scales. To engineer myocardium, biophysical regulation of the cells needs to recapitulate multiple signals present in the native heart. We hypothesized that excitation-contraction coupling, critical for the development and function of a normal heart, determines the development and function of engineered myocardium. To induce synchronous contractions of cultured cardiac constructs, we applied electrical signals designed to mimic those in the native heart. Over only 8 days in vitro, electrical field stimulation induced cell alignment and coupling, increased the amplitude of synchronous construct contractions by a factor of 7, and resulted in a remarkable level of ultrastructural organization. Development of conductive and contractile properties of cardiac constructs was concurrent, with strong dependence on the initiation and duration of electrical stimulation.
[The effect of Bacillus intermedius RNAse on the multiplication of Candida tropicalis yeasts].
Kupriianova-Ashina, F G; Kolpakov, A I; Egorov, S Iu
1992-01-01
The effect of Bacillus intermedius RNAse on the reproduction of Candida tropicalis and synthesis of the main biopolymers in the yeast cells. It has been found that stimulating action of the enzyme appears at the concentration of 10(-5)-10(-6) mg/ml and does not depend on the physiological state of the sowing culture. The connection between the increase of the ionic penetration and stimulation of the RNA and proteins synthesis in the yeast cells subjected to the RNAse action is shown. The mechanism of chromatine-associated RNA-polymerase activation is suggested to include the alteration of the ionic penetration of cells under the RNAse action.
Growth factor transgenes interactively regulate articular chondrocytes.
Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B
2013-04-01
Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair. Copyright © 2012 Wiley Periodicals, Inc.
Daily, Neil J.; Du, Zhong-Wei
2017-01-01
Abstract Electrophysiology of excitable cells, including muscle cells and neurons, has been measured by making direct contact with a single cell using a micropipette electrode. To increase the assay throughput, optical devices such as microscopes and microplate readers have been used to analyze electrophysiology of multiple cells. We have established a high-throughput (HTP) analysis of action potentials (APs) in highly enriched motor neurons and cardiomyocytes (CMs) that are differentiated from human induced pluripotent stem cells (iPSCs). A multichannel electric field stimulation (EFS) device enabled the ability to electrically stimulate cells and measure dynamic changes in APs of excitable cells ultra-rapidly (>100 data points per second) by imaging entire 96-well plates. We found that the activities of both neurons and CMs and their response to EFS and chemicals are readily discerned by our fluorescence imaging-based HTP phenotyping assay. The latest generation of calcium (Ca2+) indicator dyes, FLIPR Calcium 6 and Cal-520, with the HTP device enables physiological analysis of human iPSC-derived samples highlighting its potential application for understanding disease mechanisms and discovering new therapeutic treatments. PMID:28525289
Lippestad, Marit; Hodges, Robin R.; Utheim, Tor P.; Serhan, Charles N.; Dartt, Darlene A.
2017-01-01
Purpose Goblet cells in the conjunctiva secrete mucin into the tear film protecting the ocular surface. The proresolution mediator resolvin D1 (RvD1) regulates mucin secretion to maintain homeostasis during physiological conditions and in addition, actively terminates inflammation. We determined the signaling mechanisms used by RvD1 in cultured rat conjunctival goblet cells to increase intracellular [Ca2+] ([Ca2+]i) and induce glycoconjugate secretion. Methods Increase in [Ca2+]i were measured using fura 2/AM and glycoconjugate secretion determined using an enzyme-linked lectin assay with the lectin Ulex Europaeus Agglutinin 1. Signaling pathways activated by RvD1 were studied after goblet cells were pretreated with signaling pathway inhibitors before stimulation with RvD1. The results were compared with results when goblet cells were stimulated with RvD1 alone and percent inhibition calculated. Results The increase in [Ca2+]i stimulated by RvD1 was blocked by inhibitors to phospholipases (PL-) -D, -C, -A2, protein kinase C (PKC), extracellular signal-regulated kinases (ERK)1/2 and Ca2+/calmodulin-dependent kinase (Ca2+/CamK). Glycoconjugate secretion was significantly inhibited by PLD, -C, -A2, ERK1/2 and Ca2+/CamK, but not PKC. Conclusions We conclude that RvD1 increases glycoconjugate secretion from goblet cells via multiple signaling pathways including PLC, PLD, and PLA2, as well as their signaling components ERK1/2 and Ca2+/CamK to preserve the mucous layer and maintain homeostasis by protecting the eye from desiccating stress, allergens, and pathogens. PMID:28892824
2012-01-01
Background Although the peptidyl-prolyl isomerase, cyclophilin-A (peptidyl-prolyl isomerase, PPIA), has been studied for decades in the context of its intracellular functions, its extracellular roles as a major contributor to both inflammation and multiple cancers have more recently emerged. A wide range of activities have been ascribed to extracellular PPIA that include induction of cytokine and matrix metalloproteinase (MMP) secretion, which potentially underlie its roles in inflammation and tumorigenesis. However, there have been conflicting reports as to which particular signaling events are under extracellular PPIA regulation, which may be due to either cell-dependent responses and/or the use of commercial preparations recently shown to be highly impure. Methods We have produced and validated the purity of recombinant PPIA in order to subject it to a comparative analysis between different cell types. Specifically, we have used a combination of multiple methods such as luciferase reporter screens, translocation assays, phosphorylation assays, and nuclear magnetic resonance to compare extracellular PPIA activities in several different cell lines that included epithelial and monocytic cells. Results Our findings have revealed that extracellular PPIA activity is cell type-dependent and that PPIA signals via multiple cellular receptors beyond the single transmembrane receptor previously identified, Extracellular Matrix MetalloPRoteinase Inducer (EMMPRIN). Finally, while our studies provide important insight into the cell-specific responses, they also indicate that there are consistent responses such as nuclear factor kappa B (NFκB) signaling induced in all cell lines tested. Conclusions We conclude that although extracellular PPIA activates several common pathways, it also targets different receptors in different cell types, resulting in a complex, integrated signaling network that is cell type-specific. PMID:22631225
Mark, Tomer; Stern, Jessica; Furst, Jessica R; Jayabalan, David; Zafar, Faiza; LaRow, April; Pearse, Roger N; Harpel, John; Shore, Tsiporah; Schuster, Michael W; Leonard, John P; Christos, Paul J; Coleman, Morton; Niesvizky, Ruben
2008-07-01
A total of 28 treatment-naïve patients with stage II or III multiple myeloma (MM) were treated with the combination of clarithromycin, lenalidomide, and dexamethasone (BiRD). Stem cells were collected following granulocyte-colony stimulating factor (G-CSF) or cyclophosphamide (Cy) plus G-CSF mobilization at maximum response. Sufficient stem cells for 2 autologous stem cell transplants were collected from all patients mobilized with Cy plus G-CSF, versus 33% mobilized with G-CSF alone (P < .0001). The duration of prior lenalidomide therapy did not correlate with success of stem cell harvests (P = .91). In conclusion, Cy can be added to G-CSF for stem cell mobilization to successfully overcome the suppressive effect of prior treatment with lenalidomide.
Mark, Tomer; Stern, Jessica; Furst, Jessica R.; Jayabalan, David; Zafar, Faiza; LaRow, April; Pearse, Roger N.; Harpel, John; Shore, Tsiporah; Schuster, Michael W.; Leonard, John P.; Christos, Paul J.; Coleman, Morton; Niesvizky, Ruben
2013-01-01
A total of 28 treatment-naïve patients with stage II or III multiple myeloma (MM) were treated with the combination of clarithromycin, lenalidomide, and dexamethasone (BiRD). Stem cells were collected following granulocyte- colony stimulating factor (G-CSF) or cyclophosphamide (Cy) plus G-CSF mobilization at maximum response. Sufficient stem cells for 2 autologous stem cell transplants were collected from all patients mobilized with Cy plus G-CSF, versus 33% mobilized with G-CSF alone (P<.0001). The duration of prior lenalidomide therapy did not correlate with success of stem cell harvests (P = .91). In conclusion, Cy can be added to G-CSF for stem cell mobilization to successfully overcome the suppressive effect of prior treatment with lenalidomide. PMID:18541199
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Wen; Jones, Frank E., E-mail: fjones3@tulane.edu
2014-01-10
Highlights: •HER4/4ICD is an obligate coactivator for 37% of estrogen regulated genes. •HER4/4ICD coactivated genes selectively regulate estrogen stimulated proliferation. •Estrogen stimulated tumor cell migration occurs independent of HER4/4ICD. •Disrupting HER4/4ICD and ER coactivated gene expression may suppress breast cancer. -- Abstract: The EGFR-family member HER4 undergoes regulated intramembrane proteolysis (RIP) to generate an intracellular domain (4ICD) that functions as a transcriptional coactivator. Accordingly, 4ICD coactivates the estrogen receptor (ER) and associates with ER at target gene promoters in breast tumor cells. However, the extent of 4ICD coactivation of ER and the functional significance of the 4ICD/ER transcriptional complex ismore » unclear. To identify 4ICD coactivated genes we performed a microarray gene expression analysis of β-estradiol treated cells comparing control MCF-7 breast cancer cells to MCF-7 cells where HER4 expression was stably suppressed using a shRNA. In the MCF-7 cell line, β-estradiol significantly stimulated or repressed by 2-fold or more 726 or 53 genes, respectively. Significantly, HER4/4ICD was an obligate coactivator for 277 or 38% of the β-estradiol stimulated genes. Ingenuity Pathway Analysis of β-estradiol regulated genes identified significant associations with multiple cellular functions regulating cellular growth and proliferation, cell cycle progression, cancer metastasis, decreased hypoplasia, tumor cell migration, apoptotic resistance of tumor cells, and increased transcription. Genes coactivated by 4ICD displayed functional specificity by only significantly contributing to cellular growth and proliferation, cell cycle progression, and decreased hypoplasia. In direct concordance with these in situ results we show that HER4 knockdown in MCF-7 cells results in a loss of estrogen stimulated tumor cell proliferation and cell cycle progression, whereas, estrogen stimulated tumor cell migration was unaffected by loss of HER4 expression. In summary, we demonstrate for the first time that a cell surface receptor functions as an obligate ER coactivator with functional specificity associated with breast tumor cell proliferation and cell cycle progression. Nearly 90% of ER positive tumors coexpress HER4, therefore we predict that the majority of breast cancer patients would benefit from a strategy to therapeutic disengage ER/4ICD coregulated tumor cell proliferation.« less
The role of nitric oxide in melanoma.
Yarlagadda, Keerthi; Hassani, John; Foote, Isaac P; Markowitz, Joseph
2017-12-01
Nitric oxide (NO) is a small gaseous signaling molecule that mediates its effects in melanoma through free radical formation and enzymatic processes. Investigations have demonstrated multiple roles for NO in melanoma pathology via immune surveillance, apoptosis, angiogenesis, melanogenesis, and on the melanoma cell itself. In general, elevated levels of NO prognosticate a poor outcome for melanoma patients. However, there are processes where the relative concentration of NO in different environments may also serve to limit melanoma proliferation. This review serves to outline the roles of NO in melanoma development and proliferation. As demonstrated by multiple in vivo murine models and observations from human tissue, NO may promote melanoma formation and proliferation through its interaction via inhibitory immune cells, inhibition of apoptosis, stimulation of pro-tumorigenic cytokines, activation of tumor associated macrophages, alteration of angiogenic processes, and stimulation of melanoma formation itself. Copyright © 2017 Elsevier B.V. All rights reserved.
Tan, Thomas C J; Knight, John; Sbarrato, Thomas; Dudek, Kate; Willis, Anne E; Zamoyska, Rose
2017-07-25
Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.
T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection.
McKinney, Eoin F; Lee, James C; Jayne, David R W; Lyons, Paul A; Smith, Kenneth G C
2015-07-30
The clinical course of autoimmune and infectious disease varies greatly, even between individuals with the same condition. An understanding of the molecular basis for this heterogeneity could lead to significant improvements in both monitoring and treatment. During chronic infection the process of T-cell exhaustion inhibits the immune response, facilitating viral persistence. Here we show that a transcriptional signature reflecting CD8 T-cell exhaustion is associated with poor clearance of chronic viral infection, but conversely predicts better prognosis in multiple autoimmune diseases. The development of CD8 T-cell exhaustion during chronic infection is driven both by persistence of antigen and by a lack of accessory 'help' signals. In autoimmunity, we find that where evidence of CD4 T-cell co-stimulation is pronounced, that of CD8 T-cell exhaustion is reduced. We can reproduce the exhaustion signature by modifying the balance of persistent stimulation of T-cell antigen receptors and specific CD2-induced co-stimulation provided to human CD8 T cells in vitro, suggesting that each process plays a role in dictating outcome in autoimmune disease. The 'non-exhausted' T-cell state driven by CD2-induced co-stimulation is reduced by signals through the exhaustion-associated inhibitory receptor PD-1, suggesting that induction of exhaustion may be a therapeutic strategy in autoimmune and inflammatory disease. Using expression of optimal surrogate markers of co-stimulation/exhaustion signatures in independent data sets, we confirm an association with good clinical outcome or response to therapy in infection (hepatitis C virus) and vaccination (yellow fever, malaria, influenza), but poor outcome in autoimmune and inflammatory disease (type 1 diabetes, anti-neutrophil cytoplasmic antibody-associated vasculitis, systemic lupus erythematosus, idiopathic pulmonary fibrosis and dengue haemorrhagic fever). Thus, T-cell exhaustion plays a central role in determining outcome in autoimmune disease and targeted manipulation of this process could lead to new therapeutic opportunities.
Doehn, Ulrik; Hauge, Camilla; Frank, Scott R.; Jensen, Claus J.; Duda, Katarzyna; Nielsen, Jakob V.; Cohen, Michael S.; Johansen, Jens V.; Winther, Benny R.; Lund, Leif R.; Winther, Ole; Taunton, Jack; Hansen, Steen H.; Frödin, Morten
2013-01-01
SUMMARY The RAS-stimulated RAF-MEK-ERK pathway confers epithelial cells with critical motile and invasive capacities during embryonic development, tissue regeneration and carcinoma progression. Yet many mechanisms by which ERK exerts this control remain elusive. Here, we demonstrate that the ERK-activated kinase RSK is necessary to induce motility and invasive capacities in non-transformed epithelial cells and carcinoma cells. RSK is moreover sufficient to induce certain motile responses. Expression profiling analysis revealed that a primary role of RSK is to induce transcription of potent pro-motile/invasive gene program by FRA1-dependent and independent mechanisms. Strikingly, the program enables RSK to coordinately modulate the extracellular environment, the intracellular motility apparatus, and receptors mediating communication between these compartments to stimulate motility and invasion. These findings uncover a general mechanism whereby the RAS-ERK pathway controls epithelial cell motility by identifying RSK as a key effector, from which emanates multiple highly coordinate transcription-dependent mechanisms for stimulation of motility and invasive properties. PMID:19716794
Rahmberg, Andrew R; Rajakumar, Premeela A; Billingsley, James M; Johnson, R Paul
2017-04-01
Although multiple restriction factors have been shown to inhibit HIV/SIV replication, little is known about their expression in vivo Expression of 45 confirmed and putative HIV/SIV restriction factors was analyzed in CD4 + T cells from peripheral blood and the jejunum in rhesus macaques, revealing distinct expression patterns in naive and memory subsets. In both peripheral blood and the jejunum, memory CD4 + T cells expressed higher levels of multiple restriction factors compared to naive cells. However, relative to their expression in peripheral blood CD4 + T cells, jejunal CCR5 + CD4 + T cells exhibited significantly lower expression of multiple restriction factors, including APOBEC3G , MX2 , and TRIM25 , which may contribute to the exquisite susceptibility of these cells to SIV infection. In vitro stimulation with anti-CD3/CD28 antibodies or type I interferon resulted in upregulation of distinct subsets of multiple restriction factors. After infection of rhesus macaques with SIVmac239, the expression of most confirmed and putative restriction factors substantially increased in all CD4 + T cell memory subsets at the peak of acute infection. Jejunal CCR5 + CD4 + T cells exhibited the highest levels of SIV RNA, corresponding to the lower restriction factor expression in this subset relative to peripheral blood prior to infection. These results illustrate the dynamic modulation of confirmed and putative restriction factor expression by memory differentiation, stimulation, tissue microenvironment and SIV infection and suggest that differential expression of restriction factors may play a key role in modulating the susceptibility of different populations of CD4 + T cells to lentiviral infection. IMPORTANCE Restriction factors are genes that have evolved to provide intrinsic defense against viruses. HIV and simian immunodeficiency virus (SIV) target CD4 + T cells. The baseline level of expression in vivo and degree to which expression of restriction factors is modulated by conditions such as CD4 + T cell differentiation, stimulation, tissue location, or SIV infection are currently poorly understood. We measured the expression of 45 confirmed and putative restriction factors in primary CD4 + T cells from rhesus macaques under various conditions, finding dynamic changes in each state. Most dramatically, in acute SIV infection, the expression of almost all target genes analyzed increased. These are the first measurements of many of these confirmed and putative restriction factors in primary cells or during the early events after SIV infection and suggest that the level of expression of restriction factors may contribute to the differential susceptibility of CD4 + T cells to SIV infection. Copyright © 2017 American Society for Microbiology.
Ultrasound Stimulation of Insulin Release from Pancreatic Beta Cells
NASA Astrophysics Data System (ADS)
Suarez Castellanos, Ivan M.
Type 2 diabetes (T2D) mellitus is a complex metabolic disease that has reached epidemic proportions in the United States and around the world. Controlling T2D is often difficult as pharmacological management routinely requires complex therapy with multiple medications, and loses its effectiveness over time. The objective of this dissertation was to explore a novel, non-pharmacological approach that utilizes the application of ultrasound energy to stimulate insulin release. Our experiments have focused on determination of effectiveness and safety of ultrasound application in stimulation of insulin release from the pancreatic beta cells. Our results showed that ultrasound treatment, applied at frequencies of 800 kHz and 1 MHz and intensities of 0.5 W/cm2 and 1 W/cm2, did not produce any significant effects on cell viability compared to sham group as assessed with trypan blue dye exclusion test and MTT cytotoxicity assay. ELISA quantification of insulin release from beta cells resulting from ultrasound treatment showed clinically-significant amounts of released insulin as compared to sham-treated beta cells. Carbon fiber amperometry detection of secretory events from dopamine-loaded beta cells treated with ultrasound showed that release of secretory content could be temporally controlled by careful selection of ultrasound parameters. Both ELISA and amperometry experiments demonstrated that ultrasound-stimulated insulin release is a calcium-dependent process, potentially mediated by the mechanical effects of ultrasound. This study demonstrated that therapeutic ultrasound is a technique capable of stimulating the release of insulin from pancreatic beta cells in a safe, effective and controlled manner.
Chemosensory Information Processing between Keratinocytes and Trigeminal Neurons
Sondersorg, Anna Christina; Busse, Daniela; Kyereme, Jessica; Rothermel, Markus; Neufang, Gitta; Gisselmann, Günter; Hatt, Hanns; Conrad, Heike
2014-01-01
Trigeminal fibers terminate within the facial mucosa and skin and transmit tactile, proprioceptive, chemical, and nociceptive sensations. Trigeminal sensations can arise from the direct stimulation of intraepithelial free nerve endings or indirectly through information transmission from adjacent cells at the peripheral innervation area. For mechanical and thermal cues, communication processes between skin cells and somatosensory neurons have already been suggested. High concentrations of most odors typically provoke trigeminal sensations in vivo but surprisingly fail to activate trigeminal neuron monocultures. This fact favors the hypothesis that epithelial cells may participate in chemodetection and subsequently transmit signals to neighboring trigeminal fibers. Keratinocytes, the major cell type of the epidermis, express various receptors that enable reactions to multiple environmental stimuli. Here, using a co-culture approach, we show for the first time that exposure to the odorant chemicals induces a chemical communication between human HaCaT keratinocytes and mouse trigeminal neurons. Moreover, a supernatant analysis of stimulated keratinocytes and subsequent blocking experiments with pyrodoxalphosphate-6-azophenyl-2′,4′-disulfonate revealed that ATP serves as the mediating transmitter molecule released from skin cells after odor stimulation. We show that the ATP release resulting from Javanol® stimulation of keratinocytes was mediated by pannexins. Consequently, keratinocytes act as chemosensors linking the environment and the trigeminal system via ATP signaling. PMID:24790106
Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦
Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter
2015-01-01
The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139
Cusick, Matthew F; Libbey, Jane E; Cox Gill, Joan; Fujinami, Robert S; Eckels, David D
2013-01-01
Aim To determine whether modulation of T-cell responses by naturally occurring viral variants caused an increase in numbers of Tregs in HCV-infected patients. Patients, materials & methods Human peripheral blood mononuclear cells, having proliferative responses to a wild-type HCV-specific CD4+ T-cell epitope, were used to quantify, via proliferative assays, flow cytometry and class II tetramers, the effects of naturally occurring viral variants arising in the immunodominant epitope. Results In combination, the wild-type and variant peptides led to enhanced suppression of an anti-HCV T-cell response. The variant had a lower avidity for the wild-type-specific CD4+ T cell. Variant-stimulated CD4+ T cells had increased Foxp3, compared with wild-type-stimulated cells. Conclusion A stable viral variant from a chronic HCV subject was able to induce Tregs in multiple individuals that responded to the wild-type HCV-specific CD4+ T-cell epitope. PMID:24421862
Querec, Troy; Bennouna, Soumaya; Alkan, Sefik; Laouar, Yasmina; Gorden, Keith; Flavell, Richard; Akira, Shizuo; Ahmed, Rafi; Pulendran, Bali
2006-02-20
The live attenuated yellow fever vaccine 17D (YF-17D) is one of the most effective vaccines available, with a 65-yr history of use in >400 million people globally. Despite this efficacy, there is presently no information about the immunological mechanisms by which YF-17D acts. Here, we present data that suggest that YF-17D activates multiple Toll-like receptors (TLRs) on dendritic cells (DCs) to elicit a broad spectrum of innate and adaptive immune responses. Specifically, YF-17D activates multiple DC subsets via TLRs 2, 7, 8, and 9 to elicit the proinflammatory cytokines interleukin (IL)-12p40, IL-6, and interferon-alpha. Interestingly, the resulting adaptive immune responses are characterized by a mixed T helper cell (Th)1/Th2 cytokine profile and antigen-specific CD8+ T cells. Furthermore, distinct TLRs appear to differentially control the Th1/Th2 balance; thus, whilst MyD88-deficient mice show a profound impairment of Th1 cytokines, TLR2-deficient mice show greatly enhanced Th1 and Tc1 responses to YF-17D. Together, these data enhance our understanding of the molecular mechanism of action of YF-17D, and highlight the potential of vaccination strategies that use combinations of different TLR ligands to stimulate polyvalent immune responses.
Gertz, Monica L; Baker, Zachary; Jose, Sharon; Peixoto, Nathalia
2017-05-29
Micro-electrode arrays (MEAs) can be used to investigate drug toxicity, design paradigms for next-generation personalized medicine, and study network dynamics in neuronal cultures. In contrast with more traditional methods, such as patch-clamping, which can only record activity from a single cell, MEAs can record simultaneously from multiple sites in a network, without requiring the arduous task of placing each electrode individually. Moreover, numerous control and stimulation configurations can be easily applied within the same experimental setup, allowing for a broad range of dynamics to be explored. One of the key dynamics of interest in these in vitro studies has been the extent to which cultured networks display properties indicative of learning. Mouse neuronal cells cultured on MEAs display an increase in response following training induced by electrical stimulation. This protocol demonstrates how to culture neuronal cells on MEAs; successfully record from over 95% of the plated dishes; establish a protocol to train the networks to respond to patterns of stimulation; and sort, plot, and interpret the results from such experiments. The use of a proprietary system for stimulating and recording neuronal cultures is demonstrated. Software packages are also used to sort neuronal units. A custom-designed graphical user interface is used to visualize post-stimulus time histograms, inter-burst intervals, and burst duration, as well as to compare the cellular response to stimulation before and after a training protocol. Finally, representative results and future directions of this research effort are discussed.
Coordinate Stimulation of Macrophages by Microparticles and TLR Ligands Induces Foam Cell Formation1
Keyel, Peter A; Tkacheva, Olga A.; Larregina, Adriana T.; Salter, Russell D
2012-01-01
Aberrant activation of macrophages in arterial walls by oxidized lipoproteins can lead to atherosclerosis. Oxidized lipoproteins convert macrophages to foam cells through lipid uptake and TLR signaling. To investigate the relative contributions of lipid uptake and TLR signaling in foam cell formation, we established an in vitro assay utilizing liposomes of defined lipid compositions. We found that TLRs signaling through Trif promoted foam cell formation by inducing both NF-KB signaling and Type I IFN production, whereas TLRs that do not induce IFN, like TLR2, did not enhance foam cell formation. Addition of IFNα to TLR2 activator promoted robust foam cell formation. TLR signaling further required PPARα, as inhibition of PPARα blocked foam cell formation. We then investigated the ability of endogenous microparticles (MP) to contribute to foam cell formation. We found that lipid containing MP promoted foam cell formation, which was enhanced by TLR stimulation or IFNα. These MP also stimulated foam cell formation in a human skin model. However, these MP suppressed TNFα production and T cell activation, showing that foam cell formation can occur by immunosuppressive microparticles. Taken together, the data reveal novel signaling requirements for foam cell formation and suggest that uptake of distinct types of MP in the context of activation of multiple distinct TLR can induce foam cell formation. PMID:23018455
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caulada-Benedetti, Z.; Al-Zamel, F.; Sher, A.
1991-03-01
Mice immunized against Schistosoma mansoni by a single percutaneous exposure to radiation-attenuated parasite larvae demonstrate partial resistance to challenge infection that has been shown to correlate with development of cell-mediated immunity, whereas mice hyperimmunized by multiple exposure to attenuated larvae produce antibodies capable of transferring partial protection to naive recipients. Measurement of Ag-specific lymphokine responses in these animals suggested that the difference in resistance mechanisms may be due to the differential induction of Th subset response by the two immunization protocols. Thus, upon Ag stimulation, singly immunized mice predominantly demonstrated responses associated with Th1 reactivity, including IL-2 and IFN-gamma production,more » whereas multiply immunized animals showed increased IL-5, IL-4, and IgG1 antibody production associated with enhanced Th2 response. These responses demonstrated some degree of organ compartmentalization, with splenocytes demonstrating higher Th1-related lymphokine production and cells from draining lymph nodes showing stronger proliferation and Th2 type reactivity. However, hyperimmunized mice also continued to demonstrate substantial Th1-associated immune reactivity. Moreover, in vivo Ag challenge elicited activated larvacidal macrophages in hyperimmunized animals. These observations indicate that protective cell-mediated mechanisms associated with induction of CD4+ Th1 cell reactivity predominate in singly vaccinated mice. Further vaccination stimulates Th2 responses, such as enhanced IgG1 production, that may also contribute to protective immunity.« less
Medina-Fernández, Francisco J; Luque, Evelio; Aguilar-Luque, Macarena; Agüera, Eduardo; Feijóo, Montserrat; García-Maceira, Fe I; Escribano, Begoña M; Pascual-Leone, Álvaro; Drucker-Colín, René; Túnez, Isaac
2017-01-15
Experimental autoimmune encephalomyelitis (EAE) is considered a valid experimental model for multiple sclerosis, a chronic neuroinflammatory condition of the central nervous system. Additionally, some evidence has shown that some microbial products such as the bacterial lipopolysaccharide could lead to the activation of reactive immune cells, triggering neuroinflammation. Several studies have found that transcranial magnetic stimulation (TMS) may exert a neuroprotective effect. Therefore, we aimed to assess the effect of TMS on the neuroinflammation occurring in EAE. A total of 44 male Dark Agouti rats were used. EAE induction was performed administering subcutaneously at the dorsal base of the tail a single dose of myelin oligodendrocyte glycoprotein. Clinical evaluation of motor symptoms was performed. Brain and spinal cord were collected and analyzed for nitric oxide, bacterial lipopolysaccharide and lipopolysaccharide-binding protein. We also carried out a histologic exam, which included an astrocyte immunostaining and Nissl staining for the assessment of brain cell density and pyknotic nuclei. TMS effectively ameliorated motor impairment secondary to EAE. This form of magnetic field was capable of decreasing the proliferation of astrocytes as a response to the autoimmune attack, reducing the content of nitric oxide, bacterial lipopolysaccharide and lipopolysaccharide-binding protein in central nervous system. Moreover, in treated animals, brain cell density was improved and the number of pyknotic nuclei was decreased. Transcranial magnetic stimulation modifies astrocytosis, cell density and lipopolysaccharide levels in EAE. These results suggest that TMS could be a promising treatment for neuroinflammatory conditions such as multiple sclerosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Evidence that Ser87 of BimEL is phosphorylated by Akt and regulates BimEL apoptotic function.
Qi, Xiao-Jun; Wildey, Gary M; Howe, Philip H
2006-01-13
Bim, the Bcl-2 interacting mediator of cell death, is a member of the BH3-only family of pro-apoptotic proteins. Recent studies have demonstrated that the apoptotic activity of Bim can be regulated through a post-translational mechanism whereby ERK phosphorylation serves as a signal for Bim ubiquitination and proteasomal degradation. In this report, we investigated the signaling pathways leading to Bim phosphorylation in Ba/F3 cells, an interleukin-3 (IL-3)-dependent B-cell line. IL-3 stimulation induced phosphorylation of Bim(EL), one of the predominant isoforms of Bim expressed in cells, at multiple sites, as evidenced by the formation of at least three to four bands by Western blotting that were sensitive to phosphatase digestion. The appearance of multiple, phosphorylated species of Bim(EL) correlated with Akt, and not ERK, activation. The PI3K inhibitor, LY294002, blocked IL-3-stimulated Akt activity and partially blocked Bim(EL) phosphorylation. In vitro kinase assays showed that recombinant Akt could directly phosphorylate a GST-Bim(EL) fusion protein and identified the Akt phosphorylation site in the Bim(EL) domain as Ser(87). Further, we demonstrated that cytokine stimulation promotes Bim(EL) binding to 14-3-3 proteins. Finally, we show that mutation of Ser(87) dramatically increases the apoptotic potency of Bim(EL). We propose that Ser(87) of Bim(EL) is an important regulatory site that is targeted by Akt to attenuate the pro-apoptotic function of Bim(EL), thereby promoting cell survival.
Rankin, S; Morii, N; Narumiya, S; Rozengurt, E
1994-11-14
In this study we examined the role of rho p21 in neuropeptide-stimulated tyrosine phosphorylation. Intact Swiss 3T3 cells were treated with the Clostridium botulinum C3 exoenzyme which specifically ADP ribosylates and inactivates rho p21. C3 exoenzyme treatment of cells caused a marked decrease in both bombesin- and endothelin-stimulated tyrosine phosphorylation of multiple proteins, including p125 focal adhesion kinase (FAK) and paxillin. Our results suggest that rho p21 is a component of the signal transduction pathway linking seven transmembrane domain receptors with tyrosine phosphorylation and cytoskeletal events.
Phenotypic Changes and Impaired Function of Peripheral γδ T Cells in Patients With Sepsis.
Liao, Xue-Lian; Feng, Ting; Zhang, Jiang-Qian; Cao, Xing; Wu, Qi-Hong; Xie, Zhi-Chao; Kang, Yan; Li, Hong
2017-09-01
Recent studies demonstrated the significant loss of gamma delta T (γδ T) cells in patients with sepsis. Given the distinct functions of γδ T cells in human anti-infection immunity, we are interested in evaluating the phenotype and function of peripheral γδ T cells in septic patients and determining their prognostic implication. This prospective study has been conducted in three intensive care units of a university hospital. During the period from October 2014 to June 2015, we enrolled 107 patients who were consecutively admitted and diagnosed with severe sepsis or septic shock (excluding previous immunosuppression) and 45 healthy controls. Using flow cytometry, we analyzed the in vivo percentage of γδ T cells in cluster of differentiation (CD)3 cells from peripheral blood mononuclear cells as well as their expression of surface markers (CD69, natural-killer group 2 member D [NKG2D], programmed death receptor 1 [PD-1]) and intracellular cytokines (interferon-γ [IFN-γ], interleukin [IL]-17, IL-10, transforming growth factor-β [TGF-β]). Then we further evaluated the different responses of γδ T cells after the antigen stimulation ex vivo by measuring CD69 and IFN-γ expression. Lastly, we conducted the multiple logistic regressions to analyze the risk factor for prognosis. Compared with control group, γδ T cells in septic patients displayed a decrease in percentage, increase in CD69, decrease in NKG2D, and increase in cytokine expression (pro-inflammatory IFN-γ, IL-17, anti-inflammatory IL-10, TGF-β) in vivo. After the antigen stimulation ex vivo, both CD69 and IFN-γ expression in γδ T cells were significantly lower in septic patients than control group. Importantly, the decrease in CD69 and IFN-γ expression was more pronounced in non-survivors than survivors. Multiple logistic regression analysis revealed that lower expression of IFN-γ after stimulation is a dependent risk factor that associated with patient 28-day death in septic patients (OR: 0.908 [95% CI: 0.853-0.966]). Septic patients showed altered phenotype and function of γδ T cells. The impaired IFN-γ expression by γδ T cells after the antigen stimulation is associated with mortality in septic patients.
Structural Elements Recognized by Abacavir-Induced T Cells.
Yerly, Daniel; Pompeu, Yuri Andreiw; Schutte, Ryan J; Eriksson, Klara K; Strhyn, Anette; Bracey, Austin W; Buus, Soren; Ostrov, David A
2017-07-07
Adverse drug reactions are one of the leading causes of morbidity and mortality in health care worldwide. Human leukocyte antigen (HLA) alleles have been strongly associated with drug hypersensitivities, and the causative drugs have been shown to stimulate specific T cells at the sites of autoimmune destruction. The structural elements recognized by drug-specific T cell receptors (TCRs) in vivo are poorly defined. Drug-stimulated T cells express TCRs specific for peptide/HLA complexes, but the characteristics of peptides (sequence, or endogenous or exogenous origin) presented in the context of small molecule drugs are not well studied. Using HLA-B*57:01 mediated hypersensitivity to abacavir as a model system, this study examines structural similarities of HLA presented peptides recognized by drug-specific TCRs. Using the crystal structure of HLA-B*57:01 complexed with abacavir and an immunogenic self peptide, VTTDIQVKV SPT5a 976-984, peptide side chains exhibiting flexibility and solvent exposure were identified as potential drug-specific T cell recognition motifs. Viral sequences with structural motifs similar to the immunogenic self peptide were identified. Abacavir-specific T cell clones were used to determine if virus peptides presented in the context of abacavir stimulate T cell responsiveness. An abacavir-specific T cell clone was stimulated by VTQQAQVRL, corresponding to HSV1/2 230-238, in the context of HLA-B*57:01. These data suggest the T cell polyclonal response to abacavir consists of multiple subsets, including T cells that recognize self peptide/HLA-B*57:01 complexes and crossreact with viral peptide/HLA-B*57:01 complexes due to similarity in TCR contact residues.
Local and Systemic CD4+ T Cell Exhaustion Reverses with Clinical Resolution of Pulmonary Sarcoidosis
Hawkins, Charlene; Shaginurova, Guzel; Shelton, D. Auriel; Herazo-Maya, Jose D.; Oswald-Richter, Kyra A.; Young, Anjuli; Celada, Lindsay J.; Kaminski, Naftali; Sevin, Carla
2017-01-01
Investigation of the Th1 immune response in sarcoidosis CD4+ T cells has revealed reduced proliferative capacity and cytokine expression upon TCR stimulation. In other disease models, such cellular dysfunction has been associated with a step-wise, progressive loss of T cell function that results from chronic antigenic stimulation. T cell exhaustion is defined by decreased cytokine production upon TCR activation, decreased proliferation, increased expression of inhibitory cell surface receptors, and increased susceptibility to apoptosis. We characterized sarcoidosis CD4+ T cell immune function in systemic and local environments among subjects undergoing disease progression compared to those experiencing disease resolution. Spontaneous and TCR-stimulated Th1 cytokine expression and proliferation assays were performed in 53 sarcoidosis subjects and 30 healthy controls. PD-1 expression and apoptosis were assessed by flow cytometry. Compared to healthy controls, sarcoidosis CD4+ T cells demonstrated reductions in Th1 cytokine expression, proliferative capacity (p < 0.05), enhanced apoptosis (p < 0.01), and increased PD-1 expression (p < 0.001). BAL-derived CD4+ T cells also demonstrated multiple facets of T cell exhaustion (p < 0.05). Reversal of CD4+ T cell exhaustion was observed in subjects undergoing spontaneous resolution (p < 0.05). Sarcoidosis CD4+ T cells exhibit loss of cellular function during progressive disease that follows the archetype of T cell exhaustion. PMID:29234685
Cloning higher plants from aseptically cultured tissues and cells
NASA Technical Reports Server (NTRS)
Krikorian, A. D.
1982-01-01
A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.
Stem cells for the treatment of neurological disorders
NASA Astrophysics Data System (ADS)
Lindvall, Olle; Kokaia, Zaal
2006-06-01
Many common neurological disorders, such as Parkinson's disease, stroke and multiple sclerosis, are caused by a loss of neurons and glial cells. In recent years, neurons and glia have been generated successfully from stem cells in culture, fuelling efforts to develop stem-cell-based transplantation therapies for human patients. More recently, efforts have been extended to stimulating the formation and preventing the death of neurons and glial cells produced by endogenous stem cells within the adult central nervous system. The next step is to translate these exciting advances from the laboratory into clinically useful therapies.
Setting sail for glucose homeostasis with the AKAP150-PP2B-anchor.
Teo, Adrian Kee Keong; Kulkarni, Rohit N
2012-10-17
Glucose-stimulated insulin secretion, controlled by multiple protein phosphorylation events, is critical for the regulation of glucose homeostasis. Protein kinase A (PKA) is known to play a role in β cell physiology, but the role of its anchoring protein is not fully understood. Hinke et al (2012) illustrate the significance of A-kinase anchoring protein 150 in tethering protein phosphatase 2B to mediate nutrient-stimulated insulin secretion and thus modulate glucose homeostasis.
Dwyer, Amy R; Mouchemore, Kellie A; Steer, James H; Sunderland, Andrew J; Sampaio, Natalia G; Greenland, Eloise L; Joyce, David A; Pixley, Fiona J
2016-07-01
A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1. © Society for Leukocyte Biology.
Acid-growth response and alpha-expansins in suspension cultures of bright yellow 2 tobacco
NASA Technical Reports Server (NTRS)
Link, B. M.; Cosgrove, D. J.
1998-01-01
The possibility that Bright Yellow 2 (BY2) tobacco (Nicotiana tabacum L.) suspension-cultured cells possess an expansin-mediated acid-growth mechanism was examined by multiple approaches. BY2 cells grew three times faster upon treatment with fusicoccin, which induces an acidification of the cell wall. Exogenous expansins likewise stimulated BY2 cell growth 3-fold. Protein extracted from BY2 cell walls possessed the expansin-like ability to induce extension of isolated walls. In western-blot analysis of BY2 wall protein, one band of 29 kD was recognized by anti-expansin antibody. Six different classes of alpha-expansin mRNA were identified in a BY2 cDNA library. Northern-blot analysis indicated moderate to low abundance of multiple alpha-expansin mRNAs in BY2 cells. From these results we conclude that BY2 suspension-cultured cells have the necessary components for expansin-mediated cell wall enlargement.
Antigen-mediated regulation in monoclonal gammopathies and myeloma
Nair, Shiny; Sng, Joel; Boddupalli, Chandra Sekhar; Seckinger, Anja; Fulciniti, Mariateresa; Zhang, Lin; Rauniyar, Navin; Lopez, Michael; Neparidze, Natalia; Parker, Terri; Munshi, Nikhil C.; Sexton, Rachael; Barlogie, Bart; Orlowski, Robert; Bergsagel, Leif; Hose, Dirk; Mistry, Pramod K.; Meffre, Eric; Dhodapkar, Madhav V.
2018-01-01
A role for antigen-driven stimulation has been proposed in the pathogenesis of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) based largely on the binding properties of monoclonal Ig. However, insights into antigen binding to clonal B cell receptors and in vivo responsiveness of the malignant clone to antigen-mediated stimulation are needed to understand the role of antigenic stimulation in tumor growth. Lysolipid-reactive clonal Ig were detected in Gaucher disease (GD) and some sporadic gammopathies. Here, we show that recombinant Ig (rIg) cloned from sort-purified single tumor cells from lipid-reactive sporadic and GD-associated gammopathy specifically bound lysolipids. Liposome sedimentation and binding assays confirmed specific interaction of lipid-reactive monoclonal Ig with lysolipids. The clonal nature of lysolipid-binding Ig was validated by protein sequencing. Gene expression profiling and cytogenetic analyses from 2 patient cohorts showed enrichment of nonhyperdiploid tumors in lipid-reactive patients. In vivo antigen-mediated stimulation led to an increase in clonal Ig and plasma cells (PCs) in GD gammopathy and also reactivated previously suppressed antigenically related nonclonal PCs. These data support a model wherein antigenic stimulation mediates an initial polyclonal phase, followed by evolution of monoclonal tumors enriched in nonhyperdiploid genomes, responsive to underlying antigen. Targeting underlying antigens may therefore prevent clinical MM. PMID:29669929
Antigen-mediated regulation in monoclonal gammopathies and myeloma.
Nair, Shiny; Sng, Joel; Boddupalli, Chandra Sekhar; Seckinger, Anja; Chesi, Marta; Fulciniti, Mariateresa; Zhang, Lin; Rauniyar, Navin; Lopez, Michael; Neparidze, Natalia; Parker, Terri; Munshi, Nikhil C; Sexton, Rachael; Barlogie, Bart; Orlowski, Robert; Bergsagel, Leif; Hose, Dirk; Flavell, Richard A; Mistry, Pramod K; Meffre, Eric; Dhodapkar, Madhav V
2018-04-19
A role for antigen-driven stimulation has been proposed in the pathogenesis of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) based largely on the binding properties of monoclonal Ig. However, insights into antigen binding to clonal B cell receptors and in vivo responsiveness of the malignant clone to antigen-mediated stimulation are needed to understand the role of antigenic stimulation in tumor growth. Lysolipid-reactive clonal Ig were detected in Gaucher disease (GD) and some sporadic gammopathies. Here, we show that recombinant Ig (rIg) cloned from sort-purified single tumor cells from lipid-reactive sporadic and GD-associated gammopathy specifically bound lysolipids. Liposome sedimentation and binding assays confirmed specific interaction of lipid-reactive monoclonal Ig with lysolipids. The clonal nature of lysolipid-binding Ig was validated by protein sequencing. Gene expression profiling and cytogenetic analyses from 2 patient cohorts showed enrichment of nonhyperdiploid tumors in lipid-reactive patients. In vivo antigen-mediated stimulation led to an increase in clonal Ig and plasma cells (PCs) in GD gammopathy and also reactivated previously suppressed antigenically related nonclonal PCs. These data support a model wherein antigenic stimulation mediates an initial polyclonal phase, followed by evolution of monoclonal tumors enriched in nonhyperdiploid genomes, responsive to underlying antigen. Targeting underlying antigens may therefore prevent clinical MM.
Patterned optogenetic modulation of neurovascular and metabolic signals
Richner, Thomas J; Baumgartner, Ryan; Brodnick, Sarah K; Azimipour, Mehdi; Krugner-Higby, Lisa A; Eliceiri, Kevin W; Williams, Justin C; Pashaie, Ramin
2015-01-01
The hemodynamic and metabolic response of the cortex depends spatially and temporally on the activity of multiple cell types. Optogenetics enables specific cell types to be modulated with high temporal precision and is therefore an emerging method for studying neurovascular and neurometabolic coupling. Going beyond temporal investigations, we developed a microprojection system to apply spatial photostimulus patterns in vivo. We monitored vascular and metabolic fluorescence signals after photostimulation in Thy1-channelrhodopsin-2 mice. Cerebral arteries increased in diameter rapidly after photostimulation, while nearby veins showed a slower smaller response. The amplitude of the arterial response was depended on the area of cortex stimulated. The fluorescence signal emitted at 450/100 nm and excited with ultraviolet is indicative of reduced nicotinamide adenine dinucleotide, an endogenous fluorescent enzyme involved in glycolysis and the citric acid cycle. This fluorescence signal decreased quickly and transiently after optogenetic stimulation, suggesting that glucose metabolism is tightly locked to optogenetic stimulation. To verify optogenetic stimulation of the cortex, we used a transparent substrate microelectrode array to map cortical potentials resulting from optogenetic stimulation. Spatial optogenetic stimulation is a new tool for studying neurovascular and neurometabolic coupling. PMID:25388678
Ohe, Go; Sasai, Akiko; Uchida, Daisuke; Tamatani, Tetsuya; Nagai, Hirokazu; Miyamoto, Youji
2013-08-01
The streptococcal antitumor agent OK-432 is commonly used as an immunopotentiator for immunotherapy in various types of malignant tumors including oral cancer. It has been demonstrated that OK-432 elicits an antitumor effect by stimulating immunocompetent cells, thereby inducing multiple cytokines including interferon (IFN)-γ, interleukin (IL)-2 and IL-12. Serum concentrations of IFN-γ in patients with oral cancer were examined 24 h after administration of OK-432. Serum concentrations of IFN-γ in patients with advanced cancer were significantly lower than those in patients with early cancer. These results suggested that some soluble factors produced by cancer cells may inhibit IFN-γ production with OK-432. Thus, in the present study, an in vitro simulation model was established for the immune status of patients with oral cancer by adding conditioned medium (CM) derived from oral cancer cell lines into a culture of peripheral blood mononuclear cells (PBMCs) derived from a healthy volunteer. We investigated whether soluble factors derived from oral cancer cells affected IFN-γ production from PBMCs following stimulation with OK-432. PBMCs stimulated with OK-432 produced a large amount of IFN-γ; however, both IFN-γ production and cytotoxic activity from PBMCs induced by OK-432 were inhibited by the addition of CM in a dose-dependent manner. In order to examine these inhibitory effects against IFN-γ production, the contribution of inhibitory cytokines such as IL-4, IL-6, IL-10, transforming growth factor-β and vascular endothelial growth factor was investigated. However, neutralization of these inhibitory cytokines did not recover IFN-γ production inhibited by CM. These results indicated that unknown molecules may inhibit IFN-γ production from PBMCs following stimulation with OK-432.
Okahashi, Nobuo; Okinaga, Toshinori; Sakurai, Atsuo; Terao, Yutaka; Nakata, Masanobu; Nakashima, Keisuke; Shintani, Seikou; Kawabata, Shigetada; Ooshima, Takashi; Nishihara, Tatsuji
2011-10-01
Streptococcus sanguinis, a normal inhabitant of the human oral cavity, is a common streptococcal species implicated in infective endocarditis. Herein, we investigated the effects of infection with S. sanguinis on foam cell formation and cell death of macrophages. Infection with S. sanguinis stimulated foam cell formation of THP-1, a human macrophage cell line. At a multiplicity of infection >100, S. sanguinis-induced cell death of the macrophages. Viable bacterial infection was required to trigger cell death because heat-inactivated S. sanguinis did not induce cell death. The production of cytokines interleukin-1β and tumor necrosis factor-α from macrophages was also stimulated during bacterial infection. Inhibition of the production of reactive oxygen species (ROS) resulted in reduced cell death, suggesting an association of ROS with cell death. Furthermore, S. sanguinis-induced cell death appeared to be independent of activation of inflammasomes, because cleavage of procaspase-1 was not evident in infected macrophages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Bilgin, Yavuz M; Visser, Otto; Beckers, Erik A M; te Boome, Liane C J; Huisman, Cynthia; Ypma, Paula F; Croockewit, Alexandra J; Netelenbos, Tanja; Kramer, Ellen P A; de Greef, Georgine E
2015-05-01
Plerixafor in combination with granulocyte-colony-stimulating factor (G-CSF) is approved for the use of stem cell collection in patients who fail to mobilize on G-CSF. In 2009 the Stem Cell Working Party of the Dutch-Belgian Cooperative Trial group for Hematology Oncology (HOVON) composed a guideline for the use of plerixafor. According to this guideline it is recommended to add plerixafor to G-CSF in patients with circulating CD34+ cell counts of fewer than 20 × 10(6) /L on 2 consecutive days accompanied by increasing white blood cells. In this analysis we evaluated retrospectively the outcome of the use of this guideline in the Netherlands. In total 111 patients received plerixafor with a median one administration (range, one to four administrations). Of these patients 55.8% had non-Hodgkin lymphoma, 31.5% multiple myeloma, 8.1% Hodgkin lymphoma, and 4.5% nonhematologic malignancies. In 63.9% patients sufficient numbers of CD34+ cells were collected. In patients with multiple myeloma more successful mobilizations with plerixafor were observed compared to patients with non-Hodgkin lymphoma (71.4% vs. 61.3%). In patients with circulating CD34+ cell counts of at least 2.0 × 10(6) /L before administration of plerixafor a successful mobilization was achieved in 76.5%, and in the patients with very low (0-1 × 10(6) /L) circulating CD34+ cell counts the success rate was 44.2%. Application of the HOVON guideline on the just-in-time administration of plerixafor is effective for mobilization of hematopoietic stem cells in the majority of patients. Stem cell yield in patients with non-Hodgkin lymphoma was lower compared to patients with multiple myeloma. Also patients with very low circulating CD34+ cells before addition of plerixafor might benefit from this approach. © 2014 AABB.
NASA Technical Reports Server (NTRS)
Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.
1999-01-01
The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.
Gross, Catharina C; Schulte-Mecklenbeck, Andreas; Hanning, Uta; Posevitz-Fejfár, Anita; Korsukewitz, Catharina; Schwab, Nicholas; Meuth, Sven G; Wiendl, Heinz; Klotz, Luisa
2017-06-01
Distinct lesion topography in relapsing-remitting multiple sclerosis (RRMS) might be due to different antigen presentation and/or trafficking routes of immune cells into the central nervous system (CNS). To investigate whether distinct lesion patterns in multiple sclerosis (MS) might be associated with a predominance of distinct circulating T-helper cell subset as well as their innate counterparts. Flow cytometric analysis of lymphocytes derived from the peripheral blood of patients with exclusively cerebral (n = 20) or predominantly spinal (n = 12) disease manifestation. Patients with exclusively cerebral or preferential spinal lesion manifestation were associated with increased proportions of circulating granulocyte-macrophage colony-stimulating factor (GM-CSF) producing T H 1 cells or interleukin (IL)-17-producing T H 17 cells, respectively. In contrast, proportions of peripheral IL-17/IL-22-producing lymphoid tissue inducer (LTi), the innate counterpart of T H 17 cells, were enhanced in RRMS patients with exclusively cerebral lesion topography. Distinct T-helper and T-helper-like innate lymphoid cell (ILC) subsets are associated with different lesion topography in RRMS.
Primed tumor-reactive multifunctional CD62L+ human CD8+T-cells for immunotherapy
Wölfl, Matthias; Merker, Katharina; Morbach, Henner; Van Gool, Stefaan W.; Eyrich, Matthias; Greenberg, Philip D.; Schlegel, Paul G.
2011-01-01
T-cell mediated immunotherapy against malignancies has been shown to be effective for certain types of cancer. However ex vivo expansion of tumor-reactive T-cells has been hindered by the low precursor frequency of such cells, often requiring multiple rounds of stimulation, resulting in full differentiation, loss of homing receptors and potential exhaustion of the expanded T-cells. Here we show that when using highly purified naïve CD8+ T-cells, a single stimulation with peptide pulsed, IFNγ/LPS-matured dendritic cells in combination with the sequential use of IL-21, IL-7 and IL-15 is sufficient for extensive expansion of antigen-specific T-cells. Short-term expanded T-cells were tumor-reactive, multifunctional and retained a central memory-like phenotype (CD62L+, CCR7+, CD28+). The procedure is highly reproducible and robust as demonstrated for different healthy donors and for cancer patients. Such short-term tumor-antigen-primed, multifunctional T-cells may therefore serve as a platform to target different malignancies accessible to immunotherapy. PMID:20972785
Yang, Kai; Shrestha, Sharad; Zeng, Hu; Karmaus, Peer W.F.; Neale, Geoffrey; Vogel, Peter; Guertin, David A.; Lamb, Richard F.; Chi, Hongbo
2014-01-01
SUMMARY Naïve T cells respond to antigen stimulation by exiting from quiescence and initiating clonal expansion and functional differentiation, but the control mechanism is elusive. Here we describe that Raptor-mTORC1-dependent metabolic programming is a central determinant of this transitional process. Loss of Raptor abrogated T cell priming and Th2 cell differentiation, although Raptor function is less important for continuous proliferation of actively cycling cells. mTORC1 coordinated multiple metabolic programs in T cells including glycolysis, lipid synthesis and oxidative phosphorylation to mediate antigen-triggered exit from quiescence. mTORC1 further linked glucose metabolism to the initiation of Th2 cell differentiation by orchestrating cytokine receptor expression and cytokine responsiveness. Activation of Raptor-mTORC1 integrated T cell receptor and CD28 co-stimulatory signals in antigen-stimulated T cells. Our studies identify a Raptor-mTORC1-dependent pathway linking signal-dependent metabolic reprogramming to quiescence exit, and this in turn coordinates lymphocyte activation and fate decisions in adaptive immunity. PMID:24315998
Ges, Igor A; Brindley, Rebecca L; Currie, Kevin P M; Baudenbacher, Franz J
2013-12-07
Release of neurotransmitters and hormones by calcium-regulated exocytosis is a fundamental cellular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. As such, there is significant interest in targeting neurosecretion for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistic insight coupled with increased experimental throughput. Here, we report a simple, inexpensive, reusable, microfluidic device designed to analyze catecholamine secretion from small populations of adrenal chromaffin cells in real time, an important neuroendocrine component of the sympathetic nervous system and versatile neurosecretory model. The device is fabricated by replica molding of polydimethylsiloxane (PDMS) using patterned photoresist on silicon wafer as the master. Microfluidic inlet channels lead to an array of U-shaped "cell traps", each capable of immobilizing single or small groups of chromaffin cells. The bottom of the device is a glass slide with patterned thin film platinum electrodes used for electrochemical detection of catecholamines in real time. We demonstrate reliable loading of the device with small populations of chromaffin cells, and perfusion/repetitive stimulation with physiologically relevant secretagogues (carbachol, PACAP, KCl) using the microfluidic network. Evoked catecholamine secretion was reproducible over multiple rounds of stimulation, and graded as expected to different concentrations of secretagogue or removal of extracellular calcium. Overall, we show this microfluidic device can be used to implement complex stimulation paradigms and analyze the amount and kinetics of catecholamine secretion from small populations of neuroendocrine cells in real time.
The IKK complex contributes to the induction of autophagy.
Criollo, Alfredo; Senovilla, Laura; Authier, Hélène; Maiuri, Maria Chiara; Morselli, Eugenia; Vitale, Ilio; Kepp, Oliver; Tasdemir, Ezgi; Galluzzi, Lorenzo; Shen, Shensi; Tailler, Maximilien; Delahaye, Nicolas; Tesniere, Antoine; De Stefano, Daniela; Younes, Aména Ben; Harper, Francis; Pierron, Gérard; Lavandero, Sergio; Zitvogel, Laurence; Israel, Alain; Baud, Véronique; Kroemer, Guido
2010-02-03
In response to stress, cells start transcriptional and transcription-independent programs that can lead to adaptation or death. Here, we show that multiple inducers of autophagy, including nutrient depletion, trigger the activation of the IKK (IkappaB kinase) complex that is best known for its essential role in the activation of the transcription factor NF-kappaB by stress. Constitutively active IKK subunits stimulated autophagy and transduced multiple signals that operate in starvation-induced autophagy, including the phosphorylation of AMPK and JNK1. Genetic inhibition of the nuclear translocation of NF-kappaB or ablation of the p65/RelA NF-kappaB subunit failed to suppress IKK-induced autophagy, indicating that IKK can promote the autophagic pathway in an NF-kappaB-independent manner. In murine and human cells, knockout and/or knockdown of IKK subunits (but not that of p65) prevented the induction of autophagy in response to multiple stimuli. Moreover, the knockout of IKK-beta suppressed the activation of autophagy by food deprivation or rapamycin injections in vivo, in mice. Altogether, these results indicate that IKK has a cardinal role in the stimulation of autophagy by physiological and pharmacological stimuli.
Structural Elements Recognized by Abacavir-Induced T Cells
Yerly, Daniel; Pompeu, Yuri Andreiw; Schutte, Ryan J.; Eriksson, Klara. K.; Strhyn, Anette; Bracey, Austin. W.; Buus, Soren; Ostrov, David A.
2017-01-01
Adverse drug reactions are one of the leading causes of morbidity and mortality in health care worldwide. Human leukocyte antigen (HLA) alleles have been strongly associated with drug hypersensitivities, and the causative drugs have been shown to stimulate specific T cells at the sites of autoimmune destruction. The structural elements recognized by drug-specific T cell receptors (TCRs) in vivo are poorly defined. Drug-stimulated T cells express TCRs specific for peptide/HLA complexes, but the characteristics of peptides (sequence, or endogenous or exogenous origin) presented in the context of small molecule drugs are not well studied. Using HLA-B*57:01 mediated hypersensitivity to abacavir as a model system, this study examines structural similarities of HLA presented peptides recognized by drug-specific TCRs. Using the crystal structure of HLA-B*57:01 complexed with abacavir and an immunogenic self peptide, VTTDIQVKV SPT5a 976–984, peptide side chains exhibiting flexibility and solvent exposure were identified as potential drug-specific T cell recognition motifs. Viral sequences with structural motifs similar to the immunogenic self peptide were identified. Abacavir-specific T cell clones were used to determine if virus peptides presented in the context of abacavir stimulate T cell responsiveness. An abacavir-specific T cell clone was stimulated by VTQQAQVRL, corresponding to HSV1/2 230–238, in the context of HLA-B*57:01. These data suggest the T cell polyclonal response to abacavir consists of multiple subsets, including T cells that recognize self peptide/HLA-B*57:01 complexes and crossreact with viral peptide/HLA-B*57:01 complexes due to similarity in TCR contact residues. PMID:28686208
Kumar, Naveen; Biswas, Sunetra; Jumani, Rajiv S.; Jain, Chandni; Rani, Rajni; Aggarwal, Bharti; Singh, Jaya; Kotnur, Mohan Rao; Sridharan, Anand
2016-01-01
We previously reported that Rv1860 protein from Mycobacterium tuberculosis stimulated CD4+ and CD8+ T cells secreting gamma interferon (IFN-γ) in healthy purified protein derivative (PPD)-positive individuals and protected guinea pigs immunized with a DNA vaccine and a recombinant poxvirus expressing Rv1860 from a challenge with virulent M. tuberculosis. We now show Rv1860-specific polyfunctional T (PFT) cell responses in the blood of healthy latently M. tuberculosis-infected individuals dominated by CD8+ T cells, using a panel of 32 overlapping peptides spanning the length of Rv1860. Multiple subsets of CD8+ PFT cells were significantly more numerous in healthy latently infected volunteers (HV) than in tuberculosis (TB) patients (PAT). The responses of peripheral blood mononuclear cells (PBMC) from PAT to the peptides of Rv1860 were dominated by tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) secretions, the former coming predominantly from non-T cell sources. Notably, the pattern of the T cell response to Rv1860 was distinctly different from those of the widely studied M. tuberculosis antigens ESAT-6, CFP-10, Ag85A, and Ag85B, which elicited CD4+ T cell-dominated responses as previously reported in other cohorts. We further identified a peptide spanning amino acids 21 to 39 of the Rv1860 protein with the potential to distinguish latent TB infection from disease due to its ability to stimulate differential cytokine signatures in HV and PAT. We suggest that a TB vaccine carrying these and other CD8+ T-cell-stimulating antigens has the potential to prevent progression of latent M. tuberculosis infection to TB disease. PMID:26843486
Production of Multiple Growth Factors by a Newly Established Human Thyroid Carcinoma Cell Line
Yoshida, Yataro; Ohashi, Kensaku; Sano, Emiko; Kobayashi, Hisataka; Endo, Keigo; Naruto, Masanobu; Nakamura, Toru
1992-01-01
A multiple growth factor‐producing tumor cell line (NIM‐1) was newly established from a patient with thyroid cancer and remarkable neutrophilia. NIM‐1 cells also caused severe neutrophilia in nude mice bearing tumors. NIM‐1‐conditioned medium (NIM‐1CM) contained activities that supported not only granulocyte, macrophage and eosinophil colony formation of human bone marrow cells but also the growth of colony‐stimulating factor (CSF)‐dependent cell lines, NFS60‐KX and TF‐1. Northern blot hybridization analysis revealed the constitutive expression of granulocyte‐CSF (G‐CSF), granulocyte/macrophage‐CSF (GM‐CSF) and interleukin(IL)‐6 mRNAs in NIM‐1 cells. Enzyme‐linked immunosorbent assays (ELISA) using NIM‐1CM also confirmed the production of IL‐la and a small amount of IL‐1β besides G‐CSF, GM‐CSF and IL‐6 in NIM‐1 cells. In addition, unexpected production of IL‐11 in NIM‐1 cells was detected by northern blot hybridization analysis and by bioassay using an IL‐11‐dependent cell line. Therefore, NIM‐1 cell line is shown to produce multiple cytokines including potentially megakaryopoietic growth factors such as GM‐CSF, IL‐6 and IL‐11. PMID:1372885
Group I but not group II NPV induces antiviral effects in mammalian cells.
Liang, Changyong; Song, Jianhua; Hu, Zhihong; Chen, Xinwen
2006-10-01
Nucleopolyhedrovirus (NPV) is divided into Group I and Group II based on the phylogenetic analysis. It has been reported that Group I NPVs such as Autographa californica multiple NPV (AcMNPV) can transduce mammalian cells, while Group II NPVs such as Helicoverpa armigera single NPV (HaSNPV) cannot. Here we report that AcMNPV was capable of stimulating antiviral activity in human hepatoma cells (SMMC-7721) manifested by inhibition of Vesicular Stomatitis virus (VSV) replication. In contrast, the HaSNPV and the Spodoptera exigua multiple NPV (SeMNPV) of group II had no inhibitory effect on VSV. Recombinant AcMNPV was shown to induce interferons alpha/beta even in the absence of transgene expression in human SMMC-7721 cells, while it mediated transgene expression in BHK and L929 mammalian cells without an ensuing antiviral activity.
BMP2 induces PANC-1 cell invasion by MMP-2 overexpression through ROS and ERK.
Liu, Jun; Ben, Qi-Wen; Yao, Wei-Yan; Zhang, Jian-Jun; Chen, Da-Fan; He, Xiang-Yi; Li, Lei; Yuan, Yao-Zong
2012-06-01
The emerging roles of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers have drawn great attention in cancer research. We hypothesized that BMP2 promotes cancer metastasis by modulating MMP-2 secretion and activity through intracellular ROS regulation and ERK activation in human pancreatic cancer. Our data show that stimulation of PANC-1 cells with BMP2 induced MMP-2 secretion and activation, associated with decreased E-cadherin expression, resulting in epithelial-to-mesenchymal transformation (EMT) and cell invasion. Blockade of ROS by the ROS scavenger, 2-MPG, abolished cell invasion, inhibited the EMT process and decreased MMP-2 expression, suggesting ROS accumulation caused an increase in MMP-2 expression in BMP2-stimulated PANC-1 cell invasion. Furthermore, treatment of PANC-1 cells with 2-MPG or ERK inhibitor PD98059 reduced the phosphorylation of ERK, resulting in attenuation of BMP2-induced cell invasion and MMP-2 activation. Taken together, these results suggest that BMP2 induces the cell invasion of PANC-1 cells by enhancing MMP-2 secretion and acting through ROS accumulation and ERK activation.
Buchan, Alison M J; Lin, Chin-Yu; Choi, Jimmy; Barber, Diane L
2002-08-09
Somatostatin regulates multiple biological functions by acting through a family of five G protein-coupled receptors, somatostatin receptors (SSTRs) 1-5. Although all five receptor subtypes inhibit adenylate cyclase activity and decrease intracellular cAMP levels, specific receptor subtypes also couple to additional signaling pathways. In CCL39 fibroblasts expressing either human SSTR1 or SSTR2, we demonstrate that activation of SSTR1 (but not SSTR2) attenuated both thrombin- and integrin-stimulated Rho-GTP complex formation. The reduction in Rho-GTP formation in the presence of somatostatin was associated with decreased translocation of Rho and LIM kinase to the plasma membrane and fewer focal contacts. Activation of Rho resulted in the formation of intracellular actin stress fibers and cell migration. In CCL39-R1 cells, somatostatin treatment prevented actin stress fiber assembly and attenuated thrombin-stimulated cell migration through Transwell membranes to basal levels. To show that native SSTR1 shares the ability to inhibit Rho activation, we demonstrated that somatostatin treatment of human umbilical vein endothelial cells attenuated thrombin-stimulated Rho-GTP accumulation. These data show for the first time that a G protein-coupled receptor, SSTR1, inhibits the activation of Rho, the assembly of focal adhesions and actin stress fibers, and cell migration.
Visual-servoing optical microscopy
Callahan, Daniel E.; Parvin, Bahram
2009-06-09
The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.
Visual-servoing optical microscopy
Callahan, Daniel E [Martinez, CA; Parvin, Bahram [Mill Valley, CA
2011-05-24
The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.
Visual-servoing optical microscopy
Callahan, Daniel E; Parvin, Bahram
2013-10-01
The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.
[Progress on mechanism of cell apoptosis induced by rubella virus].
Li, Zhen-mei; Chu, Fu-lu; Liu, Ying; Wang, Zhi-yu
2013-09-01
Rubella virus (RV), a member of the family Togaviridae, can induce apoptosis of host cells in vitro. Protein kinases of the Ras-Raf-MEK-ERK pathway and PI3K-Akt pathway play essential roles in virus multiplication, cell survival and apoptosis. Proteins p53 and TAp63 that bind to specific DNA sequences stimulate Bax in a manner to produce functional pores that facilitate release of mitochondrial cytochrome c and downstream caspase activation. In this review, the molecular mechanisms of RV-induced cell apoptosis, including RV-infected cell lines, pathological changes in cell components and apoptosis signaling pathways are summarized.
Enhanced CAR T cell therapy: A novel approach for head and neck cancers.
Wang, Songlin; Zhu, Zhao
2018-05-05
Head and neck cancer that presents in locally advanced stages often results in a bad prognosis with an increased recurrence rate even after curative resections. Radiation therapy is then applied, with multiple side effects, as adjuvant regional therapy. Because of the high rate of recurrence and mortality, new therapies are needed for patients suffering from head and neck malignant tumors.CAR (chimeric antigen receptor) T cell therapy, which was first devised about 25 years ago, causes the killing or apoptosis of target tumor cells through inducing the secretion of cytokines and granzymes by T cells (Cheadle et al., 2014). CARs are comprised of three canonical domains for antigen recognition, T cell activation, and co-stimulation, and are synthetic receptors that reprogram immune cells for therapeutic treatment of multiple tumors (Sadelain, 2017). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Hickey, DK; Patel, MV; Fahey, JV; Wira, CR
2011-01-01
This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract. PMID:21353708
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle L.
2008-11-14
REVIEW ENTIRE DOCUMENT AT: https://pnlweb.pnl.gov/projects/bsd/ERICA%20Manuscripts%20for%20Review/KD%20Rodland%20D7E80/HMEC_transactivation_ms01_15+Figs.pdf ABSTRACT: Using a single nontransformed strain of human mammary epithelial cells, we found that the ability of multiple growth factors and cytokines to induce ERK phosphorylation was dependent on EGFR activity. These included lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factoralpha. In contrast, hepatocyte growth factor could stimulate ERK phosphorylation independent of EGFR activity...
Kang, Yunyi; Tiziani, Stefano; Park, Goonho; Kaul, Marcus; Paternostro, Giovanni
2014-01-01
Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases. Here we identify small molecule inhibitors of this process. We screen a kinase inhibitor library on neuronal cells and identify Flt3 and PI3Kα inhibitors as potent protectors against glutamate toxicity. Both inhibitors prevented reactive oxygen species (ROS) generation, mitochondrial hyperpolarization, and lipid peroxidation in neuronal cells, but they do so by distinct molecular mechanisms. The PI3Kα inhibitor protects cells by inducing partial restoration of depleted glutathione levels and accumulation of intracellular amino acids, whereas the Flt3 inhibitor prevents lipid peroxidation, a key mechanism of glutamate-mediated toxicity. We also demonstrate that glutamate toxicity involves a combination of ferroptosis, necrosis, and AIF-dependent apoptosis. We confirm the protective effect by using multiple inhibitors of these kinases and multiple cell types. Our results not only identify compounds that protect against glutamate-stimulated oxidative stress, but also provide new insights into the mechanisms of glutamate toxicity in neurons. PMID:24739485
ERIC Educational Resources Information Center
Berkes, Charlotte; Chan, Leo Li-Ying
2015-01-01
We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…
The induction, stimulation, and persistence of sister chromatid exchanges (SCE's) and high SCE frequency cells (HFC's) was measured in peripheral lymphocytes of women with breast cancer before chemotherapy and on multiple occasions during and after therapy. Chemotherapy consisted...
Regulation of autophagy by cytoplasmic p53.
Tasdemir, Ezgi; Maiuri, M Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido
2008-06-01
Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53(-/-) cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.
Regulation of autophagy by cytoplasmic p53
Tasdemir, Ezgi; Maiuri, M. Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M.; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido
2009-01-01
Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that knockout, knockdown or pharmacological inhibition of p53 can induce autophagy in human, mouse and nematode cells. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53-/- cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53. PMID:18454141
Integrated nanoscale tools for interrogating living cells
NASA Astrophysics Data System (ADS)
Jorgolli, Marsela
The development of next-generation, nanoscale technologies that interface biological systems will pave the way towards new understanding of such complex systems. Nanowires -- one-dimensional nanoscale structures -- have shown unique potential as an ideal physical interface to biological systems. Herein, we focus on the development of nanowire-based devices that can enable a wide variety of biological studies. First, we built upon standard nanofabrication techniques to optimize nanowire devices, resulting in perfectly ordered arrays of both opaque (Silicon) and transparent (Silicon dioxide) nanowires with user defined structural profile, densities, and overall patterns, as well as high sample consistency and large scale production. The high-precision and well-controlled fabrication method in conjunction with additional technologies laid the foundation for the generation of highly specialized platforms for imaging, electrochemical interrogation, and molecular biology. Next, we utilized nanowires as the fundamental structure in the development of integrated nanoelectronic platforms to directly interrogate the electrical activity of biological systems. Initially, we generated a scalable intracellular electrode platform based on vertical nanowires that allows for parallel electrical interfacing to multiple mammalian neurons. Our prototype device consisted of 16 individually addressable stimulation/recording sites, each containing an array of 9 electrically active silicon nanowires. We showed that these vertical nanowire electrode arrays could intracellularly record and stimulate neuronal activity in dissociated cultures of rat cortical neurons similar to patch clamp electrodes. In addition, we used our intracellular electrode platform to measure multiple individual synaptic connections, which enables the reconstruction of the functional connectivity maps of neuronal circuits. In order to expand and improve the capability of this functional prototype device we designed and fabricated a new hybrid chip that combines a front-side nanowire-based interface for neuronal recording with backside complementary metal oxide semiconductor (CMOS) circuits for on-chip multiplexing, voltage control for stimulation, signal amplification, and signal processing. Individual chips contain 1024 stimulation/recording sites enabling large-scale interfacing of neuronal networks with single cell resolution. Through electrical and electrochemical characterization of the devices, we demonstrated their enhanced functionality at a massively parallel scale. In our initial cell experiments, we achieved intracellular stimulations and recordings of changes in the membrane potential in a variety of cells including: HEK293T, cardiomyocytes, and rat cortical neurons. This demonstrated the device capability for single-cell-resolution recording/stimulation which when extended to a large number of neurons in a massively parallel fashion will enable the functional mapping of a complex neuronal network.
Cambados, Nadia; Walther, Thomas; Nahmod, Karen; Tocci, Johanna M; Rubinstein, Natalia; Böhme, Ilka; Simian, Marina; Sampayo, Rocío; Del Valle Suberbordes, Melisa; Kordon, Edith C; Schere-Levy, Carolina
2017-10-24
Angiotensin (Ang) II, the main effector peptide of the renin-angiotensin system, has been implicated in multiple aspects of cancer progression such as proliferation, migration, invasion, angiogenesis and metastasis. Ang-(1-7), is a biologically active heptapeptide, generated predominantly from AngII by the enzymatic activity of angiotensin converting enzyme 2. Previous studies have shown that Ang-(1-7) counterbalances AngII actions in different pathophysiological settings. In this study, we have analysed the impact of Ang-(1-7) on AngII-induced pro-tumorigenic features on normal murine mammary epithelial cells NMuMG and breast cancer cells MDA-MB-231. AngII stimulated the activation of the survival factor AKT in NMuMG cells mainly through the AT1 receptor. This PI3K/AKT pathway activation also promoted epithelial-mesenchymal transition (EMT). Concomitant treatment of NMuMG cells with AngII and Ang-(1-7) completely abolished EMT features induced by AngII. Furthermore, Ang-(1-7) abrogated AngII induced migration and invasion of the MDA-MB-231 cells as well as pro-angiogenic events such as the stimulation of MMP-9 activity and VEGF expression. Together, these results demonstrate for the first time that Ang-(1-7) counteracts tumor aggressive signals stimulated by AngII in breast cancer cells emerging the peptide as a potential therapy to prevent breast cancer progression.
Fathiazar, Elham; Anemuller, Jorn; Kretzberg, Jutta
2016-08-01
Voltage-Sensitive Dye (VSD) imaging is an optical imaging method that allows measuring the graded voltage changes of multiple neurons simultaneously. In neuroscience, this method is used to reveal networks of neurons involved in certain tasks. However, the recorded relative dye fluorescence changes are usually low and signals are superimposed by noise and artifacts. Therefore, establishing a reliable method to identify which cells are activated by specific stimulus conditions is the first step to identify functional networks. In this paper, we present a statistical method to identify stimulus-activated network nodes as cells, whose activities during sensory network stimulation differ significantly from the un-stimulated control condition. This method is demonstrated based on voltage-sensitive dye recordings from up to 100 neurons in a ganglion of the medicinal leech responding to tactile skin stimulation. Without relying on any prior physiological knowledge, the network nodes identified by our statistical analysis were found to match well with published cell types involved in tactile stimulus processing and to be consistent across stimulus conditions and preparations.
Kuerten, Stefanie; Pommerschein, Giovanna; Barth, Stefanie K; Hohmann, Christopher; Milles, Bianca; Sammer, Fabian W; Duffy, Cathrina E; Wunsch, Marie; Rovituso, Damiano M; Schroeter, Michael; Addicks, Klaus; Kaiser, Claudia C; Lehmann, Paul V
2014-01-01
B cells are increasingly coming into play in the pathogenesis of multiple sclerosis (MS). Here, we screened peripheral blood mononuclear cells (PBMC) from patients with clinically isolated syndrome (CIS), MS, other non-inflammatory neurological, inflammatory neurological or autoimmune diseases, and healthy donors for their B cell reactivity to CNS antigen using the enzyme-linked immunospot technique (ELISPOT) after 96 h of polyclonal stimulation. Our data show that nine of 15 patients with CIS (60.0%) and 53 of 67 patients with definite MS (79.1%) displayed CNS-reactive B cells, compared to none of the control donors. The presence of CNS-reactive B cells in the blood of the majority of patients with MS or at risk to develop MS along with their absence in control subjects suggests that they might be indicative of a B cell-dependent subpopulation of the disease. Copyright © 2014. Published by Elsevier Inc.
T-cell stimuli independently sum to regulate an inherited clonal division fate
Marchingo, J. M.; Prevedello, G.; Kan, A.; Heinzel, S.; Hodgkin, P. D.; Duffy, K. R.
2016-01-01
In the presence of antigen and costimulation, T cells undergo a characteristic response of expansion, cessation and contraction. Previous studies have revealed that population-level reproducibility is a consequence of multiple clones exhibiting considerable disparity in burst size, highlighting the requirement for single-cell information in understanding T-cell fate regulation. Here we show that individual T-cell clones resulting from controlled stimulation in vitro are strongly lineage imprinted with highly correlated expansion fates. Progeny from clonal families cease dividing in the same or adjacent generations, with inter-clonal variation producing burst-size diversity. The effects of costimulatory signals on individual clones sum together with stochastic independence; therefore, the net effect across multiple clones produces consistent, but heterogeneous population responses. These data demonstrate that substantial clonal heterogeneity arises through differences in experience of clonal progenitors, either through stochastic antigen interaction or by differences in initial receptor sensitivities. PMID:27869196
Chen, Beidong; Li, Xingguang; Qi, Ruomei
2013-01-01
Oxidized low-density lipoprotein (ox-LDL) is an important risk factor in the development of atherosclerosis. LOX-1, a lectin-like receptor for ox-LDL, is present primarily on endothelial cells and upregulated by ox-LDL, tumor necrosis factor a, shear stress, and cytokines in atherosclerosis. Recent studies demonstrated that ginkgolide B, a platelet-activating factor receptor antagonist, has antiinflammatory and antioxidant effects on endothelial and nerve cells. The present study investigated the effects of ginkgolide B on LOX-1 expression and the possible mechanism of action. Our results showed that ginkgolide B inhibited LOX-1 and intercellular cell adhesion molecule-1 (ICAM-1) expression in ox-LDL-stimulated endothelial cells through a mechanism associated with the attenuation of Akt activation. Similar data were obtained by silencing Akt and LY294002. We also evaluated Sirt1 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. These molecules play a protective role in endothelial cell injury. The results showed that ginkgolide B increased Sirt1 expression in ox-LDL-treated cells. The inhibitory effects of ginkgolide B on LOX-1 and ICAM-1 expression were reduced in Sirt1 siRNA-transfected cells. Nrf2 expression was increased in ox-LDL-treated cells, and ginkgolide B downregulated Nrf2 expression. These results suggest that ginkgolide B reduces Nrf2 expression by inhibiting LOX-1 expression, consequently reducing oxidative stress injury in ox-LDL-stimulated cells. Altogether, these results indicate that the protective effect of ginkgolide B on endothelial cells may be attributable to a decrease in LOX-1 expression and an increase in Sirt1 expression in ox-LDL-stimulated endothelial cells, the mechanism of which is linked to the inhibition of Akt activation. Ginkgolide B may be a multiple-target drug that exerts protective effects in ox-LDL-treated human umbilical vein endothelial cells. PMID:24069345
An integrated multi-electrode-optrode array for in vitro optogenetics
Welkenhuysen, Marleen; Hoffman, Luis; Luo, Zhengxiang; De Proft, Anabel; Van den Haute, Chris; Baekelandt, Veerle; Debyser, Zeger; Gielen, Georges; Puers, Robert; Braeken, Dries
2016-01-01
Modulation of a group of cells or tissue needs to be very precise in order to exercise effective control over the cell population under investigation. Optogenetic tools have already demonstrated to be of great value in the study of neuronal circuits and in neuromodulation. Ideally, they should permit very accurate resolution, preferably down to the single cell level. Further, to address a spatially distributed sample, independently addressable multiple optical outputs should be present. In current techniques, at least one of these requirements is not fulfilled. In addition to this, it is interesting to directly monitor feedback of the modulation by electrical registration of the activity of the stimulated cells. Here, we present the fabrication and characterization of a fully integrated silicon-based multi-electrode-optrode array (MEOA) for in vitro optogenetics. We demonstrate that this device allows for artifact-free electrical recording. Moreover, the MEOA was used to reliably elicit spiking activity from ChR2-transduced neurons. Thanks to the single cell resolution stimulation capability, we could determine spatial and temporal activation patterns and spike latencies of the neuronal network. This integrated approach to multi-site combined optical stimulation and electrical recording significantly advances today’s tool set for neuroscientists in their search to unravel neuronal network dynamics. PMID:26832455
Éliás, Szabolcs; Schmidt, Angelika; Kannan, Venkateshan; Andersson, John; Tegnér, Jesper
2016-01-01
The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is involved in the pathogenesis of chronic inflammatory diseases such as multiple sclerosis. However, the environmental cues promoting differentiation of GM-CSF producing T cells are unclear. Herein, we performed a broad experimental screening of cytokines and data-driven analysis assessing their ability to induce human GM-CSF + CD4 + T cells and their subpopulations. TGF-β was discovered to induce GM-CSF production independently of proliferation and IL-2 signaling including STAT5. In contrast, IL-6 and IL-23 decreased GM-CSF production. On the population level, GM-CSF induction was highly correlated with expression of FOXP3 across cytokine stimulations but not with that of IL-17. However, on single-cell level GM-CSF and IFN-γ expression were most correlated, independently of the cytokine environment. Importantly, under low sodium conditions in the medium or upon stimulation with plate-bound instead of bead-bound anti-CD3 and anti-CD28 antibodies, the effects of TGF-β on GM-CSF, but not on FOXP3, were reversed. Our analysis indicates a novel role for TGF-β in generating GM-CSF + subsets of human CD4 + T cells. These results are important for understanding of autoimmune disease and therapeutic considerations.
Ges, Igor A.; Brindley, Rebecca L.; Currie, Kevin P.M.; Baudenbacher, Franz J.
2013-01-01
Release of neurotransmitters and hormones by calcium-regulated exocytosis is a fundamental cellular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. As such, there is significant interest in targeting neurosecretion for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistic insight coupled with increased experimental throughput. Here, we report a simple, inexpensive, reusable, microfluidic device designed to analyze catecholamine secretion from small populations of adrenal chromaffin cells in real time, an important neuroendocrine component of the sympathetic nervous system and versatile neurosecretory model. The device is fabricated by replica molding of polydimethylsiloxane (PDMS) using patterned photoresist on silicon wafer as the master. Microfluidic inlet channels lead to an array of U-shaped “cell traps”, each capable of immobilizing single or small groups of chromaffin cells. The bottom of the device is a glass slide with patterned thin film platinum electrodes used for electrochemical detection of catecholamines in real time. We demonstrate reliable loading of the device with small populations of chromaffin cells, and perfusion / repetitive stimulation with physiologically relevant secretagogues (carbachol, PACAP, KCl) using the microfluidic network. Evoked catecholamine secretion was reproducible over multiple rounds of stimulation, and graded as expected to different concentrations of secretagogue or removal of extracellular calcium. Overall, we show this microfluidic device can be used to implement complex stimulation paradigms and analyze the amount and kinetics of catecholamine secretion from small populations of neuroendocrine cells in real time. PMID:24126415
Wang, Jianwei; Knauf, Jeffrey A; Basu, Saswata; Puxeddu, Efisio; Kuroda, Hiroaki; Santoro, Massimo; Fusco, Alfredo; Fagin, James A
2003-07-01
Chromosomal rearrangements linking the promoter(s) and N-terminal domain of unrelated gene(s) to the C terminus of RET result in constitutively activated chimeric forms of the receptor in thyroid cells (RET/PTC). RET/PTC rearrangements are thought to be tumor-initiating events; however, the early biological consequences of RET/PTC activation are unknown. To explore this, we generated clonal lines derived from well-differentiated rat thyroid PCCL3 cells with doxycycline-inducible expression of either RET/PTC1 or RET/PTC3. As previously shown in other cell types, RET/PTC1 and RET/PTC3 oligomerized and displayed constitutive tyrosine kinase activity. Neither RET/PTC1 nor RET/PTC3 conferred cells with the ability to grow in the absence of TSH, likely because of concomitant stimulation of both DNA synthesis and apoptosis, resulting in no net growth in the cell population. Effects of RET/PTC on DNA synthesis and apoptosis did not require direct interaction of the oncoprotein with either Shc or phospholipase Cgamma. Acute expression of the oncoprotein decreased TSH-mediated growth stimulation due to interference of TSH signaling by RET/PTC at multiple levels. Taken together, these data indicate that RET/PTC is a weak tumor-initiating event and that TSH action is disrupted by this oncoprotein at several points, and also predict that secondary genetic or epigenetic changes are required for clonal expansion.
Spectrum and mechanisms of inflammasome activation by chitosan.
Bueter, Chelsea L; Lee, Chrono K; Wang, Jennifer P; Ostroff, Gary R; Specht, Charles A; Levitz, Stuart M
2014-06-15
Chitosan, the deacetylated derivative of chitin, can be found in the cell wall of some fungi and is used in translational applications. We have shown that highly purified preparations of chitosan, but not chitin, activate the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in primed mouse bone marrow-derived macrophages (BMMΦ), inducing a robust IL-1β response. In this article, we further define specific cell types that are activated and delineate mechanisms of activation. BMMΦ differentiated to promote a classically activated (M1) phenotype released more IL-1β in response to chitosan than intermediate or alternatively activated macrophages (M2). Chitosan, but not chitin, induced a robust IL-1β response in mouse dendritic cells, peritoneal macrophages, and human PBMCs. Three mechanisms for NLRP3 inflammasome activation may contribute: K(+) efflux, reactive oxygen species, and lysosomal destabilization. The contributions of these mechanisms were tested using a K(+) efflux inhibitor, high extracellular potassium, a mitochondrial reactive oxygen species inhibitor, lysosomal acidification inhibitors, and a cathepsin B inhibitor. These studies revealed that each of these pathways participated in optimal NLRP3 inflammasome activation by chitosan. Finally, neither chitosan nor chitin stimulated significant release from unprimed BMMΦ of any of 22 cytokines and chemokines assayed. This study has the following conclusions: 1) chitosan, but not chitin, stimulates IL-1β release from multiple murine and human cell types; 2) multiple nonredundant mechanisms appear to participate in inflammasome activation by chitosan; and 3) chitin and chitosan are relatively weak stimulators of inflammatory mediators from unprimed BMMΦ. These data have implications for understanding the nature of the immune response to microbes and biomaterials that contain chitin and chitosan. Copyright © 2014 by The American Association of Immunologists, Inc.
Hancock, David G; Shklovskaya, Elena; Guy, Thomas V; Falsafi, Reza; Fjell, Chris D; Ritchie, William; Hancock, Robert E W; Fazekas de St Groth, Barbara
2014-01-01
Dendritic cells (DCs) are critical for regulating CD4 and CD8 T cell immunity, controlling Th1, Th2, and Th17 commitment, generating inducible Tregs, and mediating tolerance. It is believed that distinct DC subsets have evolved to control these different immune outcomes. However, how DC subsets mount different responses to inflammatory and/or tolerogenic signals in order to accomplish their divergent functions remains unclear. Lipopolysaccharide (LPS) provides an excellent model for investigating responses in closely related splenic DC subsets, as all subsets express the LPS receptor TLR4 and respond to LPS in vitro. However, previous studies of the LPS-induced DC transcriptome have been performed only on mixed DC populations. Moreover, comparisons of the in vivo response of two closely related DC subsets to LPS stimulation have not been reported in the literature to date. We compared the transcriptomes of murine splenic CD8 and CD11b DC subsets after in vivo LPS stimulation, using RNA-Seq and systems biology approaches. We identified subset-specific gene signatures, which included multiple functional immune mediators unique to each subset. To explain the observed subset-specific differences, we used a network analysis approach. While both DC subsets used a conserved set of transcription factors and major signalling pathways, the subsets showed differential regulation of sets of genes that 'fine-tune' the network Hubs expressed in common. We propose a model in which signalling through common pathway components is 'fine-tuned' by transcriptional control of subset-specific modulators, thus allowing for distinct functional outcomes in closely related DC subsets. We extend this analysis to comparable datasets from the literature and confirm that our model can account for cell subset-specific responses to LPS stimulation in multiple subpopulations in mouse and man.
Hahn, E C; Sauer, G
1971-07-01
A quantitative assay has been used to determine the conditions leading to acquisition of resistance of permissive cells to lytic infection. The number of cell colonies surviving infection depends on the occurrence of several cell divisions after infection. High yields of resistant colonies were obtained when infected, confluent cultures were released from contact inhibition 10 to 14 hr after infection. Infection of actively growing cells produced similar results, but halting further division by seeding these growing cells on confluent monolayers prevented the development of colonies. Colony formation was a direct function of multiplicities lower than 5. An inverse killing response was observed with higher multiplicities, yet colonies were produced at a multiplicity of infection as high as 50. Brief exposure of input simian virus 40 to ultraviolet light stimulated colony formation. Irradiation of the virus for longer periods of time led to reduction of colony formation at a rate slower than the rate of inactivation of viral infectivity. It was concluded that resistance is induced by simian virus 40 and that this alteration represents one of the earliest detectable characteristics of the transformation of permissive cells.
Meirelles, Katia; Benedict, Leo Andrew; Dombkowski, David; Pepin, David; Preffer, Frederic I.; Teixeira, Jose; Tanwar, Pradeep Singh; Young, Robert H.; MacLaughlin, David T.; Donahoe, Patricia K.; Wei, Xiaolong
2012-01-01
Women with late-stage ovarian cancer usually develop chemotherapeutic-resistant recurrence. It has been theorized that a rare cancer stem cell, which is responsible for the growth and maintenance of the tumor, is also resistant to conventional chemotherapeutics. We have isolated from multiple ovarian cancer cell lines an ovarian cancer stem cell-enriched population marked by CD44, CD24, and Epcam (3+) and by negative selection for Ecadherin (Ecad−) that comprises less than 1% of cancer cells and has increased colony formation and shorter tumor-free intervals in vivo after limiting dilution. Surprisingly, these cells are not only resistant to chemotherapeutics such as doxorubicin, but also are stimulated by it, as evidenced by the significantly increased number of colonies in treated 3+Ecad− cells. Similarly, proliferation of the 3+Ecad− cells in monolayer increased with treatment, by either doxorubicin or cisplatin, compared with the unseparated or cancer stem cell-depleted 3−Ecad+ cells. However, these cells are sensitive to Mullerian inhibiting substance (MIS), which decreased colony formation. MIS inhibits ovarian cancer cells by inducing G1 arrest of the 3+Ecad− subpopulation through the induction of cyclin-dependent kinase inhibitors. 3+Ecad− cells selectively expressed LIN28, which colocalized by immunofluorescence with the 3+ cancer stem cell markers in the human ovarian carcinoma cell line, OVCAR-5, and is also highly expressed in transgenic murine models of ovarian cancer and in other human ovarian cancer cell lines. These results suggest that chemotherapeutics may be stimulative to cancer stem cells and that selective inhibition of these cells by treating with MIS or targeting LIN28 should be considered in the development of therapeutics. PMID:22308459
Meirelles, Katia; Benedict, Leo Andrew; Dombkowski, David; Pepin, David; Preffer, Frederic I; Teixeira, Jose; Tanwar, Pradeep Singh; Young, Robert H; MacLaughlin, David T; Donahoe, Patricia K; Wei, Xiaolong
2012-02-14
Women with late-stage ovarian cancer usually develop chemotherapeutic-resistant recurrence. It has been theorized that a rare cancer stem cell, which is responsible for the growth and maintenance of the tumor, is also resistant to conventional chemotherapeutics. We have isolated from multiple ovarian cancer cell lines an ovarian cancer stem cell-enriched population marked by CD44, CD24, and Epcam (3+) and by negative selection for Ecadherin (Ecad-) that comprises less than 1% of cancer cells and has increased colony formation and shorter tumor-free intervals in vivo after limiting dilution. Surprisingly, these cells are not only resistant to chemotherapeutics such as doxorubicin, but also are stimulated by it, as evidenced by the significantly increased number of colonies in treated 3+Ecad- cells. Similarly, proliferation of the 3+Ecad- cells in monolayer increased with treatment, by either doxorubicin or cisplatin, compared with the unseparated or cancer stem cell-depleted 3-Ecad+ cells. However, these cells are sensitive to Mullerian inhibiting substance (MIS), which decreased colony formation. MIS inhibits ovarian cancer cells by inducing G1 arrest of the 3+Ecad- subpopulation through the induction of cyclin-dependent kinase inhibitors. 3+Ecad- cells selectively expressed LIN28, which colocalized by immunofluorescence with the 3+ cancer stem cell markers in the human ovarian carcinoma cell line, OVCAR-5, and is also highly expressed in transgenic murine models of ovarian cancer and in other human ovarian cancer cell lines. These results suggest that chemotherapeutics may be stimulative to cancer stem cells and that selective inhibition of these cells by treating with MIS or targeting LIN28 should be considered in the development of therapeutics.
Nagamine, Ichiro; Yamaguchi, Yoshiyuki; Ohara, Masahiro; Ikeda, Takuhiro; Okada, Morihito
2009-03-01
A loss of human leukocyte antigen (HLA) expression in clinical tumors is one of their escape mechanisms from immune attack by HLA-restricted effector cells. In this study, the induction of HLA-unrestricted effector cells, gamma delta T cells, using zoledronate (ZOL) and interleukin (IL)-2 in vitro was investigated in patients with metastatic cancer. Peripheral blood mononuclear cells (PBMCs) from 10 cancer patients (8 colorectal and 2 esophageal) with multiple metastases and ascites lymphocytes from 3 cancer patients (1 gastric and 2 colorectal) were stimulated with varied concentrations of ZOL plus 100 U/ml IL-2 for 48 hr followed by culturing with IL-2 alone for 12 days. Lymphocyte proliferative responses were determined using 3H-TdR uptakes and interferon (IFN)-gamma production was evaluated using enzyme-linked immunosorbent assay. Surface phenotyping was performed using flow cytometry. Cytotoxic activity of effector cells was determined using 51Cr-releasing assay. It was found that proliferative responses of PBMCs were significantly stimulated with ZOL plus IL-2 when compared with IL-2 alone, showing 200 to 500-fold expansions for 2 weeks, although ZOL alone induced no response. The optimal concentration of ZOL was 1-5 microM. Ascites lymphocytes could also be stimulated with ZOL plus IL-2. The proliferative responses were remarkable in patients whose PBMCs could produce high levels of IFN-gamma during an initial 48-hr stimulation using ZOL plus IL-2. Removal of an adherent cell fraction before the induction augmented the proliferative responses in patients who otherwise had low-grade proliferative responses. Generated cells comprising approximately 90 or 20% in PBMCs from healthy donors or cancer patients, respectively, expressed gamma delta-type T-cell receptor. Gamma delta T cells showed high cytotoxic activity against CD166-positive TE12 and TE13 cancer cells but not against CD166-negative MKN45 cells. The cytotoxic activity against TE13 cells was augmented when target cells were pre-treated overnight with ZOL. These results suggest that ZOL in the presence of IL-2 can efficiently stimulate the proliferation of gamma delta T cells, which have cytotoxic properties against cancer cells. The use of zoledronate-activated killer (ZAK) cells should be encouraged in possible adoptive immunotherapy trials for patients with incurable cancer.
Terai, Shuji; Tsuchiya, Atsunori
2017-02-01
The treatment of liver cirrhosis is currently being standardized and developed specifically to reduce activation of hepatic stellate cells (HSCs), inhibit fibrosis, increase degradation of matrix components, and reduce activated myofibroblasts. Cell therapy can be applied in the treatment of liver cirrhosis; however, the characteristic features of this therapy differ from those of other treatments because of the involvement of a living body origin and production of multiple cytokines, chemokines, matrix metalloproteinases (MMPs), and growth factors. Thus, cell therapies can potentially have multiple effects on the damaged liver, including alleviating liver cirrhosis and stimulating liver regeneration with affecting the host cells. Cell therapies initially involved autologous bone marrow cell infusion, and have recently developed to include the use of specific cells such as mesenchymal stem cells and macrophages. The associated molecular mechanisms, routes of administration, possibility of allogeneic cell therapy, and host conditions appropriate for cell therapies are now being extensively analyzed. In this review, we summarize the status and future prospects of cell therapy for liver cirrhosis.
Mechanical Coupling of Smooth Muscle Cells Using Microengineered Substrates and Local Stimulation
NASA Astrophysics Data System (ADS)
Copeland, Craig; Hunter, David; Tung, Leslie; Chen, Christopher; Reich, Daniel
2013-03-01
Mechanical stresses directly affect many cellular processes, including signal transduction, growth, differentiation, and survival. Cells can themselves generate such stresses by activating myosin to contract the actin cytoskeleton, which in turn can regulate both cell-substrate and cell-cell interactions. We are studying mechanical forces at cell-cell and cell-substrate interactions using arrays of selectively patterned flexible PDMS microposts combined with the ability to apply local chemical stimulation. Micropipette ``spritzing'', a laminar flow technique, uses glass micropipettes mounted on a microscope stage to deliver drugs to controlled regions within a cellular construct while cell traction forces are recorded via the micropost array. The pipettes are controlled by micromanipulators allowing for rapid and precise movement across the array and the ability to treat multiple constructs within a sample. This technique allows for observing the propagation of a chemically induced mechanical stimulus through cell-cell and cell-substrate interactions. We have used this system to administer the acto-myosin inhibitors Blebbistatin and Y-27632 to single cells and observed the subsequent decrease in cell traction forces. Experiments using trypsin-EDTA have shown this system to be capable of single cell manipulation through removal of one cell within a pair configuration while leaving the other cell unaffected. This project is supported in part by NIH grant HL090747
Carlson, M; Welt, C
1980-01-15
Mechanoreceptive input from the hand to the somatic sensory cortex (SmI) of the prosimian primate Galago crassicaudatus was examined with microelectrode mapping methods. In anesthetized animals, low threshold cutaneous input from the hand projects to SmI cortex in a single, complete, somatotopically organized pattern. Within this single pattern, cells with receptive fields on the glabrous skin of the palm, digits and digit tips are located in the rostral half, and cells with RFs on the hairy skin of the dorsal hand and digits are located in the caudal half of the hand areas. The cutaneous hand area is coextensive with the densely granular architectonic region of SmI. Studies of single cells in this region of awake galagos reveal the same pattern of cutaneous input and, in addition, demonstrate the presence of cells responding to joint movement not detected in anesthetized animals. Cells responsive to joint movement are arranged in vertically oriented columns located adjacent to cutaneous columns with receptive fields on the same part of the hand. In anesthetized animals, cells rostral to the granular region, in an area typified by increasing numbers of pyramidal cells in layer V and decreasing numbers of granular cells in upper layers, respond to high threshold stimulation of large areas of the hand. The few cells isolated in this area in awake animals respond to either active or passive hand movements. In such animals, cells caudal to the granular region, in an area characterized as agranular and alaminar cortex, respond to either passive stimulation of single or multiple joints or to active hand movements. These results, together with similar findings in a related prosimian, Nycticebus coucang, emphasize the generality of a single cutaneous hand area in SmI of prosimian species. The demonstration of multiple hand areas corresponding to multiple cytoarchitectonic subdivisions in SmI of Old and New World simians illustrates the increased degree of SmI differentiation from the prosimian to the simian grade of organization. The present results further suggest that determination of the homologues of multiple areas or subdivisions within and surrounding SmI in primates will require comparisons of somatotopy, submodality, sulcal patterns, cytoarchitecture, and connectivity in representative members of prosimian and simian families.
Trau, Heidi A.; Davis, John S.; Duffy, Diane M.
2014-01-01
ABSTRACT Rapid angiogenesis occurs as the ovulatory follicle is transformed into the corpus luteum. To determine if luteinizing hormone (LH)-stimulated prostaglandin E2 (PGE2) regulates angiogenesis in the ovulatory follicle, cynomolgus macaques received gonadotropins to stimulate multiple follicular development and chorionic gonadotropin (hCG) substituted for the LH surge to initiate ovulatory events. Before hCG, vascular endothelial cells were present in the perifollicular stroma but not amongst granulosa cells. Endothelial cells entered the granulosa cell layer 24–36 h after hCG, concomitant with the rise in follicular PGE2 and prior to ovulation, which occurs about 40 h after hCG. Intrafollicular administration of the PG synthesis inhibitor indomethacin was coupled with PGE2 replacement to demonstrate that indomethacin blocked and PGE2 restored follicular angiogenesis in a single, naturally developed monkey follicle in vivo. Intrafollicular administration of indomethacin plus an agonist selective for a single PGE2 receptor showed that PTGER1 and PTGER2 agonists most effectively stimulated angiogenesis within the granulosa cell layer. Endothelial cell tracing and three-dimensional reconstruction indicated that these capillary networks form via branching angiogenesis. To further explore how PGE2 mediates follicular angiogenesis, monkey ovarian microvascular endothelial cells (mOMECs) were isolated from ovulatory follicles. The mOMECs expressed all four PGE2 receptors in vitro. PGE2 and all PTGER agonists increased mOMEC migration. PTGER1 and PTGER2 agonists promoted sprout formation while the PTGER3 agonist inhibited sprouting in vitro. While PTGER1 and PTGER2 likely promote the formation of new capillaries, each PGE2 receptor may mediate aspects of PGE2's actions and, therefore, LH's ability to regulate angiogenesis in the primate ovulatory follicle. PMID:25376231
Mauel, J; Buchmüller, Y; Behin, R
1978-08-01
When cultures of normal mouse peritoneal macrophages were infected with the intracellular protozoan parasite Leishmania enrietti, the micro-organism was found to survive intracellularly for several days, apparently without multiplication. However, exposure of infected macrophages to certain stimuli led to rapid parasite killing and digestion, providing a sensitive assay with which the mechanisms of macrophage activation can be studied. Microbicidal activity was induced by incubation of macrophages with syngeneic spleen lymphocytes, which were stimulated either by allogeneic cells in mixed lymphocyte culture (MLC) or by the plant lectin concanavalin A (Con A). Cocultivation with MLCs led to parasite killing within 48-72 h, whereas exposure of infected cells to Con A-stimulated lymphocytes resulted in substantial destruction of the micro-organism within less than 24 h, an effect which was dependent on the presence of thymus-derived lymphocytes and was inhibited by alpha methyl-mannoside. Incubation with Con A-stimulated lymphocytes also led to lysis of part of the macrophage monolayer. However, parasite killing did not result from decreased macrophage survival, as destruction of the micro-organism was highest under culture conditions which were the least detrimental to the phagocytes. Conversely, excess numbers of Con A-stimulated lymphocytes were less efficient at inducing macrophage activation and displayed marked toxicity to the macrophage monolayer. When spleen cells were stimulated by Con A at concentrations above 10 mug/ml, a decrease was noted in the capacity of macrophages to destroy the parasite, probably reflecting a toxicity of the lectin for lymphocytes resulting in impaired activating capacity.
Using a mixed culture of neonatal cortical cells, we have demonstrated that the polychlorinated biphenyl (PCB) mixture Aroclor 1254 (A1254) induces complex Ca2+i signals involving multiple receptors/channels (Inglefield and Shafer, J.Pharm.Exp.Ther. 295:105) and also activates/ p...
Endothelial microparticles interact with and support the proliferation of T cells.
Wheway, Julie; Latham, Sharissa L; Combes, Valery; Grau, Georges E R
2014-10-01
Endothelial cells closely interact with circulating lymphocytes. Aggression or activation of the endothelium leads to an increased shedding of endothelial cell microparticles (MP). Endothelial MP (EMP) are found in high plasma levels in numerous immunoinflammatory diseases, such as atherosclerosis, sepsis, multiple sclerosis, and cerebral malaria, supporting their role as effectors and markers of vascular dysfunction. Given our recently described role for human brain microvascular endothelial cells (HBEC) in modulating immune responses, we investigated how HBEC-derived MP could interact with and support the proliferation of T cells. Like their mother cells, EMP expressed molecules important for Ag presentation and T cell costimulation, that is, β2-microglobulin, MHC II, CD40, and ICOSL. HBEC were able to take up fluorescently labeled Ags with EMP also containing fluorescent Ags, suggestive of Ag carryover from HBEC to EMP. In cocultures, fluorescently labeled EMP from resting or cytokine-stimulated HBEC formed conjugates with both CD4(+) and CD8(+) subsets, with higher proportions of T cells binding EMP from cytokine-stimulated cells. The increased binding of EMP from cytokinestimulated HBEC to T cells was VCAM-1 and ICAM-1 dependent. Finally, in CFSE T cell proliferation assays using anti-CD3 mAb or T cell mitogens, EMP promoted the proliferation of CD4(+) T cells and that of CD8(+) T cells in the absence of exogenous stimuli and in the T cell mitogenic stimulation. Our findings provide novel evidence that EMP can enhance T cell activation and potentially ensuing Ag presentation, thereby pointing toward a novel role for MP in neuroimmunological complications of infectious diseases. Copyright © 2014 by The American Association of Immunologists, Inc.
Microfluidic platform for real-time signaling analysis of multiple single T cells in parallel.
Faley, Shannon; Seale, Kevin; Hughey, Jacob; Schaffer, David K; VanCompernolle, Scott; McKinney, Brett; Baudenbacher, Franz; Unutmaz, Derya; Wikswo, John P
2008-10-01
Deciphering the signaling pathways that govern stimulation of naïve CD4+ T helper cells by antigen-presenting cells via formation of the immunological synapse is key to a fundamental understanding of the progression of successful adaptive immune response. The study of T cell-APC interactions in vitro is challenging, however, due to the difficulty of tracking individual, non-adherent cell pairs over time. Studying single cell dynamics over time reveals rare, but critical, signaling events that might be averaged out in bulk experiments, but these less common events are undoubtedly important for an integrated understanding of a cellular response to its microenvironment. We describe a novel application of microfluidic technology that overcomes many limitations of conventional cell culture and enables the study of hundreds of passively sequestered hematopoietic cells for extended periods of time. This microfluidic cell trap device consists of 440 18 micromx18 micromx10 microm PDMS, bucket-like structures opposing the direction of flow which serve as corrals for cells as they pass through the cell trap region. Cell viability analysis revealed that more than 70% of naïve CD4+ T cells (TN), held in place using only hydrodynamic forces, subsequently remain viable for 24 hours. Cytosolic calcium transients were successfully induced in TN cells following introduction of chemical, antibody, or cellular forms of stimulation. Statistical analysis of TN cells from a single stimulation experiment reveals the power of this platform to distinguish different calcium response patterns, an ability that might be utilized to characterize T cell signaling states in a given population. Finally, we investigate in real time contact- and non-contact-based interactions between primary T cells and dendritic cells, two main participants in the formation of the immunological synapse. Utilizing the microfluidic traps in a daisy-chain configuration allowed us to observe calcium transients in TN cells exposed only to media conditioned by secretions of lipopolysaccharide-matured dendritic cells, an event which is easily missed in conventional cell culture where large media-to-cell ratios dilute cellular products. Further investigation into this intercellular signaling event indicated that LPS-matured dendritic cells, in the absence of antigenic stimulation, secrete chemical signals that induce calcium transients in T(N) cells. While the stimulating factor(s) produced by the mature dendritic cells remains to be identified, this report illustrates the utility of these microfluidic cell traps for analyzing arrays of individual suspension cells over time and probing both contact-based and intercellular signaling events between one or more cell populations.
Immunomodulation of multiple myeloma.
Tohnya, Tanyifor M; Figg, William D
2004-11-01
Multiple myeloma is a multi-process disease, and these different processes are responsible for the reduced sensitivity to chemotherapy and radiotherapy, hence the relapse and refractory nature of multiple myeloma. Emphasis is now placed on the hypothesis that myeloma cell growth, inhibition of apoptosis and drug resistance are dependent on immunomodulatory cytokines such as IL-6 and pro-angiogenic factors such as VEGF. In addition to its anti-angiogenic effects, the immunomodulatory properties of thalidomide make it a possible therapy for patients with advanced multiple myeloma. This has lead to the clinical development of a number of immunomodulatory thalidomide analogues (IMiDs) which are more potent and have less side effects than the parent drug, thalidomide. In the August 15(th) issue of Journal of Clinical Oncology, Schey SA et al. suggested that an IMiD (CC-4047) maybe efficacious due to T-cell co-stimulation, and safe in patients with relapsed or refractory multiple myeloma. This article demonstrates a supporting role for IMiDs as immunomodulatory adjuvant therapy.
Infectious Agents as Stimuli of Trained Innate Immunity.
Rusek, Paulina; Wala, Mateusz; Druszczyńska, Magdalena; Fol, Marek
2018-02-03
The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells) after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin) as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.
Bock, Karl Walter
2017-06-01
Studies of TCDD toxicity stimulated identification of the responsible aryl hydrocarbon receptor (AHR), a multifunctional, ligand-activated transcription factor of the basic helix-loop-helix/Per-Arnt-Sim family. Accumulating evidence suggests a role of this receptor in homeostasis of stem/progenitor cells, in addition to its known role in xenobiotic metabolism. (1) Regulation of myelopoiesis is complex. As one example, AHR-mediated downregulation of human CD34+ progenitor differentiation to monocytes/macrophages is discussed. (2) Accumulation of TCDD in sebum leads to deregulation of sebocyte differentiation via Blimp1-mediated inhibition of c-Myc signaling and stimulation of Wnt-mediated proliferation of interfollicular epidermis. The resulting sebaceous gland atrophy and formation of dermal cysts may explain the pathogenesis of chloracne, the hallmark of TCDD toxicity. (3) TCDD treatment of confluent liver stem cell-like rat WB-F344 cells leads to release from cell-cell contact inhibition via AHR-mediated crosstalk with multiple signaling pathways. Further work is needed to delineate AHR function in crosstalk with other signaling pathways.
Autophagic activity in BC3H1 cells exposed to yessotoxin.
Korsnes, Mónica Suárez; Kolstad, Hilde; Kleiveland, Charlotte Ramstad; Korsnes, Reinert; Ørmen, Elin
2016-04-01
The marine toxin yessotoxin (YTX) can induce programmed cell death through both caspase-dependent and -independent pathways in various cellular systems. It appears to stimulate different forms of cellular stress causing instability among cell death mechanisms and making them overlap and cross-talk. Autophagy is one of the key pathways that can be stimulated by multiple forms of cellular stress which may determine cell survival or death. The present work evaluates a plausible link between ribotoxic stress and autophagic activity in BC3H1 cells treated with YTX. Such treatment produces massive cytoplasmic compartments as well as double-membrane vesicles termed autophagosomes which are typically observed in cells undergoing autophagy. The observed autophagosomes contain a large amount of ribosomes associated with the endoplasmic reticulum (ER). Western blotting analysis of Atg proteins and detection of the autophagic markers LC3-II and SQSTM1/p62 by flow cytometry and immunofluorescence verified autophagic activity during YTX-treatment. The present work supports the idea that autophagic activity upon YTX exposure may represent a response to ribotoxic stress. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tan, Feng; Zhang, Kangling; Mujahid, Hana; Verma, Desh Pal S; Peng, Zhaohua
2011-02-04
The cell wall is a critical extracellular structure that provides protection and structural support in plant cells. To study the biological function of the cell wall and the regulation of cell wall resynthesis, we examined cellular responses to enzymatic removal of the cell wall in rice (Oryza sativa) suspension cells using proteomic approaches. We find that removal of cell wall stimulates cell wall synthesis from multiple sites in protoplasts instead of from a single site as in cytokinesis. Nucleus DAPI stain and MNase digestion further show that removal of the cell wall is concomitant with substantial chromatin reorganization. Histone post-translational modification studies using both Western blots and isotope labeling assisted quantitative mass spectrometry analyses reveal that substantial histone modification changes, particularly H3K18(AC) and H3K23(AC), are associated with the removal and regeneration of the cell wall. Label-free quantitative proteome analyses further reveal that chromatin associated proteins undergo dramatic changes upon removal of the cell wall, along with cytoskeleton, cell wall metabolism, and stress-response proteins. This study demonstrates that cell wall removal is associated with substantial chromatin change and may lead to stimulation of cell wall synthesis using a novel mechanism.
Innate control of adaptive immunity: Beyond the three-signal paradigm
Jain, Aakanksha; Pasare, Chandrashekhar
2017-01-01
Activation of cells in the adaptive immune system is a highly orchestrated process dictated by multiples cues from the innate immune system. Although the fundamental principles of innate control of adaptive immunity are well established, it is not fully understood how innate cells integrate qualitative pathogenic information in order to generate tailored protective adaptive immune responses. In this review, we discuss complexities involved in the innate control of adaptive immunity that extend beyond T cell receptor engagement, co-stimulation and priming cytokine production but are critical for generation of protective T cell immunity. PMID:28483987
Performance-enhanced mesenchymal stem cells via intracellular delivery of steroids
NASA Astrophysics Data System (ADS)
Ankrum, James A.; Dastidar, Riddhi G.; Ong, Joon Faii; Levy, Oren; Karp, Jeffrey M.
2014-04-01
Inadequate immunomodulatory potency of mesenchymal stem cells (MSC) may limit their therapeutic efficacy. We report glucocorticoid steroids augment MSC expression and activity of indoleamine-2,3-dioxygenase (IDO), a primary mediator of MSC immunomodulatory function. This effect depends on signaling through the glucocorticoid receptor and is mediated through up-regulation of FOXO3. Treatment of MSCs with glucocorticoids, budesonide or dexamethasone, enhanced IDO expression following IFN-γ stimulation in multiple donors and was able to restore IDO expression in over-passaged MSCs. As IDO enhancement was most notable when cells were continuously exposed to budesonide, we engineered MSC with budesonide loaded PLGA microparticles. MSC efficiently internalized budesonide microparticles and exhibited 4-fold enhanced IDO activity compared to budesonide preconditioned and naïve MSC, resulting in a 2-fold improvement in suppression of stimulated peripheral blood mononuclear cells in an IDO-dependent manner. Thus, the augmentation of MSC immune modulation may abrogate challenges associated with inadequate potency and enhance their therapeutic efficacy.
Performance-enhanced mesenchymal stem cells via intracellular delivery of steroids
Ankrum, James A.; Dastidar, Riddhi G.; Ong, Joon Faii; Levy, Oren; Karp, Jeffrey M.
2014-01-01
Inadequate immunomodulatory potency of mesenchymal stem cells (MSC) may limit their therapeutic efficacy. We report glucocorticoid steroids augment MSC expression and activity of indoleamine-2,3-dioxygenase (IDO), a primary mediator of MSC immunomodulatory function. This effect depends on signaling through the glucocorticoid receptor and is mediated through up-regulation of FOXO3. Treatment of MSCs with glucocorticoids, budesonide or dexamethasone, enhanced IDO expression following IFN-γ stimulation in multiple donors and was able to restore IDO expression in over-passaged MSCs. As IDO enhancement was most notable when cells were continuously exposed to budesonide, we engineered MSC with budesonide loaded PLGA microparticles. MSC efficiently internalized budesonide microparticles and exhibited 4-fold enhanced IDO activity compared to budesonide preconditioned and naïve MSC, resulting in a 2-fold improvement in suppression of stimulated peripheral blood mononuclear cells in an IDO-dependent manner. Thus, the augmentation of MSC immune modulation may abrogate challenges associated with inadequate potency and enhance their therapeutic efficacy. PMID:24717973
Patterson, Jesse C.; Klimenko, Evguenia S.; Thorner, Jeremy
2014-01-01
Eukaryotic cells use multiple mitogen-activated protein kinase (MAPK) cascades to evoke appropriate responses to external stimuli. In Saccharomyces cerevisiae, the MAPK Fus3 is activated by pheromone-binding G protein-coupled receptors to promote mating, whereas the MAPK Hog1 is activated by hyperosmotic stress to elicit the high osmolarity glycerol (HOG) response. Although these MAPK pathways share several upstream components, exposure to either pheromone or osmolyte alone triggers only the appropriate response. We used fluorescent localization- and transcription-specific reporters to assess activation of these pathways in individual cells on the minute and hour timescale, respectively. Dual activation of these two MAPK pathways occurred over a broad range of stimulant concentrations and temporal regimes in wild-type cells subjected to co-stimulation. Thus, signaling specificity is achieved through an “insulation” mechanism, not a “cross-inhibition” mechanism. Furthermore, we showed that there was a critical period during which Hog1 activity had to occur for proper insulation of the HOG pathway. PMID:20959523
Estrogen Receptor Alpha Binding to ERE is Required for Full Tlr7- and Tlr9-Induced Inflammation
Cunningham, Melissa A; Wirth, Jena R; Naga, Osama; Eudaly, Jackie; Gilkeson, Gary S
2014-01-01
We previously found that a maximum innate inflammatory response induced by stimulation of Toll-like receptors (TLRs) 3, 7 and 9 requires ERα, but does not require estrogen in multiple cell types from both control and lupus-prone mice. Given the estrogen-independence, we hypothesized that ERα mediates TLR signaling by tethering to, and enhancing, the activity of downstream transcription factors such as NFκB, rather than acting classically by binding EREs on target genes. To investigate the mechanism of ERα impact on TLR signaling, we utilized mice with a knock-in ERα mutant that is unable to bind ERE. After stimulation with TLR ligands, both ex vivo spleen cells and bone marrow-derived dendritic cells (BM-DCs) isolated from mutant ERα (“KIKO”) mice produced significantly less IL-6 compared with cells from wild-type (WT) littermates. These results suggest that ERα modulation of TLR signaling does indeed require ERE binding for its effect on the innate immune response. PMID:25061615
Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J
2015-08-01
TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses.
Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J
2015-01-01
TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses. PMID:25613374
Keller, M J; Wheeler, D G; Cooper, E; Meier, J L
2003-06-01
Prior studies have suggested a role of the five copies of the 19-bp-repeat cyclic AMP (cAMP)-response element (CRE) in major immediate-early (MIE) promoter activation, the rate-limiting step in human cytomegalovirus (HCMV) replication. We used two different HCMV genome modification strategies to test this hypothesis in acutely infected cells. We report the following: (i) the CREs do not govern basal levels of MIE promoter activity at a high or low multiplicity of infection (MOI) in human foreskin fibroblast (HFF)- or NTera2-derived neuronal cells; (ii) serum and virion components markedly increase MIE promoter-dependent transcription at a low multiplicity of infection (MOI), but this increase is not mediated by the CREs; (iii) forskolin stimulation of the cAMP signaling pathway induces a two- to threefold increase in MIE RNA levels in a CRE-specific manner at a low MOI in both HFF- and NTera2-derived neuronal cells; and (iv) the CREs do not regulate basal levels of HCMV DNA replication at a high or low MOI in HFF. Their presence does impart a forskolin-induced increase in viral DNA replication at a low MOI but only when basal levels of MIE promoter activity are experimentally diminished. In conclusion, the 19-bp-repeat CREs add to the robust MIE promoter activity that occurs in the acutely infected stimulated cells, although the CREs' greater role may be in other settings.
Moghei, Mahshid; Tavajohi-Fini, Pegah; Beatty, Brendan
2016-01-01
Although leucine has many positive effects on metabolism in multiple tissues, elevated levels of this amino acid and the other branched-chain amino acids (BCAAs) and their metabolites are implicated in obesity and insulin resistance. While some controversies exist about the direct effect of leucine on insulin action in skeletal muscle, little is known about the direct effect of BCAA metabolites. Here, we first showed that the inhibitory effect of leucine on insulin-stimulated glucose transport in L6 myotubes was dampened when other amino acids were present, due in part to a 140% stimulation of basal glucose transport (P < 0.05). Importantly, we also showed that α-ketoisocaproic acid (KIC), an obligatory metabolite of leucine, stimulated mTORC1 signaling but suppressed insulin-stimulated glucose transport (−34%, P < 0.05) in an mTORC1-dependent manner. The effect of KIC on insulin-stimulated glucose transport was abrogated in cells depleted of branched-chain aminotransferase 2 (BCAT2), the enzyme that catalyzes the reversible transamination of KIC to leucine. We conclude that although KIC can modulate muscle glucose metabolism, this effect is likely a result of its transamination back to leucine. Therefore, limiting the availability of leucine, rather than those of its metabolites, to skeletal muscle may be more critical in the management of insulin resistance and its sequelae. PMID:27488662
Shin, Y; Moni, R W; Lueders, J E; Daly, J W
1994-04-01
1. The amphiphilic peptide mastoparan is known to affect phosphoinositide breakdown, calcium influx, and exocytosis of hormones and neurotransmitters and to stimulate the GTPase activity of guanine nucleotide-binding regulatory proteins. Another amphiphilic peptide, adenoregulin was recently identified based on stimulation of agonist binding to A1-adenosine receptors. 2. A comparison of the effects of mastoparan and adenoregulin reveals that these peptides share many properties. Both stimulate binding of agonists to receptors and binding of GTP gamma S to G proteins in brain membranes. The enhanced guanyl nucleotide exchange may be responsible for the complete conversion of receptors to a high-affinity state, complexed with guanyl nucleotide-free G proteins. 3. Both peptides increase phosphoinositide breakdown in NIH 3T3 fibroblasts. Pertussis toxin partially inhibits the phosphoinositide breakdown elicited by mastoparan but has no effect on the response to adenoregulin. N-Ethylmaleimide inhibits the response to both peptides. 4. In permeabilized 3T3 cells, both adenoregulin and mastoparan inhibit GTP gamma S-stimulated phosphoinositide breakdown. Mastoparan slightly increases basal cyclic AMP levels in cultured cells, followed at higher concentrations by an inhibition, while adenoregulin has minimal effects. 5. Both peptides increase calcium influx in cultured cells and release of norepinephrine in pheochromocytoma PC12 cells. The calcium influx elicited by the peptides in 3T3 cells is not markedly altered by N-ethylmaleimide. 6. Multiple sites of action appear likely to underlie the effects of mastoparan/adenoregulin on receptors, G proteins, phospholipase C, and calcium.
Quantification of growth factor signaling and pathway cross talk by live-cell imaging.
Gross, Sean M; Rotwein, Peter
2017-03-01
Peptide growth factors stimulate cellular responses through activation of their transmembrane receptors. Multiple intracellular signaling cascades are engaged following growth factor-receptor binding, leading to short- and long-term biological effects. Each receptor-activated signaling pathway does not act in isolation but rather interacts at different levels with other pathways to shape signaling networks that are distinctive for each growth factor. To gain insights into the specifics of growth factor-regulated interactions among different signaling cascades, we developed a HeLa cell line stably expressing fluorescent live-cell imaging reporters that are readouts for two major growth factor-stimulated pathways, Ras-Raf-Mek-ERK and phosphatidylinositol (PI) 3-kinase-Akt. Incubation of cells with epidermal growth factor (EGF) resulted in rapid, robust, and sustained ERK signaling but shorter-term activation of Akt. In contrast, hepatocyte growth factor induced sustained Akt signaling but weak and short-lived ERK activity, and insulin-like growth factor-I stimulated strong long-term Akt responses but negligible ERK signaling. To address potential interactions between signaling pathways, we employed specific small-molecule inhibitors. In cells incubated with EGF or platelet-derived growth factor-AA, Raf activation and the subsequent stimulation of ERK reduced Akt signaling, whereas Mek inhibition, which blocked ERK activation, enhanced Akt and turned transient effects into sustained responses. Our results reveal that individual growth factors initiate signaling cascades that vary markedly in strength and duration and demonstrate in living cells the dramatic effects of cross talk from Raf and Mek to PI 3-kinase and Akt. Our data further indicate how specific growth factors can encode distinct cellular behaviors by promoting complex interactions among signaling pathways. Copyright © 2017 the American Physiological Society.
Quantification of growth factor signaling and pathway cross talk by live-cell imaging
Gross, Sean M.
2017-01-01
Peptide growth factors stimulate cellular responses through activation of their transmembrane receptors. Multiple intracellular signaling cascades are engaged following growth factor–receptor binding, leading to short- and long-term biological effects. Each receptor-activated signaling pathway does not act in isolation but rather interacts at different levels with other pathways to shape signaling networks that are distinctive for each growth factor. To gain insights into the specifics of growth factor-regulated interactions among different signaling cascades, we developed a HeLa cell line stably expressing fluorescent live-cell imaging reporters that are readouts for two major growth factor-stimulated pathways, Ras–Raf–Mek–ERK and phosphatidylinositol (PI) 3-kinase–Akt. Incubation of cells with epidermal growth factor (EGF) resulted in rapid, robust, and sustained ERK signaling but shorter-term activation of Akt. In contrast, hepatocyte growth factor induced sustained Akt signaling but weak and short-lived ERK activity, and insulin-like growth factor-I stimulated strong long-term Akt responses but negligible ERK signaling. To address potential interactions between signaling pathways, we employed specific small-molecule inhibitors. In cells incubated with EGF or platelet-derived growth factor-AA, Raf activation and the subsequent stimulation of ERK reduced Akt signaling, whereas Mek inhibition, which blocked ERK activation, enhanced Akt and turned transient effects into sustained responses. Our results reveal that individual growth factors initiate signaling cascades that vary markedly in strength and duration and demonstrate in living cells the dramatic effects of cross talk from Raf and Mek to PI 3-kinase and Akt. Our data further indicate how specific growth factors can encode distinct cellular behaviors by promoting complex interactions among signaling pathways. PMID:28100485
Lang, Elisabeth; Bissinger, Rosi; Qadri, Syed M; Lang, Florian
2017-10-15
In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis characterized by cell shrinkage and cell membrane scrambling. Eryptotic erythrocytes are rapidly cleared from circulating blood and may adhere to the vascular wall. Stimulation of eryptosis thus impairs microcirculation and leads to anemia as soon as the loss of erythrocytes cannot be fully compensated by enhanced erythropoiesis. Signaling stimulating eryptosis includes increase of cytosolic Ca 2+ -activity, ceramide, caspases, calpain, p38-kinase, protein-kinase C, Janus-activated kinase 3, casein-kinase 1α, and cyclin-dependent kinase 4. Eryptosis is inhibited by AMP-activated kinase, p21-activated kinase 2, cGMP-dependent protein-kinase, mitogen- and stress-activated kinase, and sorafenib- and sunitinib-sensitive tyrosine-kinases. Eryptosis is triggered by complement, hyperosmotic shock, energy-depletion, oxidative stress, multiple xenobiotics including diverse cytostatic drugs, diabetes, hepatic failure, iron-deficiency, chronic kidney disease, hemolytic-uremic-syndrome, fever, systemic lupus erythematosus, infections, sepsis, sickle cell anemia, thalassemia, glucose-6-phosphate-dehydrogenase deficiency, and Wilson´s disease. Compelling evidence points to a decisive role of eryptosis in anemia of malignancy. As shown for lung cancer, eryptosis inducing plasma components accumulate in cancer patients and trigger oxidative stress and ceramide. The tumor-induced eryptosis leads to anemia despite increased erythropoiesis. The stimulation of eryptosis in malignancy is compounded by cytostatic treatment, as a large number of cytostatic agents trigger eryptosis. Inhibiting eryptosis may be a useful strategy in reducing tumor-induced anemia and impaired microcirculation. Inhibitors of eryptosis may, however, be harmful, if they similarly interfere with death of tumor cells. Clearly, additional experimental effort is required to achieve killing of tumor cells with simultaneous avoidance of stimulated eryptosis. © 2017 UICC.
Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases.
Nakayama, Hiroyuki; Otsu, Kinya
2018-03-06
Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection - termed sterile inflammation - is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP-AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases. © 2018 The Author(s).
Oronsky, Bryan; Paulmurugan, Ramasamy; Foygel, Kira; Scicinski, Jan; Knox, Susan J; Peehl, Donna; Zhao, Hongjuan; Ning, Shoucheng; Cabrales, Pedro; Summers, Thomas A; Reid, Tony R; Fitch, William L; Kim, Michelle M; Trepel, Jane B; Lee, Min-Jung; Kesari, Santosh; Abrouk, Nacer D; Day, Regina M; Oronsky, Arnold; Ray, Carolyn M; Carter, Corey A
2017-01-01
According to Hanahan and Weinberg, cancer manifests as six essential physiologic hallmarks: (1) self-sufficiency in growth signals, (2) insensitivity to growth-inhibitory signals, (3) evasion of programmed cell death, (4) limitless replicative potential, (5) sustained angiogenesis, and (6) invasion and metastasis. As a facilitator of these traits as well as immunosuppression and chemoresistance, the presence of tumor-associated macrophages (TAMs) may serve as the seventh hallmark of cancer. Anticancer agents that successfully reprogram TAMs to target rather than support tumor cells may hold the key to better therapeutic outcomes. Areas covered: This article summarizes the characteristics of the macrophage-stimulating agent RRx-001, a molecular iconoclast, sourced from the aerospace industry, with a particular emphasis on the cell-to-cell transfer mechanism of action (RBCs to TAMs) underlying its antitumor activity as well as its chemo and radioprotective properties, consolidated from various preclinical and clinical studies. Expert opinion: RRx-001 is macrophage-stimulating agent with the potential to synergize with chemotherapy, radiotherapy and immunotherapy while simultaneously protecting normal tissues from their cytotoxic effects. Given the promising indications of activity in multiple tumor types and these normal tissue protective properties, RRx-001 may be used to treat a broad spectrum of malignancies, if it is approved in the future.
Ding, Ru; Gao, Wenwu; He, Zhiqing; Wu, Feng; Chu, Yang; Wu, Jie; Ma, Lan; Liang, Chun
2017-11-01
Coronary artery disease (CAD) is a common subtype of cardiovascular disease. The major contributing event is atherosclerosis, which is a progressive inflammatory condition resulting in the thickening of the arterial wall and the formation of atheromatous plaques. Recent evidence suggests that circulating CD4 + CXCR5 + T cells can contribute to inflammatory reactions. In this study, the frequency, phenotype, and function of circulating CD4 + CXCR5 + T cells in CAD patients were examined. Data showed that circulating CD4 + CXCR5 + T cells in CAD patients were enriched with a PD-1 + CCR7 - subset, which was previously identified as the most potent in B cell help. The CD4 + CXCR5 + T cells in CAD patients also secreted significantly higher levels of IFN-γ, IL-17A, and IL-21 than those from healthy controls. Depleting the PD-1 + population significantly reduced the cytokine secretion. Interestingly, the CD4 + CXCR5 + PD-1 - T cells significantly upregulated PD-1 following anti-CD3/CD28 or SEB stimulation. CD4 + CXCR5 + T cells from CAD patients also demonstrated more potent capacity to stimulate B cell inflammation than those from healthy individuals. The phosphorylation of STAT1 and STAT3 were significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD than controls. The IL-6 and IFN-γ expression were also significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD. Together, this study demonstrated that CAD patients presented a highly activated CD4 + CXCR5 + T cell subset that could contribute to proinflammatory responses in multiple ways. The possibility of using CD4 + CXCR5 + T cells as a therapeutic target should therefore be examined in CAD patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Schmitt, Michael; Publicover, Amy; Orchard, Kim H; Görlach, Matthias; Wang, Lei; Schmitt, Anita; Mani, Jiju; Tsirigotis, Panagiotis; Kuriakose, Reeba; Nagler, Arnon
2014-01-01
The use of granulocyte colony stimulating factor (G-CSF) biosimilars for peripheral blood hematopoietic stem cell (PBSC) mobilization has stimulated an ongoing debate regarding their efficacy and safety. However, the use of biosimilar G-CSF was approved by the European Medicines Agency (EMA) for all the registered indications of the originator G-CSF (Neupogen®) including mobilization of stem cells. Here, we performed a comprehensive review of published reports on the use of biosimilar G-CSF covering patients with hematological malignancies as well as healthy donors that underwent stem cell mobilization at multiple centers using site-specific non-randomized regimens with a biosimilar G-CSF in the autologous and allogeneic setting. A total of 904 patients mostly with hematological malignancies as well as healthy donors underwent successful autologous or allogeneic stem cell mobilization, respectively, using a biosimilar G-CSF (520 with Ratiograstim®/Tevagrastim, 384 with Zarzio®). The indication for stem cell mobilization in hematology patients included 326 patients with multiple myeloma, 273 with Non-Hodgkin's lymphoma (NHL), 79 with Hodgkin's lymphoma (HL), and other disease. 156 sibling or volunteer unrelated donors were mobilized using biosimilar G-CSF. Mobilization resulted in good mobilization of CD34+ stem cells with side effects similar to originator G-CSF. Post transplantation engraftment did not significantly differ from results previously documented with the originator G-CSF. The side effects experienced by the patients or donors mobilized by biosimilar G-CSF were minimal and were comparable to those of originator G-CSF. In summary, the efficacy of biosimilar G-CSFs in terms of PBSC yield as well as their toxicity profile are equivalent to historical data with the reference G-CSF. PMID:24505236
Schmitt, Michael; Publicover, Amy; Orchard, Kim H; Görlach, Matthias; Wang, Lei; Schmitt, Anita; Mani, Jiju; Tsirigotis, Panagiotis; Kuriakose, Reeba; Nagler, Arnon
2014-01-01
The use of granulocyte colony stimulating factor (G-CSF) biosimilars for peripheral blood hematopoietic stem cell (PBSC) mobilization has stimulated an ongoing debate regarding their efficacy and safety. However, the use of biosimilar G-CSF was approved by the European Medicines Agency (EMA) for all the registered indications of the originator G-CSF (Neupogen (®) ) including mobilization of stem cells. Here, we performed a comprehensive review of published reports on the use of biosimilar G-CSF covering patients with hematological malignancies as well as healthy donors that underwent stem cell mobilization at multiple centers using site-specific non-randomized regimens with a biosimilar G-CSF in the autologous and allogeneic setting. A total of 904 patients mostly with hematological malignancies as well as healthy donors underwent successful autologous or allogeneic stem cell mobilization, respectively, using a biosimilar G-CSF (520 with Ratiograstim®/Tevagrastim, 384 with Zarzio®). The indication for stem cell mobilization in hematology patients included 326 patients with multiple myeloma, 273 with Non-Hodgkin's lymphoma (NHL), 79 with Hodgkin's lymphoma (HL), and other disease. 156 sibling or volunteer unrelated donors were mobilized using biosimilar G-CSF. Mobilization resulted in good mobilization of CD34+ stem cells with side effects similar to originator G-CSF. Post transplantation engraftment did not significantly differ from results previously documented with the originator G-CSF. The side effects experienced by the patients or donors mobilized by biosimilar G-CSF were minimal and were comparable to those of originator G-CSF. In summary, the efficacy of biosimilar G-CSFs in terms of PBSC yield as well as their toxicity profile are equivalent to historical data with the reference G-CSF.
KIM, JAE-SUNG; PARK, MI-RA; LEE, SOOK-YOUNG; KIM, DO KYOUNG; MOON, SUNG-MIN; KIM, CHUN SUNG; CHO, SEUNG SIK; YOON, GOO; IM, HEE-JEONG; YOU, JAE-SEEK; OH, JI-SU; KIM, SU-GWAN
2014-01-01
Licochalcone A (Lico-A) is a natural phenol licorice compound with multiple bioactivities, including anti-inflammatory, anti-microbial, anti-fungal and osteogenesis-inducing properties. In the present study, we investigated the Lico-A-induced apoptotic effects and examined the associated apoptosis pathway in KB human oral cancer cells. Lico-A decreased the number of viable KB oral cancer cells. However, Lico-A did not have an effect on primary normal human oral keratinocytes. In addition, the IC50 value of Lico-A was determined to be ~50 μM following dose-dependent stimulation. KB oral cancer cells stimulated with Lico-A for 24 h showed chromatin condensation by DAPI staining, genomic DNA fragmentation by agarose gel electrophoresis and a gradually increased apoptotic cell population by FACS analysis. These data suggest that Lico-A induces apoptosis in KB oral cancer cells. Additionally, Lico-A-induced apoptosis in KB oral cancer cells was mediated by the expression of factor associated suicide ligand (FasL) and activated caspase-8 and −3 and poly(ADP-ribose) polymerase (PARP). Furthermore, in the KB oral cancer cells co-stimulation with a caspase inhibitor (Z-VAD-fmk) and Lico-A significantly abolished the apoptotic phenomena. Our findings demonstrated that Lico-A-induced apoptosis in KB oral cancer cells involves the extrinsic apoptotic signaling pathway, which involves a caspase-dependent FasL-mediated death receptor pathway. Our data suggest that Lico-A be developed as a chemotherapeutic agent for the management of oral cancer. PMID:24337492
In Vitro Effects of Sodium Benzoate on Th1/Th2 Deviation in Patients with Multiple Sclerosis.
Rezaei, N; Amirghofran, Z; Nikseresht, A; Ashjazade, N; Zoghi, S; Tahvili, S; Kamali-Sarvestani, E
2016-10-01
Interleukin 4 (IL-4) can improve the clinical manifestations in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). Sodium benzoate (NaB) deviates the cytokine profile to Th2 (or IL-4 producing) cells in EAE and thus might be effective in the treatment of MS. Therefore, in this study the effect of different concentrations of NaB on the percentage and mRNA levels of IL-4 and interferon gamma (IFN-γ)-producing peripheral blood mononuclear cells (PBMCs) of 20 Relapsing-remitting multiple sclerosis (RR-MS) patients and eight healthy controls was evaluated in the presence of mitogen (phytohemagglutinin, PHA) or specific antigen (myelin basic protein, MBP). Our results showed that in the patient's group the percentage of CD4(+)IL-4(+) cells was significantly increased in the presence of all concentrations of NaB when PBMCs were stimulated by MBP (p = 0.001) or PHA (p < 0.03). The same results were obtained for normal donors in the highest concentration of NaB, 1000 µg/ml (p = 0.02). Moreover, in the patient's group the percentage of CD4(+)IFN-γ(+) cells was decreased significantly when the PBMCs were stimulated by PHA and NaB (p < 0.004) or by MBP and 1000 µg/ml of NaB (p < 0.03). The effect of NaB on IL-4 and IFN-γ production was also documented at the mRNA levels. In conclusion, our data suggest that NaB is able to induce IL-4 production by human PBMCs and therefore might be a useful candidate for conjunctive therapy in RR-MS.
Éliás, Szabolcs; Schmidt, Angelika; Kannan, Venkateshan; Andersson, John; Tegnér, Jesper
2016-01-01
The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is involved in the pathogenesis of chronic inflammatory diseases such as multiple sclerosis. However, the environmental cues promoting differentiation of GM-CSF producing T cells are unclear. Herein, we performed a broad experimental screening of cytokines and data-driven analysis assessing their ability to induce human GM-CSF+ CD4+ T cells and their subpopulations. TGF-β was discovered to induce GM-CSF production independently of proliferation and IL-2 signaling including STAT5. In contrast, IL-6 and IL-23 decreased GM-CSF production. On the population level, GM-CSF induction was highly correlated with expression of FOXP3 across cytokine stimulations but not with that of IL-17. However, on single-cell level GM-CSF and IFN-γ expression were most correlated, independently of the cytokine environment. Importantly, under low sodium conditions in the medium or upon stimulation with plate-bound instead of bead-bound anti-CD3 and anti-CD28 antibodies, the effects of TGF-β on GM-CSF, but not on FOXP3, were reversed. Our analysis indicates a novel role for TGF-β in generating GM-CSF+ subsets of human CD4+ T cells. These results are important for understanding of autoimmune disease and therapeutic considerations. PMID:28066414
Falchi, Mario; Varricchio, Lilian; Martelli, Fabrizio; Masiello, Francesca; Federici, Giulia; Zingariello, Maria; Girelli, Gabriella; Whitsett, Carolyn; Petricoin, Emanuel F; Moestrup, Søren Kragh; Zeuner, Ann; Migliaccio, Anna Rita
2015-02-01
Cultures of human CD34(pos) cells stimulated with erythroid growth factors plus dexamethasone, a model for stress erythropoiesis, generate numerous erythroid cells plus a few macrophages (approx. 3%; 3:1 positive and negative for CD169). Interactions occurring between erythroblasts and macrophages in these cultures and the biological effects associated with these interactions were documented by live phase-contrast videomicroscopy. Macrophages expressed high motility interacting with hundreds/thousands of erythroblasts per hour. CD169(pos) macrophages established multiple rapid 'loose' interactions with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169(neg) macrophages established 'tight' interactions with mature erythroblasts and phagocytosed these cells. 'Loose' interactions of CD169(pos) macrophages were associated with proerythroblast cytokinesis (the M phase of the cell cycle) suggesting that these interactions may promote proerythroblast duplication. This hypothesis was tested by experiments that showed that as few as 103 macrophages significantly increased levels of 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide incorporation frequency in S/G2/M and cytokinesis expressed by proerythroblasts over 24 h of culture. These effects were observed also when macrophages were co-cultured with dexamethasone directly conjugated to a macrophage-specific CD163 antibody. In conclusion, in addition to promoting proerythroblast proliferation directly, dexamethasone stimulates expansion of these cells indirectly by stimulating maturation and cytokinesis supporting activity of macrophages. Copyright© Ferrata Storti Foundation.
Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device
Guo, Yanmeng; Song, Peipei; Zhang, Xiaohui; Zeng, Shaoqun; Wang, Zuoren
2011-01-01
Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision. PMID:22174813
Seetharam, Divya; Mineo, Chieko; Gormley, Andrew K; Gibson, Linda L; Vongpatanasin, Wanpen; Chambliss, Ken L; Hahner, Lisa D; Cummings, Melissa L; Kitchens, Richard L; Marcel, Yves L; Rader, Daniel J; Shaul, Philip W
2006-01-06
Vascular disease risk is inversely related to circulating levels of high-density lipoprotein (HDL) cholesterol. However, the mechanisms by which HDL provides vascular protection are unclear. The disruption of endothelial monolayer integrity is an important contributing factor in multiple vascular disorders, and vascular lesion severity is tempered by enhanced endothelial repair. Here, we show that HDL stimulates endothelial cell migration in vitro in a nitric oxide-independent manner via scavenger receptor B type I (SR-BI)-mediated activation of Rac GTPase. This process does not require HDL cargo molecules, and it is dependent on the activation of Src kinases, phosphatidylinositol 3-kinase, and p44/42 mitogen-activated protein kinases. Rapid initial stimulation of lamellipodia formation by HDL via SR-BI, Src kinases, and Rac is also demonstrable. Paralleling the in vitro findings, carotid artery reendothelialization after perivascular electric injury is blunted in apolipoprotein A-I(-/-) mice, and reconstitution of apolipoprotein A-I expression rescues normal reendothelialization. Furthermore, reendothelialization is impaired in SR-BI(-/-) mice. Thus, HDL stimulates endothelial cell migration via SR-BI-initiated signaling, and these mechanisms promote endothelial monolayer integrity in vivo.
Cossu, Giulia
2014-04-01
Traumatic brain injury is a leading cause of death and disability. Optimizing the recovery from coma is a priority in seeking to improve patients' functional outcomes. Standards of care have not been established: pharmacological interventions, right median nerve and sensory stimulation, dorsal column stimulation (DCS), deep brain stimulation, transcranial magnetic stimulation, hyperbaric oxygen therapy and cell transplantation have all been utilized with contrasting results. The aim of this review is to clarify the indications for the various techniques and to guide the clinical practice towards an earlier coma arousal. A systematic bibliographic search was undertaken using the principal search engines (Pubmed, Embase, Ovid and Cochrane databases) to locate the most pertinent studies. Traumatic injury is a highly individualized process, and subsequent impairments are dependent on multiple factors: this heterogeneity influences and determines therapeutic responses to the various interventions.
Chi, Kang; Fu, Ru-Huei; Huang, Yu-Chuen; Chen, Shih-Yin; Hsu, Ching-Ju; Lin, Shinn-Zong; Tu, Chi-Tang; Chang, Li-Hsun; Wu, Ping-An; Liu, Shih-Ping
2018-03-01
Parkinson's disease (PD) causes motor dysfunction and dopaminergic cell death. Drug treatments can effectively reduce symptoms but often cause unwanted side effects. Stem cell therapies using cell replacement or indirect beneficial secretomes have recently emerged as potential therapeutic strategies. Although various types of stem cells have been proposed as possible candidates, adipose-derived stem cells (ADSCs) are easily obtainable, more abundant, less ethically disputed, and able to differentiate into multiple cell lineages. However, treatment of PD using adult stem cells is known to be less efficacious than neuron or embryonic stem cell transplantation. Therefore, improved therapies are urgently needed. n-Butylidenephthalide (BP), which is extracted from Angelica sinensis, has been shown to have anti-inflammatory and neuroprotective effects. Indeed, we previously demonstrated that BP treatment of ADSCs enhances the expression of neurogenesis and homing factors such as nuclear receptor related 1 protein, stromal-derived factor 1, and brain-derived neurotrophic factor. In the present study, we examined the ability of BP-pretreated ADSC transplantation to improve PD motor symptoms and protect dopamine neurons in a mouse model of PD. We evaluated the results using neuronal behavior tests such as beam walking, rotarod, and locomotor activity tests. ADSCs with or without BP pretreatment were transplanted into the striatum. Our findings demonstrated that ADSC transplantation improved motor abilities with varied efficacies and that BP stimulation improved the therapeutic effects of transplantation. Dopaminergic cell numbers returned to normal in ADSC-transplanted mice after 22 d. In summary, stimulating ADSCs with BP improved PD recovery efficiency. Thus, our results provide important new strategies to improve stem cell therapies for neurodegenerative diseases in future studies.
Vinpocetine inhibits oligodendroglial precursor cell differentiation.
Torres, Klintsy Julieta; Göttle, Peter; Kremer, David; Rivera, Jose Flores; Aguirre-Cruz, Lucinda; Corona, Teresa; Hartung, Hans-Peter; Küry, Patrick
2012-01-01
In multiple sclerosis during periods of remission a limited degree of myelin repair can be observed mediated by oligodendroglial precursor cells. Phosphodiesterase inhibitors act as anti-inflammatory agents and might hold promise for future multiple sclerosis treatment. To investigate whether phosphodiesterase inhibitors could also influence myelin repair. We stimulated primary oligodendroglial precursor cells with cilostazol, rolipram and vinpocetine and assessed their effects on repair related cellular processes. We found that vinpocetine exerted a strong negative effect on myelin expression while cilostazol and rolipram did not show such effects. In addition, vinpocetine decreased morphological complexities suggesting an overall negative impact on oligodendroglial cell maturation. We provide evidence that this is not mediated via a blockade of phosphodiesterase-1 but rather by inhibition of IĸB kinase. These findings suggest that vinpocetine via IĸB inhibition exerts a strong negative impact on oligodendroglial cell maturation and may therefore provide the rationale to restrict its application during periods of remission in multiple sclerosis patients. This is of particular interest since vinpocetine is widely used as a health supplement thought to act as a cognitive and memory enhancer for healthy people and patients with neurological or muscle diseases. Copyright © 2012 S. Karger AG, Basel.
A Lipopeptide Facilitate Induction of Mycobacterium leprae Killing in Host Cells
Maeda, Yumi; Tamura, Toshiki; Fukutomi, Yasuo; Mukai, Tetsu; Kai, Masanori; Makino, Masahiko
2011-01-01
Little is known of the direct microbicidal activity of T cells in leprosy, so a lipopeptide consisting of the N-terminal 13 amino acids lipopeptide (LipoK) of a 33-kD lipoprotein of Mycobacterium leprae, was synthesized. LipoK activated M. leprae infected human dendritic cells (DCs) to induce the production of IL-12. These activated DCs stimulated autologous CD4+ or CD8+ T cells towards type 1 immune response by inducing interferon-gamma secretion. T cell proliferation was also evident from the CFSE labeling of target CD4+ or CD8+ T cells. The direct microbicidal activity of T cells in the control of M. leprae multiplication is not well understood. The present study showed significant production of granulysin, granzyme B and perforin from these activated CD4+ and CD8+ T cells when stimulated with LipoK activated, M. leprae infected DCs. Assessment of the viability of M. leprae in DCs indicated LipoK mediated T cell-dependent killing of M. leprae. Remarkably, granulysin as well as granzyme B could directly kill M. leprae in vitro. Our results provide evidence that LipoK could facilitate M. leprae killing through the production of effector molecules granulysin and granzyme B in T cells. PMID:22132248
Sarker, Rafiquel; Cha, Boyoung; Kovbasnjuk, Olga; Cole, Robert; Gabelli, Sandra; Tse, Chung Ming; Donowitz, Mark
2017-01-01
Casein kinase 2 (CK2) binds to the NHE3 C-terminus and constitutively phosphorylates a downstream site (S719) that accounts for 40% of basal NHE3 activity. The role of CK2 in regulation of NHE3 activity in polarized Caco-2/bbe cells was further examined by mutation of NHE3-S719 to A (not phosphorylated) or D (phosphomimetic). NHE3-S719A but not -S719D had multiple changes in NHE3 activity: 1) reduced basal NHE3 activity—specifically, inhibition of the PI3K/AKT-dependent component; 2) reduced acute stimulation of NHE3 activity by LPA/LPA5R stimulation; and 3) reduced acute inhibition of NHE3 activity—specifically, elevated Ca2+ related (carbachol/Ca2+ ionophore), but there was normal inhibition by forskolin and hyperosmolarity. The S719A mutant had reduced NHE3 complex size, reduced expression in lipid rafts, increased BB mobile fraction, and reduced binding to multiple proteins that bind throughout the NHE3 intracellular C-terminus, including calcineurin homologous protein, the NHERF family and SNX27 (related PDZ domains). These studies show that phosphorylation of the NHE3 at a single amino acid in the distal part of the C-terminus affects multiple aspects of NHE3 complex formation and changes the NHE3 lipid raft distribution, which cause changes in specific aspects of basal as well as acutely stimulated and inhibited Na+/H+ exchange activity. PMID:28495796
Control of apical membrane chloride permeability in the renal A6 cell line by nucleotides
Banderali, U; Brochiero, E; Lindenthal, S; Raschi, C; Bogliolo, S; Ehrenfeld, J
1999-01-01
The effect of extracellular nucleotides applied on the apical side of polarised A6 cells grown on permeant filters was investigated by measuring the changes in (i) the 36Cl efflux through the apical membranes, (ii) the intracellular chloride concentrations (aCli, measured with N-(6-methoxyquinolyl) acetoethyl ester, MQAE), (iii) ICl, the short-circuit current in the absence of Na+ transport and (iv) the characteristics of the apical chloride channels using a patch-clamp approach. ATP or UTP (0.1-500 μm) transiently stimulated ICl. The sequence of purinergic agonist potencies was UTP = ATP > ADP >> the P2X-selective agonist β,γ-methylene ATP = the P2Y-selective agonist 2-methylthioATP. Suramin (100 μm) as the P2Y antagonist Reactive Blue 2 (10 μm) had no effect on the UTP (or ATP)-stimulated current. These findings are consistent with the presence of P2Y2-like receptors located on the apical membranes of A6 cells. Apical application of adenosine also transiently increased ICl. This effect was blocked by theophylline while the UTP-stimulated ICl was not. The existence of a second receptor, of the P1 type is proposed. ATP (or UTP)-stimulated ICl was blocked by apical application of 200 μmN-phenylanthranilic acid (DPC) or 100 μm niflumic acid while 100 μm glibenclamide was ineffective. Ionomycin and thapsigargin both transiently stimulated ICl; the nucleotide stimulation of ICl was not suppressed by pre-treatment with these agents. Chlorpromazin (50 μm), a Ca2+-calmodulin inhibitor strongly inhibited the stimulation of ICl induced either by apical UTP or by ionomycin application. BAPTA-AM pre-treatment of A6 cells blocked the UTP-stimulated ICl. Niflumic acid also blocked the ionomycin stimulated ICl. A fourfold increase in 36Cl effluxes through the apical membranes was observed after ATP or UTP application. These increases of the apical chloride permeability could also be observed when following aCli changes. Apical application of DPC (1 mm) or 5-nitro-2(3-phenylpropylamino)benzoic acid (NPPB; 500 μm) produced an incomplete inhibition of 36Cl effluxes through the apical membranes in ATP-stimulated and in untreated monolayers. In single channel patch-clamp experiments, an apical chloride channel with a unitary single channel conductance of 7.3 ± 0.6 pS (n = 12) was usually observed. ATP application induced the activation of one or more of these channels within a few minutes. These results indicate that multiple purinergic receptor subtypes are present in the apical membranes of A6 cells and that nucleotides can act as modulators of Cl− secretion in renal cells. PMID:10457087
Wing, Ana Cristina; Hygino, Joana; Ferreira, Thais B; Kasahara, Taissa M; Barros, Priscila O; Sacramento, Priscila M; Andrade, Regis M; Camargo, Solange; Rueda, Fernanda; Alves-Leon, Soniza V; Vasconcelos, Claudia Cristina; Alvarenga, Regina; Bento, Cleonice A M
2016-02-01
Multiple sclerosis (MS) is thought to be an autoimmune disorder. It is believed that immunological events in the early stages have great impact on the disease course. Therefore, we aimed to evaluate the cytokine profile of myelin basic protein (MBP)-specific T cells from MS patients in the early phase of the disease and correlate it to clinical parameters, as well as to the effect of in vitro corticoid treatment. Peripheral T cells from MS patients were stimulated with MBP with our without hydrocortisone for 5 days. The cytokines level were determined by ELISA. The number of active brain lesions was determined by MRI scans, and the neurological disabilities were assessed by Expanded Disability Status Scale scores. Our results demonstrated that MS-derived T cells responded to MBP by producing high levels of T helper type 1 (Th1) and Th17 cytokines. Although the production of interleukin-6 (IL-6), granulocyte-macrophage colony-stimulating factor, IL-17 and IL-22 was less sensitive to hydrocortisone inhibition, only IL-17 and IL-22 levels correlated with active brain lesions. The ability of hydrocortisone to inhibit IL-17 and IL-22 production by MBP-specific CD4(+) T cells was inversely related to the number of active brain lesions. Finally, the production of both cytokines was significantly higher in cell cultures from Afrodescendant patients and it was less sensitive to hydrocortisone inhibition. In summary, our data suggest that IL-17- and IL-22-secreting CD4(+) T cells resistant to corticoids are associated with radiological activity of the MS in early stages of the disease, mainly among Afrodescendant patients who, normally, have worse prognosis. © 2015 John Wiley & Sons Ltd.
Messenger, Michael P; Raïf, El M; Seedhom, Bahaa B; Brookes, Steven J
2010-02-01
The following in vitro translational study investigated whether enamel matrix derivative (EMD), an approved biomimetic treatment for periodontal disease (Emdogain) and hard-to-heal wounds (Xelma), enhanced synovial cell colonization and protein synthesis around a scaffold used clinically for in situ tissue engineering of the torn anterior cruciate ligament (ACL). Synovial cells were enzymatically extracted from bovine synovium and dynamically seeded onto polyethylene terephthalate (PET) scaffolds. The cells were cultured in low-serum medium (0.5% FBS) for 4 weeks with either a single administration of EMD at the start of the 4 week period or multiple administrations of EMD at regular intervals throughout the 4 weeks. Samples were harvested and evaluated using the Hoechst DNA assay, BCA protein assay, cresolphthalein complexone calcium assay, SDS-PAGE, ELISA and electron microscopy. A significant increase in cell number (DNA) (p < 0.01), protein content (p < 0.01) and TGFbeta1 synthesis (p < 0.01) was observed with multiple administrations of EMD. Additionally, SDS-PAGE showed an increase in high molecular weight proteins, characteristic of the fibril-forming collagens. Electron microscopy supported these findings, showing that scaffolds treated with multiple administrations of EMD were heavily coated with cells and extracellular matrix (ECM) that enveloped the fibres. Multiple administrations of EMD to synovial cell-seeded scaffolds enhanced the formation of tissue in vitro. Additionally, it was shown that EMD enhanced TGFbeta1 synthesis of synovial cells, suggesting a potential mode of action for EMD's capacity to stimulate tissue regeneration.
SCHIAVONE, Davide; DEWILDE, Sarah; VALLANIA, Francesco; TURKSON, James; CUNTO, Ferdinando DI; POLI, Valeria
2010-01-01
STAT3 (signal transducer and activator of transcription 3) is a transcription factor activated by cytokines, growth factors and oncogenes, whose activity is required for cell survival/proliferation of a wide variety of primary tumours and tumour cell lines. Prominent among its multiple effects on tumour cells is the stimulation of cell migration and metastasis, whose functional mechanisms are however not completely characterized. RhoU/Wrch1 (Wnt-responsive Cdc42 homologue) is an atypical Rho GTPase thought to be constitutively bound to GTP. RhoU was first identified as a Wnt-1-inducible mRNA and subsequently shown to act on the actin cytoskeleton by stimulating filopodia formation and stress fibre dissolution. It was in addition recently shown to localize to focal adhesions and to Src-induced podosomes and enhance cell migration. RhoU overexpression in mammary epithelial cells stimulates quiescent cells to re-enter the cell cycle and morphologically phenocopies Wnt-1-dependent transformation. In the present study we show that Wnt-1-mediated RhoU induction occurs at the transcriptional level. Moreover, we demonstrate that RhoU can also be induced by gp130 cytokines via STAT3, and we identify two functional STAT3-binding sites on the mouse RhoU promoter. RhoU induction by Wnt-1 is independent of β-catenin, but does not involve STAT3. Rather, it is mediated by the Wnt/planar cell polarity pathway through the activation of JNK (c-Jun N-terminal kinase). Both the so-called non-canonical Wnt pathway and STAT3 are therefore able to induce RhoU, which in turn may be involved in mediating their effects on cell migration. PMID:19397496
Metcalf, Talibah U; Cubas, Rafael A; Ghneim, Khader; Cartwright, Michael J; Grevenynghe, Julien Van; Richner, Justin M; Olagnier, David P; Wilkinson, Peter A; Cameron, Mark J; Park, Byung S; Hiscott, John B; Diamond, Michael S; Wertheimer, Anne M; Nikolich-Zugich, Janko; Haddad, Elias K
2015-01-01
Aging leads to dysregulation of multiple components of the immune system that results in increased susceptibility to infections and poor response to vaccines in the aging population. The dysfunctions of adaptive B and T cells are well documented, but the effect of aging on innate immunity remains incompletely understood. Using a heterogeneous population of peripheral blood mononuclear cells (PBMCs), we first undertook transcriptional profiling and found that PBMCs isolated from old individuals (≥ 65 years) exhibited a delayed and altered response to stimulation with TLR4, TLR7/8, and RIG-I agonists compared to cells obtained from adults (≤ 40 years). This delayed response to innate immune agonists resulted in the reduced production of pro-inflammatory and antiviral cytokines and chemokines including TNFα, IL-6, IL-1β, IFNα, IFNγ, CCL2, and CCL7. While the major monocyte and dendritic cell subsets did not change numerically with aging, activation of specific cell types was altered. PBMCs from old subjects also had a lower frequency of CD40+ monocytes, impaired up-regulation of PD-L1 on monocytes and T cells, and increased expression of PD-L2 and B7-H4 on B cells. The defective immune response to innate agonists adversely affected adaptive immunity as TLR-stimulated PBMCs (minus CD3 T cells) from old subjects elicited significantly lower levels of adult T-cell proliferation than those from adult subjects in an allogeneic mixed lymphocyte reaction (MLR). Collectively, these age-associated changes in cytokine, chemokine and interferon production, as well as co-stimulatory protein expression could contribute to the blunted memory B- and T-cell immune responses to vaccines and infections. PMID:25728020
Current State-of-the-Art 3D Tissue Models and Their Compatibility with Live Cell Imaging.
Bardsley, Katie; Deegan, Anthony J; El Haj, Alicia; Yang, Ying
2017-01-01
Mammalian cells grow within a complex three-dimensional (3D) microenvironment where multiple cells are organized and surrounded by extracellular matrix (ECM). The quantity and types of ECM components, alongside cell-to-cell and cell-to-matrix interactions dictate cellular differentiation, proliferation and function in vivo. To mimic natural cellular activities, various 3D tissue culture models have been established to replace conventional two dimensional (2D) culture environments. Allowing for both characterization and visualization of cellular activities within possibly bulky 3D tissue models presents considerable challenges due to the increased thickness and subsequent light scattering features of such 3D models. In this chapter, state-of-the-art methodologies used to establish 3D tissue models are discussed, first with a focus on both scaffold-free and scaffold-based 3D tissue model formation. Following on, multiple 3D live cell imaging systems, mainly optical imaging modalities, are introduced. Their advantages and disadvantages are discussed, with the aim of stimulating more research in this highly demanding research area.
Grote, Karsten; Salguero, Gustavo; Ballmaier, Matthias; Dangers, Marc; Drexler, Helmut; Schieffer, Bernhard
2007-08-01
Tissue regeneration involves the formation of new blood vessels regulated by angiogenic factors. We reported recently that the expression of the angiogenic factor CCN1 is up-regulated under various pathophysiologic conditions within the cardiovascular system. Because CD34+ progenitor cells participate in cardiovascular tissue regeneration, we investigated whether CCN1-detected for the first time in human plasma-promotes the recruitment of CD34+ progenitor cells to endothelial cells, thereby enhancing endothelial proliferation and neovascularization. In this study, we demonstrated that CCN1 and supernatants from CCN1-stimulated human CD34+ progenitor cells promoted proliferation of endothelial cells and angiogenesis in vitro and in vivo. In addition, CCN1 induced migration and transendothelial migration of CD34+ cells and the release of multiple growth factors, chemokines, and matrix metalloproteinase-9 (MMP-9) from these cells. Moreover, the CCN1-specific integrins alpha(M)beta(2) and alpha(V)beta(3) are expressed on CD34+ cells and CCN1 stimulated integrin-dependent signaling. Furthermore, integrin antagonists (RGD-peptides) suppressed both binding of CCN1 to CD34+ cells and CCN1-induced adhesion of CD34+ cells to endothelial cells. These data suggest that CCN1 promotes integrin-dependent recruitment of CD34+ progenitor cells to endothelial cells, which may contribute to paracrine effects on angiogenesis and tissue regeneration.
Kuchtey, J; Fewtrell, C
1996-03-01
Ca2+ imaging experiments have revealed that for a wide variety of cell types, including RBL-2H3 mucosal mast cells, there are considerable cell-to-cell differences of the Ca2+ responses of individual cells. This heterogeneity is evident in both the shape and latency of the responses. Mast cells within a single microscopic field of view, which have experienced identical culture conditions and experimental preparation, display a wide variety of responses upon antigen stimulation. We have subcloned the RBL-2H3 mucosal mast cell line to test the hypothesis that genetic heterogeneity within the population is the cause of the Ca2+ response heterogeneity. We found that cell-to-cell variability was significantly reduced in four of five clonal lines. The response heterogeneity remaining within the clones was not an experimental artifact caused by differences in the amount of fura-2 loaded by individual cells. Factors other than genetic heterogeneity must partly account for Ca2+ response heterogeneity. It is possible that the complex shapes and variability of the Ca2+ responses are reflections of the fact that there are multiple factors underlying the Ca2-response to antigen stimulation. Small differences from cell to cell in one or more of these factors could be a cause of the remaining Ca2+ response heterogeneity.
Collin-Osdoby, P; Rothe, L; Bekker, S; Anderson, F; Osdoby, P
2000-03-01
High nitric oxide (NO) levels inhibit osteoclast (OC)-mediated bone resorption in vivo and in vitro, and nitrate donors protect against estrogen-deficient bone loss in postmenopausal women. Conversely, decreased NO production potentiates OC bone resorption in vitro and is associated with in vivo bone loss in rats and humans. Previously, we reported that bone sections from rats administered aminoguanidine (AG), a selective inhibitor of NO production via inducible NO synthase, exhibited both increased OC resorptive activity as well as greater numbers of OC. Here, we investigated further whether AG promoted osteoclastogenesis, in addition to stimulating mature OC function, using a modified in vivo chick chorioallantoic membrane (CAM) system and an in vitro chick bone marrow OC-like cell developmental model. AG, focally administered in small agarose plugs placed directly adjacent to a bone chip implanted on the CAM, dose-dependently elicited neoangiogenesis while stimulating the number, size, and bone pit resorptive activity of individual OC ectopically formed in vivo. In addition to enhancing OC precursor recruitment via neoangiogenesis, AG also exerted other vascular-independent effects on osteoclastogenesis. Thus, AG promoted the in vitro fusion and formation from bone marrow precursor cells of larger OC-like cells that contained more nuclei per cell and exhibited multiple OC differentiation markers. AG stimulated development was inversely correlated with declining medium nitrite levels. In contrast, three different NO donors each dose-dependently inhibited in vitro OC-like cell development while raising medium nitrite levels. Therefore, NO sensitively regulates OC-mediated bone resorption through affecting OC recruitment (angiogenesis), formation (fusion and differentiation), and bone resorptive activity in vitro and in vivo. Possibly, the stimulation of neoangiogenesis and OC-mediated bone remodeling via AG or other pro-angiogenic agents may find clinical applications in reconstructive surgery, fracture repair, or the treatment of avascular necrosis.
Single CA3 pyramidal cells trigger sharp waves in vitro by exciting interneurones.
Bazelot, Michaël; Teleńczuk, Maria T; Miles, Richard
2016-05-15
The CA3 hippocampal region generates sharp waves (SPW), a population activity associated with neuronal representations. The synaptic mechanisms responsible for the generation of these events still require clarification. Using slices maintained in an interface chamber, we found that the firing of single CA3 pyramidal cells triggers SPW like events at short latencies, similar to those for the induction of firing in interneurons. Multi-electrode records from the CA3 stratum pyramidale showed that pyramidal cells triggered events consisting of putative interneuron spikes followed by field IPSPs. SPW fields consisted of a repetition of these events at intervals of 4-8 ms. Although many properties of induced and spontaneous SPWs were similar, the triggered events tended to be initiated close to the stimulated cell. These data show that the initiation of SPWs in vitro is mediated via pyramidal cell synapses that excite interneurons. They do not indicate why interneuron firing is repeated during a SPW. Sharp waves (SPWs) are a hippocampal population activity that has been linked to neuronal representations. We show that SPWs in the CA3 region of rat hippocampal slices can be triggered by the firing of single pyramidal cells. Single action potentials in almost one-third of pyramidal cells initiated SPWs at latencies of 2-5 ms with probabilities of 0.07-0.76. Initiating pyramidal cells evoked field IPSPs (fIPSPs) at similar latencies when SPWs were not initiated. Similar spatial profiles for fIPSPs and middle components of SPWs suggested that SPW fields reflect repeated fIPSPs. Multiple extracellular records showed that the initiated SPWs tended to start near the stimulated pyramidal cell, whereas spontaneous SPWs could emerge at multiple sites. Single pyramidal cells could initiate two to six field IPSPs with distinct amplitude distributions, typically preceeded by a short-duration extracellular action potential. Comparison of these initiated fields with spontaneously occurring inhibitory field motifs allowed us to identify firing in different interneurones during the spread of SPWs. Propagation away from an initiating pyramidal cell was typically associated with the recruitment of interneurones and field IPSPs that were not activated by the stimulated pyramidal cell. SPW fields initiated by single cells were less variable than spontaneous events, suggesting that more stereotyped neuronal ensembles were activated, although neither the spatial profiles of fields, nor the identities of interneurone firing were identical for initiated events. The effects of single pyramidal cell on network events are thus mediated by different sequences of interneurone firing. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
NASA Astrophysics Data System (ADS)
Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi
2017-10-01
Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of platelet-rich plasma derived growth factors with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.
Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi
2017-01-01
Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of PRP derived GFs with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.
Tickling the retina: integration of subthreshold electrical pulses can activate retinal neurons
NASA Astrophysics Data System (ADS)
Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.
2016-08-01
Objective. The field of retinal prosthetics has made major progress over the last decade, restoring visual percepts to people suffering from retinitis pigmentosa. The stimulation pulses used by present implants are suprathreshold, meaning individual pulses are designed to activate the retina. In this paper we explore subthreshold pulse sequences as an alternate stimulation paradigm. Subthreshold pulses have the potential to address important open problems such as fading of visual percepts when patients are stimulated at moderate pulse repetition rates and the difficulty in preferentially stimulating different retinal pathways. Approach. As a first step in addressing these issues we used Gaussian white noise electrical stimulation combined with spike-triggered averaging to interrogate whether a subthreshold sequence of pulses can be used to activate the mouse retina. Main results. We demonstrate that the retinal network can integrate multiple subthreshold electrical stimuli under an experimental paradigm immediately relevant to retinal prostheses. Furthermore, these characteristic stimulus sequences varied in their shape and integration window length across the population of retinal ganglion cells. Significance. Because the subthreshold sequences activate the retina at stimulation rates that would typically induce strong fading (25 Hz), such retinal ‘tickling’ has the potential to minimize the fading problem. Furthermore, the diversity found across the cell population in characteristic pulse sequences suggests that these sequences could be used to selectively address the different retinal pathways (e.g. ON versus OFF). Both of these outcomes may significantly improve visual perception in retinal implant patients.
NASA Astrophysics Data System (ADS)
Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan
2011-06-01
Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.
Wang, Bei; Zhao, Huzi; Zhao, Lei; Zhang, Yongchen; Wan, Qing; Shen, Yong; Bu, Xiaodong; Wan, Meiling; Shen, Chuanlu
2017-11-01
Metastatic spread of cancer cells is the most life-threatening aspect of breast cancer and involves multiple steps including cell migration. We recently found that the TBC1D3 oncogene promotes the migration of breast cancer cells, and its interaction with CaM enhances the effects of TBC1D3. However, little is known regarding the mechanism by which TBC1D3 induces the migration of cancer cells. Here, we demonstrated that TBC1D3 stimulated the expression of oxidized low density lipoprotein receptor 1 (OLR1), a stimulator of cell migration, in breast cancer cells at the transcriptional level. Depletion of OLR1 by siRNAs or down-regulation of OLR1 expression using pomalidomide, a TNFα inhibitor, significantly decreased TBC1D3-induced migration of these cells. Notably, TBC1D3 overexpression activated NF-κB, a major effector of TNFα signaling, while inhibition of TNFα signaling suppressed the effects of TBC1D3. Consistent with this, NF-κB inhibition using its specific inhibitor caffeic acid phenethyl ester decreased both TBC1D3-induced OLR1 expression and cell migration, suggesting a critical role for TNFα/NF-κB signaling in TBC1D3-induced migration of breast cancer cells. Mechanistically, TBC1D3 induced activation of this signaling pathway on multiple levels, including by increasing the release of TNFα, elevating the transcription of TNFR1, TRAF1, TRAF5 and TRAF6, and decreasing the degradation of TNFR1. In summary, these studies identify the TBC1D3 oncogene as a novel regulator of TNFα/NF-κB signaling that mediates this oncogene-induced migration of human breast cancer cells by up-regulating OLR1. Copyright © 2017 Elsevier B.V. All rights reserved.
Multiple-Step Injection Molding for Fibrin-Based Tissue-Engineered Heart Valves
Weber, Miriam; Gonzalez de Torre, Israel; Moreira, Ricardo; Frese, Julia; Oedekoven, Caroline; Alonso, Matilde; Rodriguez Cabello, Carlos J.
2015-01-01
Heart valves are elaborate and highly heterogeneous structures of the circulatory system. Despite the well accepted relationship between the structural and mechanical anisotropy and the optimal function of the valves, most approaches to create tissue-engineered heart valves (TEHVs) do not try to mimic this complexity and rely on one homogenous combination of cells and materials for the whole construct. The aim of this study was to establish an easy and versatile method to introduce spatial diversity into a heart valve fibrin scaffold. We developed a multiple-step injection molding process that enables the fabrication of TEHVs with heterogeneous composition (cell/scaffold material) of wall and leaflets without the need of gluing or suturing components together, with the leaflets firmly connected to the wall. The integrity of the valves and their functionality was proved by either opening/closing cycles in a bioreactor (proof of principle without cells) or with continuous stimulation over 2 weeks. We demonstrated the potential of the method by the two-step molding of the wall and the leaflets containing different cell lines. Immunohistology after stimulation confirmed tissue formation and demonstrated the localization of the different cell types. Furthermore, we showed the proof of principle fabrication of valves using different materials for wall (fibrin) and leaflets (hybrid gel of fibrin/elastin-like recombinamer) and with layered leaflets. The method is easy to implement, does not require special facilities, and can be reproduced in any tissue-engineering lab. While it has been demonstrated here with fibrin, it can easily be extended to other hydrogels. PMID:25654448
Multiple-Step Injection Molding for Fibrin-Based Tissue-Engineered Heart Valves.
Weber, Miriam; Gonzalez de Torre, Israel; Moreira, Ricardo; Frese, Julia; Oedekoven, Caroline; Alonso, Matilde; Rodriguez Cabello, Carlos J; Jockenhoevel, Stefan; Mela, Petra
2015-08-01
Heart valves are elaborate and highly heterogeneous structures of the circulatory system. Despite the well accepted relationship between the structural and mechanical anisotropy and the optimal function of the valves, most approaches to create tissue-engineered heart valves (TEHVs) do not try to mimic this complexity and rely on one homogenous combination of cells and materials for the whole construct. The aim of this study was to establish an easy and versatile method to introduce spatial diversity into a heart valve fibrin scaffold. We developed a multiple-step injection molding process that enables the fabrication of TEHVs with heterogeneous composition (cell/scaffold material) of wall and leaflets without the need of gluing or suturing components together, with the leaflets firmly connected to the wall. The integrity of the valves and their functionality was proved by either opening/closing cycles in a bioreactor (proof of principle without cells) or with continuous stimulation over 2 weeks. We demonstrated the potential of the method by the two-step molding of the wall and the leaflets containing different cell lines. Immunohistology after stimulation confirmed tissue formation and demonstrated the localization of the different cell types. Furthermore, we showed the proof of principle fabrication of valves using different materials for wall (fibrin) and leaflets (hybrid gel of fibrin/elastin-like recombinamer) and with layered leaflets. The method is easy to implement, does not require special facilities, and can be reproduced in any tissue-engineering lab. While it has been demonstrated here with fibrin, it can easily be extended to other hydrogels.
Meng, Xiaoli; Earnshaw, Caroline J; Tailor, Arun; Jenkins, Rosalind E; Waddington, James C; Whitaker, Paul; French, Neil S; Naisbitt, Dean J; Park, B Kevin
2016-10-17
Amoxicillin-clavulanate (AC) is one of the most common causes of drug induced liver injury (DILI). The association between AC-DILI and HLA alleles and the detection of drug-specific T cells in patients with AC-DILI indicate that the adaptive immune system is involved in the disease pathogenesis. In this study, mass spectrometric methods were employed to characterize the antigen formed by AC in exposed patients and the antigenic determinants that stimulate T cells. Amoxicillin formed penicilloyl adducts with lysine residues on human serum albumin (HSA) in vitro, with K190 and K199 being the most reactive sites. Amoxicillin-modified K190 and K199 have also been detected in all patients, and more extensive modification was observed in patients exposed to higher doses of amoxicillin. In contrast, the binding of clavulanic acid to HSA was more complicated. Multiple adducts were identified at high concentrations in vitro, including those formed by direct binding of clavulanic acid to lysine residues, novel pyrazine adducts derived from binding to the degradation products of clavulanic acid, and a cross-linking adduct. Stable adducts derived from formylacetic acid were detected in all patients exposed to the drug. Importantly, analysis of hapten-protein adducts formed in the cell culture medium revealed that the highly drug-specific T-cell responses were likely driven by the markedly different haptenic structures formed by these two drugs. In this study, the unique haptenic structures on albumin in patients formed by amoxicillin and clavulanic acid have been characterized and shown to function as chemically distinct antigens which can stimulate separate, specific T-cell clones.
Maul, Timothy M.; Chew, Douglas W.; Nieponice, Alejandro
2011-01-01
Mesenchymal stem cell (MSC) therapy has demonstrated applications in vascular regenerative medicine. Although blood vessels exist in a mechanically dynamic environment, there has been no rigorous, systematic analysis of mechanical stimulation on stem cell differentiation. We hypothesize that mechanical stimuli, relevant to the vasculature, can differentiate MSCs toward smooth muscle (SMCs) and endothelial cells (ECs). This was tested using a unique experimental platform to differentially apply various mechanical stimuli in parallel. Three forces, cyclic stretch, cyclic pressure, and laminar shear stress, were applied independently to mimic several vascular physiologic conditions. Experiments were conducted using subconfluent MSCs for 5 days and demonstrated significant effects on morphology and proliferation depending upon the type, magnitude, frequency, and duration of applied stimulation. We have defined thresholds of cyclic stretch that potentiate SMC protein expression, but did not find EC protein expression under any condition tested. However, a second set of experiments performed at confluence and aimed to elicit the temporal gene expression response of a select magnitude of each stimulus revealed that EC gene expression can be increased with cyclic pressure and shear stress in a cell-contact-dependent manner. Further, these MSCs also appear to express genes from multiple lineages simultaneously which may warrant further investigation into post-transcriptional mechanisms for controlling protein expression. To our knowledge, this is the first systematic examination of the effects of mechanical stimulation on MSCs and has implications for the understanding of stem cell biology, as well as potential bioreactor designs for tissue engineering and cell therapy applications. PMID:21253809
Acute molecular response of mouse hindlimb muscles to chronic stimulation.
LaFramboise, W A; Jayaraman, R C; Bombach, K L; Ankrapp, D P; Krill-Burger, J M; Sciulli, C M; Petrosko, P; Wiseman, R W
2009-09-01
Stimulation of the mouse hindlimb via the sciatic nerve was performed for a 4-h period to investigate acute muscle gene activation in a model of muscle phenotype conversion. Initial force production (1.6 +/- 0.1 g/g body wt) declined 45% within 10 min and was maintained for the remainder of the experiment. Force returned to initial levels upon study completion. An immediate-early growth response was present in the extensor digitorum longus (EDL) muscle (FOS, JUN, activating transcription factor 3, and musculoaponeurotic fibrosarcoma oncogene) with a similar but attenuated pattern in the soleus muscle. Transcript profiles showed decreased fast fiber-specific mRNA (myosin heavy chains 2A and 2B, fast troponins T(3) and I, alpha-tropomyosin, muscle creatine kinase, and parvalbumin) and increased slow transcripts (myosin heavy chain-1beta/slow, troponin C slow, and tropomyosin 3y) in the EDL versus soleus muscles. Histological analysis of the EDL revealed glycogen depletion without inflammatory cell infiltration in stimulated versus control muscles, whereas ultrastructural analysis showed no evidence of myofiber damage after stimulation. Multiple fiber type-specific transcription factors (tea domain family member 1, nuclear factor of activated T cells 1, peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -beta, circadian locomotor output cycles kaput, and hypoxia-inducible factor-1alpha) increased in the EDL along with transcription factors characteristic of embryogenesis (Kruppel-like factor 4; SRY box containing 17; transcription factor 15; PBX/knotted 1 homeobox 1; and embryonic lethal, abnormal vision). No established in vivo satellite cell markers or genes activated in our parallel experiments of satellite cell proliferation in vitro (cyclins A(2), B(2), C, and E(1) and MyoD) were differentially increased in the stimulated muscles. These results indicated that the molecular onset of fast to slow phenotype conversion occurred in the EDL within 4 h of stimulation without injury or satellite cell recruitment. This conversion was associated with the expression of phenotype-specific transcription factors from resident fiber myonuclei, including the activation of nascent developmental transcriptional programs.
Structural Basis for Activation of the Receptor Tyrosine Kinase KIT by Stem Cell Factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuzawa,S.; Opatowsky, Y.; Zhang, Z.
2007-01-01
Stem Cell Factor (SCF) initiates its multiple cellular responses by binding to the ectodomain of KIT, resulting in tyrosine kinase activation. We describe the crystal structure of the entire ectodomain of KIT before and after SCF stimulation. The structures show that KIT dimerization is driven by SCF binding whose sole role is to bring two KIT molecules together. Receptor dimerization is followed by conformational changes that enable lateral interactions between membrane proximal Ig-like domains D4 and D5 of two KIT molecules. Experiments with cultured cells show that KIT activation is compromised by point mutations in amino acids critical for D4-D4more » interaction. Moreover, a variety of oncogenic mutations are mapped to the D5-D5 interface. Since key hallmarks of KIT structures, ligand-induced receptor dimerization, and the critical residues in the D4-D4 interface, are conserved in other receptors, the mechanism of KIT stimulation unveiled in this report may apply for other receptor activation.« less
Dragas, Jelena; Viswam, Vijay; Shadmani, Amir; Chen, Yihui; Bounik, Raziyeh; Stettler, Alexander; Radivojevic, Milos; Geissler, Sydney; Obien, Marie; Müller, Jan; Hierlemann, Andreas
2017-06-01
Biological cells are characterized by highly complex phenomena and processes that are, to a great extent, interdependent. To gain detailed insights, devices designed to study cellular phenomena need to enable tracking and manipulation of multiple cell parameters in parallel; they have to provide high signal quality and high spatiotemporal resolution. To this end, we have developed a CMOS-based microelectrode array system that integrates six measurement and stimulation functions, the largest number to date. Moreover, the system features the largest active electrode array area to date (4.48×2.43 mm 2 ) to accommodate 59,760 electrodes, while its power consumption, noise characteristics, and spatial resolution (13.5 μm electrode pitch) are comparable to the best state-of-the-art devices. The system includes: 2,048 action-potential (AP, bandwidth: 300 Hz to 10 kHz) recording units, 32 local-field-potential (LFP, bandwidth: 1 Hz to 300 Hz) recording units, 32 current recording units, 32 impedance measurement units, and 28 neurotransmitter detection units, in addition to the 16 dual-mode voltage-only or current/voltage-controlled stimulation units. The electrode array architecture is based on a switch matrix, which allows for connecting any measurement/stimulation unit to any electrode in the array and for performing different measurement/stimulation functions in parallel.
Madsen, Pernille M.; Sloley, Stephanie S.; Vitores, Alberto A.; Carballosa-Gautam, Melissa M.; Brambilla, Roberta; Hentall, Ian D.
2017-01-01
Multiple sclerosis (MS), a neuroinflammatory disease, has few treatment options, none entirely adequate. We studied whether prolonged electrical stimulation of a hindbrain region (the nucleus raphe magnus) can attenuate experimental autoimmune encephalomyelitis, a murine model of MS induced by MOG35-55 injection. Eight days after symptoms emerged, a wireless electrical stimulator with a connectorless protruding microelectrode was implanted cranially, and daily intermittent stimulation of awake, unrestrained mice began immediately. The thoracic spinal cord was analyzed for changes in histology (on day 29) and gene expression (on day 37), with a focus on myelination and cytokine production. Controls, with inactive implants, showed a phase of disease exacerbation on days 19–25 that stimulation for >16 days eliminated. Prolonged stimulation also reduced infiltrating immune cells and increased numbers of myelinated axons. It additionally lowered gene expression for some pro-inflammatory cytokines (interferon gamma and tumor necrosis factor) and for platelet-derived growth factor receptor alpha, a marker of oligodendrocyte precursors, while raising it for myelin basic protein. Restorative treatments for MS might profitably consider ways to stimulate the raphe magnus, directly or via its inputs, or to emulate its serotonergic and peptidergic output. PMID:28147248
Shum, Thomas; Omer, Bilal; Tashiro, Haruko; Kruse, Robert L; Wagner, Dimitrios L; Parikh, Kathan; Yi, Zhongzhen; Sauer, Tim; Liu, Daofeng; Parihar, Robin; Castillo, Paul; Liu, Hao; Brenner, Malcolm K; Metelitsa, Leonid S; Gottschalk, Stephen; Rooney, Cliona M
2017-11-01
Successful adoptive T-cell immunotherapy of solid tumors will require improved expansion and cytotoxicity of tumor-directed T cells within tumors. Providing recombinant or transgenic cytokines may produce the desired benefits but is associated with significant toxicities, constraining clinical use. To circumvent this limitation, we constructed a constitutively signaling cytokine receptor, C7R, which potently triggers the IL7 signaling axis but is unresponsive to extracellular cytokine. This strategy augments modified T-cell function following antigen exposure, but avoids stimulating bystander lymphocytes. Coexpressing the C7R with a tumor-directed chimeric antigen receptor (CAR) increased T-cell proliferation, survival, and antitumor activity during repeated exposure to tumor cells, without T-cell dysfunction or autonomous T-cell growth. Furthermore, C7R-coexpressing CAR T cells were active against metastatic neuroblastoma and orthotopic glioblastoma xenograft models even at cell doses that had been ineffective without C7R support. C7R may thus be able to enhance antigen-specific T-cell therapies against cancer. Significance: The constitutively signaling C7R system developed here delivers potent IL7 stimulation to CAR T cells, increasing their persistence and antitumor activity against multiple preclinical tumor models, supporting its clinical development. Cancer Discov; 7(11); 1238-47. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 1201 . ©2017 American Association for Cancer Research.
Werner, I; Seitz-Merwald, I; Kiessling, A H; Kur, F; Beiras-Fernandez, A
2014-11-01
Antithymocyte globulin (ATG)-Fresenius (Neovii-Biotech, Graefelfing, Germany), a highly purified rabbit polyclonal antihuman T-lymphocyte immunoglobulin resulting from immunization of rabbits with the Jurkat T-lymphoblast cell line, is currently used for the prevention of acute rejection in patients receiving solid organ transplants. Our aim was to investigate the in vitro activity of ATG-Fresenius regarding the proliferation of peripheral blood mononuclear cells (PBMCs), an important mechanism of rejection after solid organ transplantation. PBMCs were isolated from 6 healthy donors. Proliferation was assayed using [(3)H] thymidine incorporation. For analysis of mitogen-stimulated proliferation, the PBMCs were incubated at 37°C with various concentrations of ATG-Fresenius in the absence/presence of 40 μg/mL phytohemagglutinin. For analysis of the mixed lymphocyte reaction, PBMCs were incubated at 37°C with various concentrations of ATG-Fresenius for 3 days. On day 3, PBMCs (stimulator cells) from allogeneic donors were incubated with 25 μg/mL mitomycin C. The responder cells (preincubated with ATG-Fresenius) were then cultured at 37°C with the stimulator cells for 6 days. Groups were compared using ANOVA and the Tukey-Kramer multiple comparison test. Preincubation of PBMCs with ATG results in concentration-dependent inhibition of phytohemagglutinin-stimulated proliferation. The effect was more pronounced after 2 and 3 days of treatment with ATG compared with 1 day. There was a concentration-dependent decrease in the mixed lymphocyte reaction-induced proliferation (up to 80%) at ATG-Fresenius concentrations as low as 0.05 to 0.5 μg/mL. No further effect on proliferation at ATG-Fresenius concentrations of 0.5 to 50 μg/mL was seen, and higher concentrations (>100 μg/mL) totally inhibited proliferation. Our in vitro results provide more evidence of the beneficial effect of ATGs in the early phase of solid organ transplantation, by reducing effector cell proliferation.
Santos, Renata; Vadodaria, Krishna C; Jaeger, Baptiste N; Mei, Arianna; Lefcochilos-Fogelquist, Sabrina; Mendes, Ana P D; Erikson, Galina; Shokhirev, Maxim; Randolph-Moore, Lynne; Fredlender, Callie; Dave, Sonia; Oefner, Ruth; Fitzpatrick, Conor; Pena, Monique; Barron, Jerika J; Ku, Manching; Denli, Ahmet M; Kerman, Bilal E; Charnay, Patrick; Kelsoe, John R; Marchetto, Maria C; Gage, Fred H
2017-06-06
Astrocyte dysfunction and neuroinflammation are detrimental features in multiple pathologies of the CNS. Therefore, the development of methods that produce functional human astrocytes represents an advance in the study of neurological diseases. Here we report an efficient method for inflammation-responsive astrocyte generation from induced pluripotent stem cells (iPSCs) and embryonic stem cells. This protocol uses an intermediate glial progenitor stage and generates functional astrocytes that show levels of glutamate uptake and calcium activation comparable with those observed in human primary astrocytes. Stimulation of stem cell-derived astrocytes with interleukin-1β or tumor necrosis factor α elicits a strong and rapid pro-inflammatory response. RNA-sequencing transcriptome profiling confirmed that similar gene expression changes occurred in iPSC-derived and primary astrocytes upon stimulation with interleukin-1β. This protocol represents an important tool for modeling in-a-dish neurological diseases with an inflammatory component, allowing for the investigation of the role of diseased astrocytes in neuronal degeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Epinephrine stimulation of anion secretion in the Calu-3 serous cell model
Banga, Amiraj; Flaig, Stephanie; Lewis, Shanta; Winfree, Seth
2014-01-01
Calu-3 is a well-differentiated human bronchial cell line with the characteristics of the serous cells of airway submucosal glands. The submucosal glands play a major role in mucociliary clearance because they secrete electrolytes that facilitate airway hydration. Given the significance of both long- and short-term β-adrenergic receptor agonists in the treatment of respiratory diseases, it is important to determine the role of these receptors and their ligands in normal physiological function. The present studies were designed to characterize the effect of epinephrine, the naturally occurring β-adrenergic receptor agonist, on electrolyte transport of the airway serous cells. Interestingly, epinephrine stimulated two anion secretory channels, the cystic fibrosis transmembrane conductance regulator and a Ca2+-activated Cl− channel, with the characteristics of transmembrane protein 16A, thereby potentially altering mucociliary clearance via multiple channels. Consistent with the dual channel activation, epinephrine treatment resulted in increases in both intracellular cAMP and Ca2+. Furthermore, the present results extend previous reports indicating that the two anion channels are functionally linked. PMID:24705724
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Fu, Jianfang; Zhang, Shun
Understanding how chemotherapeutic agents mediate testicular toxicity is crucial in light of compelling evidence that male infertility, one of the severe late side effects of intensive cancer treatment, occurs more often than they are expected to. Previous study demonstrated that bortezomib (BTZ), a 26S proteasome inhibitor used to treat refractory multiple myeloma (MM), exerts deleterious impacts on spermatogenesis in pubertal mice via unknown mechanisms. Here, we showed that intermittent treatment with BTZ resulted in fertility impairment in adult mice, evidenced by testicular atrophy, desquamation of immature germ cells and reduced caudal sperm storage. These deleterious effects may originate from themore » elevated apoptosis in distinct germ cells during the acute phase and the subsequent disruption of Sertoli–germ cell anchoring junctions (AJs) during the late recovery. Mechanistically, balance between AMP-activated protein kinase (AMPK) activation and Akt/ERK pathway appeared to be indispensable for AJ integrity during the late testicular recovery. Of particular interest, the upregulated testicular apoptosis and the following disturbance of Sertoli–germ cell interaction may both stem from the excessive oxidative stress elicited by BTZ exposure. We also provided the in vitro evidence that AMPK-dependent mechanisms counteract follicle-stimulating hormone (FSH) proliferative effects in BTZ-exposed Sertoli cells. Collectively, BTZ appeared to efficiently prevent germ cells from normal development via multiple mechanisms in adult mice. Employment of antioxidants and/or AMPK inhibitor may represent an attractive strategy of fertility preservation in male MM patients exposed to conventional BTZ therapy and warrants further investigation. - Highlights: • Intermittent treatment with BTZ caused fertility impairment in adult mice. • BTZ treatment elicited apoptosis during early phase of testicular recovery. • Up-regulation of oxidative stress by BTZ treatment disrupted AJs dynamics. • BTZ treatment stimulated AMPK activity during late phase of testicular recovery. • AMPK-dependent mechanisms counteract FSH proliferative effects in BTZ-exposed SCs.« less
Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy
Putinski, Charis; Abdul-Ghani, Mohammad; Stiles, Rebecca; Brunette, Steve; Dick, Sarah A.; Fernando, Pasan; Megeney, Lynn A.
2013-01-01
Cardiomyocyte hypertrophy is the cellular response that mediates pathologic enlargement of the heart. This maladaptation is also characterized by cell behaviors that are typically associated with apoptosis, including cytoskeletal reorganization and disassembly, altered nuclear morphology, and enhanced protein synthesis/translation. Here, we investigated the requirement of apoptotic caspase pathways in mediating cardiomyocyte hypertrophy. Cardiomyocytes treated with hypertrophy agonists displayed rapid and transient activation of the intrinsic-mediated cell death pathway, characterized by elevated levels of caspase 9, followed by caspase 3 protease activity. Disruption of the intrinsic cell death pathway at multiple junctures led to a significant inhibition of cardiomyocyte hypertrophy during agonist stimulation, with a corresponding reduction in the expression of known hypertrophic markers (atrial natriuretic peptide) and transcription factor activity [myocyte enhancer factor-2, nuclear factor kappa B (NF-κB)]. Similarly, in vivo attenuation of caspase activity via adenoviral expression of the biologic effector caspase inhibitor p35 blunted cardiomyocyte hypertrophy in response to agonist stimulation. Treatment of cardiomyocytes with procaspase 3 activating compound 1, a small-molecule activator of caspase 3, resulted in a robust induction of the hypertrophy response in the absence of any agonist stimulation. These results suggest that caspase-dependent signaling is necessary and sufficient to promote cardiomyocyte hypertrophy. These results also confirm that cell death signal pathways behave as active remodeling agents in cardiomyocytes, independent of inducing an apoptosis response. PMID:24101493
Human germinal center CD4+CD57+ T cells act differently on B cells than do classical T-helper cells.
Bouzahzah, F; Bosseloir, A; Heinen, E; Simar, L J
1995-01-01
We have isolated two subtypes of helper T cells from human tonsils: CD4+CD57+ cells, mostly located in the germinal center (GC), and CD4+CD57- cells, distributed through the interfollicular areas but also present in the GC. In a functional study, we have compared the capacities of these T-cell subtypes to stimulate B cells in cocultures. In order to block T-cell proliferation while maintaining their activation level, we pretreated isolated T cells with mitomycin C prior to culture in the presence of B cells and added polyclonal activators such as PHA and Con A, combined or not with IL-2. Contrary to CD4+ CD57- cells, CD4+CD57+ cells did not markedly enhance B-cell proliferation. Even when sIgD.B cells typical of germinal center cells were tested, the CD4+CD57+ cells had no significant effect. This is in accordance with the location of these cells: They mainly occupy the light zones of the GC where few B cells divide. Even when added to preactivated, actively proliferating cells, CD4+CD57 cells failed to modulate B-cell multiplication. On the supernatants of B-cell-T-cell cocultures, we examined by the ELISA technique the effect of T cells on Ig synthesis. Contrary to CD57+ T cells, whose effect was strong, CD57- T cells weakly stimulated Ig synthesis. More IgM than IgG was generally found. Because CD57 antigen is a typical marker of natural killer cells, we tested the cytolytic activity of tonsillar CD4+CD57+ cells on K562 target cells. Unlike NK cells, neither CD4+CD57+ nor CD4+CD57- cells exhibit any cytotoxicity. Thus, germinal center CD4+CD57+ cells are not cytolytic and do not strongly stimulate either B-cell proliferation or Ig secretion. CD4+CD57- cells, however, enhance B-cell proliferation and differentiation, thus acting like the classical helper cells of the T-dependent areas.
Brunert, Daniela; Tsuno, Yusuke; Rothermel, Markus; Shipley, Michael T.
2016-01-01
Serotonergic neurons in the brainstem raphe nuclei densely innervate the olfactory bulb (OB), where they can modulate the initial representation and processing of olfactory information. Serotonergic modulation of sensory responses among defined OB cell types is poorly characterized in vivo. Here, we used cell-type-specific expression of optical reporters to visualize how raphe stimulation alters sensory responses in two classes of GABAergic neurons of the mouse OB glomerular layer, periglomerular (PG) and short axon (SA) cells, as well as mitral/tufted (MT) cells carrying OB output to piriform cortex. In PG and SA cells, brief (1–4 s) raphe stimulation elicited a large increase in the magnitude of responses linked to inhalation of ambient air, as well as modest increases in the magnitude of odorant-evoked responses. Near-identical effects were observed when the optical reporter of glutamatergic transmission iGluSnFR was expressed in PG and SA cells, suggesting enhanced excitatory input to these neurons. In contrast, in MT cells imaged from the dorsal OB, raphe stimulation elicited a strong increase in resting GCaMP fluorescence with only a slight enhancement of inhalation-linked responses to odorant. Finally, optogenetically stimulating raphe serotonergic afferents in the OB had heterogeneous effects on presumptive MT cells recorded extracellularly, with an overall modest increase in resting and odorant-evoked responses during serotonergic afferent stimulation. These results suggest that serotonergic afferents from raphe dynamically modulate olfactory processing through distinct effects on multiple OB targets, and may alter the degree to which OB output is shaped by inhibition during behavior. SIGNIFICANCE STATEMENT Modulation of the circuits that process sensory information can profoundly impact how information about the external world is represented and perceived. This study investigates how the serotonergic system modulates the initial processing of olfactory information by the olfactory bulb, an obligatory relay between sensory neurons and cortex. We find that serotonergic projections from the raphe nuclei to the olfactory bulb dramatically enhance the responses of two classes of inhibitory interneurons to sensory input, that this effect is mediated by increased glutamatergic drive onto these neurons, and that serotonergic afferent activation alters the responses of olfactory bulb output neurons in vivo. These results elucidate pathways by which neuromodulatory systems can dynamically regulate brain circuits during behavior. PMID:27335411
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levina, Vera; Marrangoni, Adele M.; DeMarco, Richard
TRAIL is a death ligand that induces apoptosis in malignant but not normal cells. Recently the ability of TRAIL to induce proliferation in apoptosis-resistant normal and malignant cells was reported. In this study, we analyzed TRAIL effects in apoptosis sensitive MCF7, OVCAR3 and H460 human tumor cell lines. TRAIL at low concentrations preferentially induced cell proliferation. At 100 ng/ml, apoptotic death was readily observed, however surviving cells acquired higher proliferative capacity. TRAIL-stimulated production of several cytokines, IL-8, RANTES, MCP-1 and bFGF, and activation of caspases 1 and 8 was essential for this effect. Antibodies to IL-8, RANTES, and bFGF blockedmore » TRAIL-induced cell proliferation and further stimulated apoptosis. For the first time, we report that high TRAIL concentrations induced cell senescence as determined by the altered morphology and expression of several senescence markers: SA-{beta}-gal, p21{sup Waf1/Cip1}, p16{sup INK4a}, and HMGA. Caspase 9 inhibition protected TRAIL-treated cells from senescence, whereas inhibition of caspases 1 and 8 increased the yield of SLP cells. In conclusion, in cultured human carcinoma cells, TRAIL therapy results in three functional outcomes, apoptosis, proliferation and senescence. TRAIL-induced proapoptotic and prosurvival responses correlate with the strength of signaling. TRAIL-induced cytokine production is responsible for its proliferative and prosurvival effects.« less
Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio
2015-01-01
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity. PMID:26602876
Possible role of natural killer cells in pemphigus vulgaris − preliminary observations
Stern, J N H; Keskin, D B; Barteneva, N; Zuniga, J; Yunis, E J; Ahmed, A R
2008-01-01
Pemphigus vulgaris (PV) is an autoimmune blistering disease that affects the skin and multiple mucous membranes, and is caused by antibodies to desmoglein (Dsg) 1 and 3. Natural killer (NK) cells have a role in autoimmunity, but their role in PV is not known. NK cells in the peripheral blood leucocytes (PBL) of 15 untreated Caucasian patients with active PV were studied and compared with healthy controls for the expression of major histocompatibility complex (MHC) class II and co-stimulatory molecules. CD56+ CD16- CD3- NK or CD56+ CD16+ CD3- NK cells from the PBL of PV patients co-express MHC class II and co-stimulatory molecule B7-H3 without exogenous stimulation. CD4+ T cells from the PBL and perilesional skin of PV patients were co-cultured with CD56+ CD3- NK cells from the PBL of the same patients; in the presence of Dsg3 peptides underwent statistically significant proliferation, indicating that NK cells functioned as antigen-presenting cells. Supernatants from these co-cultures and serum of the same patients with active PV had statistically significantly elevated levels of interleukin (IL)-6, IL-8 and interferon-γ, compared with controls indicating that the NK cells stimulated CD4+ T cells to produce proinflammatory cytokines. In these experiments, we present preliminary evidence that NK cells may play a role in the pathobiology of PV. PMID:18373702
Yago, Toru; Nanke, Yuki; Kawamoto, Manabu; Yamanaka, Hisashi; Kotake, Shigeru
2012-08-01
Tacrolimus (FK506, Prograf®) is an orally available, T cell specific and anti-inflammatory agent that has been proposed as a therapeutic drug in rheumatoid arthritis (RA) patients. It has been known that T cells have a critical role in the pathogenesis of RA. Recent studies suggest that Th17 cells, which mainly produce IL-17, are involved in many autoimmune inflammatory disease including RA. The present study was undertaken to assess the effect of tacrolimus on IL-17-induced human osteoclastogenesis and human Th17 differentiation. Human CD14(+) monocytes were cultured in the presence of macrophage-colony stimulating factor (M-CSF) and IL-17. From day 4, tacrolimus was added to these cultures. Osteoclasts were immunohistologically stained for vitronectin receptor 10days later. IL-17 production from activated T cells stimulated with IL-23 was measured by enzyme-linked immunosorbent assay (ELISA). Th17 differentiation from naïve T cells was assayed by flow cytometry. Tacrolimus potently inhibited IL-17-induced osteoclastogenesis from human monocytes and osteoclast activation. Addition of tacrolimus also reduced production of IL-17 in human activated T cells stimulated with IL-23. Interestingly, the population of human IL-17(+)IFN-γ(-) CD4 T cells or IL-17(+)TNF-α(+) CD4 T cells were decreased by adding of tacrolimus. The present study demonstrates that the inhibitory effect of tacrolimus on IL-17-induced osteoclastogenesis from human monocytes. Tacrolimus also inhibited expression of IL-17 or TNF-α by reducing the proportion of Th17, suggesting that therapeutic effect on Th17-associated disease such as RA, inflammatory bowel disease, multiple sclerosis, psoriasis, or allograft rejection. Copyright © 2012 Elsevier Ltd. All rights reserved.
Endocrinological control of growth.
Sizonenko, P C
1978-01-01
Many endocrinological factors control cellular growth of different tissues (cell multiplication and cell volume) and skeletal growth. The role of neuro-transmitters and of hypothalamic releasing and inhibiting factors of growth hormone secretion will be reviewed. The importance of the somatomedins on cartilage growth will be stressed. Thyroid hormones, androgens, and oestrogens have important stimulating actions on skeletal growth and maturation. Conversely, glucocorticoids have an important inhibitory effect on growth. The precise roles of these hormone factors in the regulation of growth hormone secretion, somatomedin production and tissue growth, particularly the cartilage, remain to be completely elucidated.
Purification and properties of dihydrofolate reductase from cultured mammalian cells
Gauldie, Jack; Marshall, Lyse; Hillcoat, Brian L.
1973-01-01
Dihydrofolate reductase was purified quickly and simply from small quantities of cultured mammalian cells by affinity chromatography. On gel electrophoresis of the purified enzyme, multiple bands of activity resulted from enzyme–buffer interaction at low but not high buffer concentration. A Ferguson plot (Ferguson, 1964) showed that this heterogeneity was due to a charge difference with no alteration in the size of the enzyme. Stimulation of enzyme activity by KCl, urea and p-hydroxymercuribenzoate, and inhibition by methotrexate and trimethoprim, showed only minor differences between the various enzymes. PMID:4723779
Impact of alemtuzumab treatment on the survival and function of human regulatory T cells in vitro
Havari, Evis; Turner, Michael J; Campos-Rivera, Juanita; Shankara, Srinivas; Nguyen, Tri-Hung; Roberts, Bruce; Siders, William; Kaplan, Johanne M
2014-01-01
Alemtuzumab is a humanized monoclonal antibody specific for the CD52 protein present at high levels on the surface of B and T lymphocytes. In clinical trials, alemtuzumab has shown a clinical benefit superior to that of interferon-β in relapsing–remitting multiple sclerosis patients. Treatment with alemtuzumab leads to the depletion of circulating lymphocytes followed by a repopulation process characterized by alterations in the number, proportions and properties of lymphocyte subsets. Of particular interest, an increase in the percentage of T cells with a regulatory phenotype (Treg cells) has been observed in multiple sclerosis patients after alemtuzumab. Since Treg cells play an important role in the control of autoimmune responses, the effect of alemtuzumab on Treg cells was further studied in vitro. Alemtuzumab effectively mediated complement-dependent cytolysis of human T lymphocytes and the remaining population was enriched in T cells with a regulatory phenotype. The alemtuzumab-exposed T cells displayed functional regulatory characteristics including anergy to stimulation with allogeneic dendritic cells and ability to suppress the allogeneic response of autologous T cells. Consistent with the observed increase in Treg cell frequency, the CD25hi T-cell population was necessary for the suppressive activity of alemtuzumab-exposed T cells. The mechanism of this suppression was found to be dependent on both cell–cell contact and interleukin-2 consumption. These findings suggest that an alemtuzumab-mediated increase in the proportion of Treg cells may play a role in promoting the long-term efficacy of alemtuzumab in patients with multiple sclerosis. PMID:24116901
Cyr-Depauw, Chanèle; Northey, Jason J.; Tabariès, Sébastien; Annis, Matthew G.; Dong, Zhifeng; Cory, Sean; Hallett, Michael; Rennhack, Jonathan P.; Andrechek, Eran R.
2016-01-01
ShcA is an important mediator of ErbB2- and transforming growth factor β (TGF-β)-induced breast cancer cell migration, invasion, and metastasis. We show that in the context of reduced ShcA levels, the bone morphogenetic protein (BMP) antagonist chordin-like 1 (Chrdl1) is upregulated in numerous breast cancer cells following TGF-β stimulation. BMPs have emerged as important modulators of breast cancer aggressiveness, and we have investigated the ability of Chrdl1 to block BMP-induced increases in breast cancer cell migration and invasion. Breast cancer-derived conditioned medium containing elevated concentrations of endogenous Chrdl1, as well as medium containing recombinant Chrdl1, suppresses BMP4-induced signaling in multiple breast cancer cell lines. Live-cell migration assays reveal that BMP4 induces breast cancer migration, which is effectively blocked by Chrdl1. We demonstrate that BMP4 also stimulated breast cancer cell invasion and matrix degradation, in part, through enhanced metalloproteinase 2 (MMP2) and MMP9 activity that is antagonized by Chrdl1. Finally, high Chrdl1 expression was associated with better clinical outcomes in patients with breast cancer. Together, our data reveal that Chrdl1 acts as a negative regulator of malignant breast cancer phenotypes through inhibition of BMP signaling. PMID:26976638
Prolactin and growth hormone in fish osmoregulation
Sakamoto, T.; McCormick, S.D.
2006-01-01
Prolactin is an important regulator of multiple biological functions in vertebrates, and has been viewed as essential to ion uptake as well as reduction in ion and water permeability of osmoregulatory surfaces in freshwater and euryhaline fish. Prolactin-releasing peptide seems to stimulate prolactin expression in the pituitary and peripheral organs during freshwater adaptation. Growth hormone, a member of the same family of hormones as prolactin, promotes acclimation to seawater in several teleost fish, at least in part through the action of insulin-like growth factor I. In branchial epithelia, development and differentiation of the seawater-type chloride cell (and their underlying biochemistry) is regulated by GH, IGF-I, and cortisol, whereas the freshwater-type chloride cell is regulated by prolactin and cortisol. In the epithelia of gastrointestinal tract, prolactin induces cell proliferation during freshwater adaptation, whereas cortisol stimulates both cell proliferation and apoptosis. We propose that control of salinity acclimation in teleosts by prolactin and growth hormone primarily involves regulation of cell proliferation, apoptosis, and differentiation (the latter including upregulation of specific ion transporters), and that there is an important interaction of these hormones with corticosteroids. ?? 2005 Elsevier Inc. All rights reserved.
Exercise induces cortical plasticity after neonatal spinal cord injury in the rat
Kao, T; Shumsky, JS; Murray, M; Moxon, KA
2009-01-01
Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/day, 5days/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection. We used adult rats spinalized as neonates because some of these animals develop weight-supported stepping and, therefore, the relationship between cortical plasticity and stepping could also be examined. Acute, single-neuron mapping was used to determine the percentage of cortical cells responding to cutaneous forelimb stimulation in normal, spinalized, and exercised spinalized rats. Multiple single neuron recording from arrays of chronically implanted microwires examined the magnitude of response of these cells in normal and exercised spinalized rats. Our results show that exercise not only increased the percentage of responding cells in the hindlimb SI, but also increased the magnitude of the response of these cells. This increase in response magnitude was correlated with behavioral outcome measures. In the forelimb SI, neonatal transection reduced the percentage of responding cells to forelimb stimulation but exercise reversed this loss. This restoration in the percentage of responding cells after exercise was accompanied by an increase in their response magnitude. Therefore, the increase in responsiveness of hindlimb SI to forelimb stimulation after neonatal transection and exercise may be due, in part, to the effect of exercise on the forelimb SI. PMID:19515923
Lu, Shun; Wang, Jing; Ye, Jixing; Zou, Yulong; Zhu, Yunxiao; Wei, Qiang; Wang, Xin; Tang, Shengli; Liu, Hao; Fan, Jiaming; Zhang, Fugui; Farina, Evan M; Mohammed, Maryam M; Song, Dongzhe; Liao, Junyi; Huang, Jiayi; Guo, Dan; Lu, Minpeng; Liu, Feng; Liu, Jianxiang; Li, Li; Ma, Chao; Hu, Xue; Lee, Michael J; Reid, Russell R; Ameer, Guillermo A; Zhou, Dongsheng; He, Tongchuan
2016-01-01
Regenerative medicine and bone tissue engineering using mesenchymal stem cells (MSCs) hold great promise as an effective approach to bone and skeletal reconstruction. While adipose tissue harbors MSC-like progenitors, or multipotent adipose-derived cells (MADs), it is important to identify and characterize potential biological factors that can effectively induce osteogenic differentiation of MADs. To overcome the time-consuming and technically challenging process of isolating and culturing primary MADs, here we establish and characterize the reversibly immortalized mouse multipotent adipose-derived cells (iMADs). The isolated mouse primary inguinal MAD cells are reversibly immortalized via the retrovirus-mediated expression of SV40 T antigen flanked with FRT sites. The iMADs are shown to express most common MSC markers. FLP-mediated removal of SV40 T antigen effectively reduces the proliferative activity and cell survival of iMADs, indicating the immortalization is reversible. Using the highly osteogenic BMP9, we find that the iMADs are highly responsive to BMP9 stimulation, express multiple lineage regulators, and undergo osteogenic differentiation in vitro upon BMP9 stimulation. Furthermore, we demonstrate that BMP9-stimulated iMADs form robust ectopic bone with a thermoresponsive biodegradable scaffold material. Collectively, our results demonstrate that the reversibly immortalized iMADs exhibit the characteristics of multipotent MSCs and are highly responsive to BMP9-induced osteogenic differentiation. Thus, the iMADs should provide a valuable resource for the study of MAD biology, which would ultimately enable us to develop novel and efficacious strategies for MAD-based bone tissue engineering.
Real-World Conundrums and Biases in the Use of White Cell Growth Factors.
Smith, Thomas J; Hillner, Bruce E
2016-01-01
We present the 2015 American Society of Clinical Oncology (ASCO) white cell growth factors, or colony-stimulating factor (CSF), guidelines, updated from 2006. One new indication has been added-dose-intense chemotherapy for bladder cancer-to accompany the existing use for dose-dense breast cancer chemotherapy. Colony-stimulating factors remain appropriate for any regimen where the risk of febrile neutropenia is about 20% per cycle and dose reduction is not appropriate. Based on new evidence from multiple trials, CSF use is no longer indicated in treatment of lymphoma unless there are special risk factors. The United States accounts for 78% of the sales of CSF. The panel approved the use of all biosimilars, but the cost savings will be small as the price is about 80% of the branded CSFs. More biosimilars at lower cost are awaited. Methods to reduce use without harm to patients, by requiring justification according to accepted guidelines, are ongoing.
Stimulation of Lactic Acid Bacteria by a Micrococcus Isolate: Evidence for Multiple Effects
Nath, K. R.; Wagner, B. J.
1973-01-01
Growth of, and rate of acid production by, six cultures of lactic acid bacteria were increased in the presence of Micrococcus isolate F4 or a preparation of its capsular material. Concentrations of hydrogen peroxide found in pure cultures of the lactic acid bacteria were not detectable, or were greatly reduced, in mixed culture with Micrococcus isolate F4. The capsular material was not as effective as whole cells in preventing accumulation of H2O2. Catalase stimulated growth of, and the rate of acid production by, the lactic acid bacteria, but not to the same extent as Micrococcus isolate F4 in some cultures. The existence of two mechanisms for micrococcal stimulation of the lactic acid bacteria is postulated. One mechanism involves removal of H2O2; the other has not been characterized. PMID:4199337
Kula, K; Romer, T E; Wlodarczyk, W P
1980-02-01
Certain successive phases of seminiferous tubule maturation were observed in a transsection of a Leydig cell adenoma-bearing testis of a boy with precocious puberty. Massively accumulated Leydig cells may stimulate the maturation of Sertoli cells, as indicated by progressive replacement of Sertoli cell precursors by mature Sertoli cells at a distance closer to the adenoma. On the other hand, tubules less advanced in maturation contained a higher number of somatic cells than those more advanced in maturation. Leydig-cell-dependent maturation of Sertoli cells may be in competition with Certoli cell multiplication, or numerous undifferentiated somatic cells may undergo a natural elimination in the course of tubular maturation. An inverse relation between the number of Sertoli cell precursors and the number of meiotic spermatocytes suggests that quantitative reduction of Sertoli cell precursors may be important for the intratubular milieu necessary for the onset of the first meiosis in man.
Rennert, P; Furlong, K; Jellis, C; Greenfield, E; Freeman, G J; Ueda, Y; Levine, B; June, C H; Gray, G S
1997-06-01
B7-1 (CD80) and B7-2 (CD86) are genetically and structurally related molecules expressed on antigen-presenting cells. Both bind CD28 to co-stimulate T lymphocytes, resulting in proliferation and cytokine production. The extracellular portions of B7-1 and B7-2 which bind to CD28 and CTLA-4 are related to Ig variable (V) and Ig constant (C) domain sequences. Recent reports have described splice variant forms of B7 proteins which occur in vivo and are of unknown function. Here we describe soluble recombinant forms of B7-1 and B7-2 containing either both of the Ig-like extracellular domains or the individual IgV or IgC domains coupled to an Ig Fc tail. Soluble B7-1 and B7-2 bind to CD28 and CTLA-4, and effectively co-stimulate T lymphocytes resulting in their proliferation and the secretion of cytokines. Furthermore, the IgV domain of B7-2 binds CD28 and CTLA-4, competes with B7-1 and B7-2 for binding to these receptors, and co-stimulates T lymphocytes. Cross-linked soluble B7-2v was the most potent co-stimulatory molecule tested and was active at a concentration approximately 100-fold lower than cross-linked soluble B7-1 or B7-2 proteins. When bound to tosyl-activated beads, B7-2v was capable of sustaining multiple rounds of T cell expansion. These data complement the description of naturally occurring variants to suggest that T cell co-stimulation in vivo may be regulated by soluble or truncated forms of B7 proteins.
Cree, Lynsey M; Hammond, Elizabeth R; Shelling, Andrew N; Berg, Martin C; Peek, John C; Green, Mark P
2015-06-01
Does maternal ageing and ovarian stimulation alter mitochondrial DNA (mtDNA) copy number and gene expression of oocytes and cumulus cells from a novel bovine model for human IVF? Oocytes collected from females with identical nuclear genetics show decreased mtDNA copy number and increased expression of an endoplasmic reticulum (ER) stress gene with repect to ovarian stimulation, whilst differences in the expression of genes involved in mitochondrial function, antioxidant protection and apoptosis were evident in relation to maternal ageing and the degree of ovarian stimulation in cumulus cells. Oocyte quality declines with advancing maternal age; however, the underlying mechanism, as well as the effects of ovarian stimulation are poorly understood. Human studies investigating these effects are often limited by differences in age and ovarian stimulation regimens within a patient cohort, as well as genetic and environmental variability. A novel bovine cross-sectional maternal age model for human IVF was undertaken. Follicles were aspirated from young (3 years of age; n = 7 females) and old (10 years of age; n = 5 females) Holstein Freisian clones following multiple unstimulated, mild and standard ovarian stimulation cycles. These bovine cloned females were generated by the process of somatic cell nuclear transfer (SCNT) from the same founder and represent a homogeneous population with reduced genetic and environmental variability. Maternal age and ovarian stimulation effects were investigated in relation to mtDNA copy number, and the expression of 19 genes involved in mitochondrial function, antioxidant protection, oocyte-cumulus cell signalling and follicle development in both oocytes and cumulus cells. Young (3 years of age; n = 7 females) and old (10 years of age; n = 5 females) Holstein Freisian bovine clones were maintained as one herd. Stimulation cycles were based on the long GnRH agonist down-regulation regimen used in human fertility clinics. Follicle growth rates, numbers and diameters were monitored by ultrasonography and aspirated when the lead follicles were >14 mm in diameter. Follicle characteristics were analysed using a mixed model procedure. Quantitative PCR (qPCR) was used to determine mtDNA copy number and reverse transcriptase-qPCR (RT-qPCR) was used to measure gene expression in oocytes and cumulus cells. Method of ovarian stimulation (P = 0.04), but not maternal age (P > 0.1), was associated with a lower mtDNA copy number in oocytes. Neither factor affected mtDNA copy number in cumulus cells. In oocytes, maternal age had no effect on gene expression; however, ovarian stimulation in older females increased the expression of GRP78 (P = 0.02), a gene involved in ER stress. In cumulus cells, increasing maternal age was associated with the higher expression of genes involved in mitochondrial maintenance (TXN2 P = 0.008 and TFAM P = 0.03), whereas ovarian stimulation decreased the expression of genes involved in mitochondrial oxidative stress and apoptosis (TXN2 P = 0.002, PRDX3 P = 0.03 and BAX P = 0.03). The low number of oocyte and cumulus cell samples collected from the unstimulated cycles limited the analysis. Fertilization and developmental potential of the oocytes was not assessed because these were used for mtDNA and gene expression quantification. Delineation of the independent effects of maternal age and ovarian stimulation regimen on mtDNA copy number gene expression in oocytes and cumulus cells was enabled by the removal of genetic and environmental variability in this bovine model for human IVF. Therefore, these extend upon previous knowledge and findings provide relevant insights that are applicable for improving human ovarian stimulation regimens. Funding was provided by Fertility Associates and the University of Auckland. J.C.P. is a shareholder of Fertility Associates and M.P.G. received a fellowship from Fertility Associates. The other authors of this manuscript declare no conflict of interest that could be perceived as prejudicing the impartiality of the reported research. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mittleman, Guy; Goldowitz, Daniel; Heck, Detlef H; Blaha, Charles D
2008-07-01
Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 muA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked prefrontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders.
MITTLEMAN, GUY; GOLDOWITZ, DANIEL; HECK, DETLEF H.; BLAHA, CHARLES D.
2013-01-01
Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 μA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked pre-frontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders. PMID:18435424
Szulc-Dąbrowska, Lidia; Struzik, Justyna; Cymerys, Joanna; Winnicka, Anna; Nowak, Zuzanna; Toka, Felix N; Gieryńska, Małgorzata
2017-01-01
Ectromelia virus (ECTV) belongs to the Orthopoxvirus genus of the Poxviridae family and is a natural pathogen of mice. Certain strains of mice are highly susceptible to ECTV infection and develop mousepox, a lethal disease similar to smallpox of humans caused by variola virus. Currently, the mousepox model is one of the available small animal models for investigating pathogenesis of generalized viral infections. Resistance and susceptibility to ECTV infection in mice are controlled by many genetic factors and are associated with multiple mechanisms of immune response, including preferential polarization of T helper (Th) immune response toward Th1 (protective) or Th2 (non-protective) profile. We hypothesized that viral-induced inhibitory effects on immune properties of conventional dendritic cells (cDCs) are more pronounced in ECTV-susceptible than in resistant mouse strains. To this extent, we confronted the cDCs from resistant (C57BL/6) and susceptible (BALB/c) mice with ECTV, regarding their reactivity and potential to drive T cell responses following infection. Our results showed that in vitro infection of granulocyte-macrophage colony-stimulating factor-derived bone marrow cells (GM-BM-comprised of cDCs and macrophages) from C57BL/6 and BALB/c mice similarly down-regulated multiple genes engaged in DC innate and adaptive immune functions, including antigen uptake, processing and presentation, chemokines and cytokines synthesis, and signal transduction. On the contrary, ECTV infection up-regulated Il10 in GM-BM derived from both strains of mice. Moreover, ECTV similarly inhibited surface expression of major histocompatibility complex and costimulatory molecules on GM-BM, explaining the inability of the cells to attain full maturation after Toll-like receptor (TLR)4 agonist treatment. Additionally, cells from both strains of mice failed to produce cytokines and chemokines engaged in T cell priming and Th1/Th2 polarization after TLR4 stimulation. These data strongly suggest that in vitro modulation of GM-BM innate and adaptive immune functions by ECTV occurs irrespective of whether the mouse strain is susceptible or resistant to infection. Moreover, ECTV limits the GM-BM (including cDCs) capacity to stimulate protective Th1 immune response. We cannot exclude that this may be an important factor in the generation of non-protective Th2 immune response in susceptible BALB/c mice in vivo .
Pulai, Judit I.; Chen, Hong; Im, Hee-Jeong; Kumar, Sanjay; Hanning, Charles; Hegde, Priti S.; Loeser, Richard F.
2010-01-01
Fibronectin fragments (FN-f) that bind to the α5β1 integrin stimulate chondrocyte-mediated cartilage destruction and could play an important role in the progression of arthritis. The objective of this study was to identify potential cytokine mediators of cartilage inflammation and destruction induced by FN-f and to investigate the mechanism of their stimulation. Human articular chondrocytes, isolated from normal ankle cartilage obtained from tissue donors, were treated with a 110-kDa FN-f in serum-free culture, and expression of various cytokine genes was analyzed by cDNA microarray and by a cytokine protein array. Compared with untreated control cultures, stimulation by FN-f resulted in a >2-fold increase in IL-6, IL-8, MCP-1, and growth-related oncogene β (GRO-β). Constitutive and FN-f-inducible expression of GRO-α and GRO-γ were also noted by RT-PCR and confirmed by immunoblotting. Previous reports of IL-1β expression induced by FN-f were also confirmed, while TNF expression was found to be very low. Inhibitor studies revealed that FN-f-induced stimulation of chondrocyte chemokine expression was dependent on NF-κB activity, but independent of IL-1 autocrine signaling. The ability of FN-f to stimulate chondrocyte expression of multiple proinflammatory cytokines and chemokines suggests that damage to the cartilage matrix is capable of inducing a proinflammatory state responsible for further progressive matrix destruction, which also includes the chemoattraction of inflammatory cells. Targeting the signaling pathways activated by FN-f may be an effective means of inhibiting production of multiple mediators of cartilage destruction. PMID:15843581
Zn2+-stimulation of sperm capacitation and of the acrosome reaction is mediated by EGFR activation.
Michailov, Yulia; Ickowicz, Debbi; Breitbart, Haim
2014-12-15
Extracellular zinc regulates cell proliferation via the MAP1 kinase pathway in several cell types, and has been shown to act as a signaling molecule. The testis contains a relatively high concentration of Zn(2+), required in both the early and late stages of spermatogenesis. Despite the clinical significance of this ion, its role in mature sperm cells is poorly understood. In this study, we characterized the role of Zn(2+) in sperm capacitation and in the acrosome reaction. Western blot analysis revealed the presence of ZnR of the GPR39 type in sperm cells. We previously demonstrated the presence of active epidermal growth factor receptor (EGFR) in sperm, its possible transactivation by direct activation of G-protein coupled receptor (GPCR), and its involvement in sperm capacitation and in the acrosome reaction (AR). We show here that Zn(2+) activates the EGFR during sperm capacitation, which is mediated by activation of trans-membrane adenylyl cyclase (tmAC), protein kinase A (PKA), and the tyrosine kinase, Src. Moreover, the addition of Zn(2+) to capacitated sperm caused further stimulation of EGFR and phosphatydil-inositol-3-kinase (PI3K) phosphorylation, leading to the AR. The stimulation of the AR by Zn(2+) also occurred in the absence of Ca(2+) in the incubation medium, and required the tmAC, indicating that Zn(2+) activates a GPCR. The AR stimulated by Zn(2+) is mediated by GPR39 receptor, PKA, Src and the EGFR, as well as the EGFR down-stream effectors PI3K, phospholipase C (PLC) and protein kinase C (PKC). These data support a role for extracellular zinc, acting through the ZnR, in regulating multiple signaling pathways in sperm capacitation and the acrosome reaction. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, Yu-Ying; He, Sheng-Teng; Yan, Fu-Hua; Zhou, Peng-Fei; Luo, Kai; Zhang, Yan-Ding; Xiao, Yin; Lin, Min-Kui
2016-12-16
Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engineering. The expression of tendon-related markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid (PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a potential stem cell source for tissue engineering of tendon-like tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malek, Mastura Abd; Hoang, Minh-Hien; Jia, Yaoyao
Highlights: ► Ombuin-3-O-β-D-glucopyranoside is a dual ligand for PPARα and δ/β. ► Ombuin-3-O-β-D-glucopyranoside reduces cellular lipid levels in multiple cell types. ► Cells stimulated with ombuine up-regulated target genes in cholesterol efflux. ► Cells stimulated with ombuine regulated target fatty acid β-oxidation and synthesis. ► Ombuin-3-O-β-D-glucopyranoside could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: We demonstrated that ombuin-3-O-β-D-glucopyranoside (ombuine), a flavonoid from Gynostemma pentaphyllum, is a dual agonist for peroxisome proliferator-activated receptors (PPARs) α and δ/β. Using surface plasmon resonance (SPR), time-resolved fluorescence resonance energy transfer (FRET) analyses, and reporter gene assays, we showed that ombuine bound directly to PPARαmore » and δ/β but not to PPARγ or liver X receptors (LXRs). Cultured HepG2 hepatocytes stimulated with ombuine significantly reduced intracellular concentrations of triglyceride and cholesterol and downregulated the expression of lipogenic genes, including sterol regulatory element binding protein-1c (SREBP1c) and stearoyl-CoA desaturase-1 (SCD-1), with activation of PPARα and δ/β. Activation of LXRs by ombuine was confirmed by reporter gene assays, however, SPR and cell-based FRET assays showed no direct binding of ombuine to either of the LXRs suggesting LXR activation by ombuine may be operated via PPARα stimulation. Ombuine-stimulated macrophages showed significantly induced transcription of ATP binding cassette cholesterol transporter A1 (ABCA1) and G1 (ABCG1), the key genes in reverse cholesterol transport, which led to reduced cellular cholesterol concentrations. These results suggest that ombuine is a dual PPAR ligand for PPARα and δ/β with the ability to decrease lipid concentrations by reducing lipogenic gene expression in hepatocytes and inducing genes involved in cholesterol efflux in macrophages.« less
Yang, Hongna; Sun, Jinhua; Wang, Feng; Li, Yan; Bi, Jianzhong; Qu, Tingyu
2016-01-01
The immunoregulatory function of T regulatory cells (Tregs) is impaired in multiple sclerosis (MS). Recent studies have shown that umbilical cord-derived mesenchymal stem cells (UC-MSCs) exert regulatory effect on the functions of immune cells. Thus, we investigated whether UC-MSCs could improve the impaired function of Tregs from MS patients. Co-cultures of UC-MSCs with PBMCs of MS patients were performed for 3 days. Flow cytometry was used to determine the frequency of Tregs. A cell proliferation assay was used to evaluate the suppressive capacity of Tregs. ELISA was conducted for cytokine analysis in the co-cultures. Our results showed that UC-MSCs significantly increased the frequency of CD4+CD25+CD127low/− Tregs in resting CD4+ T cells (p<0.01) from MS, accompanied by the significantly augmented production of cytokine prostaglandin E2, transforming growth factor (−β1, and interleukin-10, along with a reduced interferon-γ production in these co-cultures (p<0.05 - 0.01). More importantly, UC-MSC-primed Tregs of MS patients significantly inhibited the proliferation of PHA-stimulated autologous and allogeneic CD4+CD25− T effector cells (Teffs) from MS patients and healthy individuals compared to non-UC-MSC-primed (naïve) Tregs from the same MS patients (p<0.01). Furthermore, no remarkable differences in suppressing the proliferation of PHA-stimulated CD4+CD25− Teffs was observed in UC-MSC-primed Tregs from MS patients and naïve Tregs from healthy subjects. The impaired suppressive function of Tregs from MS can be completely reversed in a co-culture by UC-MSC modulation. This report is the first to demonstrate that functional defects of Tregs in MS can be repaired in vitro using a simple UC-MSC priming approach. PMID:27705922
Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.
Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D
2009-01-01
The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs through uncoupling of serotonin from the homeostatic regulatory mechanisms of the normal mammary epithelium. The findings open a new avenue for identification of diagnostic and prognostic markers, and valuable new therapeutic targets for managing breast cancer.
Contributions of Rod and Cone Pathways to Retinal Direction Selectivity Through Development
Rosa, Juliana M.; Morrie, Ryan D.; Baertsch, Hans C.
2016-01-01
Direction selectivity is a robust computation across a broad stimulus space that is mediated by activity of both rod and cone photoreceptors through the ON and OFF pathways. However, rods, S-cones, and M-cones activate the ON and OFF circuits via distinct pathways and the relative contribution of each to direction selectivity is unknown. Using a variety of stimulation paradigms, pharmacological agents, and knockout mice that lack rod transduction, we found that inputs from the ON pathway were critical for strong direction-selective (DS) tuning in the OFF pathway. For UV light stimulation, the ON pathway inputs to the OFF pathway originated with rod signaling, whereas for visible stimulation, the ON pathway inputs to the OFF pathway originated with both rod and M-cone signaling. Whole-cell voltage-clamp recordings revealed that blocking the ON pathway reduced directional tuning in the OFF pathway via a reduction in null-side inhibition, which is provided by OFF starburst amacrine cells (SACs). Consistent with this, our recordings from OFF SACs confirmed that signals originating in the ON pathway contribute to their excitation. Finally, we observed that, for UV stimulation, ON contributions to OFF DS tuning matured earlier than direct signaling via the OFF pathway. These data indicate that the retina uses multiple strategies for computing DS responses across different colors and stages of development. SIGNIFICANCE STATEMENT The retina uses parallel pathways to encode different features of the visual scene. In some cases, these distinct pathways converge on circuits that mediate a distinct computation. For example, rod and cone pathways enable direction-selective (DS) ganglion cells to encode motion over a wide range of light intensities. Here, we show that although direction selectivity is robust across light intensities, motion discrimination for OFF signals is dependent upon ON signaling. At eye opening, ON directional tuning is mature, whereas OFF DS tuning is significantly reduced due to a delayed maturation of S-cone to OFF cone bipolar signaling. These results provide evidence that the retina uses multiple strategies for computing DS responses across different stimulus conditions. PMID:27629718
Guan, Su-Min; He, Jian-Jun; Zhang, Ming; Shu, Lei
2011-06-01
Prevotella intermedia is an important periodontal pathogen that induces various inflammatory and immune responses. In this study, we investigated the effects of P. intermedia on the plasminogen system in human periodontal ligament (hPDL) cells and explored the signaling pathways involved. Using semi-quantitative reverse transcription (RT)-PCR and quantitative real-time RT-qPCR, we demonstrated that P. intermedia challenge increased tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor (PAI)-2 expression in a concentration- and time-dependent manner, but exerted no influence on urokinase-type plasminogen activator and PAI-1mRNA expression in hPDL cells. Prevotella intermedia stimulation also enhanced tPA protein secretion as confirmed by enzyme-linked immunosorbent assay. Western blot results revealed that P. intermedia treatment increased phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase (p38). ERK, JNK and protein kinase C inhibitors significantly attenuated the P. intermedia-induced tPA and PAI-2 expression. Furthermore, p38 and phosphatidylinositol 3-kinase inhibitors markedly decreased PAI-2 expression, whereas they showed no or little inhibition on tPA expression. In contrast, inhibition of protein kinase A greatly enhanced the upregulatory effect of P. intermedia on tPA and PAI-2 expression. Our results suggest that P. intermedia may contribute to periodontal tissue destruction by upregulating tPA and PAI-2 expression in hPDL cells via multiple signaling pathways. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Kriangkum, Jitra; Taylor, Brian J; Strachan, Erin; Mant, Michael J; Reiman, Tony; Belch, Andrew R; Pilarski, Linda M
2006-04-01
Analysis of clonotypic isotype class switching (CSR) in Waldenström macroglobulinemia (WM) and IgM monoclonal gammopathy of undetermined significance (MGUS) reveals a normal initial phase of B-cell activation as determined by constitutive and inducible expression of activation-induced cytidine deaminase (AID). Switch mu (Smu) analysis shows that large deletions are not common in WM or IgM MGUS. In CD40L/IL-4-stimulated WM cultures from 2 patients, we observed clonotypic IgG exhibiting intraclonal homogeneity associated with multiple hybrid Smu/Sgamma junctions. This suggests CSR had occurred within WM cells. Nevertheless, the estimated IgG/IgM-cell frequency was relatively low (1/1600 cells). Thus, for the majority of WM B cells, CSR does not occur even when stimulated in vitro, suggesting that the WM cell is constitutively unable to or being prevented from carrying out CSR. In contrast to WM, the majority of IgM MGUS clones exhibit intraclonal heterogeneity of IgH VDJ. Furthermore, most IgM MGUS accumulate more mutations in the upstream Smu region than do WM, making them unlikely WM progenitors. These observations suggest that switch sequence analysis may identify the subset of patients with IgM MGUS who are at risk of progression to WM.
Nowak, Przemyslaw; Dobbins, Allan C.; Gawne, Timothy J.; Grzywacz, Norberto M.
2011-01-01
The ganglion cell output of the retina constitutes a bottleneck in sensory processing in that ganglion cells must encode multiple stimulus parameters in their responses. Here we investigate encoding strategies of On-Off directionally selective retinal ganglion cells (On-Off DS RGCs) in rabbits, a class of cells dedicated to representing motion. The exquisite axial discrimination of these cells to preferred vs. null direction motion is well documented: it is invariant with respect to speed, contrast, spatial configuration, spatial frequency, and motion extent. However, these cells have broad direction tuning curves and their responses also vary as a function of other parameters such as speed and contrast. In this study, we examined whether the variation in responses across multiple stimulus parameters is systematic, that is the same for all cells, and separable, such that the response to a stimulus is a product of the effects of each stimulus parameter alone. We extracellularly recorded single On-Off DS RGCs in a superfused eyecup preparation while stimulating them with moving bars. We found that spike count responses of these cells scaled as independent functions of direction, speed, and luminance. Moreover, the speed and luminance functions were common across the whole sample of cells. Based on these findings, we developed a model that accurately predicted responses of On-Off DS RGCs as products of separable functions of direction, speed, and luminance (r = 0.98; P < 0.0001). Such a multiplicatively separable encoding strategy may simplify the decoding of these cells' outputs by the higher visual centers. PMID:21325684
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khani, Joshua; Prescod, Lindsay; Enright, Heather
Ex vivo systems and organ-on-a-chip technology offer an unprecedented approach to modeling the inner workings of the human body. The ultimate goal of LLNL’s in vitro Chip-based Human Investigational Platform (iCHIP) is to integrate multiple organ tissue cultures using microfluidic channels, multi-electrode arrays (MEA), and other biosensors in order to effectively simulate and study the responses and interactions of the major organs to chemical and physical stimulation. In this study, we focused on the peripheral nervous system (PNS) component of the iCHIP system. Specifically we sought to expound on prior research investigating the electrophysiological response of rat dorsal root ganglionmore » cells (rDRGs) to chemical exposures, such as capsaicin. Our aim was to establish a protocol for electrical stimulation using the iCHIP device that would reliably elicit a characteristic response in rDRGs. By varying the parameters for both the stimulation properties – amplitude, phase width, phase shape, and stimulation/ return configuration – and the culture conditions – day in vitro and neural cell types - we were able to make several key observations and uncover a potential convention with a minimal number of devices tested. Future work will seek to establish a standard protocol for human DRGs in the iCHIP which will afford a portable, rapid method for determining the effects of toxins and novel therapeutics on the PNS.« less
Fas-Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis.
Volpe, Elisabetta; Sambucci, Manolo; Battistini, Luca; Borsellino, Giovanna
2016-01-01
Fas and Fas Ligand (FasL) are two molecules involved in the regulation of cell death. Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly their T cell receptor (TCR) genes and of those that recognize self-antigens, a process called negative selection; moreover, Fas-FasL interaction leads to activation-induced cell death, a form of apoptosis induced by repeated TCR stimulation, responsible for the peripheral deletion of activated T cells. Both control mechanisms are particularly relevant in the context of autoimmune diseases, such as multiple sclerosis (MS), where T cells exert an immune response against self-antigens. This concept is well demonstrated by the development of autoimmune diseases in mice and humans with defects in Fas or FasL. In recent years, several new aspects of T cell functions in MS have been elucidated, such as the pathogenic role of T helper (Th) 17 cells and the protective role of T regulatory (Treg) cells. Thus, in this review, we summarize the role of the Fas-FasL pathway, with particular focus on its involvement in MS. We then discuss recent advances concerning the role of Fas-FasL in regulating Th17 and Treg cells' functions, in the context of MS.
NASA Astrophysics Data System (ADS)
Hu, Chun-Rui; Zhang, Delong; Slipchenko, Mikhail N.; Cheng, Ji-Xin; Hu, Bing
2014-08-01
The myelin sheath plays an important role as the axon in the functioning of the neural system, and myelin degradation is a hallmark pathology of multiple sclerosis and spinal cord injury. Electron microscopy, fluorescent microscopy, and magnetic resonance imaging are three major techniques used for myelin visualization. However, microscopic observation of myelin in living organisms remains a challenge. Using a newly developed stimulated Raman scattering microscopy approach, we report noninvasive, label-free, real-time in vivo imaging of myelination by a single-Schwann cell, maturation of a single node of Ranvier, and myelin degradation in the transparent body of the Xenopus laevis tadpole.
Engström, Wilhelm; Darbre, Philippa; Eriksson, Staffan; Gulliver, Linda; Hultman, Tove; Karamouzis, Michalis V.; Klaunig, James E.; Mehta, Rekha; Moorwood, Kim; Sanderson, Thomas; Sone, Hideko; Vadgama, Pankaj; Wagemaker, Gerard; Ward, Andrew; Singh, Neetu; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A. Ivana; Raju, Jayadev; Hamid, Roslida A.; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K.; Ryan, Elizabeth; Brown, Dustin G.; Bisson, William H.
2015-01-01
The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span. PMID:26106143
Expression of c-Kit isoforms in multiple myeloma: differences in signaling and drug sensitivity.
Montero, Juan Carlos; López-Pérez, Ricardo; San Miguel, Jesús F; Pandiella, Atanasio
2008-06-01
c-Kit is expressed in the plasma cells from 30% of patients with multiple myeloma. Two different isoforms of c-Kit, characterized by the presence or absence of the tetrapeptide sequence GNNK in the extracellular domain, have been described. However, their expression and function in myeloma cells are unknown. We explored the function and expression of these c-Kit isoforms in myeloma cells. Expression of c-Kit isoforms was investigated by reverse transcriptase polymerase chain reaction in fresh plasma cells from patients and cell lines. The function of these c-Kit isoforms was analyzed upon expression in myeloma cells. Signaling was investigated by western blotting using antibodies specific for activated forms of several signaling proteins. The impact of c-Kit on the action of drugs commonly used in the treatment of multiple myeloma was investigated by MTT proliferation assays. Fresh plasma cells from patients as well as myeloma cell lines expressed the two isoforms of c-Kit. Retroviral infection of myeloma cells with vectors that code for c-Kit-GNNK+ or c-Kit-GNNK- forms demonstrated differences in the kinetics of phosphorylation between these isoforms. Stem cell factor-induced activation of the GNNK- form was faster and more pronounced than that of the GNNK+ form, whose activation, however, lasted for longer. The c-Kit receptors weakly activated the Erk1/2 and Erk5 pathways. Both receptors, however, efficiently coupled to the PI3K/Akt pathway, and stimulated p70S6K activation. The latter was sensitive to the mTOR inhibitor, rapamycin. Studies of drug sensitivity indicated that cells expressing the GNNK- form were more resistant to the anti-myeloma action of bortezomib and melphalan. Our data indicate that c-Kit expression in multiple myeloma cells is functional, and coupled to survival pathways that may modulate cell death in response to therapeutic compounds used in the treatment of this disease.
Clinically viable magnetic poly(lactide-co-glycolide) (PLGA) particles for MRI-based cell tracking
Granot, Dorit; Nkansah, Michael K.; Bennewitz, Margaret F.; Tang, Kevin S.; Markakis, Eleni A.; Shapiro, Erik M.
2013-01-01
Purpose To design, fabricate, characterize and in vivo assay clinically viable magnetic particles for MRI-based cell tracking. Methods PLGA encapsulated magnetic nano- and microparticles were fabricated. Multiple biologically relevant experiments were performed to assess cell viability, cellular performance and stem cell differentiation. In vivo MRI experiments were performed to separately test cell transplantation and cell migration paradigms, as well as in vivo biodegradation. Results Highly magnetic nano- (~100 nm) and microparticles (~1–2 μm) were fabricated. Magnetic cell labeling in culture occurred rapidly achieving 3–50 pg Fe/cell at 3 hrs for different particles types, and >100 pg Fe/cell after 10 hours, without the requirement of a transfection agent, and with no effect on cell viability. The capability of magnetically labeled mesenchymal or neural stem cells to differentiate down multiple lineages, or for magnetically labeled immune cells to release cytokines following stimulation, was uncompromised. An in vivo biodegradation study revealed that NPs degraded ~80% over the course of 12 weeks. MRI detected as few as 10 magnetically labeled cells, transplanted into the brains of rats. Also, these particles enabled the in vivo monitoring of endogenous neural progenitor cell migration in rat brains over 2 weeks. Conclusion The robust MRI properties and benign safety profile of these particles make them promising candidates for clinical translation for MRI-based cell tracking. PMID:23568825
Critical role for NHE1 in intracellular pH regulation in pancreatic acinar cells.
Brown, David A; Melvin, James E; Yule, David I
2003-11-01
The primary function of pancreatic acinar cells is to secrete digestive enzymes together with a NaCl-rich primary fluid which is later greatly supplemented and modified by the pancreatic duct. A Na+/H+ exchanger(s) [NHE(s)] is proposed to be integral in the process of fluid secretion both in terms of the transcellular flux of Na+ and intracellular pH (pHi) regulation. Multiple NHE isoforms have been identified in pancreatic tissue, but little is known about their individual functions in acinar cells. The Na+/H+ exchange inhibitor 5-(N-ethyl-N-isopropyl) amiloride completely blocked pHi recovery after an NH4Cl-induced acid challenge, confirming a general role for NHE in pHi regulation. The targeted disruption of the Nhe1 gene also completely abolished pHi recovery from an acid load in pancreatic acini in both HCO3--containing and HCO3--free solutions. In contrast, the disruption of either Nhe2 or Nhe3 had no effect on pHi recovery. In addition, NHE1 activity was upregulated in response to muscarinic stimulation in wild-type mice but not in NHE1-deficient mice. Fluctuations in pHi could potentially have major effects on Ca2+ signaling following secretagogue stimulation; however, the targeted disruption of Nhe1 was found to have no significant effect on intracellular Ca2+ homeostasis. These data demonstrate that NHE1 is the major regulator of pHi in both resting and muscarinic agonist-stimulated pancreatic acinar cells.
NONLINEAR OPTICAL EFFECTS AND FIBER OPTICS: Multiple stimulated optical echo in three-level media
NASA Astrophysics Data System (ADS)
Akhmediev, N. N.; Mel'nikov, I. V.
1988-12-01
It is shown that multiple stimulated optical echo may be generated in media with three closely spaced levels. The conditions for suppression of the stimulated echo signal are formulated and a proposal is described for apparatus which can be used to observe this effect.
Vacchelli, Erika; Galluzzi, Lorenzo; Fridman, Wolf Hervé; Galon, Jerome; Sautès-Fridman, Catherine; Tartour, Eric; Kroemer, Guido
2012-01-01
The long-established notion that apoptosis would be immunologically silent, and hence it would go unnoticed by the immune system, if not tolerogenic, and hence it would actively suppress immune responses, has recently been revisited. In some instances, indeed, cancer cells undergo apoptosis while emitting a spatiotemporally-defined combination of signals that renders them capable of eliciting a long-term protective antitumor immune response. Importantly, only a few anticancer agents can stimulate such an immunogenic cell death. These include cyclophosphamide, doxorubicin and oxaliplatin, which are currently approved by FDA for the treatment of multiple hematologic and solid malignancies, as well as mitoxantrone, which is being used in cancer therapy and against multiple sclerosis. In this Trial Watch, we will review and discuss the progress of recent (initiated after January 2008) clinical trials evaluating the off-label use of cyclophosphamide, doxorubicin, oxaliplatin and mitoxantrone. PMID:22720239
Astrocytes in the tempest of multiple sclerosis.
Miljković, Djordje; Timotijević, Gordana; Mostarica Stojković, Marija
2011-12-01
Astrocytes are the most abundant cell population within the CNS of mammals. Their glial role is perfectly performed in the healthy CNS as they support functions of neurons. The omnipresence of astrocytes throughout the white and grey matter and their intimate relation with blood vessels of the CNS, as well as numerous immunity-related actions that these cells are capable of, imply that astrocytes should have a prominent role in neuroinflammatory disorders, such as multiple sclerosis (MS). The role of astrocytes in MS is rather ambiguous, as they have the capacity to both stimulate and restrain neuroinflammation and tissue destruction. In this paper we present some of the proved and the proposed functions of astrocytes in neuroinflammation and discuss the effect of MS therapeutics on astrocytes. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
The immune system and skin cancer.
Yu, Sherry H; Bordeaux, Jeremy S; Baron, Elma D
2014-01-01
Carcinogenesis involves multiple mechanisms that disturb genomic integrity and encourage abnormal proliferation. The immune system plays an integral role in maintaining homeostasis and these mechanisms may arrest or enhance dysplasia. There exists a large body of evidence from organ transplantation literature supporting the significance of the immune suppression in the development of skin cancer. Nonmelanoma skin cancers are the most frequent neoplasms after organ transplantation, with organ transplant recipients having a 65-fold increase in squamous cell carcinoma incidence and 10-fold increase in basal cell carcinoma incidence. Similarly, UV-radiation (UVR) induced immunosuppression is correlated with the development of cutaneous malignancies in a dose-dependent manner. This was first shown several decades ago by Margaret Kripke, when transplanted tumors were rejected in mice with competent immune systems, but grew unchecked in immunosuppressed specimens. After UV exposure, chromophores initiate a cascade that leads to immunosuppression via derangement of Langerhans cells' antigen-presenting capacity. UV-irradiated Langerhans cells present antigens to Th2 cells, but fail to stimulate Th1 cells. A subset of T regulatory cells, specific for the antigen encountered after UVR, is also stimulated to proliferate. In general UV irradiation leads to a greater number of T regulatory cells and fewer effector T cells in the skin, shiftingthe balance from T-cell-mediated immunity to immunosuppression. These regulatory cells have the phenotype CD4+, CD25+, Foxp3+, CTLA-4+. These and many other changes in local immunity lead to a suppressed immune state, which allow for skin cancer development.
Moss, Britney L; Elhammali, Adnan; Fowlkes, Tiffanie; Gross, Shimon; Vinjamoori, Anant; Contag, Christopher H; Piwnica-Worms, David
2012-09-07
Full understanding of the biological significance of negative feedback processes requires interrogation at multiple scales as follows: in single cells, cell populations, and live animals in vivo. The transcriptionally coupled IκBα/NF-κB negative feedback loop, a pivotal regulatory node of innate immunity and inflammation, represents a model system for multiscalar reporters. Using a κB(5)→IκBα-FLuc bioluminescent reporter, we rigorously evaluated the dynamics of ΙκBα degradation and subsequent NF-κB transcriptional activity in response to diverse modes of TNFα stimulation. Modulating TNFα concentration or pulse duration yielded complex, reproducible, and differential ΙκBα dynamics in both cell populations and live single cells. Tremendous heterogeneity in the transcriptional amplitudes of individual responding cells was observed, which was greater than the heterogeneity in the transcriptional kinetics of responsive cells. Furthermore, administration of various TNFα doses in vivo generated ΙκBα dynamic profiles in the liver resembling those observed in single cells and populations of cells stimulated with TNFα pulses. This suggested that dose modulation of circulating TNFα was perceived by hepatocytes in vivo as pulses of increasing duration. Thus, a robust bioluminescent reporter strategy enabled rigorous quantitation of NF-κB/ΙκBα dynamics in both live single cells and cell populations and furthermore, revealed reproducible behaviors that informed interpretation of in vivo studies.
PrP(C) regulates epidermal growth factor receptor function and cell shape dynamics in Neuro2a cells.
Llorens, Franc; Carulla, Patricia; Villa, Ana; Torres, Juan M; Fortes, Puri; Ferrer, Isidre; del Río, José A
2013-10-01
The prion protein (PrP) plays a key role in prion disease pathogenesis. Although the misfolded and pathologic variant of this protein (PrP(SC)) has been studied in depth, the physiological role of PrP(C) remains elusive and controversial. PrP(C) is a cell-surface glycoprotein involved in multiple cellular functions at the plasma membrane, where it interacts with a myriad of partners and regulates several intracellular signal transduction cascades. However, little is known about the gene expression changes modulated by PrP(C) in animals and in cellular models. In this article, we present PrP(C)-dependent gene expression signature in N2a cells and its implication in the most overrepresented functions: cell cycle, cell growth and proliferation, and maintenance of cell shape. PrP(C) over-expression enhances cell proliferation and cell cycle re-entrance after serum stimulation, while PrP(C) silencing slows down cell cycle progression. In addition, MAP kinase and protein kinase B (AKT) pathway activation are under the regulation of PrP(C) in asynchronous cells and following mitogenic stimulation. These effects are due in part to the modulation of epidermal growth factor receptor (EGFR) by PrP(C) in the plasma membrane, where the two proteins interact in a multimeric complex. We also describe how PrP(C) over-expression modulates filopodia formation by Rho GTPase regulation mainly in an AKT-Cdc42-N-WASP-dependent pathway. © 2013 International Society for Neurochemistry.
Abdi, Jahangir; Mutis, Tuna; Garssen, Johan; Redegeld, Frank A
2014-01-01
In multiple myeloma (MM), the malignant plasma cells usually localize to the bone marrow where they develop drug resistance due to adhesion to stromal cells and various environmental signals. Hence, modulation of this interaction is expected to influence drug sensitivity of MM cells. Toll-like receptor (TLR) ligands have displayed heterogeneous effects on B-cell malignancies and also on MM cells in a few recent studies, but effects on adhesion and drug sensitivity of myeloma cells in the context of bone marrow stromal cells (BMSCs) have never been investigated. In the present study, we explored the modulatory effects of TLR1/2 ligand (Pam3CSK4) on adhesion of human myeloma cells to BMSCs. It is shown that TLR1/2 triggering has opposite effects in different HMCLs on their adhesion to BMSCs. Fravel, L363, UM-6, UM-9 and U266 showed increased adhesion to BMSC in parallel with an increased surface expression of integrin molecules α4 and αVβ3. OPM-1, OPM-2 and NCI-H929 showed a dose-dependent decrease in adhesion upon TLR activation following a downregulation of β7 integrin expression. Importantly, TLR1/2 triggering increased cytotoxic and apoptotic effects of bortezomib in myeloma cells independent of the effect on stromal cell adhesion. Moreover, the apoptosis-enhancing effect of Pam3CSK4 paralleled induction of cleaved caspase-3 protein in FACS analysis suggesting a caspase-dependent mechanism. Our findings uncover a novel role of TLR activation in MM cells in the context of bone marrow microenvironment. Stimulation of TLR1/2 bypasses the protective shield of BMSCs and may be an interesting strategy to enhance drug sensitivity of multiple myeloma cells.
Physiological Differentiation within a Single-Species Biofilm Fueled by Serpentinization
Brazelton, William J.; Mehta, Mausmi P.; Kelley, Deborah S.; Baross, John A.
2011-01-01
ABSTRACT Carbonate chimneys at the Lost City hydrothermal field are coated in biofilms dominated by a single phylotype of archaea known as Lost City Methanosarcinales. In this study, we have detected surprising physiological complexity in single-species biofilms, which is typically indicative of multispecies biofilm communities. Multiple cell morphologies were visible within the biofilms by transmission electron microscopy, and some cells contained intracellular membranes that may facilitate methane oxidation. Both methane production and oxidation were detected at 70 to 80°C and pH 9 to 10 in samples containing the single-species biofilms. Both processes were stimulated by the presence of hydrogen (H2), indicating that methane production and oxidation are part of a syntrophic interaction. Metagenomic data included a sequence encoding AMP-forming acetyl coenzyme A synthetase, indicating that acetate may play a role in the methane-cycling syntrophy. A wide range of nitrogen fixation genes were also identified, many of which were likely acquired via lateral gene transfer (LGT). Our results indicate that cells within these single-species biofilms may have differentiated into multiple physiological roles to form multicellular communities linked by metabolic interactions and LGT. Communities similar to these Lost City biofilms are likely to have existed early in the evolution of life, and we discuss how the multicellular characteristics of ancient hydrogen-fueled biofilm communities could have stimulated ecological diversification, as well as unity of biochemistry, during the earliest stages of cellular evolution. PMID:21791580
Vesiculation from Pseudomonas aeruginosa under SOS.
Maredia, Reshma; Devineni, Navya; Lentz, Peter; Dallo, Shatha F; Yu, Jiehjuen; Guentzel, Neal; Chambers, James; Arulanandam, Bernard; Haskins, William E; Weitao, Tao
2012-01-01
Bacterial infections can be aggravated by antibiotic treatment that induces SOS response and vesiculation. This leads to a hypothesis concerning association of SOS with vesiculation. To test it, we conducted multiple analyses of outer membrane vesicles (OMVs) produced from the Pseudomonas aeruginosa wild type in which SOS is induced by ciprofloxacin and from the LexA noncleavable (lexAN) strain in which SOS is repressed. The levels of OMV proteins, lipids, and cytotoxicity increased for both the treated strains, demonstrating vesiculation stimulation by the antibiotic treatment. However, the further increase was suppressed in the lexAN strains, suggesting the SOS involvement. Obviously, the stimulated vesiculation is attributed by both SOS-related and unrelated factors. OMV subproteomic analysis was performed to examine these factors, which reflected the OMV-mediated cytotoxicity and the physiology of the vesiculating cells under treatment and SOS. Thus, SOS plays a role in the vesiculation stimulation that contributes to cytotoxicity.
Vesiculation from Pseudomonas aeruginosa under SOS
Maredia, Reshma; Devineni, Navya; Lentz, Peter; Dallo, Shatha F.; Yu, JiehJuen; Guentzel, Neal; Chambers, James; Arulanandam, Bernard; Haskins, William E.; Weitao, Tao
2012-01-01
Bacterial infections can be aggravated by antibiotic treatment that induces SOS response and vesiculation. This leads to a hypothesis concerning association of SOS with vesiculation. To test it, we conducted multiple analyses of outer membrane vesicles (OMVs) produced from the Pseudomonas aeruginosa wild type in which SOS is induced by ciprofloxacin and from the LexA noncleavable (lexAN) strain in which SOS is repressed. The levels of OMV proteins, lipids, and cytotoxicity increased for both the treated strains, demonstrating vesiculation stimulation by the antibiotic treatment. However, the further increase was suppressed in the lexAN strains, suggesting the SOS involvement. Obviously, the stimulated vesiculation is attributed by both SOS-related and unrelated factors. OMV subproteomic analysis was performed to examine these factors, which reflected the OMV-mediated cytotoxicity and the physiology of the vesiculating cells under treatment and SOS. Thus, SOS plays a role in the vesiculation stimulation that contributes to cytotoxicity. PMID:22448133
Yaldizli, Ozguer; Kumar, Manoj; Vago, Susanne; Kreuzfelder, Erich; Limmroth, Volker; Putzki, Norman
2009-01-01
The pathophysiology of multiple sclerosis (MS)-associated fatigue is poorly understood. Immunological mechanisms may play a role. Alterations in immunological profile indicate a chronic immune activation in MS patients with fatigue. T-regulatory (Treg) cells seem to play a key role in coordinating autoimmune mechanisms in MS. This is the first study investigating the relationship between Treg cell function and fatigue in MS patients. In this cross-sectional in vitro, ex vivo study, we isolated peripheral blood mononuclear cells (PBMCs) from 20 MS patients with fatigue, determined lymphocyte subsets by flow cytometry and suppressive function of Treg cells in PBMC cultures with antigen stimulation. Forkhead box protein 3 expression was evaluated by PCR. Results were compared with 20 MS patients without fatigue and with 19 healthy controls. Leukocytes and lymphocyte subsets including Treg cell frequency did not differ in patients with and without fatigue. Co-culturing of Treg cells with CD4+CD25- cells did not lead to a significant suppression of myelin basic protein- and pokeweed mitogen-induced proliferation in MS patients in contrast to healthy controls. There were no statistical differences between MS patients with and without fatigue regarding this suppression activity. Fatigue seems not to be associated with impaired function of Treg cells in untreated MS patients.
Fas–Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis
Volpe, Elisabetta; Sambucci, Manolo; Battistini, Luca; Borsellino, Giovanna
2016-01-01
Fas and Fas Ligand (FasL) are two molecules involved in the regulation of cell death. Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly their T cell receptor (TCR) genes and of those that recognize self-antigens, a process called negative selection; moreover, Fas–FasL interaction leads to activation-induced cell death, a form of apoptosis induced by repeated TCR stimulation, responsible for the peripheral deletion of activated T cells. Both control mechanisms are particularly relevant in the context of autoimmune diseases, such as multiple sclerosis (MS), where T cells exert an immune response against self-antigens. This concept is well demonstrated by the development of autoimmune diseases in mice and humans with defects in Fas or FasL. In recent years, several new aspects of T cell functions in MS have been elucidated, such as the pathogenic role of T helper (Th) 17 cells and the protective role of T regulatory (Treg) cells. Thus, in this review, we summarize the role of the Fas–FasL pathway, with particular focus on its involvement in MS. We then discuss recent advances concerning the role of Fas–FasL in regulating Th17 and Treg cells’ functions, in the context of MS. PMID:27729910
Thrivikraman, Greeshma; Lee, Poh S; Hess, Ricarda; Haenchen, Vanessa; Basu, Bikramjit; Scharnweber, Dieter
2015-10-21
The influences of physical stimuli such as surface elasticity, topography, and chemistry over mesenchymal stem cell proliferation and differentiation are well investigated. In this context, a fundamentally different approach was adopted, and we have demonstrated the interplay of inherent substrate conductivity, defined chemical composition of cellular microenvironment, and intermittent delivery of electric pulses to drive mesenchymal stem cell differentiation toward osteogenesis. For this, conducting polyaniline (PANI) substrates were coated with collagen type 1 (Coll) alone or in association with sulfated hyaluronan (sHya) to form artificial extracellular matrix (aECM), which mimics the native microenvironment of bone tissue. Further, bone marrow derived human mesenchymal stem cells (hMSCs) were cultured on these moderately conductive (10(-4)-10(-3) S/cm) aECM coated PANI substrates and exposed intermittently to pulsed electric field (PEF) generated through transformer-like coupling (TLC) approach over 28 days. On the basis of critical analysis over an array of end points, it was inferred that Coll/sHya coated PANI (PANI/Coll/sHya) substrates had enhanced proliferative capacity of hMSCs up to 28 days in culture, even in the absence of PEF stimulation. On the contrary, the adopted PEF stimulation protocol (7 ms rectangular pulses, 3.6 mV/cm, 10 Hz) is shown to enhance osteogenic differentiation potential of hMSCs. Additionally, PEF stimulated hMSCs had also displayed different morphological characteristics as their nonstimulated counterparts. Concomitantly, earlier onset of ALP activity was also observed on PANI/Coll/sHya substrates and resulted in more calcium deposition. Moreover, real-time polymerase chain reaction results indicated higher mRNA levels of alkaline phosphatase and osteocalcin, whereas the expression of other osteogenic markers such as Runt-related transcription factor 2, Col1A, and osteopontin exhibited a dynamic pattern similar to control cells that are cultured in osteogenic medium. Taken together, our experimental results illustrate the interplay of multiple parameters such as substrate conductivity, electric field stimulation, and aECM coating on the modulation of hMSC proliferation and differentiation in vitro.
Amnion: a potent graft source for cell therapy in stroke.
Yu, Seong Jin; Soncini, Maddalena; Kaneko, Yuji; Hess, David C; Parolini, Ornella; Borlongan, Cesar V
2009-01-01
Regenerative medicine is a new field primarily based on the concept of transplanting exogenous or stimulating endogenous stem cells to generate biological substitutes and improve tissue functions. Recently, amnion-derived cells have been reported to have multipotent differentiation ability, and these cells have attracted attention as a novel cell source for cell transplantation therapy. Cells isolated from amniotic membrane can differentiate into all three germ layers, have low immunogenicity and anti-inflammatory function, and do not require the destruction of human embryos for their isolation, thus circumventing the ethical debate commonly associated with the use of human embryonic stem cells. Accumulating evidence now suggests that the amnion, which had been discarded after parturition, is a highly potent transplant material in the field of regenerative medicine. In this report, we review the current progress on the characterization of MSCs derived from the amnion as a remarkable transplantable cell population with therapeutic potential for multiple CNS disorders, especially stroke.
Zhang, Mengxia; Zhang, Hailiang; Tang, Fan; Wang, Yuhua; Mo, Zhongcheng; Lei, Xiaoyong
2016-01-01
Macrophage colony-stimulating factor is a vital factor in maintaining the biological function of monocyte–macrophage lineage. It is expressed in many tumor tissues and cancer cells. Recent findings indicate that macrophage colony-stimulating factor might contribute to chemoresistance, but the precise mechanisms are unclear. This study was to explore the effect of macrophage colony-stimulating factor on doxorubicin resistance in MCF-7 breast cancer cells and the possible mechanism. In the study, the human breast cancer cells, MCF-7, were transfected with macrophage colony-stimulating factor. We document that cytoplasmic macrophage colony-stimulating factor induces doxorubicin resistance and inhibits apoptosis in MCF-7 cells. Further studies demonstrated that cytoplasmic macrophage colony-stimulating factor-mediated apoptosis inhibition was dependent on the activation of PI3K/Akt/Survivin pathway. More importantly, we found that macrophage colony-stimulating factor-induced autophagic cell death in doxorubicin-treated MCF-7 cells. Taken together, we show for the first time that macrophage colony-stimulating factor-induced doxorubicin resistance is associated with the changes in cell death response with defective apoptosis and promotion of autophagic cell death. PMID:27439542
Computationally identified novel agonists for GPRC6A
Ye, Ruisong; Hwang, Dong-Jin; Miller, Duane D.; Smith, Jeremy C.; Baudry, Jerome; Quarles, L. Darryl
2018-01-01
New insights into G protein coupled receptor regulation of glucose metabolism by β-cells, skeletal muscle and liver hepatocytes identify GPRC6A as a potential therapeutic target for treating type 2 diabetes mellitus (T2D). Activating GPRC6A with a small molecule drug represents a potential paradigm-shifting opportunity to make significant strides in regulating glucose homeostasis by simultaneously correcting multiple metabolic derangements that underlie T2D, including abnormalities in β-cell proliferation and insulin secretion and peripheral insulin resistance. Using a computational, structure-based high-throughput screening approach, we identified novel tri-phenyl compounds predicted to bind to the venus fly trap (VFT) and 7-transmembrane (7-TM) domains of GPRC6A. Experimental testing found that these compounds dose-dependently stimulated GPRC6A signaling in a heterologous cell expression system. Additional chemical modifications and functional analysis identified one tri-phenyl lead compound, DJ-V-159 that demonstrated the greatest potency in stimulating insulin secretion in β-cells and lowering serum glucose in wild-type mice. Collectively, these studies show that GPRC6A is a “druggable” target for developing chemical probes to treat T2DM. PMID:29684031
The Pathological and Physiological Roles of IL-6 Amplifier Activation
Murakami, Masaaki; Hirano, Toshio
2012-01-01
The NFκB-triggered positive feedback loop for IL-6 signaling in type 1 collagen+ non-immune cells (IL-6 amplifier) was first discovered to be a synergistic signal that is activated following IL-17A and IL-6 stimulation in type 1 collagen+ non-immune cells. Subsequent disease models have shown that it can also be stimulated by the simultaneous activation of NFκB and STAT3, functions as a local chemokine inducer, and acts as a mechanism for local inflammation, particularly chronic ones like rheumatoid arthritis and a multiple sclerosis. Moreover, we have recently shown that hyper activation of the IL-6 amplifier via regional neural activation establishes a gateway for immune cells including autoreactive T cells to pass the blood-brain barrier at dorsal vessels in 5th lumbar cord. Here we review how the IL-6 amplifier is activated by neural activation and the physiological relevance of the gateway to the central nervous system. Accumulating evidences continues to suggest that the IL-6 amplifier offers a potential molecular mechanism for the relationship between neural activation and the development of inflammatory diseases, which could establish a new interdisciplinary field that fuses neurology and immunology. PMID:23136555
2015-01-01
Engagement of the B cell receptor for antigen (BCR) leads to immune responses through a cascade of intracellular signaling events. Most studies to date have focused on the BCR and protein tyrosine phosphorylation. Because spleen tyrosine kinase, Syk, is an upstream kinase in multiple BCR-regulated signaling pathways, it also affects many downstream events that are modulated through the phosphorylation of proteins on serine and threonine residues. Here, we report a novel phosphopeptide enrichment strategy and its application to a comprehensive quantitative phosphoproteomics analysis of Syk-dependent downstream signaling events in B cells, focusing on serine and threonine phosphorylation. Using a combination of the Syk inhibitor piceatannol, SILAC quantification, peptide fractionation, and complementary PolyMAC-Ti and PolyMAC-Zr enrichment techniques, we analyzed changes in BCR-stimulated protein phosphorylation that were dependent on the activity of Syk. We identified and quantified over 13 000 unique phosphopeptides, with a large percentage dependent on Syk activity in BCR-stimulated B cells. Our results not only confirmed many known functions of Syk, but more importantly, suggested many novel roles, including in the ubiquitin proteasome pathway, that warrant further exploration. PMID:24905233
GM-CSF: An Immune Modulatory Cytokine that can Suppress Autoimmunity
Bhattacharya, Palash; Thiruppathi, Muthusamy; Elshabrawy, Hatem A.; Alharshawi, Khaled; Kumar, Prabhakaran; Prabhakar, Bellur S.
2015-01-01
GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases like Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance. PMID:26113402
Protein C receptor stimulates multiple signaling pathways in breast cancer cells.
Wang, Daisong; Liu, Chunye; Wang, Jingqiang; Jia, Yingying; Hu, Xin; Jiang, Hai; Shao, Zhi-Ming; Zeng, Yi Arial
2018-01-26
The protein C receptor (PROCR) has emerged as a stem cell marker in several normal tissues and has also been implicated in tumor progression. However, the functional role of PROCR and the signaling mechanisms downstream of PROCR remain poorly understood. Here, we dissected the PROCR signaling pathways in breast cancer cells. Combining protein array, knockdown, and overexpression methods, we found that PROCR concomitantly activates multiple pathways. We also noted that PROCR-dependent ERK and PI3k-Akt-mTOR signaling pathways proceed through Src kinase and transactivation of insulin-like growth factor 1 receptor (IGF-1R). These pathway activities led to the accumulation of c-Myc and cyclin D1. On the other hand, PROCR-dependent RhoA-ROCK-p38 signaling relied on coagulation factor II thrombin receptor (F2R). We confirmed these findings in primary cells isolated from triple-negative breast cancer-derived xenografts (PDX) that have high expression of PROCR. To the best our knowledge, this is the first comprehensive study of PROCR signaling in breast cancer cells, and its findings also shed light on the molecular mechanisms of PROCR in stem cells in normal tissue. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Doloff, Joshua C.; Veiseh, Omid; Vegas, Arturo J.; Tam, Hok Hei; Farah, Shady; Ma, Minglin; Li, Jie; Bader, Andrew; Chiu, Alan; Sadraei, Atieh; Aresta-Dasilva, Stephanie; Griffin, Marissa; Jhunjhunwala, Siddharth; Webber, Matthew; Siebert, Sean; Tang, Katherine; Chen, Michael; Langan, Erin; Dholokia, Nimit; Thakrar, Raj; Qi, Meirigeng; Oberholzer, Jose; Greiner, Dale L.; Langer, Robert; Anderson, Daniel G.
2017-01-01
Host recognition and immune-mediated foreign body response (FBR) to biomaterials can compromise the performance of implanted medical devices. To identify key cell and cytokine targets, here we perform in-depth systems analysis of innate and adaptive immune system responses to implanted biomaterials in rodents and non-human primates. While macrophages are indispensable to the fibrotic cascade, surprisingly neutrophils and complement are not. Macrophages, via CXCL13, lead to downstream B cell recruitment, which further potentiated fibrosis, as confirmed by B cell knock out and CXCL13 neutralization. Interestingly, Colony Stimulating Factor-1 Receptor (CSF1R) is significantly increased following implantation of multiple biomaterial classes: ceramic, polymer, and hydrogel. Its inhibition, like macrophage depletion, leads to complete loss of fibrosis, but spares other macrophage functions such as wound healing, ROS production, and phagocytosis. Our results indicate targeting CSF1R may allow for a more selective method of fibrosis inhibition, and improve biomaterial biocompatibility without the need for broad immunosuppression. PMID:28319612
NASA Astrophysics Data System (ADS)
Doloff, Joshua C.; Veiseh, Omid; Vegas, Arturo J.; Tam, Hok Hei; Farah, Shady; Ma, Minglin; Li, Jie; Bader, Andrew; Chiu, Alan; Sadraei, Atieh; Aresta-Dasilva, Stephanie; Griffin, Marissa; Jhunjhunwala, Siddharth; Webber, Matthew; Siebert, Sean; Tang, Katherine; Chen, Michael; Langan, Erin; Dholokia, Nimit; Thakrar, Raj; Qi, Meirigeng; Oberholzer, Jose; Greiner, Dale L.; Langer, Robert; Anderson, Daniel G.
2017-06-01
Host recognition and immune-mediated foreign body response to biomaterials can compromise the performance of implanted medical devices. To identify key cell and cytokine targets, here we perform in-depth systems analysis of innate and adaptive immune system responses to implanted biomaterials in rodents and non-human primates. While macrophages are indispensable to the fibrotic cascade, surprisingly neutrophils and complement are not. Macrophages, via CXCL13, lead to downstream B cell recruitment, which further potentiated fibrosis, as confirmed by B cell knockout and CXCL13 neutralization. Interestingly, colony stimulating factor-1 receptor (CSF1R) is significantly increased following implantation of multiple biomaterial classes: ceramic, polymer and hydrogel. Its inhibition, like macrophage depletion, leads to complete loss of fibrosis, but spares other macrophage functions such as wound healing, reactive oxygen species production and phagocytosis. Our results indicate that targeting CSF1R may allow for a more selective method of fibrosis inhibition, and improve biomaterial biocompatibility without the need for broad immunosuppression.
Guo, Shanshan; Qiu, Peiju; Xu, Guang; Wu, Xian; Dong, Ping; Yang, Guanpin; Zheng, Jinkai; McClements, David Julian; Xiao, Hang
2012-01-01
Inflammation plays important roles in initiation and progress of many diseases including cancers in multiple organ sites. Herein, we investigated the anti-inflammatory effects of two dietary compounds, nobiletin (NBN) and sulforaphane (SFN) in combination. Non-cytotoxic concentrations of NBN, SFN, and their combinations were studied in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The results showed that combined NBN and SFN treatments produced much stronger inhibitory effects on the production of nitric oxide (NO) than NBN or SFN alone at higher concentrations. These enhanced inhibitory effects were synergistic based on the isobologram analysis. Western blot analysis showed that combined NBN and SFN treatments synergistically decreased iNOS and COX-2 protein expression levels and induced heme oxygenase-1 (HO-1) protein expression. Real-time PCR analysis indicated that low doses of NBN and SFN in combination significantly suppressed LPS-induced upregulation of IL-1 mRNA levels, and synergistically increased HO-1 mRNA levels. Overall our results demonstrated that NBN and SFN in combination produced synergistic effects in inhibiting LPS-induced inflammation in RAW 264.7 cells. PMID:22335189
Bianchini, L; Nanda, A; Wasan, S; Grinstein, S
1994-01-01
Activated phagocytes undergo a massive burst of metabolic acid generation, yet must be able to maintain their cytosolic pH (pHi) within physiological limits. Peroxides of vanadate (V(4+)-OOH), potent inhibitors of phosphotyrosine phosphatases, have recently been shown to produce activation of the respiratory burst in HL60 granulocytes. We therefore investigated the effects of V(4+)-OOH on pHi homoeostasis in HL60 granulocytes, using a pH-sensitive fluorescent dye. V(4+)-OOH stimulation induced a biphasic pH change: a transient cytosolic acidification followed by a significant alkalinization. The initial acidification was prevented by inhibition of the NADPH oxidase and was absent in undifferentiated cells lacking oxidase activity. Analysis of the alkalinization phase demonstrated the involvement of the Na+/H+ antiporter, and also provided evidence for activation of two alternative H(+)-extrusion pathways: a bafilomycin-sensitive component, likely reflecting vacuolar-type H(+)-ATPase activity, and a Zn(2+)-sensitive H(+)-conductive pathway. Our results indicate that V(4+)-OOH stimulation not only activated the NADPH oxidase but concomitantly stimulated H(+)-extrusion pathways, enabling the cells to compensate for the massive production of intracellular H+ associated with the respiratory burst. PMID:8043000
Hsuan, S L; Kannan, M S; Jeyaseelan, S; Prakash, Y S; Malazdrewich, C; Abrahamsen, M S; Sieck, G C; Maheswaran, S K
1999-05-01
In bovine alveolar macrophages (BAMs), exposure to leukotoxin (Lkt) and endotoxin (LPS) from Pasteurella haemolytica results in expression of inflammatory cytokine genes and intracellular calcium ([Ca2+]i) elevation. Leukotoxin from P. haemolytica interacts only with leukocytes and platelets from ruminant species. Upregulation of cytokine genes in different cells by LPS involves activation of the transcription factor NF-kappaB (NF-kappaB), resulting in its translocation from the cytoplasm to the nucleus. Using immunocytochemical staining and confocal imaging, we studied whether NF-kappaB activation represents a common mechanism for the expression of multiple cytokine genes in BAMs (Lkt-susceptible cells) stimulated with Lkt and LPS. Bovine pulmonary artery endothelial cells and porcine alveolar macrophages were used as nonsusceptible cells. The role of Ca2+ and tyrosine kinases in NF-kappaB activation and inflammatory cytokine gene expression was studied, since an inhibitor of tyrosine kinases attenuates LPS-induced [Ca2+]i elevation in BAMs. The results are summarized as follows: (a) Lkt induced NF-kappaB activation and [Ca2+]i elevation only in BAMs, while LPS effects were demonstrable in all cell types; (b) chelation of [Ca2+]i blocked NF-kappaB activation and IL-1beta, TNFalpha, and IL-8 mRNA expression; and (c) tyrosine kinase inhibitor herbimycin A blocked expression of all three cytokine genes in BAMs stimulated with Lkt, while only the expression of IL-1beta was blocked in BAMs stimulated with LPS. We conclude that cytokine gene expression in BAMs requires NF-kappaB activation and [Ca2+]i elevation, and Lkt effects exhibit cell type- and species specificity. Copyright 1999 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanjundan, Meera; Cheng, Kwai Wa; Zhang, Fan
2008-07-18
High-resolution array comparative genomic hybridization of 235 serous epithelial ovarian cancers demonstrated a regional increase at 3q26.2 encompassing SnoN/SkiL, a coregulator of SMAD/TGF{beta} signaling. SnoN RNA transcripts were elevated in {approx}80% of advanced stage serous epithelial ovarian cancers. In both immortalized normal (TIOSE) and ovarian carcinoma cell lines (OVCA), SnoN RNA levels were increased by TGF{beta} stimulation and altered by LY294002 and JNK II inhibitor treatment suggesting that the PI3K and JNK signaling pathways may regulate TGF{beta}-induced increases in SnoN RNA. In TIOSE, SnoN protein levels were reduced 15min post TGF{beta}-stimulation, likely by proteosome-mediated degradation. In contrast, in OVCA, SnoNmore » levels were elevated 3h post-stimulation potentially as a result of inhibition of the proteosome. To elucidate the role of SnoN in ovarian tumorigenesis, we explored the effects of both increasing and decreasing SnoN levels. In both TIOSE and OVCA, SnoN siRNA decreased cell growth between 20 and 50% concurrent with increased p21 levels. In TIOSE, transient expression of SnoN repressed TGF{beta} induction of PAI-1 promoters with little effect on the p21 promoter or resultant cell growth. In contrast to the effects of transient expression, stable expression of SnoN in TIOSE led to growth arrest through induction of senescence. Collectively, these results implicate SnoN levels in multiple roles during ovarian carcinogenesis: promoting cellular proliferation in ovarian cancer cells and as a positive mediator of cell cycle arrest and senescence in non-transformed ovarian epithelial cells.« less
Peixoto, António; Evaristo, César; Munitic, Ivana; Monteiro, Marta; Charbit, Alain; Rocha, Benedita; Veiga-Fernandes, Henrique
2007-01-01
To study in vivo CD8 T cell differentiation, we quantified the coexpression of multiple genes in single cells throughout immune responses. After in vitro activation, CD8 T cells rapidly express effector molecules and cease their expression when the antigen is removed. Gene behavior after in vivo activation, in contrast, was quite heterogeneous. Different mRNAs were induced at very different time points of the response, were transcribed during different time periods, and could decline or persist independently of the antigen load. Consequently, distinct gene coexpression patterns/different cell types were generated at the various phases of the immune responses. During primary stimulation, inflammatory molecules were induced and down-regulated shortly after activation, generating early cells that only mediated inflammation. Cytotoxic T cells were generated at the peak of the primary response, when individual cells simultaneously expressed multiple killer molecules, whereas memory cells lost killer capacity because they no longer coexpressed killer genes. Surprisingly, during secondary responses gene transcription became permanent. Secondary cells recovered after antigen elimination were more efficient killers than cytotoxic T cells present at the peak of the primary response. Thus, primary responses produced two transient effector types. However, after boosting, CD8 T cells differentiate into long-lived killer cells that persist in vivo in the absence of antigen. PMID:17485515
Illegitimate WNT signaling promotes proliferation of multiple myeloma cells
Derksen, Patrick W. B.; Tjin, Esther; Meijer, Helen P.; Klok, Melanie D.; Mac Gillavry, Harold D.; van Oers, Marinus H. J.; Lokhorst, Henk M.; Bloem, Andries C.; Clevers, Hans; Nusse, Roel; van der Neut, Ronald; Spaargaren, Marcel; Pals, Steven T.
2004-01-01
The unrestrained growth of tumor cells is generally attributed to mutations in essential growth control genes, but tumor cells are also influenced by signals from the environment. In multiple myeloma (MM), the factors and signals coming from the bone marrow microenvironment are possibly even essential for the growth of the tumor cells. As targets for intervention, these signals may be equally important as mutated oncogenes. Given their oncogenic potential, WNT signals form a class of paracrine growth factors that could act to influence MM cell growth. In this paper, we report that MM cells have hallmarks of active WNT signaling, whereas the cells have not undergone detectable mutations in WNT signaling genes such as adenomatous polyposis coli and β-catenin (CTNNB1). We show that the malignant MM plasma cells overexpress β-catenin, including its N-terminally unphosphorylated form, suggesting active β-catenin/T cell factor-mediated transcription. Further accumulation and nuclear localization of β-catenin, and/or increased cell proliferation, was achieved by stimulation of WNT signaling with either Wnt3a, LiCl, or the constitutively active S33Y mutant of β-catenin. In contrast, by blocking WNT signaling by dominant-negative T cell factor, we can interfere with the growth of MM cells. We therefore suggest that MM cells are dependent on an active WNT signal, which may have important implications for the management of this incurable form of cancer. PMID:15067127
Sumitomo, M; Shen, R; Walburg, M; Dai, J; Geng, Y; Navarro, D; Boileau, G; Papandreou, C N; Giancotti, F G; Knudsen, B; Nanus, D M
2000-12-01
Neutral endopeptidase 24.11 (NEP, CD10) is a cell-surface enzyme expressed by prostatic epithelial cells that cleaves and inactivates neuropeptides implicated in the growth of androgen-independent prostate cancer (PC). NEP substrates such as bombesin and endothelin-1 induce cell migration. We investigated the mechanisms of NEP regulation of cell migration in PC cells, including regulation of phosphorylation on tyrosine of focal adhesion kinase (FAK). Western analyses and cell migration assays revealed an inverse correlation between NEP expression and the levels of FAK phosphorylation and cell migration in PC cell lines. Constitutively expressed NEP, recombinant NEP, and induced NEP expression using a tetracycline-repressive expression system inhibited bombesin- and endothelin-1-stimulated FAK phosphorylation and cell migration. This results from NEP-induced inhibition of neuropeptide-stimulated association of FAK with cSrc protein. Expression of a mutated catalytically inactive NEP protein also resulted in partial inhibition of FAK phosphorylation and cell migration. Coimmunoprecipitation experiments show that NEP associates with tyrosine-phosphorylated Lyn kinase, which then binds the p85 subunit of phosphatidylinositol 3-kinase (PI3-K) resulting in an NEP-Lyn-PI3-K protein complex. This complex competitively blocks FAK-PI3-K interaction, suggesting that NEP protein inhibits cell migration via a protein-protein interaction independent of its catalytic function. These experiments demonstrate that NEP can inhibit FAK phosphorylation on tyrosine and PC cell migration through multiple pathways and suggest that cell migration which contributes to invasion and metastases in PC cells can be regulated by NEP.
Sumitomo, Makoto; Shen, Ruoqian; Walburg, Marc; Dai, Jie; Geng, Yiping; Navarro, Daniel; Boileau, Guy; Papandreou, Christos N.; Giancotti, Filippo G.; Knudsen, Beatrice; Nanus, David M.
2000-01-01
Neutral endopeptidase 24.11 (NEP, CD10) is a cell-surface enzyme expressed by prostatic epithelial cells that cleaves and inactivates neuropeptides implicated in the growth of androgen-independent prostate cancer (PC). NEP substrates such as bombesin and endothelin-1 induce cell migration. We investigated the mechanisms of NEP regulation of cell migration in PC cells, including regulation of phosphorylation on tyrosine of focal adhesion kinase (FAK). Western analyses and cell migration assays revealed an inverse correlation between NEP expression and the levels of FAK phosphorylation and cell migration in PC cell lines. Constitutively expressed NEP, recombinant NEP, and induced NEP expression using a tetracycline-repressive expression system inhibited bombesin- and endothelin-1–stimulated FAK phosphorylation and cell migration. This results from NEP-induced inhibition of neuropeptide-stimulated association of FAK with cSrc protein. Expression of a mutated catalytically inactive NEP protein also resulted in partial inhibition of FAK phosphorylation and cell migration. Coimmunoprecipitation experiments show that NEP associates with tyrosine-phosphorylated Lyn kinase, which then binds the p85 subunit of phosphatidylinositol 3-kinase (PI3-K) resulting in an NEP-Lyn-PI3-K protein complex. This complex competitively blocks FAK-PI3-K interaction, suggesting that NEP protein inhibits cell migration via a protein-protein interaction independent of its catalytic function. These experiments demonstrate that NEP can inhibit FAK phosphorylation on tyrosine and PC cell migration through multiple pathways and suggest that cell migration which contributes to invasion and metastases in PC cells can be regulated by NEP. PMID:11104793
Mizutani, Taeko; Mori, Ryota; Hirayama, Misaki; Sagawa, Yuki; Shimizu, Kenji; Okano, Yuri; Masaki, Hitoshi
2016-12-01
Sodium lauryl sulfate (SLS), a representative anionic surfactant, is well-known to induce rough skin following single or multiple topical applications. The mechanism by which SLS induces rough skin is thought to result from the disruption of skin moisture function consisting of NMF and epidermal lipids. However, a recent study demonstrated that topically applied SLS easily penetrates into the living cell layers of the epidermis, which suggests that physiological alterations of keratinocytes might cause the SLS-induced rough skin. This study was conducted to clarify the effects of SLS on keratinocytes to demonstrate the contribution of SLS to the induction of rough skin. In addition, the potentials of other widely used anionic surfactants to induce rough skin were evaluated. HaCaT keratinocytes treated with SLS had increased levels of intracellular ROS and IL-1α secretion. Application of SLS on the surface of a reconstructed epidermal equivalent also showed the increased generation of ROS. Further, SLS-treated cells showed an increase of intracellular calpain activity associated with the increase of intracellular Ca 2+ concentration. The increase of intracellular ROS was abolished by the addition of BAPTA-AM, a specific chelator of Ca 2+ . In addition, IL-1α also stimulated ROS generation by HaCaT keratinocytes. An ESR spin-labeling study demonstrated that SLS increased the fluidity of membranes of liposomes and cells. Together, those results indicate that SLS initially interacts with cell membranes, which results in the elevation of intracellular Ca 2+ influx. Ca 2+ stimulates the secretion of IL-1α due to the activation of calpain, and also increases ROS generation. IL-1α also stimulates ROS generation by HaCaT keratinocytes. We conclude from these results that the elevation of intracellular ROS levels is one of the causes of SLS-induced rough skin. Finally, among the other anionic surfactants tested, sodium lauryl phosphate has less potential to induce rough skin because of its lower generation of ROS.
Wartlick, Friedrich; Bopp, Anita; Henninger, Christian; Fritz, Gerhard
2013-12-01
Here, we investigated the influence of Rac family small GTPases on mechanisms of the DNA damage response (DDR) stimulated by topoisomerase II poisons. To this end, we examined the influence of the Rac-specific small molecule inhibitor EHT1864 on Ser139 phosphorylation of histone H2AX, a widely used marker of the DDR triggered by DNA double-strand breaks. EHT1864 attenuated the doxorubicin-stimulated DDR in a subset of cell lines tested, including HepG2 hepatoma cells. EHT1864 reduced the level of DNA strand breaks and increased viability following treatment of HepG2 cells with topo II poisons. Protection by EHT1864 was observed in both p53 wildtype (HepG2) and p53 deficient (Hep3B) human hepatoma cells and, furthermore, remained unaffected upon pharmacological inhibition of p53 in HepG2. Apparently, the impact of Rac on the DDR is independent of p53. Protection from doxorubicin-induced DNA damage by EHT1864 comprises both S and G2 phase cells. The inhibitory effect of EHT1864 on doxorubicin-stimulated DDR was mimicked by pharmacological inhibition of various protein kinases, including JNK, ERK, PI3K, PAK and CK1. EHT1864 and protein kinase inhibitors also attenuated the formation of the topo II-DNA cleavable complex. Moreover, EHT1864 mitigated the constitutive phosphorylation of topoisomerase IIα at positions S1106, S1213 and S1247. Doxorubicin transport, nuclear import/export of topoisomerase II and Hsp90-related mechanisms are likely not of relevance for doxorubicin-stimulated DDR impaired by EHT1864. We suggest that multiple kinase-dependent but p53- and heat shock protein-independent Rac-regulated nuclear mechanisms are required for activation of the DDR following treatment with topo II poisons. © 2013.
PPAR-γ contributes to immunity by cancer vaccines that secrete GM-CSF.
Goyal, Girija; Wong, Karrie; Nirschl, Christopher J; Souders, Nicholas; Neuberg, Donna; Anandasabapathy, Niroshana; Dranoff, Glenn
2018-04-18
Peroxisome proliferator activated receptor-γ (PPARγ) is a lipid-activated nuclear receptor that promotes immune tolerance through effects on macrophages, dendritic cells (DCs), and regulatory T cells (Tregs). Granulocyte-macrophage colony stimulating factor (GM-CSF) induces PPARγ expression in multiple myeloid cell types. GM-CSF contributes to both immune tolerance and protection, but the role of PPARγ in these pathways is poorly understood. Here we reveal an unexpected stimulatory role for PPARγ in the generation of antitumor immunity with irradiated, GM-CSF-secreting tumor-cell vaccines (GVAX). Mice harboring a deletion of PPARγ in lysozyme M (LysM)-expressing myeloid cells showed a decreased ratio of CD8+ T effectors to Tregs and impaired tumor rejection with GVAX. Diminished tumor protection was associated with altered dendritic cell responses and increased production of the Treg attracting chemokines CCL17 and CLL22. Correspondingly, the systemic administration of PPARγ agonists to vaccinated mice elevated the CD8+ T effector to Treg ratio through effects on myeloid cells and intensified the antitumor activity of GVAX combined with cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) antibody blockade. PPARγ agonists similarly attenuated Treg induction and decreased CCL17 and CCL22 levels in cultures of human peripheral blood mononuclear cells (PBMCs) with GM-CSF-secreting tumor cells. Together, these results highlight a key role for myeloid cell PPARγ in GM-CSF stimulated antitumor immunity and suggest that PPARγ agonists might be useful in cancer immunotherapy. Copyright ©2018, American Association for Cancer Research.
Vilalta, Marta; Brune, Jourdan; Rafat, Marjan; Soto, Luis; Graves, Edward E
2018-03-13
Recently it has been observed in preclinical models that that radiation enhances the recruitment of circulating tumor cells to primary tumors, and results in tumor regrowth after treatment. This process may have implications for clinical radiotherapy, which improves control of a number of tumor types but which, despite continued dose escalation and aggressive fractionation, is unable to fully prevent local recurrences. By irradiating a single tumor within an animal bearing multiple lesions, we observed an increase in tumor cell migration to irradiated and unirradiated sites, suggesting a systemic component to this process. Previous work has identified the cytokine GM-CSF, produced by tumor cells following irradiation, as a key effector of this process. We evaluated the ability of systemic injections of a PEGylated form of GM-CSF to stimulate tumor cell migration. While increases in invasion and migration were observed for tumor cells in a transwell assay, we found that daily injections of PEG-GM-CSF to tumor-bearing animals did not increase migration of cells to tumors, despite the anticipated changes in circulating levels of granulocytes and monocytes produced by this treatment. Combination of PEG-GM-CSF treatment with radiation also did not increase tumor cell migration. These findings suggest that clinical use of GM-CSF to treat neutropenia in cancer patients will not have negative effects on the aggressiveness of residual cancer cells. However, further work is needed to characterize the mechanism by which GM-CSF facilitates systemic recruitment of trafficking tumor cells to tumors.
Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos
2015-03-13
Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.
T-Tubular Electrical Defects Contribute to Blunted β-Adrenergic Response in Heart Failure.
Crocini, Claudia; Coppini, Raffaele; Ferrantini, Cecilia; Yan, Ping; Loew, Leslie M; Poggesi, Corrado; Cerbai, Elisabetta; Pavone, Francesco S; Sacconi, Leonardo
2016-09-03
Alterations of the β-adrenergic signalling, structural remodelling, and electrical failure of T-tubules are hallmarks of heart failure (HF). Here, we assess the effect of β-adrenoceptor activation on local Ca(2+) release in electrically coupled and uncoupled T-tubules in ventricular myocytes from HF rats. We employ an ultrafast random access multi-photon (RAMP) microscope to simultaneously record action potentials and Ca(2+) transients from multiple T-tubules in ventricular cardiomyocytes from a HF rat model of coronary ligation compared to sham-operated rats as a control. We confirmed that β-adrenergic stimulation increases the frequency of Ca(2+) sparks, reduces Ca(2+) transient variability, and hastens the decay of Ca(2+) transients: all these effects are similarly exerted by β-adrenergic stimulation in control and HF cardiomyocytes. Conversely, β-adrenergic stimulation in HF cells accelerates a Ca(2+) rise exclusively in the proximity of T-tubules that regularly conduct the action potential. The delayed Ca(2+) rise found at T-tubules that fail to conduct the action potential is instead not affected by β-adrenergic signalling. Taken together, these findings indicate that HF cells globally respond to β-adrenergic stimulation, except at T-tubules that fail to conduct action potentials, where the blunted effect of the β-adrenergic signalling may be directly caused by the lack of electrical activity.
Integrin activation and focal complex formation in cardiac hypertrophy.
Laser, M; Willey, C D; Jiang, W; Cooper, G; Menick, D R; Zile, M R; Kuppuswamy, D
2000-11-10
Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.
Integrin activation and focal complex formation in cardiac hypertrophy
NASA Technical Reports Server (NTRS)
Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.
2000-01-01
Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.
Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Choi, Yun-Hyeok; Hong, Seong Su; Suh, Hwa-Jin; Park, Woncheol; Boo, Yong Chool
2016-07-01
Resveratrol is known to inhibit cellular melanin synthesis by multiple mechanisms. Glycolic acid (GA) is used in skin care products for its excellent skin penetration. The purpose of this study was to examine the anti-melanogenic effects of resveratryl triglycolate (RTG), a novel hybrid compound of resveratrol and GA, in comparison with resveratrol, GA, resveratryl triacetate (RTA) and arbutin. Resveratrol, RTG, and RTA inhibited the catalytic activity human tyrosinase (TYR) more potently than arbutin or GA did. Their cytotoxic and anti-melanogenic effects were examined using murine melanoma B16/F10 cells and human epidermal melanocytes (HEMs). The cytotoxicity of RTG was similar to that of resveratrol and RTA. RTG at 3-10 μM decreased melanin levels and cellular TYR activities in α-melanocyte-stimulating hormone-stimulated B16/F10 cells, and L-tyrosine-stimulated HEMs. RTG also suppressed mRNA and protein expression of TYR, tyrosinase-related protein 1, L-3,4-dihydroxyphenylalanine chrome tautomerase, and microphthalmia-associated transcription factor (MITF) in HEMs stimulated with L-tyrosine. This study suggests that, like resveratrol and RTA, RTG can attenuate cellular melanin synthesis effectively through the suppression of MITF-dependent expression of melanogenic enzymes and the inhibition of catalytic activity of TYR enzyme. RTG therefore has potential for use as a cosmeceutical ingredient for skin whitening.
Ramalingam, Latha; Oh, Eunjin; Thurmond, Debbie C.
2012-01-01
The insulin signaling pathway regulates whole-body glucose homeostasis by transducing extracellular signals from the insulin receptor (IR) to downstream intracellular targets, thus coordinating a multitude of biological functions. Dysregulation of IR or its signal transduction is associated with insulin resistance, which may culminate in type 2 diabetes (T2D). Following initial stimulation of IR, insulin signaling diverges into different pathways, activating multiple substrates which have roles in various metabolic and cellular processes. The integration of multiple pathways arising from IR activation continues to expand as new IR substrates are identified and characterized. Accordingly, our review will focus on roles for IR substrates as they pertain to three primary areas: Metabolism/glucose uptake, Mitogenesis/growth, and Aging/Longevity. While IR functions in a seemingly pleotropic manner in many cell types, through these three main roles in fat and skeletal muscle cells, IR multi-tasks to regulate whole-body glucose homeostasis to impact healthspan and lifespan. PMID:23052216
G protein-coupled receptors as therapeutic targets for multiple sclerosis
Du, Changsheng; Xie, Xin
2012-01-01
G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spectrum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated demyelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or pharmacological manipulations. Hopefully some of these findings will lead to the development of novel therapies for MS in the near future. PMID:22664908
Lee, John Hwan; Lee, Eun-Soo; Bae, Il-Hong; Hwang, Jeong-Ah; Kim, Se-Hwa; Kim, Dae-Yong; Park, Nok-Hyun; Rho, Ho Sik; Kim, Yong Jin; Oh, Seong-Geun; Lee, Chang Seok
2017-01-01
Excessive melanogenesis often causes unaesthetic hyperpigmentation. In a previous report, our group introduced a newly synthesized depigmentary agent, Melasolv™ (3,4,5-trimethoxycinnamate thymol ester). In this study, we demonstrated the significant whitening efficacy of Melasolv using various melanocytes and human skin equivalents as in vitro experimental systems. The depigmentary effect of Melasolv was tested in melan-a cells (immortalized normal murine melanocytes), α-melanocyte-stimulating hormone (α-MSH)-stimulated B16 murine melanoma cells, primary normal human melanocytes (NHMs), and human skin equivalent (MelanoDerm). The whitening efficacy of Melasolv was further demonstrated by photography, time-lapse microscopy, Fontana-Masson (F&M) staining, and 2-photon microscopy. Melasolv significantly inhibited melanogenesis in the melan-a and α-MSH-stimulated B16 cells. In human systems, Melasolv also clearly showed a whitening effect in NHMs and human skin equivalent, reflecting a decrease in melanin content. F&M staining and 2-photon microscopy revealed that Melasolv suppressed melanin transfer into multiple epidermal layers from melanocytes as well as melanin synthesis in human skin equivalent. Our study showed that Melasolv clearly exerts a whitening effect on various melanocytes and human skin equivalent. These results suggest the possibility that Melasolv can be used as a depigmentary agent to treat pigmentary disorders as well as an active ingredient in cosmetics to increase whitening efficacy. © 2017 S. Karger AG, Basel.
Responds of Bone Cells to Microgravity: Ground-Based Research
NASA Astrophysics Data System (ADS)
Zhang, Jian; Li, Jingbao; Xu, Huiyun; Yang, Pengfei; Xie, Li; Qian, Airong; Zhao, Yong; Shang, Peng
2015-11-01
Severe loss of bone occurs due to long-duration spaceflight. Mechanical loading stimulates bone formation, while bone degradation happens under mechanical unloading. Bone remodeling is a dynamic process in which bone formation and bone resorption are tightly coupled. Increased bone resorption and decreased bone formation caused by reduced mechanical loading, generally result in disrupted bone remodeling. Bone remodeling is orchestrated by multiple bone cells including osteoblast, osteocyte, osteoclast and mesenchymal stem cell. It is yet not clear that how these bone cells sense altered gravity, translate physical stimulus into biochemical signals, and then regulate themselves structurally and functionally. In this paper, studies elucidating the bioeffects of microgravity on bone cells (osteoblast, osteocyte, osteoclast, mesenchymal stem cell) using various platforms including spaceflight and ground-based simulated microgravity were summarized. Promising gravity-sensitive signaling pathways and protein molecules were proposed.
Terracina, Krista P; Graham, Laura J; Payne, Kyle K; Manjili, Masoud H; Baek, Annabel; Damle, Sheela R; Bear, Harry D
2016-09-01
Adoptive T cell immunotherapy is a promising approach to cancer treatment that currently has limited clinical applications. DNA methyltransferase inhibitors (DNAMTi) have known potential to affect the immune system through multiple mechanisms that could enhance the cytotoxic T cell responses, including: upregulation of tumor antigen expression, increased MHC class I expression, and blunting of myeloid derived suppressor cells (MDSCs) expansion. In this study, we have investigated the effect of combining the DNAMTi, decitabine, with adoptive T cell immunotherapy in the murine 4T1 mammary carcinoma model. We found that expression of neu, MHC class I molecules, and several murine cancer testis antigens (CTA) was increased by decitabine treatment of 4T1 cells in vitro. Decitabine also increased expression of multiple CTA in two human breast cancer cell lines. Decitabine-treated 4T1 cells stimulated greater IFN-gamma release from tumor-sensitized lymphocytes, implying increased immunogenicity. Expansion of CD11b + Gr1 + MDSC in 4T1 tumor-bearing mice was significantly diminished by decitabine treatment. Decitabine treatment improved the efficacy of adoptive T cell immunotherapy in mice with established 4T1 tumors, with greater inhibition of tumor growth and an increased cure rate. Decitabine may have a role in combination with existing and emerging immunotherapies for breast cancer.
Notch signaling drives multiple myeloma induced osteoclastogenesis
Colombo, Michela; Thümmler, Katja; Mirandola, Leonardo; Garavelli, Silvia; Todoerti, Katia; Apicella, Luana; Lazzari, Elisa; Lancellotti, Marialuigia; Platonova, Natalia; Akbar, Moeed; Chiriva-Internati, Maurizio; Soutar, Richard; Neri, Antonino; Goodyear, Carl S.; Chiaramonte, Raffaella
2014-01-01
Multiple myeloma (MM) is closely associated with bone destruction. Once migrated to the bone marrow, MM cells unbalance bone formation and resorption via the recruitment and maturation of osteoclast precursors. The Notch pathway plays a key role in different types of cancer and drives several biological processes relevant in MM, including cell localization within the bone marrow, proliferation, survival and pharmacological resistance. Here we present evidences that MM can efficiently drive osteoclastogenesis by contemporaneously activating Notch signaling on tumor cells and osteoclasts through the aberrant expression of Notch ligands belonging to the Jagged family. Active Notch signaling in MM cells induces the secretion of the key osteoclastogenic factor, RANKL, which can be boosted in the presence of stromal cells. In turn, MM cells-derived RANKL causes the upregulation of its receptor, RANK, and Notch2 in pre-osteoclasts. Notch2 stimulates osteoclast differentiation by promoting autocrine RANKL signaling. Finally, MM cells through Jagged ligands expression can also activate Notch signaling in pre-osteoclast by direct contact. Such synergism between tumor cells and pre-osteoclasts in MM-induced osteoclastogenesis can be disrupted by silencing tumor-derived Jagged1 and 2. These results make the Jagged ligands new promising therapeutic targets in MM to contrast bone disease and the associated co-morbidities. PMID:25257302
Phosphoproteomics analyses show subnetwork systems in T-cell receptor signaling.
Hatano, Atsushi; Matsumoto, Masaki; Nakayama, Keiichi I
2016-10-01
A key issue in the study of signal transduction is how multiple signaling pathways are systematically integrated into the cell. We have now performed multiple phosphoproteomics analyses focused on the dynamics of the T-cell receptor (TCR) signaling network and its subsystem mediated by the Ca 2+ signaling pathway. Integration of these phosphoproteomics data sets and extraction of components of the TCR signaling network dependent on Ca 2+ signaling showed unexpected phosphorylation kinetics for candidate substrates of the Ca 2+ -dependent phosphatase calcineurin (CN) during TCR stimulation. Detailed characterization of the TCR-induced phosphorylation of a novel CN substrate, Itpkb, showed that phosphorylation of this protein is regulated by both CN and the mitogen-activated protein kinase Erk in a competitive manner. Phosphorylation of additional CN substrates was also found to be regulated by Erk and CN in a similar manner. The combination of multiple phosphoproteomics approaches thus showed two major subsystems mediated by Erk and CN in the TCR signaling network, with these subsystems regulating the phosphorylation of a group of proteins in a competitive manner. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Gamabufotalin triggers c-Myc degradation via induction of WWP2 in multiple myeloma cells.
Yu, Zhenlong; Li, Tao; Wang, Chao; Deng, Sa; Zhang, Baojing; Huo, Xiaokui; Zhang, Bo; Wang, Xiaobo; Zhong, Yuping; Ma, Xiaochi
2016-03-29
Deciding appropriate therapy for multiple myeloma (MM) is challenging because of the occurrence of multiple chromosomal changes and the fatal nature of the disease. In the current study, gamabufotalin (GBT) was isolated from toad venom, and its tumor-specific cytotoxicity was investigated in human MM cells. We found GBT inhibited cell growth and induced apoptosis with the IC50 values <50 nM. Mechanistic studies using functional approaches identified GBT as an inhibitor of c-Myc. Further analysis showed that GBT especially evoked the ubiquitination and degradation of c-Myc protein, thereby globally repressing the expression of c-Myc target genes. GBT treatment inhibited ERK and AKT signals, while stimulating the activation of JNK cascade. An E3 ubiquitin-protein ligase, WWP2, was upregulated following JNK activation and played an important role in c-Myc ubiquitination and degradation through direct protein-protein interaction. The antitumor effect of GBT was validated in a xenograft mouse model and the suppression of MM-induced osteolysis was verified in a SCID-hu model in vivo. Taken together, our study identified the potential of GBT as a promising therapeutic agent in the treatment of MM.
Slepchenko, Kira G; Li, Yang V
2012-01-01
Zinc (Zn(2+)) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30-60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.
Protein kinase inhibitors against malignant lymphoma
D’Cruz, Osmond J; Uckun, Fatih M
2013-01-01
Introduction Tyrosine kinases (TKs) are intimately involved in multiple signal transduction pathways regulating survival, activation, proliferation and differentiation of lymphoid cells. Deregulation or overexpression of specific oncogenic TKs is implicated in maintaining the malignant phenotype in B-lineage lymphoid malignancies. Several novel targeted TK inhibitors (TKIs) have recently emerged as active in the treatment of relapsed or refractory B-cell lymphomas that inhibit critical signaling pathways, promote apoptotic mechanisms or modulate the tumor microenvironment. Areas covered In this review, the authors summarize the clinical outcomes of newer TKIs in various B-cell lymphomas from published and ongoing clinical studies and abstracts from major cancer and hematology conferences. Expert opinion Multiple clinical trials have demonstrated that robust antitumor activity can be obtained with TKIs directed toward specific oncogenic TKs that are genetically deregulated in various subtypes of B-cell lymphomas. Clinical success of targeting TKIs is dependent upon on identifying reliable molecular and clinical markers associated with select cohorts of patients. Further understanding of the signaling pathways should stimulate the identification of novel molecular targets and expand the development of new therapeutic options and individualized therapies. PMID:23496343
Dura-Bernal, Salvador; Li, Kan; Neymotin, Samuel A.; Francis, Joseph T.; Principe, Jose C.; Lytton, William W.
2016-01-01
Neural stimulation can be used as a tool to elicit natural sensations or behaviors by modulating neural activity. This can be potentially used to mitigate the damage of brain lesions or neural disorders. However, in order to obtain the optimal stimulation sequences, it is necessary to develop neural control methods, for example by constructing an inverse model of the target system. For real brains, this can be very challenging, and often unfeasible, as it requires repeatedly stimulating the neural system to obtain enough probing data, and depends on an unwarranted assumption of stationarity. By contrast, detailed brain simulations may provide an alternative testbed for understanding the interactions between ongoing neural activity and external stimulation. Unlike real brains, the artificial system can be probed extensively and precisely, and detailed output information is readily available. Here we employed a spiking network model of sensorimotor cortex trained to drive a realistic virtual musculoskeletal arm to reach a target. The network was then perturbed, in order to simulate a lesion, by either silencing neurons or removing synaptic connections. All lesions led to significant behvaioral impairments during the reaching task. The remaining cells were then systematically probed with a set of single and multiple-cell stimulations, and results were used to build an inverse model of the neural system. The inverse model was constructed using a kernel adaptive filtering method, and was used to predict the neural stimulation pattern required to recover the pre-lesion neural activity. Applying the derived neurostimulation to the lesioned network improved the reaching behavior performance. This work proposes a novel neurocontrol method, and provides theoretical groundwork on the use biomimetic brain models to develop and evaluate neurocontrollers that restore the function of damaged brain regions and the corresponding motor behaviors. PMID:26903796
Pogrmic-Majkic, Kristina; Samardzija, Dragana; Fa, Svetlana; Hrubik, Jelena; Glisic, Branka; Kaisarevic, Sonja; Andric, Nebojsa
2014-11-01
Premature luteinization is a possible cause of infertility in women. It is currently unknown whether environmental chemicals can induce changes associated with premature luteinization. Using rat granulosa cells (GC) in vitro, we demonstrated that exposure to atrazine (ATR), a widely used herbicide, causes GC phenotype that resembles that of human premature luteinization. At the end of the 48-h stimulation with FSH, ATR-exposed GC showed (1) higher levels of progesterone, (2) overexpression of luteal markers (Star and Cyp11a1), and (3) an increase in progesterone:estradiol ratio above 1. Mechanistic experiments were conducted to understand the signaling events engaged by ATR that lead to this phenotype. Western blot analysis revealed prolonged phosphorylation of protein kinase B (AKT) and cAMP response element-binding protein (CREB) in ATR- and FSH-exposed GC. An increased level of ERK1/2-dependent transcriptional factor CCATT/enhancer-binding protein beta (CEBPB) was observed after 4 h of ATR exposure. Inhibitors of PI3K (wortmannin) and MEK (U0126) prevented ATR-induced rise in progesterone level and expression of luteal markers in FSH-stimulated GC. Atrazine intensified AKT and CEBPB signaling and caused Star overexpression in forskolin-stimulated GC but not in epidermal growth factor (EGF)-stimulated GC. In the presence of rolipram, a specific inhibitor of phosphodiesterase 4 (PDE4), ATR was not able to further elevate AKT phosphorylation, CEBPB protein level, and Star mRNA in FSH-stimulated GC, suggesting that ATR inhibits PDE4. Overall, this study showed that ATR acts as a FSH sensitizer leading to enhanced cAMP, AKT, and CEBPB signaling and progesterone biosynthesis, which promotes premature luteinization phenotype in GC. © 2014 by the Society for the Study of Reproduction, Inc.
Variables Affecting the Reporting of Pain Following an Acute Myocardial Infarction
1991-05-01
research found which investigated the phenomenon of unreported CP. The experience of pain is a highly complex human experience with a multiplicity of...occur, and is persistent (Greer & Hoyt, 1990). Nociceptive fibers have cell bodies in the spinal ganglia , which enter the dorsal horn posteriorly, and...via the spinothalamic pathway, and stimulate somatic motor neurons on the anterior horn, or preganglionic neurons of the autonomic nervous system in the
Activation of human B cells by phosphorothioate oligodeoxynucleotides.
Liang, H; Nishioka, Y; Reich, C F; Pisetsky, D S; Lipsky, P E
1996-01-01
To investigate the potential of DNA to elicit immune responses in man, we examined the capacity of a variety of oligodeoxynucleotides (ODNs) to stimulate highly purified T cell-depleted human peripheral blood B cells. Among 47 ODNs of various sequences tested, 12 phosphorothioate oligodeoxynucleotides (sODNs) induced marked B cell proliferation and Ig production. IL-2 augmented both proliferation and production of IgM, IgG, and IgA, as well as IgM anti-DNA antibodies, but was not necessary for B cell stimulation. Similarly, T cells enhanced stimulation, but were not necessary for B cell activation. After stimulation with the active sODNs, more than 95% of B cells expressed CD25 and CD86. In addition, B cells stimulated with sODNs expressed all six of the major immunoglobulin VH gene families. These results indicate that the human B cell response to sODN is polyclonal. Active sODN coupled to Sepharose beads stimulated B cells as effectively as the free sODN, suggesting that stimulation resulted from engagement of surface receptors. These data indicate that sODNs can directly induce polyclonal activation of human B cells in a T cell-independent manner by engaging as yet unknown B cell surface receptors. PMID:8787674
Smith, Eric L; Staehr, Mette; Masakayan, Reed; Tatake, Ishan J; Purdon, Terence J; Wang, Xiuyan; Wang, Pei; Liu, Hong; Xu, Yiyang; Garrett-Thomson, Sarah C; Almo, Steven C; Riviere, Isabelle; Liu, Cheng; Brentjens, Renier J
2018-06-06
B cell maturation antigen (BCMA) has recently been identified as an important multiple myeloma (MM)-specific target for chimeric antigen receptor (CAR) T cell therapy. In CAR T cell therapy targeting CD19 for lymphoma, host immune anti-murine CAR responses limited the efficacy of repeat dosing and possibly long-term persistence. This clinically relevant concern can be addressed by generating a CAR incorporating a human single-chain variable fragment (scFv). We screened a human B cell-derived scFv phage display library and identified a panel of BCMA-specific clones from which human CARs were engineered. Despite a narrow range of affinity for BCMA, dramatic differences in CAR T cell expansion were observed between unique scFvs in a repeat antigen stimulation assay. These results were confirmed by screening in a MM xenograft model, where only the top preforming CARs from the repeat antigen stimulation assay eradicated disease and prolonged survival. The results of this screening identified a highly effective CAR T cell therapy with properties, including rapid in vivo expansion (>10,000-fold, day 6), eradication of large tumor burden, and durable protection to tumor re-challenge. We generated a bicistronic construct including a second-generation CAR and a truncated-epithelial growth factor receptor marker. CAR T cell vectors stemming from this work are under clinical investigation. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Guenther, Catherine A; Wang, Zhen; Li, Emma; Tran, Misha C; Logan, Catriona Y; Nusse, Roel; Pantalena-Filho, Luiz; Yang, George P; Kingsley, David M
2015-08-01
Bone morphogenetic proteins (BMPs) are key signaling molecules required for normal development of bones and other tissues. Previous studies have shown that null mutations in the mouse Bmp5 gene alter the size, shape and number of multiple bone and cartilage structures during development. Bmp5 mutations also delay healing of rib fractures in adult mutants, suggesting that the same signals used to pattern embryonic bone and cartilage are also reused during skeletal regeneration and repair. Despite intense interest in BMPs as agents for stimulating bone formation in clinical applications, little is known about the regulatory elements that control developmental or injury-induced BMP expression. To compare the DNA sequences that activate gene expression during embryonic bone formation and following acute injuries in adult animals, we assayed regions surrounding the Bmp5 gene for their ability to stimulate lacZ reporter gene expression in transgenic mice. Multiple genomic fragments, distributed across the Bmp5 locus, collectively coordinate expression in discrete anatomic domains during normal development, including in embryonic ribs. In contrast, a distinct regulatory region activated expression following rib fracture in adult animals. The same injury control region triggered gene expression in mesenchymal cells following tibia fracture, in migrating keratinocytes following dorsal skin wounding, and in regenerating epithelial cells following lung injury. The Bmp5 gene thus contains an "injury response" control region that is distinct from embryonic enhancers, and that is activated by multiple types of injury in adult animals. Copyright © 2015 Elsevier Inc. All rights reserved.
Lin, Changsheng; Ear, Jason; Midde, Krishna; Lopez-Sanchez, Inmaculada; Aznar, Nicolas; Garcia-Marcos, Mikel; Kufareva, Irina; Abagyan, Ruben; Ghosh, Pradipta
2014-01-01
A long-standing issue in the field of signal transduction is to understand the cross-talk between receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major and distinct signaling hubs that control eukaryotic cell behavior. Although stimulation of many RTKs leads to activation of trimeric G proteins, the molecular mechanisms behind this phenomenon remain elusive. We discovered a unifying mechanism that allows GIV/Girdin, a bona fide metastasis-related protein and a guanine-nucleotide exchange factor (GEF) for Gαi, to serve as a direct platform for multiple RTKs to activate Gαi proteins. Using a combination of homology modeling, protein–protein interaction, and kinase assays, we demonstrate that a stretch of ∼110 amino acids within GIV C-terminus displays structural plasticity that allows folding into a SH2-like domain in the presence of phosphotyrosine ligands. Using protein–protein interaction assays, we demonstrated that both SH2 and GEF domains of GIV are required for the formation of a ligand-activated ternary complex between GIV, Gαi, and growth factor receptors and for activation of Gαi after growth factor stimulation. Expression of a SH2-deficient GIV mutant (Arg 1745→Leu) that cannot bind RTKs impaired all previously demonstrated functions of GIV—Akt enhancement, actin remodeling, and cell migration. The mechanistic and structural insights gained here shed light on the long-standing questions surrounding RTK/G protein cross-talk, set a novel paradigm, and characterize a unique pharmacological target for uncoupling GIV-dependent signaling downstream of multiple oncogenic RTKs. PMID:25187647
Kiziltepe, Tanyel; Anderson, Kenneth C; Kutok, Jeffery L; Jia, Lee; Boucher, Kenneth M; Saavedra, Joseph E; Keefer, Larry K; Shami, Paul J
2010-01-01
Glutathione S-transferases (GSTs) play an important role in multidrug resistance and are upregulated in multiple cancers. We have designed a prodrug class that releases nitric oxide on metabolism by GST. O(2)-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, a member of this class) has potent antineoplastic activity. We studied the effect of JS-K on angiogenesis in human umbilical vein endothelial cells (HUVECs), OPM1 multiple myeloma cells, chick aortic rings and in mice. JS-K inhibited the proliferation of HUVECs with a 50% inhibitory concentration (IC50) of 0.432, 0.466 and 0.505 microm at 24, 48 and 72 h, respectively. In the cord formation assay, JS-K led to a decrease in the number of cord junctions and cord length with an IC50 of 0.637 and 0.696 microm, respectively. JS-K inhibited cell migration at 5 h using VEGF as a chemoattractant. Migration inhibition occurred with an IC50 of 0.493 microm. In the chick aortic ring assay using VEGF or FGF-2 for vessel growth stimulation, 0.5 microm JS-K completely inhibited vessel growth. JS-K inhibited tumour angiogenesis in vivo in NIH III mice implanted subcutaneously with OPM1 multiple myeloma cells. JS-K is a potent inhibitor of angiogenesis in vitro and tumour vessel growth in vivo. As such, it establishes a new class of antineoplastic agent that targets the malignant cells directly as well as their microenvironment.
Transplantation of Human Embryonic Stem Cells in Patients with Multiple Sclerosis and Lyme Disease
Shroff, Geeta
2016-01-01
Case series Patient: Male, 42 • Female, 30 Final Diagnosis: Human embryonic stem cells showed good therapeutic potential for treatment of multiple sclerosis with lyme disease Symptoms: Fatigue • weakness in limbs Medication: — Clinical Procedure: Human embryonic stem cells transplantation Specialty: Transplantology Objective: Rare disease Background: Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease in which the myelin sheath of nerve cells is damaged. It can cause delayed neurologic symptoms similar to those seen in Lyme disease (LD) patients. Thymus derived T-cells (myelin reactive) migrate to the blood brain barrier and stimulate an inflammatory cascade in the central nervous system. Cell based therapies play an important role in treating neurological diseases such as MS and LD. Case Report: Human embryonic stem cell (hESC) therapy was used to treat two patients with both MS and LD. The hESCs were administered via different routes including intramuscular, intravenous, and supplemental routes (e.g., deep spinal, caudal, intercostal through eye drops) to regenerate the injured cells. Both the patients showed remarkable improvement in their functional skills, overall stamina, cognitive abilities, and muscle strength. Furthermore, the improvement in the patients’ conditions were assessed by magnetic resonance tractography and single photon emission computed tomography (SPECT). Conclusions: Therapy with hESCs might emerge as an effective and safe treatment for patients with both MS and LD. Well-designed clinical trials and follow-up studies are needed to prove the long-term efficacy and safety of hESC therapy in the treatment of patients with MS and LD. PMID:27956736
Kaszubowska, Lucyna; Foerster, Jerzy; Kaczor, Jan Jacek; Schetz, Daria; Ślebioda, Tomasz Jerzy; Kmieć, Zbigniew
2018-01-01
Natural killer cells (NK cells) are cytotoxic lymphocytes of innate immunity that reveal some immunoregulatory properties, however, their role in the process of ageing is not completely understood. The study aimed to analyze the expression of proteins involved in cellular stress response: sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in human NK cells with reference to the process of ageing. Non-stimulated and stimulated with IL-2, LPS or PMA with ionomycin cells originated from peripheral blood samples of: seniors aged over 85 ('the oldest'; n = 25; 88.5 ± 0.5 years, mean ± SEM), seniors aged under 85 ('the old'; n = 30; 75.6 ± 0.9 years) and the young ( n = 31; 20.9 ± 0.3 years). The relationships between the levels of expression of cellular protective proteins in the studied population were also analyzed. The concentrations of carbonyl groups and 8-isoprostanes, markers of oxidative stress, in both stimulated and non-stimulated cultured NK cells were measured to assess the level of the oxidative stress in the cells. The oldest seniors varied from the other age groups by significantly higher expression of SIRT1 and HSP70 both in non-stimulated and stimulated NK cells. These cells also appeared to be resistant to further stimulations with IL-2, LPS or PMA with ionomycin. Highly positive correlations between SIRT1 and intracellular HSP70 in both stimulated and non-stimulated NK cells were observed. SOD2 presented low expression in non-stimulated cells, whereas its sensitivity to stimulation increased with age of donors. High positive correlations between SOD2 and surface HSP70 were observed. We found that the markers of oxidative stress in NK cells did not change with ageing. The oldest seniors revealed well developed adaptive stress response in NK cells with increased, constant levels of SIRT1 and intracellular HSP70. They presented also very high positive correlations between expression of these cellular protective proteins both in stimulated and non-stimulated cells. These phenomena may contribute to the long lifespan of this group of elderly. Interestingly, in NK cells SOD2 revealed a distinct role in cellular stress response since it showed sensitivity to stimulation increasing with age of participants. These observations provide novel data concerning the role of NK cells in the process of ageing.
NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.
Bakker, A B; Wu, J; Phillips, J H; Lanier, L L
2000-01-01
A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.
Harlow, Danielle E.; Saul, Katherine E.; Komuro, Hitoshi
2015-01-01
In previous studies, stimulation of ionotropic AMPA/kainate glutamate receptors on cultured oligodendrocyte cells induced the formation of a signaling complex that includes the AMPA receptor, integrins, calcium-binding proteins, and, surprisingly, the myelin proteolipid protein (PLP). AMPA stimulation of cultured oligodendrocyte progenitor cells (OPCs) also caused an increase in OPC migration. The current studies focused primarily on the formation of the PLP–αv integrin–AMPA receptor complex in vivo and whether complex formation impacts OPC migration in the brain. We found that in wild-type cerebellum, PLP associates with αv integrin and the calcium-impermeable GluR2 subunit of the AMPA receptor, but in mice lacking PLP, αv integrin did not associate with GluR2. Live imaging studies of OPC migration in ex vivo cerebellar slices demonstrated altered OPC migratory responses to neurotransmitter stimulation in the absence of PLP and GluR2 or when αv integrin levels were reduced. Chemotaxis assays of purified OPCs revealed that AMPA stimulation was neither attractive nor repulsive but clearly increased the migration rate of wild-type but not PLP null OPCs. AMPA receptor stimulation of wild-type OPCs caused decreased cell-surface expression of the GluR2 AMPA receptor subunit and increased intracellular Ca2+ signaling, whereas PLP null OPCs did not reduce GluR2 at the cell surface or increase Ca2+ signaling in response to AMPA treatment. Together, these studies demonstrate that PLP is critical for OPC responses to glutamate signaling and has important implications for OPC responses when levels of glutamate are high in the extracellular space, such as following demyelination. SIGNIFICANCE STATEMENT After demyelination, such as occurs in multiple sclerosis, remyelination of axons is often incomplete, leading to loss of neuronal function and clinical disability. Remyelination may fail because oligodendrocyte precursor cells (OPCs) do not completely migrate into demyelinated areas or OPCs in lesions may not mature into myelinating oligodendrocytes. We have found that the myelin proteolipid protein is critical to regulating OPC migratory responses to the neurotransmitter glutamate through modulation of cell-surface expression of the calcium-impermeable GluR2 subunit of the AMPA glutamate receptor and increased intercellular Ca2+ signaling. Altered glutamate homeostasis has been reported in demyelinated lesions. Therefore, understanding how OPCs respond to glutamate has important implications for treatment after white matter injury and disease. PMID:26311781
Studies on the mechanism of salicylate-induced increase of insulin secretion in man.
Giugliano, D; Cozzolino, D; Ceriello, A; Cerciello, T; Varano, R; Saccomanno, F; Torella, R
1988-01-01
Salicylate compounds are known to increase basal and stimulated insulin secretion in man. In our studies, infusion of lysine acetylsalicylate (72 mg/min) increased basal insulin levels and amplified insulin responses to glucose (5 g i.v.), arginine (5 g i.v.) and tolbutamide (1 g i.v.). Verapamil, an organic calcium antagonist, did not modify LAS-induced increase of basal insulin levels, but reduced the effect of LAS on glucose-induced insulin secretion. Calcitonin and somatostatin, two agents that inhibit basal and glucose-stimulated insulin secretion, inhibited the insulin response to glucose in presence of LAS infusion. The ability of salicylate compounds to augment insulin secretion might be due to multiple sites of action in the Beta-cells.
Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults
Yu, Hong-Ren; Hsu, Te-Yao; Huang, Hsin-Chun; Kuo, Ho-Chang; Li, Sung-Chou; Yang, Kuender D.; Hsieh, Kai-Sheng
2016-01-01
Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies. PMID:28066425
God, Jason M; Zhao, Dan; Cameron, Christine A; Amria, Shereen; Bethard, Jennifer R; Haque, Azizul
2014-01-01
While Burkitt lymphoma (BL) has a well-known defect in HLA class I-mediated antigen presentation, the exact role of BL-associated HLA class II in generating a poor CD4+ T-cell response remains unresolved. Here, we found that BL cells are deficient in their ability to optimally stimulate CD4+ T cells via the HLA class II pathway. This defect in CD4+ T-cell recognition was not associated with low levels of co-stimulatory molecules on BL cells, as addition of external co-stimulation failed to elicit CD4+ T-cell activation by BL. Further, the defect was not caused by faulty antigen/class II interaction, because antigenic peptides bound with measurable affinity to BL-associated class II molecules. Interestingly, functional class II–peptide complexes were formed at acidic pH 5·5, which restored immune recognition. Acidic buffer (pH 5·5) eluate from BL cells contained molecules that impaired class II-mediated antigen presentation and CD4+ T-cell recognition. Biochemical analysis showed that these molecules were greater than 30 000 molecular weight in size, and proteinaceous in nature. In addition, BL was found to have decreased expression of a 47 000 molecular weight enolase-like molecule that enhances class II-mediated antigen presentation in B cells, macrophages and dendritic cells, but not in BL cells. These findings demonstrate that BL likely has multiple defects in HLA class II-mediated antigen presentation and immune recognition, which may be exploited for future immunotherapies. PMID:24628049
Al-Dwairi, Ahmed; Alqudah, Tamara E; Al-Shboul, Othman; Alqudah, Mohammad; Mustafa, Ayman G; Alfaqih, Mahmoud A
2018-01-01
Intestinal smooth muscle cells (SMCs) undergo substantial morphological, phenotypic, and contractile changes during inflammatory bowel disease (IBD). SMCs act as a source and target for different inflammatory mediators, however their role in IBD pathogenesis is usually overlooked. Glucagon-like peptide-1 (GLP-1) is an incretin hormone reported to exert multiple anti-inflammatory effects in different tissues including the gastrointestinal tract through various mechanisms. The aim of this research is to explore the effect of GLP-1 analog exendin-4 on the expression and secretion of inflammatory markers from mouse colon smooth muscle cells (CSMCs) after stimulation with lipopolysaccharide (LPS). Freshly isolated CSMCs from male BALB/c mice were cultured in DMEM and treated with vehicle, LPS (1 μg/mL), LPS+exendin-4 (50 nM), or LPS+exendin-4 (100 nM) for 24 h. Expression of inflammatory cytokines was then evaluated by antibody array membrane. CSMCs showed basal expression of several cytokines which was enhanced with the induction of inflammation by LPS. However, exendin-4 (50 and 100 nM) significantly ( p <0.05) reduced the expression of multiple cytokines including tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), T cell activation gene-3 (TCA-3), stromal cell-derived factor-1 (SDF-1), and macrophage colony stimulating factor (M-CSF). To confirm these results, expression of these cytokines was further assessed by enzyme-linked immunosorbent assay and real-time polymerase chain reaction and similar results were also observed. Moreover, secretion of TNF-α and IL1-α into the conditioned media was significantly downregulated by exendin-4 when compared to LPS-treated cells. Furthermore, LPS increased NF-κB phosphorylation, while exendin-4 significantly reduced levels of NF-κB phosphorylation. These data indicate that GLP-1 analogs can exert significant anti-inflammatory effects on CSMCs and can potentially be used as an adjunct treatment for inflammatory bowel conditions.
Pang, T; Blanden, R V
1976-06-01
An in vitro culture method was used to study secondary cell-mediated responses to ectromelia virus infection in mice. Infected, syngeneic spleen cells or peritoneal cells were efficient "stimulator" cells when cultured with "responder" cells obtained from mice infected with ectromelia 4-6 weeks previously. The kinetics of generation of cytotoxic cells in cultures were determined; a peak occurred on days 4-5. A separation procedure performed on the cytotoxic cells showed that activity was associated mainly with the Ig-negative subpopulation (T cell-rich) and that H-2 compatibility between cytotoxic cells and target cells was required. The secondary response was virus-specific, at the level of both induction and target cell lysis, at least so far as ectromelia and lymphocytic choriomeningitis (LCM) viruses are concerned. Seperation of responder cells prior to culture showed that a potent secondary response was generated with the Ig-negative (T cell-rich) subpopulation and only a weak response was observed when the responder cells were Ig-positive (rich in B cells). Infected stimulator cells did not appear to secrete significant amounts of soluble antigen into the medium over 4 days of culture. Thus, antigenic patterns effective in memory T cell stimulation may be largely associated with the surfaces of infected cells.Pretreatment of ectromelia virus with UV- or gamma-irradiation did not impair its ability to induce antigenic changes in stimulator cells. Stimulator cells treated with UV-or gamma-irradiated virus for 1 h and then immediately with pactamycin to inhibit further viral protein synthesis and replication were efficient stimulators, thus indicating that antigenic changes are induced very rapidly on the surface of stimulator cells after uptake of virus. These treatments are being used to further characterize the cellular requirements in the stimulator population.
Salinthone, Sonemany; Schillace, Robynn V.; Tsang, Catherine; Regan, John W.; Bourdette, Dennis N.; Carr, Daniel W.
2010-01-01
Lipoic acid (LA) is a naturally occurring fatty acid that exhibits anti-oxidant and anti-inflammatory properties and is being pursued as a therapeutic for many diseases including multiple sclerosis, diabetic polyneuropathy and Alzheimer’s disease. We previously reported on the novel finding that racemic LA (50:50 mixture of R and S LA) stimulates cAMP production, activates prostanoid EP2 and EP4 receptors and adenylyl cyclases (AC), and suppresses activation and cytotoxicity in NK cells. In this study we present evidence that furthers our understanding of the mechanisms of action of LA. Using various LA derivatives, dihydrolipoic acid (DHLA), S,S-dimethyl lipoic acid (DMLA) and lipoamide (LPM), we discovered that only LA is capable of stimulating cAMP production in NK cells. Furthermore, there is no difference in cAMP production after stimulation with either R-LA, S-LA or racemic LA. Competition and synergistic studies indicate that LA may also activate AC independent of the EP2 and EP4 receptors. Pretreatment of PBMCc with KH7 (a specific peptide inhibitor of soluble AC) and the calcium inhibitor (Bapta) prior to LA treatment resulted in reduced cAMP levels, suggesting that soluble AC and calcium signaling mediate LA stimulation of cAMP production. In addition, pharmacological inhibitor studies demonstrate that LA also activates other G- protein coupled receptors, including histamine and adenosine, but not the beta adrenergic receptors. These novel findings provide information to better understand the mechanisms of action of LA, which can help facilitate the use of LA as a therapeutic for various diseases. PMID:21036588
Signal transduction through the IL-4 and insulin receptor families.
Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H
1995-07-01
Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)
van Rumste, Minouche M E; Custers, Inge M; van Wely, Madelon; Koks, Carolien A; van Weering, Hans G I; Beckers, Nicole G M; Scheffer, Gabrielle J; Broekmans, Frank J M; Hompes, Peter G A; Mochtar, Monique H; van der Veen, Fulco; Mol, Ben W J
2014-03-01
Couples with unexplained subfertility are often treated with intrauterine insemination (IUI) with ovarian stimulation, which carries the risk of multiple pregnancies. An explorative randomized controlled trial was performed comparing one cycle of IVF with elective single-embryo transfer (eSET) versus three cycles of IUI-ovarian stimulation in couples with unexplained subfertility and a poor prognosis for natural conception, to assess the economic burden of the treatment modalities. The main outcome measures were ongoing pregnancy rates and costs. This study randomly assigned 58 couples to IVF-eSET and 58 couples to IUI-ovarian stimulation. The ongoing pregnancy rates were 24% in with IVF-eSET versus 21% with IUI-ovarian stimulation, with two and three multiple pregnancies, respectively. The mean cost per included couple was significantly different: €2781 with IVF-eSET and €1876 with IUI-ovarian stimulation (P<0.01). The additional costs per ongoing pregnancy were €2456 for IVF-eSET. In couples with unexplained subfertility, one cycle of IVF-eSET cost an additional €900 per couple compared with three cycles of IUI-ovarian stimulation, for no increase in ongoing pregnancy rates or decrease in multiple pregnancies. When IVF-eSET results in higher ongoing pregnancy rates, IVF would be the preferred treatment. Couples that have been trying to conceive unsuccessfully are often treated with intrauterine insemination (IUI) and medication to improve egg production (ovarian stimulation). This treatment carries the risk of multiple pregnancies like twins. We performed an explorative study among those couples that had a poor prognosis for natural conception. One cycle of IVF with transfer of one selected embryo (elective single-embryo transfer, eSET) was compared with three cycles of IUI-ovarian stimulation. The aim of this study was to assess the economic burden of both treatments. The Main outcome measures were number of good pregnancies above 12weeks and costs. We randomly assigned 58 couples to IVF-eSET and 58 couples to IUI-ovarian stimulation. The ongoing pregnancy rates were comparable: 24% with IVF-eSET versus 21% with IUI-ovarian stimulation. There were two multiple pregnancies with IVF-eSET and three multiple pregnancies with IUI-ovarian stimulation. The mean cost per included couple was significantly different, €2781 with IVF-eSET and €1876 with IUI-ovarian stimulation. The additional costs per ongoing pregnancy were €2456 for IVF-eSET. In couples with unexplained subfertility, one cycle of IVF-eSET costed an additional €900 per couple compared to three cycles of IUI-ovarian stimulation, for no increase in ongoing pregnancy rates or decrease in multiple pregnancies. We conclude that IUI-ovarian stimulation is the preferred treatment to start with. When IVF-eSET results in a higher ongoing pregnancy rate (>38%), IVF would be the preferred treatment. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Kunzelmann, K; Lei, D C; Eng, K; Escobar, L C; Koslowsky, T; Gruenert, D C
1995-09-01
Analysis of vectorial ion transport and protein trafficking in transformed cystic fibrosis (CF) epithelial cells has been limited because the cells tend to lose their tight junctions with multiple subcultures. To elucidate ion transport and protein trafficking in CF epithelial cells, a polar cell line with apical and basolateral compartments will facilitate analysis of the efficacy of different gene therapy strategies in a "tight epithelium" in vitro. This study investigates the genotypic and phenotypic properties of a CF nasal polyp epithelial, delta F508 homozygote, cell line that has tight junctions pre-crisis. The cells (sigma CFNPE14o-) were transformed with an origin-of-replication defective SV40 plasmid. They develop transepithelial resistance in Ussing chambers and are defective in cAMP-dependent Cl- transport as measured by efflux of radioactive Cl-, short circuit current (Isc), or whole-cell patch clamp. Stimulation of the cells by bradykinin, histamine, or ATP seems to activate both K(+)- and Ca(+2)-dependent Cl- transport. Measurement of 36Cl- efflux following stimulation with A23187 and ionomycin indicate a Ca(+2)-dependent Cl- transport. Volume regulatory capacity of the cells is indicated by cell swelling conductance. Expression of the CF transmembrane conductance regulator mRNA was indicated by RT-PCR amplification. When cells are grown at 26 degrees C for 48 h there is no indication of cAMP-dependent Cl- as has been previously indicated in heterologous expression systems. Antibodies specific for secretory cell antigens indicate the presence of antigens found in goblet, serous, and mucous cells; in goblet and serous cells; or in goblet and mucous cells; but not antigens found exclusively in mucous or serous cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Huh, Jeong-Eun; Koh, Pil-Seong; Seo, Byung-Kwan; Park, Yeon-Chul; Baek, Yong-Hyun; Lee, Jae-Dong; Park, Dong-Suk
2014-01-01
Mangiferin is a natural immunomodulator found in plants including mango trees. The effects of mangiferin on chondrogenesis and cartilage repair have not yet been reported. This study was designed to determine the effect of mangiferin on chondrogenic differentiation in IL-1β-stimulated mesenchymal stem cells (MSCs) from subchondral bone and to explore the mechanisms underlying these effects. MSCs were isolated from the subchondral bone of rabbit and treated with mangiferin alone and/or interleukin-1β (IL-1β). Mangiferin induced chondrogenic differentiation in MSCs by upregulating transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, and BMP-4 and several key markers of chondrogenesis, including sex-determining region Y–box (SRY-box) containing gene 9 (SOX9), type 2α1 collagen (Col2α1), cartilage link protein, and aggrecan. In IL-1β-stimulated MSCs, mangiferin significantly reversed the production of TGF-β, BMP-2, BMP-4, SOX9, Col2α1, cartilage link protein, and aggrecan, as well as matrix metalloproteinase (MMP)-1, MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS5). Mangiferin upregulated the phosphorylation of Smad 2, Smad 3, Smad 1/5/8, and SOX9 in IL-1β-stimulated MSCs. In the presence of mangiferin, SOX9 siRNA suppressed the activation of Smad 2, Smad 3, Smad 1/5/8, aggrecan, and Col2α1 expression. In conclusion, mangiferin exhibits both chondrogenic and chondroprotective effects on damaged MSCs and mediates these effects by targeting multiple aspects of the Smad and SOX9 signaling pathways. PMID:25216336
Huh, Jeong-Eun; Koh, Pil-Seong; Seo, Byung-Kwan; Park, Yeon-Chul; Baek, Yong-Hyun; Lee, Jae-Dong; Park, Dong-Suk
2014-09-11
Mangiferin is a natural immunomodulator found in plants including mango trees. The effects of mangiferin on chondrogenesis and cartilage repair have not yet been reported. This study was designed to determine the effect of mangiferin on chondrogenic differentiation in IL-1β-stimulated mesenchymal stem cells (MSCs) from subchondral bone and to explore the mechanisms underlying these effects. MSCs were isolated from the subchondral bone of rabbit and treated with mangiferin alone and/or interleukin-1β (IL-1β). Mangiferin induced chondrogenic differentiation in MSCs by upregulating transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, and BMP-4 and several key markers of chondrogenesis, including sex-determining region Y-box (SRY-box) containing gene 9 (SOX9), type 2α1 collagen (Col2α1), cartilage link protein, and aggrecan. In IL-1β-stimulated MSCs, mangiferin significantly reversed the production of TGF-β, BMP-2, BMP-4, SOX9, Col2α1, cartilage link protein, and aggrecan, as well as matrix metalloproteinase (MMP)-1, MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS5). Mangiferin upregulated the phosphorylation of Smad 2, Smad 3, Smad 1/5/8, and SOX9 in IL-1β-stimulated MSCs. In the presence of mangiferin, SOX9 siRNA suppressed the activation of Smad 2, Smad 3, Smad 1/5/8, aggrecan, and Col2α1 expression. In conclusion, mangiferin exhibits both chondrogenic and chondroprotective effects on damaged MSCs and mediates these effects by targeting multiple aspects of the Smad and SOX9 signaling pathways.
Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J
2013-06-10
Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.
Park, Sang-Hyug; Sim, Woo Young; Min, Byoung-Hyun; Yang, Sang Sik; Khademhosseini, Ali; Kaplan, David L
2012-01-01
Adipose tissue-derived stem cells (ASCs) are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs) and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi) increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen) and integrin (CD11b and CD31) expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1) and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation.
Min, Byoung-Hyun; Yang, Sang Sik; Khademhosseini, Ali; Kaplan, David L.
2012-01-01
Adipose tissue-derived stem cells (ASCs) are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs) and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi) increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen) and integrin (CD11b and CD31) expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1) and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation. PMID:23029565
Multiple myeloma: a clinical overview.
Anderson, Kenneth C
2011-11-15
Multiple myeloma (MM) is the second most common hematologic malignancy in the United States, affecting slightly more men than women and twice as many African Americans as Caucasians. Older age is the primary risk factor for MM, but obesity also increases risk. MM is incurable, but treatment advances in the past decade have more than doubled the duration of survival. MM is a progressive plasma cell tumor in which an initially stable clone becomes malignant via a multistep process. Causative factors implicated in this process include radiation, environmental toxins, chronic antigen stimulation, and genetics. The malignant plasma cells interact with other hematopoietic and stromal cells within the bone marrow microenvironment to disrupt homeostasis among cells and within the extracellular matrix. These tumor-host interactions lead to MM cell proliferation and migration, angiogenesis, osteolysis, immunodeficiency, and anemia. As a result, patients often present with osteolytic bone lesions, recurrent infections, renal insufficiency, and fatigue. The Durie-Salmon and International Staging Systems are used to stage MM, with the latter providing prognostic information based on readily available laboratory data. However, a number of cytogenetic markers are emerging as prognostic indicators, introducing the possibility of more refined disease staging systems and tailored treatment strategies based on genetic profiles.
Induction of anti-glioma NK cell response following multiple low-dose intracerebral CpG therapy
Alizadeh, Darya; Zhang, Leying; Brown, Christine E.; Farrukh, Omar; Jensen, Michael C.; Badie, Behnam
2010-01-01
Purpose Stimulation of toll-like receptor-9 (TLR9) by CpG oligodeoxynucleotides (CpG-ODN) has been shown to counteract the immunosuppressive microenvironment and to inhibit tumor growth in glioma models. These studies, however, have used high doses of CpG-ODN which can induce toxicity in a clinical setting. The goal of this study was to evaluate the anti-tumor efficacy of multiple low-dose intratumoral CpG- ODN in a glioma model. Experimental Design Mice bearing four-day old intracranial GL261 gliomas received a single or multiple (two or four) intratumoral injections of CpG-ODN (3 μg) every 4 days. Tumor growth was measured by bioluminescent imaging, brain histology, and animal survival. Flow cytometry and cytotoxicity assays were used to assess anti-glioma immune response. Results Two and four intracranial injections of low-dose CpG-ODN, but not a single injection, eradicated gliomas in 70% of mice. Moreover, surviving animals exhibited durable tumor free remission (> 3 months), and were protected from intracranial rechallenge with GL21 gliomas, demonstrating the capacity for long-term anti-tumor immunity. Although most inflammatory cells appeared to increase, activated NK cells (i.e. NK+CD107a+) were more frequent than CD8+CD107a+ in the brains of rechallenged CpG-ODN-treated animals and demonstrated a stronger in vitro cytotoxicity against GL261 target cells. Leukocyte depletion studies confirmed that NK cells played an important role in the initial CpG-ODN anti-tumor response, but both CD8 and NK cells were equally important in long-term immunity against gliomas. Conclusions These findings suggest that multiple low-dose intratumoral injections of CpG-ODN can eradicate intracranial gliomas possibly through mechanisms involving NK mediated effector function. PMID:20570924
Alizadeh, Darya; Zhang, Leying; Brown, Christine E; Farrukh, Omar; Jensen, Michael C; Badie, Behnam
2010-07-01
Stimulation of toll-like receptor-9 by CpG oligodeoxynucleotides (CpG-ODN) has been shown to counteract the immunosuppressive microenvironment and to inhibit tumor growth in glioma models. These studies, however, have used high doses of CpG-ODN, which can induce toxicity in a clinical setting. The goal of this study was to evaluate the antitumor efficacy of multiple low-dose intratumoral CpG-ODN in a glioma model. Mice bearing 4-day-old intracranial GL261 gliomas received a single or multiple (two or four) intratumoral injections of CpG-ODN (3 microg) every 4 days. Tumor growth was measured by bioluminescent imaging, brain histology, and animal survival. Flow cytometry and cytotoxicity assays were used to assess anti-glioma immune response. Two and four intracranial injections of low-dose CpG-ODN, but not a single injection, eradicated gliomas in 70% of mice. Moreover, surviving animals exhibited durable tumor-free remission (> 3 months) and were protected from intracranial rechallenge with GL261 gliomas, showing the capacity for long-term antitumor immunity. Although most inflammatory cells seemed to increase, activated natural killer (NK) cells (i.e., NK(+)CD107a(+)) were more frequent than CD8(+)CD107a(+) in the brains of rechallenged CpG-ODN-treated animals and showed a stronger in vitro cytotoxicity against GL261 target cells. Leukocyte depletion studies confirmed that NK cells played an important role in the initial CpG-ODN antitumor response, but both CD8 and NK cells were equally important in long-term immunity against gliomas. These findings suggest that multiple low-dose intratumoral injections of CpG-ODN can eradicate intracranial gliomas possibly through mechanisms involving NK-mediated effector function.
Systemic administration of erythropoietin inhibits retinopathy in RCS rats.
Shen, Weiyong; Chung, Sook H; Irhimeh, Mohammad R; Li, Shiying; Lee, So-Ra; Gillies, Mark C
2014-01-01
Royal College of Surgeons (RCS) rats develop vasculopathy as photoreceptors degenerate. The aim of this study was to examine the effect of erythropoietin (EPO) on retinopathy in RCS rats. Fluorescein angiography was used to monitor retinal vascular changes over time. Changes in retinal glia and vasculature were studied by immunostaining. To study the effects of EPO on retinal pathology, EPO (5000 IU/kg) was injected intraperitoneally in 14 week old normal and RCS rats twice a week for 4 weeks. Changes in the retinal vasculature, glia and microglia, photoreceptor apoptosis, differential expression of p75 neurotrophin receptor (p75NTR), pro-neurotrophin 3 (pro-NT3), tumour necrosis factor-α (TNFα), pigment epithelium derived factor (PEDF) and vascular endothelial growth factor-A (VEGF-A), the production of CD34(+) cells and mobilization of CD34(+)/VEGF-R2(+) cells as well as recruitment of CD34(+) cells into the retina were examined after EPO treatment. RCS rats developed progressive capillary dropout and subretinal neovascularization which were accompanied by retinal gliosis. Systemic administration of EPO stabilized the retinal vasculature and inhibited the development of focal vascular lesions. Further studies showed that EPO modulated retinal gliosis, attenuated photoreceptor apoptosis and p75NTR and pro-NT3 upregulation, promoted the infiltration of ramified microglia and stimulated VEGF-A expression but had little effect on TNFα and PEDF expression. EPO stimulated the production of red and white blood cells and CD34(+) cells along with effective mobilization of CD34(+)/VEGF-R2(+) cells. Immunofluorescence study demonstrated that EPO enhanced the recruitment of CD34+ cells into the retina. Our results suggest that EPO has therapeutic potentials in treatment of neuronal and vascular pathology in retinal disease. The protective effects of EPO on photoreceptors and the retinal vasculature may involve multiple mechanisms including regulation of retinal glia and microglia, inhibition of p75NTR-pro-NT3 signaling together with stimulation of production and mobilization of bone marrow derived cells.
Systemic Administration of Erythropoietin Inhibits Retinopathy in RCS Rats
Shen, Weiyong; Chung, Sook H.; Irhimeh, Mohammad R.; Li, Shiying; Lee, So-Ra; Gillies, Mark C.
2014-01-01
Objective Royal College of Surgeons (RCS) rats develop vasculopathy as photoreceptors degenerate. The aim of this study was to examine the effect of erythropoietin (EPO) on retinopathy in RCS rats. Methods Fluorescein angiography was used to monitor retinal vascular changes over time. Changes in retinal glia and vasculature were studied by immunostaining. To study the effects of EPO on retinal pathology, EPO (5000 IU/kg) was injected intraperitoneally in 14 week old normal and RCS rats twice a week for 4 weeks. Changes in the retinal vasculature, glia and microglia, photoreceptor apoptosis, differential expression of p75 neurotrophin receptor (p75NTR), pro-neurotrophin 3 (pro-NT3), tumour necrosis factor-α (TNFα), pigment epithelium derived factor (PEDF) and vascular endothelial growth factor-A (VEGF-A), the production of CD34+ cells and mobilization of CD34+/VEGF-R2+ cells as well as recruitment of CD34+ cells into the retina were examined after EPO treatment. Results RCS rats developed progressive capillary dropout and subretinal neovascularization which were accompanied by retinal gliosis. Systemic administration of EPO stabilized the retinal vasculature and inhibited the development of focal vascular lesions. Further studies showed that EPO modulated retinal gliosis, attenuated photoreceptor apoptosis and p75NTR and pro-NT3 upregulation, promoted the infiltration of ramified microglia and stimulated VEGF-A expression but had little effect on TNFα and PEDF expression. EPO stimulated the production of red and white blood cells and CD34+ cells along with effective mobilization of CD34+/VEGF-R2+ cells. Immunofluorescence study demonstrated that EPO enhanced the recruitment of CD34+ cells into the retina. Conclusions Our results suggest that EPO has therapeutic potentials in treatment of neuronal and vascular pathology in retinal disease. The protective effects of EPO on photoreceptors and the retinal vasculature may involve multiple mechanisms including regulation of retinal glia and microglia, inhibition of p75NTR-pro-NT3 signaling together with stimulation of production and mobilization of bone marrow derived cells. PMID:25119659
Two-Photon Holographic Stimulation of ReaChR
Chaigneau, Emmanuelle; Ronzitti, Emiliano; Gajowa, Marta A.; Soler-Llavina, Gilberto J.; Tanese, Dimitrii; Brureau, Anthony Y. B.; Papagiakoumou, Eirini; Zeng, Hongkui; Emiliani, Valentina
2016-01-01
Optogenetics provides a unique approach to remotely manipulate brain activity with light. Reaching the degree of spatiotemporal control necessary to dissect the role of individual cells in neuronal networks, some of which reside deep in the brain, requires joint progress in opsin engineering and light sculpting methods. Here we investigate for the first time two-photon stimulation of the red-shifted opsin ReaChR. We use two-photon (2P) holographic illumination to control the activation of individually chosen neurons expressing ReaChR in acute brain slices. We demonstrated reliable action potential generation in ReaChR-expressing neurons and studied holographic 2P-evoked spiking performances depending on illumination power and pulse width using an amplified laser and a standard femtosecond Ti:Sapphire oscillator laser. These findings provide detailed knowledge of ReaChR's behavior under 2P illumination paving the way for achieving in depth remote control of multiple cells with high spatiotemporal resolution deep within scattering tissue. PMID:27803649
Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells.
Jin, GyuHyun; Yang, Gi-Hoon; Kim, GeunHyung
2015-05-01
Bioreactor systems in tissue engineering applications provide various types of stimulation to mimic the tissues in vitro and in vivo. Various bioreactors have been designed to induce high cellular activities, including initial cell attachment, cell growth, and differentiation. Although cell-stimulation processes exert mostly positive effects on cellular responses, in some cases such stimulation can also have a negative effect on cultured cells. In this review, we discuss various types of bioreactor and the positive and negative effects of stimulation (physical, chemical, and electrical) on various cultured cell types. © 2014 Wiley Periodicals, Inc.
Effect of Granulocyte-Colony Stimulating Factor on Endothelial Cells and Osteoblasts
Liu, Xi Ling; Hu, Xiang; Cai, Wei Xin; Lu, Weijia William; Zheng, Li Wu
2016-01-01
Objectives. Some animal studies showed that granulocyte-colony stimulating factor (G-CSF) provides beneficial environment for bone healing. It has been well documented that endothelial cells and osteoblasts play critical roles in multiple phases of bone healing. However, the biological effects of G-CSF on these cells remain controversial. This study aimed to investigate the influence of G-CSF at various concentrations on endothelial cells and osteoblasts. Materials and Methods. Human umbilical vein endothelial cells (HUVECs) and human osteoblasts (hOBs) were treated with G-CSF at 1000, 100, 10, and 0 ng/mL, respectively. The capacity of cell proliferation, migration, and tube formation of HUVECs was evaluated at 72, 8, and 6 hours after treatment, respectively. The capacity of proliferation, differentiation, and mineralization of hOBs was evaluated at 24 hours, 72 hours, and 21 days after treatment, respectively. Results. HUVECs treated with 100 and 1000 ng/mL G-CSF showed a significantly higher value comparing with controls in migration assay (p < 0.001, p < 0.01, resp.); the group treated with 1000 ng/mL G-CSF showed a significantly lower value on tube formation. No significant difference was detected in groups of hOBs. Conclusions. G-CSF showed favorable effects only on the migration of HUVECs, and no direct influence was found on hOBs. PMID:27006951
Roshandel, Delnaz; Gubitosi-Klug, Rose; Bull, Shelley B; Canty, Angelo J; Pezzolesi, Marcus G; King, George L; Keenan, Hillary A; Snell-Bergeon, Janet K; Maahs, David M; Klein, Ronald; Klein, Barbara E K; Orchard, Trevor J; Costacou, Tina; Weedon, Michael N; Oram, Richard A; Paterson, Andrew D
2018-05-01
The aim of this study was to identify genetic variants associated with beta cell function in type 1 diabetes, as measured by serum C-peptide levels, through meta-genome-wide association studies (meta-GWAS). We performed a meta-GWAS to combine the results from five studies in type 1 diabetes with cross-sectionally measured stimulated, fasting or random C-peptide levels, including 3479 European participants. The p values across studies were combined, taking into account sample size and direction of effect. We also performed separate meta-GWAS for stimulated (n = 1303), fasting (n = 2019) and random (n = 1497) C-peptide levels. In the meta-GWAS for stimulated/fasting/random C-peptide levels, a SNP on chromosome 1, rs559047 (Chr1:238753916, T>A, minor allele frequency [MAF] 0.24-0.26), was associated with C-peptide (p = 4.13 × 10 -8 ), meeting the genome-wide significance threshold (p < 5 × 10 -8 ). In the same meta-GWAS, a locus in the MHC region (rs9260151) was close to the genome-wide significance threshold (Chr6:29911030, C>T, MAF 0.07-0.10, p = 8.43 × 10 -8 ). In the stimulated C-peptide meta-GWAS, rs61211515 (Chr6:30100975, T/-, MAF 0.17-0.19) in the MHC region was associated with stimulated C-peptide (β [SE] = - 0.39 [0.07], p = 9.72 × 10 -8 ). rs61211515 was also associated with the rate of stimulated C-peptide decline over time in a subset of individuals (n = 258) with annual repeated measures for up to 6 years (p = 0.02). In the meta-GWAS of random C-peptide, another MHC region, SNP rs3135002 (Chr6:32668439, C>A, MAF 0.02-0.06), was associated with C-peptide (p = 3.49 × 10 -8 ). Conditional analyses suggested that the three identified variants in the MHC region were independent of each other. rs9260151 and rs3135002 have been associated with type 1 diabetes, whereas rs559047 and rs61211515 have not been associated with a risk of developing type 1 diabetes. We identified a locus on chromosome 1 and multiple variants in the MHC region, at least some of which were distinct from type 1 diabetes risk loci, that were associated with C-peptide, suggesting partly non-overlapping mechanisms for the development and progression of type 1 diabetes. These associations need to be validated in independent populations. Further investigations could provide insights into mechanisms of beta cell loss and opportunities to preserve beta cell function.
Deep brain stimulation of the internal pallidum in multiple system atrophy.
Santens, Patrick; Patrick, Santens; Vonck, Kristl; Kristl, Vonck; De Letter, Miet; Miet, De Letter; Van Driessche, Katya; Katya, Van Driessche; Sieben, Anne; Anne, Sieben; De Reuck, Jacques; Jacques, De Reuck; Van Roost, Dirk; Dirk, Van Roost; Boon, Paul; Paul, Boon
2006-04-01
We describe the outcome of deep brain stimulation of the internal pallidum in a 57-year old patient with multiple system atrophy. Although the prominent dystonic features of this patient were markedly attenuated post-operatively, the outcome was to be considered unfavourable. There was a severe increase in akinesia resulting in overall decrease of mobility in limbs as well as in the face. As a result, the patient was anarthric and displayed dysphagia. A laterality effect of stimulation on oro-facial movements was demonstrated. The patient died 7 months post-operatively. This report adds to the growing consensus that multiple system atrophy patients are unsuitable candidates for deep brain stimulation.
Vilisaar, Janek; Kawabe, Kiyokazu; Braitch, Manjit; Aram, Jehan; Furtun, Yasemin; Fahey, Angela J; Chopra, Mark; Tanasescu, Radu; Tighe, Patrick J; Gran, Bruno; Pothoulakis, Charalabos; Constantinescu, Cris S
2015-09-01
The neuropeptide substance P (SP) exhibits cytokine-like properties and exerts different effects in autoimmune inflammation. Various immune cells express SP and its neurokinin-1 receptor (NK1R) isoforms. A role for SP has been demonstrated in a number of autoimmune conditions, including multiple sclerosis (MS). In this work, we studied the role of SP and NK1R in human immune cells with a focus on their relationship with IL-12/IL-23 family cytokines and the associated IFN-γ/IL-17. (1) To determine the role of SP mediated effects on induction of various inflammatory cytokines in peripheral blood mononuclear cells (PBMC); (2) to investigate the expression of SP and its receptor in T cells and the effects of stimulation with IL-12 and IL-23. Quantitative real-time PCR, flow cytometry, ELISA, promoter studies on PBMC and primary T cells from healthy volunteers, and Jurkat cell line. Treatment with SP significantly increased the expression of IL-12/IL-23 subunit p40, IL-23 p19 and IL-12 p35 mRNA in human PBMC. Expression of NK1R and SP in T cells was upregulated by IL-23 but a trend was observed with IL-12. The IL-23 effect likely involves IL-17 production that additionally mediates IL-23 effects. Mutual interactions exist with SP enhancing the cytokines IL-23 and IL-12, and SP and NK1R expression being differentially but potentially synergistically regulated by these cytokines. These findings suggest a proinflammatory role for SP in autoimmune inflammation. We propose a model whereby immunocyte derived SP stimulates Th1 and Th17 autoreactive cells migrating to the central nervous system (CNS), enhances their crossing the blood brain barrier and perpetuates inflammation in the CNS by being released from damaged nerves and activating both resident glia and infiltrating immune cells. SP may be a therapeutic target in MS.
K-Cl cotransporters, cell volume homeostasis, and neurological disease
Kahle, Kristopher T.; Khanna, Arjun R.; Alper, Seth L.; Adragna, Norma C.; Lauf, Peter K.; Sun, Dandan; Delpire, Eric
2016-01-01
K+-Cl− cotransporters (KCCs) were originally characterized as regulators of red blood cell (RBC) volume. Since then, four distinct KCCs have been cloned, and their importance for volume regulation has been demonstrated in other cell types. Genetic models of certain KCCs, such as KCC3, and their inhibitory WNK-STE20/SPS1-related proline/alanine-rich kinase (SPAK) serine-threonine kinases, have demonstrated the evolutionary necessity of these molecules for nervous system cell volume regulation, structure, and function, and their involvement in neurological disease. The recent characterization of a swelling-activated dephosphorylation mechanism that potently stimulates the KCCs has pinpointed a potentially druggable switch of KCC activity. An improved understanding of WNK/SPAK-mediated KCC cell volume regulation in the nervous system might reveal novel avenues for the treatment of multiple neurological diseases. PMID:26142773
K-Cl cotransporters, cell volume homeostasis, and neurological disease.
Kahle, Kristopher T; Khanna, Arjun R; Alper, Seth L; Adragna, Norma C; Lauf, Peter K; Sun, Dandan; Delpire, Eric
2015-08-01
K(+)-Cl(-) cotransporters (KCCs) were originally characterized as regulators of red blood cell (RBC) volume. Since then, four distinct KCCs have been cloned, and their importance for volume regulation has been demonstrated in other cell types. Genetic models of certain KCCs, such as KCC3, and their inhibitory WNK-STE20/SPS1-related proline/alanine-rich kinase (SPAK) serine-threonine kinases, have demonstrated the evolutionary necessity of these molecules for nervous system cell volume regulation, structure, and function, and their involvement in neurological disease. The recent characterization of a swelling-activated dephosphorylation mechanism that potently stimulates the KCCs has pinpointed a potentially druggable switch of KCC activity. An improved understanding of WNK/SPAK-mediated KCC cell volume regulation in the nervous system might reveal novel avenues for the treatment of multiple neurological diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chernov, Andrei V.; Dolkas, Jennifer; Hoang, Khang; Angert, Mila; Srikrishna, Geetha; Vogl, Thomas; Baranovskaya, Svetlana; Strongin, Alex Y.; Shubayev, Veronica I.
2015-01-01
To shed light on the early immune response processes in severed peripheral nerves, we performed genome-wide transcriptional profiling and bioinformatics analyses of the proximal (P, regenerating) and distal (D, degenerating) nerve stumps on day 1 in the sciatic nerve axotomy model in rats. Multiple cell death-related pathways were activated in the degenerating D stump, whereas activation of the cytoskeletal motility and gluconeogenesis/glycolysis pathways was most prominent in the P stump of the axotomized nerve. Our bioinformatics analyses also identified the specific immunomodulatory genes of the chemokine, IL, TNF, MHC, immunoglobulin-binding Fc receptor, calcium-binding S100, matrix metalloproteinase, tissue inhibitor of metalloproteinase, and ion channel families affected in both the P and D segments. S100a8 and S100a9 were the top up-regulated genes in both the P and D segments. Stimulation of cultured Schwann cells using the purified S100A8/A9 heterodimer recapitulated activation of the myeloid cell and phagocyte chemotactic genes and pathways, which we initially observed in injured nerves. S100A8/A9 heterodimer injection into the intact nerve stimulated macrophage infiltration. We conclude that, following peripheral nerve injury, an immediate acute immune response occurs both distal and proximal to the lesion site and that the rapid transcriptional activation of the S100a8 and S100a9 genes results in S100A8/A9 hetero- and homodimers, which stimulate the release of chemokines and cytokines by activated Schwann cells and generate the initial chemotactic gradient that guides the transmigration of hematogenous immune cells into the injured nerve. PMID:25792748
CD47 and Nox1 Mediate Dynamic Fluid-Phase Macropinocytosis of Native LDL
Csányi, Gábor; Feck, Douglas M.; Ghoshal, Pushpankur; Singla, Bhupesh; Lin, Huiping; Nagarajan, Shanmugam; Meijles, Daniel N.; Al Ghouleh, Imad; Cantu-Medellin, Nadiezhda; Kelley, Eric E.; Mateuszuk, Lukasz; Isenberg, Jeffrey S.; Watkins, Simon
2017-01-01
Abstract Aims: Macropinocytosis has been implicated in cardiovascular and other disorders, yet physiological factors that initiate fluid-phase internalization and the signaling mechanisms involved remain poorly identified. The present study was designed to examine whether matrix protein thrombospondin-1 (TSP1) stimulates macrophage macropinocytosis and, if so, to investigate the potential signaling mechanism involved. Results: TSP1 treatment of human and murine macrophages stimulated membrane ruffle formation and pericellular solute internalization by macropinocytosis. Blockade of TSP1 cognate receptor CD47 and NADPH oxidase 1 (Nox1) signaling, inhibition of phosphoinositide 3-kinase, and transcriptional knockdown of myotubularin-related protein 6 abolished TSP1-induced macropinocytosis. Our results demonstrate that Nox1 signaling leads to dephosphorylation of actin-binding protein cofilin at Ser-3, actin remodeling, and macropinocytotic uptake of unmodified native low-density lipoprotein (nLDL), leading to foam cell formation. Finally, peritoneal chimera studies suggest the role of CD47 in macrophage lipid macropinocytosis in hypercholesterolemic ApoE−/− mice in vivo. Innovation: Activation of a previously unidentified TSP1-CD47 signaling pathway in macrophages stimulates direct receptor-independent internalization of nLDL, leading to significant lipid accumulation and foam cell formation. These findings reveal a new paradigm in which delimited Nox1-mediated redox signaling, independent of classical lipid oxidation, contributes to early propagation of vascular inflammatory disease. Conclusions: The findings of the present study demonstrate a new mechanism of solute uptake with implications for a wide array of cell types, including macrophages, dendritic cells, and cancer cells, and multiple pathological conditions in which matrix proteins are upregulated. Antioxid. Redox Signal. 26, 886–901. PMID:27958762
Withaferin A Inhibits the Proteasome Activity in Mesothelioma In Vitro and In Vivo
Cheryan, Vino T.; Wu, Wenjuan; Cui, Cindy Qiuzhi; Polin, Lisa A.; Pass, Harvey I.; Dou, Q. Ping; Rishi, Arun K.; Wali, Anil
2012-01-01
The medicinal plant Withania somnifera has been used for over centuries in Indian Ayurvedic Medicine to treat a wide spectrum of disorders. Withaferin A (WA), a bioactive compound that is isolated from this plant, has anti-inflammatory, immuno-modulatory, anti-angiogenic, and anti-cancer properties. Here we investigated malignant pleural mesothelioma (MPM) suppressive effects of WA and the molecular mechanisms involved. WA inhibited growth of the murine as well as patient-derived MPM cells in part by decreasing the chymotryptic activity of the proteasome that resulted in increased levels of ubiquitinated proteins and pro-apoptotic proteasome target proteins (p21, Bax, IκBα). WA suppression of MPM growth also involved elevated apoptosis as evidenced by activation of pro-apoptotic p38 stress activated protein kinase (SAPK) and caspase-3, elevated levels of pro-apoptotic Bax protein and cleavage of poly-(ADP-ribose)-polymerase (PARP). Our studies including gene-array based analyses further revealed that WA suppressed a number of cell growth and metastasis-promoting genes including c-myc. WA treatments also stimulated expression of the cell cycle and apoptosis regulatory protein (CARP)-1/CCAR1, a novel transducer of cell growth signaling. Knock-down of CARP-1, on the other hand, interfered with MPM growth inhibitory effects of WA. Intra-peritoneal administration of 5 mg/kg WA daily inhibited growth of murine MPM cell-derived tumors in vivo in part by inhibiting proteasome activity and stimulating apoptosis. Together our in vitro and in vivo studies suggest that WA suppresses MPM growth by targeting multiple pathways that include blockage of proteasome activity and stimulation of apoptosis, and thus holds promise as an anti-MPM agent. PMID:22912669
Rac regulates vascular endothelial growth factor stimulated motility.
Soga, N; Connolly, J O; Chellaiah, M; Kawamura, J; Hruska, K A
2001-01-01
During angiogenesis endothelial cells migrate towards a chemotactic stimulus. Understanding the mechanism of endothelial cell migration is critical to the therapeutic manipulation of angiogenesis and ultimately cancer prevention. Vascular endothelial growth factor (VEGF) is a potent chemotactic stimulus of endothelial cells during angiogenesis. The endothelial cell signal transduction pathway of VEGF represents a potential target for cancer therapy, but the mechanisms of post-receptor signal transduction including the roles of rho family GTPases in regulating the cytoskeletal effects of VEGF in endothelial cells are not understood. Here we analyze the mechanisms of cell migration in the mouse brain endothelial cell line (bEND3). Stable transfectants containing a tetracycline repressible expression vector were used to induce expression of Rac mutants. Endothelial cell haptotaxis was stimulated by constitutively active V12Rac on collagen and vitronectin coated supports, and chemotaxis was further stimulated by VEGF. Osteopontin coated supports were the most stimulatory to bEND3 haptotaxis, but VEGF was not effective in further increasing migration on osteopontin coated supports. Haptotaxis on support coated with collagen, vitronectin, and to a lesser degree osteopontin was inhibited by N17 Rac. N17 Rac expression blocked stimulation of endothelial cell chemotaxis by VEGF. As part of the chemotactic stimulation, VEGF caused a loss of actin organization at areas of cell-cell contact and increased stress fiber expression in endothelial cells which were directed towards pores in the transwell membrane. N17 Rac prevented the stimulation of cell-cell contact disruption and the stress fiber stimulation by VEGF. These data demonstrate two pathways of regulating endothelial cell motility, one in which Rac is activated by matrix/integrin stimulation and is a crucial modulator of endothelial cell haptotaxis. The other pathway, in the presence of osteopontin, is Rac independent. VEGF stimulated chemotaxis, is critically dependent on Rac activation. Osteopontin was a potent matrix activator of motility, and perhaps one explanation for the absence of a VEGF plus osteopontin effect is that osteopontin stimulated motility was inhibitory to the Rac pathway.
The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis.
Gorman, Matthew J; Poddar, Subhajit; Farzan, Michael; Diamond, Michael S
2016-09-15
The interferon-induced transmembrane protein (IFITM) family of proteins inhibit infection of several different enveloped viruses in cell culture by virtue of their ability to restrict entry and fusion from late endosomes. As few studies have evaluated the importance of Ifitm3 in vivo in restricting viral pathogenesis, we investigated its significance as an antiviral gene against West Nile virus (WNV), an encephalitic flavivirus, in cells and mice. Ifitm3(-/-) mice were more vulnerable to lethal WNV infection, and this was associated with greater virus accumulation in peripheral organs and central nervous system tissues. As no difference in viral burden in the brain or spinal cord was observed after direct intracranial inoculation, Ifitm3 likely functions as an antiviral protein in nonneuronal cells. Consistent with this, Ifitm3(-/-) fibroblasts but not dendritic cells resulted in higher yields of WNV in multistep growth analyses. Moreover, transcomplementation experiments showed that Ifitm3 inhibited WNV infection independently of Ifitm1, Ifitm2, Ifitm5, and Ifitm6. Beyond a direct effect on viral infection in cells, analysis of the immune response in WNV-infected Ifitm3(-/-) mice showed decreases in the total number of B cells, CD4(+) T cells, and antigen-specific CD8(+) T cells. Finally, bone marrow chimera experiments demonstrated that Ifitm3 functioned in both radioresistant and radiosensitive cells, as higher levels of WNV were observed in the brain only when Ifitm3 was absent from both compartments. Our analyses suggest that Ifitm3 restricts WNV pathogenesis likely through multiple mechanisms, including the direct control of infection in subsets of cells. As part of the mammalian host response to viral infections, hundreds of interferon-stimulated genes (ISGs) are induced. The inhibitory activity of individual ISGs varies depending on the specific cell type and viral pathogen. Among ISGs, the genes encoding interferon-induced transmembrane protein (IFITM) have been reported to inhibit multiple families of viruses in cell culture. However, few reports have evaluated the impact of IFITM genes on viral pathogenesis in vivo In this study, we characterized the antiviral activity of Ifitm3 against West Nile virus (WNV), an encephalitic flavivirus, using mice with a targeted gene deletion of Ifitm3 Based on extensive virological and immunological analyses, we determined that Ifitm3 protects mice from WNV-induced mortality by restricting virus accumulation in peripheral organs and, subsequently, in central nervous system tissues. Our data suggest that Ifitm3 restricts WNV pathogenesis by multiple mechanisms and functions in part by controlling infection in different cell types. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Factors affecting ultraviolet-A photon emission from β-irradiated human keratinocyte cells.
Le, M; Mothersill, C E; Seymour, C B; Ahmad, S B; Armstrong, A; Rainbow, A J; McNeill, F E
2015-08-21
The luminescence intensity of 340±5 nm photons emitted from HaCaT (human keratinocyte) cells was investigated using a single-photon-counting system during cellular exposure to (90)Y β-particles. Multiple factors were assessed to determine their influence upon the quantity and pattern of photon emission from β-irradiated cells. Exposure of 1 x 10(4) cells/5 mL to 703 μCi resulted in maximum UVA photoemission at 44.8 x 10(3)±2.5 x 10(3) counts per second (cps) from live HaCaT cells (background: 1-5 cps); a 16-fold increase above cell-free controls. Significant biophoton emission was achieved only upon stimulation and was also dependent upon presence of cells. UVA luminescence was measured for (90)Y activities 14 to 703 μCi where a positive relationship between photoemission and (90)Y activity was observed. Irradiation of live HaCaT cells plated at various densities produced a distinct pattern of emission whereby luminescence increased up to a maximum at 1 x 10(4) cells/5 mL and thereafter decreased. However, this result was not observed in the dead cell population. Both live and dead HaCaT cells were irradiated and were found to demonstrate different rates of photon emission at low β activities (⩽400 μCi). Dead cells exhibited greater photon emission rates than live cells which may be attributable to metabolic processes taking place to modulate the photoemissive effect. The results indicate that photon emission from HaCaT cells is perturbed by external stimulation, is dependent upon the activity of radiation delivered, the density of irradiated cells, and cell viability. It is postulated that biophoton emission may be modulated by a biological or metabolic process.
Modulating the stem cell niche for tissue regeneration
Lane, Steven W; Williams, David A; Watt, Fiona M
2015-01-01
The field of regenerative medicine holds considerable promise for treating diseases that are currently intractable. Although many researchers are adopting the strategy of cell transplantation for tissue repair, an alternative approach to therapy is to manipulate the stem cell microenvironment, or niche, to facilitate repair by endogenous stem cells. The niche is highly dynamic, with multiple opportunities for intervention. These include administration of small molecules, biologics or biomaterials that target specific aspects of the niche, such as cell-cell and cell–extracellular matrix interactions, to stimulate expansion or differentiation of stem cells, or to cause reversion of differentiated cells to stem cells. Nevertheless, there are several challenges in targeting the niche therapeutically, not least that of achieving specificity of delivery and responses. We envisage that successful treatments in regenerative medicine will involve different combinations of factors to target stem cells and niche cells, applied at different times to effect recovery according to the dynamics of stem cell–niche interactions. PMID:25093887
De Rosa, Veronica; Galgani, Mario; Porcellini, Antonio; Colamatteo, Alessandra; Santopaolo, Marianna; Zuchegna, Candida; Romano, Antonella; De Simone, Salvatore; Procaccini, Claudio; La Rocca, Claudia; Carrieri, Pietro Biagio; Maniscalco, Giorgia Teresa; Salvetti, Marco; Buscarinu, Maria Chiara; Franzese, Adriana; Mozzillo, Enza; La Cava, Antonio; Matarese, Giuseppe
2016-01-01
Human regulatory T cells (Treg cells) that develop from conventional T cells (Tconv cells) following suboptimal stimulation via the T cell antigen receptor (TCR) (induced Treg cells (iTreg cells)) express the transcription factor Foxp3, are suppressive, and display an active proliferative and metabolic state. Here we found that the induction and suppressive function of iTreg cells tightly depended on glycolysis, which controlled Foxp3 splicing variants containing exon 2 (Foxp3-E2) through the glycolytic enzyme enolase-1. The Foxp3-E2–related suppressive activity of iTreg cells was altered in human autoimmune diseases, including multiple sclerosis and type 1 diabetes, and was associated with impaired glycolysis and signaling via interleukin 2. This link between glycolysis and Foxp3-E2 variants via enolase-1 shows a previously unknown mechanism for controlling the induction and function of Treg cells in health and in autoimmunity. PMID:26414764
Szulc-Dąbrowska, Lidia; Struzik, Justyna; Cymerys, Joanna; Winnicka, Anna; Nowak, Zuzanna; Toka, Felix N.; Gieryńska, Małgorzata
2017-01-01
Ectromelia virus (ECTV) belongs to the Orthopoxvirus genus of the Poxviridae family and is a natural pathogen of mice. Certain strains of mice are highly susceptible to ECTV infection and develop mousepox, a lethal disease similar to smallpox of humans caused by variola virus. Currently, the mousepox model is one of the available small animal models for investigating pathogenesis of generalized viral infections. Resistance and susceptibility to ECTV infection in mice are controlled by many genetic factors and are associated with multiple mechanisms of immune response, including preferential polarization of T helper (Th) immune response toward Th1 (protective) or Th2 (non-protective) profile. We hypothesized that viral-induced inhibitory effects on immune properties of conventional dendritic cells (cDCs) are more pronounced in ECTV-susceptible than in resistant mouse strains. To this extent, we confronted the cDCs from resistant (C57BL/6) and susceptible (BALB/c) mice with ECTV, regarding their reactivity and potential to drive T cell responses following infection. Our results showed that in vitro infection of granulocyte-macrophage colony-stimulating factor-derived bone marrow cells (GM-BM—comprised of cDCs and macrophages) from C57BL/6 and BALB/c mice similarly down-regulated multiple genes engaged in DC innate and adaptive immune functions, including antigen uptake, processing and presentation, chemokines and cytokines synthesis, and signal transduction. On the contrary, ECTV infection up-regulated Il10 in GM-BM derived from both strains of mice. Moreover, ECTV similarly inhibited surface expression of major histocompatibility complex and costimulatory molecules on GM-BM, explaining the inability of the cells to attain full maturation after Toll-like receptor (TLR)4 agonist treatment. Additionally, cells from both strains of mice failed to produce cytokines and chemokines engaged in T cell priming and Th1/Th2 polarization after TLR4 stimulation. These data strongly suggest that in vitro modulation of GM-BM innate and adaptive immune functions by ECTV occurs irrespective of whether the mouse strain is susceptible or resistant to infection. Moreover, ECTV limits the GM-BM (including cDCs) capacity to stimulate protective Th1 immune response. We cannot exclude that this may be an important factor in the generation of non-protective Th2 immune response in susceptible BALB/c mice in vivo. PMID:29312229
CD56bright NK cells exhibit potent antitumor responses following IL-15 priming
Wagner, Julia A.; Berrien-Elliott, Melissa M.; Schneider, Stephanie E.; Leong, Jeffrey W.; Sullivan, Ryan P.; Jewell, Brea A.; Becker-Hapak, Michelle; Abdel-Latif, Sara; Ireland, Aaron R.; Jaishankar, Devika; King, Justin A.; Vij, Ravi; Clement, Dennis; Goodridge, Jodie; Malmberg, Karl-Johan; Wong, Hing C.; Fehniger, Todd A.
2017-01-01
NK cells, lymphocytes of the innate immune system, are important for defense against infectious pathogens and cancer. Classically, the CD56dim NK cell subset is thought to mediate antitumor responses, whereas the CD56bright subset is involved in immunomodulation. Here, we challenge this paradigm by demonstrating that brief priming with IL-15 markedly enhanced the antitumor response of CD56bright NK cells. Priming improved multiple CD56bright cell functions: degranulation, cytotoxicity, and cytokine production. Primed CD56bright cells from leukemia patients demonstrated enhanced responses to autologous blasts in vitro, and primed CD56bright cells controlled leukemia cells in vivo in a murine xenograft model. Primed CD56bright cells from multiple myeloma (MM) patients displayed superior responses to autologous myeloma targets, and furthermore, CD56bright NK cells from MM patients primed with the IL-15 receptor agonist ALT-803 in vivo displayed enhanced ex vivo functional responses to MM targets. Effector mechanisms contributing to IL-15–based priming included improved cytotoxic protein expression, target cell conjugation, and LFA-1–, CD2-, and NKG2D-dependent activation of NK cells. Finally, IL-15 robustly stimulated the PI3K/Akt/mTOR and MEK/ERK pathways in CD56bright compared with CD56dim NK cells, and blockade of these pathways attenuated antitumor responses. These findings identify CD56bright NK cells as potent antitumor effectors that warrant further investigation as a cancer immunotherapy. PMID:28972539
Effect of acute hyperinsulinemia on magnesium homeostasis in humans.
Xu, Li Hao Richie; Maalouf, Naim M
2017-02-01
Insulin may influence magnesium homeostasis through multiple mechanisms. Acutely, it stimulates the shift of magnesium from plasma into red blood cells and platelets, and in vitro, it stimulates the activity of the TRPM6 channel, a key regulator of renal magnesium reabsorption. We investigated the impact of hyperinsulinemia on magnesium handling in participants with a wide range of insulin sensitivity. Forty-seven participants were recruited, including 34 nondiabetic controls and 13 with type 2 diabetes mellitus. After stabilization under fixed metabolic diet, participants underwent hyperinsulinemic-euglycemic clamp. Serum and urine samples were collected before and during hyperinsulinemia. Change in serum magnesium, urinary magnesium to creatinine (Mg 2 + :Cr) ratio, fractional excretion of urinary magnesium (FEMg 2 + ), and estimated transcellular shift of magnesium were compared before and during hyperinsulinemia. Hyperinsulinemia led to a small but statistically significant decrease in serum magnesium, and to a shift of magnesium into the intracellular compartment. Hyperinsulinemia did not significantly alter urinary magnesium to creatinine ratio or fractional excretion of urinary magnesium in the overall population, although a small but statistically significant decline in these parameters occurred in participants with diabetes. There was no significant correlation between change in fractional excretion of urinary magnesium and body mass index or insulin sensitivity measured as glucose disposal rate. In human participants, acute hyperinsulinemia stimulates the shift of magnesium into cells with minimal alteration in renal magnesium reabsorption, except in diabetic patients who experienced a small decline in fractional excretion of urinary magnesium. The magnitude of magnesium shift into the intracellular compartment in response to insulin does not correlate with that of insulin-stimulated glucose entry into cells. Copyright © 2016 John Wiley & Sons, Ltd.
Mann, Brandon A.; Huang, Julia He; Li, Ping; Chang, Hua-Chen; Slee, Roger B.; O'Sullivan, Audrey; Mathur, Anita; Yeh, Norman; Klemsz, Michael J.; Brutkiewicz, Randy R.; Blum, Janice S.
2008-01-01
Blocking the function of Stat (signal transducer and activator of transcription) proteins, which are critical for antiviral responses, has evolved as a common mechanism for pathogen immune evasion. The poxvirus-encoded phosphatase H1 is critical for viral replication, and may play an additional role in the evasion of host defense by dephosphorylating Stat1 and blocking interferon (IFN)-stimulated innate immune responses. Vaccinia virus (VACV) H1 can inhibit the phosphorylation of the transcription factor Stat1 after IFN-γ stimulation of epithelial cells, greatly attenuating IFN-induced biological functions. In this study, we demonstrate that VACV infection is capable of inhibiting the phosphorylation of Stat1 and Stat2 after stimulation of fibroblasts or bone marrow-derived macrophages with either type I or type II IFNs, but did not inhibit the activation of Stat3 or Stat5 in either cell type. By using recombinant proteins for in vitro assays, we observe that variola virus H1 is more active than VACV H1, although it has similar selectivity for Stat targets. Differential effects of VACV infection were observed on the induction of IFN-stimulated genes, with complete inhibition of some genes by VACV infection, while others were less affected. Despite the IFN-γ-induced expression of some genes in VACV-infected cells, IFN-γ was unable to rescue the VACV-mediated inhibition of MHC class II antigen presentation. Moreover, VACV infection can affect the IFN-induced expression of Stat1-dependent and Stat1-independent genes, suggesting that the virus may target additional IFN-activated pathways. Thus, VACV targets multiple signaling pathways in the evasion of antiviral immune responses. PMID:18593332
In vitro stimulation with a strongly pulsed electromagnetic field on rat basophilic leukemia cells
NASA Astrophysics Data System (ADS)
Choi, J. W.; Shin, S. C.; Kim, S.; Chung, E. R.; Bang, J. H.; Cho, G. I.; Choi, S. D.; Park, Y. S.; Jang, T. S.; Yoo, Y. M.; Lee, S. S.; Hwang, D. G.
2010-05-01
In this study, the effects of pulsed electromagnetic field stimulation with a strong magnetic field on rat basophilic leukemia (RBL-2H3) cells were investigated to confirm the efficacy of the magnetic stimulator for biomedical applications. The maximum intensity of the magnetic field generated from the stimulation coil was 0.203 T, and the transition time was 126 μs. The oscillation time and frequency of the pulsed field were almost 0.1 ms and 8 kHz, respectively. The cell count as well as the mRNA expression and DNA sequence of the cytokine genes, such as the tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4), of the stimulated RBL-2H3 cells were analyzed with a hemocytometer and via reverse transcriptase polymerase chain reaction to determine the physiological response under a strong pulse field. After 12 h stimulation, cell death was observed at an increasing scale with the increase in the stimulation time. On the other hand, the cells that were stimulated for 10 min almost doubled as the interval time between the stimulations was extended.
The role of aquaporin-5 in cancer cell migration: A potential active participant.
Jensen, Helene H; Login, Frédéric H; Koffman, Jennifer S; Kwon, Tae-Hwan; Nejsum, Lene N
2016-10-01
Emerging data identifies the water channel aquaporin-5 as a major player in multiple cancers. Over-expression of aquaporin-5 has been associated with increased metastasis and poor prognosis, suggesting that aquaporin-5 may enhance cancer cell migration. This review aims to highlight the current knowledge and hypothesis regarding downstream signaling partners of aquaporin-5 in relation to cancer cell migration. The molecular mechanisms that link aquaporin-5 to cell migration are not completely understood. Aquaporin-5 may promote cell movement by increasing water uptake into the front of the cell allowing local swelling. Aquaporin-5 may also activate extracellular-regulated kinases, increasing proliferation and potentially stimulating the migration machinery. Thus, further studies are warranted to identify the underlying mechanisms and signaling pathways. This will reveal whether aquaporin-5 and downstream effectors could be targets for developing new cancer therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Selective AR Modulators that Distinguish Proliferative from Differentiative Gene Promoters
2015-08-01
approved drugs, were tested in multiple screens. The two best hits were confirmed in rescreens and validated for differential effects on AR activity in...ulate by different mecha- nisms, with dox more cell type specific than Cpd05. The data also indicate that dox can stimulate sARE- lucifer - ase at...with R1881 (1 nM) and compounds or DMSO. 7 Effect of compounds on endogenous gene expression. To determine whether the differential effects
Middleton, K; Al-Dujaili, S; Mei, X; Günther, A; You, L
2017-07-05
Bone cells exist in a complex environment where they are constantly exposed to numerous dynamic biochemical and mechanical stimuli. These stimuli regulate bone cells that are involved in various bone disorders, such as osteoporosis. Knowledge of how these stimuli affect bone cells have been utilised to develop various treatments, such as pharmaceuticals, hormone therapy, and exercise. To investigate the role that bone loading has on these disorders in vitro, bone cell mechanotransduction studies are typically performed using parallel plate flow chambers (PPFC). However, these chambers do not allow for dynamic cellular interactions among different cell populations to be investigated. We present a microfluidic approach that exposes different cell populations, which are located at physiologically relevant distances within adjacent channels, to different levels of fluid shear stress, and promotes cell-cell communication between the different channels. We employed this microfluidic system to assess mechanically regulated osteocyte-osteoclast communication. Osteoclast precursors (RAW264.7 cells) responded to cytokine gradients (e.g., RANKL, OPG, PGE-2) developed by both mechanically stimulated (fOCY) and unstimulated (nOCY) osteocyte-like MLO-Y4 cells simultaneously. Specifically, we observed increased osteoclast precursor cell densities and osteoclast differentiation towards nOCY. We also used this system to show an increased mechanoresponse of osteocytes when in co-culture with osteoclasts. We envision broad applicability of the presented approach for microfluidic perfusion co-culture of multiple cell types in the presence of fluid flow stimulation, and as a tool to investigate osteocyte mechanotransduction, as well as bone metastasis extravasation. This system could also be applied to any multi-cell population cross-talk studies that are typically performed using PPFCs (e.g. endothelial cells, smooth muscle cells, and fibroblasts). Copyright © 2017 Elsevier Ltd. All rights reserved.
Lei, Fengyang; Zhao, Baohua; Haque, Rizwanul; Xiong, Xiaofang; Budgeon, Lynn; Christensen, Neil D; Wu, Yuzhang; Song, Jianxun
2011-07-15
Adoptive T-cell immunotherapy has garnered wide attention, but its effective use is limited by the need of multiple ex vivo manipulations and infusions that are complex and expensive. In this study, we show how highly reactive antigen (Ag)-specific CTLs can be generated from induced pluripotent stem (iPS) cells to provide an unlimited source of functional CTLs for adoptive immunotherapy. iPS cell-derived T cells can offer the advantages of avoiding possible immune rejection and circumventing ethical and practical issues associated with other stem cell types. iPS cells can be differentiated into progenitor T cells in vitro by stimulation with the Notch ligand Delta-like 1 (DL1) overexpressed on bone marrow stromal cells, with complete maturation occurring upon adoptive transfer into Rag1-deficient mice. Here, we report that these iPS cells can be differentiated in vivo into functional CTLs after overexpression of MHC I-restricted Ag-specific T-cell receptors (TCR). In this study, we generated murine iPS cells genetically modified with ovalbumin (OVA)-specific and MHC-I restricted TCR (OT-I) by retrovirus-mediated transduction. After their adoptive transfer into recipient mice, the majority of OT-I/iPS cells underwent differentiation into CD8+ CTLs. TCR-transduced iPS cells developed in vivo responded in vitro to peptide stimulation by secreting interleukin 2 and IFN-γ. Most importantly, adoptive transfer of TCR-transduced iPS cells triggered infiltration of OVA-reactive CTLs into tumor tissues and protected animals from tumor challenge. Taken together, our findings offer proof of concept for a potentially more efficient approach to generate Ag-specific T lymphocytes for adoptive immunotherapy. ©2011 AACR.
Watzlawik, Jens O.; Warrington, Arthur E.; Rodriguez, Moses
2013-01-01
Background Promotion of remyelination is a major goal in treating demyelinating diseases such as multiple sclerosis (MS). The recombinant human monoclonal IgM, rHIgM22, targets myelin and oligodendrocytes (OLs) and promotes remyelination in animal models of MS. It is unclear whether rHIgM22-mediated stimulation of lesion repair is due to promotion of oligodendrocyte progenitor cell (OPC) proliferation and survival, OPC differentiation into myelinating OLs or protection of mature OLs. It is also unknown whether astrocytes or microglia play a functional role in IgM-mediated lesion repair. Methods We assessed the effect of rHIgM22 on cell proliferation in mixed CNS glial and OPC cultures by tritiated-thymidine uptake and by double-label immunocytochemistry using the proliferation marker, Ki-67. Antibody-mediated signaling events, OPC differentiation and OPC survival were investigated and quantified by Western blots. Results rHIgM22 stimulates OPC proliferation in mixed glial cultures but not in purified OPCs. There is no proliferative response in astrocytes or microglia. rHIgM22 activates PDGFαR in OPCs in mixed glial cultures. Blocking PDGFR-kinase inhibits rHIgM22-mediated OPC proliferation in mixed glia. We confirm in isolated OPCs that rHIgM22-mediated anti-apoptotic signaling and inhibition of OPC differentiation requires PDGF and FGF-2. We observed no IgM-mediated effect in mature OLs in the absence of PDGF and FGF-2. Conclusion Stimulation of OPC proliferation by rHIgM22 depends on co-stimulatory astrocytic and/or microglial factors. We demonstrate that rHIgM22-mediated activation of PDGFαR is required for stimulation of OPC proliferation. We propose that rHIgM22 lowers the PDGF threshold required for OPC proliferation and protection, which can result in remyelination of CNS lesions. PMID:23383310
Withaferin A Associated Differential Regulation of Inflammatory Cytokines.
Dubey, Seema; Yoon, Hyunho; Cohen, Mark Steven; Nagarkatti, Prakash; Nagarkatti, Mitzi; Karan, Dev
2018-01-01
A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases.
Withaferin A Associated Differential Regulation of Inflammatory Cytokines
Dubey, Seema; Yoon, Hyunho; Cohen, Mark Steven; Nagarkatti, Prakash; Nagarkatti, Mitzi; Karan, Dev
2018-01-01
A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases. PMID:29479354
Otsuka, T; Ishii, K; Osako, Y; Okutani, F; Taniguchi, M; Oka, T; Kaba, H
2001-05-01
When female mice are mated, they form a memory to the pheromonal signal of their male partner. The neural changes underlying this memory occur in the accessory olfactory bulb, depend upon vaginocervical stimulation at mating and involve changes at the reciprocal synapses between mitral and granule cells. However, the action of vaginocervical stimulation on the reciprocal interactions between mitral and granule cells remains to be elucidated. We have examined the effects of vaginocervical stimulation on paired-pulse depression of amygdala-evoked field potentials recorded in the external plexiform layer of the accessory olfactory bulb (AOB) and the single-unit activity of mitral cells antidromically stimulated from the amygdala in urethane-anaesthetized female mice. Artificial vaginocervical stimulation reduced paired-pulse depression (considered to be due to feedback inhibition of the mitral cell dendrites from the granule cells via reciprocal dendrodendritic synapses) recorded in the AOB external plexiform layer. As would be expected from this result, vaginocervical stimulation also enhanced the spontaneous activity of a proportion of the mitral cells tested. These results suggest that vaginocervical stimulation reduces dendrodendritic feedback inhibition to mitral cells and enhances their activity.
Mazuel, François; Mathieu, Samuel; Di Corato, Riccardo; Bacri, Jean-Claude; Meylheuc, Thierry; Pellegrino, Teresa; Reffay, Myriam; Wilhelm, Claire
2017-08-01
In order to provide insight into how anisotropic nano-objects interact with living cell membranes, and possibly self-assemble, magnetic nanorods with an average size of around 100 nm × 1 µm are designed by assembling iron oxide nanocubes within a polymeric matrix under a magnetic field. The nano-bio interface at the cell membrane under the influence of a rotating magnetic field is then explored. A complex structuration of the nanorods intertwined with the membranes is observed. Unexpectedly, after a magnetic rotating stimulation, the resulting macrorods are able to rotate freely for multiple rotations, revealing the creation of a biomagnetic torsion pendulum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engström, Wilhelm; Darbre, Philippa; Eriksson, Staffan; Gulliver, Linda; Hultman, Tove; Karamouzis, Michalis V; Klaunig, James E; Mehta, Rekha; Moorwood, Kim; Sanderson, Thomas; Sone, Hideko; Vadgama, Pankaj; Wagemaker, Gerard; Ward, Andrew; Singh, Neetu; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A Ivana; Raju, Jayadev; Hamid, Roslida A; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K; Ryan, Elizabeth P; Brown, Dustin G; Bisson, William H
2015-06-01
The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lichtman, S N; Wang, J; Lemasters, J J
1998-07-01
Lipopolysaccharide (LPS) is a bacterial polymer that stimulates macrophages to release tumor necrosis factor-alpha (TNF-alpha). In macrophages (RAW 264.7 and peritoneal cells), LPS binds to the CD14 surface receptor as the first step toward signaling. Liver macrophages, Kupffer cells, are the most numerous fixed-tissue macrophage in the body. The presence of CD14 on Kupffer cells and its role in LPS stimulation of TNF-alpha were examined. TNF-alpha release by Kupffer cells after LPS stimulation was the same in the presence and absence of serum. RAW 264.7 and peritoneal cells, which utilize the CD14 receptor, released significantly less TNF-alpha after LPS stimulation in the absence of serum because of the absence of LPS-binding protein. Phosphatidylinositol-phospholipase C treatment, which cleaves the CD14 receptor, decreased LPS-stimulated TNF-alpha release by RAW 264.7 cells but not by Kupffer cells. Deacylated LPS (dLPS) competes with LPS at the CD14 receptor when incubated in a ratio of 100:1 (dLPS/LPS). Such competition blocked LPS-stimulated TNF-alpha release from RAW 264.7 cells but not from Kupffer cells. Western and fluorescence-activated cell sorter analysis directly demonstrated the presence of CD14 on RAW 264.7 cells and murine peritoneal cells but showed only minimal amounts of CD14 in murine Kupffer cells. LPS stimulation did not increase the amount of CD14 detectable on mouse Kupffer cells. CD14 expression is very low in Kupffer cells, and LPS-stimulated TNF-alpha release is independent of CD14 in these cells.
Ferrara, Patrizia; Andermarcher, Elisabetta; Bossis, Guillaume; Acquaviva, Claire; Brockly, Frédérique; Jariel-Encontre, Isabelle; Piechaczyk, Marc
2003-03-13
c-fos gene is expressed constitutively in a number of tissues as well as in certain tumor cells and is inducible, in general rapidly and transiently, in virtually all other cell types by a variety of stimuli. Its protein product, c-Fos, is a short-lived transcription factor that heterodimerizes with various protein partners within the AP-1 transcription complex via leucine zipper/leucine zipper interactions for binding to specific DNA sequences. It is mostly, if not exclusively, degraded by the proteasome. To localize the determinant(s) responsible for its instability, we have conducted a genetic analysis in which the half-lives of c-Fos mutants and chimeras made with the stable EGFP reporter protein were compared under two experimental conditions taken as example of continous and inducible expression. Those were constitutive expression in asynchronously growing Balb/C 3T3 mouse embryo fibroblasts and transient induction in the same cells undergoing the G0/G1 phase transition upon stimulation by serum. Our work shows that c-Fos is degraded faster in synchronous- than in asynchronous cells. This difference in turnover is primarily accounted for by several mechanisms. First, in asynchronous cells, a unique C-terminal destabilizer is active whereas, in serum-stimulated cells two destabilizers located at both extremities of the protein are functional. Second, heterodimerization and/or binding to DNA accelerates protein degradation only during the G0/G1 phase transition. Adding another level of complexity to turnover control, phosphorylation at serines 362 and 374, which are c-Fos phosphorylation sites largely modified during the G0/G1 phase transition, stabilizes c-Fos much more efficiently in asynchronous than in serum-stimulated cells. In both cases, the reduced degradation rate is due to inhibition of the activity of the C-terminal destabilizer. However, in serum-stimulated cells, this effect is partially masked by the activation of the N-terminal destabilizer and basic domain/leucine zipper-dependent mechanisms. Taken together, our data show that multiple degradation mechanisms, differing according to the conditions of expression, may operate on c-Fos to ensure a proper level and/or timing of expression. Moreover, they also indicate that the half-life of c-Fos during the G0/G1 phase transition is determined by a delicate balance between opposing stabilizing and destabilizing mechanisms operating at the same time.
Noone, Cariosa; Kihm, Anthony; O'Dea, Shirley; Mahon, Bernard P.
2013-01-01
Umbilical cord tissue represents a unique source of cells with potential for cell therapy applications for multiple diseases. Human umbilical tissue-derived cells (hUTC) are a developmentally early stage, homogenous population of cells that are HLA-ABC dim, HLA-DR negative, and lack expression of co-stimulatory molecules in the unactivated state. The lack of HLA-DR and co-stimulatory molecule expression on unactivated hUTC may account for their reduced immunogenicity, facilitating their use in allogeneic settings. However, such approaches could be confounded by host innate cells such as natural killer (NK) cells. Here, we evaluate in vitro NK cell interactions with hUTC and compare them with human mesenchymal stem cells (MSC). Our investigations show that hUTC suppress NK activation, through prostaglandin-E2 secretion in a contact-independent manner. Prestimulation of hUTC or human MSC with interferon gamma (IFN-γ) induced expression of the tryptophan degrading enzyme indoleamine 2, 3 dioxygenase, facilitating enhanced suppression. However, resting NK cells of different killer immunoglobulin-like receptor haplotypes did not kill hUTC or MSC; only activated NK cells had the ability to kill nonstimulated hUTC and, to a lesser extent, MSC. The cell killing process involved signaling through the NKG2D receptor and the perforin/granzyme pathway; this was supported by CD54 (ICAM-1) expression by hUTC. IFN-γ-stimulated hUTC or hMSC were less susceptible to NK killing; in this case, protection was associated with elevated HLA-ABC expression. These data delineate the different mechanisms in a two-way interaction between NK cells and two distinct cell therapies, hUTC or hMSC, and how these interactions may influence their clinical applications. PMID:23795941
Smith, N Ms; Wasserman, G A; Coleman, F T; Hilliard, K L; Yamamoto, K; Lipsitz, E; Malley, R; Dooms, H; Jones, M R; Quinton, L J; Mizgerd, J P
2018-01-01
As children age, they become less susceptible to the diverse microbes causing pneumonia. These microbes are pathobionts that infect the respiratory tract multiple times during childhood, generating immunological memory. To elucidate mechanisms of such naturally acquired immune protection against pneumonia, we modeled a relevant immunological history in mice by infecting their airways with mismatched serotypes of Streptococcus pneumoniae (pneumococcus). Previous pneumococcal infections provided protection against a heterotypic, highly virulent pneumococcus, as evidenced by reduced bacterial burdens and long-term sterilizing immunity. This protection was diminished by depletion of CD4 + cells prior to the final infection. The resolution of previous pneumococcal infections seeded the lungs with CD4 + resident memory T (T RM ) cells, which responded to heterotypic pneumococcus stimulation by producing multiple effector cytokines, particularly interleukin (IL)-17A. Following lobar pneumonias, IL-17-producing CD4 + T RM cells were confined to the previously infected lobe, rather than dispersed throughout the lower respiratory tract. Importantly, pneumonia protection also was confined to that immunologically experienced lobe. Thus regionally localized memory cells provide superior local tissue protection to that mediated by systemic or central memory immune defenses. We conclude that respiratory bacterial infections elicit CD4 + T RM cells that fill a local niche to optimize heterotypic protection of the affected tissue, preventing pneumonia.
Transplantation of Human Embryonic Stem Cells in Patients with Multiple Sclerosis and Lyme Disease.
Shroff, Geeta
2016-12-13
BACKGROUND Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease in which the myelin sheath of nerve cells is damaged. It can cause delayed neurologic symptoms similar to those seen in Lyme disease (LD) patients. Thymus derived T-cells (myelin reactive) migrate to the blood brain barrier and stimulate an inflammatory cascade in the central nervous system. Cell based therapies play an important role in treating neurological diseases such as MS and LD. CASE REPORT Human embryonic stem cell (hESC) therapy was used to treat two patients with both MS and LD. The hESCs were administered via different routes including intramuscular, intravenous, and supplemental routes (e.g., deep spinal, caudal, intercostal through eye drops) to regenerate the injured cells. Both the patients showed remarkable improvement in their functional skills, overall stamina, cognitive abilities, and muscle strength. Furthermore, the improvement in the patients' conditions were assessed by magnetic resonance tractography and single photon emission computed tomography (SPECT). CONCLUSIONS Therapy with hESCs might emerge as an effective and safe treatment for patients with both MS and LD. Well-designed clinical trials and follow-up studies are needed to prove the long-term efficacy and safety of hESC therapy in the treatment of patients with MS and LD.
Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival
2009-01-01
Introduction The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Methods Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. Results In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Conclusions Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs through uncoupling of serotonin from the homeostatic regulatory mechanisms of the normal mammary epithelium. The findings open a new avenue for identification of diagnostic and prognostic markers, and valuable new therapeutic targets for managing breast cancer. PMID:19903352
Bota, Daniela A; Alexandru, Daniela; Keir, Stephen T; Bigner, Darell; Vredenburgh, James; Friedman, Henry S
2013-12-01
Recurrent malignant gliomas have inherent resistance to traditional chemotherapy. Novel therapies target specific molecular mechanisms involved in abnormal signaling and resistance to apoptosis. The proteasome is a key regulator of multiple cellular functions, and its inhibition in malignant astrocytic lines causes cell growth arrest and apoptotic cell death. The proteasome inhibitor bortezomib was reported to have very good in vitro activity against malignant glioma cell lines, with modest activity in animal models as well as in clinical trials as a single agent. In this paper, the authors describe the multiple effects of bortezomib in both in vitro and in vivo glioma models and offer a novel explanation for its seeming lack of activity. Glioma stem-like cells (GSCs) were obtained from resected glioblastomas (GBMs) at surgery and expanded in culture. Stable glioma cell lines (U21 and D54) as well as temozolomide (TMZ)-resistant glioma cells derived from U251 and D54-MG were also cultured. GSCs from 2 different tumors, as well as D54 and U251 cells, were treated with bortezomib, and the effect of the drug was measured using an XTT cell viability assay. The activity of bortezomib was then determined in D54-MG and/or U251 cells using apoptosis analysis as well as caspase-3 activity and proteasome activity measurements. Human glioma xenograft models were created in nude mice by subcutaneous injection. Bevacizumab was administered via intraperitoneal injection at a dose of 5 mg/kg daily. Bortezomib was administered by intraperitoneal injection 1 hour after bevacizumab administration in doses of at a dose of 0.35 mg/kg on days 1, 4, 8, and 11 every 21 days. Tumors were measured twice weekly. Bortezomib induced caspase-3 activation and apoptotic cell death in stable glioma cell lines and in glioma stem-like cells (GSCs) derived from malignant tumor specimens Furthermore, TMZ-resistant glioma cell lines retained susceptibility to the proteasome inhibition. The bortezomib activity was directly proportional with the cells' baseline proteasome activity. The proteasome inhibition stimulated both hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) production in malignant GSCs. As such, the VEGF produced by GSCs stimulated endothelial cell growth, an effect that could be prevented by the addition of bevacizumab (VEGF antibody) to the media. Similarly, administration of bortezomib and bevacizumab to athymic mice carrying subcutaneous malignant glioma xenografts resulted in greater tumor inhibition and greater improvement in survival than administration of either drug alone. These data indicate that simultaneous proteasome inhibition and VEGF blockade offer increased benefit as a strategy for malignant glioma therapy. The results of this study indicate that combination therapies based on bortezomib and bevacizumab might offer an increased benefit when the two agents are used in combination. These drugs have a complementary mechanism of action and therefore can be used together to treat TMZ-resistant malignant gliomas.
AFPep: an anti-breast cancer peptide that is orally active.
Bennett, James A; DeFreest, Lori; Anaka, Ikenna; Saadati, Hamid; Balulad, Sujata; Jacobson, Herbert I; Andersen, Thomas T
2006-07-01
We have synthesized a cyclic nonapeptide (AFPep) that is effective, after being administered by parenteral routes, for the treatment or the prevention of breast cancer. To test the hypothesis that AFPep remains safe and efficacious after oral administration, three different whole-animal bioassays were utilized, and the mechanism by which AFPep functions was investigated. Using a human breast cancer xenograft model in mice for therapeutic activity, a carcinogen-induced breast cancer model in rats for prevention efficacy, and a mouse uterus growth inhibition model of anti-estrogenic activity, AFPep was administered by oral gavage (p.o.) and its effects compared to those following intraperitoneal (i.p.) and subcutaneous (s.c.) administration. Toxicity studies evaluated body weights and organ weights in mice and rats receiving AFPep. Preliminary mechanistic studies were carried out in T47D human breast cancer cells growing in culture and evaluated the effect of AFPep on estrogen-stimulated cell growth, phosphorylation of the estrogen receptor (ER), and on level of ER-related kinases. Orally administered AFPep stopped the growth of human tumor xenografts in mice, decreased the incidence and multiplicity of breast cancers in carcinogen-exposed rats, and inhibited the estrogen-stimulated growth of mouse uteri. In each of these systems, orally administered AFPep produced an effect similar to that obtained for AFPep administered by either i.p or s.c. routes. In rodents, no evidence of toxicity was seen for the peptide, even at very high doses. In culture, AFPep inhibited the estrogen-stimulated growth, but not the basal growth, of T47D cells, and it inhibited the estrogen-stimulated phosphorylation of Serine 118 in the ER of these cells, which was not explainable by early changes in ER-related kinases. Chronic oral administration of AFPep appears to be safe and effective for the treatment or prevention of breast cancer in animal models.
Esposito, Giuseppe; De Filippis, Daniele; Carnuccio, Rosa; Izzo, Angelo A; Iuvone, Teresa
2006-03-01
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. A massive accumulation of beta-amyloid (Abeta) peptide aggregates has been proposed as pivotal event in AD. Abeta-induced toxicity is accompanied by a variegated combination of events including oxidative stress. The Wnt pathway has multiple actions in the cascade of events triggered by Abeta, and drugs that rescue Wnt activity may be considered as novel therapeutics for AD treatment. Cannabidiol, a non-psychoactive marijuana component, has been recently proposed as an antioxidant neuroprotective agent in neurodegenerative diseases. Moreover, it has been shown to rescue PC12 cells from toxicity induced by Abeta peptide. However, the molecular mechanism of cannabidiol-induced neuroprotective effect is still unknown. Here, we report that cannabidiol inhibits hyperphosphorylation of tau protein in Abeta-stimulated PC12 neuronal cells, which is one of the most representative hallmarks in AD. The effect of cannabidiol is mediated through the Wnt/beta-catenin pathway rescue in Abeta-stimulated PC12 cells. These results provide new molecular insight regarding the neuroprotective effect of cannabidiol and suggest its possible role in the pharmacological management of AD, especially in view of its low toxicity in humans.
Macrophages – Key Cells in the Response to Wear Debris from Joint Replacements
Nich, Christophe; Takakubo, Yuya; Pajarinen, Jukka; Ainola, Mari; Salem, Abdelhakim; Sillat, Tarvo; Rao, Allison J.; Raska, Milan; Tamaki, Yasunobu; Takagi, Michiaki; Konttinen, Yrjö T.; Goodman, Stuart B.; Gallo, Jiri
2013-01-01
The generation of wear debris is an inevitable result of normal usage of joint replacements. Wear debris particles stimulate local and systemic biological reactions resulting in chronic inflammation, periprosthetic bone destruction, and eventually, implant loosening and revision surgery. The latter may be indicated in up to 15% patients in the decade following the arthroplasty using conventional polyethylene. Macrophages play multiple roles in both inflammation and in maintaining tissue homeostasis. As sentinels of the innate immune system, they are central to the initiation of this inflammatory cascade, characterized by the release of pro-inflammatory and pro-osteoclastic factors. Similar to the response to pathogens, wear particles elicit a macrophage response, based on the unique properties of the cells belonging to this lineage, including sensing, chemotaxis, phagocytosis, and adaptive stimulation. The biological processes involved are complex, redundant, both local and systemic, and highly adaptive. Cells of the monocyte/macrophage lineage are implicated in this phenomenon, ultimately resulting in differentiation and activation of bone resorbing osteoclasts. Simultaneously, other distinct macrophage populations inhibit inflammation and protect the bone-implant interface from osteolysis. Here, the current knowledge about the physiology of monocyte/macrophage lineage cells is reviewed. In addition, the pattern and consequences of their interaction with wear debris and the recent developments in this field are presented. PMID:23568608
Ikaros-Notch axis in host hematopoietic cells regulates experimental graft-versus-host disease
Toubai, Tomomi; Sun, Yaping; Tawara, Isao; Friedman, Ann; Liu, Chen; Evers, Rebecca; Nieves, Evelyn; Malter, Chelsea; Chockley, Peter; Maillard, Ivan; Winandy, Susan
2011-01-01
Host hematopoietically derived APCs play a vital role in the initiation of GVH responses. However, the APC autonomous molecular mechanisms that are critical for the induction of GVHD are not known. We report here that the Ikaros-Notch axis in host hematopoietically derived APCs regulates the severity of acute GVHD across multiple clinically relevant murine models of experimental bone marrow transplantation. In the present study, Ikaros deficiency (Ik−/−) limited to host hematopoietically derived APCs enhanced donor T-cell expansion and intensified acute GVHD, as determined by survival and other GVHD-specific parameters. The Ik−/− conventional CD8+ and CD8−CD11c+ dendritic cells (DCs), the most potent APCs, showed no increase in the expression of activation markers or in response to TLR stimulation compared with wild-type controls. However, Ik−/− DCs demonstrated an enhanced stimulation of allogeneic T cells. Deficiency of Ikaros in the conventional CD8+ and CD8−CD11c+ DCs was associated with an increase in Notch signaling, the blockade of which mitigated the enhanced in vitro and in vivo allostimulatory capacity. Therefore, the Ikaros-Notch axis is a novel pathway that modulates DC biology in general, and targeting this pathway in host hematopoietically derived APCs may reduce GVHD. PMID:21471527
Estorninho, Megan; Gibson, Vivienne B; Kronenberg-Versteeg, Deborah; Liu, Yuk-Fun; Ni, Chester; Cerosaletti, Karen; Peakman, Mark
2013-12-01
Extensive diversity in the human repertoire of TCRs for Ag is both a cornerstone of effective adaptive immunity that enables host protection against a multiplicity of pathogens and a weakness that gives rise to potential pathological self-reactivity. The complexity arising from diversity makes detection and tracking of single Ag-specific CD4 T cells (ASTs) involved in these immune responses challenging. We report a tandem, multistep process to quantify rare TCRβ-chain variable sequences of ASTs in large polyclonal populations. The approach combines deep high-throughput sequencing (HTS) within functional CD4 T cell compartments, such as naive/memory cells, with shallow, multiple identifier-based HTS of ASTs identified by activation marker upregulation after short-term Ag stimulation in vitro. We find that clonotypes recognizing HLA class II-restricted epitopes of both pathogen-derived Ags and self-Ags are oligoclonal and typically private. Clonotype tracking within an individual reveals private AST clonotypes resident in the memory population, as would be expected, representing clonal expansions (identical nucleotide sequence; "ultraprivate"). Other AST clonotypes share CDR3β amino acid sequences through convergent recombination and are found in memory populations of multiple individuals. Tandem HTS-based clonotyping will facilitate studying AST dynamics, epitope spreading, and repertoire changes that arise postvaccination and following Ag-specific immunotherapies for cancer and autoimmune disease.
Ultra-high contrast retinal display system for single photoreceptor psychophysics
Domdei, Niklas; Domdei, Lennart; Reiniger, Jenny L.; Linden, Michael; Holz, Frank G.; Roorda, Austin; Harmening, Wolf M.
2017-01-01
Due to the enormous dynamic range of human photoreceptors in response to light, studying their visual function in the intact retina challenges the stimulation hardware, specifically with regard to the displayable luminance contrast. The adaptive optics scanning laser ophthalmoscope (AOSLO) is an optical platform that focuses light to extremely small retinal extents, approaching the size of single photoreceptor cells. However, the current light modulation techniques produce spurious visible backgrounds which fundamentally limit experimental options. To remove unwanted background light and to improve contrast for high dynamic range visual stimulation in an AOSLO, we cascaded two commercial fiber-coupled acousto-optic modulators (AOMs) and measured their combined optical contrast. By compensating for zero-point differences in the individual AOMs, we demonstrate a multiplicative extinction ratio in the cascade that was in accordance with the extinction ratios of both single AOMs. When latency differences in the AOM response functions were individually corrected, single switch events as short as 50 ns with radiant power contrasts up to 1:1010 were achieved. This is the highest visual contrast reported for any display system so far. We show psychophysically that this contrast ratio is sufficient to stimulate single foveal photoreceptor cells with small and bright enough visible targets that do not contain a detectable background. Background-free stimulation will enable photoreceptor testing with custom adaptation lights. Furthermore, a larger dynamic range in displayable light levels can drive photoreceptor responses in cones as well as in rods. PMID:29359094
Rictor/mammalian target of rapamycin complex 2 promotes macrophage activation and kidney fibrosis.
Ren, Jiafa; Li, Jianzhong; Feng, Ye; Shu, Bingyan; Gui, Yuan; Wei, Wei; He, Weichun; Yang, Junwei; Dai, Chunsun
2017-08-01
Mammalian target of rapamycin (mTOR) signalling controls many essential cellular functions. However, the role of Rictor/mTOR complex 2 (mTORC2) in regulating macrophage activation and kidney fibrosis remains largely unknown. We report here that Rictor/mTORC2 was activated in macrophages from the fibrotic kidneys of mice. Ablation of Rictor in macrophages reduced kidney fibrosis, inflammatory cell accumulation, macrophage proliferation and polarization after unilateral ureter obstruction or ischaemia/reperfusion injury. In bone marrow-derived macrophages (BMMs), deletion of Rictor or blockade of protein kinase Cα inhibited cell migration. Additionally, deletion of Rictor or blockade of Akt abolished interleukin-4-stimulated or transforming growth factor (TGF)-β1-stimulated macrophage M2 polarization. Furthermore, deletion of Rictor downregulated TGF-β1-stimulated upregulation of multiple profibrotic cytokines, including platelet-derived growth factor, vascular endothelial growth factor and connective tissue growth factor, in BMMs. Conditioned medium from TGF-β1-pretreated Rictor -/- macrophages stimulated fibroblast activation less efficiently than that from TGF-β1-pretreated Rictor +/+ macrophages. These results demonstrate that Rictor/mTORC2 signalling can promote macrophage activation and kidney fibrosis. Targeting this signalling pathway in macrophages may shine light on ways to protect against kidney fibrosis in patients with chronic kidney diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Park, Hyun Jung
2009-01-01
Parkinson's disease (PD) and multiple system atrophy (MSA) are neurodegenerative diseases representative of α-synucleinopathies characterized pathologically by α-synuclein-abundant Lewy bodies and glial cytoplasmic inclusions, respectively. Embryonic stem cells, fetal mesencephalic neurons, and neural stem cells have been introduced as restorative strategies in PD animals and patients, but ethical and immunological problems as well as the serious side effects of tumorigenesis and disabling dyskinesia have limited clinical application of these stem cells. Meanwhile, cell therapy using mesenchymal stem cells (MSCs) is attractive clinically because these cells are free from ethical and immunological problems. MSCs are present in adult bone marrow and represent <0.01% of all nucleated bone marrow cells. MSCs are themselves capable of multipotency, differentiating under appropriate conditions into chondrocytes, skeletal myocytes, and neurons. According to recent studies, the neuroprotective effect of MSCs is mediated by their ability to produce various trophic factors that contribute to functional recovery, neuronal cell survival, and stimulation of endogenous regeneration and by immunoregulatory properties that not only inhibit nearly all cells participating in the immune response cell-cell-contact-dependent mechanism, but also release various soluble factors associated with immunosuppressive activity. However, the use of MSCs as neuroprotectives in PD and MSA has seldom been studied. Here we comprehensively review recent advances in the therapeutic roles of MSCs in PD and MSA, especially focusing on their neuroprotective properties and use in disease-modifying therapeutic strategies. PMID:19513327
In Silico Prediction Analysis of Idiotope-Driven T–B Cell Collaboration in Multiple Sclerosis
Høglund, Rune A.; Lossius, Andreas; Johansen, Jorunn N.; Homan, Jane; Benth, Jūratė Šaltytė; Robins, Harlan; Bogen, Bjarne; Bremel, Robert D.; Holmøy, Trygve
2017-01-01
Memory B cells acting as antigen-presenting cells are believed to be important in multiple sclerosis (MS), but the antigen they present remains unknown. We hypothesized that B cells may activate CD4+ T cells in the central nervous system of MS patients by presenting idiotopes from their own immunoglobulin variable regions on human leukocyte antigen (HLA) class II molecules. Here, we use bioinformatics prediction analysis of B cell immunoglobulin variable regions from 11 MS patients and 6 controls with other inflammatory neurological disorders (OINDs), to assess whether the prerequisites for such idiotope-driven T–B cell collaboration are present. Our findings indicate that idiotopes from the complementarity determining region (CDR) 3 of MS patients on average have high predicted affinities for disease associated HLA-DRB1*15:01 molecules and are predicted to be endosomally processed by cathepsin S and L in positions that allows such HLA binding to occur. Additionally, complementarity determining region 3 sequences from cerebrospinal fluid (CSF) B cells from MS patients contain on average more rare T cell-exposed motifs that could potentially escape tolerance and stimulate CD4+ T cells than CSF B cells from OIND patients. Many of these features were associated with preferential use of the IGHV4 gene family by CSF B cells from MS patients. This is the first study to combine high-throughput sequencing of patient immune repertoires with large-scale prediction analysis and provides key indicators for future in vitro and in vivo analyses. PMID:29038659
In Silico Prediction Analysis of Idiotope-Driven T-B Cell Collaboration in Multiple Sclerosis.
Høglund, Rune A; Lossius, Andreas; Johansen, Jorunn N; Homan, Jane; Benth, Jūratė Šaltytė; Robins, Harlan; Bogen, Bjarne; Bremel, Robert D; Holmøy, Trygve
2017-01-01
Memory B cells acting as antigen-presenting cells are believed to be important in multiple sclerosis (MS), but the antigen they present remains unknown. We hypothesized that B cells may activate CD4 + T cells in the central nervous system of MS patients by presenting idiotopes from their own immunoglobulin variable regions on human leukocyte antigen (HLA) class II molecules. Here, we use bioinformatics prediction analysis of B cell immunoglobulin variable regions from 11 MS patients and 6 controls with other inflammatory neurological disorders (OINDs), to assess whether the prerequisites for such idiotope-driven T-B cell collaboration are present. Our findings indicate that idiotopes from the complementarity determining region (CDR) 3 of MS patients on average have high predicted affinities for disease associated HLA-DRB1*15:01 molecules and are predicted to be endosomally processed by cathepsin S and L in positions that allows such HLA binding to occur. Additionally, complementarity determining region 3 sequences from cerebrospinal fluid (CSF) B cells from MS patients contain on average more rare T cell-exposed motifs that could potentially escape tolerance and stimulate CD4 + T cells than CSF B cells from OIND patients. Many of these features were associated with preferential use of the IGHV4 gene family by CSF B cells from MS patients. This is the first study to combine high-throughput sequencing of patient immune repertoires with large-scale prediction analysis and provides key indicators for future in vitro and in vivo analyses.
Stimulation of plasmin activity in cultured human fibroblast cells by Porphyromonas endodontalis.
Oikawa, T; Ogura, N; Akiba, M; Abiko, Y; Takiguchi, H; Izumi, H
1993-09-01
1. Plasmin activity in the conditioned medium of Gin-1 cells, a human gingival fibroblast cell line, was stimulated by Porphyromonas endodontalis, a putative pathogen of oral submucous abscesses, in a time- and dose-dependent manner. 2. P. endodontalis stimulated the activity of plasminogen activator in both the conditioned medium and the cell lysate. The plasminogen activator in Gin-1 cells was approx. 50 kDa by zymography. 3. The conditioned medium of Gin-1 cells exposed to P. endodontalis stimulated the conversion of human serum prekallikrein to kallikrein. 4. These results suggested that P. endodontalis stimulates the plasminogen activator-plasmin system in Gin-1 cells, and that activated plasmin plays a role in the progress of periodontal tissue inflammation.
Operant conditioning of neural activity in freely behaving monkeys with intracranial reinforcement
Eaton, Ryan W.; Libey, Tyler
2017-01-01
Operant conditioning of neural activity has typically been performed under controlled behavioral conditions using food reinforcement. This has limited the duration and behavioral context for neural conditioning. To reward cell activity in unconstrained primates, we sought sites in nucleus accumbens (NAc) whose stimulation reinforced operant responding. In three monkeys, NAc stimulation sustained performance of a manual target-tracking task, with response rates that increased monotonically with increasing NAc stimulation. We recorded activity of single motor cortex neurons and documented their modulation with wrist force. We conditioned increased firing rates with the monkey seated in the training booth and during free behavior in the cage using an autonomous head-fixed recording and stimulating system. Spikes occurring above baseline rates triggered single or multiple electrical pulses to the reinforcement site. Such rate-contingent, unit-triggered stimulation was made available for periods of 1–3 min separated by 3–10 min time-out periods. Feedback was presented as event-triggered clicks both in-cage and in-booth, and visual cues were provided in many in-booth sessions. In-booth conditioning produced increases in single neuron firing probability with intracranial reinforcement in 48 of 58 cells. Reinforced cell activity could rise more than five times that of non-reinforced activity. In-cage conditioning produced significant increases in 21 of 33 sessions. In-cage rate changes peaked later and lasted longer than in-booth changes, but were often comparatively smaller, between 13 and 18% above non-reinforced activity. Thus intracranial stimulation reinforced volitional increases in cortical firing rates during both free behavior and a controlled environment, although changes in the latter were more robust. NEW & NOTEWORTHY Closed-loop brain-computer interfaces (BCI) were used to operantly condition increases in muscle and neural activity in monkeys by delivering activity-dependent stimuli to an intracranial reinforcement site (nucleus accumbens). We conditioned increased firing rates with the monkeys seated in a training booth and also, for the first time, during free behavior in a cage using an autonomous head-fixed BCI. PMID:28031396
Operant conditioning of neural activity in freely behaving monkeys with intracranial reinforcement.
Eaton, Ryan W; Libey, Tyler; Fetz, Eberhard E
2017-03-01
Operant conditioning of neural activity has typically been performed under controlled behavioral conditions using food reinforcement. This has limited the duration and behavioral context for neural conditioning. To reward cell activity in unconstrained primates, we sought sites in nucleus accumbens (NAc) whose stimulation reinforced operant responding. In three monkeys, NAc stimulation sustained performance of a manual target-tracking task, with response rates that increased monotonically with increasing NAc stimulation. We recorded activity of single motor cortex neurons and documented their modulation with wrist force. We conditioned increased firing rates with the monkey seated in the training booth and during free behavior in the cage using an autonomous head-fixed recording and stimulating system. Spikes occurring above baseline rates triggered single or multiple electrical pulses to the reinforcement site. Such rate-contingent, unit-triggered stimulation was made available for periods of 1-3 min separated by 3-10 min time-out periods. Feedback was presented as event-triggered clicks both in-cage and in-booth, and visual cues were provided in many in-booth sessions. In-booth conditioning produced increases in single neuron firing probability with intracranial reinforcement in 48 of 58 cells. Reinforced cell activity could rise more than five times that of non-reinforced activity. In-cage conditioning produced significant increases in 21 of 33 sessions. In-cage rate changes peaked later and lasted longer than in-booth changes, but were often comparatively smaller, between 13 and 18% above non-reinforced activity. Thus intracranial stimulation reinforced volitional increases in cortical firing rates during both free behavior and a controlled environment, although changes in the latter were more robust. NEW & NOTEWORTHY Closed-loop brain-computer interfaces (BCI) were used to operantly condition increases in muscle and neural activity in monkeys by delivering activity-dependent stimuli to an intracranial reinforcement site (nucleus accumbens). We conditioned increased firing rates with the monkeys seated in a training booth and also, for the first time, during free behavior in a cage using an autonomous head-fixed BCI. Copyright © 2017 the American Physiological Society.
Fitschen-Oestern, Stefanie; Weuster, Matthias; Lippross, Sebastian; Behrendt, Peter; Fuchs, Sabine; Pufe, Thomas; Tohidnezhad, Mersedeh; Bayer, Andreas; Seekamp, Andreas; Varoga, Deike; Klüter, Tim
2017-03-07
Human-beta defensins (HBD) belong to the family of acute phase peptides and hold a broad antimicrobial spectrum that includes gram-positive and gram-negative bacteria. HBD are up-regulated after severe injuries but the source of posttraumatic HBD expression has not been focused on before. In the current study we analysed the role of liver tissue in expression of HBD after multiple trauma in human and mice. HBD-2 expression has been detected in plasma samples of 32 multiple trauma patients (ISS > 16) over 14 days after trauma by ELISA. To investigate major sources of HBD-2, its expression and regulation in plasma samples, polymorphonuclear neutrophils (PMN) and human tissue samples of liver and skin were analysed by ELISA. As liver samples of trauma patients are hard to obtain we tried to review findings in an established trauma model. Plasma samples and liver samples of 56 male C57BL/6 N-mice with a thorax trauma and a femur fracture were analysed by ELISA, real-time PCR and immunohistochemistry for murine beta defensin 4 (MBD-4) and compared with the expression of control group without trauma. The induction of HBD-2 expression in cultured hepatocytes (Hep G2) was analysed after incubation with IL-6, supernatant of Staphylococcus aureus (SA) and Lipopolysaccharides (LPS). One possible signalling pathway was tested by blocking toll-like receptor 2 (TLR2) in hepatocytes. Compared to healthy control group, plasma of multiple traumatized patients and mice showed significantly higher defensin levels after trauma. Compared to skin cells, which are known for high beta defensin expression, liver tissue showed less HBD-2 expression, but higher HBD-2 expression compared to PMN. Immunhistochemical staining demonstrated upregulated MBD-4 in hepatocytes of traumatised mice. In HepG2 cells HBD-2 expression could be increased by stimulation with IL-6 and SA. Neutralization of HepG2 cells with αTLR2 showed reduced HBD-2 expression after stimulation with SA. Plasma samples of multiple traumatized patients showed high expression of HBD-2, which may protect the severely injured patient from overwhelming bacterial infection. Our data support the hypothesis that liver is one possible source for HBD-2 in plasma while posttraumatic inflammatory response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montesano, Roberto; Sarkoezi, Rita; Schramek, Herbert
2008-09-12
Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hithertomore » unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.« less
Developmental Origin Governs CD8+ T Cell Fate Decisions during Infection.
Smith, Norah L; Patel, Ravi K; Reynaldi, Arnold; Grenier, Jennifer K; Wang, Jocelyn; Watson, Neva B; Nzingha, Kito; Yee Mon, Kristel J; Peng, Seth A; Grimson, Andrew; Davenport, Miles P; Rudd, Brian D
2018-06-06
Heterogeneity is a hallmark feature of the adaptive immune system in vertebrates. Following infection, naive T cells differentiate into various subsets of effector and memory T cells, which help to eliminate pathogens and maintain long-term immunity. The current model suggests there is a single lineage of naive T cells that give rise to different populations of effector and memory T cells depending on the type and amounts of stimulation they encounter during infection. Here, we have discovered that multiple sub-populations of cells exist in the naive CD8 + T cell pool that are distinguished by their developmental origin, unique transcriptional profiles, distinct chromatin landscapes, and different kinetics and phenotypes after microbial challenge. These data demonstrate that the naive CD8 + T cell pool is not as homogeneous as previously thought and offers a new framework for explaining the remarkable heterogeneity in the effector and memory T cell subsets that arise after infection. Copyright © 2018 Elsevier Inc. All rights reserved.
Zanoni, Ivan; Tan, Yunhao; Di Gioia, Marco; Springstead, James R; Kagan, Jonathan C
2017-10-17
A heterogeneous mixture of lipids called oxPAPC, derived from dying cells, can hyperactivate dendritic cells (DCs) but not macrophages. Hyperactive DCs are defined by their ability to release interleukin-1 (IL-1) while maintaining cell viability, endowing these cells with potent aptitude to stimulate adaptive immunity. Herein, we found that the bacterial lipopolysaccharide receptor CD14 captured extracellular oxPAPC and delivered these lipids into the cell to promote inflammasome-dependent DC hyperactivation. Notably, we identified two specific components within the oxPAPC mixture that hyperactivated macrophages, allowing these cells to release IL-1 for several days, by a CD14-dependent process. In murine models of sepsis, conditions that promoted cell hyperactivation resulted in inflammation but not lethality. Thus, multiple phagocytes are capable of hyperactivation in response to oxPAPC, with CD14 acting as the earliest regulator in this process, serving to capture and transport these lipids to promote inflammatory cell fate decisions. Copyright © 2017 Elsevier Inc. All rights reserved.
Moeller, Ines; Spagnoli, Giulio C; Finke, Jürgen; Veelken, Hendrik; Houet, Leonora
2012-11-01
Induction of tumor-antigen-specific T cells in active cancer immunotherapy is generally difficult due to the very low anti-tumoral precursor cytotoxic T cells. By improving tumor-antigen uptake and presentation by dendritic cells (DCs), this problem can be overcome. Focusing on MAGE-A3 protein, frequently expressed in many types of tumors, we analyzed different DC-uptake routes after additional coating the recombinant MAGE-A3 protein with either a specific monoclonal antibody or an immune complex formulation. Opsonization of the protein with antibody resulted in increased DC-uptake compared to the uncoated rhMAGE-A3 protein. This was partly due to Fcγ receptor-dependent internalization. However, unspecific antigen internalization via macropinocytosis also played a role. When analyzing DC-uptake of MAGE-A3 antigen expressed in multiple myeloma cell line U266, pretreatment with proteasome inhibitor bortezomib resulted in increased apoptosis compared to γ-irradiation. Bortezomib-mediated immunogenic apoptosis, characterized by elevated surface expression of hsp90, triggered higher phagocytosis of U266 cells by DCs involving specific DC-derived receptors. We further investigated the impact of antigen delivery on T-cell priming. Induction of CD8(+) T-cell response was favored by stimulating naïve T cells with either antibody-opsonized MAGE-A3 protein or with the bortezomib-pretreated U266 cells, indicating that receptor-mediated uptake favors cross-presentation of antigens. In contrast, CD4(+) T cells were preferentially induced after stimulation with the uncoated protein or protein in the immune complex, both antigen formulations were preferentially internalized by DCs via macropinocytosis. In summary, receptor-mediated DC-uptake mechanisms favored the induction of CD8(+) T cells, relevant for clinical anti-tumor response.
Starossom, Sarah C.; Veremeyko, Tatyana; Yung, Amanda W. Y.; Dukhinova, Marina; Au, Cheryl; Lau, Alexander Y.; Weiner, Howard L.; Ponomarev, Eugene D.
2015-01-01
Rationale Platelets are known to participate in vascular pathologies; however, their role in neuroinflammatory diseases such as multiples sclerosis (MS) is unknown. Autoimmune CD4 T cells have been the main focus of studies of MS, although the factors that regulate T cell differentiation towards pathogenic Th1/Th17 phenotypes are not completely understood. Objectives We investigated the role of platelets in the modulation of CD4 T cell functions in MS patients and in mice with experimental autoimmune encephalitis (EAE), an animal model for MS. Methods and Results We found that early in MS and EAE platelets degranulated and produced a number of soluble factors serotonin (5HT), PF4 and PAF, which specifically stimulated differentiation of T cells towards pathogenic Th1, Th17 and IFN-γ/IL-17-producing CD4 T cells. At the later stages of MS and EAE platelets became exhausted in their ability to produce proinflammatory factors and stimulate CD4 T cells, but substantially increased their ability to form aggregates with CD4 T cells. Formation of platelet-CD4 T cell aggregates involved interaction of CD62P on activated platelets with adhesion molecule CD166 on activated CD4 T cells, contributing to downmodulation of CD4 T cell activation, proliferation and production of IFN-γ. Blocking of formation of platelet-CD4 T cell aggregates during progression of EAE substantially enhanced proliferation of CD4 T cell in the CNS and the periphery leading to exacerbation of the disease. Conclusion Our study indicates differential roles for platelets in the regulation of functions of pathogenic CD4 T cells during initiation and progression of CNS autoimmune inflammation. PMID:26294656
Yang, Mo; Li, Karen; Ng, Pak Cheung; Chuen, Carmen Ka Yee; Lau, Tze Kin; Cheng, Yuan Shan; Liu, Yuan Sheng; Li, Chi Kong; Yuen, Patrick Man Pan; James, Anthony Edward; Lee, Shuk Man; Fok, Tai Fai
2007-07-01
Serotonin is a monoamine neurotransmitter that has multiple extraneuronal functions. We previously reported that serotonin exerted mitogenic stimulation on megakaryocytopoiesis mediated by 5-hydroxytryptamine (5-HT)2 receptors. In this study, we investigated effects of serotonin on ex vivo expansion of human cord blood CD34+ cells, bone marrow (BM) stromal cell colony-forming unit-fibroblast (CFU-F) formation, and antiapoptosis of megakaryoblastic M-07e cells. Our results showed that serotonin at 200 nM significantly enhanced the expansion of CD34+ cells to early stem/progenitors (CD34+ cells, colony-forming unit-mixed [CFU-GEMM]) and multilineage committed progenitors (burst-forming unit/colony-forming unit-erythroid [BFU/CFU-E], colony-forming unit-granulocyte macrophage, colony-forming unit-megakaryocyte, CD61+ CD41+ cells). Serotonin also increased nonobese diabetic/severe combined immunodeficient repopulating cells in the expansion culture in terms of human CD45+, CD33+, CD14+ cells, BFU/CFU-E, and CFU-GEMM engraftment in BM of animals 6 weeks post-transplantation. Serotonin alone or in addition to fibroblast growth factor, platelet-derived growth factor, or vascular endothelial growth factor stimulated BM CFU-F formation. In M-07e cells, serotonin exerted antiapoptotic effects (annexin V, caspase-3, and propidium iodide staining) and reduced mitochondria membrane potential damage. The addition of ketanserin, a competitive antagonist of 5-HT2 receptor, nullified the antiapoptotic effects of serotonin. Our data suggest the involvement of serotonin in promoting hematopoietic stem cells and the BM microenvironment. Serotonin could be developed for clinical ex vivo expansion of hematopoietic stem cells for transplantation. Disclosure of potential conflicts of interest is found at the end of this article.
Local delivery of molecules from a nanopipette for quantitative receptor mapping on live cells.
Babakinejad, Babak; Jönsson, Peter; López Córdoba, Ainara; Actis, Paolo; Novak, Pavel; Takahashi, Yasufumi; Shevchuk, Andrew; Anand, Uma; Anand, Praveen; Drews, Anna; Ferrer-Montiel, Antonio; Klenerman, David; Korchev, Yuri E
2013-10-01
Using nanopipettes to locally deliver molecules to the surface of living cells could potentially open up studies of biological processes down to the level of single molecules. However, in order to achieve precise and quantitative local delivery it is essential to be able to determine the amount and distribution of the molecules being delivered. In this work, we investigate how the size of the nanopipette, the magnitude of the applied pressure or voltage, which drives the delivery, and the distance to the underlying surface influences the number and spatial distribution of the delivered molecules. Analytical expressions describing the delivery are derived and compared with the results from finite element simulations and experiments on delivery from a 100 nm nanopipette in bulk solution and to the surface of sensory neurons. We then developed a setup for rapid and quantitative delivery to multiple subcellular areas, delivering the molecule capsaicin to stimulate opening of Transient Receptor Potential Vanilloid subfamily member 1 (TRPV1) channels, membrane receptors involved in pain sensation. Overall, precise and quantitative delivery of molecules from nanopipettes has been demonstrated, opening up many applications in biology such as locally stimulating and mapping receptors on the surface of live cells.
Engineered decellularized matrices to instruct bone regeneration processes.
Papadimitropoulos, Adam; Scotti, Celeste; Bourgine, Paul; Scherberich, Arnaud; Martin, Ivan
2015-01-01
Despite the significant progress in the field of bone tissue engineering, cell-based products have not yet reached the stage of clinical adoption. This is due to the uncertain advantages from the standard-of-care, combined with challenging cost-and regulatory-related issues. Novel therapeutic approaches could be based on exploitation of the intrinsic regenerative capacity of bone tissue, provided the development of a deeper understanding of its healing mechanisms. While it is well-established that endogenous progenitors can be activated toward bone formation by overdoses of single morphogens, the challenge to stimulate the healing processes by coordinated and controlled stimulation of specific cell populations remains open. Here, we review the recent approaches to generate osteoinductive materials based on the use of decellularized extracellular matrices (ECM) as reservoirs of multiple factors presented at physiological doses and through the appropriate ligands. We then propose the generation of customized engineered and decellularized ECM (i) as a tool to better understand the processes of bone regeneration and (ii) as safe and effective "off-the-shelf" bone grafts for clinical use. This article is part of a Special Issue entitled Stem Cells and Bone. Copyright © 2014 Elsevier Inc. All rights reserved.
Heparin Stimulates Elastogenesis: Application to Silk-Based Vascular Grafts
Baughman, Cassandra; Kaplan, David L.; Castellot, John J.
2013-01-01
With over 500,000 coronary artery bypass grafts (CABG) performed annually in the United States alone, there is a significant clinical need for a small diameter tissue engineered vascular graft. A principle goal in tissue engineering is to develop materials and growth conditions that encourage appropriate re-cellularization and extracellular matrix formation in vivo. A particular challenge in vascular tissue engineering results from the inability of adult cells to produce elastin, as its expression is developmentally limited. We investigated factors to stimulate elastogenesis in vitro, and found that heparin treatment of adult human vascular smooth muscle cells promoted the formation of elastic fibers. This effect was heparin-specific, and dependent on cell density and growth state. We then applied this information to a silk-based construct, and found that immobilized heparin showed essentially identical biological effects to that of soluble heparin. These findings indicate that heparinized vascular grafts may promote elastin formation and regulate restenosis, in addition to heparin’s well-established antithrombotic properties. Given the increase in elastin mRNA level and the increase in extracellular elastin present, our data suggests that there may be multiple levels of elastin regulation that are mediated by heparin treatment. PMID:21600981
TLR-Stimulated Eosinophils Mediate Recruitment and Activation of NK Cells In Vivo.
O'Flaherty, S M; Sutummaporn, K; Häggtoft, W L; Worrall, A P; Rizzo, M; Braniste, V; Höglund, P; Kadri, N; Chambers, B J
2017-06-01
Eosinophils like many myeloid innate immune cells can provide cytokines and chemokines for the activation of other immune cells upon TLR stimulation. When TLR-stimulated eosinophils were inoculated i.p. into wild-type mice, and NK cells were rapidly recruited and exhibited antitumour cytotoxicity. However, when mice depleted of CD11c + cells were used, a marked decrease in the number of recruited NK cells was observed. We postulated that CpG or LPS from the injected eosinophils could be transferred to host cells, which in turn could recruit NK cells. However, by inoculating mice deficient in TLR4 or TLR9 with LPS or CpG-stimulated eosinophils respectively, NK cell recruitment was still observed alongside cytotoxicity and IFNγ production. CpG stimulation of eosinophils produced the pro-inflammatory cytokine IL-12 and the chemokine CXCL10, which are important for NK cell activation and recruitment in vivo. To demonstrate the importance of CXCL10 in NK cell recruitment, we found that CpG-stimulated eosinophils pretreated with the gut microbial metabolite butyrate had reduced expression and production of CXCL10 and IL-12 and concomitantly were poor at recruitment of NK cells and inducing IFNγ in NK cells. Therefore, eosinophils like other innate immune cells of myeloid origin can conceivably stimulate NK cell activity. In addition, products of the gut microbiota can be potential inhibitors of NK cell. © 2017 The Foundation for the Scandinavian Journal of Immunology.
Cole, Jonathan C; Green Bernacki, Carolyn; Helmer, Amanda; Pinninti, Narsimha; O'reardon, John P
2015-01-01
We reviewed the literature on transcranial magnetic stimulation and its uses and efficacy in schizophrenia. Multiple sources were examined on transcranial magnetic stimulation efficacy in relieving positive and negative symptoms of schizophrenia. Literature review was conducted via Ovid Medline and PubMed databases. We found multiple published studies and metaanalyses that give evidence that repetitive transcranial magnetic stimulation can have benefit in relieving positive and negative symptoms of schizophrenia, particularly auditory hallucinations. These findings should encourage the psychiatric community to expand research into other applications for which transcranial magnetic stimulation may be used to treat patients with psychiatric disability.
Effect of deep brain stimulation on different speech subsystems in patients with multiple sclerosis.
Pützer, Manfred; Barry, William John; Moringlane, Jean Richard
2007-11-01
The effect of deep brain stimulation on articulation and phonation subsystems in seven patients with multiple sclerosis (MS) was examined. Production parameters in fast syllable-repetitions were defined and measured, and the phonation quality during vowel productions was analyzed. Speech material was recorded for patients (with and without stimulation) and for a group of healthy control speakers. With stimulation, the precision of glottal and supraglottal articulatory gestures is reduced, whereas phonation has a greater tendency to be hyperfunctional in comparison with the healthy control data. Different effects on the two speech subsystems are induced by electrical stimulation of the thalamus in patients with MS.
Hatch, Nan E; Li, Yan; Franceschi, Renny T
2009-01-01
Pyrophosphate is an established inhibitor of hydroxyapatite deposition and crystal growth, yet when hydrolyzed into phosphate, it becomes a substrate for hydroxyapatite deposition. Pyrophosphate-generating enzyme (PC-1), Ank, and tissue nonspecific alkaline phosphatase (Tnap) are three factors that regulate extracellular pyrophosphate levels through its generation, transport, and hydrolysis. We previously showed that fibroblast growth factor 2 (FGF2) induces PC-1 and Ank while inhibiting Tnap expression and mineralization in MC3T3E1(C4) calvarial pre-osteoblast cells. In this study, we showed similar FGF2 regulation of these genes in primary pre-osteoblast cultures. In contrast to Ank and Tnap that are regulated by FGF2 in multiple cell types, we found regulation of PC-1 to be selective to pre-osteoblastic cells and to require the osteoblast-related transcription factor, Runx2. Specifically, FGF2 was unable to induce PC-1 expression in Runx2-negative nonbone cells or in calvarial cells from Runx2-deficient mice. Transfection of these cells with a Runx2 expression vector restored FGF2 responsiveness. FGF2 was also shown to stimulate recruitment of Runx2 to the endogenous PC-1 promoter in MC3T3E1(C4) cells, as measured by chromatin immunoprecipitation. Taken together, our results establish that FGF2 is a specific inducer of PC-1 in pre-osteoblast cells and that FGF2 induces PC-1 expression through a mechanism involving Runx2. PMID:19049325
Slepchenko, Kira G.; Li, Yang V.
2012-01-01
Zinc (Zn2+) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30–60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells. PMID:22536213
Analysis of biological effects in human endothelial cells after stimulated microgravity
NASA Astrophysics Data System (ADS)
Min, Zhang; Sun, Yeqing; Xu, Dan
Space environment is characterized by strong radiation, ultra-high vacuum, weak magnetic field and microgravity. Among them, microgravity (10-4-10-6g) in space is different from gravity (1g) on earth, possibly causing visual disorders, muscle alterations, bone loss and dysfunction of cardiovascular systems. To study about microgravity environment, the most advanced rotary cell culture system (RCCS-1) was used to do stimulated microgravity (SMG) experiments in the ground. Up to now, most of studies focus on the biological effects under stimulated microgravity, but it is less known about the cellular response after stimulated microgravity. In the present study, we explored the subsequent effects of stimulated microgravity on human endothelial cells (HUVEC-C) after these cells were cultured on RCCS-1 for 48 hours. We co-cultured HUVEC-C cells with Hillex-microcarriers in 60-mm culture dishes for 24h, followed by transferring them to RCCS-1 so that cells remain to be the state of SMG. In parallel, HUVEC-C cells were co-cultured with microcarriers in the ground condition. We found that stimulated microgravity induced cytoskeleton remodeling, cell cycle G2/M arrest and cellular senescence, consistent with previous reports. To study the subsequent effects of stimulated microgravity, we make cells detach from microcarriers and observed various effects including cell growth, cell adhesion, cytoskeleton, cell cycle, apoptosis and senescence. The results showed that those cells undergoing stimulated microgravity appeared obvious growth inhibition, a transition from the decrease in cell adhesion ability and cytoskeleton remodeling within 24h to induction of apoptosis and senescence-like phenotype in the later time with slight changes in cell cycle. Analysis of protein expression in western blot demonstrated that apoptosis-related protein PTEN was up-regulated on the time-dependent pattern after stimulated microgravity, indicating that PTEN-PI3K-Akt pathway might play an important role in apoptosis. Our study suggests that stimulated microgravity has the subsequent biological effects of HUVEC-C, providing new insight of understanding the global effect of microgravity on cellular response in human endothelial cells.
Suzuki, Shiho; Mimuro, Hitomi; Kim, Minsoo; Ogawa, Michinaga; Ashida, Hiroshi; Toyotome, Takahito; Franchi, Luigi; Suzuki, Masato; Sanada, Takahito; Suzuki, Toshihiko; Tsutsui, Hiroko; Núñez, Gabriel; Sasakawa, Chihiro
2014-01-01
When nucleotide-binding oligomerization domain–like receptors (NLRs) sense cytosolic-invading bacteria, they induce the formation of inflammasomes and initiate an innate immune response. In quiescent cells, inflammasome activity is tightly regulated to prevent excess inflammation and cell death. Many bacterial pathogens provoke inflammasome activity and induce inflammatory responses, including cell death, by delivering type III secreted effectors, the rod component flagellin, and toxins. Recent studies indicated that Shigella deploy multiple mechanisms to stimulate NLR inflammasomes through type III secretion during infection. Here, we show that Shigella induces rapid macrophage cell death by delivering the invasion plasmid antigen H7.8 (IpaH7.8) enzyme 3 (E3) ubiquitin ligase effector via the type III secretion system, thereby activating the NLR family pyrin domain-containing 3 (NLRP3) and NLR family CARD domain-containing 4 (NLRC4) inflammasomes and caspase-1 and leading to macrophage cell death in an IpaH7.8 E3 ligase-dependent manner. Mice infected with Shigella possessing IpaH7.8, but not with Shigella possessing an IpaH7.8 E3 ligase-null mutant, exhibited enhanced bacterial multiplication. We defined glomulin/flagellar-associated protein 68 (GLMN) as an IpaH7.8 target involved in IpaH7.8 E3 ligase-dependent inflammasome activation. This protein originally was identified through its association with glomuvenous malformations and more recently was described as a member of a Cullin ring ligase inhibitor. Modifying GLMN levels through overexpression or knockdown led to reduced or augmented inflammasome activation, respectively. Macrophages stimulated with lipopolysaccharide/ATP induced GLMN puncta that localized with the active form of caspase-1. Macrophages from GLMN+/− mice were more responsive to inflammasome activation than those from GLMN+/+ mice. Together, these results highlight a unique bacterial adaptation that hijacks inflammasome activation via interactions between IpaH7.8 and GLMN. PMID:25246571
Physiological differentiation within a single-species biofilm fueled by serpentinization.
Brazelton, William J; Mehta, Mausmi P; Kelley, Deborah S; Baross, John A
2011-01-01
Carbonate chimneys at the Lost City hydrothermal field are coated in biofilms dominated by a single phylotype of archaea known as Lost City Methanosarcinales. In this study, we have detected surprising physiological complexity in single-species biofilms, which is typically indicative of multispecies biofilm communities. Multiple cell morphologies were visible within the biofilms by transmission electron microscopy, and some cells contained intracellular membranes that may facilitate methane oxidation. Both methane production and oxidation were detected at 70 to 80°C and pH 9 to 10 in samples containing the single-species biofilms. Both processes were stimulated by the presence of hydrogen (H(2)), indicating that methane production and oxidation are part of a syntrophic interaction. Metagenomic data included a sequence encoding AMP-forming acetyl coenzyme A synthetase, indicating that acetate may play a role in the methane-cycling syntrophy. A wide range of nitrogen fixation genes were also identified, many of which were likely acquired via lateral gene transfer (LGT). Our results indicate that cells within these single-species biofilms may have differentiated into multiple physiological roles to form multicellular communities linked by metabolic interactions and LGT. Communities similar to these Lost City biofilms are likely to have existed early in the evolution of life, and we discuss how the multicellular characteristics of ancient hydrogen-fueled biofilm communities could have stimulated ecological diversification, as well as unity of biochemistry, during the earliest stages of cellular evolution. Our previous work at the Lost City hydrothermal field has shown that its carbonate chimneys host microbial biofilms dominated by a single uncultivated "species" of archaea. In this paper, we integrate evidence from these previous studies with new data on the metabolic activity and cellular morphology of these archaeal biofilms. We conclude that the archaeal biofilm must contain cells that are physiologically and possibly genetically differentiated with respect to each other. These results are especially interesting considering the possibility that the first cells originated and evolved in hydrothermal systems similar to Lost City.
Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks
NASA Astrophysics Data System (ADS)
White, Forest M.; Wolf-Yadlin, Alejandro
2016-06-01
Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.
Szabó, István; Hormay, Edina; Csetényi, Bettina; Nagy, Bernadett; Lénárd, László; Karádi, Zoltán
2018-02-01
Multiple functional attributes of glucose-monitoring neurons in the medial orbitofrontal (ventrolateral prefrontal) cortex. NEUROSCI BIOBEHAV REV 73(1) XXX-XXX, 2017.- Special chemosensory cells, the glucose-monitoring (GM) neurons, reportedly involved in the central feeding control, exist in the medial orbitofrontal (ventrolateral prefrontal) cortex (mVLPFC). Electrophysiological, metabolic and behavioral studies reveal complex functional attributes of these cells and raise their homeostatic significance. Single neuron recordings, by means of the multibarreled microelectrophoretic technique, elucidate differential sensitivities of limbic forebrain neurons in the rat and the rhesus monkey to glucose and other chemicals, whereas gustatory stimulations demonstrate their distinct taste responsiveness. Metabolic examinations provide evidence for alteration of blood glucose level in glucose tolerance test and elevation of plasma triglyceride concentration after destruction of the local GM cells by streptozotocin (STZ). In behavioral studies, STZ microinjection into the mVLPFC fails to interfere with the acquisition of saccharin conditioned taste avoidance, does cause, however, taste perception deficit in taste reactivity tests. Multiple functional attributes of GM neurons in the mVLPFC, within the frame of the hierarchically organized central GM neuronal network, appear to play important role in the maintenance of the homeostatic balance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moz, Stefania; Basso, Daniela; Bozzato, Dania; Galozzi, Paola; Navaglia, Filippo; Negm, Ola H; Arrigoni, Giorgio; Zambon, Carlo-Federico; Padoan, Andrea; Tighe, Paddy; Todd, Ian; Franchin, Cinzia; Pedrazzoli, Sergio; Punzi, Leonardo; Plebani, Mario
2016-10-25
Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor β1 (TGFβ1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGFβ1 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGFβ1 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/β-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGFβ1 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-κB and PI3K/AKT in response to TGFβ1 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/β-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGFβ1 and S100A8/A9 mainly inhibit NF-κB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner.
Moz, Stefania; Basso, Daniela; Bozzato, Dania; Galozzi, Paola; Navaglia, Filippo; Negm, Ola H.; Arrigoni, Giorgio; Zambon, Carlo-Federico; Padoan, Andrea; Tighe, Paddy; Todd, Ian; Franchin, Cinzia; Pedrazzoli, Sergio; Punzi, Leonardo; Plebani, Mario
2016-01-01
Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor β1 (TGFβ1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGFβ1 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGFβ1 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/β-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGFβ1 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-κB and PI3K/AKT in response to TGFβ1 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/β-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGFβ1 and S100A8/A9 mainly inhibit NF-κB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner. PMID:27655713
Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.
Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M
2014-02-01
Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in clinical settings; however, the rational application of this cue may directly impact and enhance neuro-supportive behavior, improving nerve repair.
A microfluidic device for 2D to 3D and 3D to 3D cell navigation
NASA Astrophysics Data System (ADS)
Shamloo, Amir; Amirifar, Leyla
2016-01-01
Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.
Cuppoletti, John; Chakrabarti, Jayati; Tewari, Kirti; Malinowska, Danuta H
2013-05-01
In clinical trials, methadone, but not morphine, appeared to prevent beneficial effects of lubiprostone, a ClC-2 Cl(-) channel activator, on opioid-induced constipation. Effects of methadone and morphine on lubiprostone-stimulated Cl(-) currents were measured by short circuit current (Isc) across T84 cells. Whole cell patch clamp of human ClC-2 (hClC-2) stably expressed in HEK293 cells and in a high expression cell line (HEK293EBNA) as well as human CFTR (hCFTR) stably expressed in HEK293 cells was used to study methadone and morphine effects on recombinant hClC-2 and hCFTR Cl(-) currents. Methadone but not morphine inhibited lubiprostone-stimulated Isc in T84 cells with half-maximal inhibition at 100 nM. Naloxone did not affect lubiprostone stimulation or methadone inhibition of Isc. Lubiprostone-stimulated Cl(-) currents in hClC-2/HEK293 cells, but not forskolin/IBMX-stimulated Cl(-) currents in hCFTR/HEK293 cells, were inhibited by methadone, but not morphine. HEK293EBNA cells expressing hClC-2 showed time-dependent, voltage-activated, CdCl2-inhibited Cl(-) currents in the absence (control) and the presence of lubiprostone. Methadone, but not morphine, inhibited control and lubiprostone-stimulated hClC-2 Cl(-) currents with half-maximal inhibition at 100 and 200-230 nM, respectively. Forskolin/IBMX-stimulated hClC-2 Cl(-) currents were also inhibited by methadone. Myristoylated protein kinase inhibitor (a specific PKA inhibitor) inhibited forskolin/IBMX- but not lubiprostone-stimulated hClC-2 Cl(-) currents. Methadone caused greater inhibition of lubiprostone-stimulated currents added before patching (66.1 %) compared with after patching (28.7 %). Methadone caused inhibition of lubiprostone-stimulated Cl(-) currents in T84 cells and control; lubiprostone- and forskolin/IBMX-stimulated recombinant hClC-2 Cl(-) currents may be the basis for reduced efficacy of lubiprostone in methadone-treated patients.
Popovics, Petra; Cai, Renzhi; Sha, Wei; Rick, Ferenc G; Schally, Andrew V
2018-05-21
Inflammation plays a key role in the etiology of benign prostatic hyperplasia (BPH) through multiple pathways involving the stimulation of proliferation by cytokines and growth factors as well as the induction of the focal occurrence of epithelial-to-mesenchymal transition (EMT). We have previously reported that GHRH acts as a prostatic growth factor in experimental BPH and in autoimmune prostatitis models and its blockade with GHRH antagonists offer therapeutic approaches for these conditions. Our current study was aimed at the investigation of the beneficial effects of GHRH antagonists in λ-carrageenan-induced chronic prostatitis and at probing the downstream molecular pathways that are implicated in GHRH signaling. To demonstrate the complications triggered by recurrent/chronic prostatic inflammation in Sprague-Dawley rats, 50 μL 3% carrageenan was injected into both ventral prostate lobes two times, 3 weeks apart. GHRH antagonist, MIA-690, was administered 5 days after the second intraprostatic injection at 20 μg daily dose for 4 weeks. GHRH-induced signaling events were identified in BPH-1 and in primary prostate epithelial (PrEp) cells at 5, 15, 30, and 60 min with Western blot. Inflammation induced prostatic enlargement and increased the area of the stromal compartment whereas treatment with the GHRH antagonist significantly reduced these effects. This beneficial activity was consistent with a decrease in prostatic GHRH, inflammatory marker COX-2, growth factor IGF-1 and inflammatory and EMT marker TGF-β1 protein levels and the expression of multiple genes related to EMT. In vitro, GHRH stimulated multiple pathways involved in inflammation and growth in both BPH-1 and PrEp cells including NFκB p65, AKT, ERK1/2, EGFR, STAT3 and increased the levels of TGF-β1 and Snail/Slug. Most interestingly, GHRH also stimulated the transactivation of the IGF receptor. The study demonstrates that GHRH antagonists could be beneficial for the treatment of prostatic inflammation and BPH in part by inhibiting the growth-promoting and inflammatory effects of locally produced GHRH. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochimaru, Yuta; Azuma, Morio; Oshima, Natsuki
2015-02-20
Mammalian ovarian G-protein-coupled receptor 1 (OGR1) and GPR4 are identified as a proton-sensing G-protein-coupled receptor coupling to multiple intracellular signaling pathways. In the present study, we examined whether zebra fish OGR1 and GPR4 homologs (zOGR1 and zGPR4) could sense protons and activate the multiple intracellular signaling pathways and, if so, whether the similar positions of histidine residue, which is critical for sensing protons in mammalian OGR and GPR4, also play a role to sense protons and activate the multiple signaling pathways in the zebra fish receptors. We found that extracellular acidic pH stimulated CRE-, SRE-, and NFAT-promoter activities in zOGR1more » overexpressed cells and stimulated CRE- and SRE- but not NFAT-promoter activities in zGPR4 overexpressed cells. The substitution of histidine residues at the 12th, 15th, 162th, and 264th positions from the N-terminal of zOGR1 with phenylalanine attenuated the proton-induced SRE-promoter activities. The mutation of the histidine residue at the 78th but not the 84th position from the N-terminal of zGPR4 to phenylalanine attenuated the proton-induced SRE-promoter activities. These results suggest that zOGR1 and zGPR4 are also proton-sensing G-protein-coupled receptors, and the receptor activation mechanisms may be similar to those of the mammalian receptors. - Highlights: • Zebra fish OGR1 and GPR4 homologs (zOGR1, zGPR4) are proton-sensing receptors. • The signaling pathways activated by zOGR1 and zGPR4 are different. • Histidine residues critical for sensing protons are conserved.« less
Koh, Eun-Kyoung; Yun, Woo-Bin; Kim, Ji-Eun; Song, Sung-Hwa; Sung, Ji-Eun; Lee, Hyun-Ah; Seo, Eun-Ji; Jee, Seung-Wan; Bae, Chang-Joon; Hwang, Dae-Youn
2016-06-01
To investigate the beneficial effects of diosgenin (DG) on the multiple types of brain damage induced by Aβ-42 peptides and neurotoxicants, alterations in the specific aspects of brain functions were measured in trimethyltin (TMT)-injected transgenic 2576 (TG) mice that had been pretreated with DG for 21 days. Multiple types of damage were successfully induced by Aβ-42 accumulation and TMT injection into the brains of TG mice. However, DG treatment significantly reduced the number of Aβ-stained plaques and dead cells in the granule cells layer of the dentate gyrus. Significant suppression of acetylcholinesterase (AChE) activity and Bax/Bcl-2 expression was also observed in the DG treated TG mice (TG+DG group) when compared with those of the vehicle (VC) treated TG mice (TG+VC group). Additionally, the concentration of nerve growth factor (NGF) was dramatically enhanced in TG+DG group, although it was lower in the TG+VC group than the non-transgenic (nTG) group. Furthermore, the decreased phosphorylation of downstream members in the TrkA high affinity receptor signaling pathway in the TG+VC group was significantly recovered in the TG+DG group. A similar pattern was observed in p75(NTR) expression and JNK phosphorylation in the NGF low affinity receptor signaling pathway. Moreover, superoxide dismutase (SOD) activity was enhanced in the TG+DG group, while the level of malondialdehyde (MDA), a marker of lipid peroxidation, was lower in the TG+DG group than the TG+VC group. These results suggest that DG could exert a wide range of beneficial activities for multiple types of brain damage through stimulation of NGF biosynthesis.
Koh, Eun-Kyoung; Yun, Woo-Bin; Kim, Ji-Eun; Song, Sung-Hwa; Sung, Ji-Eun; Lee, Hyun-Ah; Seo, Eun-Ji; Jee, Seung-Wan
2016-01-01
To investigate the beneficial effects of diosgenin (DG) on the multiple types of brain damage induced by Aβ-42 peptides and neurotoxicants, alterations in the specific aspects of brain functions were measured in trimethyltin (TMT)-injected transgenic 2576 (TG) mice that had been pretreated with DG for 21 days. Multiple types of damage were successfully induced by Aβ-42 accumulation and TMT injection into the brains of TG mice. However, DG treatment significantly reduced the number of Aβ-stained plaques and dead cells in the granule cells layer of the dentate gyrus. Significant suppression of acetylcholinesterase (AChE) activity and Bax/Bcl-2 expression was also observed in the DG treated TG mice (TG+DG group) when compared with those of the vehicle (VC) treated TG mice (TG+VC group). Additionally, the concentration of nerve growth factor (NGF) was dramatically enhanced in TG+DG group, although it was lower in the TG+VC group than the non-transgenic (nTG) group. Furthermore, the decreased phosphorylation of downstream members in the TrkA high affinity receptor signaling pathway in the TG+VC group was significantly recovered in the TG+DG group. A similar pattern was observed in p75NTR expression and JNK phosphorylation in the NGF low affinity receptor signaling pathway. Moreover, superoxide dismutase (SOD) activity was enhanced in the TG+DG group, while the level of malondialdehyde (MDA), a marker of lipid peroxidation, was lower in the TG+DG group than the TG+VC group. These results suggest that DG could exert a wide range of beneficial activities for multiple types of brain damage through stimulation of NGF biosynthesis. PMID:27382379
Kawanishi, H; Ozato, K; Strober, W
1985-06-01
We previously defined a concanavalin A (Con A)-induced cloned T cell population in Peyer's patches (PP) that causes sIgM-bearing B cells to switch to sIgA-bearing B cells. In the present study we show that such IgA-specific switch T cells proliferate when exposed to syngeneic stimulator cells, i.e., the switch T cells are autoreactive. Detailed study of this phenomenon disclosed that both B cells and macrophages were capable of causing switch T cell proliferation, and in both cases, stimulation was enhanced by preactivation of the stimulator cells with lipopolysaccharide (LPS). In addition, fresh T cells can act as stimulators, but only if preactivated with Con A. Finally, it was clearly shown in blocking studies with the use of various antibodies directed at class II MHC specificities that class II MHC antigens were the stimulatory determinants. These studies suggest that IgA-specific switch T cells arise in PP as a result of autologous cell-cell interactions with activated (antigen-stimulated) B cells, macrophages, or T cells.
Lin, Changsheng; Ear, Jason; Pavlova, Yelena; Mittal, Yash; Kufareva, Irina; Ghassemian, Majid; Abagyan, Ruben; Garcia-Marcos, Mikel; Ghosh, Pradipta
2014-01-01
GIV (Gα-interacting vesicle-associated protein; also known as Girdin), enhances Akt activation downstream of multiple growth factor– and G-protein–coupled receptors to trigger cell migration and cancer invasion. Here we demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at Tyr1764 and Tyr1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the N- and C-terminal SH2 domains of p85α, a regulatory subunit of PI3K, stabilized receptor association with PI3K, and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIVPI3K interaction a potential therapeutic target within the PI3K-Akt pathway. PMID:21954290
2005-12-22
etched glass into a waveguide containing methane gas (the SBS medium). The experiment compared the reflection from the SBS cell with that of a mirror...proposed tellurite glass as a candidate for fiber devices.105 Their work has led to the development of a number of rare-earth doped fiber lasers and...Tellurite glasses have also been quite successful as Raman amplifiers110,111 demonstrating over 90 times higher Raman gain than silica-based devices
2005-12-01
etched glass into a waveguide containing methane gas (the SBS medium). The experiment compared the reflection from the SBS cell with that of a mirror...proposed tellurite glass as a candidate for fiber devices.105 Their work has led to the development of a number of rare-earth doped fiber lasers and...Tellurite glasses have also been quite successful as Raman amplifiers110,111 demonstrating over 90 times higher Raman gain than silica-based devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunha, Elizabeth S.; Kawahara, Rebeca; Kadowaki, Marina K.
Considering that stimulation of melanogenesis may lead to alterations of cellular responses, besides melanin production, our main goal was to study the cellular effects of melanogenesis stimulation of B16-F10 melanoma cells. Our results show increased levels of the reactive oxygen species after 15 h of melanogenesis stimulation. Following 48 h of melanogenesis stimulation, proliferation was inhibited (by induction of cell cycle arrest in the G1 phase) and the expression levels of p21 mRNA were increased. In addition, melanogenesis stimulation did not induce cellular senescence. Proteomic analysis demonstrated the involvement of proteins from other pathways besides those related to the cellmore » cycle, including protein disulfide isomerase A3, heat-shock protein 70, and fructose biphosphate aldolase A (all up-regulated), and lactate dehydrogenase (down-regulated). In RT-qPCR experiments, the levels of pyruvate kinase M2 mRNA dropped, whereas the levels of ATP synthase (beta-F1) mRNA increased. These data indicate that melanogenesis stimulation of B16-F10 cells leads to alterations in metabolism and cell cycle progression that may contribute to an induction of cell quiescence, which may provide a mechanism of resistance against cellular injury promoted by melanin synthesis. -- Highlights: Black-Right-Pointing-Pointer Melanogenesis stimulation by L-tyrosine+NH{sub 4}Cl in B16-F10 melanoma cells increases ROS levels. Black-Right-Pointing-Pointer Melanogenesis inhibits cell proliferation, and induced cell cycle arrest in the G1 phase. Black-Right-Pointing-Pointer Proteomic analysis showed alterations in proteins of the cell cycle and glucose metabolism. Black-Right-Pointing-Pointer RT-qPCR analysis confirmed alterations of metabolic targets after melanogenesis stimulation.« less
On-chip activation and subsequent detection of individual antigen-specific T cells
Song, Qing; Han, Qing; Bradshaw, Elizabeth M.; Kent, Sally C.; Raddassi, Khadir; Nilsson, Björn; Nepom, Gerald T.; Hafler, David A.; Love, J. Christopher
2010-01-01
The frequencies of antigen-specific CD4+ T cells in samples of human tissue has been difficult to determine accurately ex vivo, particularly for autoimmune diseases such as multiple sclerosis or Type 1 diabetes. Conventional approaches involve the expansion of primary T cells in vitro to increase the numbers of cells, and a subsequent assessment of the frequencies of antigen-specific T cells in the expanded population by limiting dilution or by using fluorescently labeled tetramers of peptide-loaded major histocompatibility complex (MHC) receptors. Here we describe an alternative approach that uses arrays of subnanoliter wells coated with recombinant peptide-loaded MHC Class II monomers to isolate and stimulate individual CD4+ T cells in an antigen-specific manner. In these experiments, activation was monitored using microengraving to capture two cytokines (IFNγ and IL-17) released from single cells. This new method should enable direct enumeration of antigen-specific CD4+ T cells ex vivo from clinical samples. PMID:20000848
Cortical modulation of the nucleus of the optic tract in the rabbit.
Pettorossi, V E; Troiani, D
1983-09-01
We analyzed in rabbits the relationships between the temporooccipital nystagmogenic cortex (NGC)--the region sited at the border between cortical areas 17, 21, and 22--and the nucleus of the optic tract (NOT). Two experimental approaches were used: (a) eye movement analysis before and after electrolytic lesion of the NOT region provided an indication of the importance of the NOT for the interaction between the ocular nystagmus elicited by natural optokinetic stimulation (OKN) and the nystagmus evoked by electrical stimulation of the nystagmogenic area; (b) NOT direction-selective and velocity-sensitive units were tested with single shock or repetitive electrical stimulation of the nystagmogenic region. Single-shock stimulation evoked single or multiple spikes in 50% of NOT units analyzed and repetitive stimuli induced prolonged facilitation and inhibitory rebounds in 70% of the units tested. Comparison of orthodromic activation latencies of the NOT cells (3.2 and 6.1 ms) after cortical stimulation and of antidromic activation latencies of cortical nystagmogenic units (2.6 ms) after NOT shocks, suggested monosynaptic as well as polysynaptic connections between the temporooccipital cortex and the NOT. The existence of such cortical-NOT linkage indicates that the NOT is intercalated between the cortex and the oculomotor centers and represents the most probable site of interaction of the cortical nystagmus pathway with the optokinetic reflex arc.
Zhang, Chuang; Shi, Jialin; Wang, Wenxue; Xi, Ning; Wang, Yuechao; Liu, Lianqing
2017-12-01
The mechanical properties of cells, which are the main characteristics determining their physical performance and physiological functions, have been actively studied in the fields of cytobiology and biomedical engineering and for the development of medicines. In this study, an indentation-vibration-based method is proposed to simultaneously measure the mechanical properties of cells in situ, including cellular mass (m), elasticity (k), and viscosity (c). The proposed measurement method is implemented based on the principle of forced vibration stimulated by simple harmonic force using an atomic force microscope (AFM) system integrated with a piezoelectric transducer as the substrate vibrator. The corresponding theoretical model containing the three mechanical properties is derived and used to perform simulations and calculations. Living and fixed human embryonic kidney 293 (HEK 293) cells were subjected to indentation and vibration to measure and compare their mechanical parameters and verify the proposed approach. The results that the fixed sample cells are more viscous and elastic than the living sample cells and the measured mechanical properties of cell are consistent within, but not outside of the central region of the cell, are in accordance with the previous studies. This work provides an approach to simultaneous measurement of the multiple mechanical properties of single cells using an integrated AFM system based on the principle force vibration and thickness-corrected Hertz model. This study should contribute to progress in biomedical engineering, cytobiology, medicine, early diagnosis, specific therapy and cell-powered robots.
Qu, Hongen; Xie, Yongji; Liu, Xiaoxuan; He, Xin; Hao, Manzhao; Bao, Yong; Xie, Qing; Lan, Ning
2016-01-01
Neuromuscular electrical stimulation (NMES) is a promising assistive technology for stroke rehabilitation. Here we present the design and development of a multimuscle stimulation system as an emerging therapy for people with paretic stroke. A network-based multichannel NMES system was integrated based on dual bus architecture of communication and an H-bridge current regulator with a power booster. The structure of the system was a body area network embedded with multiple stimulators and a communication protocol of controlled area network to transmit muscle stimulation parameter information to individual stimulators. A graphical user interface was designed to allow clinicians to specify temporal patterns and muscle stimulation parameters. We completed and tested a prototype of the hardware and communication software modules of the multichannel NMES system. The prototype system was first verified in nondisabled subjects for safety, and then tested in subjects with stroke for feasibility with assisting multijoint movements. Results showed that synergistic stimulation of multiple muscles in subjects with stroke improved performance of multijoint movements with more natural velocity profiles at elbow and shoulder and reduced acromion excursion due to compensatory trunk rotation. The network-based NMES system may provide an innovative solution that allows more physiological activation of multiple muscles in multijoint task training for patients with stroke.
Burke, Peter G R; Abbott, Stephen B G; Coates, Melissa B; Viar, Kenneth E; Stornetta, Ruth L; Guyenet, Patrice G
2014-12-01
The rostral ventrolateral medulla (RVLM) contains central respiratory chemoreceptors (retrotrapezoid nucleus, RTN) and the sympathoexcitatory, hypoxia-responsive C1 neurons. Simultaneous optogenetic stimulation of these neurons produces vigorous cardiorespiratory stimulation, sighing, and arousal from non-REM sleep. To identify the effects that result from selectively stimulating C1 cells. A Cre-dependent vector expressing channelrhodopsin 2 (ChR2) fused with enhanced yellow fluorescent protein or mCherry was injected into the RVLM of tyrosine hydroxylase (TH)-Cre rats. The response of ChR2-transduced neurons to light was examined in anesthetized rats. ChR2-transduced C1 neurons were photoactivated in conscious rats while EEG, neck muscle EMG, blood pressure (BP), and breathing were recorded. Most ChR2-expressing neurons (95%) contained C1 neuron markers and innervated the spinal cord. RTN neurons were not transduced. While the rats were under anesthesia, the C1 cells were faithfully activated by each light pulse up to 40 Hz. During quiet resting and non-REM sleep, C1 cell stimulation (20 s, 2-20 Hz) increased BP and respiratory frequency and produced sighs and arousal from non-REM sleep. Arousal was frequency-dependent (85% probability at 20 Hz). Stimulation during REM sleep increased BP, but had no effect on EEG or breathing. C1 cell-mediated breathing stimulation was occluded by hypoxia (12% FIO2), but was unchanged by 6% FiCO2. C1 cell stimulation reproduces most effects of acute hypoxia, specifically cardiorespiratory stimulation, sighs, and arousal. C1 cell activation likely contributes to the sleep disruption and adverse autonomic consequences of sleep apnea. During hypoxia (awake) or REM sleep, C1 cell stimulation increases BP but no longer stimulates breathing.
Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V
2015-07-09
Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents.
Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V
2015-01-01
Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents. PMID:26158513
Suzuki, Masayo; Takeda, Shuso; Teraoka-Nishitani, Noriko; Yamagata, Akane; Tanaka, Takahiro; Sasaki, Marika; Yasuda, Natsuki; Oda, Makiko; Okano, Tatsuji; Yamahira, Kazuhiro; Nakamura, Yuta; Kobayashi, Takanobu; Kino, Katsuhito; Miyazawa, Hiroshi; Waalkes, Michael P; Takiguchi, Masufumi
2017-05-01
Cadmium is a transition metal that is classified as human carcinogen by the International Agency for Research on Cancer (IARC) with multiple target sites. Many studies using various model systems provide evidence of cadmium-induced malignancy formation in vivo or malignant cell transformation in vitro. Nonetheless, further studies are needed to completely understand the mechanisms of cadmium carcinogenicity. Our prior studies have utilized a rat liver epithelial cell line (TRL 1215) as a model for cadmium-induced malignant transformation. In the present study, we focused on the molecular mechanisms of this malignant transformation, especially with regard to hyper-invasiveness stimulated by cadmium transformation. By performing a series of biochemical analyses on cadmium transformed cells, it was determined that cadmium had significantly down-regulated the expression of apolipoprotein E (ApoE). ApoE was recently established as a suppressor of cell invasion. A key factor in the suppression of ApoE by cadmium appeared to be that the metal evoked a 5-aza-2'-deoxycytidine-sensitive hypermethylation of the regulatory region of ApoE, coupled with interference of the action of liver X receptor α (LXRα), a transcriptional regulator for ApoE. Furthermore, the expression of LXRα itself was suppressed by cadmium-mediated epigenetic modification. Re-expression of ApoE clearly abrogated the cell invasion stimulated by cadmium-induced malignant transformation. Together, the current results suggest that the cadmium-mediated enhanced cell invasion is linked to down-regulation of ApoE during malignant transformation these liver cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Casanova, Bonaventura; Jarque, Isidro; Gascón, Francisco; Hernández-Boluda, Juan Carlos; Pérez-Miralles, Francisco; de la Rubia, Javier; Alcalá, Carmen; Sanz, Jaime; Mallada, Javier; Cervelló, Angeles; Navarré, Arantxa; Carcelén-Gadea, María; Boscá, Isabel; Gil-Perotin, Sara; Solano, Carlos; Sanz, Miguel Angel; Coret, Francisco
2017-07-01
The main objective of our work is to describe the long-term results of myeloablative autologous hematopoietic stem cell transplant (AHSCT) in multiple sclerosis patients. Patients that failed to conventional therapies for multiple sclerosis (MS) underwent an approved protocol for AHSCT, which consisted of peripheral blood stem cell mobilization with cyclophosphamide and granulocyte colony-stimulating factor (G-CSF), followed by a conditioning regimen of BCNU, Etoposide, Ara-C, Melphalan IV, plus Rabbit Thymoglobulin. Thirty-eight MS patients have been transplanted since 1999. Thirty-one patients have been followed for more than 2 years (mean 8.4 years). There were 22 relapsing-remitting multiple sclerosis (RRMS) patients and 9 secondary progressive multiple sclerosis (SPMS) patients. No death related to AHSCT. A total of 10 patients (32.3%) had at least one relapse during post-AHSCT evolution, 6 patients in the RRMS group (27.2%) and 4 in the SPMS group (44.4%). After AHSCT, 7 patients (22.6%) experienced progression of disability, all within SP form. By contrast, no patients with RRMS experienced worsening of disability after a median follow-up of 5.4 years, 60% of them showed a sustained reduction in disability (SRD), defined as the improvement of 1.0 point in the expanded disability status scale (EDSS) sustains for 6 months (0.5 in cases of EDSS ≥ 5.5). The only clinical variable that predicted a poor response to AHSCT was a high EDSS in the year before transplant. AHSCT using the BEAM-ATG scheme is safe and efficacious to control the aggressive forms of RRMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fangyi; Dong, Lei, E-mail: dlleidong@126.com; Xing, Rong
2014-02-07
Highlights: • HOXB9 is overexpressed in human HCC samples. • HOXB9 over expression had shorter survival time than down expression. • HOXB9 stimulated the proliferation of HCC cells. • Activation of TGF-β1 contributes to HOXB9-induced proliferation in HCC cells. - Abstract: HomeoboxB9 (HOXB9), a nontransforming transcription factor that is overexpressed in multiple tumor types, alters tumor cell fate and promotes tumor progression. However, the role of HOXB9 in hepatocellular carcinoma (HCC) development has not been well studied. In this paper, we found that HOXB9 is overexpressed in human HCC samples. We investigated HOXB9 expression and its prognostic value for HCC.more » HCC surgical tissue samples were taken from 89 HCC patients. HOXB9 overexpression was observed in 65.2% of the cases, and the survival analysis showed that the HOXB9 overexpression group had significantly shorter overall survival time than the HOXB9 downexpression group. The ectopic expression of HOXB9 stimulated the proliferation of HCC cells; whereas the knockdown of HOXB9 produced an opposite effect. HOXB9 also modulated the tumorigenicity of HCC cells in vivo. Moreover, we found that the activation of TGF-β1 contributes to HOXB9-induced proliferation activities. The results provide the first evidence that HOXB9 is a critical regulator of tumor growth factor in HCC.« less
Whitaker, Paul; Meng, Xiaoli; Lavergne, Sidonie N.; El-Ghaiesh, Sabah; Monshi, Manal; Earnshaw, Caroline; Peckham, Daniel; Gooi, Jimmy; Conway, Steve; Pirmohamed, Munir; Jenkins, Rosalind E.; Naisbitt, Dean J.; Park, B. Kevin
2011-01-01
A mechanistic understanding of the relationship between the chemistry of drug antigen formation and immune function is lacking. Thus, mass spectrometric methods were employed to detect and fully characterize circulating antigens derived from piperacillin in patients undergoing therapy and the nature of the drug derived-epitopes on protein which can function as an antigen to stimulate T-cells. Albumin modification with piperacillin in vitro resulted in the formation of two distinct haptens, one formed directly from piperacillin and a second in which the dioxopiperazine ring had undergone hydrolysis. Modification was time- and concentration-dependent, with selective modification of Lys541 observed at low concentrations, whereas at higher concentrations up to 13/59 lysine residues were modified, four of which (Lys190, 195, 432 and 541) were detected in patients’ plasma. Piperacillin-specific T-lymphocyte responses (proliferation, cytokines and granzyme-B release) were detected ex vivo with cells from hypersensitive patients, and analysis of incubation medium showed that modification of the same lysine residues in albumin occurred in situ. The antigenicity of piperacillin-modified albumin was confirmed by stimulation of T-cells with characterized synthetic conjugates. Analysis of minimally-modified T-cell stimulatory albumin conjugates revealed peptide sequences incorporating Lys190, 432 and 541 as principal functional epitopes for T-cells. This study has characterized the multiple haptenic structures on albumin in patients, and showed that they constitute functional antigenic determinants for T-cells. PMID:21606251
Pubols, L M; Foglesong, M E; Vahle-Hinz, C
1986-04-16
Electrical stimulation of the sural nerve (SN) revealed input from sural nerve afferents to L6 and L7 dorsal horn neurons that were not apparent using natural mechanical stimuli, especially in cells with variable latency responses to SN stimulation. Nearly all (31/32) cells that had reliable, fixed latency responses to SN stimulation also had an excitatory receptive field (RF) in the region of skin innervated by the sural nerve (SN region). About one-third (20/57) of the cells with variable latency responses to SN stimulation, however, had an RF outside the SN region. Most (130/146) cells with no response to SN stimulation had RFs outside the SN region. There were no obvious differences between variable latency cells with RFs in the SN region vs those with RFs outside it in latency of response to SN stimulation, recording depth, RF sizes or modality properties. In a subsample of 31 postsynaptic dorsal column neurons all cells responding to SN stimulation also had an RF in the SN region. Strengthening of relatively ineffective projections from the sural nerve by lesions might be expected to lead to an increase in the proportion of cells responding with impulses to natural stimulation of the skin innervated by the sural nerve, and, hence, to an increase in average RF size.
Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells
Hernández, Damián; Millard, Rodney; Sivakumaran, Priyadharshini; Wong, Raymond C. B.; Crombie, Duncan E.; Hewitt, Alex W.; Liang, Helena; Hung, Sandy S. C.; Pébay, Alice; Shepherd, Robert K.; Dusting, Gregory J.; Lim, Shiang Y.
2016-01-01
Background. Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin)-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used. PMID:26788064
Evidence That Graves' Ophthalmopathy Immunoglobulins Do Not Directly Activate IGF-1 Receptors.
Marcus-Samuels, Bernice; Krieger, Christine C; Boutin, Alisa; Kahaly, George J; Neumann, Susanne; Gershengorn, Marvin C
2018-05-01
Graves' ophthalmopathy (GO) pathogenesis involves thyrotropin (TSH) receptor (TSHR)-stimulating autoantibodies. Whether there are autoantibodies that directly stimulate insulin-like growth factor 1 receptors (IGF-1Rs), stimulating insulin-like growth factor receptor antibodies (IGFRAbs), remains controversial. This study attempted to determine whether there are stimulating IGFRAbs in patients with GO. Immunoglobulins (Igs) were purified from normal volunteers (NV-Igs) and patients with GO (GO-Igs). The effects of TSH, IGF-1, NV-Igs, and GO-Igs on pAKT and pERK1/2, members of pathways used by IGF-1R and TSHR, were compared in orbital fibroblasts from GO patients (GOFs) and U2OS-TSHR cells overexpressing TSHRs, and U2OS cells that express TSHRs at very low endogenous levels. U2OS-TSHR and U2OS cells were used because GOFs are not easily manipulated using molecular techniques such as transfection, and U2OS cells because they express TSHRs at levels that do not measurably stimulate signaling. Thus, comparing U2OS-TSHR and U2OS cells permits specifically distinguishing signaling mediated by the TSHR and IGF-1R. In GOFs, all GO-Igs stimulated pERK1/2 formation and 69% stimulated pAKT. In U2OS-TSHR cells, 15% of NV-IGs and 83% of GO-Igs stimulated increases in pERK1/2, whereas all NV-Igs and GO-Igs stimulated increases in pAKT. In U2OS cells, 70% of GO-Igs stimulated small increases in pAKT. Knockdown of IGF-1R caused a 65 ± 6.3% decrease in IGF-1-stimulated pAKT but had no effect on GO-Igs stimulation of pAKT. Thus, GO-Igs contain factor(s) that stimulate pAKT formation. However, this factor(s) does not directly activate IGF-1R. Based on the findings analyzing these two signaling pathways, it is concluded there is no evidence of stimulating IGFRAbs in GO patients.
Butta, Nora; Larrucea, Susana; Gonzalez-Manchon, Consuelo; Alonso, Sonia; Parrilla, Roberto
2004-12-01
This work reports the functional studies of CHO cells coexpressing alpha-adrenergic (alphaAR) and human fibrinogen (Fg) receptors (integrin alphaIIbbeta3). Stimulation of these cells with alpha-agonists produced a transient rise in the free cytosolic calcium (Ca(++)) accompanied by enhanced binding to soluble Fg, and these effects were prevented by specific alphaAR antagonists. The alpha-adrenergic-induced activation of alphaIIbbeta3 in CHO-alphaIIbbeta3-alphaAR increased the rate of adhesion and extension of cells onto Fg coated plates, and also induced a soluble Fg- and alphaIIbbeta3-dependent formation of cell aggregates, whereas no effects were observed by the stimulation of CHO-alphaIIbbeta3 cells. alpha-Adrenergic antagonists, the ligand mimetic peptide RGDS, pertussis toxin (PTX), or EDTA, they all prevented the alpha-adrenergic stimulation of adhesion and aggregation. However, inhibition of PKC prevented the alpha-adrenergic stimulation of cell adherence, whereas blocking the intracellular Ca(++) mobilization impeded the stimulation of cell aggregation. The alpha-adrenergic activation was associated with phosphorylation of a protein of approximately 100 kDa and proteins of the MAPK family. The former was selectively phosphorylated by alpha-adrenergic stimulation whereas the latter were phosphorylated by the binding of cells to Fg and markedly intensified by alpha-adrenergic stimulation.
Induction of neural differentiation by electrically stimulated gene expression of NeuroD2.
Mie, Masayasu; Endoh, Tamaki; Yanagida, Yasuko; Kobatake, Eiry; Aizawa, Masuo
2003-02-13
Regulation of cell differentiation is an important assignment for cellular engineering. One of the techniques for regulation is gene transfection into undifferentiated cells. Transient expression of NeuroD2, one of neural bHLH transcription factors, converted mouse N1E-115 neuroblastoma cells into differentiated neurons. The regulation of neural bHLH expression should be a novel strategy for cell differentiation. In this study, we tried to regulate neural differentiation by NeuroD2 gene inserted under the control of heat shock protein-70 (HSP) promoter, which can be activated by electrical stimulation. Mouse neuroblastoma cell line, N1E-115, was stably transfected with expression vector containing mouse NeuroD2 cDNA under HSP promoter. Transfected cells were cultured on the electrode surface and applied electrical stimulation. After stimulation, NeuroD2 expression was induced, and transfected cells adopt a neuronal morphology at 3 days after stimulation. These results suggest that neural differentiation can be induced by electrically stimulated gene expression of NeuroD2.
Pseudotemporal Ordering of Single Cells Reveals Metabolic Control of Postnatal β Cell Proliferation.
Zeng, Chun; Mulas, Francesca; Sui, Yinghui; Guan, Tiffany; Miller, Nathanael; Tan, Yuliang; Liu, Fenfen; Jin, Wen; Carrano, Andrea C; Huising, Mark O; Shirihai, Orian S; Yeo, Gene W; Sander, Maike
2017-05-02
Pancreatic β cell mass for appropriate blood glucose control is established during early postnatal life. β cell proliferative capacity declines postnatally, but the extrinsic cues and intracellular signals that cause this decline remain unknown. To obtain a high-resolution map of β cell transcriptome dynamics after birth, we generated single-cell RNA-seq data of β cells from multiple postnatal time points and ordered cells based on transcriptional similarity using a new analytical tool. This analysis captured signatures of immature, proliferative β cells and established high expression of amino acid metabolic, mitochondrial, and Srf/Jun/Fos transcription factor genes as their hallmark feature. Experimental validation revealed high metabolic activity in immature β cells and a role for reactive oxygen species and Srf/Jun/Fos transcription factors in driving postnatal β cell proliferation and mass expansion. Our work provides the first high-resolution molecular characterization of state changes in postnatal β cells and paves the way for the identification of novel therapeutic targets to stimulate β cell regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.
Xu, Renguo; Liu, Zhen; Hou, Jiande; Huang, Tao; Yang, Ming
2018-01-01
Osthole is a natural product that has multiple bioactive functions and has been reported to exert potent immunosuppressive effects. However, the therapeutic effect of osthole on arthritis has not been explored. In the present study, a collagen-induced arthritis rat model, IL-1β-stimulated SW982 cells, and RA-like fibroblast-like synoviocytes (FLS) were employed to investigate the effect and possible mechanism of osthole on arthritis in vivo and in vitro. 20 and 40 mg/kg osthole significantly alleviated collagen-induced arthritic symptoms based on histopathology and clinical arthritis scores, and improved erosion using HE staining. 20 and 40 mg/kg osthole decreased the level of IL-1β, TNF-α and IL-6 in rats and ameliorated oxidative stress in serum evaluated using ELISA kits. In addition, treatment with 50 and 100 μM osthole for 48 h inhibited 10 ng/ml IL-1β-stimulated proliferation and migration of SW982, and significantly inhibited the expression of matrix metalloproteinases, such as MMP-1, MMP-3 and MMP-13, as detected by western blot. 50 and 100 μM osthole also blocked the generation of IL-6 and TNF-α in IL-1β-stimulated SW982 cells. The NF-κB and MAPK pathways were also inhibited by osthole in IL-1β-treated SW982 cells. These results collectively demonstrated that osthole improves collagen-induced arthritis in a rat model and IL-1β-treated SW982 cells through inhibiting inflammation and cellular stress in vivo and in vitro, and osthole might be a promising therapeutic agent for RA.
Ribes, Sandra; Ebert, Sandra; Czesnik, Dirk; Regen, Tommy; Zeug, Andre; Bukowski, Stephanie; Mildner, Alexander; Eiffert, Helmut; Hanisch, Uwe-Karsten; Hammerschmidt, Sven; Nau, Roland
2009-01-01
Meningitis and meningoencephalitis caused by Escherichia coli are associated with high rates of mortality. When an infection occurs, Toll-like receptors (TLRs) expressed by microglial cells can recognize pathogen-associated molecular patterns and activate multiple steps in the inflammatory response that coordinate the brain's local defense, such as phagocytosis of invading pathogens. An upregulation of the phagocytic ability of reactive microglia could improve the host defense in immunocompromised patients against pathogens such as E. coli. Here, murine microglial cultures were stimulated with the TLR agonists Pam(3)CSK(4) (TLR1/TLR2), lipopolysaccharide (TLR4), and CpG oligodeoxynucleotide (TLR9) for 24 h. Upon stimulation, levels of tumor necrosis factor alpha and the neutrophil chemoattractant CXCL1 were increased, indicating microglial activation. Phagocytic activity was studied after adding either E. coli DH5alpha or E. coli K1 strains. After 60 and 90 min of bacterial exposure, the number of ingested bacteria was significantly higher in cells prestimulated with TLR agonists than in unstimulated controls (P < 0.01). Addition of cytochalasin D, an inhibitor of actin polymerization, blocked >90% of phagocytosis. We also analyzed the ability of microglia to kill the ingested E. coli strains. Intracellularly surviving bacteria were quantified at different time points (90, 150, 240, and 360 min) after 90 min of phagocytosis. The number of bacteria killed intracellularly after 6 h was higher in cells primed with the different TLR agonists than in unstimulated microglia. Our data suggest that microglial stimulation by the TLR system can increase bacterial phagocytosis and killing. This approach could improve central nervous system resistance to infections in immunocompromised patients.
Extracellular Calcium Has Multiple Targets to Control Cell Proliferation.
Capiod, Thierry
2016-01-01
Calcium channels and the two G-protein coupled receptors sensing extracellular calcium, calcium-sensing receptor (CaSR) and GPRC6a, are the two main means by which extracellular calcium can signal to cells and regulate many cellular processes including cell proliferation, migration and invasion of tumoral cells. Many intracellular signaling pathways are sensitive to cytosolic calcium rises and conversely intracellular signaling pathways can modulate calcium channel expression and activity. Calcium channels are undoubtedly involved in the former while the CaSR and GPRC6a are most likely to interfere with the latter. As for neurotransmitters, calcium ions use plasma membrane channels and GPCR to trigger cytosolic free calcium concentration rises and intracellular signaling and regulatory pathways activation. Calcium sensing GPCR, CaSR and GPRC6a, allow a supplemental degree of control and as for metabotropic receptors, they not only modulate calcium channel expression but they may also control calcium-dependent K+ channels. The multiplicity of intracellular signaling pathways involved, their sensitivity to local and global intracellular calcium increase and to CaSR and GPRC6a stimulation, the presence of membrane signalplex, all this confers the cells the plasticity they need to convert the effects of extracellular calcium into complex physiological responses and therefore determine their fate.
Hwang, Insun; Ahn, Ginnae; Park, Eunjin; Ha, Danbee; Song, Jie-Young; Jee, Youngheun
2011-08-30
An acidic polysaccharide of Panax ginseng (APG), so called ginsan, is a purified polysaccharide. APG has multiple immunomodulatory effects of stimulating natural killer (NK) and T cells and producing a variety of cytokines that proved to diminish the proinflammatory response, and protect from septic lethality. To determine APG's role in the autoimmune demyelinating disease, we tested whether APG can regulate inflammatory and encephalitogenic response in experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS). Here, we demonstrate the therapeutic efficacy of the APG which induces the suppression of an encephalitogenic response during EAE. APG significantly ameliorates the progression of EAE by inhibiting the proliferation of autoreactive T cells and the production of inflammatory cytokines such as IFN-γ, IL-1β and IL-17. More importantly, APG promotes the generation of immunosuppressive regulatory T cells (Tregs) through the activation of transcription factor, Foxp3. Furthermore, the depletion of CD25+ cells from APG-treated EAE mice abrogates the beneficial effects of EAE. The capacity of APG to induce clinically beneficial effects furthers our understanding of the basis for its therapeutic immunosuppression of EAE and, possibly, MS. Thus, our results suggest that APG may serve as an effective therapy for MS and other autoimmune diseases. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhao, Ziyan; Henowitz, Liza; Zweifach, Adam
2018-05-01
We previously developed a flow cytometry assay that monitored lytic granule exocytosis in cytotoxic T lymphocytes stimulated by contacting beads coated with activating anti-CD3 antibodies. That assay was multiplexed in that responses of cells that did or did not receive the activating stimulus were distinguished via changes in light scatter accompanying binding of cells to beads, allowing us to discriminate compounds that activate responses on their own from compounds that enhance responses in cells that received the activating stimulus, all within a single sample. Here we add a second dimension of multiplexing by developing means to assess in a single sample the effects of treating cells with test compounds for different times. Bar-coding cells before adding them to test wells lets us determine compound treatment time while also monitoring activation status and response amplitude at the point of interrogation. This multiplexed assay is suitable for screening 96-well plates. We used it to screen compounds from the National Cancer Institute, identifying several compounds that enhance anti-LAMP1 responses. Multiple-treatment-time (MTT) screening enabled by bar-coding and read via high-throughput flow cytometry may be a generally useful method for facilitating the discovery of compounds of interest.
NASA Astrophysics Data System (ADS)
Dranoff, Glenn; Jaffee, Elizabeth; Lazenby, Audrey; Golumbek, Paul; Levitsky, Hyam; Brose, Katja; Jackson, Valerie; Hamada, Hirofumi; Pardoll, Drew; Mulligan, Richard C.
1993-04-01
To compare the ability of different cytokines and other molecules to enhance the immunogenicity of tumor cells, we generated 10 retroviruses encoding potential immunomodulators and studied the vaccination properties of murine tumor cells transduced by the viruses. Using a B16 melanoma model, in which irradiated tumor cells alone do not stimulate significant anti-tumor immunity, we found that irradiated tumor cells expressing murine granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated potent, long-lasting, and specific anti-tumor immunity, requiring both CD4^+ and CD8^+ cells. Irradiated cells expressing interleukins 4 and 6 also stimulated detectable, but weaker, activity. In contrast to the B16 system, we found that in a number of other tumor models, the levels of anti-tumor immunity reported previously in cytokine gene transfer studies involving live, transduced cells could be achieved through the use of irradiated cells alone. Nevertheless, manipulation of the vaccine or challenge doses made it possible to demonstrate the activity of murine GM-CSF in those systems as well. Overall, our results have important implications for the clinical use of genetically modified tumor cells as therapeutic cancer vaccines.
The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination
Hussain, Rashad; Ghoumari, Abdel M.; Bielecki, Bartosz; Steibel, Jérôme; Boehm, Nelly; Liere, Philippe; Macklin, Wendy B.; Kumar, Narender; Habert, René; Mhaouty-Kodja, Sakina; Tronche, François; Sitruk-Ware, Regine
2013-01-01
Myelin regeneration is a major therapeutic goal in demyelinating diseases, and the failure to remyelinate rapidly has profound consequences for the health of axons and for brain function. However, there is no efficient treatment for stimulating myelin repair, and current therapies are limited to anti-inflammatory agents. Males are less likely to develop multiple sclerosis than females, but often have a more severe disease course and reach disability milestones at an earlier age than females, and these observations have spurred interest in the potential protective effects of androgens. Here, we demonstrate that testosterone treatment efficiently stimulates the formation of new myelin and reverses myelin damage in chronic demyelinated brain lesions, resulting from the long-term administration of cuprizone, which is toxic for oligodendrocytes. In addition to the strong effect of testosterone on myelin repair, the number of activated astrocytes and microglial cells returned to low control levels, indicating a reduction of neuroinflammatory responses. We also identify the neural androgen receptor as a novel therapeutic target for myelin recovery. After the acute demyelination of cerebellar slices in organotypic culture, the remyelinating actions of testosterone could be mimicked by 5α-dihydrotestosterone, a metabolite that is not converted to oestrogens, and blocked by the androgen receptor antagonist flutamide. Testosterone treatment also failed to promote remyelination after chronic cuprizone-induced demyelination in mice with a non-functional androgen receptor. Importantly, testosterone did not stimulate the formation of new myelin sheaths after specific knockout of the androgen receptor in neurons and macroglial cells. Thus, the neural brain androgen receptor is required for the remyelination effect of testosterone, whereas the presence of the receptor in microglia and in peripheral tissues is not sufficient to enhance remyelination. The potent synthetic testosterone analogue 7α-methyl-19-nortestosterone, which has been developed for long-term male contraception and androgen replacement therapy in hypogonadal males and does not stimulate prostate growth, also efficiently promoted myelin repair. These data establish the efficacy of androgens as remyelinating agents and qualify the brain androgen receptor as a promising drug target for remyelination therapy, thus providing the preclinical rationale for a novel therapeutic use of androgens in males with multiple sclerosis. PMID:23365095
Clegg, Lindsay Wendel; Mac Gabhann, Feilim
2015-01-01
Matrix-binding isoforms and non-matrix-binding isoforms of vascular endothelial growth factor (VEGF) are both capable of stimulating vascular remodeling, but the resulting blood vessel networks are structurally and functionally different. Here, we develop and validate a computational model of the binding of soluble and immobilized ligands to VEGF receptor 2 (VEGFR2), the endosomal trafficking of VEGFR2, and site-specific VEGFR2 tyrosine phosphorylation to study differences in induced signaling between these VEGF isoforms. In capturing essential features of VEGFR2 signaling and trafficking, our model suggests that VEGFR2 trafficking parameters are largely consistent across multiple endothelial cell lines. Simulations demonstrate distinct localization of VEGFR2 phosphorylated on Y1175 and Y1214. This is the first model to clearly show that differences in site-specific VEGFR2 activation when stimulated with immobilized VEGF compared to soluble VEGF can be accounted for by altered trafficking of VEGFR2 without an intrinsic difference in receptor activation. The model predicts that Neuropilin-1 can induce differences in the surface-to-internal distribution of VEGFR2. Simulations also show that ligated VEGFR2 and phosphorylated VEGFR2 levels diverge over time following stimulation. Using this model, we identify multiple key levers that alter how VEGF binding to VEGFR2 results in different coordinated patterns of multiple downstream signaling pathways. Specifically, simulations predict that VEGF immobilization, interactions with Neuropilin-1, perturbations of VEGFR2 trafficking, and changes in expression or activity of phosphatases acting on VEGFR2 all affect the magnitude, duration, and relative strength of VEGFR2 phosphorylation on tyrosines 1175 and 1214, and they do so predictably within our single consistent model framework. PMID:26067165
Cardiomyocyte-released factors stimulate oligodendrocyte precursor cells proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuroda, Mariko; Muramatsu, Rieko; Precursory Research for Embryonic Science and Technology
The heart produces multiple diffusible factors that are involved in a number of physiological processes, but the action of these factors on the central nervous system is not well understood. In this study, we found that one or more factors released by cardiomyocytes promote oligodendrocyte precursor cell (OPC) proliferation in vitro. Mouse OPCs co-cultured with mouse cardiomyocytes showed higher proliferative ability than OPCs cultured alone. In addition, cardiomyocyte-conditioned media was sufficient to promote OPC proliferation. The phosphorylation of phosphatidylinositol (PI) 3-kinase and extracellular signal-regulated kinase (ERK) in OPCs is necessary for the enhancement of OPC proliferation by cardiomyocyte-conditioned media. These datamore » indicate that heart-derived factors have the ability to directly regulate the function of central nervous system (CNS) cells.« less
An Overview of Helicobacter pylori VacA Toxin Biology
Foegeding, Nora J.; Caston, Rhonda R.; McClain, Mark S.; Ohi, Melanie D.; Cover, Timothy L.
2016-01-01
The VacA toxin secreted by Helicobacter pylori enhances the ability of the bacteria to colonize the stomach and contributes to the pathogenesis of gastric adenocarcinoma and peptic ulcer disease. The amino acid sequence and structure of VacA are unrelated to corresponding features of other known bacterial toxins. VacA is classified as a pore-forming toxin, and many of its effects on host cells are attributed to formation of channels in intracellular sites. The most extensively studied VacA activity is its capacity to stimulate vacuole formation, but the toxin has many additional effects on host cells. Multiple cell types are susceptible to VacA, including gastric epithelial cells, parietal cells, T cells, and other types of immune cells. This review focuses on the wide range of VacA actions that are detectable in vitro, as well as actions of VacA in vivo that are relevant for H. pylori colonization of the stomach and development of gastric disease. PMID:27271669
Platform technology for scalable assembly of instantaneously functional mosaic tissues
Zhang, Boyang; Montgomery, Miles; Davenport-Huyer, Locke; Korolj, Anastasia; Radisic, Milica
2015-01-01
Engineering mature tissues requires a guided assembly of cells into organized three-dimensional (3D) structures with multiple cell types. Guidance is usually achieved by microtopographical scaffold cues or by cell-gel compaction. The assembly of individual units into functional 3D tissues is often time-consuming, relying on cell ingrowth and matrix remodeling, whereas disassembly requires an invasive method that includes either matrix dissolution or mechanical cutting. We invented Tissue-Velcro, a bio-scaffold with a microfabricated hook and loop system. The assembly of Tissue-Velcro preserved the guided cell alignment realized by the topographical features in the 2D scaffold mesh and allowed for the instant establishment of coculture conditions by spatially defined stacking of cardiac cell layers or through endothelial cell coating. The assembled cardiac 3D tissue constructs were immediately functional as measured by their ability to contract in response to electrical field stimulation. Facile, on-demand tissue disassembly was demonstrated while preserving the structure, physical integrity, and beating function of individual layers. PMID:26601234
Dhawale, Ashesh K.; Hagiwara, Akari; Bhalla, Upinder S.; Murthy, Venkatesh N.; Albeanu, Dinu F.
2011-01-01
Sensory inputs frequently converge on the brain in a spatially organized manner, often with overlapping inputs to multiple target neurons. Whether the responses of target neurons with common inputs become decorrelated depends on the contribution of local circuit interactions. We addressed this issue in the olfactory system using newly generated transgenic mice expressing channelrhodopsin-2 in all olfactory sensory neurons. By selectively stimulating individual glomeruli with light, we identified mitral/tufted (M/T) cells that receive common input (sister cells). Sister M/T cells had highly correlated responses to odors as measured by average spike rates, but their spike timing in relation to respiration was differentially altered. In contrast, non-sister M/T cells correlated poorly on both these measures. We suggest that sister M/T cells carry two different channels of information: average activity representing shared glomerular input, and phase-specific information that refines odor representations and is substantially independent for sister M/T cells. PMID:20953197
Integrating single-cell transcriptomic data across different conditions, technologies, and species.
Butler, Andrew; Hoffman, Paul; Smibert, Peter; Papalexi, Efthymia; Satija, Rahul
2018-06-01
Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.
Kadow-Romacker, Anke; Duda, Georg N; Bormann, Nicole; Schmidmaier, Gerhard; Wildemann, Britt
2013-12-01
Osteoblast- and osteoclast-like cells are responsible for coordinated bone maintenance, illustrated by a balanced formation and resorption. Both parameters appear to be influenced by mechanical constrains acting on each of these cell types individually. We hypothesized that the interactions between both cell types are also influenced by mechanical stimulation. Co-cultures of osteoblast- and osteoclast-like cells were stimulated with 1,100 µstrain, 0.1 or 0.3 Hz for 1-5 min/day over 5 days. Two different setups depending on the differentiation of the osteoclast-like cells were used: i) differentiation assay for the fusion of pre-osteoclasts to osteoclasts, ii) resorption assay to determine the activity level of osteoclast-like cells. In the differentiation assay (co-culture of osteoblasts with unfused osteoclast precursor cells) the mechanical stimulation resulted in a significant decrease of collagen-1 and osteocalcin produced by osteoblast-like cells. Significantly more TRAP-iso5b was measured after stimulation for 3 min with 0.1 Hz, indicating enhanced osteoclastogenesis. In the resorption assay (co-culture of osteoblasts with fused osteoclasts) the stimulation for 3 min with 0.3 Hz significantly increased the resorption activity of osteoclasts measured by the pit formation and the collagen resorption. The same mechanical stimulation resulted in an increased collagen-1 production by the osteoblast-like cells. The ratio of RANKL/OPG was not different between the groups. These findings demonstrate that already small changes in duration or frequency of mechanical stimulation had significant consequences for the behavior of osteoblast- and osteoclast-like cells in co-culture, which partially depend on the differentiation status of the osteoclast-like cells.
Oki, Shinji; Chiba, Asako; Yamamura, Takashi; Miyake, Sachiko
2004-01-01
OCH, a sphingosine-truncated analog of α-galactosylceramide (αGC), is a potential therapeutic reagent for a variety of Th1-mediated autoimmune diseases through its selective induction of Th2 cytokines from natural killer T (NKT) cells. We demonstrate here that the NKT cell production of IFN-γ is more susceptible to the sphingosine length of glycolipid ligand than that of IL-4 and that the length of the sphingosine chain determines the duration of NKT cell stimulation by CD1d-associated glycolipids. Furthermore, IFN-γ production by NKT cells requires longer T cell receptor stimulation than is required for IL-4 production by NKT cells stimulated either with immobilized mAb to CD3 or with immobilized “αGC-loaded” CD1d molecules. Interestingly, transcription of IFN-γ but not that of IL-4 was sensitive to cycloheximide treatment, indicating the intrinsic involvement of de novo protein synthesis for IFN-γ production by NKT cells. Finally, we determined c-Rel was preferentially transcribed in αGC-stimulated but not in OCH-stimulated NKT cells and was essential for IFN-γ production by activated NKT cells. Given the dominant immune regulation by the remarkable cytokine production of ligand-stimulated NKT cells in vivo, in comparison with that of (antigen-specific) T cells or NK cells, the current study confirms OCH as a likely therapeutic reagent for use against Th1-mediated autoimmune diseases and provides a novel clue for the design of drugs targeting NKT cells. PMID:15173890
Hannay, Gwynne; Leavesley, David; Pearcy, Mark
2005-12-01
Pulsed electromagnetic field (PEMF) devices have been used clinically to promote the healing of surgically resistant fractures in vivo. However, there is a sparsity of data on how the timing of an applied PEMF effects the osteogenic cells that would be present within the fracture gap. The purpose of this study was to examine the response of osteoblast-like cells to a PEMF stimulus, mimicking that of a clinically available device, using four protocols for the timing of the stimulus. The PEMF signal consisted of a 5 ms pulse burst (containing 20 pulses) repeated at 15 Hz. Cultures of a human osteosarcoma cell line, SaOS-2, were exposed to the four timing protocols, each conducted over 3 days. Protocol one stimulated the cells for 8 h each day, protocol two stimulated the cells for 24 h on the first day, protocol three stimulated the cells for 24 h on the second day, and protocol four stimulated the cells for 24 h on the third day. Cells were seeded with either 25,000 or 50,000 cells/well (24-well cell culture plates). All assays showed reduced proliferation and increased differentiation (alkaline phosphatase activity) in the PEMF stimulated cultures compared with the control cultures, except for protocol four alkaline phosphatase measurements. No clear trend was observed between the four protocols; however this may be due to cell density. The results indicated that an osteoblast-like cell line is responsive to a 15 Hz PEMF stimulus, which will stimulate the cell line to into an increasing state of maturity. Bioelectromagnetics (c) 2005 Wiley-Liss, Inc
Li, Ronggai; Wang, Tiehui; Bird, Steve; Zou, Jun; Dooley, Helen; Secombes, Christopher J.
2013-01-01
CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5′ flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies. PMID:23454429
Li, Ronggai; Wang, Tiehui; Bird, Steve; Zou, Jun; Dooley, Helen; Secombes, Christopher J
2013-06-01
CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5' flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mukai, Tetsu; Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Makino, Masahiko
2014-01-01
For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8(+) T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8(+) T cells and perforin-producing effector CD8(+) T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.
Plevova, Karla; Francova, Hana Skuhrova; Burckova, Katerina; Brychtova, Yvona; Doubek, Michael; Pavlova, Sarka; Malcikova, Jitka; Mayer, Jiri; Tichy, Boris; Pospisilova, Sarka
2014-01-01
In chronic lymphocytic leukemia, usually a monoclonal disease, multiple productive immunoglobulin heavy chain gene rearrangements are identified sporadically. Prognostication of such cases based on immunoglobulin heavy variable gene mutational status can be problematic, especially if the different rearrangements have discordant mutational status. To gain insight into the possible biological mechanisms underlying the origin of the multiple rearrangements, we performed a comprehensive immunogenetic and immunophenotypic characterization of 31 cases with the multiple rearrangements identified in a cohort of 1147 patients with chronic lymphocytic leukemia. For the majority of cases (25/31), we provide evidence of the co-existence of at least two B lymphocyte clones with a chronic lymphocytic leukemia phenotype. We also identified clonal drifts in serial samples, likely driven by selection forces. More specifically, higher immunoglobulin variable gene identity to germline and longer complementarity determining region 3 were preferred in persistent or newly appearing clones, a phenomenon more pronounced in patients with stereotyped B-cell receptors. Finally, we report that other factors, such as TP53 gene defects and therapy administration, influence clonal selection. Our findings are relevant to clonal evolution in the context of antigen stimulation and transition of monoclonal B-cell lymphocytosis to chronic lymphocytic leukemia. PMID:24038023
PKK deficiency in B cells prevents lupus development in Sle lupus mice
Oleksyn, D.; Zhao, J.; Vosoughi, A.; Zhao, JC.; Misra, R; Pentland, AP; Ryan, D.; Anolik, J.; Ritchlin, C.; Looney, J.; Anandarajah, AP.; Schwartz, G.; Calvi, LM; Georger, M; Mohan, C.; Sanz, I.; Chen, L
2018-01-01
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies that can result in damage to multiple organs. It is well documented that B cells play a critical role in the development of the disease. We previously showed that protein kinase C associated kinase (PKK) is required for B1 cell development as well as for the survival of recirculating mature B cells and B- lymphoma cells. Here, we investigated the role of PKK in lupus development in a lupus mouse model. We demonstrate that the conditional deletion of PKK in B cells prevents lupus development in Sle1Sle3 mice. The loss of PKK in Sle mice resulted in the amelioration of multiple classical lupus-associated phenotypes and histologic features of lupus nephritis, including marked reduction in the levels of serum autoantibodies, proteinuria, spleen size, peritoneal B-1 cell population and the number of activated CD4 T cells. In addition, the abundance of autoreactive plasma cells normally seen in Sle lupus mice was also significantly decreased in the PKK-deficient Sle mice. Sle B cells deficient in PKK display defective proliferation responses to BCR and LPS stimulation. Consistently, B cell receptor-mediated NF-κB activation, which is required for the survival of activated B cells, was impaired in the PKK-deficient B cells. Taken together, our work uncovers a critical role of PKK in lupus development and suggests that targeting the PKK-mediated pathway may represent a promising therapeutic strategy for lupus treatment. PMID:28274793
Wu, J H; Thoreson, A R; Gingery, A; An, K N; Moran, S L; Amadio, P C; Zhao, C
2017-03-01
The present study describes a novel technique for revitalising allogenic intrasynovial tendons by combining cell-based therapy and mechanical stimulation in an ex vivo canine model. Specifically, canine flexor digitorum profundus tendons were used for this study and were divided into the following groups: (1) untreated, unprocessed normal tendon; (2) decellularised tendon; (3) bone marrow stromal cell (BMSC)-seeded tendon; and (4) BMSC-seeded and cyclically stretched tendon. Lateral slits were introduced on the tendon to facilitate cell seeding. Tendons from all four study groups were distracted by a servohydraulic testing machine. Tensile force and displacement data were continuously recorded at a sample rate of 20 Hz until 200 Newton of force was reached. Before testing, the cross-sectional dimensions of each tendon were measured with a digital caliper. Young's modulus was calculated from the slope of the linear region of the stress-strain curve. The BMSCs were labeled for histological and cell viability evaluation on the decellularized tendon scaffold under a confocal microscope. Gene expression levels of selected extracellular matrix tendon growth factor genes were measured. Results were reported as mean ± SD and data was analyzed with one-way ANOVAs followed by Tukey's post hoc multiple-comparison test. We observed no significant difference in cross-sectional area or in Young's modulus among the four study groups. In addition, histological sections showed that the BMSCs were aligned well and viable on the tendon slices after two-week culture in groups three and four. Expression levels of several extracellular matrix tendon growth factors, including collagen type I, collagen type III, and matrix metalloproteinase were significantly higher in group four than in group three (p < 0.05). Lateral slits introduced into de-cellularised tendon is a promising method of delivery of BMSCs without compromising cell viability and tendon mechanical properties. In addition, mechanical stimulation of a cell-seeded tendon can promote cell proliferation and enhance expression of collagen types I and III in vitro . Cite this article: J. H. Wu, A. R. Thoreson, A. Gingery, K. N. An, S. L. Moran, P. C. Amadio, C. Zhao. The revitalisation of flexor tendon allografts with bone marrow stromal cells and mechanical stimulation: An ex vivo model revitalising flexor tendon allografts. Bone Joint Res 2017;6:179-185. DOI: 10.1302/2046-3758.63.BJR-2016-0207.R1. © 2017 Zhao et al.
Sakanoue, Hideyo; Yasugi, Mayo; Miyake, Masami
2018-05-04
Sublethal heating of spores has long been known to stimulate or activate germination, but the underlying mechanisms are not yet fully understood. In this study, we visualized the entire germination-to-outgrowth process of spores from an anaerobic sporeformer, C. perfringens, at single-cell resolution. Quantitative analysis revealed that sublethal heating significantly reduced the time from completion of germination to the beginning of the first cell division. The results indicate that sublethal heating of C. perfringens spores not only sensitizes the responsiveness of germinant receptors but also directly or indirectly facilitates multiple steps during the bacterial regrowth process. © 2018 The Societies and John Wiley & Sons Australia, Ltd.
p21-Activated kinase 5: a pleiotropic kinase.
Wen, Yi-Yang; Wang, Xiao-Xia; Pei, Dong-Sheng; Zheng, Jun-Nian
2013-12-15
The PAKs (p21-activated kinases) are highly conserved serine/threonine protein kinases which comprise six mammalian PAKs. PAK5 (p21-activated kinase 5) is the least understood member of PAKs that regulate many intracellular processes when they are stimulated by activated forms of the small GTPases Cdc42 and Rac. PAK5 takes an important part in multiple signal pathways in mammalian cells and controls a variety of cellular functions including cytoskeleton organization, cell motility and apoptosis. The main goal of this review is to describe the structure, mechanisms underlying its activity regulation, its role in apoptosis and the likely directions of further research. Copyright © 2013 Elsevier Ltd. All rights reserved.
Uitdehaag, B M; Hoekstra, K; Koper, J W; Polman, C H; Dijkstra, C D
2001-03-01
We studied the effect of recombinant interferon-beta1b (IFN-beta1b) on the sensitivity to glucocorticoids (GC) and on the number of GC receptors (GCR) in the human monocytic cell line THP-1. We found that IFN-beta1b augments the suppressive effect that dexamethasone has on the stimulated production of tumor necrosis factor-alpha (TNF-alpha), most likely related to the increased number of GCR observed after exposure to IFN-beta1b. This provides a possible clue to the mechanism of action of IFN-beta in multiple sclerosis.
Electrostimulation of rat callus cells and human lymphocytes in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aro, H.; Eerola, E.; Aho, A.J.
1984-01-01
Asymmetrical pulsing low voltage current was supplied via electrodes to cultured rat fracture callus cells and human peripheral blood lymphocytes. The (/sup 3/H)thymidine incorporation of the callus cells and 5-(/sup 125/I)iodo-2'-deoxyuridine incorporation of the lymphocytes were determined. The growth pattern of callus cells (estimated by cellular density) did not respond to electrical stimulation. However, the uptake of (/sup 3/H)thymidine was increased at the early phase of cell proliferation and inhibited at later phases of proliferation. The (/sup 3/H)thymidine uptake of confluent callus cell cultures did not respond to electrical stimulation. Lymphocytes reacted in a similar way; stimulated cells took upmore » more DNA precursor than control cells at the early phase of stimulation. During cell division, induced by the mitogens phytohemagglutinin and Concanavalin-A, the uptake of DNA precursor by stimulated cells was constantly inhibited. The results suggest that electrical stimuli affect the uptake mechanisms of cell membranes. The duality of the effect seems to be dependent on the cell cycle.« less
Feng, Xuan; Han, Diana; Kilaru, Bharat K.; Franek, Beverly S.; Niewold, Timothy B.; Reder, Anthony T.
2014-01-01
Objective To determine whether statins affect type 1 interferon responses in relapsing-remitting multiple sclerosis (RRMS). Design Study effects of atorvastatin on type 1 interferon responses in Jurkat cells, mononuclear cells (MNCs) from therapy-naive patients with RRMS in vitro, and MNCs from interferon-treated RRMS patients in vivo in 4 conditions: no drug, statin only, interferon-beta only, and statin added on to interferon-beta therapy. Patients The study examined clinically stable patients with RRMS: 21 therapy-naive patients and 14 patients receiving interferon-beta with a statin. Interventions Statin effects on in vitro and in vivo interferon-beta–induced STAT1 transcription factor activation, expression of interferon-stimulated proteins in MNCs, and serum type 1 interferon activity. Results In vitro, atorvastatin dose dependently inhibited expression of interferon-stimulated P-Y-STAT1 by 44% (P< .001), interferon regulatory factor 1 protein by 30% (P= .006), and myxovirus resistance 1 protein by 32% (P=.004) compared with no-statin control in MNCs from therapy-naive RRMS patients. In vivo, 9 of 10 patients who received high-dose statins (80 mg) had a significant reduction in interferon-beta therapy–induced serum interferon-α/β activity, whereas only 2 of 4 patients who received medium-dose statins (40 mg) had reductions. High-dose add-on statin therapy significantly blocked interferon-beta function, with less P-Y-STAT1 transcription factor activation, and reduced myxovirus resistance 1 protein and viperin protein production. Medium doses of statins did not change STAT1 activation. Conclusions High-dose add-on statin therapy significantly reduces interferon-beta function and type 1 interferon responses in RRMS patients. These data provide a putative mechanism for how statins could counteract the beneficial effects of interferon-beta and worsen disease. PMID:22801747
Minato, Ken-Ichiro; Laan, Lisa C; Ohara, Akihiro; van Die, Irma
2016-11-01
Many edible mushrooms have become attractive as "health foods" and as source materials for immunomodulators. To increase our insight in the immune-modulatory properties of a polysaccharide of the oyster mushroom Pleurotus citrinopileatus, PCPS, we analyzed its effects on the function of human dendritic cells (DCs). We showed that PCPS induces upregulation of the surface maturation markers CD80, CD86 and HLA-DR on DCs, indicating its potential to induce DC maturation. In addition, PCPS stimulates DCs to secrete the pro-inflammatory cytokines TNF, IL-1β, IL-6 and IL-12, as well as the anti-inflammatory cytokine IL-10, and induces enhanced mRNA levels of the chemokines CCL2, CCL3, CCL8, CXCL9, CXCL10, and LTA. The secretion of TNF and IL-12 by PCPS-activated DCs could significantly be decreased by an anti-Dectin-1 antibody, as well as by a Syk kinase and a Raf-1 inhibitor, indicating that PCPS induces Dectin-1 signaling at least partly through the Syk- and the Raf-1-dependent pathways in DCs. Structural analysis of PCPS suggests that this polysaccharide is a β-1,3-branched β-1,6-glucan, which is in line with its capacity to activate Dectin-1. We showed that PCPS can induce TLR2 and TLR4, but not TLR3, signaling using TLR-HEK293 reporter cell lines. In human DCs, the effect of PCPS was additively increased by TLR4 activation, and synergistically enhanced by stimulation of TLR2, suggesting that interaction of PCPS with these TLRs contributes to the observed DC modulation. In conclusion, PCPS has the capacity to activate human DCs via multiple pathways. Copyright © 2016 Elsevier B.V. All rights reserved.
Fu, Yuejun; Wang, Ruisheng; Liang, Aihua
2018-06-01
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) possesses a gene, ac-pcna or ac49, which encodes a protein with similarity to proliferating cell nuclear antigen (PCNA). Homologs of this gene code for DNA polymerase processivity factors and are essential in the DNA replication systems. But the function of ac-pcna still remains unclear. To define the function of Ac-pcna in AcMNPV and Sf-pcna in host Sf9 cells, Bac-to-Bac baculovirus expression system was used to generate two recombinant baculoviruses: AcMNPV-Ac-pcna-EGFP and AcMNPV-Sf-pcna-EGFP. Results indicated that AcMNPV-mediated overexpression of Ac-PCNA and Sf-PCNA could stimulate replication of AcMNPV genome in the host Sf9 cells. Meanwhile, either AcMNPV-Ac-pcna-EGFP or AcMNPV-Sf-pcna-EGFP had a significant stimulating effect on Sf9 genome replication during infection. We also found that Ac-PCNA and Sf-PCNA could promote the production of budded virus. Ac-PCNA could improve the transcription level of ie2 gene dramatically and further improved the transcription of late gene, for example 38 K and vp39, at 12 h p.i.. Moreover, insecticidal potency test showed that the larvae of Beet armyworm in the AcMNPV-Ac-pcna-EGFP and AcMNPV-Sf-pcna-EGFP groups had a higher mortality rate (83.33 and 91.67%), a lower pupation rate (16.67 and 8.33%), and a lower emergence rate (6.67 and 3.33%), compared with those in AcMNPV-EGFP group. The function of Ac-PCNA and Sf-PCNA was confirmed in this study, which provided the theoretical foundation for using and modifying AcMNPV.
Kumaresan, Pappanaicken; Figliola, Mathew; Moyes, Judy S; Huls, M Helen; Tewari, Priti; Shpall, Elizabeth J; Champlin, Richard; Cooper, Laurence J N
2015-10-05
The adoptive transfer of pathogen-specific T cells can be used to prevent and treat opportunistic infections such as cytomegalovirus (CMV) infection occurring after allogeneic hematopoietic stem-cell transplantation. Viral-specific T cells from allogeneic donors, including third party donors, can be propagated ex vivo in compliance with current good manufacturing practice (cGMP), employing repeated rounds of antigen-driven stimulation to selectively propagate desired T cells. The identification and isolation of antigen-specific T cells can also be undertaken based upon the cytokine capture system of T cells that have been activated to secrete gamma-interferon (IFN-γ). However, widespread human application of the cytokine capture system (CCS) to help restore immunity has been limited as the production process is time-consuming and requires a skilled operator. The development of a second-generation cell enrichment device such as CliniMACS Prodigy now enables investigators to generate viral-specific T cells using an automated, less labor-intensive system. This device separates magnetically labeled cells from unlabeled cells using magnetic activated cell sorting technology to generate clinical-grade products, is engineered as a closed system and can be accessed and operated on the benchtop. We demonstrate the operation of this new automated cell enrichment device to manufacture CMV pp65-specific T cells obtained from a steady-state apheresis product obtained from a CMV seropositive donor. These isolated T cells can then be directly infused into a patient under institutional and federal regulatory supervision. All the bio-processing steps including removal of red blood cells, stimulation of T cells, separation of antigen-specific T cells, purification, and washing are fully automated. Devices such as this raise the possibility that T cells for human application can be manufactured outside of dedicated good manufacturing practice (GMP) facilities and instead be produced in blood banking facilities where staff can supervise automated protocols to produce multiple products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takemura, T.; Sato, F.; Saga, K.
Methacholine (MCh)-induced changes in intracellular concentrations of Na, K, and Cl (( Na)i, (K)i, and (Cl)i, respectively) and in cellular dry mass (a measure of cell shrinkage) were examined in isolated monkey eccrine sweat secretory coils by electron probe X-ray microanalysis using the peripheral standard method. To further confirm the occurrence of cell shrinkage during MCh stimulation, the change in cell volume of dissociated clear and dark cells were directly determined under a light microscope equipped with differential interference contrast (DIC) optics. X-ray microanalysis revealed a biphasic increase in cellular dry mass in clear cells during continuous MCh stimulation; anmore » initial increase of dry mass to 158% (of control) followed by a plateau at 140%, which correspond to the decrease in cell volume of 37 and 29%, respectively. The latter agrees with the MCh-induced cell shrinkage of 29% in dissociated clear cells. The MCh-induced increase in dry mass in myoepithelial cells was less than half that of clear cells. During the steady state of MCh stimulation, both (K+)i and (Cl)i of clear cells decreased by about 45%, whereas (Na)i increased in such a way to maintain the sum of (Na) i + (K)i constant. There was a small (12-15 mM) increase in (Na)i and a decrease in (K)i in myoepithelial cells during stimulation with MCh. Dissociated dark cells failed to significantly shrink during MCh stimulation. The decrease in (Cl)i in the face of constant (Na)i + (K)i suggests the accumulation of unknown anion(s) inside the clear cell during MCh stimulation.« less
In vitro cytokine expression by peripheral mononuclear cells in herbal drug-induced skin eruption.
Norisugi, Osamu; Yoshihisa, Yoko; Shimizu, Kyoko; Shimizu, Tadamichi
2014-01-01
Herbal medicine is widely used worldwide and is associated with side-effects such as skin eruptions. Herbal drugs are often produced by combining multiple crude drugs, mostly of plant origin. Determining which medi-cinal plants are associated with the herbal drugs that induce skin eruptions can therefore be difficult. This study investigated mRNA expression of several cytokines in peripheral mononuclear cells (PBMCs) from two patients with herbal drug-induced skin eruptions; one reacted to keishi-bukuryo-gan (KBG), composed of 5 medicinal plants, and the other patient reacted to senna. PBMCs (1×106) from the 2 patients were cultured for 24 h with the supernatant from the medicinal plants from KBG or senna in various concentrations, and a reverse transcription-polymerase chain reaction (RT-PCR) analysis was performed. A high mRNA level of interleukin (IL)-4 and IL-5 was detected in PBMCs stimulated by KBG and two of its components. Senna stimulated a high level of IL-4 and IL-5 mRNA levels in PBMCs from patient with senna-induced drug reaction.
Zhang, J; Salojin, K V; Delovitch, T L
2001-03-01
Previously, we reported that T cell hyporesponsiveness induced by TCR ligation is causal to autoimmune diabetes in NOD mice. Neonatal CD28 co-stimulation reverses T cell hyporesponsiveness and protects NOD mice from diabetes by an IL-4-mediated mechanism, indicating that a deficiency in TCR signaling may be overcome by CD28/B7-2 co-stimulation in NOD T cells. To investigate which co-stimulation-induced signaling events mediate this protection, we analyzed the activity of Ras, Rac-1, mitogen-activated protein kinases (MAPK) and several transcription factors in TCR-activated NOD T cells in the presence or absence of CD28 co-stimulation. We show that CD28 co-stimulation restores normal TCR-induced activation of Rac-1 and p38 MAPK in NOD T cells. Deficiencies in TCR-induced nuclear expression of activating protein (AP)-1 binding proteins as well as activation of AP-1 and NF-AT in the IL-2 and IL-4 P1 promoters are also corrected by CD28 co-stimulation. Thus, CD28 co-stimulation reverses NOD T cell hyporesponsiveness by restoring TCR signaling leading to the activation of AP-1 and NF-AT during IL-2 and IL-4 gene transcription. Our findings provide additional evidence that CD28 co-stimulation amplifies signals delivered by the TCR and further explain the mechanism by which CD28 co-stimulation may protect against autoimmune diabetes.
Favero, J; Marti, J; Dornand, J; Bonnafous, J C; Mani, J C
1986-03-01
We have examined the influence of peanut agglutinin (PNA), a lectin which agglutinates but does not stimulate mouse thymocytes, on the responsiveness of these cells to concanavalin A (Con A) or galactose oxidase stimulation. Binding low amounts of PNA on unseparated mouse thymocytes pretreated with neuraminidase highly enhances the mitogenic response and the level of interleukin 2 release in the culture medium upon Con A stimulation. We have shown that PNA present on the cell surface acts as a crosslinking agent which favors intercellular binding between accessory cells (macrophages) and thymocytes, leading through this enhanced cooperation by cell-cell contact to an enhanced blastogenic response.
Premalignant lesions skew spleen cell responses to immune modulation by adipocytes.
Vielma, Silvana A; Klein, Richard L; Levingston, Corinne A; Young, M Rita I
2013-05-01
Obesity can promote a chronic inflammatory state and is associated with an increased risk for cancer. Since adipocytes can produce mediators that can regulate conventional immune cells, this study sought to determine if the presence of premalignant oral lesions would skew how immune cells respond to adipocyte-derived mediators to create an environment that may be more favorable for their progression toward cancer. While media conditioned by adipocytes stimulated normal spleen cell production of the T helper (Th) type-1 cytokines interleukin (IL)-2, interferon-γ (IFN-γ), IL-12 and granulocyte-monocyte colony-stimulating factor (GM CSF), media from premalignant lesion cells either blocked or had no added affect on the adipocyte-stimulated Th1 cytokine production. In contrast, media conditioned by premalignant lesion cells exacerbated adipocyte-stimulated spleen cell production of the Th2 cytokines IL-10 and IL-13, although it did not further enhance the adipocyte-stimulated spleen cell production of IL-4 and TGF-β. The premalignant lesion environment also heightened the adipocyte-stimulated spleen cell production of the inflammatory mediators IL 1α, IL-1β, IL-6 and IL-9, although it did not further increase the adipocyte-stimulated production of tumor necrosis factor-α (TNF-α). IL 17 production was unaffected by the adipocyte-derived mediators, but was synergistically triggered by adding media from premalignant lesion cells. These stimulatory effects on spleen cell production of Th2 and inflammatory mediators were not induced in the absence of media conditioned by adipocytes. In contrast, media conditioned by adipocytes did not stimulate production of predominantly monocyte-derived chemokine C-X-C motif ligand (CXCL)9, chemokine C-C motif ligand (CCL)3 or CCL4, although it stimulated production of CCL2 and the predominantly T cell-derived chemokine CCL5, which was the only chemokine whose production was further increased by media from premalignant lesions. These results suggest that the responsiveness of spleen cells to adipocyte-derived mediators is influenced by mediators from premalignant lesion cells to favor conventional immune cell production of a Th2 and inflammatory cytokines.
Li, Zhao-xu; Sun, Ling-ling; Cheng, Rui-lin; Sun, Zheng-wang; Ye, Zhao-ming
2012-08-01
To investigate the amplification and cytotoxicity of γδ T cells in peripheral blood mononuclear cells (PBMCs) of healthy donors and osteosarcoma patients stimulated by zoledronate (Zol) and IL-2. PBMCs from healthy donors and osteosarcoma patients were stimulated with IL-2 and Zol+IL-2, respectively. After 14-day culture, the purity of γδ T cells was assessed by flow cytometry. The cytotoxicity of γδ T cells against target cells was analyzed using a standard lactate dehydrogenase release assay with γδ T lymphocyte-sensitive Daudi cells, γδ T lymphocyte-resistant Raji cells and human osteoblast cell line, hFOB, as the target cells. After 2-week culture ex vivo of PBMCs from healthy donors and osteosarcoma patients, compared with stimulation of IL-2, Zol+IL-2 significantly promoted the amplification of γδ T cells. In addition, γδ T cells showed the higher cytotoxicity against Daudi cells, but no cytotoxic effect on normal cells like hFOB. γδ T cells of high purity and high cytotoxicity can be obtained by the stimulation of Zol combined with IL-2 on PBMCs from healthy donors and osteosarcoma patients.
Arora, Pooja; Baena, Andres; Yu, Karl O.A.; Saini, Neeraj K.; Kharkwal, Shalu S.; Goldberg, Michael F.; Kunnath-Velayudhan, Shajo; Carreño, Leandro J.; Venkataswamy, Manjunatha M.; Kim, John; Lazar-Molnar, Eszter; Lauvau, Gregoire; Chang, Young-tae; Liu, Zheng; Bittman, Robert; Al-Shamkhani, Aymen; Cox, Liam R.; Jervis, Peter J.; Veerapen, Natacha; Besra, Gurdyal S.; Porcelli, Steven A.
2014-01-01
Summary Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α+ DEC-205+ dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α+ dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses. PMID:24412610
Role for granulocyte colony-stimulating factor in the generation of human T regulatory type 1 cells.
Rutella, Sergio; Pierelli, Luca; Bonanno, Giuseppina; Sica, Simona; Ameglio, Franco; Capoluongo, Ettore; Mariotti, Andrea; Scambia, Giovanni; d'Onofrio, Giuseppe; Leone, Giuseppe
2002-10-01
Granulocyte colony-stimulating factor (G-CSF) may affect T-cell homeostasis by multiple mechanisms, inducing polarization of cytokine secretion, inhibition of T-cell proliferation, and enhancement of T-cell apoptosis. We analyzed the production of interleukin-10 (IL-10) and transforming growth factor-beta1 (TGF-beta1) by T cells from healthy volunteer donors treated with recombinant human G-CSF. Highly purified CD4(+) T cells obtained before and after G-CSF administration (pre-G and post-G, respectively) were activated using the allogeneic mixed leukocyte reaction. Post-G CD4(+) T cells produced high levels of IL-10 but undetectable levels of IL-2 and IL-4, whereas the level of TGF-beta1 release was comparable to that of pre-G CD4(+) T cells. Notably, post-G CD4(+) T cells proliferated poorly in response to alloantigens and to recall antigens and suppressed the proliferation of autologous CD4(+) T cells in a cell contact-independent and an antigen-nonspecific manner. TGF-beta1 and IL-10 were not dispensable for post-G CD4(+) T cells to mediate suppression, as shown by neutralization studies. Compared with pre-G CD4(+) T cells, alloantigen-activated post-G CD4(+) T cells preferentially expressed markers associated with memory T cells, in conjunction with reduced levels of CD28 and CD62L. Collectively, these data demonstrate that CD4(+) T cells exposed to G-CSF in vivo acquire the properties of T regulatory (Tr) cells once triggered in vitro through the T-cell receptor, including a peculiar cytokine production profile (IL-10(++)TGF-beta1(+)IL-2(low/-)IL-4(low/-)), an intrinsic low proliferative capacity, and a contact-independent suppression of antigen-driven proliferation. Tr cells generated ex vivo after exposure to G-CSF might be clinically relevant for transplantation medicine and for the treatment of human immune-mediated diseases.
Zhao, Feihu; Vaughan, Ted J; Mcnamara, Laoise M
2015-04-01
Recent studies have shown that mechanical stimulation, by means of flow perfusion and mechanical compression (or stretching), enhances osteogenic differentiation of mesenchymal stem cells and bone cells within biomaterial scaffolds in vitro. However, the precise mechanisms by which such stimulation enhances bone regeneration is not yet fully understood. Previous computational studies have sought to characterise the mechanical stimulation on cells within biomaterial scaffolds using either computational fluid dynamics or finite element (FE) approaches. However, the physical environment within a scaffold under perfusion is extremely complex and requires a multiscale and multiphysics approach to study the mechanical stimulation of cells. In this study, we seek to determine the mechanical stimulation of osteoblasts seeded in a biomaterial scaffold under flow perfusion and mechanical compression using multiscale modelling by two-way fluid-structure interaction and FE approaches. The mechanical stimulation, in terms of wall shear stress (WSS) and strain in osteoblasts, is quantified at different locations within the scaffold for cells of different attachment morphologies (attached, bridged). The results show that 75.4 % of scaffold surface has a WSS of 0.1-10 mPa, which indicates the likelihood of bone cell differentiation at these locations. For attached and bridged osteoblasts, the maximum strains are 397 and 177,200 με, respectively. Additionally, the results from mechanical compression show that attached cells are more stimulated (maximum strain = 22,600 με) than bridged cells (maximum strain = 10.000 με)Such information is important for understanding the biological response of osteoblasts under in vitro stimulation. Finally, a combination of perfusion and compression of a tissue engineering scaffold is suggested for osteogenic differentiation.
Chartier, Cecile; Raval, Janak; Axelrod, Fumiko; Bond, Chris; Cain, Jennifer; Dee-Hoskins, Cristina; Ma, Shirley; Fischer, Marcus M; Shah, Jalpa; Wei, Jie; Ji, May; Lam, Andrew; Stroud, Michelle; Yen, Wan-Ching; Yeung, Pete; Cancilla, Belinda; O'Young, Gilbert; Wang, Min; Kapoun, Ann M; Lewicki, John; Hoey, Timothy; Gurney, Austin
2016-02-01
Deregulation of the β-catenin signaling has long been associated with cancer. Intracellular components of this pathway, including axin, APC, and β-catenin, are frequently mutated in a range of human tumors, but the contribution of specific extracellular ligands that promote cancer development through this signaling axis remains unclear. We conducted a reporter-based screen in a panel of human tumors to identify secreted factors that stimulate β-catenin signaling. Through this screen and further molecular characterization, we found that R-spondin (RSPO) proteins collaborate with Wnt proteins to activate β-catenin. RSPO family members were expressed in several human tumors representing multiple malignancies, including ovarian, pancreatic, colon, breast, and lung cancer. We generated specific monoclonal antibody antagonists of RSPO family members and found that anti-RSPO treatment markedly inhibited tumor growth in human patient-derived tumor xenograft models, either as single agents or in combination with chemotherapy. Furthermore, blocking RSPO signaling reduced the tumorigenicity of cancer cells based on serial transplantation studies. Moreover, gene-expression analyses revealed that anti-RSPO treatment in responsive tumors strongly inhibited β-catenin target genes known to be associated with cancer and normal stem cells. Collectively, our results suggest that the RSPO family is an important stimulator of β-catenin activity in many human tumors and highlight a new effective approach for therapeutically modulating this fundamental signaling axis. ©2015 American Association for Cancer Research.
Flow-injection analysis of catecholamine secretion from bovine adrenal medulla cells on microbeads.
Herrera, M; Kao, L S; Curran, D J; Westhead, E W
1985-01-01
Bovine adrenal medullary cells have been cultured on microbeads which are placed in a low-volume flow system for measurements of stimulation-response parameters. Electronically controlled stream switching allows stimulation of cells with pulse lengths from 1 s to many minutes; pulses may be repeated indefinitely. Catecholamines secreted are detected by an electrochemical detector downstream from the cells. This flow-injection analysis technique provides a new level of sensitivity and precision for measurement of kinetic parameters of secretion. A manual injection valve allows stimulation by higher levels of stimulant in the presence of constant low levels of stimulant. Such experiments show interesting differences between the effects of K+ and acetylcholine on cells partially desensitized to acetylcholine.
Pimentel, Belén; Nair, Radhika; Bermejo-Rodríguez, Camino; Preston, Mark A; Agu, Chukwuma A; Wang, Xindan; Bernal, Juan A; Sherratt, David J; de la Cueva-Méndez, Guillermo
2014-02-18
Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid-bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs.
Pimentel, Belén; Nair, Radhika; Bermejo-Rodríguez, Camino; Preston, Mark A.; Agu, Chukwuma A.; Wang, Xindan; Bernal, Juan A.; Sherratt, David J.; de la Cueva-Méndez, Guillermo
2014-01-01
Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid–bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs. PMID:24449860
Magaña, Diana; Aguilar, Gustavo; Linares, Marisela; Ayala-Balboa, Julio; Santacruz, Concepción; Chávez, Raúl; Estrada-Parra, Sergio; Garfias, Yonathan; Lascurain, Ricardo; Jiménez-Martínez, Maria C.
2015-01-01
Background Vernal keratoconjunctivitis (VKC) is a severe form of allergic conjunctivitis, in which inflammatory infiltrates of the conjunctiva are characterized by CD3+ and CD30+ cells. Until today, the functional involvement of CD30+ T cells in VKC was unclear. Our aim was to evaluate the functional characteristics of CD30+ T cells after allergen stimulation in peripheral blood mononuclear cells obtained from patients with VKC. Methods Seventeen consecutive patients at the Institute of Ophthalmology with active forms of VKC were included. Results After allergen stimulation, we observed the frequency of CD30+ T cells increased compared with non-stimulated cells (p<0.0001). The CD30+ T cells responded to the specific allergen-inducing expression of intracellular interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-γ) compared with the CD30- T cells (p<0.0001). Increased early secretion of soluble CD30 was observed in the supernatant of the cultured cells from patients with keratoconjunctivitis, compared with healthy controls (p=0.03). Blockage with IL-4 significantly diminished CD30 frequency in the allergen-stimulated cells. Conclusions Our results suggest that after allergenic stimulation, CD4+CD30+ cells are the most important source of IL-4, IL-5, and IFN-γ. IL-4 acts as an activation loop that increases CD30 expression on T cells after specific stimulation. These findings suggest that CD4+CD30+ T cells are effector cells and play a significant role in the immune pathogenic response in patients with vernal keratoconjunctivitis. PMID:25999672
Jensen, Ralph J; Rizzo, Joseph F; Ziv, Ofer R; Grumet, Andrew; Wyatt, John
2003-08-01
To determine electrical thresholds required for extracellular activation of retinal ganglion cells as part of a project to develop an epiretinal prosthesis. Retinal ganglion cells were recorded extracellularly in retinas isolated from adult New Zealand White rabbits. Electrical current pulses of 100- micro s duration were delivered to the inner surface of the retina from a 5- micro m long electrode. In about half of the cells, the point of lowest threshold was found by searching with anodal current pulses; in the other cells, cathodal current pulses were used. Threshold measurements were obtained near the cell bodies of 20 ganglion cells and near the axons of 19 ganglion cells. Both cathodal and anodal stimuli evoked a neural response in the ganglion cells that consisted of a single action potential of near-constant latency that persisted when retinal synaptic transmission was blocked with cadmium chloride. For cell bodies, but not axons, thresholds for both cathodal and anodal stimulation were dependent on the search method used to find the point of lowest threshold. With search and stimulation of matching polarity, cathodal stimuli evoked a ganglion cell response at lower currents (approximately one seventh to one tenth axonal threshold) than did anodal stimuli for both cell bodies and axons. With cathodal search and stimulation, cell body median thresholds were somewhat lower (approximately one half) than the axonal median thresholds. With anodal search and stimulation, cell body median thresholds were approximately the same as axonal median thresholds. The results suggest that cathodal stimulation should produce lower thresholds, more localized stimulation, and somewhat better selectivity for cell bodies over axons than would anodal stimulation.
Cmoch, Anna; Podszywalow-Bartnicka, Paulina; Palczewska, Malgorzata; Piwocka, Katarzyna; Groves, Patrick; Pikula, Slawomir
2014-01-01
Background Osteosarcoma (OS) is a highly aggressive bone cancer affecting children and young adults. Growing evidence connects the invasive potential of OS cells with their ability to form invadopodia (structures specialized in extracellular matrix proteolysis). Results In this study, we tested the hypothesis that commonly used in vitro stimulators of mineralization limit the invadopodia formation in OS cells. Here we examined the invasive potential of human osteoblast-like cells (Saos-2) and osteolytic-like (143B) OS cells treated with the stimulators of mineralization (ascorbic acid and B-glycerophosphate) and observed a significant difference in response of the tested cells to the treatment. In contrast to 143B cells, osteoblast-like cells developed a mineralization phenotype that was accompanied by a decreased proliferation rate, prolongation of the cell cycle progression and apoptosis. On the other hand, stimulators of mineralization limited osteolytic-like OS cell invasiveness into collagen matrix. We are the first to evidence the ability of 143B cells to degrade extracellular matrix to be driven by invadopodia. Herein, we show that this ability of osteolytic-like cells in vitro is limited by stimulators of mineralization. Conclusions Our study demonstrates that mineralization competency determines the invasive potential of cancer cells. A better understanding of the molecular mechanisms by which stimulators of mineralization regulate and execute invadopodia formation would reveal novel clinical targets for treating osteosarcoma. PMID:25314307
Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery
NASA Astrophysics Data System (ADS)
Badeau, Barry A.; Comerford, Michael P.; Arakawa, Christopher K.; Shadish, Jared A.; Deforest, Cole A.
2018-03-01
The successful transport of drug- and cell-based therapeutics to diseased sites represents a major barrier in the development of clinical therapies. Targeted delivery can be mediated through degradable biomaterial vehicles that utilize disease biomarkers to trigger payload release. Here, we report a modular chemical framework for imparting hydrogels with precise degradative responsiveness by using multiple environmental cues to trigger reactions that operate user-programmable Boolean logic. By specifying the molecular architecture and connectivity of orthogonal stimuli-labile moieties within material cross-linkers, we show selective control over gel dissolution and therapeutic delivery. To illustrate the versatility of this methodology, we synthesized 17 distinct stimuli-responsive materials that collectively yielded all possible YES/OR/AND logic outputs from input combinations involving enzyme, reductant and light. Using these hydrogels we demonstrate the first sequential and environmentally stimulated release of multiple cell lines in well-defined combinations from a material. We expect these platforms will find utility in several diverse fields including drug delivery, diagnostics and regenerative medicine.
Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery.
Badeau, Barry A; Comerford, Michael P; Arakawa, Christopher K; Shadish, Jared A; DeForest, Cole A
2018-03-01
The successful transport of drug- and cell-based therapeutics to diseased sites represents a major barrier in the development of clinical therapies. Targeted delivery can be mediated through degradable biomaterial vehicles that utilize disease biomarkers to trigger payload release. Here, we report a modular chemical framework for imparting hydrogels with precise degradative responsiveness by using multiple environmental cues to trigger reactions that operate user-programmable Boolean logic. By specifying the molecular architecture and connectivity of orthogonal stimuli-labile moieties within material cross-linkers, we show selective control over gel dissolution and therapeutic delivery. To illustrate the versatility of this methodology, we synthesized 17 distinct stimuli-responsive materials that collectively yielded all possible YES/OR/AND logic outputs from input combinations involving enzyme, reductant and light. Using these hydrogels we demonstrate the first sequential and environmentally stimulated release of multiple cell lines in well-defined combinations from a material. We expect these platforms will find utility in several diverse fields including drug delivery, diagnostics and regenerative medicine.
NASA Astrophysics Data System (ADS)
Kang, Mijeong; Yoo, Seung Min; Gwak, Raekeun; Eom, Gayoung; Kim, Jihwan; Lee, Sang Yup; Kim, Bongsoo
2015-12-01
A sophisticated set of an Au nanowire (NW) stimulator-Au NW detector system is developed for electrical cell stimulation and electrochemical analysis of subsequent exocytosis with very high spatial resolution. Dopamine release from a rat pheochromocytoma cell is more stimulated by a more negative voltage pulse. This system could help to improve the therapeutic efficacy of electrotherapies by providing valuable information on their healing mechanism.A sophisticated set of an Au nanowire (NW) stimulator-Au NW detector system is developed for electrical cell stimulation and electrochemical analysis of subsequent exocytosis with very high spatial resolution. Dopamine release from a rat pheochromocytoma cell is more stimulated by a more negative voltage pulse. This system could help to improve the therapeutic efficacy of electrotherapies by providing valuable information on their healing mechanism. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06021d
Ihara, Yoshiaki; Kanda, Yasunari; Seo, Marie; Watanabe, Yasuhiro; Akamizu, Takashi; Tanaka, Yuji
2012-01-01
TSH receptor antibody (TRAb) is clinically classified into thyroid stimulating antibody (TSAb) and thyroid-stimulation blocking antibody (TSBAb). Although the former is considered to cause Graves' disease (GD), its activity does not necessarily reflect hormone production and goiter size. Moreover, uptake of 99mTcO4(-), the best indicator for GD, is correlated with activity of TSH binding inhibitor immunoglobulin better than activity of TSAb. Because uptake of 99mTcO4(-) reflects thyroid volume, these observations suggest that there exist TRAb with thyrocyte growth stimulating activity (GSA) other than TSAb. In this study, we analyzed GSA of monoclonal TRAb established from patients with GD or idiopathic myxedema (IME). GSA was measured as the degree of FRTL-5 cell growth stimulated by each TRAb. The signaling pathways of the cell growth were pharmacologically analyzed. The cell growth stimulated by TSH was strongly suppressed by protein kinase A (PKA) inhibitor, but was not affected by extracellular signal regulated kinase kinase (MEK) inhibitor. Although TSAb from GD stimulated the cell growth, both inhibitors suppressed it. Surprisingly, the cell growth was also induced by TSBAb from GD and was only suppressed by MEK inhibitor. TSBAb from IME did not have GSA and attenuated the cell growth stimulated by TSH. We concluded that 1; in GD, not only TSAb but some TSBAb could stimulate thyrocyte growth. 2; TSBAb might be classified with respect to their effects on thyrocyte growth; i.e., thyrocyte growth stimulating antibody and thyrocyte growth-stimulation blocking antibody.
Induction of iNOS in human monocytes infected with different Legionella species.
Neumeister, B; Bach, V; Faigle, M; Northoff, H
2001-08-07
The contribution of nitric oxide (NO) radicals to the suppression of intracellular replication of Legionella has been well established in rodents but remained questionable in humans. Considering the fact that human monocytes do not exhibit a high-output NO production, we used sensitive methods such as detection of inducible NO synthase (iNOS) mRNA by reverse transcription-PCR and demonstration of iNOS protein expression by means of flow cytometry and Western blot to compare the levels of iNOS induced by Legionella species which, in accordance to their human prevalence, show different multiplication rates within human monocytic cells. The expression of iNOS in Mono Mac 6 (MM6) cells showed an only moderate inverse correlation to the intracellular replication rate of a given Legionella species in the protein expression assays. However, stimulation of host cells with 1,25-dihydroxyvitamin D(3) to enhance NO production and inhibition of NO production by treatment of host cells with N(G)-methyl-L-arginine were not able to modify the intracellular multiplication of legionellae within MM6 cells. Therefore, NO production does not seem to play a crucial role for the restriction of intracellular replication of Legionella bacteria within human monocytic cells. Rodent models in investigations which are supposed to clarify the involvement of NO radicals in defense mechanisms against Legionella infections in humans are of doubtful significance.
Baltanás, Rodrigo; Bush, Alan; Couto, Alicia; Durrieu, Lucía; Hohmann, Stefan; Colman-Lerner, Alejandro
2013-01-01
Environmental and internal conditions expose cells to a multiplicity of stimuli whose consequences are difficult to predict. Here, we investigate the response to mating pheromone of yeast cells adapted to high osmolarity. Events downstream of pheromone binding involve two mitogen-activated protein kinase (MAPK) cascades: the pheromone response (PR) and the cell-wall integrity response (CWI). Although these MAPK pathways share components with each and a third MAPK pathway, the high osmolarity response (HOG), they are normally only activated by distinct stimuli, a phenomenon called insulation. We found that in cells adapted to high osmolarity, PR activated the HOG pathway in a pheromone- and osmolarity- dependent manner. Activation of HOG by the PR was not due to loss of insulation, but rather a response to a reduction in internal osmolarity, which resulted from an increase in glycerol release caused by the PR. By analyzing single-cell time courses, we found that stimulation of HOG occurred in discrete bursts that coincided with the “shmooing” morphogenetic process. Activation required the polarisome, the cell wall integrity MAPK Slt2, and the aquaglyceroporin Fps1. HOG activation resulted in high glycerol turnover that improved adaptability to rapid changes in osmolarity. Our work shows how a differentiation signal can recruit a second, unrelated sensory pathway to enable responses to yeast to multiple stimuli. PMID:23612707
Sun, Li; Yeh, Judy; Xie, Zhuojun; Kuang, Mei; Damaser, Margot S; Zutshi, Massarat
2016-05-01
We have explored cell-based therapy to aid anal sphincter repair, but a conditioning injury is required to direct stem cells to the site of injury because symptoms usually manifest at a time remote from injury. We aimed to investigate the effect of local electrical stimulation followed by mesenchymal stem cell delivery on anal sphincter regeneration at a time remote from injury. With the use of a rat model, electrical stimulation parameters and cell delivery route were selected based on in vivo cytokine expression and luciferase-labeled cell imaging of the anal sphincter complex. Three weeks after a partial anal sphincter excision, rats were randomly allocated to 4 groups based on different local interventions: no treatment, daily electrical stimulation for 3 days, daily stimulation for 3 days followed by stem cell injection on the third day, and daily electrical stimulation followed by stem cell injection on the first and third days. Histology-assessed anatomy and anal manometry evaluated physiology 4 weeks after intervention. The electrical stimulation parameters that significantly upregulated gene expression of homing cytokines also achieved mesenchymal stem cell retention when injected directly in the anal sphincter complex in comparison with intravascular and intraperitoneal injections. Four weeks after intervention, there was significantly more new muscle in the area of injury and significantly improved anal resting pressure in the group that received daily electrical stimulation for 3 days followed by a single injection of 1 million stem cells on the third day at the site of injury. This was a pilot study and therefore was not powered for functional outcome. In this rat injury model with optimized parameters, electrical stimulation with a single local mesenchymal stem cell injection administered 3 weeks after injury significantly improved both new muscle formation in the area of injury and anal sphincter pressures.
Zhou, Jing; Bethune, Michael T; Malkova, Natalia; Sutherland, Alexander M; Comin-Anduix, Begonya; Su, Yapeng; Baltimore, David; Ribas, Antoni; Heath, James R
2018-01-01
For adoptive cell transfer (ACT) immunotherapy of tumor-reactive T cells, an effective therapeutic outcome depends upon cell dose, cell expansion in vivo through a minimally differentiated phenotype, long term persistence, and strong cytolytic effector function. An incomplete understanding of the biological coupling between T cell expansion, differentiation, and response to stimulation hinders the co-optimization of these factors. We report on a biophysical investigation of how the short-term kinetics of T cell functional activation, through molecular stimulation and cell-cell interactions, competes with phenotype differentiation. T cells receive molecular stimulation for a few minutes to a few hours in bulk culture. Following this priming period, the cells are then analyzed at the transcriptional level, or isolated as single cells, with continuing molecular stimulation, within microchambers for analysis via 11-plex secreted protein assays. We resolve a rapid feedback mechanism, promoted by T cell-T cell contact interactions, which strongly amplifies T cell functional performance while yielding only minimal phenotype differentiation. When tested in mouse models of ACT, optimally primed T cells lead to complete tumor eradication. A similar kinetic process is identified in CD8+ and CD4+ T cells collected from a patient with metastatic melanoma.
Takemiya, Takako; Takeuchi, Chisen; Kawakami, Marumi
2017-12-19
Microsomal prostaglandin synthetase-1 (mPGES-1) is an inducible terminal enzyme that produces prostaglandin E₂ (PGE₂). In our previous study, we investigated the role of mPGES-1 in the inflammation and demyelination observed in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, using mPGES - 1 -deficient ( mPGES-1 -/- ) and wild-type (wt) mice. We found that mPGES-1 facilitated inflammation, demyelination, and paralysis and was induced in vascular endothelial cells and macrophages and microglia around inflammatory foci. Here, we investigated the role of interleukin-1β (IL-1β) in the intercellular mechanism stimulated by mPGES-1 in EAE spinal cords in the presence of inflammation. We found that the area invaded by CD4-positive (CD4⁺) T cells was extensive, and that PGE₂ receptors EP1-4 were more induced in activated CD4⁺ T cells of wt mice than in those of mPGES - 1 -/- mice. Moreover, IL-1β and IL-1 receptor 1 (IL-1r1) were produced by 65% and 48% of CD4⁺ T cells in wt mice and by 44% and 27% of CD4⁺ T cells in mPGES-1 -/- mice. Furthermore, interleukin-17 (IL-17) was released from the activated CD4⁺ T cells. Therefore, mPGES-1 stimulates an intercellular interaction between CD4⁺ T cells by upregulating the autocrine function of IL-1β in activated CD4⁺ T cells, which release IL-17 to facilitate axonal and myelin damage in EAE mice.
The possible mechanism of preterm birth associated with periodontopathic Porphyromonas gingivalis.
Hasegawa-Nakamura, K; Tateishi, F; Nakamura, T; Nakajima, Y; Kawamata, K; Douchi, T; Hatae, M; Noguchi, K
2011-08-01
Previous studies have shown that Porphyromonas gingivalis is found in the amniotic fluid and placentae of pregnant women with some obstetric diseases. However, the biological effects of P. gingivalis on intrauterine tissues remain unclear. The aim of this study was to investigate the presence of P. gingivalis in chorionic tissues from hospitalized high-risk pregnant women, and the effects of P. gingivalis lipopolysaccharide on the production of proinflammatory molecules in human chorion-derived cells. Twenty-three subjects were selected from Japanese hospitalized high-risk pregnant women. The presence of P. gingivalis in chorionic tissues was analyzed by PCR. Cultured chorion-derived cells or Toll-like receptor-2 (TLR-2) gene-silenced chorion-derived cells were stimulated with P. gingivalis lipopolysaccharide. Real-time PCR was performed to evaluate TLR-2 and Toll-like receptor-4 (TLR-4) mRNA expression in the cells. Levels of interleukin-6 and interleukin-8 in culture supernatants of the chorion-derived cells were measured by ELISA. P. gingivalis DNA was detected in chorionic tissues from two women with threatened preterm labor, two with multiple pregnancy and two with placenta previa. Stimulation of chorion-derived cells with P. gingivalis lipopolysaccharide significantly increased TLR-2 mRNA expression, whereas TLR-4 mRNA expression was not changed. P. gingivalis lipopolysaccharide induced interleukin-6 and interleukin-8 production in chorion-derived cells, but the P. gingivalis lipopolysaccharide-induced interleukin-6 and interleukin-8 production was reduced in TLR-2 gene-silenced chorion-derived cells. Our results suggest that P. gingivalis can be detected in chorionic tissues of hospitalized high-risk pregnant women, and that P. gingivalis lipopolysaccharide induces interleukin-6 and interleukin-8 production via TLR-2 in chorion-derived cells. © 2011 John Wiley & Sons A/S.
Martínez-Álvarez, José A.; Pérez-García, Luis A.; Mellado-Mojica, Erika; López, Mercedes G.; Martínez-Duncker, Iván; Lópes-Bezerra, Leila M.; Mora-Montes, Héctor M.
2017-01-01
Sporothrix schenckii sensu stricto and S. brasiliensis are usually associated to sporotrichosis, a subcutaneous mycosis worldwide distributed. Comparative analyses between these two species indicate they contain genetic and physiological differences that are likely to impact the interaction with host cells. Here, we study the composition of the cell wall from conidia, yeast-like cells and germlings of both species and found they contained the same sugar composition. The carbohydrate proportion in the S. schenckii sensu stricto wall was similar across the three cell morphologies, with exception in the chitin content, which was significantly different in the three morphologies. The cell wall from germlings showed lower rhamnose content and higher glucose levels than other cell morphologies. In S. brasiliensis, the wall sugars were constant in the three morphologies, but glucose was lower in yeast-like cells. In S. schenckii sensu stricto cells most of chitin and β1,3-glucan were underneath wall components, but in S. brasiliensis germlings, chitin was exposed at the cell surface, and β1,3-glucan was found in the outer part of the conidia wall. We also compared the ability of these cells to stimulate cytokine production by human peripheral blood mononuclear cells. The three S. schenckii sensu stricto morphologies stimulated increased levels of pro-inflammatory cytokines, when compared to S. brasiliensis cells; while the latter, with exception of conidia, stimulated higher IL-10 levels. Dectin-1 was a key receptor for cytokine production during stimulation with the three morphologies of S. schenckii sensu stricto, but dispensable for cytokine production stimulated by S. brasiliensis germlings. TLR2 and TLR4 were also involved in the sensing of Sporothrix cells, with a major role for the former during cytokine stimulation. Mannose receptor had a minor contribution during cytokine stimulation by S. schenckii sensu stricto yeast-like cells and germlings, but S. schenckii sensu stricto conidia and S. brasiliensis yeast-like cells stimulated pro-inflammatory cytokines via this receptor. In conclusion, S. brasiliensis and S. schenckii sensu stricto, have similar wall composition, which undergoes changes depending on the cell morphology. These differences in the cell wall composition, are likely to influence the contribution of immune receptors during cytokine stimulation by human monocytes. PMID:28539922
Simultaneous recording of mouse retinal ganglion cells during epiretinal or subretinal stimulation
Sim, S.L.; Szalewski, R.J.; Johnson, L.J.; Akah, L.E.; Shoemaker, L.E.; Thoreson, W.B.; Margalit, E.
2015-01-01
We compared response patterns and electrical receptive fields (ERF) of retinal ganglion cells (RGCs) during epiretinal and subretinal electrical stimulation of isolated mouse retina. Retinas were stimulated with an array of 3200 independently controllable electrodes. Four response patterns were observed: a burst of activity immediately after stimulation (Type I cells, Vision Research (2008), 48, 1562–1568), delayed bursts beginning >25 ms after stimulation (Type II), a combination of both (Type III), and inhibition of ongoing spike activity. Type I responses were produced more often by epiretinal than subretinal stimulation whereas delayed and inhibitory responses were evoked more frequently by subretinal stimulation. Response latencies were significantly shorter with epiretinal than subretinal stimulation. These data suggest that subretinal stimulation is more effective at activating intraretinal circuits than epiretinal stimulation. There was no significant difference in charge threshold between subretinal and epiretinal configurations. ERFs were defined by the stimulating array surface area that successfully stimulated spikes in an RGC. ERFs were complex in shape, similar to receptive fields mapped with light. ERF areas were significantly smaller with subretinal than epiretinal stimulation. This may reflect the greater distance between stimulating electrodes and RGCs in the subretinal configuration. ERFs for immediate and delayed responses mapped within the same Type III cells differed in shape and size, consistent with different sites and mechanisms for generating these two response types. PMID:24863584
Duinslaeger, L; Verbeken, G; Reper, P; Delaey, B; Vanhalle, S; Vanderkelen, A
1996-07-01
For several years, grafting with allogeneic keratinocyte cultures has been used successfully as a wound-healing therapy both by us and by many other groups. Since their postgrafting survival time is limited, the effect of these cultures is generally explained by the production of wound repair-stimulating factors that promote proliferation and migration of resident cells. In this study we show that lysates of cultured keratinocytes contain mitogenic activity for keratinocytes, endothelial cells, and fibroblasts. In addition, the lysates inhibit the contraction of collagen gels by human skin fibroblasts. On the basis of these observations and of in vivo data obtained by ourselves and others, we have evaluated the effect of total keratinocyte lysates on the healing of meshed skin autograft-covered burn wounds. Twenty burn wounds were tangentially excised and autografted with one to three meshed conventional skin transplants. An area treated with a gel containing lysated keratinocyte cultures was compared with an area treated with placebo-gel in terms of epithelialization on day 5. In six patients an additional fresh keratinocyte alloculture was applied as a positive control. Results indicate that the newly formed epithelium (difference between percentage of epithelialization on day 5 and on day 0) was 31.1 percent in the treated area compared with 16.5 percent in the placebo area. This result is comparable with the value obtained by treatment with fresh keratinocyte allocultures, namely, 33.8 percent. These figures show a twofold stimulation of epithelialization.
Quantification of multiple gene expression in individual cells.
Peixoto, António; Monteiro, Marta; Rocha, Benedita; Veiga-Fernandes, Henrique
2004-10-01
Quantitative gene expression analysis aims to define the gene expression patterns determining cell behavior. So far, these assessments can only be performed at the population level. Therefore, they determine the average gene expression within a population, overlooking possible cell-to-cell heterogeneity that could lead to different cell behaviors/cell fates. Understanding individual cell behavior requires multiple gene expression analyses of single cells, and may be fundamental for the understanding of all types of biological events and/or differentiation processes. We here describe a new reverse transcription-polymerase chain reaction (RT-PCR) approach allowing the simultaneous quantification of the expression of 20 genes in the same single cell. This method has broad application, in different species and any type of gene combination. RT efficiency is evaluated. Uniform and maximized amplification conditions for all genes are provided. Abundance relationships are maintained, allowing the precise quantification of the absolute number of mRNA molecules per cell, ranging from 2 to 1.28 x 10(9) for each individual gene. We evaluated the impact of this approach on functional genetic read-outs by studying an apparently homogeneous population (monoclonal T cells recovered 4 d after antigen stimulation), using either this method or conventional real-time RT-PCR. Single-cell studies revealed considerable cell-to-cell variation: All T cells did not express all individual genes. Gene coexpression patterns were very heterogeneous. mRNA copy numbers varied between different transcripts and in different cells. As a consequence, this single-cell assay introduces new and fundamental information regarding functional genomic read-outs. By comparison, we also show that conventional quantitative assays determining population averages supply insufficient information, and may even be highly misleading.
Frequency-dependent learning achieved using semiconducting polymer/electrolyte composite cells
NASA Astrophysics Data System (ADS)
Dong, W. S.; Zeng, F.; Lu, S. H.; Liu, A.; Li, X. J.; Pan, F.
2015-10-01
Frequency-dependent learning has been achieved using semiconducting polymer/electrolyte composite cells. The cells composed of polymer/electrolyte double layers realized the conventional spike-rate-dependent plasticity (SRDP) learning model. These cells responded to depression upon low-frequency stimulation and to potentiation upon high-frequency stimulation and presented long-term memory. The transition threshold θm from depression to potentiation varied depending on the previous stimulations. A nanostructure resembling a bio-synapse in its transport passages was demonstrated and a random channel model was proposed to describe the ionic kinetics at the polymer/electrolyte interface during and after stimulations with various frequencies, accounting for the observed SRDP.Frequency-dependent learning has been achieved using semiconducting polymer/electrolyte composite cells. The cells composed of polymer/electrolyte double layers realized the conventional spike-rate-dependent plasticity (SRDP) learning model. These cells responded to depression upon low-frequency stimulation and to potentiation upon high-frequency stimulation and presented long-term memory. The transition threshold θm from depression to potentiation varied depending on the previous stimulations. A nanostructure resembling a bio-synapse in its transport passages was demonstrated and a random channel model was proposed to describe the ionic kinetics at the polymer/electrolyte interface during and after stimulations with various frequencies, accounting for the observed SRDP. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02891d
Nishihara, S; Seki, K; Ikigai, H; Masuda, S
1988-01-01
When mouse polymorphonuclear leukocytes (PMNs) sensitized with rabbit antibody to mouse Ehrlich ascites tumor cells were stimulated by Staphylococcus aureus Cowan I cells, a conspicuous luminol-dependent chemiluminescence was observed in the absence of opsonin. The profile of the chemiluminescence (CL) response evoked by staphylococcal cells from antibody-sensitized PMNs had two peaks. An initial peak, observed within 1 min after stimulation, was sharp and high and a second peak, observed about 5 min after stimulation, was low and extended. The CL response of antibody-sensitized PMNs stimulated by S. aureus Cowan I cells was dose-dependently blocked by preincubation with soluble SpA. Cells of a mutant derived from S. aureus Cowan I strain with trace amounts of cell-bound SpA failed to stimulate the antibody-sensitized PMNs to generate the CL response. The antibody-sensitized PMNs were found to phagocytize SpA-bearing S. aureus cells even in the absence of opsonic serum. These results suggest that the observation presented here might provide a useful tool for the investigation of CL response of PMNs.
HANDY, Jeffrey A.; FU, Ping P.; KUMAR, Pradeep; MELLS, Jamie E.; SHARMA, Shvetank; SAXENA, Neeraj K.; ANANIA, Frank A.
2011-01-01
SYNOPSIS Adiponectin is protective against hepatic fibrosis, while leptin promotes fibrosis. In hepatic stellate cells (HSCs), leptin signals via a Janus Kinase 2/Signal Transducers and Activators of Transcription 3 (Jak2/Stat3) pathway, producing effects that enhance extracellular matrix deposition. Suppressors of Cytokine Signaling-3 (SOCS-3) and Protein Tyrosine Phosphatase-1B (PTP1B) are both negative regulators of Jak/Stat signaling, and recent studies demonstrated a role for adiponectin in regulating SOCS-3 expression. In this study we investigated mechanisms whereby adiponectin dampens leptin signaling and prevents excess ECM production. We treated culture-activated rat HSCs with recombinant adiponectin, leptin, both or neither, and also treated adiponectin knockout (Ad−/−) and wild-type mice with leptin and/or carbon tetrachloride (CCl4), or saline. We analyzed Jak2 and Ob-Rb phosphorylation, and PTP1B expression and activity. We also explored potential mechanisms through which adiponectin regulates SOCS-3/Ob-Rb association. Adiponectin inhibited leptin-stimulated Jak2 activation and Ob-Rb phosphorylation in HSCs, while both were increased in Ad−/− mice. Adiponectin stimulated PTP1B expression and activity, in vitro, while PTP1B expression was lower in Ad−/−mice than in wild-type mice. Adiponectin also promoted SOCS-3/Ob-R association, and blocked leptin-stimulated formation of extracellular TIMP-1/MMP-1 complexes, in vitro. These data suggest two novel mechanisms whereby adiponectin inhibits hepatic fibrosis: by promoting binding of SOCS-3 to Ob-Rb, and stimulating PTP1B expression and activity, thus inhibiting Jak2-Stat3 signaling at multiple points. PMID:21846328
Handy, Jeffrey A; Fu, Ping P; Kumar, Pradeep; Mells, Jamie E; Sharma, Shvetank; Saxena, Neeraj K; Anania, Frank A
2011-12-15
Adiponectin is protective against hepatic fibrosis, whereas leptin promotes fibrosis. In HSCs (hepatic stellate cells), leptin signals via a JAK2 (Janus kinase 2)/STAT3 (signal transducer and activator of transcription 3) pathway, producing effects that enhance ECM (extracellular matrix) deposition. SOCS-3 (suppressor of cytokine signalling-3) and PTP1B (protein tyrosine phosphatase 1B) are both negative regulators of JAK/STAT signalling, and recent studies have demonstrated a role for adiponectin in regulating SOCS-3 expression. In the present study we investigate mechanisms whereby adiponectin dampens leptin signalling and prevents excess ECM production. We treated culture-activated rat HSCs with recombinant adiponectin, leptin, both or neither, and also treated adiponectin knockout (Ad-/-) and wild-type mice with leptin and/or carbon tetrachloride (CCl4) or saline. We analyse JAK2 and Ob-Rb (long form of the leptin receptor) phosphorylation, and PTP1B expression and activity. We also explore potential mechanisms through which adiponectin regulates SOCS-3-Ob-Rb association. Adiponectin inhibits leptin-stimulated JAK2 activation and Ob-Rb phosphorylation in HSCs, whereas both were increased in Ad-/- mice. Adiponectin stimulates PTP1B expression and activity in vitro, whereas PTP1B expression was lower in Ad-/-mice than in wild-type mice. Adiponectin also promotes SOCS-3-Ob-R association and blocks leptin-stimulated formation of extracellular TIMP-1 (tissue inhibitor of metalloproteinases-1)-MMP-1 (matrix metalloproteinase-1) complexes in vitro. These results suggest two novel mechanisms whereby adiponectin inhibits hepatic fibrosis: (i) by promoting binding of SOCS-3 to Ob-Rb, and (ii) by stimulating PTP1B expression and activity, thus inhibiting JAK2/STAT3 signalling at multiple points.
Optical control of GPR40 signalling in pancreatic β-cells.
Frank, James Allen; Yushchenko, Dmytro A; Fine, Nicholas H F; Duca, Margherita; Citir, Mevlut; Broichhagen, Johannes; Hodson, David J; Schultz, Carsten; Trauner, Dirk
2017-11-01
Fatty acids activate GPR40 and K + channels to modulate β-cell function. Herein, we describe the design and synthesis of FAAzo-10 , a light-controllable GPR40 agonist based on Gw-9508. FAAzo-10 is a potent GPR40 agonist in the trans -configuration and can be inactivated on isomerization to cis with UV-A light. Irradiation with blue light reverses this effect, allowing FAAzo-10 activity to be cycled ON and OFF with a high degree of spatiotemporal precision. In dissociated primary mouse β-cells, FAAzo-10 also inactivates voltage-activated and ATP-sensitive K + channels, and allows us to control glucose-stimulated Ca 2+ oscillations in whole islets with light. As such, FAAzo-10 is a useful tool to study the complex effects, with high specificity, which FA-derivatives such as Gw-9508 exert at multiple targets in mouse β-cells.
Enhanced Cultivation Of Stimulated Murine B Cells
NASA Technical Reports Server (NTRS)
Sammons, David W.
1994-01-01
Method of in vitro cultivation of large numbers of stimulated murine B lymphocytes. Cells electrofused with other cells to produce hybridomas and monoclonal antibodies. Offers several advantages: polyclonally stimulated B-cell blasts cultivated for as long as 14 days, hybridomas created throughout culture period, yield of hybridomas increases during cultivation, and possible to expand polyclonally in vitro number of B cells specific for antigenic determinants first recognized in vivo.
2014-07-01
and J.W. Young, Human dendritic cells : potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol, 2005. 175(3): p...by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...5a. CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine
NASA Technical Reports Server (NTRS)
Young, R. B.; Bridge, K. Y.; Strietzel, C. J.
2000-01-01
Expression of the beta-adrenergic receptor (betaAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the betaAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the betaAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the betaAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.
NASA Technical Reports Server (NTRS)
Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.
2000-01-01
Expression of the beta-adrenergic receptor (PAR) and its coupling to Adenosine 3'5' Cyclic Monophosphate (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the PAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture, were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the PAR population was not significantly affected by electrical stimulation; however, the ability, of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the PAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.
Bähr, Andrea; Käser, Tobias; Kemter, Elisabeth; Gerner, Wilhelm; Kurome, Mayuko; Baars, Wiebke; Herbach, Nadja; Witter, Kirsti; Wünsch, Annegret; Talker, Stephanie C; Kessler, Barbara; Nagashima, Hiroshi; Saalmüller, Armin; Schwinzer, Reinhard; Wolf, Eckhard; Klymiuk, Nikolai
2016-01-01
We have successfully established and characterized a genetically modified pig line with ubiquitous expression of LEA29Y, a human CTLA4-Ig derivate. LEA29Y binds human B7.1/CD80 and B7.2/CD86 with high affinity and is thus a potent inhibitor of T cell co-stimulation via this pathway. We have characterized the expression pattern and the biological function of the transgene as well as its impact on the porcine immune system and have evaluated the potential of these transgenic pigs to propagate via assisted breeding methods. The analysis of LEA29Y expression in serum and multiple organs of CAG-LEA transgenic pigs revealed that these animals produce a biologically active transgenic product at a considerable level. They present with an immune system affected by transgene expression, but can be maintained until sexual maturity and propagated by assisted reproduction techniques. Based on previous experience with pancreatic islets expressing LEA29Y, tissues from CAG-LEA29Y transgenic pigs should be protected against rejection by human T cells. Furthermore, their immune-compromised phenotype makes CAG-LEA29Y transgenic pigs an interesting large animal model for testing human cell therapies and will provide an important tool for further clarifying the LEA29Y mode of action.