Sample records for multiple climate change

  1. Accounting for multiple climate components when estimating climate change exposure and velocity

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (<1·5% overlap) across most of the global land surface and that exposure is likely to be highest in areas with low historical climate variation. Last, we show that accounting for changes in the variation and correlation between multiple weather variables can dramatically affect velocity estimates; mean velocity estimates in the continental United States were between 3·1 and 19·0 km yr−1when estimated using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  2. Multiple dimensions of climate change and their implications for biodiversity.

    PubMed

    Garcia, Raquel A; Cabeza, Mar; Rahbek, Carsten; Araújo, Miguel B

    2014-05-02

    The 21st century is projected to witness unprecedented climatic changes, with greater warming often reported for high latitudes. Yet, climate change can be measured in a variety of ways, reflecting distinct dimensions of change with unequal spatial patterns across the world. Polar climates are projected to not only warm, but also to shrink in area. By contrast, today's hot and arid climates are expected to expand worldwide and to reach climate states with no current analog. Although rarely appreciated in combination, these multiple dimensions of change convey complementary information. We review existing climate change metrics and discuss how they relate to threats and opportunities for biodiversity. Interpreting climate change metrics is particularly useful for unknown or poorly described species, which represent most of Earth's biodiversity.

  3. Climate change; Confronting the global experiment

    Treesearch

    Constance I. Millar

    2006-01-01

    Earth’s natural climate system is characterized by continually changing climates, with climate regimes that oscillate quasi-cyclically at multiple and nested scales from annual to multi-millennial, and commonly change abruptly. Under naturally changing climates, plant species track changes at all scales in individualistic manner, with plant communities...

  4. Rapid emergence of climate change in environmental drivers of marine ecosystems.

    PubMed

    Henson, Stephanie A; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L

    2017-03-07

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a 'business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike.

  5. Rapid emergence of climate change in environmental drivers of marine ecosystems

    PubMed Central

    Henson, Stephanie A.; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G.; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L.

    2017-01-01

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a ‘business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike. PMID:28267144

  6. Rapid emergence of climate change in environmental drivers of marine ecosystems

    NASA Astrophysics Data System (ADS)

    Henson, Stephanie A.; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G.; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L.

    2017-03-01

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a `business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike.

  7. Climate change impact assessments on the water resources of India under extensive human interventions.

    PubMed

    Madhusoodhanan, C G; Sreeja, K G; Eldho, T I

    2016-10-01

    Climate change is a major concern in the twenty-first century and its assessments are associated with multiple uncertainties, exacerbated and confounded in the regions where human interventions are prevalent. The present study explores the challenges for climate change impact assessment on the water resources of India, one of the world's largest human-modified systems. The extensive human interventions in the Energy-Land-Water-Climate (ELWC) nexus significantly impact the water resources of the country. The direct human interventions in the landscape may surpass/amplify/mask the impacts of climate change and in the process also affect climate change itself. Uncertainties in climate and resource assessments add to the challenge. Formulating coherent resource and climate change policies in India would therefore require an integrated approach that would assess the multiple interlinkages in the ELWC nexus and distinguish the impacts of global climate change from that of regional human interventions. Concerted research efforts are also needed to incorporate the prominent linkages in the ELWC nexus in climate/earth system modelling.

  8. Beyond Adapting to Climate Change: Embedding Adaptation in Responses to Multiple Threats and Stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbanks, Thomas J; Kates, Dr. Robert W.

    2010-01-01

    Climate change impacts are already being experienced in every region of the United States and every part of the world most severely in Arctic regions and adaptation is needed now. Although climate change adaptation research is still in its infancy, significant adaptation planning in the United States has already begun in a number of localities. This article seeks to broaden the adaptation effort by integrating it with broader frameworks of hazards research, sustainability science, and community and regional resilience. To extend the range of experience, we draw from ongoing case studies in the Southeastern United States and the environmental historymore » of New Orleans to consider the multiple threats and stresses that all communities and regions experience. Embedding climate adaptation in responses to multiple threats and stresses helps us to understand climate change impacts, themselves often products of multiple stresses, to achieve community acceptance of needed adaptations as co-benefits of addressing multiple threats, and to mainstream the process of climate adaptation through the larger envelope of social relationships, communication channels, and broad-based awareness of needs for risk management that accompany community resilience.« less

  9. Stability of the Martian climate system under the seasonal change condition of solar radiation

    NASA Astrophysics Data System (ADS)

    Nakamura, Takasumi; Tajika, Eiichi

    2002-11-01

    Previous studies on stability of the Martian climate system used essentially zero-dimensional energy balance climate models (EBMs) under the condition of annual mean solar radiation income. However, areal extent of polar ice caps should affect the Martian climate through the energy balance and the CO2 budget, and results under the seasonal change condition of solar radiation will be different from those under the annual mean condition. We therefore construct a one-dimensional energy balance climate model with CO2-dependent outgoing radiation, seasonal changes of solar radiation income, changes of areal extent of CO2 ice caps, and adsorption of CO2 by regolith. We have investigated behaviors of the Martian climate system and, in particular, examined the effect of the seasonal changes of solar radiation by comparing the results of previous studies under the condition of annual mean solar radiation. One of the major discrepancies between them is the condition for multiple solutions of the Martian climate system. Although the Martian climate system always has multiple solutions under the annual mean condition, under the seasonal change condition, existence of multiple solutions depends on the present amounts of CO2 in the ice caps and the regolith.

  10. Changing feedbacks in the climate-biosphere system

    Treesearch

    F. Stuart Chapin; James T. Randerson; A. David McGuire; Jonathan A. Foley; Christopher B. Field

    2008-01-01

    Ecosystems influence climate through multiple pathways, primarily by changing the energy, water, and greenhouse-gas balance of the atmosphere. Consequently, efforts to mitigate climate change through modification of one pathway, as with carbon in the Kyoto Protocol, only partially address the issue of ecosystem-climate interactions. For example, the cooling of climate...

  11. Global Climate Change Adaptation Priorities for Biodiversity and Food Security

    PubMed Central

    Hannah, Lee; Ikegami, Makihiko; Hole, David G.; Seo, Changwan; Butchart, Stuart H. M.; Peterson, A. Townsend; Roehrdanz, Patrick R.

    2013-01-01

    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services. PMID:23991125

  12. Global climate change adaptation priorities for biodiversity and food security.

    PubMed

    Hannah, Lee; Ikegami, Makihiko; Hole, David G; Seo, Changwan; Butchart, Stuart H M; Peterson, A Townsend; Roehrdanz, Patrick R

    2013-01-01

    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services.

  13. Assessing Climate Change Education on a Midwestern College Campus

    ERIC Educational Resources Information Center

    Wodika, Alicia; Schoof, Justin

    2017-01-01

    Multiple disciplines address climate change; however, despite statements of consensus from professional societies, it is unclear whether the correct information is being conveyed to students. The purpose of this study was to survey student's (n = 264) knowledge, attitudes, and behaviors behind climate science and climate change related principles.…

  14. Unraveling multiple changes in complex climate time series using Bayesian inference

    NASA Astrophysics Data System (ADS)

    Berner, Nadine; Trauth, Martin H.; Holschneider, Matthias

    2016-04-01

    Change points in time series are perceived as heterogeneities in the statistical or dynamical characteristics of observations. Unraveling such transitions yields essential information for the understanding of the observed system. The precise detection and basic characterization of underlying changes is therefore of particular importance in environmental sciences. We present a kernel-based Bayesian inference approach to investigate direct as well as indirect climate observations for multiple generic transition events. In order to develop a diagnostic approach designed to capture a variety of natural processes, the basic statistical features of central tendency and dispersion are used to locally approximate a complex time series by a generic transition model. A Bayesian inversion approach is developed to robustly infer on the location and the generic patterns of such a transition. To systematically investigate time series for multiple changes occurring at different temporal scales, the Bayesian inversion is extended to a kernel-based inference approach. By introducing basic kernel measures, the kernel inference results are composed into a proxy probability to a posterior distribution of multiple transitions. Thus, based on a generic transition model a probability expression is derived that is capable to indicate multiple changes within a complex time series. We discuss the method's performance by investigating direct and indirect climate observations. The approach is applied to environmental time series (about 100 a), from the weather station in Tuscaloosa, Alabama, and confirms documented instrumentation changes. Moreover, the approach is used to investigate a set of complex terrigenous dust records from the ODP sites 659, 721/722 and 967 interpreted as climate indicators of the African region of the Plio-Pleistocene period (about 5 Ma). The detailed inference unravels multiple transitions underlying the indirect climate observations coinciding with established global climate events.

  15. The Psychological Impacts of Global Climate Change

    ERIC Educational Resources Information Center

    Doherty, Thomas J.; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological…

  16. U.S. Forest Service Leads Climate Change Adaptation in the Western United States

    NASA Astrophysics Data System (ADS)

    Halofsky, J.; Peterson, D. L.

    2014-12-01

    Effective climate change engagement on public lands is characterized by (1) an enduring science-management partnership, (2) involvement of key stakeholders, (3) consideration of broad landscapes with multiple landowners, (4) science-based, peer-reviewed assessments of sensitivity of natural resources to climate change, (5) adaptation strategies and tactics developed by resource managers, (6) leadership and a workforce motivated to implement climate-smart practices in resource planning and project management. Using this approach, the U.S. Forest Service, in partnership with other organizations, has developed climate change vulnerability assessments and adaptation plans for diverse ecosystems and multiple resources in national forests and other lands in the western United States, although implementation (step 6) has been slow in some cases. Hundreds of meetings, strategies, plans, and panels have focused on climate change adaptation over the past decade, but only direct engagement between scientists and resource managers (less research, less planning, more action) has resulted in substantive outcomes and increased organizational capacity for climate-smart management.

  17. Community shifts under climate change: mechanisms at multiple scales.

    PubMed

    Gornish, Elise S; Tylianakis, Jason M

    2013-07-01

    Processes that drive ecological dynamics differ across spatial scales. Therefore, the pathways through which plant communities and plant-insect relationships respond to changing environmental conditions are also expected to be scale-dependent. Furthermore, the processes that affect individual species or interactions at single sites may differ from those affecting communities across multiple sites. We reviewed and synthesized peer-reviewed literature to identify patterns in biotic or abiotic pathways underpinning changes in the composition and diversity of plant communities under three components of climate change (increasing temperature, CO2, and changes in precipitation) and how these differ across spatial scales. We also explored how these changes to plants affect plant-insect interactions. The relative frequency of biotic vs. abiotic pathways of climate effects at larger spatial scales often differ from those at smaller scales. Local-scale studies show variable responses to climate drivers, often driven by biotic factors. However, larger scale studies identify changes to species composition and/or reduced diversity as a result of abiotic factors. Differing pathways of climate effects can result from different responses of multiple species, habitat effects, and differing effects of invasions at local vs. regional to global scales. Plant community changes can affect higher trophic levels as a result of spatial or phenological mismatch, foliar quality changes, and plant abundance changes, though studies on plant-insect interactions at larger scales are rare. Climate-induced changes to plant communities will have considerable effects on community-scale trophic exchanges, which may differ from the responses of individual species or pairwise interactions.

  18. High skill in low-frequency climate response through fluctuation dissipation theorems despite structural instability.

    PubMed

    Majda, Andrew J; Abramov, Rafail; Gershgorin, Boris

    2010-01-12

    Climate change science focuses on predicting the coarse-grained, planetary-scale, longtime changes in the climate system due to either changes in external forcing or internal variability, such as the impact of increased carbon dioxide. The predictions of climate change science are carried out through comprehensive, computational atmospheric, and oceanic simulation models, which necessarily parameterize physical features such as clouds, sea ice cover, etc. Recently, it has been suggested that there is irreducible imprecision in such climate models that manifests itself as structural instability in climate statistics and which can significantly hamper the skill of computer models for climate change. A systematic approach to deal with this irreducible imprecision is advocated through algorithms based on the Fluctuation Dissipation Theorem (FDT). There are important practical and computational advantages for climate change science when a skillful FDT algorithm is established. The FDT response operator can be utilized directly for multiple climate change scenarios, multiple changes in forcing, and other parameters, such as damping and inverse modelling directly without the need of running the complex climate model in each individual case. The high skill of FDT in predicting climate change, despite structural instability, is developed in an unambiguous fashion using mathematical theory as guidelines in three different test models: a generic class of analytical models mimicking the dynamical core of the computer climate models, reduced stochastic models for low-frequency variability, and models with a significant new type of irreducible imprecision involving many fast, unstable modes.

  19. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    PubMed

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Vulnerability of cattle production to climate change on U.S. rangelands

    Treesearch

    Matt C. Reeves; Karen E. Bagne

    2016-01-01

    We examined multiple climate change effects on cattle production for U.S. rangelands to estimate relative change and identify sources of vulnerability among seven regions. Climate change effects to 2100 were projected from published models for four elements: forage quantity, vegetation type trajectory, heat stress, and forage variability. Departure of projections from...

  1. Combined influence of multiple climatic factors on the incidence of bacterial foodborne diseases.

    PubMed

    Park, Myoung Su; Park, Ki Hwan; Bahk, Gyung Jin

    2018-01-01

    Information regarding the relationship between the incidence of foodborne diseases (FBD) and climatic factors is useful in designing preventive strategies for FBD based on anticipated future climate change. To better predict the effect of climate change on foodborne pathogens, the present study investigated the combined influence of multiple climatic factors on bacterial FBD incidence in South Korea. During 2011-2015, the relationships between 8 climatic factors and the incidences of 13 bacterial FBD, were determined based on inpatient stays, on a monthly basis using the Pearson correlation analyses, multicollinearity tests, principal component analysis (PCA), and the seasonal autoregressive integrated moving average (SARIMA) modeling. Of the 8 climatic variables, the combination of temperature, relative humidity, precipitation, insolation, and cloudiness was significantly associated with salmonellosis (P<0.01), vibriosis (P<0.05), and enterohemorrhagic Escherichia coli O157:H7 infection (P<0.01). The combined effects of snowfall, wind speed, duration of sunshine, and cloudiness were not significant for these 3 FBD. Other FBD, including campylobacteriosis, were not significantly associated with any combination of climatic factors. These findings indicate that the relationships between multiple climatic factors and bacterial FBD incidence can be valuable for the development of prediction models for future patterns of diseases in response to changes in climate. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. How will climate change affect watershed mercury export in a representative Coastal Plain watershed?

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Knightes, C. D.; Conrads, P. A.; Feaster, T.; Davis, G. M.; Benedict, S. T.; Bradley, P. M.

    2012-12-01

    Future climate change is expected to drive variations in watershed hydrological processes and water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such shifts in climatic conditions will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern. We simulate the responses of watershed hydrological and total Hg (HgT) fluxes and concentrations to a unified set of past and future climate change projections in a Coastal Plain basin using multiple watershed models. We use two statistically downscaled global precipitation and temperature models, ECHO, a hybrid of the ECHAM4 and HOPE-G models, and the Community Climate System Model (CCSM3) across two thirty-year simulations (1980 to 2010 and 2040 to 2070). We apply three watershed models to quantify and bracket potential changes in hydrologic and HgT fluxes, including the Visualizing Ecosystems for Land Management Assessment Model for Hg (VELMA-Hg), the Grid Based Mercury Model (GBMM), and TOPLOAD, a water quality constituent model linked to TOPMODEL hydrological simulations. We estimate a decrease in average annual HgT fluxes in response to climate change using the ECHO projections and an increase with the CCSM3 projections in the study watershed. Average monthly HgT fluxes increase using both climate change projections between in the late spring (March through May), when HgT concentrations and flow are high. Results suggest that hydrological transport associated with changes in precipitation and temperature is the primary mechanism driving HgT flux response to climate change. Our multiple model/multiple projection approach allows us to bracket the relative response of HgT fluxes to climate change, thereby illustrating the uncertainty associated with the projections. In addition, our approach allows us to examine potential variations in climate change-driven water and HgT export based on different conceptualizations of watershed HgT dynamics and the representative mathematical structures underpinning existing watershed Hg models.

  3. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment.

    PubMed

    Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Sperotto, Anna; Glade, Thomas; Marcomini, Antonio

    2016-03-01

    This paper presents a review of existing multi-risk assessment concepts and tools applied by organisations and projects providing the basis for the development of a multi-risk methodology in a climate change perspective. Relevant initiatives were developed for the assessment of multiple natural hazards (e.g. floods, storm surges, droughts) affecting the same area in a defined timeframe (e.g. year, season, decade). Major research efforts were focused on the identification and aggregation of multiple hazard types (e.g. independent, correlated, cascading hazards) by means of quantitative and semi-quantitative approaches. Moreover, several methodologies aim to assess the vulnerability of multiple targets to specific natural hazards by means of vulnerability functions and indicators at the regional and local scale. The overall results of the review show that multi-risk approaches do not consider the effects of climate change and mostly rely on the analysis of static vulnerability (i.e. no time-dependent vulnerabilities, no changes among exposed elements). A relevant challenge is therefore to develop comprehensive formal approaches for the assessment of different climate-induced hazards and risks, including dynamic exposure and vulnerability. This requires the selection and aggregation of suitable hazard and vulnerability metrics to make a synthesis of information about multiple climate impacts, the spatial analysis and ranking of risks, including their visualization and communication to end-users. To face these issues, climate impact assessors should develop cross-sectorial collaborations among different expertise (e.g. modellers, natural scientists, economists) integrating information on climate change scenarios with sectorial climate impact assessment, towards the development of a comprehensive multi-risk assessment process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Multiple-scale proximal sensor and remote imagery technology for sustaining agricultural productivity during climate change

    USDA-ARS?s Scientific Manuscript database

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California’s San Joaquin Valley. Climate change has impacted water availability, which subsequently has impacted so...

  5. Longitudinal thermal heterogeneity in rivers and refugia for coldwater species: effects of scale and climate change

    EPA Science Inventory

    Climate-change driven increases in water temperature pose multiple challenges for aquatic organisms. Predictions of climate change impacts to biota typically do not account for fine-grained spatiotemporal patterns of stream networks; yet patches of cooler water within rivers c...

  6. Climate and Land-Cover Change Impacts on Stream Flow in the Southwest U.S.

    EPA Science Inventory

    Vegetation change in arid and semi-arid climatic regions of the American West are a primary concern in sustaining key ecosystem services such as clean, reliable water sources for multiple uses. Land cover and climate change impacts on stream flow were investigated in a southeast ...

  7. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective.

    PubMed

    Urban, Mark C; De Meester, Luc; Vellend, Mark; Stoks, Robby; Vanoverbeke, Joost

    2012-02-01

    We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The 'evolving metacommunity' framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats.

  8. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective

    PubMed Central

    Urban, Mark C; De Meester, Luc; Vellend, Mark; Stoks, Robby; Vanoverbeke, Joost

    2012-01-01

    We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The ‘evolving metacommunity’ framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats. PMID:25568038

  9. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective.

    PubMed

    Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio

    2017-11-01

    The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The effects of climate downscaling technique and observational data set on modeled ecological responses

    Treesearch

    Afshin Pourmokhtarian; Charles T. Driscoll; John L. Campbell; Katharine Hayhoe; Anne M. K. Stoner

    2016-01-01

    Assessments of future climate change impacts on ecosystems typically rely on multiple climate model projections, but often utilize only one downscaling approach trained on one set of observations. Here, we explore the extent to which modeled biogeochemical responses to changing climate are affected by the selection of the climate downscaling method and training...

  11. Managing United States public lands in response to climate change: a view from the ground up.

    PubMed

    Ellenwood, Mikaela S; Dilling, Lisa; Milford, Jana B

    2012-05-01

    Federal land managers are faced with the task of balancing multiple uses and goals when making decisions about land use and the activities that occur on public lands. Though climate change is now well recognized by federal agencies and their local land and resource managers, it is not yet clear how issues related to climate change will be incorporated into on-the-ground decision making within the framework of multiple use objectives. We conducted a case study of a federal land management agency field office, the San Juan Public Lands Center in Durango, CO, U.S.A., to understand from their perspective how decisions are currently made, and how climate change and carbon management are being factored into decision making. We evaluated three major management sectors in which climate change or carbon management may intersect other use goals: forests, biofuels, and grazing. While land managers are aware of climate change and eager to understand more about how it might affect land resources, the incorporation of climate change considerations into everyday decision making is currently quite limited. Climate change is therefore on the radar screen, but remains a lower priority than other issues. To assist the office in making decisions that are based on sound scientific information, further research is needed into how management activities influence carbon storage and resilience of the landscape under climate change.

  12. Incremental dynamical downscaling for probabilistic analysis based on multiple GCM projections

    NASA Astrophysics Data System (ADS)

    Wakazuki, Y.

    2015-12-01

    A dynamical downscaling method for probabilistic regional scale climate change projections was developed to cover an uncertainty of multiple general circulation model (GCM) climate simulations. The climatological increments (future minus present climate states) estimated by GCM simulation results were statistically analyzed using the singular vector decomposition. Both positive and negative perturbations from the ensemble mean with the magnitudes of their standard deviations were extracted and were added to the ensemble mean of the climatological increments. The analyzed multiple modal increments were utilized to create multiple modal lateral boundary conditions for the future climate regional climate model (RCM) simulations by adding to an objective analysis data. This data handling is regarded to be an advanced method of the pseudo-global-warming (PGW) method previously developed by Kimura and Kitoh (2007). The incremental handling for GCM simulations realized approximated probabilistic climate change projections with the smaller number of RCM simulations. Three values of a climatological variable simulated by RCMs for a mode were used to estimate the response to the perturbation of the mode. For the probabilistic analysis, climatological variables of RCMs were assumed to show linear response to the multiple modal perturbations, although the non-linearity was seen for local scale rainfall. Probability of temperature was able to be estimated within two modes perturbation simulations, where the number of RCM simulations for the future climate is five. On the other hand, local scale rainfalls needed four modes simulations, where the number of the RCM simulations is nine. The probabilistic method is expected to be used for regional scale climate change impact assessment in the future.

  13. Changes in the potential multiple cropping system in response to climate change in China from 1960-2010.

    PubMed

    Liu, Luo; Xu, Xinliang; Zhuang, Dafang; Chen, Xi; Li, Shuang

    2013-01-01

    The multiple cropping practice is essential to agriculture because it has been shown to significantly increase the grain yield and promote agricultural economic development. In this study, potential multiple cropping systems in China are calculated based on meteorological observation data by using the Agricultural Ecology Zone (AEZ) model. Following this, the changes in the potential cropping systems in response to climate change between the 1960s and the 2010s were subsequently analyzed. The results indicate that the changes of potential multiple cropping systems show tremendous heterogeneity in respect to the spatial pattern in China. A key finding is that the magnitude of change of the potential cropping systems showed a pattern of increase both from northern China to southern China and from western China to eastern China. Furthermore, the area found to be suitable only for single cropping decreased, while the area suitable for triple cropping increased significantly from the 1960s to the 2000s. During the studied period, the potential multiple cropping index (PMCI) gap between rain-fed and irrigated scenarios increased from 18% to 24%, which indicated noticeable growth of water supply limitations under the rain-fed scenario. The most significant finding of this research was that from the 1960s to the 2000s climate change had led to a significant increase of PMCI by 13% under irrigated scenario and 7% under rain-fed scenario across the whole of China. Furthermore, the growth of the annual mean temperature is identified as the main reason underlying the increase of PMCI. It has also been noticed that across China the changes of potential multiple cropping systems under climate change were different from region to region.

  14. Climate Change Indicators: Health and Society

    MedlinePlus

    ... of the ways that climate change is affecting human health and society, including changes in Lyme disease, West ... season across the United States. Because impacts on human health are complex, often indirect, and dependent on multiple ...

  15. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001), and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  16. Managing for multiple resources under climate change: national forests

    Treesearch

    Linda A. Joyce; Geoffrey M. Blate; Steven G. McNulty; Constance I. Millar; Susanne Moser; Ronald P. Neilson; David L. Peterson

    2009-01-01

    This study explores potential adaptation approaches in planning andmanagement that theUnited States Forest Servicemight adopt to help achieve its goals and objectives in the face of climate change. Availability of information, vulnerability of ecological and socio-economic systems, and uncertainties associated with climate change, as well as the interacting non-...

  17. A Global Framework for Monitoring Phenological Responses to Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Michael A; Hoffman, Forrest M; Hargrove, William Walter

    2005-01-01

    Remote sensing of vegetation phenology is an important method with which to monitor terrestrial responses to climate change, but most approaches include signals from multiple forcings, such as mixed phenological signals from multiple biomes, urbanization, political changes, shifts in agricultural practices, and disturbances. Consequently, it is difficult to extract a clear signal from the usually assumed forcing: climate change. Here, using global 8 km 1982 to 1999 Normalized Difference Vegetation Index (NDVI) data and an eight-element monthly climatology, we identified pixels whose wavelet power spectrum was consistently dominated by annual cycles and then created phenologically and climatically self-similar clusters, whichmore » we term phenoregions. We then ranked and screened each phenoregion as a function of landcover homogeneity and consistency, evidence of human impacts, and political diversity. Remaining phenoregions represented areas with a minimized probability of non-climatic forcings and form elemental units for long-term phenological monitoring.« less

  18. A survey of urban climate change experiments in 100 cities

    PubMed Central

    Castán Broto, Vanesa; Bulkeley, Harriet

    2013-01-01

    Cities are key sites where climate change is being addressed. Previous research has largely overlooked the multiplicity of climate change responses emerging outside formal contexts of decision-making and led by actors other than municipal governments. Moreover, existing research has largely focused on case studies of climate change mitigation in developed economies. The objective of this paper is to uncover the heterogeneous mix of actors, settings, governance arrangements and technologies involved in the governance of climate change in cities in different parts of the world. The paper focuses on urban climate change governance as a process of experimentation. Climate change experiments are presented here as interventions to try out new ideas and methods in the context of future uncertainties. They serve to understand how interventions work in practice, in new contexts where they are thought of as innovative. To study experimentation, the paper presents evidence from the analysis of a database of 627 urban climate change experiments in a sample of 100 global cities. The analysis suggests that, since 2005, experimentation is a feature of urban responses to climate change across different world regions and multiple sectors. Although experimentation does not appear to be related to particular kinds of urban economic and social conditions, some of its core features are visible. For example, experimentation tends to focus on energy. Also, both social and technical forms of experimentation are visible, but technical experimentation is more common in urban infrastructure systems. While municipal governments have a critical role in climate change experimentation, they often act alongside other actors and in a variety of forms of partnership. These findings point at experimentation as a key tool to open up new political spaces for governing climate change in the city. PMID:23805029

  19. A Robust, Scalable Framework for Conducting Climate Change Susceptibility Analyses

    DTIC Science & Technology

    2014-05-01

    for identifying areas of heightened risk from varying forms of climate forcings is needed. Based on global climate model projections, deviations from...framework provides an opportunity to easily combine multiple data sources — that are often freely available from many federal, state, and global ...Climate change and extreme weather events: implications for food production, plant diseases, and pests. Global Change and Human Health 2:90–104. ERDC/EL

  20. Climate change as an ecosystem architect: implications to rare plant ecology, conservation, and restoration

    Treesearch

    Constance I. Millar

    2003-01-01

    Recent advances in earth system sciences have revealed significant new information relevant to rare plant ecology and conservation. Analysis of climate change at high resolution with new and precise proxies of paleotemperatures reveals a picture over the past two million years of oscillatory climate change operating simultaneously at multiple timescales. Low-frequency...

  1. Potential climate change impacts on four biophysical indicators of cattle production from western US rangelands

    Treesearch

    Matthew Clark Reeves; Karen E. Bagne; John Tanaka

    2017-01-01

    We examined multiple environmental factors related to climate change that affect cattle production on rangelands to identify sources of vulnerability among seven regions of the western United States. Climate change effects were projected to 2100 using published spatially explicit model output for four indicators of vulnerability: forage quantity, vegetation type...

  2. Simulated impact of climate change on hydrology of multiple watersheds using traditional and recommended snowmelt runoff model methodology

    USDA-ARS?s Scientific Manuscript database

    For more than three decades, researchers have utilized the Snowmelt Runoff Model (SRM) to test the impacts of climate change on streamflow of snow-fed systems. In this study, the hydrological effects of climate change are modeled over three sequential years using SRM with both typical and recommende...

  3. Model-based scenario planning to develop climate change adaptation strategies for rare plant populations in grassland reserves

    Treesearch

    Laura Phillips-Mao; Susan M. Galatowitsch; Stephanie A. Snyder; Robert G. Haight

    2016-01-01

    Incorporating climate change into conservation decision-making at site and population scales is challenging due to uncertainties associated with localized climate change impacts and population responses to multiple interacting impacts and adaptation strategies. We explore the use of spatially explicit population models to facilitate scenario analysis, a conservation...

  4. Responding to climate change impacts in the Sky Island Region: From planning to action

    Treesearch

    Louise W. Misztal; Gregg Garfin; Lara Hansen

    2013-01-01

    Addressing the increasing effects of climate change on natural resources requires multiple organizations, agencies, and institutions working cooperatively to incorporate climate change into resource management. In the Sky Island region of the southwestern United States and northern Mexico, Sky Island Alliance, a non-governmental organization, has convened a series of...

  5. Narratives of Dynamic Lands: Science Education, Indigenous Knowledge and Possible Futures

    ERIC Educational Resources Information Center

    McGinty, Megan; Bang, Megan

    2016-01-01

    We aim to share some of our work currently focused on understanding and unearthing the multiplicities of ways the denial of culture in relation to science and knowledge construction is embedded in issues of climate change and climate change education. The issues become more troubling when we consider how effects of climate change are manifesting…

  6. Overview of the Special Issue: A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldhoff, Stephanie T.; Martinich, Jeremy; Sarofim, Marcus

    2015-07-01

    The Climate Change Impacts and Risk Analysis (CIRA) modeling exercise is a unique contribution to the scientific literature on climate change impacts, economic damages, and risk analysis that brings together multiple, national-scale models of impacts and damages in an integrated and consistent fashion to estimate climate change impacts, damages, and the benefits of greenhouse gas (GHG) mitigation actions in the United States. The CIRA project uses three consistent socioeconomic, emissions, and climate scenarios across all models to estimate the benefits of GHG mitigation policies: a Business As Usual (BAU) and two policy scenarios with radiative forcing (RF) stabilization targets ofmore » 4.5 W/m2 and 3.7 W/m2 in 2100. CIRA was also designed to specifically examine the sensitivity of results to uncertainties around climate sensitivity and differences in model structure. The goals of CIRA project are to 1) build a multi-model framework to produce estimates of multiple risks and impacts in the U.S., 2) determine to what degree risks and damages across sectors may be lowered from a BAU to policy scenarios, 3) evaluate key sources of uncertainty along the causal chain, and 4) provide information for multiple audiences and clearly communicate the risks and damages of climate change and the potential benefits of mitigation. This paper describes the motivations, goals, and design of the CIRA modeling exercise and introduces the subsequent papers in this special issue.« less

  7. Transitions between multiple equilibria of paleo climate: a glimpse in to the dynamics of abrupt climate change

    NASA Astrophysics Data System (ADS)

    Ferreira, David; Marshall, John; Ito, Takamitsu; McGee, David; Moreno-Chamarro, Eduardo

    2017-04-01

    The dynamics regulating large climatic transitions such as glacial-interglacial cycles or DO events remains a puzzle. Forcings behind these transitions are not robustly identified and potential candidates (e.g. Milankovitch cycles, freshwater perturbations) often appear too weak to explain such dramatic transitions. A potential solution to this long-standing puzzle is that Earth's climate is endowed with multiple equilibrium states of global extent. Such states are commonly found in low-order or conceptual climate models, but it is unclear whether a system as complex as Earth's climate can sustain multiple equilibrium states. Here we report that multiple equilibrium states of the climate system are also possible in a complex, fully dynamical coupled ocean-atmosphere-sea ice GCM with idealized Earth-like geometry, resolved weather systems and a hydrological cycle. In our model, two equilibrium states coexist for the same parameters and external forcings: a Warm climate with a small Northern hemisphere sea ice cap and a large southern one and a Cold climate with large ice caps at both poles. The dynamical states of the Warm and Cold solutions exhibit striking similarities with our present-day climate and the climate of the Last Glacial Maximum, respectively. A carbon cycle model driven by the two dynamical states produces an atmospheric pCO2 draw-down of about 110 pm between the Warm and Cold states, close to Glacial-Interglacial differences found in ice cores. Mechanism controlling the existence of the multiple states and changes in the atmospheric CO2 will be briefly presented. Finally we willdescribe transition experiments from the Cold to the Warm state, focusing on the lead-lags in the system, notably between the Northern and Southern Hemispheres climates.

  8. Does weather shape rodents? Climate related changes in morphology of two heteromyid species

    NASA Astrophysics Data System (ADS)

    Wolf, Mosheh; Friggens, Michael; Salazar-Bravo, Jorge

    2009-01-01

    Geographical variation in morphometric characters in heteromyid rodents has often correlated with climate gradients. Here, we used the long-term database of rodents trapped in the Sevilleta National Wildlife Refuge in New Mexico, USA to test whether significant annual changes in external morphometric characters are observed in a region with large variations in temperature and precipitation. We looked at the relationships between multiple temperature and precipitation variables and a number of morphological traits (body mass, body, tail, hind leg, and ear length) for two heteromyid rodents, Dipodomys merriami and Perognathus flavescens. Because these rodents can live multiple years in the wild, the climate variables for the year of the capture and the previous 2 years were included in the analyses. Using multiple linear regressions, we found that all of our morphometric traits, with the exception of tail length in D. merriami, had a significant relationship with one or more of the climate variables used. Our results demonstrate that effects of climate change on morphological traits occur over short periods, even in noninsular mammal populations. It is unclear, though, whether these changes are the result of morphological plasticity or natural selection.

  9. Developing an approach to effectively use super ensemble experiments for the projection of hydrological extremes under climate change

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Kim, H.; Utsumi, N.

    2017-12-01

    This study aims to develop a new approach which projects hydrology under climate change using super ensemble experiments. The use of multiple ensemble is essential for the estimation of extreme, which is a major issue in the impact assessment of climate change. Hence, the super ensemble experiments are recently conducted by some research programs. While it is necessary to use multiple ensemble, the multiple calculations of hydrological simulation for each output of ensemble simulations needs considerable calculation costs. To effectively use the super ensemble experiments, we adopt a strategy to use runoff projected by climate models directly. The general approach of hydrological projection is to conduct hydrological model simulations which include land-surface and river routing process using atmospheric boundary conditions projected by climate models as inputs. This study, on the other hand, simulates only river routing model using runoff projected by climate models. In general, the climate model output is systematically biased so that a preprocessing which corrects such bias is necessary for impact assessments. Various bias correction methods have been proposed, but, to the best of our knowledge, no method has proposed for variables other than surface meteorology. Here, we newly propose a method for utilizing the projected future runoff directly. The developed method estimates and corrects the bias based on the pseudo-observation which is a result of retrospective offline simulation. We show an application of this approach to the super ensemble experiments conducted under the program of Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI). More than 400 ensemble experiments from multiple climate models are available. The results of the validation using historical simulations by HAPPI indicates that the output of this approach can effectively reproduce retrospective runoff variability. Likewise, the bias of runoff from super ensemble climate projections is corrected, and the impact of climate change on hydrologic extremes is assessed in a cost-efficient way.

  10. The added complications of climate change: understanding and managing biodiversity and ecosystems

    USGS Publications Warehouse

    Amanda Staudt,; Allison K. Leidner,; Jennifer Howard,; Kate A. Brauman,; Jeffrey S. Dukes,; Hansen, Lara J.; Paukert, Craig P.; Sabo, John L.; Solorzano, Luis A.

    2013-01-01

    Ecosystems around the world are already threatened by land-use and land-cover change, extraction of natural resources, biological disturbances, and pollution. These environmental stressors have been the primary source of ecosystem degradation to date, and climate change is now exacerbating some of their effects. Ecosystems already under stress are likely to have more rapid and acute reactions to climate change; it is therefore useful to understand how multiple stresses will interact, especially as the magnitude of climate change increases. Understanding these interactions could be critically important in the design of climate adaptation strategies, especially because actions taken by other sectors (eg energy, agriculture, transportation) to address climate change may create new ecosystem stresses.

  11. Interactive effects of climate change and biodiversity loss on ecosystem functioning.

    PubMed

    Pires, Aliny P F; Srivastava, Diane S; Marino, Nicholas A C; MacDonald, A Andrew M; Figueiredo-Barros, Marcos Paulo; Farjalla, Vinicius F

    2018-05-01

    Climate change and biodiversity loss are expected to simultaneously affect ecosystems, however research on how each driver mediates the effect of the other has been limited in scope. The multiple stressor framework emphasizes non-additive effects, but biodiversity may also buffer the effects of climate change, and climate change may alter which mechanisms underlie biodiversity-function relationships. Here, we performed an experiment using tank bromeliad ecosystems to test the various ways that rainfall changes and litter diversity may jointly determine ecological processes. Litter diversity and rainfall changes interactively affected multiple functions, but how depends on the process measured. High litter diversity buffered the effects of altered rainfall on detritivore communities, evidence of insurance against impacts of climate change. Altered rainfall affected the mechanisms by which litter diversity influenced decomposition, reducing the importance of complementary attributes of species (complementarity effects), and resulting in an increasing dependence on the maintenance of specific species (dominance effects). Finally, altered rainfall conditions prevented litter diversity from fueling methanogenesis, because such changes in rainfall reduced microbial activity by 58%. Together, these results demonstrate that the effects of climate change and biodiversity loss on ecosystems cannot be understood in isolation and interactions between these stressors can be multifaceted. © 2018 by the Ecological Society of America.

  12. Global climate change and children's health: threats and strategies for prevention.

    PubMed

    Sheffield, Perry E; Landrigan, Philip J

    2011-03-01

    Global climate change will have multiple effects on human health. Vulnerable populations-children, the elderly, and the poor-will be disproportionately affected. We reviewed projected impacts of climate change on children's health, the pathways involved in these effects, and prevention strategies. We assessed primary studies, review articles, and organizational reports. Climate change is increasing the global burden of disease and in the year 2000 was responsible for > 150,000 deaths worldwide. Of this disease burden, 88% fell upon children. Documented health effects include changing ranges of vector-borne diseases such as malaria and dengue; increased diarrheal and respiratory disease; increased morbidity and mortality from extreme weather; changed exposures to toxic chemicals; worsened poverty; food and physical insecurity; and threats to human habitation. Heat-related health effects for which research is emerging include diminished school performance, increased rates of pregnancy complications, and renal effects. Stark variation in these outcomes is evident by geographic region and socioeconomic status, and these impacts will exacerbate health disparities. Prevention strategies to reduce health impacts of climate change include reduction of greenhouse gas emissions and adaptation through multiple public health interventions. Further quantification of the effects of climate change on children's health is needed globally and also at regional and local levels through enhanced monitoring of children's environmental health and by tracking selected indicators. Climate change preparedness strategies need to be incorporated into public health programs.

  13. Climate change and watershed mercury export: a multiple projection and model analysis

    EPA Science Inventory

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. We apply an ensemble of watershed models to simulate and assess the responses of hydrological and total Hg (HgT) fluxes and concentrations to two climate change projections in the US Co...

  14. Effects of climate change, CO2 and O3 on wheat productivity in Eastern China, singly and in combination

    NASA Astrophysics Data System (ADS)

    Tao, Fulu; Feng, Zhaozhong; Tang, Haoye; Chen, Yi; Kobayashi, Kazuhiko

    2017-03-01

    Air pollution and climate change are increasing threats to agricultural production and food security. Extensive studies have focused on the effect of climate change, but the interactive effects of multiple global change factors are poorly understood. Here, we incorporate the interactions between climate change, carbon dioxide (CO2) and ozone (O3) into an eco-physiological mechanistic model based on three years of O3 Free-Air Concentration Elevation (O3-FACE) experiments. We then investigate the effects of climate change, elevated CO2 concentration ([CO2]) and rising O3 concentration ([O3]) on wheat growth and productivity in eastern China in 1996-2005 (2000s) and 2016-2025 (2020s) under two climate change scenarios, singly and in combination. We find the interactive effects of climate change, CO2 and O3 on wheat productivity have spatially explicit patterns; the effect of climate change dominates the general pattern, which is however subject to the large uncertainties of climate change scenarios. Wheat productivity is estimated to increase by 2.8-9.0% due to elevated [CO2] however decline by 2.8-11.7% due to rising [O3] in the 2020s, relative to the 2000s. The combined effects of CO2 and O3 are less than that of O3 only, on average by 4.6-5.2%, however with O3 damage outweighing CO2 benefit in most of the region. This study demonstrates a more biologically meaningful and appropriate approach for assessing the interactive effects of climate change, CO2 and O3 on crop growth and productivity. Our findings promote the understanding on the interactive effects of multiple global change factors across contrasting climate conditions, cast doubt on the potential of CO2 fertilization effect in offsetting possible negative effect of climate change on crop productivity as suggested by many previous studies.

  15. Weighing the relative potential impacts of climate change and land-use change on an endangered bird.

    PubMed

    Bancroft, Betsy A; Lawler, Joshua J; Schumaker, Nathan H

    2016-07-01

    Climate change and land-use change are projected to be the two greatest drivers of biodiversity loss over the coming century. Land-use change has resulted in extensive habitat loss for many species. Likewise, climate change has affected many species resulting in range shifts, changes in phenology, and altered interactions. We used a spatially explicit, individual-based model to explore the effects of land-use change and climate change on a population of the endangered Red-cockaded Woodpecker (RCW; Picoides borealis). We modeled the effects of land-use change using multiple scenarios representing different spatial arrangements of new training areas for troops across Fort Benning. We used projected climate-driven changes in habitat and changes in reproductive output to explore the potential effects of climate change. We summarized potential changes in habitat based on the output of the dynamic vegetation model LPJ-GUESS, run for multiple climate change scenarios through the year 2100. We projected potential changes in reproduction based on an empirical relationship between spring precipitation and the mean number of successful fledglings produced per nest attempt. As modeled in our study, climate change had virtually no effect on the RCW population. Conversely, simulated effects of land-use change resulted in the loss of up to 28 breeding pairs by 2100. However, the simulated impacts of development depended on where the development occurred and could be completely avoided if the new training areas were placed in poor-quality habitat. Our results demonstrate the flexibility inherent in many systems that allows seemingly incompatible human land uses, such as development, and conservation actions to exist side by side.

  16. 2000 years of cultural adaptation to climate change in the Southwestern United States.

    PubMed

    Blinman, Eric

    2008-11-01

    Modern concerns with climate change often overlook the extensive history of both climate change and human adaptation over the millennia. While questions of human-climate system causation are important, especially to the extent that our current behavior is driving environmental change, human societies have experienced multiple climate changes in the past, independent of causation. The histories of cultural adaptation to those changes can help us understand the dynamic interaction between climate and society, expanding the possibilities for "proactive adaptation" that may be available to us today. The underlying principles of cultural adaptation are generally independent of the source of the climate change, and the lessons of the past can suggest social and economic paths that can lead toward sustainability and away from collapse.

  17. Development of risk matrices for evaluating climatic change responses of forested habitats

    Treesearch

    Louis R. Iverson; Stephen N. Matthews; Anantha M. Prasad; Matthew P. Peters; Gary. Yohe

    2012-01-01

    We present an approach to assess and compare risk from climate change among multiple species through a risk matrix, in which managers can quickly prioritize for species that need to have strategies developed, evaluated further, or watched. We base the matrix upon earlier work towards the National Climate Assessment for potential damage to infrastructures from climate...

  18. Fire management, managed relocation, and land conservation options for long-lived obligate seeding plants under global changes in climate, urbanization, and fire regime.

    PubMed

    Bonebrake, Timothy C; Syphard, Alexandra D; Franklin, Janet; Anderson, Kurt E; Akçakaya, H Resit; Mizerek, Toni; Winchell, Clark; Regan, Helen M

    2014-08-01

    Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long-lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire-prone ecosystems, including the biodiversity hotspots of Mediterranean-type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long-lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land-use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land-use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. © 2014 Society for Conservation Biology.

  19. Projecting Future Land Use Changes in West Africa Driven by Climate and Socioeconomic Factors: Uncertainties and Implications for Adaptation

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Land use changes constitute an important regional climate change forcing in West Africa, a region of strong land-atmosphere coupling. At the same time, climate change can be an important driver for land use, although its importance relative to the impact of socio-economic factors may vary significant from region to region. This study compares the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa and examines various sources of uncertainty using a land use projection model (LandPro) that accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. Future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. The impact of human decision-making on land use was explicitly considered through multiple "what-if" scenarios to examine the range of uncertainties in projecting future land use. Without agricultural intensification, the climate-induced decrease of crop yield together with increase of food demand are found to cause a significant increase in agricultural land use at the expense of forest and grassland by the mid-century, and the resulting land use land cover changes are found to feed back to the regional climate in a way that exacerbates the negative impact of climate on crop yield. Analysis of results from multiple decision-making scenarios suggests that human adaptation characterized by science-informed decision making to minimize land use could be very effective in many parts of the region.

  20. Interpretation of Recent Temperature Trends in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffy, P B; Bonfils, C; Lobell, D

    2007-09-21

    Regional-scale climate change and associated societal impacts result from large-scale (e.g. well-mixed greenhouse gases) and more local (e.g. land-use change) 'forcing' (perturbing) agents. It is essential to understand these forcings and climate responses to them, in order to predict future climate and societal impacts. California is a fine example of the complex effects of multiple climate forcings. The State's natural climate is diverse, highly variable, and strongly influenced by ENSO. Humans are perturbing this complex system through urbanization, irrigation, and emission of multiple types of aerosols and greenhouse gases. Despite better-than-average observational coverage, we are only beginning to understand themore » manifestations of these forcings in California's temperature record.« less

  1. Climate Change, Disaster and Sentiment Analysis over Social Media Mining

    NASA Astrophysics Data System (ADS)

    Lee, J.; McCusker, J. P.; McGuinness, D. L.

    2012-12-01

    Accelerated climate change causes disasters and disrupts people living all over the globe. Disruptive climate events are often reflected in expressed sentiments of the people affected. Monitoring changes in these sentiments during and after disasters can reveal relationships between climate change and mental health. We developed a semantic web tool that uses linked data principles and semantic web technologies to integrate data from multiple sources and analyze them together. We are converting statistical data on climate change and disaster records obtained from the World Bank data catalog and the International Disaster Database into a Resource Description Framework (RDF) representation that was annotated with the RDF Data Cube vocabulary. We compare these data with a dataset of tweets that mention terms from the Emotion Ontology to get a sense of how disasters can impact the affected populations. This dataset is being gathered using an infrastructure we developed that extracts term uses in Twitter with controlled vocabularies. This data was also converted to RDF structure so that statistical data on the climate change and disasters is analyzed together with sentiment data. To visualize and explore relationship of the multiple data across the dimensions of time and location, we use the qb.js framework. We are using this approach to investigate the social and emotional impact of climate change. We hope that this will demonstrate the use of social media data as a valuable source of understanding on global climate change.

  2. Rainfall and temperatures changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the southwestern USA under climate change scenarios.

    PubMed

    Thompson, Sally E; Levin, Simon; Rodriguez-Iturbe, Ignacio

    2014-04-01

    Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phytophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil temperatures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates through host root systems. We apply this model to the southwestern USA for contemporary and plausible future climate scenarios and evaluate the changes in the potential range of Pc. The results indicate that the plausible range of this pathogen in the southwestern USA extends over approximately 200,000 km(2) under contemporary conditions. While warming temperatures as projected by the IPCC A2 and B1 emissions scenarios greatly expand the range over which the pathogen can survive winter, projected reductions in spring rainfall reduce its feasible habitat, leading to spatially complex patterns of changing risk. The study demonstrates that temperature and rainfall changes associated with possible climate futures in the southwestern USA have confounding impacts on the range of Pc, suggesting that projections of future pathogen dynamics and ranges should account for multiple pathways of climate-pathogen interaction. © 2014 John Wiley & Sons Ltd.

  3. Assessing reservoir operations risk under climate change

    USGS Publications Warehouse

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  4. Compound-Specific Hydrogen Isotopic Records of Holocene Climate Dynamics in the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    Stefanescu, I.; Shuman, B. N.

    2017-12-01

    The northeastern United States, located between the location of Laurentide ice sheet and the dynamic North Atlantic Ocean, is an ideal region for studying paleoclimate changes on centennial to multi-millennial time scales because the region experienced multiple abrupt climate changes and variations over the past 14 ka. Over the Holocene, the region's long-term climate trend was influenced by isolation changes, the retreat of the Laurentide Ice Sheet (LIS), changes in atmospheric composition and changes in the North Atlantic Meridional Overturning Circulation (AMOC). Hydrological and pollen records show that multiple abrupt climate changes punctuate the long-term trends, even after the widely recognized events associated with the LIS and AMOC, but the mechanisms behind the abrupt climate changes observed are not well understood. To understand the mechanisms behind abrupt climate shifts, their impact on hydrology, ecosystems, regional and local climates, additional insights are needed. Compound-specific hydrogen isotope (D/H) ratios derived from terrestrial and aquatic leaf waxes and preserved in lake sediments, have been shown to record D/H ratios of environmental water and we use such data to further investigate the regional climate history. Here we present hydrogen isotope records of precipitation using compound specific hydrogen isotope of leaf wax n-alkanes derived from aquatic and terrestrial leaf waxes from three lakes: Twin Ponds, Vermont; Blanding Pond, Pennsylvania; and Crooked Pond, Massachusetts. We use the results to evaluate common climate trends across the region from an isotopic perspective and to assess changes in the spatial isotopic gradients across the northeastern US during the Holocene.

  5. Climate change and health modeling: horses for courses.

    PubMed

    Ebi, Kristie L; Rocklöv, Joacim

    2014-01-01

    Mathematical and statistical models are needed to understand the extent to which weather, climate variability, and climate change are affecting current and may affect future health burdens in the context of other risk factors and a range of possible development pathways, and the temporal and spatial patterns of any changes. Such understanding is needed to guide the design and the implementation of adaptation and mitigation measures. Because each model projection captures only a narrow range of possible futures, and because models serve different purposes, multiple models are needed for each health outcome ('horses for courses'). Multiple modeling results can be used to bracket the ranges of when, where, and with what intensity negative health consequences could arise. This commentary explores some climate change and health modeling issues, particularly modeling exposure-response relationships, developing early warning systems, projecting health risks over coming decades, and modeling to inform decision-making. Research needs are also suggested.

  6. Multiple-scale Proximal Sensor and Remote Imagery Technology for Sustaining Agricultural Productivity During Climate Change

    NASA Astrophysics Data System (ADS)

    Corwin, D. L.; Scudiero, E.

    2016-12-01

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California's San Joaquin Valley. Climate change has impacted water availability, which subsequently has impacted soil salinity levels in the root zone, especially on the west side of the San Joaquin Valley (WSJV). Inventorying and monitoring the extent of climate change on soil salinity is crucial to evaluate the extent of the problem, to recognize trends, and to formulate state-wide and field-scale irrigation management strategies that will sustain the agricultural productivity of the WSJV. Over the past 3 decades, Corwin and colleagues at the U.S. Salinity Laboratory have developed proximal sensor (i.e., electrical resistivity and electromagnetic induction) and remote imagery (i.e., MODIS and Landsat 7) methodologies for assessing soil salinity at multiple scales: field (0.5 ha to 3 km2), landscape (3 to 10 km2), and regional (10 to 105 km2) scales. The purpose of this presentation is to provide an overview of these scale-dependent salinity assessment technologies. Case studies for the WSJV are presented to demonstrate at multiple scales the utility of these approaches in assessing soil salinity changes due to management-induced changes and to changes in climate patterns, and in providing site-specific irrigation management information for salinity control. Land resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of this information.

  7. Tolerance to multiple climate stressors: a case study of Douglas-fir drought and cold hardiness

    Treesearch

    Sheel Bansal; Connie Harrington; Brad St. Clair

    2016-01-01

    1. Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations. 2. We assessed the...

  8. Projecting demographic responses to climate change: adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population

    USGS Publications Warehouse

    Dybala, Kristen E.; Eadie, John M.; Gardali, Thomas; Seavy, Nathaniel E.; Herzog, Mark P.

    2013-01-01

    Few studies have quantitatively projected changes in demography in response to climate change, yet doing so can provide important insights into the processes that may lead to population declines and changes in species distributions. Using a long-term mark-recapture data set, we examined the influence of multiple direct and indirect effects of weather on adult and juvenile survival for a population of Song Sparrows (Melospiza melodia) in California. We found evidence for a positive, direct effect of winter temperature on adult survival, and a positive, indirect effect of prior rainy season precipitation on juvenile survival, which was consistent with an effect of precipitation on food availability during the breeding season. We used these relationships, and climate projections of significantly warmer and slightly drier winter weather by the year 2100, to project a significant increase in mean adult survival (12-17%) and a slight decrease in mean juvenile survival (4-6%) under the B1 and A2 climate change scenarios. Together with results from previous studies on seasonal fecundity and postfledging survival in this population, we integrated these results in a population model and projected increases in the population growth rate under both climate change scenarios. Our results underscore the importance of considering multiple, direct, and indirect effects of weather throughout the annual cycle, as well as differences in the responses of each life stage to climate change. Projecting demographic responses to climate change can identify not only how populations will be affected by climate change but also indicate the demographic process(es) and specific mechanisms that may be responsible. This information can, in turn, inform climate change adaptation plans, help prioritize future research, and identify where limited conservation resources will be most effectively and efficiently spent.

  9. Relative importance of climate changes at different time scales on net primary productivity-a case study of the Karst area of northwest Guangxi, China.

    PubMed

    Liu, Huiyu; Zhang, Mingyang; Lin, Zhenshan

    2017-10-05

    Climate changes are considered to significantly impact net primary productivity (NPP). However, there are few studies on how climate changes at multiple time scales impact NPP. With MODIS NPP product and station-based observations of sunshine duration, annual average temperature and annual precipitation, impacts of climate changes at different time scales on annual NPP, have been studied with EEMD (ensemble empirical mode decomposition) method in the Karst area of northwest Guangxi, China, during 2000-2013. Moreover, with partial least squares regression (PLSR) model, the relative importance of climatic variables for annual NPP has been explored. The results show that (1) only at quasi 3-year time scale do sunshine duration and temperature have significantly positive relations with NPP. (2) Annual precipitation has no significant relation to NPP by direct comparison, but significantly positive relation at 5-year time scale, which is because 5-year time scale is not the dominant scale of precipitation; (3) the changes of NPP may be dominated by inter-annual variabilities. (4) Multiple time scales analysis will greatly improve the performance of PLSR model for estimating NPP. The variable importance in projection (VIP) scores of sunshine duration and temperature at quasi 3-year time scale, and precipitation at quasi 5-year time scale are greater than 0.8, indicating important for NPP during 2000-2013. However, sunshine duration and temperature at quasi 3-year time scale are much more important. Our results underscore the importance of multiple time scales analysis for revealing the relations of NPP to changing climate.

  10. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change.

    PubMed

    Perera, Frederica P

    2017-02-01

    Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141-148; http://dx.doi.org/10.1289/EHP299.

  11. Incorporating climate change into ecosystem service assessments and decisions: a review.

    PubMed

    Runting, Rebecca K; Bryan, Brett A; Dee, Laura E; Maseyk, Fleur J F; Mandle, Lisa; Hamel, Perrine; Wilson, Kerrie A; Yetka, Kathleen; Possingham, Hugh P; Rhodes, Jonathan R

    2017-01-01

    Climate change is having a significant impact on ecosystem services and is likely to become increasingly important as this phenomenon intensifies. Future impacts can be difficult to assess as they often involve long timescales, dynamic systems with high uncertainties, and are typically confounded by other drivers of change. Despite a growing literature on climate change impacts on ecosystem services, no quantitative syntheses exist. Hence, we lack an overarching understanding of the impacts of climate change, how they are being assessed, and the extent to which other drivers, uncertainties, and decision making are incorporated. To address this, we systematically reviewed the peer-reviewed literature that assesses climate change impacts on ecosystem services at subglobal scales. We found that the impact of climate change on most types of services was predominantly negative (59% negative, 24% mixed, 4% neutral, 13% positive), but varied across services, drivers, and assessment methods. Although uncertainty was usually incorporated, there were substantial gaps in the sources of uncertainty included, along with the methods used to incorporate them. We found that relatively few studies integrated decision making, and even fewer studies aimed to identify solutions that were robust to uncertainty. For management or policy to ensure the delivery of ecosystem services, integrated approaches that incorporate multiple drivers of change and account for multiple sources of uncertainty are needed. This is undoubtedly a challenging task, but ignoring these complexities can result in misleading assessments of the impacts of climate change, suboptimal management outcomes, and the inefficient allocation of resources for climate adaptation. © 2016 John Wiley & Sons Ltd.

  12. A climate-change adaptation framework to reduce continental-scale vulnerability across conservation reserves

    Treesearch

    D.R. Magness; J.M. Morton; F. Huettmann; F.S. Chapin; A.D. McGuire

    2011-01-01

    Rapid climate change, in conjunction with other anthropogenic drivers, has the potential to cause mass species extinction. To minimize this risk, conservation reserves need to be coordinated at multiple spatial scales because the climate envelopes of many species may shift rapidly across large geographic areas. In addition, novel species assemblages and ecological...

  13. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems

    Treesearch

    P. Sicard; A. Augustaitis; S. Belyazid; C. Calfapietra; A. De Marco; Mark E. Fenn; Andrzej Bytnerowicz; Nancy Grulke; S. He; R. Matyssek; Y. Serengil; G. Wieser; E. Paoletti

    2016-01-01

    Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii)...

  14. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    Treesearch

    John B Kim; Erwan Monier; Brent Sohngen; G Stephen Pitts; Ray Drapek; James McFarland; Sara Ohrel; Jefferson Cole

    2016-01-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a...

  15. Chapter 3: Climate change at multiple scales

    Treesearch

    Constance Millar; Ron Neilson; Dominique Bachelet; Ray Drapek; Jim Lenihan

    2006-01-01

    Concepts about the natural world influence approaches to forest management. In the popular press, climate change inevitably refers to global warming, greenhouse gas impacts, novel anthropogenic (human-induced) threats, and international politics. There is, however, a larger context that informs our understanding of changes that are occurring - that is, Earth’...

  16. Assessing Climate Change in Early Warm Season and Impacts on Wildfire Potential in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Kim, S. H.; Kim, J.; Nghiem, S. V.; Fujioka, F.; Myoung, B.

    2016-12-01

    Wildfires are an important concern in the Southwestern United States (SWUS) where the prevalent semi-arid to arid climate, vegetation types and hot and dry warm seasons challenge strategic fire management. Although they are part of the natural cycle related to the region's climate, significant growth of urban areas and expansion of the wildland-urban interface, have made wildfires a serious high-risk hazard. Previous studies also showed that the SWUS region is prone to frequent droughts due to large variations in wet season rainfall and has suffered from a number of severe wildfires in the recent decades. Despite the increasing trend in large wildfires, future wildfire risk assessment studies at regional scales for proactive adaptations are lacking. Our previous study revealed strong correlations between the North Atlantic Oscillation (NAO) and temperatures during March-June in SWUS. The abnormally warm and dry conditions in an NAO-positive spring, combined with reduced winter precipitation, can cause an early start of a fire season and extend it for several seasons, from late spring to fall. A strong interannual variation of the Keetch-Byram Drought Index (KBDI) during the early warm season was also found in the 35 year period 1979 - 2013 of the North American Regional Reanalysis (NARR) dataset. Thus, it is crucial to investigate the climate change impact that early warm season temperatures have on future wildfire danger potential. Our study reported here examines fine-resolution fire-weather variables for 2041-2070 projected in the North American Regional Climate Change Assessment Program (NARCCAP). The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas concentration pathways. The local wildfire potential in future climate is investigated using both the Keetch-Byram Drought Index (KBDI) and the Canadian Fire Weather Index (FWI) which have been widely used for assessing wildfire potential in the U.S.A and Canada, respectively.

  17. Assessments of Future Maize Yield Potential Changes in the Korean Peninsula Using Multiple Crop Models

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Lim, C. H.; Kim, J.; Lee, W. K.; Kafatos, M.

    2016-12-01

    The Korean Peninsula has unique agricultural environment due to the differences of political and socio-economical system between Republic of Korea (SK, hereafter) and Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering lack of food supplies caused by natural disasters, land degradation and political failure. The neighboring developed country SK has better agricultural system but very low food self-sufficiency rate. Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore, evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we utilized multiple process-based crop models, having ability of regional scale assessment, to evaluate maize Yp and assess the model uncertainties -EPIC, GEPIC, DSSAT, and APSIM model that has capability of regional scale expansion (apsimRegions). First we evaluated each crop model for 3 years from 2012 to 2014 using reanalysis data (RDAPS; Regional Data Assimilation and Prediction System produced by Korea Meteorological Agency) and observed yield data. Each model performances were compared over the different regions in the Korean Peninsula having different local climate characteristics. To quantify of the major influence of at each climate variables, we also conducted sensitivity test using 20 years of climatology in historical period from 1981 to 2000. Lastly, the multi-crop model ensemble analysis was performed for future period from 2031 to 2050. The required weather variables projected for mid-century were employed from COordinated Regional climate Downscaling EXperiment (CORDEX) East Asia. The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas concentration pathways. The results indicate that the projected Yp in the Korean peninsula is significantly changed comparing to the historical period and proper adaptation strategies such as optimized planting dates can considerably alleviate Yp decrease.

  18. Effects of multiple stresses hydropower, acid deposition and climate change on water chemistry and salmon populations in the River Otra, Norway.

    PubMed

    Wright, Richard F; Couture, Raoul-Marie; Christiansen, Anne B; Guerrero, José-Luis; Kaste, Øyvind; Barlaup, Bjørn T

    2017-01-01

    Many surface waters in Europe suffer from the adverse effects of multiple stresses. The Otra River, southernmost Norway, is impacted by acid deposition, hydropower development and increasingly by climate change. The river holds a unique population of land-locked salmon and anadromous salmon in the lower reaches. Both populations have been severely affected by acidification. The decrease in acid deposition since the 1980s has led to partial recovery of both populations. Climate change with higher temperatures and altered precipitation can potentially further impact fish populations. We used a linked set of process-oriented models to simulate future climate, discharge, and water chemistry at five sub-catchments in the Otra river basin. Projections to year 2100 indicate that future climate change will give a small but measureable improvement in water quality, but that additional reductions in acid deposition are needed to promote full restoration of the fish communities. These results can help guide management decisions to sustain key salmon habitats and carry out effective long-term mitigation strategies such as liming. The Otra River is typical of many rivers in Europe in that it fails to achieve the good ecological status target of the EU Water Framework Directive. The programme of measures needed in the river basin management plan necessarily must consider the multiple stressors of acid deposition, hydropower, and climate change. This is difficult, however, as the synergistic and antagonistic effects are complex and challenging to address with modelling tools currently available. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Characterizing climate change impacts on human exposures to air pollutants

    EPA Science Inventory

    Human exposures to air pollutants such as ozone (O3) have the potential to be altered by changes in climate through multiple factors that drive population exposures, including: ambient pollutant concentrations, human activity patterns, population sizes and distributions, and hous...

  20. Populations of concern: Chapter 9

    USGS Publications Warehouse

    Gamble, Janet; Balbus, John; Berger, Martha; Bouye, Karen; Campbell, Vince; Chief, Karletta; Conlon, K.; Crimmins, Allison; Flanagan, Barry; Gonzalez-Maddux, C.; Hallisey, E.; Hutchins, S.; Jantarasami, L.; Khoury, S.; Kiefer, M.; Kolling, J.; Lynn, K.; Manangan, A.; McDonald, M.; Morello-Frosch, R.; Hiza, Margaret; Sheffield, P.; Thigpen Tart, K.; Watson, J.; Whyte, K.P.; Wolkin, A.F.

    2016-01-01

    Climate change is already causing, and is expected to continue to cause, a range of health impacts that vary across different population groups in the United States. The vulnerability of any given group is a function of its sensitivity to climate change related health risks, its exposure to those risks, and its capacity for responding to or coping with climate variability and change. Vulnerable groups of people, described here as populations of concern, include those with low income, some communities of color, immigrant groups (including those with limited English proficiency), Indigenous peoples, children and pregnant women, older adults, vulnerable occupational groups, persons with disabilities, and persons with preexisting or chronic medical conditions. Planners and public health officials, politicians and physicians, scientists and social service providers are tasked with understanding and responding to the health impacts of climate change. Collectively, their characterization of vulnerability should consider how populations of concern experience disproportionate, multiple, and complex risks to their health and well-being in response to climate change. Some groups face a number of stressors related to both climate and non-climate factors. For example, people living in impoverished urban or isolated rural areas, floodplains, coastlines, and other at-risk locations are more vulnerable not only to extreme weather and persistent climate change but also to social and economic stressors. Many of these stressors can occur simultaneously or consecutively. Over time, this “accumulation” of multiple, complex stressors is expected to become more evident1 as climate impacts interact with stressors associated with existing mental and physical health conditions and with other socioeconomic and demographic factors.

  1. Vulnerability of riparian obligate species to the interactive effect of fire, climate and hydrological change

    Treesearch

    Megan M. Friggens; Rachel Loehman; Lisa Holsinger; Deborah Finch

    2014-01-01

    Climate change is expected to have multiple direct and indirect impacts on ecosystems in the interior western U.S. (Christensen et al., 2007; IPCC 2013). Global climate predictions for the Southwest include higher temperatures, more variable rainfall, and more drought periods, which will likely exacerbate the ongoing issues relating to wildfire and water allocation in...

  2. Global Climate Change, Food Security and the U.S. Food System

    NASA Technical Reports Server (NTRS)

    Brown, Molly Elizabeth; Walsh, Margaret; Hauser, Rachel; Murray, Anthony; Jadin, Jenna; Baklund, Peter; Robinson, Paula

    2013-01-01

    Climate change influences on the major pillars of food security. Each of the four elements of food security (availability,access,utilization,andstability) is vulnerable to changes in climate. For example,reductions in production related to regional drought influence food availability at multiple scales. Changes in price influences the ability of certain populations to purchase food (access). Utilization maybe affected when production zones shift, reducing the availability of preferred or culturally appropriate types of food within a region. Stability of the food supply may be highly uncertain given an increased incidence of extreme climatic events and their influence on production patterns.

  3. Lightning-Related Indicators for National Climate Assessment (NCA) Studies

    NASA Technical Reports Server (NTRS)

    Koshak, W.

    2017-01-01

    Changes in climate can affect the characteristics of lightning (e.g., number of flashes that occur in a region, return stroke current and multiplicity, polarity of charge deposited to ground, and the lightning cloud-top optical energy emission). The NASA/MSFC Lightning Analysis Tool (LAT) monitors these and other quantities in support of the National Climate Assessment (NCA) program. Changes in lightning characteristics lead to changes in lightning-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality).

  4. Quantifying Hydro-biogeochemical Model Sensitivity in Assessment of Climate Change Effect on Hyporheic Zone Processes

    NASA Astrophysics Data System (ADS)

    Song, X.; Chen, X.; Dai, H.; Hammond, G. E.; Song, H. S.; Stegen, J.

    2016-12-01

    The hyporheic zone is an active region for biogeochemical processes such as carbon and nitrogen cycling, where the groundwater and surface water mix and interact with each other with distinct biogeochemical and thermal properties. The biogeochemical dynamics within the hyporheic zone are driven by both river water and groundwater hydraulic dynamics, which are directly affected by climate change scenarios. Besides that, the hydraulic and thermal properties of local sediments and microbial and chemical processes also play important roles in biogeochemical dynamics. Thus for a comprehensive understanding of the biogeochemical processes in the hyporheic zone, a coupled thermo-hydro-biogeochemical model is needed. As multiple uncertainty sources are involved in the integrated model, it is important to identify its key modules/parameters through sensitivity analysis. In this study, we develop a 2D cross-section model in the hyporheic zone at the DOE Hanford site adjacent to Columbia River and use this model to quantify module and parametric sensitivity on assessment of climate change. To achieve this purpose, We 1) develop a facies-based groundwater flow and heat transfer model that incorporates facies geometry and heterogeneity characterized from a field data set, 2) derive multiple reaction networks/pathways from batch experiments with in-situ samples and integrate temperate dependent reactive transport modules to the flow model, 3) assign multiple climate change scenarios to the coupled model by analyzing historical river stage data, 4) apply a variance-based global sensitivity analysis to quantify scenario/module/parameter uncertainty in hierarchy level. The objectives of the research include: 1) identifing the key control factors of the coupled thermo-hydro-biogeochemical model in the assessment of climate change, and 2) quantify the carbon consumption in different climate change scenarios in the hyporheic zone.

  5. Development and Application of Future Climate Scenarios for Natural Resource Management in Southwestern Colorado

    NASA Astrophysics Data System (ADS)

    Rangwala, I.; Rondeau, R.; Wyborn, C.; Clifford, K. R.; Travis, W.

    2015-12-01

    Locally relevant projections of climate change provide critical insights for natural resource managers seeking to adapt their management activities to climate change in the context of uncertainty. To provide such information, we developed climate scenarios, in form of narratives and quantitative information, of future climate change and its impacts in southwestern Colorado. This information was intended to provide detailed insights into the range of changes that natural resource managers may face in the future. The scenarios were developed in an iterative process through interactions among the ecologists, social and climate scientists. In our scenario development process, climate uncertainty is acknowledged by having multiple scenarios, where each scenario is regarded as a storyline with equal likelihood as another scenario. We quantified changes in several decision relevant climate and ecological responses based on our best available understanding and provided a tight storyline for each scenario to facilitate (a) a more augmented use of scientific information in a decision-making process, (b) differential responses from stakeholders across the different scenarios, and (c) identification of strategies that could work across these multiple scenarios. Here, we discuss the process of selecting the scenarios, quantifying climate and ecological responses, and the criteria for building the narrative for each scenario. We also discuss the process by which these scenarios get used, and provide an assessment of their effectiveness and users' feedbacks that could inform the future development of these tools and processes. This research involvement and collaboration occurred, in part, as a result of the PACE Fellowship Program that is associated with NOAA Climate Program Office and the U.S. CLIVAR community.

  6. From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts.

    PubMed

    Bonebrake, Timothy C; Boggs, Carol L; Stamberger, Jeannie A; Deutsch, Curtis A; Ehrlich, Paul R

    2014-10-22

    Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts

    PubMed Central

    Bonebrake, Timothy C.; Boggs, Carol L.; Stamberger, Jeannie A.; Deutsch, Curtis A.; Ehrlich, Paul R.

    2014-01-01

    Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. PMID:25165769

  8. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change

    PubMed Central

    Perera, Frederica P.

    2016-01-01

    Background: Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. Objective: This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. Discussion: The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Conclusion: Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141–148; http://dx.doi.org/10.1289/EHP299 PMID:27323709

  9. Global change and terrestrial plant community dynamics

    DOE PAGES

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; ...

    2016-02-29

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less

  10. Global change and terrestrial plant community dynamics

    PubMed Central

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Regan, Helen M.

    2016-01-01

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338

  11. Agroforestry, climate change, and food security

    USDA-ARS?s Scientific Manuscript database

    Successfully addressing global climate change effects on agriculture will require a holistic, sustained approach incorporating a suite of strategies at multiple spatial scales and time horizons. In the USA of the 1930’s, bold and innovative leadership at high levels of government was needed to enact...

  12. Predicting the relatiave vulnerability of near-coastal species to climate change using a rule-based ecoinformatics approach

    EPA Science Inventory

    Background/Questions/Methods Near-coastal species are threatened by multiple climate change drivers, including temperature increases, ocean acidification, and sea level rise. To identify vulnerable habitats, geographic regions, and species, we developed a sequential, rule-based...

  13. Compromise-based Robust Prioritization of Climate Change Adaptation Strategies for Watershed Management

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Chung, E. S.

    2014-12-01

    This study suggests a robust prioritization framework for climate change adaptation strategies under multiple climate change scenarios with a case study of selecting sites for reusing treated wastewater (TWW) in a Korean urban watershed. The framework utilizes various multi-criteria decision making techniques, including the VIKOR method and the Shannon entropy-based weights. In this case study, the sustainability of TWW use is quantified with indicator-based approaches with the DPSIR framework, which considers both hydro-environmental and socio-economic aspects of the watershed management. Under the various climate change scenarios, the hydro-environmental responses to reusing TWW in potential alternative sub-watersheds are determined using the Hydrologic Simulation Program in Fortran (HSPF). The socio-economic indicators are obtained from the statistical databases. Sustainability scores for multiple scenarios are estimated individually and then integrated with the proposed approach. At last, the suggested framework allows us to prioritize adaptation strategies in a robust manner with varying levels of compromise between utility-based and regret-based strategies.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less

  15. Linking Federal, State, and Local Adaptation Strategies in New York (Invited)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2010-12-01

    New York City and New York State are leaders in adaptation in the U.S. In 2008 Mayor Bloomberg convened the NYC Climate Change Adaptation Task Force and the New York City Panel on Climate Change (NPCC). Also in 2008, the New York State Energy Research and Development Authority (NYSERDA) initiated the Integrated Assessment for Effective Climate Change Adaptation Strategies (ClimAID), to provide New York State decision-makers with cutting-edge information on its vulnerability to climate change and to facilitate the development of adaptation strategies informed by both local experience and scientific knowledge. The two efforts are working together to develop effective adaptation strategies across multiple jurisdictions. The New York Task Force consists of approximate 40 city, state, and federal agencies, regional public authorities, and private companies that operate, maintain, or regulate critical infrastructure in the region. The NPCC consisted of climate change and impacts scientists, and legal, insurance, and risk-management experts and served as the technical advisory body for the Mayor and the Task Force on issues related to climate change, impacts, and adaptation. In its 2010 report, the NPCC recommended adoption of a risk-based approach to climate change; creation of a monitoring program to track and analyze key climate change factors, impacts, and adaptation indicators; review of relevant standards and codes; inclusion of multiple layers of government and a wide range of public and private stakeholder experts to build buy-in; and formation of crucial partnerships for development of coordinated adaptation strategies. The task now is for these partnerships to create pilot programs that move adaptation from the planning phase to implementation; urban areas can provide critical ‘test-beds’ for such efforts.

  16. Climate change and freshwater ecosystems: impacts across multiple levels of organization

    PubMed Central

    Woodward, Guy; Perkins, Daniel M.; Brown, Lee E.

    2010-01-01

    Fresh waters are particularly vulnerable to climate change because (i) many species within these fragmented habitats have limited abilities to disperse as the environment changes; (ii) water temperature and availability are climate-dependent; and (iii) many systems are already exposed to numerous anthropogenic stressors. Most climate change studies to date have focused on individuals or species populations, rather than the higher levels of organization (i.e. communities, food webs, ecosystems). We propose that an understanding of the connections between these different levels, which are all ultimately based on individuals, can help to develop a more coherent theoretical framework based on metabolic scaling, foraging theory and ecological stoichiometry, to predict the ecological consequences of climate change. For instance, individual basal metabolic rate scales with body size (which also constrains food web structure and dynamics) and temperature (which determines many ecosystem processes and key aspects of foraging behaviour). In addition, increasing atmospheric CO2 is predicted to alter molar CNP ratios of detrital inputs, which could lead to profound shifts in the stoichiometry of elemental fluxes between consumers and resources at the base of the food web. The different components of climate change (e.g. temperature, hydrology and atmospheric composition) not only affect multiple levels of biological organization, but they may also interact with the many other stressors to which fresh waters are exposed, and future research needs to address these potentially important synergies. PMID:20513717

  17. Climate change and watershed mercury export: a multiple projection and model analysis

    USGS Publications Warehouse

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  18. Assessing the impacts induced by global climate change through a multi-risk approach: lessons learned from the North Adriatic coast (Italy)

    NASA Astrophysics Data System (ADS)

    Gallina, Valentina; Torressan, Silvia; Zabeo, Alex; Critto, Andrea; Glade, Thomas; Marcomini, Antonio

    2015-04-01

    Climate change is expected to pose a wide range of impacts on natural and human systems worldwide, increasing risks from long-term climate trends and disasters triggered by weather extremes. Accordingly, in the future, one region could be potentially affected by interactions, synergies and trade-offs of multiple hazards and impacts. A multi-risk risk approach is needed to effectively address multiple threats posed by climate change across regions and targets supporting decision-makers toward a new paradigm of multi-hazard and risk management. Relevant initiatives have been already developed for the assessment of multiple hazards and risks affecting the same area in a defined timeframe by means of quantitative and semi-quantitative approaches. Most of them are addressing the relations of different natural hazards, however, the effect of future climate change is usually not considered. In order to fill this gap, an advanced multi-risk methodology was developed at the Euro-Mediterranean Centre on Climate Change (CMCC) for estimating cumulative impacts related to climate change at the regional (i.e. sub-national) scale. This methodology was implemented into an assessment tool which allows to scan and classify quickly natural systems and human assets at risk resulting from different interacting hazards. A multi-hazard index is proposed to evaluate the relationships of different climate-related hazards (e.g. sea-level rise, coastal erosion, storm surge) occurring in the same spatial and temporal area, by means of an influence matrix and the disjoint probability function. Future hazard scenarios provided by regional climate models are used as input for this step in order to consider possible effects of future climate change scenarios. Then, the multi-vulnerability of different exposed receptors (e.g. natural systems, beaches, agricultural and urban areas) is estimated through a variety of vulnerability indicators (e.g. vegetation cover, sediment budget, % of urbanization), tailored case by case to different sets of natural hazards and elements at risk. Finally, the multi-risk assessment integrates the multi-hazard with the multi-vulnerability index of exposed receptors, providing a relative ranking of areas and targets potentially affected by multiple risks in the considered region. The methodology was applied to the North Adriatic coast (Italy) producing a range of GIS-based multi-hazard, exposure, multi-vulnerability and multi-risk maps that can be used by policy-makers to define risk management and adaptation strategies. Results show that areas affected by higher multi-hazard scores are located close to the coastline where all the investigated hazards are present. Multi-vulnerability assumes relatively high scores in the whole case study, showing that beaches, wetlands, protected areas and river mouths are the more sensible targets. The final estimate of multi-risk for coastal municipalities provides useful information for local public authorities to set future priorities for adaptation and define future plans for shoreline and coastal management in view of climate change.

  19. Climate change and functional traits affect population dynamics of a long-lived seabird.

    PubMed

    Jenouvrier, Stéphanie; Desprez, Marine; Fay, Remi; Barbraud, Christophe; Weimerskirch, Henri; Delord, Karine; Caswell, Hal

    2018-07-01

    Recent studies unravelled the effect of climate changes on populations through their impact on functional traits and demographic rates in terrestrial and freshwater ecosystems, but such understanding in marine ecosystems remains incomplete. Here, we evaluate the impact of the combined effects of climate and functional traits on population dynamics of a long-lived migratory seabird breeding in the southern ocean: the black-browed albatross (Thalassarche melanophris, BBA). We address the following prospective question: "Of all the changes in the climate and functional traits, which would produce the biggest impact on the BBA population growth rate?" We develop a structured matrix population model that includes the effect of climate and functional traits on the complete BBA life cycle. A detailed sensitivity analysis is conducted to understand the main pathway by which climate and functional trait changes affect the population growth rate. The population growth rate of BBA is driven by the combined effects of climate over various seasons and multiple functional traits with carry-over effects across seasons on demographic processes. Changes in sea surface temperature (SST) during late winter cause the biggest changes in the population growth rate, through their effect on juvenile survival. Adults appeared to respond to changes in winter climate conditions by adapting their migratory schedule rather than by modifying their at-sea foraging activity. However, the sensitivity of the population growth rate to SST affecting BBA migratory schedule is small. BBA foraging activity during the pre-breeding period has the biggest impact on population growth rate among functional traits. Finally, changes in SST during the breeding season have little effect on the population growth rate. These results highlight the importance of early life histories and carry-over effects of climate and functional traits on demographic rates across multiple seasons in population response to climate change. Robust conclusions about the roles of various phases of the life cycle and functional traits in population response to climate change rely on an understanding of the relationships of traits to demographic rates across the complete life cycle. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd oxn behalf of British Ecological Society.

  20. Ecologically-Relevant Maps of Landforms and Physiographic Diversity for Climate Adaptation Planning

    PubMed Central

    Theobald, David M.; Harrison-Atlas, Dylan; Monahan, William B.; Albano, Christine M.

    2015-01-01

    Key to understanding the implications of climate and land use change on biodiversity and natural resources is to incorporate the physiographic platform on which changes in ecological systems unfold. Here, we advance a detailed classification and high-resolution map of physiography, built by combining landforms and lithology (soil parent material) at multiple spatial scales. We used only relatively static abiotic variables (i.e., excluded climatic and biotic factors) to prevent confounding current ecological patterns and processes with enduring landscape features, and to make the physiographic classification more interpretable for climate adaptation planning. We generated novel spatial databases for 15 landform and 269 physiographic types across the conterminous United States of America. We examined their potential use by natural resource managers by placing them within a contemporary climate change adaptation framework, and found our physiographic databases could play key roles in four of seven general adaptation strategies. We also calculated correlations with common empirical measures of biodiversity to examine the degree to which the physiographic setting explains various aspects of current biodiversity patterns. Additionally, we evaluated the relationship between landform diversity and measures of climate change to explore how changes may unfold across a geophysical template. We found landform types are particularly sensitive to spatial scale, and so we recommend using high-resolution datasets when possible, as well as generating metrics using multiple neighborhood sizes to both minimize and characterize potential unknown biases. We illustrate how our work can inform current strategies for climate change adaptation. The analytical framework and classification of landforms and parent material are easily extendable to other geographies and may be used to promote climate change adaptation in other settings. PMID:26641818

  1. The Nevada NSF EPSCoR infrastructure for climate change science, education, and outreach project: highlights and progress on investigations of ecological change and water resources along elevational gradients

    NASA Astrophysics Data System (ADS)

    Saito, L.; Biondi, F.; Fenstermaker, L. F.; Arnone, J.; Devitt, D.; Riddle, B.; Young, M.

    2010-12-01

    In 2008, the Nevada System of Higher Education received a 5-year, $15 million grant from the National Science Foundation’s (NSF) Experimental Program to Stimulate Competitive Research (EPSCoR). The mission of the project is to create a statewide interdisciplinary program to stimulate transformative research, education, and outreach about the effects of regional climate change on ecosystem services (especially water resources), and support use of this knowledge by policy makers and stakeholders. The overarching question that this effort will address is: how will climate change affect water resources, disturbance regimes and linked ecosystem and human services? While the overall project includes cyberinfrastructure, policy, education and climate modeling, this presentation will focus on the ecological change and water resources components. The goals of these two components are: 1) improving understanding of processes controlling local- and basin-wide impacts of climate on species dynamics, disturbance regimes, and water recharge rates; 2) evaluating interactions between landscape-level processes and biophysical indicators; 3) evaluating interactions between surface and groundwater systems; 4) predicting changes in wildfire regime, primary productivity, and biodiversity (including invasive species); and 5) assessing how interactions between water and ecology will differ under climate change and/or climate variability scenarios. To achieve these goals, the two components will quantify present-day climate variability at multiple temporal and spatial scales, including at multiple elevations within Nevada’s Basin and Range ecosystem continuum. This presentation will discuss key elements for achieving these goals, including the establishment of instrumented transects spanning a range of elevations and vegetation zones in eastern and southern Nevada.

  2. Impact of Spatial Scales on the Intercomparison of Climate Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wei; Steptoe, Michael; Chang, Zheng

    2017-01-01

    Scenario analysis has been widely applied in climate science to understand the impact of climate change on the future human environment, but intercomparison and similarity analysis of different climate scenarios based on multiple simulation runs remain challenging. Although spatial heterogeneity plays a key role in modeling climate and human systems, little research has been performed to understand the impact of spatial variations and scales on similarity analysis of climate scenarios. To address this issue, the authors developed a geovisual analytics framework that lets users perform similarity analysis of climate scenarios from the Global Change Assessment Model (GCAM) using a hierarchicalmore » clustering approach.« less

  3. Misleading prioritizations from modelling range shifts under climate change

    Treesearch

    Helen R. Sofaer; Catherine S. Jarnevich; Curtis H. Flather

    2018-01-01

    Conservation planning requires the prioritization of a subset of taxa and geographical locations to focus monitoring and management efforts. Integration of the threats and opportunities posed by climate change often relies on predictions from species distribution models, particularly for assessments of vulnerability or invasion risk for multiple taxa. We evaluated...

  4. IMPACTS OF CLIMATE-INDUCED CHANGES IN EXTREME EVENTS ON OZONE AND PARTICULATE MATTER AIR QUALITY

    EPA Science Inventory

    Historical data records of air pollution meteorology from multiple datasets will be compiled and analyzed to identify possible trends in extreme events. Changes in climate and air quality between 2010 and 2050 will be simulated with a suite of models. The consequential effe...

  5. Social and health dimensions of climate change in the Amazon.

    PubMed

    Brondízio, Eduardo S; de Lima, Ana C B; Schramski, Sam; Adams, Cristina

    2016-07-01

    The Amazon region has been part of climate change debates for decades, yet attention to its social and health dimensions has been limited. This paper assesses literature on the social and health dimensions of climate change in the Amazon. A conceptual framework underscores multiple stresses and exposures created by interactions between climate change and local social-environmental conditions. Using the Thomson-Reuter Web of Science, this study bibliometrically assessed the overall literature on climate change in the Amazon, including Physical Sciences, Social Sciences, Anthropology, Environmental Science/Ecology and Public, Environmental/Occupational Health. From this assessment, a relevant sub-sample was selected and complemented with literature from the Brazilian database SciELO. This sample discusses three dimensions of climate change impacts in the region: livelihood changes, vector-borne diseases and microbial proliferation, and respiratory diseases. This analysis elucidates imbalance and disconnect between ecological, physical and social and health dimensions of climate change and between continental and regional climate analysis, and sub-regional and local levels. Work on the social and health implications of climate change in the Amazon falls significantly behind other research areas, limiting reliable information for analytical models and for Amazonian policy-makers and society at large. Collaborative research is called for.

  6. Accounting for multiple sources of uncertainty in impact assessments: The example of the BRACE study

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.

    2015-12-01

    Assessing climate change impacts often requires the use of multiple scenarios, types of models, and data sources, leading to a large number of potential sources of uncertainty. For example, a single study might require a choice of a forcing scenario, climate model, bias correction and/or downscaling method, societal development scenario, model (typically several) for quantifying elements of societal development such as economic and population growth, biophysical model (such as for crop yields or hydrology), and societal impact model (e.g. economic or health model). Some sources of uncertainty are reduced or eliminated by the framing of the question. For example, it may be useful to ask what an impact outcome would be conditional on a given societal development pathway, forcing scenario, or policy. However many sources of uncertainty remain, and it is rare for all or even most of these sources to be accounted for. I use the example of a recent integrated project on the Benefits of Reduced Anthropogenic Climate changE (BRACE) to explore useful approaches to uncertainty across multiple components of an impact assessment. BRACE comprises 23 papers that assess the differences in impacts between two alternative climate futures: those associated with Representative Concentration Pathways (RCPs) 4.5 and 8.5. It quantifies difference in impacts in terms of extreme events, health, agriculture, tropical cyclones, and sea level rise. Methodologically, it includes climate modeling, statistical analysis, integrated assessment modeling, and sector-specific impact modeling. It employs alternative scenarios of both radiative forcing and societal development, but generally uses a single climate model (CESM), partially accounting for climate uncertainty by drawing heavily on large initial condition ensembles. Strengths and weaknesses of the approach to uncertainty in BRACE are assessed. Options under consideration for improving the approach include the use of perturbed physics ensembles of CESM, employing results from multiple climate models, and combining the results from single impact models with statistical representations of uncertainty across multiple models. A key consideration is the relationship between the question being addressed and the uncertainty approach.

  7. The Evolving Risk of Climate Change and National Security: People not Polar Bears

    NASA Astrophysics Data System (ADS)

    Titley, D.

    2014-12-01

    This talk will provide a general overview of climate change and discuss why this is a national security issue. Climate change is about people, about water, and about change itself. Understanding the rate of climate change, relative to the abilities of both humans and ecosystems to adapt is critical. I will briefly describe the multiple, independent lines of evidence that the climate is changing, and that the primary cause of this change is a change in atmospheric composition caused by the burning of fossil fuels. I will cover the history of climate change as seen within the U.S. Department of Defense and U.S. Navy, how this challenge is being addressed from budgetary, policy, and political angles, and what are the greatest challenges to national security that arise from climate change and in particular, the associated changes in the Arctic. I will conclude with an assessment of future challenges and opportunities regarding climate change, from science, policy, and political perspectives, and why we know enough to take significant action now, even if we don't know every detail about the future. In addition, this talk will address how to effectively talk about climate change through the use of analogies, plain, non-jargon English, and even a little humor.

  8. Annual Proxy Records from Tropical Cloud Forest Trees in the Monteverde Cloud Forest, Costa Rica

    NASA Astrophysics Data System (ADS)

    Anchukaitis, K. J.; Evans, M. N.; Wheelwright, N. T.; Schrag, D. P.

    2005-12-01

    The extinction of the Golden Toad (Bufo periglenes) from Costa Rica's Monteverde Cloud Forest prompted research into the causes of ecological change in the montane forests of Costa Rica. Subsequent analysis of meteorological data has suggested that warmer global surface and tropical Pacific sea surface temperatures contribute to an observed decrease in cloud cover at Monteverde. However, while recent studies may have concluded that climate change is already having an effect on cloud forest environments in Costa Rica, without the context provided by long-term climate records, it is difficult to confidently conclude that the observed ecological changes are the result of anthropogenic climate forcing, land clearance in the lowland rainforest, or natural variability in tropical climate. To address this, we develop high-resolution proxy paleoclimate records from trees without annual rings in the Monteverde Cloud Forest in Costa Rica. Calibration of an age model in these trees is a fundamental prerequisite for proxy paleoclimate reconstructions. Our approach exploits the isotopic seasonality in the δ18O of water sources (fog versus rainfall) used by trees over the course of a single year. Ocotea tenera individuals of known age and measured annual growth increments were sampled in long-term monitored plantation sites in order to test this proposed age model. High-resolution (200μm increments) stable isotope measurements on cellulose reveal distinct, coherent δ18O cycles of 6 to 10‰. The calculated growth rates derived from the isotope timeseries match those observed from basal growth increment measurements. Spatial fidelity in the age model and climate signal is examined by using multiple cores from multiple trees and multiple sites. These data support our hypothesis that annual isotope cycles in these trees can be used to provide chronological control in the absence of rings. The ability of trees to record interannual climate variability in local hydrometeorology and remote climate forcing is evaluated using the isotope signal from multiple trees, local meteorological observations, and climate field data for the well-observed 1997-1998 warm El Niño-Southern Oscillation (ENSO) event. The successful calibration of our age model is a necessary step toward the development of long, annually-resolved paleoclimate reconstructions from old trees, even without rings, which will be used to evaluate the cause of recent observed climate change at Monteverde and as proxies for tropical climate field reconstructions.

  9. The contribution of future agricultural trends in the US Midwest to global climate change mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Allison M.; Kyle, G. Page; Zhang, Xuesong

    2014-01-19

    Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC – Environmental Policy Indicatormore » Climate) for the US Midwest within a global integrated assessment model (GCAM – Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.« less

  10. Multiple External Representations: Bridges or Barriers to Climate Literacy?

    NASA Astrophysics Data System (ADS)

    Holzer, M. A.

    2012-12-01

    The continuous barrage of science related headlines and other media sources warn us of the need to heed the imperative for a science literate society. Climate change, genetics, evolution are a few of the charged and complex scientific topics requiring public understanding of the science to fully grasp the enormous reach of these topics in our daily lives. For instance, our global climate is changing as evidenced by the analysis of Earth observing satellite data, in-situ data, and proxy data records. How we as a global society decide to address the needs associated with a changing climate are contingent upon having a population that understands how the climate system functions, and can therefore make informed decisions on how to mitigate the effects of climate change. Communication in science relies heavily on the use of multiple representations to support the claims presented. However, these multiple representations require spatial and temporal skills to interpret information portrayed in them, and how a person engages with complex text and the multiple representations varies with the level of expertise one has with the content area. For example, a climatologist will likely identify anomalous data more quickly than a novice when presented with a graph of temperature change over time. These representations are used throughout textbooks as well as popular reading materials such as newspapers and magazines without much consideration for how a reader engages with complex text, diagrams, images, and graphs. If the ability to read and interact with scientific text found in popular literature is perceived as a worthy goal of scientific literacy, then it is imperative that readers understand the relationship between multiple representations and the text while interacting with the science literature they are reading. For example, in climate related articles multiple representations not only support the content, but they are part of the content not to be overlooked by a reader. Climatologists recognize the wealth of data and content found in these representations and therefore find themselves in a position where they can effectively interact with the author and their claims. This expert ability to seamlessly integrate text with the associated representations is at one end of the continuum of scientific text comprehension, but what abilities define a novice and those in between expert and novice in this continuum of scientific text comprehension? This talk will describe an ongoing research project with the overarching goal to establish the balance of this continuum in order to identify scaffolds that will assist non expert readers negotiate meaning from complex scientific text inclusive of multiple representations found in popular literature in climatology. It will inform those creating data representations on how best to create the representations so that claims and causal relationships may be derived from the literature or media source.

  11. The Multitrophic Effects of Climate Change and Glacier Retreat in Mountain Rivers

    PubMed Central

    2017-01-01

    Abstract Climate change is driving the thinning and retreat of many glaciers globally. Reductions of ice-melt inputs to mountain rivers are changing their physicochemical characteristics and, in turn, aquatic communities. Glacier-fed rivers can serve as model systems for investigations of climate-change effects on ecosystems because of their strong atmospheric–cryospheric links, high biodiversity of multiple taxonomic groups, and significant conservation interest concerning endemic species. From a synthesis of existing knowledge, we develop a new conceptual understanding of how reducing glacier cover affects organisms spanning multiple trophic groups. Although the response of macroinvertebrates to glacier retreat has been well described, we show that there remains a relative paucity of information for biofilm, microinvertebrate, and vertebrate taxa. Enhanced understanding of whole river food webs will improve the prediction of river-ecosystem responses to deglaciation while offering the potential to identify and protect a wider range of sensitive and threatened species. PMID:29599537

  12. The Multitrophic Effects of Climate Change and Glacier Retreat in Mountain Rivers.

    PubMed

    Fell, Sarah C; Carrivick, Jonathan L; Brown, Lee E

    2017-10-01

    Climate change is driving the thinning and retreat of many glaciers globally. Reductions of ice-melt inputs to mountain rivers are changing their physicochemical characteristics and, in turn, aquatic communities. Glacier-fed rivers can serve as model systems for investigations of climate-change effects on ecosystems because of their strong atmospheric-cryospheric links, high biodiversity of multiple taxonomic groups, and significant conservation interest concerning endemic species. From a synthesis of existing knowledge, we develop a new conceptual understanding of how reducing glacier cover affects organisms spanning multiple trophic groups. Although the response of macroinvertebrates to glacier retreat has been well described, we show that there remains a relative paucity of information for biofilm, microinvertebrate, and vertebrate taxa. Enhanced understanding of whole river food webs will improve the prediction of river-ecosystem responses to deglaciation while offering the potential to identify and protect a wider range of sensitive and threatened species.

  13. Collapsing avian community on a Hawaiian island.

    PubMed

    Paxton, Eben H; Camp, Richard J; Gorresen, P Marcos; Crampton, Lisa H; Leonard, David L; VanderWerf, Eric A

    2016-09-01

    The viability of many species has been jeopardized by numerous negative factors over the centuries, but climate change is predicted to accelerate and increase the pressure of many of these threats, leading to extinctions. The Hawaiian honeycreepers, famous for their spectacular adaptive radiation, are predicted to experience negative responses to climate change, given their susceptibility to introduced disease, the strong linkage of disease distribution to climatic conditions, and their current distribution. We document the rapid collapse of the native avifauna on the island of Kaua'i that corresponds to changes in climate and disease prevalence. Although multiple factors may be pressuring the community, we suggest that a tipping point has been crossed in which temperatures in forest habitats at high elevations have reached a threshold that facilitates the development of avian malaria and its vector throughout these species' ranges. Continued incursion of invasive weeds and non-native avian competitors may be facilitated by climate change and could also contribute to declines. If current rates of decline continue, we predict multiple extinctions in the coming decades. Kaua'i represents an early warning for the forest bird communities on the Maui and Hawai'i islands, as well as other species around the world that are trapped within a climatic space that is rapidly disappearing.

  14. Collapsing avian community on a Hawaiian island

    USGS Publications Warehouse

    Paxton, Eben H.; Camp, Richard J.; Gorresen, P. Marcos; Crampton, Lisa H.; Leonard, David L.; VanderWerf, Eric

    2016-01-01

    The viability of many species has been jeopardized by numerous negative factors over the centuries, but climate change is predicted to accelerate and increase the pressure of many of these threats, leading to extinctions. The Hawaiian honeycreepers, famous for their spectacular adaptive radiation, are predicted to experience negative responses to climate change, given their susceptibility to introduced disease, the strong linkage of disease distribution to climatic conditions, and their current distribution. We document the rapid collapse of the native avifauna on the island of Kaua‘i that corresponds to changes in climate and disease prevalence. Although multiple factors may be pressuring the community, we suggest that a tipping point has been crossed in which temperatures in forest habitats at high elevations have reached a threshold that facilitates the development of avian malaria and its vector throughout these species’ ranges. Continued incursion of invasive weeds and non-native avian competitors may be facilitated by climate change and could also contribute to declines. If current rates of decline continue, we predict multiple extinctions in the coming decades. Kaua‘i represents an early warning for the forest bird communities on the Maui and Hawai‘i islands, as well as other species around the world that are trapped within a climatic space that is rapidly disappearing.

  15. Mid-to-late Holocene climate change record in palaeo-notch sediment from London Island, Svalbard

    NASA Astrophysics Data System (ADS)

    Yang, Zhongkang; Sun, Liguang; Zhou, Xin; Wang, Yuhong

    2018-06-01

    The Arctic region is very sensitive to climate change and important in the Earth's climate system. However, proxy datasets for Arctic climate are unevenly distributed and especially scarce for Svalbard because glaciers during the Little Ice Age, the most extensive in the Holocene, destroyed large quantities of sediment records in Svalbard. Fortunately, palaeo-notch sediments could withstand glaciers and be well-preserved after deposition. In this study, we reconstructed a mid-to-late Holocene record of climate changes in a palaeo-notch sediment sequence from London Island. Multiple weathering indices were determined, they all showed consistent weathering conditions in the study area, and they were closely linked to climate changes. Total organic carbon (TOC) and total nitrogen (TN) were also determined, and their variation profiles were similar to those of weathering indices. The climate change record in our sediment sequence is consistent with ice rafting record from North Atlantic and glacier activity from Greenland, Iceland and Svalbard, and four cold periods are clearly present. Our study provides a relatively long-term climate change record for climate conditions from mid-to-late Holocene in Svalbard.

  16. A geospatial modelling approach to predict seagrass habitat recovery under multiple stressor regimes

    EPA Science Inventory

    Restoration of estuarine seagrass habitats requires a clear understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We have developed and demonstrated a geospatial modeling a...

  17. Interactive effects of multiple climate change factors on ammonia oxidizers and denitrifiers in a temperate steppe.

    PubMed

    Zhang, Cui-Jing; Shen, Ju-Pei; Sun, Yi-Fei; Wang, Jun-Tao; Zhang, Li-Mei; Yang, Zhong-Ling; Han, Hong-Yan; Wan, Shi-Qiang; He, Ji-Zheng

    2017-04-01

    Global climate change could have profound effects on belowground microbial communities and subsequently affect soil biogeochemical processes. The interactive effects of multiple co-occurring climate change factors on microbially mediated processes are not well understood. A four-factorial field experiment with elevated CO2, watering, nitrogen (N) addition and night warming was conducted in a temperate steppe of northern China. Real-time polymerase chain reaction and terminal-restriction fragment length polymorphism, combined with clone library techniques, were applied to examine the effects of those climate change factors on N-related microbial abundance and community composition. Only the abundance of ammonia-oxidizing bacteria significantly increased by nitrogen addition and decreased by watering. The interactions of watering × warming on the bacterial amoA community and warming × nitrogen addition on the nosZ community were found. Redundancy analysis indicated that the ammonia-oxidizing archaeal community was affected by total N and total carbon, while the community of bacterial amoA and nosZ were significantly affected by soil pH. According to a structural equation modeling analysis, climate change influenced net primary production indirectly by altering microbial abundance and activities. These results indicated that microbial responses to the combination of chronic global change tend to be smaller than expected from single-factor global change manipulations. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Using the storm water management model to predict urban headwater stream hydrological response to climate and land cover change

    Treesearch

    J.Y. Wu; J.R. Thompson; R.K. Kolka; K.J. Franz; T.W. Stewart

    2013-01-01

    Streams are natural features in urban landscapes that can provide ecosystem services for urban residents. However, urban streams are under increasing pressure caused by multiple anthropogenic impacts, including increases in human population and associated impervious surface area, and accelerated climate change. The ability to anticipate these changes and better...

  19. Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes

    DOE PAGES

    Tian, Hanqin; Chen, Guangsheng; Lu, Chaoqun; ...

    2015-03-16

    Greenhouse gas (GHG)-induced climate change is among the most pressing sustainability challenges facing humanity today, posing serious risks for ecosystem health. Methane (CH 4) and nitrous oxide (N 2O) are the two most important GHGs after carbon dioxide (CO 2), but their regional and global budgets are not well known. In this paper, we applied a process-based coupled biogeochemical model to concurrently estimate the magnitude and spatial and temporal patterns of CH 4 and N 2O fluxes as driven by multiple environmental changes, including climate variability, rising atmospheric CO 2, increasing nitrogen deposition, tropospheric ozone pollution, land use change, andmore » nitrogen fertilizer use.« less

  20. Climate change and watershed mercury export: a multiple projection and model analysis.

    PubMed

    Golden, Heather E; Knightes, Christopher D; Conrads, Paul A; Feaster, Toby D; Davis, Gary M; Benedict, Stephen T; Bradley, Paul M

    2013-09-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling. Copyright © 2013 SETAC.

  1. Effects of climate change on ecological disturbance in the northern Rockies

    USGS Publications Warehouse

    Loehman, Rachel A.; Bentz, Barbara J.; DeNitto, Gregg A.; Keane, Robert E.; Manning, Mary E.; Duncan, Jacob P.; Egan, Joel M.; Jackson, Marcus B.; Kegley, Sandra; Lockman, I. Blakey; Pearson, Dean E.; Powell, James A.; Shelly, Steve; Steed, Brytten E.; Zambino, Paul J.; Halofsky, Jessica E.; Peterson, David L.

    2018-01-01

    Disturbances alter ecosystem, community, or population structure and change elements of the biological and/or physical environment. Climate changes can alter the timing, magnitude, frequency, and duration of disturbance events, as well as the interactions of disturbances on a landscape, and climate change may already be affecting disturbance events and regimes. Interactions among disturbance regimes, such as the cooccurrence in space and time of bark beetle outbreaks and wildfires, can result in highly visible, rapidly occurring, and persistent changes in landscape composition and structure. Understanding how altered disturbance patterns and multiple disturbance interactions might result in novel and emergent landscape behaviors is critical for addressing climate change impacts and for designing land management strategies that are appropriate for future climates This chapter describes the ecology of important disturbance regimes in the Northern Rockies region, and potential shifts in these regimes as a consequence of observed and projected climate change. We summarize five disturbance types present in the Northern Rockies that are sensitive to a changing climate--wildfires, bark beetles, white pine blister rust (Cronartium ribicola), other forest diseases, and nonnative plant invasions—and provide information that can help managers anticipate how, when, where, and why climate changes may alter the characteristics of disturbance regimes.

  2. Comparing approaches for using climate projections in assessing water resources investments for systems with multiple stakeholder groups

    NASA Astrophysics Data System (ADS)

    Hurford, Anthony; Harou, Julien

    2015-04-01

    Climate change has challenged conventional methods of planning water resources infrastructure investment, relying on stationarity of time-series data. It is not clear how to best use projections of future climatic conditions. Many-objective simulation-optimisation and trade-off analysis using evolutionary algorithms has been proposed as an approach to addressing complex planning problems with multiple conflicting objectives. The search for promising assets and policies can be carried out across a range of climate projections, to identify the configurations of infrastructure investment shown by model simulation to be robust under diverse future conditions. Climate projections can be used in different ways within a simulation model to represent the range of possible future conditions and understand how optimal investments vary according to the different hydrological conditions. We compare two approaches, optimising over an ensemble of different 20-year flow and PET timeseries projections, and separately for individual future scenarios built synthetically from the original ensemble. Comparing trade-off curves and surfaces generated by the two approaches helps understand the limits and benefits of optimising under different sets of conditions. The comparison is made for the Tana Basin in Kenya, where climate change combined with multiple conflicting objectives of water management and infrastructure investment mean decision-making is particularly challenging.

  3. Hormonal, behavioral, and life-history traits exhibit correlated shifts in relation to population establishment in a novel environment.

    PubMed

    Atwell, Jonathan W; Cardoso, Gonçalo C; Whittaker, Danielle J; Price, Trevor D; Ketterson, Ellen D

    2014-12-01

    Climate change, habitat alteration, range expansions, and biological invasions are all predicted to require rapid shifts in multiple traits including behavior and life history, both for initial population establishment and subsequent adaptation. Hormonal mechanisms likely play a key role in facilitating or constraining plastic and genetic responses for suites of traits, but few studies have evaluated their role in shaping contemporary adaptation or diversification. We examined multiple phenotypic adjustments and associated hormonal changes following a recent (early 1980s) colonization event, in which a temperate-breeding songbird, the dark-eyed junco (Junco hyemalis), became established in the Mediterranean climate of San Diego, California. The milder climate has led to an extended breeding season and year-round residency, and we document shifts in multiple sexually selected behaviors and plumage traits. Testosterone titers in San Diego were elevated for longer but with a lower peak value compared to a nearby native-range population, and correlations between testosterone and related traits were similar within and among populations. A common garden study indicated that changes in testosterone likely represent plastic responses to the less seasonal environment of the city, providing the context against which subsequent genetic changes in morphology likely occurred. We argue that correlated shifts in multiple traits, organized by underlying physiology, may be a generally important element of many successful adjustments to changing environments.

  4. Understanding Perceptions of Climate Change, Priorities, and Decision-Making among Municipalities in Lima, Peru to Better Inform Adaptation and Mitigation Planning.

    PubMed

    Siña, Mariella; Wood, Rachel C; Saldarriaga, Enrique; Lawler, Joshua; Zunt, Joseph; Garcia, Patricia; Cárcamo, César

    2016-01-01

    Climate change poses multiple risks to the population of Lima, the largest city and capital of Peru, located on the Pacific coast in a desert ecosystem. These risks include increased water scarcity, increased heat, and the introduction and emergence of vector-borne and other climate sensitive diseases. To respond to these threats, it is necessary for the government, at every level, to adopt more mitigation and adaptation strategies. Here, focus groups were conducted with representatives from five Lima municipalities to determine priorities, perception of climate change, and decision-making processes for implementing projects within each municipality. These factors can affect the ability and desire of a community to implement climate change adaptation and mitigation strategies. The results show that climate change and other environmental factors are of relatively low priority, whereas public safety and water and sanitation services are of highest concern. Perhaps most importantly, climate change is not well understood among the municipalities. Participants had trouble distinguishing climate change from other environmental issues and did not fully understand its causes and effects. Greater understanding of what climate change is and why it is important is necessary for it to become a priority for the municipalities. Different aspects of increased climate change awareness seem to be connected to having experienced extreme weather events, whether related or not to climate change, and to higher socioeconomic status.

  5. Integrating Science and Management to Assess Forest Ecosystem Vulnerability to Climate Change

    Treesearch

    Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; Maria K. Janowiak; P. Danielle Shannon; Christopher W. Swanston

    2017-01-01

    We developed the ecosystem vulnerability assessment approach (EVAA) to help inform potential adaptation actions in response to a changing climate. EVAA combines multiple quantitative models and expert elicitation from scientists and land managers. In each of eight assessment areas, a panel of local experts determined potential vulnerability of forest ecosystems to...

  6. The Mekong's future flows under multiple driving factors: How future climate change, hydropower developments and irrigation expansion drive hydrological changes?

    NASA Astrophysics Data System (ADS)

    Hoang, L. P.; van Vliet, M. T. H.; Lauri, H.; Kummu, M.; Koponen, J.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F.

    2016-12-01

    The Mekong River's flows and water resources are in many ways essential for sustaining economic growths, flood security of about 70 million people and biodiversity in one of the world's most ecologically productive wetland systems. The river's hydrological cycle, however, are increasingly perturbed by climate change, large-scale hydropower developments and rapid irrigated land expansions. This study presents an integrated impact assessment to characterize and quantify future hydrological changes induced by these driving factors, both separately and combined. We have integrated a crop simulation module and a hydropower dam module into a distributed hydrological model (VMod) and simulated the Mekong's hydrology under multiple climate change and development scenarios. Our results show that the Mekong's hydrological regime will experience substantial changes caused by the considered factors. Magnitude-wise, hydropower dam developments exhibit the largest impacts on river flows, with projected higher flows (up to +35%) during the dry season and lower flows (up to -44%) during the wet season. Annual flow changes caused by the dams, however, are relatively marginal. In contrast to this, climate change is projected to increase the Mekong's annual flows (up to +16%) while irrigated land expansions result in annual flow reductions (-1% to -3%). Combining the impacts of these three drivers, we found that river flow changes, especially those at the monthly scale, largely differ from changes under the individual driving factors. This is explained by large differences in impacts' magnitudes and contrasting impacts' directions for the individual drivers. We argue that the Mekong's future flows are likely driven by multiple factors and thus advocate for integrated assessment approaches and tools that support proper considerations of these factors and their interplays.

  7. SimilarityExplorer: A visual inter-comparison tool for multifaceted climate data

    Treesearch

    J. Poco; A. Dasgupta; Y. Wei; W. Hargrove; C. Schwalm; R. Cook; E. Bertini; C. Silva

    2014-01-01

    Inter-comparison and similarity analysis to gauge consensus among multiple simulation models is a critical visualization problem for understanding climate change patterns. Climate models, specifically, Terrestrial Biosphere Models (TBM) represent time and space variable ecosystem processes, for example, simulations of photosynthesis and respiration, using algorithms...

  8. Tolerance to multiple climate stressors: A case study of Douglas-fir drought and cold hardiness

    USGS Publications Warehouse

    Bansal, Sheel; Harrington, Constance A; St. Clair, John Bradley

    2016-01-01

    Summary: 1. Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations. 2. We assessed the capacity of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii), an ecologically and economically important species in the northwestern USA, to tolerate both drought and cold stress on 35 populations grown in common gardens. We used principal components analysis to combine drought and cold hardiness trait data into generalized stress hardiness traits to model geographic variation in hardiness as a function of climate across the Douglas-fir range. 3. Drought and cold hardiness converged among populations along winter temperature gradients and diverged along summer precipitation gradients. Populations originating in regions with cold winters had relatively high tolerance to both drought and cold stress, which is likely due to overlapping adaptations for coping with winter desiccation. Populations from regions with dry summers had increased drought hardiness but reduced cold hardiness, suggesting a trade-off in tolerance mechanisms. 4. Our findings highlight the necessity to look beyond bivariate trait–climate relationships and instead consider multiple traits and climate variables to effectively model and manage for the impacts of climate change on widespread species.

  9. Applying a Comprehensive Contextual Climate Change Vulnerability Framework to New Zealand's Tourism Industry.

    PubMed

    Hopkins, Debbie

    2015-03-01

    Conceptualisations of 'vulnerability' vary amongst scholarly communities, contributing to a wide variety of applications. Research investigating vulnerability to climate change has often excluded non-climatic changes which may contribute to degrees of vulnerability perceived or experienced. This paper introduces a comprehensive contextual vulnerability framework which incorporates physical, social, economic and political factors which could amplify or reduce vulnerability. The framework is applied to New Zealand's tourism industry to explore its value in interpreting a complex, human-natural environment system with multiple competing vulnerabilities. The comprehensive contextual framework can inform government policy and industry decision making, integrating understandings of climate change within the broader context of internal and external social, physical, economic, and institutional stressors.

  10. Advances in risk assessment for climate change adaptation policy.

    PubMed

    Adger, W Neil; Brown, Iain; Surminski, Swenja

    2018-06-13

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).

  11. Advances in risk assessment for climate change adaptation policy

    NASA Astrophysics Data System (ADS)

    Adger, W. Neil; Brown, Iain; Surminski, Swenja

    2018-06-01

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  12. Advances in risk assessment for climate change adaptation policy

    PubMed Central

    Adger, W. Neil; Brown, Iain; Surminski, Swenja

    2018-01-01

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712800

  13. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change

    PubMed Central

    Urban, Mark C.; Tewksbury, Josh J.; Sheldon, Kimberly S.

    2012-01-01

    Most climate change predictions omit species interactions and interspecific variation in dispersal. Here, we develop a model of multiple competing species along a warming climatic gradient that includes temperature-dependent competition, differences in niche breadth and interspecific differences in dispersal ability. Competition and dispersal differences decreased diversity and produced so-called ‘no-analogue’ communities, defined as a novel combination of species that does not currently co-occur. Climate change altered community richness the most when species had narrow niches, when mean community-wide dispersal rates were low and when species differed in dispersal abilities. With high interspecific dispersal variance, the best dispersers tracked climate change, out-competed slower dispersers and caused their extinction. Overall, competition slowed the advance of colonists into newly suitable habitats, creating lags in climate tracking. We predict that climate change will most threaten communities of species that have narrow niches (e.g. tropics), vary in dispersal (most communities) and compete strongly. Current forecasts probably underestimate climate change impacts on biodiversity by neglecting competition and dispersal differences. PMID:22217718

  14. Climate Change Professional Development: Design, Implementation, and Initial Outcomes on Teacher Learning, Practice, and Student Beliefs

    NASA Astrophysics Data System (ADS)

    Shea, Nicole A.; Mouza, Chrystalla; Drewes, Andrea

    2016-04-01

    In this work, we present the design, implementation, and initial outcomes of the Climate Academy, a hybrid professional development program delivered through a combination of face-to-face and online interactions, intended to prepare formal and informal science teachers (grades 5-16) in teaching about climate change. The Climate Academy was designed around core elements of successful environmental professional development programs and aligned with practices advocated in benchmarked science standards. Data were collected from multiple sources including observations of professional development events, participants' reflections on their learning, and collection of instructional units designed during the Academy. Data were also collected from a focal case study teacher in a middle school setting. Case study data included classroom observations, teacher interviews, and student beliefs toward climate change. Results indicated that the Climate Academy fostered increased learning among participants of both climate science content and pedagogical strategies for teaching about climate change. Additionally, results indicated that participants applied their new learning in the design of climate change instructional units. Finally, results from the case study indicated positive impacts on student beliefs and greater awareness about climate change. Results have implications for the design of professional development programs on climate change, a topic included for the first time in national standards.

  15. The Borderlands and climate change: Chapter 10 in United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science

    USGS Publications Warehouse

    Fitzpatrick, Joan; Gray, Floyd; Dubiel, Russell; Langman, Jeff; Moring, J. Bruce; Norman, Laura M.; Page, William R.; Parcher, Jean W.

    2013-01-01

    The prediction of global climate change in response to both natural forces and human activity is one of the defining issues of our times. The unprecedented observational capacity of modern earth-orbiting satellites coupled with the development of robust computational representations (models) of the Earth’s weather and climate systems afford us the opportunity to observe and investigate how these systems work now, how they have worked in the past, and how they will work in the future when forced in specific ways. In the most recent report on global climate change by the Intergovernmental Panel on Climate Change (IPCC; Solomon and others, 2007), analyses using multiple climate models support recent observations that the Earth’s climate is changing in response to a combination of natural and human-induced causes. These changes will be significant in the United States–Mexican border region, where the process of climate change affects all of the Borderlands challenge themes discussed in the preceding chapters. The dual possibilities of both significantly-changed climate and increasing variability in climate make it challenging to take full measure of the potential effects because the Borderlands already experience a high degree of interannual variability and climatological extremes.

  16. A sensible climate solution for the boreal forest

    NASA Astrophysics Data System (ADS)

    Astrup, Rasmus; Bernier, Pierre Y.; Genet, Hélène; Lutz, David A.; Bright, Ryan M.

    2018-01-01

    Climate change could increase fire risk across most of the managed boreal forest. Decreasing this risk by increasing the proportion of broad-leaved tree species is an overlooked mitigation-adaption strategy with multiple benefits.

  17. Individual contributions of climate and vegetation change to soil moisture trends across multiple spatial scales.

    PubMed

    Feng, Huihui

    2016-09-07

    Climate and vegetation change are two dominating factors for soil moisture trend. However, their individual contributions remain unknown due to their complex interaction. Here, I separated their contributions through a trajectory-based method across the global, regional and local scales. Our results demonstrated that climate change accounted for 98.78% and 114.64% of the global drying and wetting trend. Vegetation change exhibited a relatively weak influence (contributing 1.22% and -14.64% of the global drying and wetting) because it occurred in a limited area on land. Regionally, the impact of vegetation change cannot be neglected, which contributed -40.21% of the soil moisture change in the wetting zone. Locally, the contributions strongly correlated to the local environmental characteristics. Vegetation negatively affected soil moisture trends in the dry and sparsely vegetated regions and positively in the wet and densely vegetated regions. I conclude that individual contributions of climate and vegetation change vary at the global, regional and local scales. Climate change dominates the soil moisture trends, while vegetation change acts as a regulator to drying or wetting the soil under the changing climate.

  18. Forest processes and global environmental change: predicting the effects of individual and multiple stressors

    Treesearch

    John Aber; Ronald P. Neilson; Steve McNulty; James M. Lenihan; Dominque Bachelet; Raymond J. Drapek

    2001-01-01

    The purpose of this article is to review the state of prediction of forest ecosystem response to envisioned changes in the physical and chemical climate. These results are offered as one part of the forest sector analysis of the National Assessment of the Potential Consequences of Climate Variability and Change. This article has three sections. The first offers a very...

  19. Drivers and uncertainties of forecasted range shifts for warm-water fishes under climate and land cover change

    USGS Publications Warehouse

    Bouska, Kristen; Whitledge, Gregory W.; Lant, Christopher; Schoof, Justin

    2018-01-01

    Land cover is an important determinant of aquatic habitat and is projected to shift with climate changes, yet climate-driven land cover changes are rarely factored into climate assessments. To quantify impacts and uncertainty of coupled climate and land cover change on warm-water fish species’ distributions, we used an ensemble model approach to project distributions of 14 species. For each species, current range projections were compared to 27 scenario-based projections and aggregated to visualize uncertainty. Multiple regression and model selection techniques were used to identify drivers of range change. Novel, or no-analogue, climates were assessed to evaluate transferability of models. Changes in total probability of occurrence ranged widely across species, from a 63% increase to a 65% decrease. Distributional gains and losses were largely driven by temperature and flow variables and underscore the importance of habitat heterogeneity and connectivity to facilitate adaptation to changing conditions. Finally, novel climate conditions were driven by mean annual maximum temperature, which stresses the importance of understanding the role of temperature on fish physiology and the role of temperature-mitigating management practices.

  20. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN

    NASA Astrophysics Data System (ADS)

    Kloster, S.; Mahowald, N. M.; Randerson, J. T.; Lawrence, P. J.

    2012-01-01

    Landscape fires during the 21st century are expected to change in response to multiple agents of global change. Important controlling factors include climate controls on the length and intensity of the fire season, fuel availability, and fire management, which are already anthropogenically perturbed today and are predicted to change further in the future. An improved understanding of future fires will contribute to an improved ability to project future anthropogenic climate change, as changes in fire activity will in turn impact climate. In the present study we used a coupled-carbon-fire model to investigate how changes in climate, demography, and land use may alter fire emissions. We used climate projections following the SRES A1B scenario from two different climate models (ECHAM5/MPI-OM and CCSM) and changes in population. Land use and harvest rates were prescribed according to the RCP 45 scenario. In response to the combined effect of all these drivers, our model estimated, depending on our choice of climate projection, an increase in future (2075-2099) fire carbon emissions by 17 and 62% compared to present day (1985-2009). The largest increase in fire emissions was predicted for Southern Hemisphere South America for both climate projections. For Northern Hemisphere Africa, a region that contributed significantly to the global total fire carbon emissions, the response varied between a decrease and an increase depending on the climate projection. We disentangled the contribution of the single forcing factors to the overall response by conducting an additional set of simulations in which each factor was individually held constant at pre-industrial levels. The two different projections of future climate change evaluated in this study led to increases in global fire carbon emissions by 22% (CCSM) and 66% (ECHAM5/MPI-OM). The RCP 45 projection of harvest and land use led to a decrease in fire carbon emissions by -5%. The RCP 26 and RCP 60 harvest and landuse projections caused decreases around -20%. Changes in human ignition led to an increase of 20%. When we also included changes in fire management efforts to suppress fires in densely populated areas, global fire carbon emission decreased by -6% in response to changes in population density. We concluded from this study that changes in fire emissions in the future are controlled by multiple interacting factors. Although changes in climate led to an increase in future fire emissions this could be globally counterbalanced by coupled changes in land use, harvest, and demography.

  1. Climate change response of great basin bristlecone pine in the Nevada NSF-EPSCoR Project (www.nvclimatechange.org)

    Treesearch

    Franco Biondi; Scotty Strachan

    2011-01-01

    Predicting the future of high-elevation pine populations is closely linked to correctly interpreting their past responses to climatic variability. As a proxy index of climate, dendrochronological records have the advantage of seasonal to annual resolution over multiple centuries to millennia (Bradley 1999). All climate reconstructions rely on the 'uniformity...

  2. Climate warming drives local extinction: Evidence from observation and experimentation.

    PubMed

    Panetta, Anne Marie; Stanton, Maureen L; Harte, John

    2018-02-01

    Despite increasing concern about elevated extinction risk as global temperatures rise, it is difficult to confirm causal links between climate change and extinction. By coupling 25 years of in situ climate manipulation with experimental seed introductions and both historical and current plant surveys, we identify causal, mechanistic links between climate change and the local extinction of a widespread mountain plant ( Androsace septentrionalis ). Climate warming causes precipitous declines in population size by reducing fecundity and survival across multiple life stages. Climate warming also purges belowground seed banks, limiting the potential for the future recovery of at-risk populations under ameliorated conditions. Bolstered by previous reports of plant community shifts in this experiment and in other habitats, our findings not only support the hypothesis that climate change can drive local extinction but also foreshadow potentially widespread species losses in subalpine meadows as climate warming continues.

  3. Climate warming drives local extinction: Evidence from observation and experimentation

    PubMed Central

    Panetta, Anne Marie; Stanton, Maureen L.; Harte, John

    2018-01-01

    Despite increasing concern about elevated extinction risk as global temperatures rise, it is difficult to confirm causal links between climate change and extinction. By coupling 25 years of in situ climate manipulation with experimental seed introductions and both historical and current plant surveys, we identify causal, mechanistic links between climate change and the local extinction of a widespread mountain plant (Androsace septentrionalis). Climate warming causes precipitous declines in population size by reducing fecundity and survival across multiple life stages. Climate warming also purges belowground seed banks, limiting the potential for the future recovery of at-risk populations under ameliorated conditions. Bolstered by previous reports of plant community shifts in this experiment and in other habitats, our findings not only support the hypothesis that climate change can drive local extinction but also foreshadow potentially widespread species losses in subalpine meadows as climate warming continues. PMID:29507884

  4. Technical note: Simultaneous fully dynamic characterization of multiple input–output relationships in climate models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.

    We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less

  5. Technical note: Simultaneous fully dynamic characterization of multiple input–output relationships in climate models

    DOE PAGES

    Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.; ...

    2017-02-17

    We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less

  6. Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors.

    PubMed

    Dineshram, Ramadoss; Chandramouli, Kondethimmanahalli; Ko, Ginger Wai Kuen; Zhang, Huoming; Qian, Pei-Yuan; Ravasi, Timothy; Thiyagarajan, Vengatesen

    2016-06-01

    The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life-history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change-related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ-LC-MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down-regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down-regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up-regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs. © 2016 John Wiley & Sons Ltd.

  7. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology

    NASA Astrophysics Data System (ADS)

    Shen, Mingxi; Chen, Jie; Zhuan, Meijia; Chen, Hua; Xu, Chong-Yu; Xiong, Lihua

    2018-01-01

    Uncertainty estimation of climate change impacts on hydrology has received much attention in the research community. The choice of a global climate model (GCM) is usually considered as the largest contributor to the uncertainty of climate change impacts. The temporal variation of GCM uncertainty needs to be investigated for making long-term decisions to deal with climate change. Accordingly, this study investigated the temporal variation (mainly long-term) of uncertainty related to the choice of a GCM in predicting climate change impacts on hydrology by using multi-GCMs over multiple continuous future periods. Specifically, twenty CMIP5 GCMs under RCP4.5 and RCP8.5 emission scenarios were adapted to adequately represent this uncertainty envelope, fifty-one 30-year future periods moving from 2021 to 2100 with 1-year interval were produced to express the temporal variation. Future climatic and hydrological regimes over all future periods were compared to those in the reference period (1971-2000) using a set of metrics, including mean and extremes. The periodicity of climatic and hydrological changes and their uncertainty were analyzed using wavelet analysis, while the trend was analyzed using Mann-Kendall trend test and regression analysis. The results showed that both future climate change (precipitation and temperature) and hydrological response predicted by the twenty GCMs were highly uncertain, and the uncertainty increased significantly over time. For example, the change of mean annual precipitation increased from 1.4% in 2021-2050 to 6.5% in 2071-2100 for RCP4.5 in terms of the median value of multi-models, but the projected uncertainty reached 21.7% in 2021-2050 and 25.1% in 2071-2100 for RCP4.5. The uncertainty under a high emission scenario (RCP8.5) was much larger than that under a relatively low emission scenario (RCP4.5). Almost all climatic and hydrological regimes and their uncertainty did not show significant periodicity at the P = .05 significance level, but their temporal variation could be well modeled by using the fourth-order polynomial. Overall, this study further emphasized the importance of using multiple GCMs for studying climate change impacts on hydrology. Furthermore, the temporal variation of uncertainty sourced from GCMs should be given more attention.

  8. Incorporating climate change projections into riparian restoration planning and design

    USGS Publications Warehouse

    Perry, Laura G.; Reynolds, Lindsay V.; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  9. Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality.

    PubMed

    Gosling, Simon N; Hondula, David M; Bunker, Aditi; Ibarreta, Dolores; Liu, Junguo; Zhang, Xinxin; Sauerborn, Rainer

    2017-08-16

    Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to "adaptation uncertainty" (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. This study had three aims: a ) Compare the range in projected impacts that arises from using different adaptation modeling methods; b ) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c ) recommend modeling method(s) to use in future impact assessments. We estimated impacts for 2070-2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634.

  10. Climate and Land Use Controls on Soil Organic Carbon in the Loess Plateau Region of China

    PubMed Central

    Tao, Bo; Chen, Guangsheng; Lu, Chaoqun; Yang, Jia; Pan, Shufen; Wang, Guodong; Li, Shiqing; Tian, Hanqin

    2014-01-01

    The Loess Plateau of China has the highest soil erosion rate in the world where billion tons of soil is annually washed into Yellow River. In recent decades this region has experienced significant climate change and policy-driven land conversion. However, it has not yet been well investigated how these changes in climate and land use have affected soil organic carbon (SOC) storage on the Loess Plateau. By using the Dynamic Land Ecosystem Model (DLEM), we quantified the effects of climate and land use on SOC storage on the Loess Plateau in the context of multiple environmental factors during the period of 1961–2005. Our results show that SOC storage increased by 0.27 Pg C on the Loess Plateau as a result of multiple environmental factors during the study period. About 55% (0.14 Pg C) of the SOC increase was caused by land conversion from cropland to grassland/forest owing to the government efforts to reduce soil erosion and improve the ecological conditions in the region. Historical climate change reduced SOC by 0.05 Pg C (approximately 19% of the total change) primarily due to a significant climate warming and a slight reduction in precipitation. Our results imply that the implementation of “Grain for Green” policy may effectively enhance regional soil carbon storage and hence starve off further soil erosion on the Loess Plateau. PMID:24788559

  11. Climate and land use controls on soil organic carbon in the loess plateau region of China.

    PubMed

    Dang, Yaai; Ren, Wei; Tao, Bo; Chen, Guangsheng; Lu, Chaoqun; Yang, Jia; Pan, Shufen; Wang, Guodong; Li, Shiqing; Tian, Hanqin

    2014-01-01

    The Loess Plateau of China has the highest soil erosion rate in the world where billion tons of soil is annually washed into Yellow River. In recent decades this region has experienced significant climate change and policy-driven land conversion. However, it has not yet been well investigated how these changes in climate and land use have affected soil organic carbon (SOC) storage on the Loess Plateau. By using the Dynamic Land Ecosystem Model (DLEM), we quantified the effects of climate and land use on SOC storage on the Loess Plateau in the context of multiple environmental factors during the period of 1961-2005. Our results show that SOC storage increased by 0.27 Pg C on the Loess Plateau as a result of multiple environmental factors during the study period. About 55% (0.14 Pg C) of the SOC increase was caused by land conversion from cropland to grassland/forest owing to the government efforts to reduce soil erosion and improve the ecological conditions in the region. Historical climate change reduced SOC by 0.05 Pg C (approximately 19% of the total change) primarily due to a significant climate warming and a slight reduction in precipitation. Our results imply that the implementation of "Grain for Green" policy may effectively enhance regional soil carbon storage and hence starve off further soil erosion on the Loess Plateau.

  12. Trend and uncertainty analysis of simulated climate change impacts with multiple GCMs and emission scenarios

    USDA-ARS?s Scientific Manuscript database

    Impacts of climate change on hydrology, soil erosion, and wheat production during 2010-2039 at El Reno in central Oklahoma, USA, were simulated using the Water Erosion Prediction Project (WEPP) model. Projections from four GCMs (CCSR/NIES, CGCM2, CSIRO-Mk2, and HadCM3) under three emissions scenari...

  13. Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation

    Treesearch

    William R. Glenny; Justin B. Runyon; Laura A. Burkle

    2018-01-01

    Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services. Floral visual and olfactory traits were...

  14. WHOLE-SEEDLING BIOMASS ALLOCATION, LEAF AREA, AND TISSUE CHEMISTRY FOR DOUGLAS-FIR EXPOSED TO ELEVATED CO2 AND TEMPERATURE FOR 4 YEARS

    EPA Science Inventory

    Changes in the global climate may impact forests, but data are lacking for climate change effects on whole tree productivity over multiple seasons and conditions representative of the field. To address this critical need, we measured biomass allocation for whole Pseudotsuga menzi...

  15. US exposure to multiple landscape stressors and climate change

    Treesearch

    Becky K. Kerns; John B. Kim; Jeffrey D. Kline; Michelle A. Day

    2016-01-01

    We examined landscape exposure to wildfire potential, insects and disease risk, and urban and exurban development for the conterminous US (CONUS). Our analysis relied on spatial data used by federal agencies to evaluate these stressors nationally. We combined stressor data with a climate change exposure metric to identify when temperature is likely to depart from...

  16. Climate Change Communication by a Research Institute: Experiences, Successes, and Challenges from a North European Perspective

    ERIC Educational Resources Information Center

    Lyytimäki, Jari; Nygrén, Nina A.; Ala-Ketola, Ulla; Pellinen, Sirpa; Ruohomäki, Virpi; Inkinen, Aino

    2013-01-01

    Communicating about climate change is challenging not only because of the multidisciplinary and complex nature of the issue itself and multiple policy options related to mitigation and adaptation, but also because of the plenitude of potential communication methods coupled with limited resources for communication. This article explores climate…

  17. Simulating water quality and ecological status of Lake Vansjø, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network.

    PubMed

    Couture, Raoul-Marie; Moe, S Jannicke; Lin, Yan; Kaste, Øyvind; Haande, Sigrid; Lyche Solheim, Anne

    2018-04-15

    Excess nutrient inputs and climate change are two of multiple stressors affecting many lakes worldwide. Lake Vansjø in southern Norway is one such eutrophic lake impacted by blooms of toxic blue-green algae (cyanobacteria), and classified as moderate ecological status under the EU Water Framework Directive. Future climate change may exacerbate the situation. Here we use a set of chained models (global climate model, hydrological model, catchment phosphorus (P) model, lake model, Bayesian Network) to assess the possible future ecological status of the lake, given the set of climate scenarios and storylines common to the EU project MARS (Managing Aquatic Ecosystems and Water Resources under Multiple Stress). The model simulations indicate that climate change alone will increase precipitation and runoff, and give higher P fluxes to the lake, but cause little increase in phytoplankton biomass or changes in ecological status. For the storylines of future management and land-use, however, the model results indicate that both the phytoplankton biomass and the lake ecological status can be positively or negatively affected. Our results also show the value in predicting a biological indicator of lake ecological status, in this case, cyanobacteria biomass with a BN model. For all scenarios, cyanobacteria contribute to worsening the status assessed by phytoplankton, compared to using chlorophyll-a alone. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Climate Change, the Energy-water-food Nexus, and the "New" Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Middleton, R. S.; Bennett, K. E.; Solander, K.; Hopkins, E.

    2017-12-01

    Climate change, extremes, and climate-driven disturbances are anticipated to have substantial impacts on regional water resources, particularly in the western and southwestern United States. These unprecedented conditions—a no-analog future—will result in challenges to adaptation, mitigation, and resilience planning for the energy-water-food nexus. We have analyzed the impact of climate change on Colorado River flows for multiple climate and disturbance scenarios: 12 global climate models and two CO2 emission scenarios (RCP 4.5 and RCP 8.5) from the Intergovernmental Panel on Climate Change's Coupled Model Intercomparison Study, version 5, and multiple climate-driven forest disturbance scenarios including temperature-drought vegetation mortality and insect infestations. Results indicate a wide range of potential streamflow projections and the potential emergence of a "new" Colorado River basin. Overall, annual streamflow tends to increase under the majority of modeled scenarios due to projected increases in precipitation across the basin, though a significant number of scenarios indicate moderate and potentially substantial reductions in water availability. However, all scenarios indicate severe changes in seasonality of flows and strong variability across headwater systems. This leads to increased fall and winter streamflow, strong reductions in spring and summer flows, and a shift towards earlier snowmelt timing. These impacts are further exacerbated in headwater systems, which are key to driving Colorado River streamflow and hence water supply for both internal and external basin needs. These results shed a new and important slant on the Colorado River basin, where an emergent streamflow pattern may result in difficulties to adjust to these new regimes, resulting in increased stress to the energy-water-food nexus.

  19. Tempo-spatial downscaling of multiple GCMs projections for soil erosion risk analysis at El Reno, Oklahoma, USA

    USDA-ARS?s Scientific Manuscript database

    Proper spatial and temporal treatments of climate change scenarios projected by General Circulation Models (GCMs) are critical to accurate assessment of climatic impacts on natural resources and ecosystems. For accurate prediction of soil erosion risk at a particular farm or field under climate cha...

  20. Our Globally Changing Climate. Chapter 1

    NASA Technical Reports Server (NTRS)

    Wuebbles, D. J.; Easterling, D. R.; Hayhoe, K.; Knutson, T.; Kopp, R. E.; Kossin, J. P.; Kunkel, K. E.; LeGrande, A. N.; Mears, C.; Sweet, W. V.; hide

    2017-01-01

    Since the Third U.S. National Climate Assessment (NCA3) was published in May 2014, new observations along multiple lines of evidence have strengthened the conclusion that Earth's climate is changing at a pace and in a pattern not explainable by natural influences. While this report focuses especially on observed and projected future changes for the United States, it is important to understand those changes in the global context (this chapter). The world has warmed over the last 150 years, especially over the last six decades, and that warming has triggered many other changes to Earth's climate. Evidence for a changing climate abounds, from the top of the atmosphere to the depths of the oceans. Thousands of studies conducted by tens of thousands of scientists around the world have documented changes in surface, atmospheric, and oceanic temperatures; melting glaciers; disappearing snow cover; shrinking sea ice; rising sea level; and an increase in atmospheric water vapor. Rainfall patterns and storms are changing, and the occurrence of droughts is shifting.

  1. Assessment of multi-trophic changes in a shallow boreal lake simultaneously exposed to climate change and aerial deposition of contaminants from the Athabasca Oil Sands Region, Canada.

    PubMed

    Summers, Jamie C; Kurek, Joshua; Rühland, Kathleen M; Neville, Erin E; Smol, John P

    2017-08-15

    The Athabasca Oil Sands Region (AOSR) has been intensely developed for industrial bitumen extraction and upgrading since the 1980s. A paucity of environmental monitoring prior to development raises questions about baseline conditions in freshwater systems in the region and ecological responses to industrial activities. Further, climatic changes prompt questions about the relative roles of climate and industry in shaping aquatic ecosystems through time. We use aquatic bioindicators from multiple trophic levels, concentrations of petrogenic contaminants (dibenzothiophenes), and spectrally-inferred chlorophyll-a preserved in well-dated sediments of a closed-basin, shallow lake ~50km away from the main area of industry, in conjunction with climate observations, to assess how the biotic assemblages of a typical AOSR lake have changed during the past ~75years. We examine the contributions of the area's stressors in structuring aquatic communities. Increases in sedimentary measures of petrogenic contaminants provide clear evidence of aerial contaminant deposition from local industry since its establishment, while climate records demonstrate consistent warming and a recent period of reduced precipitation. Quantitative comparisons of biological assemblages from before and after the establishment of regional industry find significant (p<0.05) differences; however, the magnitude and overall timing of the changes are not consistent with a threshold-type shift in response to the onset of regional industry. Rather, biotic assemblages from multiple trophic levels suggest transitions to an increasingly complex benthic environment and relatively warmer waters, which, like the increasing trends in inferred primary production, are consistent with a changing climate. These findings highlight the important role of climate conditions in regulating primary production and structuring aquatic communities in these shallow systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Understanding Perceptions of Climate Change, Priorities, and Decision-Making among Municipalities in Lima, Peru to Better Inform Adaptation and Mitigation Planning

    PubMed Central

    Saldarriaga, Enrique; Lawler, Joshua; Zunt, Joseph; Garcia, Patricia; Cárcamo, César

    2016-01-01

    Climate change poses multiple risks to the population of Lima, the largest city and capital of Peru, located on the Pacific coast in a desert ecosystem. These risks include increased water scarcity, increased heat, and the introduction and emergence of vector-borne and other climate sensitive diseases. To respond to these threats, it is necessary for the government, at every level, to adopt more mitigation and adaptation strategies. Here, focus groups were conducted with representatives from five Lima municipalities to determine priorities, perception of climate change, and decision-making processes for implementing projects within each municipality. These factors can affect the ability and desire of a community to implement climate change adaptation and mitigation strategies. The results show that climate change and other environmental factors are of relatively low priority, whereas public safety and water and sanitation services are of highest concern. Perhaps most importantly, climate change is not well understood among the municipalities. Participants had trouble distinguishing climate change from other environmental issues and did not fully understand its causes and effects. Greater understanding of what climate change is and why it is important is necessary for it to become a priority for the municipalities. Different aspects of increased climate change awareness seem to be connected to having experienced extreme weather events, whether related or not to climate change, and to higher socioeconomic status. PMID:26808087

  3. Assessing potential climate change pressures across the conterminous United States: mapping plant hardiness zones, heat zones, growing degree days, and cumulative drought severity throughout this century

    Treesearch

    Stephen N. Matthews; Louis R. Iverson; Matthew P. Peters; Anantha M. Prasad

    2018-01-01

    The maps and tables presented here represent potential variability of projected climate change across the conterminous United States during three 30-year periods in this century and emphasizes the importance of evaluating multiple signals of change across large spatial domains. Maps of growing degree days, plant hardiness zones, heat zones, and cumulative drought...

  4. Rising tides, cumulative impacts and cascading changes to estuarine ecosystem functions.

    PubMed

    O'Meara, Theresa A; Hillman, Jenny R; Thrush, Simon F

    2017-08-31

    In coastal ecosystems, climate change affects multiple environmental factors, yet most predictive models are based on simple cause-and-effect relationships. Multiple stressor scenarios are difficult to predict because they can create a ripple effect through networked ecosystem functions. Estuarine ecosystem function relies on an interconnected network of physical and biological processes. Estuarine habitats play critical roles in service provision and represent global hotspots for organic matter processing, nutrient cycling and primary production. Within these systems, we predicted functional changes in the impacts of land-based stressors, mediated by changing light climate and sediment permeability. Our in-situ field experiment manipulated sea level, nutrient supply, and mud content. We used these stressors to determine how interacting environmental stressors influence ecosystem function and compared results with data collected along elevation gradients to substitute space for time. We show non-linear, multi-stressor effects deconstruct networks governing ecosystem function. Sea level rise altered nutrient processing and impacted broader estuarine services ameliorating nutrient and sediment pollution. Our experiment demonstrates how the relationships between nutrient processing and biological/physical controls degrade with environmental stress. Our results emphasise the importance of moving beyond simple physically-forced relationships to assess consequences of climate change in the context of ecosystem interactions and multiple stressors.

  5. Multiscale connectivity and graph theory highlight critical areas for conservation under climate change.

    PubMed

    Dilt, Thomas E; Weisberg, Peter J; Leitner, Philip; Matocq, Marjorie D; Inman, Richard D; Nussear, Kenneth E; Esque, Todd C

    2016-06-01

    Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multiscale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods, including graph theory, circuit theory, and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this threatened Californian species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously distributed habitat and should be applicable across a broad range of taxa.

  6. Science Organizations Remind Senators of Consensus on Climate Change

    NASA Astrophysics Data System (ADS)

    Chell, Kaitlin

    2009-11-01

    AGU and 17 other scientific organizations sent an open letter to the U.S. Senate on 21 October reminding senators of the scientific consensus on anthropogenic climate change. The letter was sent 1 week before the Senate Committee on Environment and Public Works began a series of hearings on climate change legislation, the Clean Energy Jobs and American Power Act (Senate bill 1733). The letter states, “Observations throughout the world make it clear that climate change is occurring, and rigorous scientific research demonstrates that the greenhouse gases emitted by human activities are the primary driver. These conclusions are based on multiple independent lines of evidence, and contrary assertions are inconsistent with an objective assessment of the vast body of peer-reviewed science.”

  7. Assessing the Assessment Methods: Climate Change and Hydrologic Impacts

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Clark, M. P.; Gutmann, E. D.; Mizukami, N.; Mendoza, P. A.; Rasmussen, R.; Ikeda, K.; Pruitt, T.; Arnold, J. R.; Rajagopalan, B.

    2014-12-01

    The Bureau of Reclamation, the U.S. Army Corps of Engineers, and other water management agencies have an interest in developing reliable, science-based methods for incorporating climate change information into longer-term water resources planning. Such assessments must quantify projections of future climate and hydrology, typically relying on some form of spatial downscaling and bias correction to produce watershed-scale weather information that subsequently drives hydrology and other water resource management analyses (e.g., water demands, water quality, and environmental habitat). Water agencies continue to face challenging method decisions in these endeavors: (1) which downscaling method should be applied and at what resolution; (2) what observational dataset should be used to drive downscaling and hydrologic analysis; (3) what hydrologic model(s) should be used and how should these models be configured and calibrated? There is a critical need to understand the ramification of these method decisions, as they affect the signal and uncertainties produced by climate change assessments and, thus, adaptation planning. This presentation summarizes results from a three-year effort to identify strengths and weaknesses of widely applied methods for downscaling climate projections and assessing hydrologic conditions. Methods were evaluated from two perspectives: historical fidelity, and tendency to modulate a global climate model's climate change signal. On downscaling, four methods were applied at multiple resolutions: statistically using Bias Correction Spatial Disaggregation, Bias Correction Constructed Analogs, and Asynchronous Regression; dynamically using the Weather Research and Forecasting model. Downscaling results were then used to drive hydrologic analyses over the contiguous U.S. using multiple models (VIC, CLM, PRMS), with added focus placed on case study basins within the Colorado Headwaters. The presentation will identify which types of climate changes are expressed robustly across methods versus those that are sensitive to method choice; which method choices seem relatively more important; and where strategic investments in research and development can substantially improve guidance on climate change provided to water managers.

  8. The Relative Impact of Climate Change on the Extinction Risk of Tree Species in the Montane Tropical Andes.

    PubMed

    Tejedor Garavito, Natalia; Newton, Adrian C; Golicher, Duncan; Oldfield, Sara

    2015-01-01

    There are widespread concerns that anthropogenic climate change will become a major cause of global biodiversity loss. However, the potential impact of climate change on the extinction risk of species remains poorly understood, particularly in comparison to other current threats. The objective of this research was to examine the relative impact of climate change on extinction risk of upper montane tree species in the tropical Andes, an area of high biodiversity value that is particularly vulnerable to climate change impacts. The extinction risk of 129 tree species endemic to the region was evaluated according to the IUCN Red List criteria, both with and without the potential impacts of climate change. Evaluations were supported by development of species distribution models, using three methods (generalized additive models, recursive partitioning, and support vector machines), all of which produced similarly high AUC values when averaged across all species evaluated (0.82, 0.86, and 0.88, respectively). Inclusion of climate change increased the risk of extinction of 18-20% of the tree species evaluated, depending on the climate scenario. The relative impact of climate change was further illustrated by calculating the Red List Index, an indicator that shows changes in the overall extinction risk of sets of species over time. A 15% decline in the Red List Index was obtained when climate change was included in this evaluation. While these results suggest that climate change represents a significant threat to tree species in the tropical Andes, they contradict previous suggestions that climate change will become the most important cause of biodiversity loss in coming decades. Conservation strategies should therefore focus on addressing the multiple threatening processes currently affecting biodiversity, rather than focusing primarily on potential climate change impacts.

  9. The Relative Impact of Climate Change on the Extinction Risk of Tree Species in the Montane Tropical Andes

    PubMed Central

    Tejedor Garavito, Natalia; Newton, Adrian C.; Golicher, Duncan; Oldfield, Sara

    2015-01-01

    There are widespread concerns that anthropogenic climate change will become a major cause of global biodiversity loss. However, the potential impact of climate change on the extinction risk of species remains poorly understood, particularly in comparison to other current threats. The objective of this research was to examine the relative impact of climate change on extinction risk of upper montane tree species in the tropical Andes, an area of high biodiversity value that is particularly vulnerable to climate change impacts. The extinction risk of 129 tree species endemic to the region was evaluated according to the IUCN Red List criteria, both with and without the potential impacts of climate change. Evaluations were supported by development of species distribution models, using three methods (generalized additive models, recursive partitioning, and support vector machines), all of which produced similarly high AUC values when averaged across all species evaluated (0.82, 0.86, and 0.88, respectively). Inclusion of climate change increased the risk of extinction of 18–20% of the tree species evaluated, depending on the climate scenario. The relative impact of climate change was further illustrated by calculating the Red List Index, an indicator that shows changes in the overall extinction risk of sets of species over time. A 15% decline in the Red List Index was obtained when climate change was included in this evaluation. While these results suggest that climate change represents a significant threat to tree species in the tropical Andes, they contradict previous suggestions that climate change will become the most important cause of biodiversity loss in coming decades. Conservation strategies should therefore focus on addressing the multiple threatening processes currently affecting biodiversity, rather than focusing primarily on potential climate change impacts. PMID:26177097

  10. Western forest diseases and climate relations: General considerations, dwarf mistletoe and stem rusts

    Treesearch

    B. W. Geils

    2008-01-01

    This is a preliminary, draft outline for organizing information on the relation of climate to western forest diseases. The question is how to assess the threat of these diseases under a regime of climate change. Although forest diseases are often important, assessment of disease-climate relations is a challenging problem due to the multiple values at risk and the...

  11. Determination of suitable climate space for Armillaria ostoyae in the Oregon East Cascades

    Treesearch

    John W. Hanna; Mee-Sook Kim; Ned B. Klopfenstein; Aaron L. Smith; Helen M. Maffei

    2008-01-01

    This is a preliminary, draft outline for organizing information on the relation of climate to western forest diseases. The question is how to assess the threat of these diseases under a regime of climate change. Although forest diseases are often important, assessment of disease-climate relations is a challenging problem due to the multiple values at risk and the...

  12. Global and local environmental changes as drivers of Buruli ulcer emergence.

    PubMed

    Combe, Marine; Velvin, Camilla Jensen; Morris, Aaron; Garchitorena, Andres; Carolan, Kevin; Sanhueza, Daniel; Roche, Benjamin; Couppié, Pierre; Guégan, Jean-François; Gozlan, Rodolphe Elie

    2017-04-26

    Many emerging infectious diseases are caused by generalist pathogens that infect and transmit via multiple host species with multiple dissemination routes, thus confounding the understanding of pathogen transmission pathways from wildlife reservoirs to humans. The emergence of these pathogens in human populations has frequently been associated with global changes, such as socio-economic, climate or biodiversity modifications, by allowing generalist pathogens to invade and persist in new ecological niches, infect new host species, and thus change the nature of transmission pathways. Using the case of Buruli ulcer disease, we review how land-use changes, climatic patterns and biodiversity alterations contribute to disease emergence in many parts of the world. Here we clearly show that Mycobacterium ulcerans is an environmental pathogen characterized by multi-host transmission dynamics and that its infectious pathways to humans rely on the local effects of global environmental changes. We show that the interplay between habitat changes (for example, deforestation and agricultural land-use changes) and climatic patterns (for example, rainfall events), applied in a local context, can lead to abiotic environmental changes and functional changes in local biodiversity that favor the pathogen's prevalence in the environment and may explain disease emergence.

  13. Marine biodiversity–ecosystem functions under uncertain environmental futures

    PubMed Central

    Bulling, Mark T.; Hicks, Natalie; Murray, Leigh; Paterson, David M.; Raffaelli, Dave; White, Piran C. L.; Solan, Martin

    2010-01-01

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty. PMID:20513718

  14. Marine biodiversity-ecosystem functions under uncertain environmental futures.

    PubMed

    Bulling, Mark T; Hicks, Natalie; Murray, Leigh; Paterson, David M; Raffaelli, Dave; White, Piran C L; Solan, Martin

    2010-07-12

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.

  15. Concept Mapping to Assess Learning and Understanding of Complexity in Courses on Global Climate Change

    NASA Astrophysics Data System (ADS)

    Rebich-Hespanha, S.; Gautier, C.

    2010-12-01

    The complex nature of climate change science poses special challenges for educators wishing to broaden and deepen student understanding of the climate system and its sensitivity to and impacts upon human activity. Learners have prior knowledge that may limit their perception and processing of the multiple relationships between processes (e.g., feedbacks) that arise in global change science, and these existing mental models serve as the scaffold for all future learning. Because adoption of complex scientific concepts is not likely if instruction includes presentation of information or concepts that are not compatible with the learners’ prior knowledge, providing effective instruction on this complex topic requires learning opportunities that are anchored upon an evaluation of the limitations and inaccuracies of the learners’ existing understandings of the climate system. The formative evaluation that serves as the basis for planning such instruction can also be useful as a baseline against which to evaluate subsequent learning. We will present concept-mapping activities that we have used to assess students’ knowledge and understanding about global climate change in courses that utilized multiple assessment methods including presentations, writings, discussions, and concept maps. The courses in which these activities were completed use a variety of instructional approaches (including standard lectures and lab assignments and a mock summit) to help students understand the inherently interdisciplinary topic of global climate change, its interwoven human and natural causes, and the connections it has with society through a complex range of political, social, technological and economic factors. Two instances of concept map assessment will be presented: one focused on evaluating student understanding of the major components of the climate system and their interconnections, and the other focused on student understanding of the connections between climate change and the global food system. We will discuss how concept mapping can be used to demonstrate evidence of learning and conceptual change, and also how it can be used to provide information about gaps in knowledge and misconceptions students have about the topic.

  16. Changing flood frequencies under opposing late Pleistocene eastern Mediterranean climates.

    PubMed

    Ben Dor, Yoav; Armon, Moshe; Ahlborn, Marieke; Morin, Efrat; Erel, Yigal; Brauer, Achim; Schwab, Markus Julius; Tjallingii, Rik; Enzel, Yehouda

    2018-05-31

    Floods comprise a dominant hydroclimatic phenomenon in aridlands with significant implications for humans, infrastructure, and landscape evolution worldwide. The study of short-term hydroclimatic variability, such as floods, and its forecasting for episodes of changing climate therefore poses a dominant challenge for the scientific community, and predominantly relies on modeling. Testing the capabilities of climate models to properly describe past and forecast future short-term hydroclimatic phenomena such as floods requires verification against suitable geological archives. However, determining flood frequency during changing climate is rarely achieved, because modern and paleoflood records, especially in arid regions, are often too short or discontinuous. Thus, coeval independent climate reconstructions and paleoflood records are required to further understand the impact of climate change on flood generation. Dead Sea lake levels reflect the mean centennial-millennial hydrological budget in the eastern Mediterranean. In contrast, floods in the large watersheds draining directly into the Dead Sea, are linked to short-term synoptic circulation patterns reflecting hydroclimatic variability. These two very different records are combined in this study to resolve flood frequency during opposing mean climates. Two 700-year-long, seasonally-resolved flood time series constructed from late Pleistocene Dead Sea varved sediments, coeval with significant Dead Sea lake level variations are reported. These series demonstrate that episodes of rising lake levels are characterized by higher frequency of floods, shorter intervals between years of multiple floods, and asignificantly larger number of years that experienced multiple floods. In addition, floods cluster into intervals of intense flooding, characterized by 75% and 20% increased frequency above their respective background frequencies during rising and falling lake-levels, respectively. Mean centennial precipitation in the eastern Mediterranean is therefore coupled with drastic changes in flood frequencies. These drastic changes in flood frequencies are linked to changes in the track, depth, and frequency of mid-latitude eastern Mediterranean cyclones, determining mean climatology resulting in wetter and drier regional climatic episodes.

  17. Detecting and Attributing the Effects of Climate Change on the Distributions of Snake Species Over the Past 50 Years.

    PubMed

    Wu, Jianguo

    2016-01-01

    It is unclear whether the distributions of snakes have changed in association with climate change over the past years. We detected the distribution changes of snakes over the past 50 years and determined whether the changes could be attributed to recent climate change in China. Long-term records of the distribution of nine snake species in China, grey relationship analysis, fuzzy sets classification techniques, the consistency index, and attributed methods were used. Over the past 50 years, the distributions of snake species have changed in multiple directions, primarily shifting northwards, and most of the changes were related to the thermal index. Driven by climatic factors over the past 50 years, the distribution boundary and distribution centers of some species changed with the fluctuations. The observed and predicted changes in distribution were highly consistent for some snake species. The changes in the northern limits of distributions of nearly half of the species, as well as the southern and eastern limits, and the distribution centers of some snake species can be attributed to climate change.

  18. The distributions of Chinese yak breeds in response to climate change over the past 50 years.

    PubMed

    Wu, Jianguo

    2016-07-01

    The effects of prior climate change on yak breed distributions are uncertain. Here, we measured changes in the distributions of 12 yak breeds over the past 50 years in China and examined whether the changes could be attributed to climate change. Long-term records of yak breed distribution, grey relational analysis, fuzzy sets classification techniques and attribution methods were used. Over the past 50 years, the distributions of several yak breeds have changed in multiple directions, mainly shifting northward or westward, and most of these changes are related to the thermal index. Driven by climate change over the past years, the suitable range and the distribution centers of certain yak breeds have changed with fluctuation and have mainly shifted northward, eastward or southward. The consistency of observed versus predicted changes in distribution boundaries or distribution centers is higher for certain yak breeds. Changes in the eastern distribution boundary of two yak breeds over the past 50 years can be attributed to climate change. © 2015 Japanese Society of Animal Science.

  19. Combining super-ensembles and statistical emulation to improve a regional climate and vegetation model

    NASA Astrophysics Data System (ADS)

    Hawkins, L. R.; Rupp, D. E.; Li, S.; Sarah, S.; McNeall, D. J.; Mote, P.; Betts, R. A.; Wallom, D.

    2017-12-01

    Changing regional patterns of surface temperature, precipitation, and humidity may cause ecosystem-scale changes in vegetation, altering the distribution of trees, shrubs, and grasses. A changing vegetation distribution, in turn, alters the albedo, latent heat flux, and carbon exchanged with the atmosphere with resulting feedbacks onto the regional climate. However, a wide range of earth-system processes that affect the carbon, energy, and hydrologic cycles occur at sub grid scales in climate models and must be parameterized. The appropriate parameter values in such parameterizations are often poorly constrained, leading to uncertainty in predictions of how the ecosystem will respond to changes in forcing. To better understand the sensitivity of regional climate to parameter selection and to improve regional climate and vegetation simulations, we used a large perturbed physics ensemble and a suite of statistical emulators. We dynamically downscaled a super-ensemble (multiple parameter sets and multiple initial conditions) of global climate simulations using a 25-km resolution regional climate model HadRM3p with the land-surface scheme MOSES2 and dynamic vegetation module TRIFFID. We simultaneously perturbed land surface parameters relating to the exchange of carbon, water, and energy between the land surface and atmosphere in a large super-ensemble of regional climate simulations over the western US. Statistical emulation was used as a computationally cost-effective tool to explore uncertainties in interactions. Regions of parameter space that did not satisfy observational constraints were eliminated and an ensemble of parameter sets that reduce regional biases and span a range of plausible interactions among earth system processes were selected. This study demonstrated that by combining super-ensemble simulations with statistical emulation, simulations of regional climate could be improved while simultaneously accounting for a range of plausible land-atmosphere feedback strengths.

  20. Climate change and dead zones.

    PubMed

    Altieri, Andrew H; Gedan, Keryn B

    2015-04-01

    Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones. © 2014 John Wiley & Sons Ltd.

  1. Scaling the Problem: How Commercial Interests Have Influenced the U.S. Dialogue on Climate Change

    NASA Astrophysics Data System (ADS)

    Goldman, G. T.; Rogerson, P.

    2012-12-01

    In recent years, corporations and their affiliates have played an increasing role in the national conversation on climate change, with companies weighing in not only on policy debates but also participating in discussions around climate science. A few of these companies in particular have been tremendously influential in dictating how the public understands, or misunderstands, climate science and how the national discourse on climate policy has progressed, or not progressed. To better understand this corporate involvement, we explored the roles that major corporate actors have played during a key time period in 2009 and 2010 when several important climate change policy proposals were being actively debated in the United States. Analyzing multiple venues in which companies engaged in discussion of climate change with different audiences—including the government, shareholders, and the public—we assess the degree to which commercial interests have helped or hindered a science-based public discourse on climate policy in the past decade. Discussion will focus especially on corporations' use of third party organizations, including industry trade groups, think tanks, and others, to exert influence on climate-related policy without accountability.

  2. Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States

    PubMed Central

    Liu, Zhihua; Wimberly, Michael C.

    2015-01-01

    An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959

  3. The full spectrum of climate change adaptation: testing an analytical framework in Tyrolean mountain agriculture (Austria).

    PubMed

    Grüneis, Heidelinde; Penker, Marianne; Höferl, Karl-Michael

    2016-01-01

    Our scientific view on climate change adaptation (CCA) is unsatisfying in many ways: It is often dominated by a modernistic perspective of planned pro-active adaptation, with a selective focus on measures directly responding to climate change impacts and thus it is far from real-life conditions of those who are actually affected by climate change. Farmers have to simultaneously adapt to multiple changes. Therefore, also empirical climate change adaptation research needs a more integrative perspective on real-life climate change adaptations. This also has to consider "hidden" adaptations, which are not explicitly and directly motivated by CCA but actually contribute to the sector's adaptability to climate change. The aim of the present study is to develop and test an analytic framework that contributes to a broader understanding of CCA and to bridge the gap between scientific expertise and practical action. The framework distinguishes three types of CCA according to their climate related motivations: explicit adaptations, multi-purpose adaptations, and hidden adaptations. Although agriculture is among the sectors that are most affected by climate change, results from the case study of Tyrolean mountain agriculture show that climate change is ranked behind other more pressing "real-life-challenges" such as changing agricultural policies or market conditions. We identified numerous hidden adaptations which make a valuable contribution when dealing with climate change impacts. We conclude that these hidden adaptations have not only to be considered to get an integrative und more realistic view on CCA; they also provide a great opportunity for linking adaptation strategies to farmers' realities.

  4. Abrupt Climate Change in the Atlantic Ocean During the Last 20,000 Years: Insights from Multi-Element Analyses of Benthic and Planktic Foraminifera and a Coupled OA-GCM

    DTIC Science & Technology

    2005-09-01

    paleoceanographic and terrestrial climate proxies . Greenland ice cores, in particular, provide evidence of large amplitude, very rapid climate change during...received the most attention because it is the largest Holocene excursion in the GISP2 810 record [Alley et al., 1997]. Multiple proxies in Greenland ice...latitude North Atlantic foraminiferal-based proxies such as modem analogue technique [Marchal et al., 2002; Risebrobakken et al., 2003], but

  5. Assessment of Coastal Governance for Climate Change Adaptation in Kenya

    NASA Astrophysics Data System (ADS)

    Ojwang, Lenice; Rosendo, Sergio; Celliers, Louis; Obura, David; Muiti, Anastasia; Kamula, James; Mwangi, Maina

    2017-11-01

    The coastline of Kenya already experiences effects of climate change, adding to existing pressures such as urbanization. Integrated coastal management (ICM) is increasingly recognized as a key policy response to deal with the multiple challenges facing coastal zones, including climate change. It can create an enabling governance environment for effective local action on climate change by facilitating a structured approach to dealing with coastal issues. It encompasses the actions of a wide range of actors, including local governments close to people and their activities affected by climate change. Functioning ICM also offers opportunities for reducing risks and building resilience. This article applied a modified capitals approach framework (CAF), consisting of five "capitals," to assess the status of county government capacity to respond to climate change within the context of coastal governance in three county governments in Kenya. The baseline was defined in terms of governance relating to the implementation of the interrelated policy systems of ICM and coastal climate change adaptation (CCA). The CAF framework provided a systematic approach to building a governance baseline against which to assess the progress of county governments in responding to climate change. It identified gaps in human capacity, financial resource allocation to adaptation and access to climate change information. Furthermore, it showed that having well-developed institutions, including regulatory frameworks at the national level can facilitate but does not automatically enable adaptation at the county level.

  6. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments.

    PubMed

    Tao, Fulu; Rötter, Reimund P; Palosuo, Taru; Gregorio Hernández Díaz-Ambrona, Carlos; Mínguez, M Inés; Semenov, Mikhail A; Kersebaum, Kurt Christian; Nendel, Claas; Specka, Xenia; Hoffmann, Holger; Ewert, Frank; Dambreville, Anaelle; Martre, Pierre; Rodríguez, Lucía; Ruiz-Ramos, Margarita; Gaiser, Thomas; Höhn, Jukka G; Salo, Tapio; Ferrise, Roberto; Bindi, Marco; Cammarano, Davide; Schulman, Alan H

    2018-03-01

    Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was -4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981-2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources. © 2017 John Wiley & Sons Ltd.

  7. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change.

    PubMed

    Albert, Cécile H; Rayfield, Bronwyn; Dumitru, Maria; Gonzalez, Andrew

    2017-12-01

    Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land-use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land-use change projections with the latest developments in network-connectivity research and spatial, multipurpose conservation prioritization. We used land-use change simulations to explore robustness of species' habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land-use change. The application of connectivity criteria alongside habitat-quality criteria for protected-area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade-offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low. © 2017 Society for Conservation Biology.

  8. Predicted effects of gypsy moth defoliation and climate change on forest carbon dynamics in the New Jersey Pine Barrens

    Treesearch

    Alec M. Kretchun; Robert M. Scheller; Melissa S. Lucash; Kenneth L. Clark; John Hom; Steve Van Tuyl; Michael L. Fine

    2014-01-01

    Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to...

  9. "It's Not a Political Issue!" The Interaction of Subject and Politics on Professors' Beliefs in Human-Induced Climate Change

    ERIC Educational Resources Information Center

    Nussbaum, E. Michael; Owens, Marissa C.; Cordova, Jacqueline R.

    2016-01-01

    This study examines the interaction of political orientation with academic discipline on beliefs in anthropogenic climate change (ACC) among higher education faculty. Over 300 faculty members at two research institutions in the United States were surveyed on topics concerning ACC and the results were analyzed with multiple regression. Even among…

  10. Approaches to evaluating climate change impacts on species: A guide to initiating the adaptation planning process

    Treesearch

    Erika L. Rowland; Jennifer E. Davison; Lisa J. Graumlich

    2011-01-01

    Assessing the impact of climate change on species and associated management objectives is a critical initial step for engaging in the adaptation planning process. Multiple approaches are available. While all possess limitations to their application associated with the uncertainties inherent in the data and models that inform their results, conducting and incorporating...

  11. Interacting effects of multiple stresses on growth and physiological processes in northern forest trees

    Treesearch

    Judson G. Isebrands; Richard E. Dickson; Joanne Rebbeck; David F. Karnosky

    2000-01-01

    Global climate chagnge is a complex and controversial subject, both technically and politically. Recently, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations concluded that "the balance of evidence suggests a discernible human influence on global climate" and that "further accumulation of greenhouse gases will commit the earth...

  12. Predicting the Impacts of Climate Change on Central American Agriculture

    NASA Astrophysics Data System (ADS)

    Winter, J. M.; Ruane, A. C.; Rosenzweig, C.

    2011-12-01

    Agriculture is a vital component of Central America's economy. Poor crop yields and harvest reliability can produce food insecurity, malnutrition, and conflict. Regional climate models (RCMs) and agricultural models have the potential to greatly enhance the efficiency of Central American agriculture and water resources management under both current and future climates. A series of numerical experiments was conducted using Regional Climate Model Version 3 (RegCM3) and the Weather Research and Forecasting Model (WRF) to evaluate the ability of RCMs to reproduce the current climate of Central America and assess changes in temperature and precipitation under multiple future climate scenarios. Control simulations were thoroughly compared to a variety of observational datasets, including local weather station data, gridded meteorological data, and high-resolution satellite-based precipitation products. Future climate simulations were analyzed for both mean shifts in climate and changes in climate variability, including extreme events (droughts, heat waves, floods). To explore the impacts of changing climate on maize, bean, and rice yields in Central America, RCM output was used to force the Decision Support System for Agrotechnology Transfer Model (DSSAT). These results were synthesized to create climate change impacts predictions for Central American agriculture that explicitly account for evolving distributions of precipitation and temperature extremes.

  13. Modelling the combined impacts of climate change and direct anthropogenic drivers on the ecosystem of the northwest European continental shelf

    NASA Astrophysics Data System (ADS)

    Wakelin, Sarah L.; Artioli, Yuri; Butenschön, Momme; Allen, J. Icarus; Holt, Jason T.

    2015-12-01

    The potential response of the marine ecosystem of the northwest European continental shelf to climate change under a medium emissions scenario (SRES A1B) is investigated using the coupled hydrodynamics-ecosystem model POLCOMS-ERSEM. Changes in the near future (2030-2040) and the far future (2082-2099) are compared to the recent past (1983-2000). The sensitivity of the ecosystem to potential changes in multiple anthropogenic drivers (river nutrient loads and benthic trawling) in the near future is compared to the impact of changes in climate. With the exception of the biomass of benthic organisms, the influence of the anthropogenic drivers only exceeds the impact of climate change in coastal regions. Increasing river nitrogen loads has a limited impact on the ecosystem whilst reducing river nitrogen and phosphate concentrations affects net primary production (netPP) and phytoplankton and zooplankton biomass. Direct anthropogenic forcing is seen to mitigate/amplify the effects of climate change. Increasing river nitrogen has the potential to amplify the effects of climate change at the coast by increasing netPP. Reducing river nitrogen and phosphate mitigates the effects of climate change for netPP and the biomass of small phytoplankton and large zooplankton species but amplifies changes in the biomass of large phytoplankton and small zooplankton.

  14. Plastic and evolutionary responses to climate change in fish

    PubMed Central

    Crozier, Lisa G; Hutchings, Jeffrey A

    2014-01-01

    The physical and ecological ‘fingerprints’ of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to ‘fine-grained’ population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change. PMID:24454549

  15. Plastic and evolutionary responses to climate change in fish.

    PubMed

    Crozier, Lisa G; Hutchings, Jeffrey A

    2014-01-01

    The physical and ecological 'fingerprints' of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to 'fine-grained' population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change.

  16. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America

    PubMed Central

    Falk, Donald A.; Westerling, Anthony L.; Swetnam, Thomas W.

    2017-01-01

    Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread. PMID:29244839

  17. Analyzing climate variations at multiple timescales can guide Zika virus response measures.

    PubMed

    Muñoz, Ángel G; Thomson, Madeleine C; Goddard, Lisa; Aldighieri, Sylvain

    2016-10-06

    The emergence of Zika virus (ZIKV) in Latin America and the Caribbean in 2014-2016 occurred during a period of severe drought and unusually high temperatures, conditions that have been associated with the 2015-2016 El Niño event, and/or climate change; however, no quantitative assessment has been made to date. Analysis of related flaviviruses transmitted by the same vectors suggests that ZIKV dynamics are sensitive to climate seasonality and longer-term variability and trends. A better understanding of the climate conditions conducive to the 2014-2016 epidemic may permit the development of climate-informed short and long-term strategies for ZIKV prevention and control. Using a novel timescale-decomposition methodology, we demonstrate that the extreme climate anomalies observed in most parts of South America during the current epidemic are not caused exclusively by El Niño or climate change, but by a combination of climate signals acting at multiple timescales. In Brazil, the dry conditions present in 2013-2015 are primarily explained by year-to-year variability superimposed on decadal variability, but with little contribution of long-term trends. In contrast, the warm temperatures of 2014-2015 resulted from the compound effect of climate change, decadal and year-to-year climate variability. ZIKV response strategies made in Brazil during the drought concurrent with the 2015-2016 El Niño event, may require revision in light of the likely return of rainfall associated with the borderline La Niña event expected in 2016-2017. Temperatures are likely to remain warm given the importance of long term and decadal scale climate signals. The Author(s)

  18. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America.

    PubMed

    Kitzberger, Thomas; Falk, Donald A; Westerling, Anthony L; Swetnam, Thomas W

    2017-01-01

    Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread.

  19. Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality

    PubMed Central

    Hondula, David M.; Bunker, Aditi; Ibarreta, Dolores; Liu, Junguo; Zhang, Xinxin; Sauerborn, Rainer

    2017-01-01

    Background: Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to “adaptation uncertainty” (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. Objectives: This study had three aims: a) Compare the range in projected impacts that arises from using different adaptation modeling methods; b) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c) recommend modeling method(s) to use in future impact assessments. Methods: We estimated impacts for 2070–2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. Results: The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. Conclusions: Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634 PMID:28885979

  20. Uncertainty quantification and propagation in a complex human-environment system driven by fire and climate

    NASA Astrophysics Data System (ADS)

    Terando, A. J.; Reich, B. J.; Pacifici, K.

    2013-12-01

    Fire is an important disturbance process in many coupled natural-human systems. Changes in the frequency and severity of fires due to anthropogenic climate change could have significant costs to society and the plant and animal communities that are adapted to a particular fire regime Planning for these changes requires a robust model of the relationship between climate and fire that accounts for multiple sources of uncertainty that are present when simulating ecological and climatological processes. Here we model how anthropogenic climate change could affect the wildfire regime for a region in the Southeast US whose natural ecosystems are dependent on frequent, low-intensity fires while humans are at risk from large catastrophic fires. We develop a modeling framework that incorporates three major sources of uncertainty: (1) uncertainty in the ecological drivers of expected monthly area burned, (2) uncertainty in the environmental drivers influencing the probability of an extreme fire event, and (3) structural uncertainty in different downscaled climate models. In addition we use two policy-relevant emission scenarios (climate stabilization and 'business-as-usual') to characterize the uncertainty in future greenhouse gas forcings. We use a Bayesian framework to incorporate different sources of uncertainty including simulation of predictive errors and Stochastic Search Variable Selection. Our results suggest that although the mean process remains stationary, the probability of extreme fires declines through time, owing to the persistence of high atmospheric moisture content during the peak fire season that dampens the effect of increasing temperatures. Including multiple sources of uncertainty leads to wide prediction intervals, but is potentially more useful for decision-makers that will require adaptation strategies that are robust to rapid but uncertain climate and ecological change.

  1. The effects of climate change and land-use change on demographic rates and population viability.

    PubMed

    Selwood, Katherine E; McGeoch, Melodie A; Mac Nally, Ralph

    2015-08-01

    Understanding the processes that lead to species extinctions is vital for lessening pressures on biodiversity. While species diversity, presence and abundance are most commonly used to measure the effects of human pressures, demographic responses give a more proximal indication of how pressures affect population viability and contribute to extinction risk. We reviewed how demographic rates are affected by the major anthropogenic pressures, changed landscape condition caused by human land use, and climate change. We synthesized the results of 147 empirical studies to compare the relative effect size of climate and landscape condition on birth, death, immigration and emigration rates in plant and animal populations. While changed landscape condition is recognized as the major driver of species declines and losses worldwide, we found that, on average, climate variables had equally strong effects on demographic rates in plant and animal populations. This is significant given that the pressures of climate change will continue to intensify in coming decades. The effects of climate change on some populations may be underestimated because changes in climate conditions during critical windows of species life cycles may have disproportionate effects on demographic rates. The combined pressures of land-use change and climate change may result in species declines and extinctions occurring faster than otherwise predicted, particularly if their effects are multiplicative. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  2. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems

    PubMed Central

    Djukic, Ika; Kitzler, Barbara; Kobler, Johannes; Mol-Dijkstra, Janet P.; Posch, Max; Reinds, Gert Jan; Schlutow, Angela; Starlinger, Franz; Wamelink, Wieger G. W.

    2017-01-01

    Climate change and excess deposition of airborne nitrogen (N) are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses) in the species potential distribution, but also N driven nutrient enrichment may threaten these habitats. We applied a dynamic geochemical soil model (VSD+) together with a novel niche-based plant response model (PROPS) to 5 forest habitat types (18 forest sites) protected under the EU Directive in Austria. We assessed how future climate change and N deposition might affect habitat suitability, defined as the capacity of a site to host its typical plant species. Our evaluation indicates that climate change will be the main driver of a decrease in habitat suitability in the future in Austria. The expected climate change will increase the occurrence of thermophilic plant species while decreasing cold-tolerant species. In addition to these direct impacts, climate change scenarios caused an increase of the occurrence probability of oligotrophic species due to a higher N immobilisation in woody biomass leading to soil N depletion. As a consequence, climate change did offset eutrophication from N deposition, even when no further reduction in N emissions was assumed. Our results show that climate change may have positive side-effects in forest habitats when multiple drivers of change are considered. PMID:28898262

  3. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems.

    PubMed

    Dirnböck, Thomas; Djukic, Ika; Kitzler, Barbara; Kobler, Johannes; Mol-Dijkstra, Janet P; Posch, Max; Reinds, Gert Jan; Schlutow, Angela; Starlinger, Franz; Wamelink, Wieger G W

    2017-01-01

    Climate change and excess deposition of airborne nitrogen (N) are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses) in the species potential distribution, but also N driven nutrient enrichment may threaten these habitats. We applied a dynamic geochemical soil model (VSD+) together with a novel niche-based plant response model (PROPS) to 5 forest habitat types (18 forest sites) protected under the EU Directive in Austria. We assessed how future climate change and N deposition might affect habitat suitability, defined as the capacity of a site to host its typical plant species. Our evaluation indicates that climate change will be the main driver of a decrease in habitat suitability in the future in Austria. The expected climate change will increase the occurrence of thermophilic plant species while decreasing cold-tolerant species. In addition to these direct impacts, climate change scenarios caused an increase of the occurrence probability of oligotrophic species due to a higher N immobilisation in woody biomass leading to soil N depletion. As a consequence, climate change did offset eutrophication from N deposition, even when no further reduction in N emissions was assumed. Our results show that climate change may have positive side-effects in forest habitats when multiple drivers of change are considered.

  4. Climate-change impacts on understorey bamboo species and giant pandas in China's Qinling Mountains

    NASA Astrophysics Data System (ADS)

    Tuanmu, Mao-Ning; Viña, Andrés; Winkler, Julie A.; Li, Yu; Xu, Weihua; Ouyang, Zhiyun; Liu, Jianguo

    2013-03-01

    Climate change is threatening global ecosystems through its impact on the survival of individual species and their ecological functions. Despite the important role of understorey plants in forest ecosystems, climate impact assessments on understorey plants and their role in supporting wildlife habitat are scarce in the literature. Here we assess climate-change impacts on understorey bamboo species with an emphasis on their ecological function as a food resource for endangered giant pandas (Ailuropoda melanoleuca). An ensemble of bamboo distribution projections associated with multiple climate-change projections and bamboo dispersal scenarios indicates a substantial reduction in the distributional ranges of three dominant bamboo species in the Qinling Mountains, China during the twenty-first century. As these three species comprise almost the entire diet of the panda population in the region, the projected changes in bamboo distribution suggest a potential shortage of food for this population, unless alternative food sources become available. Although the projections were developed under unavoidable simplifying assumptions and uncertainties, they indicate potential challenges for panda conservation and underscore the importance of incorporating interspecific interactions into climate-change impact assessments and associated conservation planning.

  5. Linking Research, Education and Public Engagement in Geoscience: Leadership and Strategic Partnerships

    NASA Astrophysics Data System (ADS)

    Spellman, K.

    2017-12-01

    A changing climate has impacted Alaska communities at unprecedented rates, and the need for efficient and effective climate change learning in the Boreal and Arctic regions is urgent. Learning programs that can both increase personal understanding and connection to climate change science and also inform large scale scientific research about climate change are an attractive option for building community adaptive capacity at multiple scales. Citizen science has emerged as a powerful tool for facilitating learning across scales, and for building partnerships across natural sciences research, education, and outreach disciplines. As an early career scientist and interdisciplinary researcher, citizen science has become the centerpiece of my work and has provided some of the most rewarding moments of my career. I will discuss my early career journey building a research and leadership portfolio integrating climate change research, learning research, and public outreach through citizen science. I will share key experiences from graduate student to early career PI that cultivated my leadership skills and ability to build partnerships necessary to create citizen science programs that emphasize synergy between climate change research and education.

  6. Climate Change and Interacting Stressors: Implications for ...

    EPA Pesticide Factsheets

    EPA announced the release of the final document, Climate Change and Interacting Stressors: Implications for Coral Reef Management in American Samoa. This report provides a synthesis of information on the interactive effects of climate change and other stressors on the reefs of American Samoa as well as an assessment of potential management responses. This report provides the coral reef managers of American Samoa, as well as other coral reef managers in the Pacific region, with some management options to help enhance the capacity of local coral reefs to resist the negative effects of climate change. This report was designed to take advantage of diverse research and monitoring efforts that are ongoing in American Samoa to: analyze and compile the results of multiple research projects that focus on understanding climate-related stressors and their effects on coral reef ecosystem degradation and recovery; and assess implications for coral reef managment of the combined information, including possible response options.

  7. Narratives of dynamic lands: science education, indigenous knowledge and possible futures

    NASA Astrophysics Data System (ADS)

    McGinty, Megan; Bang, Megan

    2016-06-01

    We aim to share some of our work currently focused on understanding and unearthing the multiplicities of ways the denial of culture in relation to science and knowledge construction is embedded in issues of climate change and climate change education. The issues become more troubling when we consider how effects of climate change are manifesting locally in ways that force shifts in Indigenous ways of living while simultaneously nation-states seem to think that continued or increased control of Indigenous practice is warranted. For us, taking the implications of such approaches seriously requires significant consideration of how climate education impacts Indigenous learners and whether learning western climate science is indeed part of making real change important. In our work we have focused on the ways in which settler-colonialism and the resultant racialized hierarchies permeate science education and contribute to an expectation of human entitlement to land and a notion of land permanence.

  8. Numerical simulation of the effects of urban land-use changes on the local climate of multiple desert cities

    NASA Astrophysics Data System (ADS)

    Kamal, S. M.; Huang, H. P.; Myint, S. W.

    2016-12-01

    This study quantifies the effect of urbanization on local climate by numerical simulations for multiple desert cities with a wide range of urban size, baseline climatology, and composition of land cover. The numerical experiments use the Weather Research and Forecasting (WRF) model with multiple layers of nesting centered at a desert city. To extract the influence of land-use changes, twin runs are performed with each pair driven by the same time-varying lateral boundary conditions from reanalysis but different land surface conditions from Landsat observations for 1985 and 2010. The differences in the meteorological fields between the two runs are interpreted as the effects of land-use changes due to urbanization from 1985-2010. Using this strategy, simulations are carried out for five desert cities: (1) Las Vegas, United States, (2) Hotan, China, (3) Kharga, Egypt, (4) Beer Sheva, Israel, and (5) Jodhpur, India. The results of the simulations reveal a common pattern of the climatic effect of desert urbanization with nighttime warming but daytime cooling over areas where urbanization occurred. This effect is mainly confined to the urban area and is not sensitive to the size of the city or the detail of land cover in the surrounding non-urban areas. The pattern is similar in winter and summer. Exceptions to this pattern are found in a few cases in which the noisiness of local circulation, specifically monsoon and land-sea breeze, overwhelms the climatic signal induced by land-use changes. Although the local climatic responses to urbanization are qualitatively similar for the five desert cities, quantitative differences exist in the magnitudes of nighttime warming and daytime cooling. The possible reasons for those secondary differences are discussed.

  9. The resilience of postglacial hunter-gatherers to abrupt climate change.

    PubMed

    Blockley, Simon; Candy, Ian; Matthews, Ian; Langdon, Pete; Langdon, Cath; Palmer, Adrian; Lincoln, Paul; Abrook, Ashley; Taylor, Barry; Conneller, Chantal; Bayliss, Alex; MacLeod, Alison; Deeprose, Laura; Darvill, Chris; Kearney, Rebecca; Beavan, Nancy; Staff, Richard; Bamforth, Michael; Taylor, Maisie; Milner, Nicky

    2018-05-01

    Understanding the resilience of early societies to climate change is an essential part of exploring the environmental sensitivity of human populations. There is significant interest in the role of abrupt climate events as a driver of early Holocene human activity, but there are very few well-dated records directly compared with local climate archives. Here, we present evidence from the internationally important Mesolithic site of Star Carr showing occupation during the early Holocene, which is directly compared with a high-resolution palaeoclimate record from neighbouring lake beds. We show that-once established-there was intensive human activity at the site for several hundred years when the community was subject to multiple, severe, abrupt climate events that impacted air temperatures, the landscape and the ecosystem of the region. However, these results show that occupation and activity at the site persisted regardless of the environmental stresses experienced by this society. The Star Carr population displayed a high level of resilience to climate change, suggesting that postglacial populations were not necessarily held hostage to the flickering switch of climate change. Instead, we show that local, intrinsic changes in the wetland environment were more significant in determining human activity than the large-scale abrupt early Holocene climate events.

  10. Climate Change and Public Health Surveillance: Toward a Comprehensive Strategy.

    PubMed

    Moulton, Anthony Drummond; Schramm, Paul John

    Climate change poses a host of serious threats to human health that robust public health surveillance systems can help address. It is unknown, however, whether existing surveillance systems in the United States have adequate capacity to serve that role, nor what actions may be needed to develop adequate capacity. Our goals were to review efforts to assess and strengthen the capacity of public health surveillance systems to support health-related adaptation to climate change in the United States and to determine whether additional efforts are warranted. Building on frameworks issued by the Intergovernmental Panel on Climate Change and the Centers for Disease Control and Prevention, we specified 4 core components of public health surveillance capacity relevant to climate change health threats. Using standard methods, we next identified and analyzed multiple assessments of the existing, relevant capacity of public health surveillance systems as well as attempts to improve that capacity. We also received information from selected national public health associations. Multiple federal, state, and local public health agencies, professional associations, and researchers have made valuable, initial efforts to assess and strengthen surveillance capacity. These efforts, however, have been made by entities working independently and without the benefit of a shared conceptual framework or strategy. Their principal focus has been on identifying suitable indicators and data sources largely to the exclusion of other core components of surveillance capacity. A more comprehensive and strategic approach is needed to build the public health surveillance capacity required to protect the health of Americans in a world of rapidly evolving climate change. Public health practitioners and policy makers at all levels can use the findings and issues reviewed in this article as they lead design and execution of a coordinated, multisector strategic plan to create and sustain that capacity.

  11. Climate Change and Public Health Surveillance: Toward a Comprehensive Strategy

    PubMed Central

    Moulton, Anthony Drummond; Schramm, Paul John

    2017-01-01

    Context Climate change poses a host of serious threats to human health that robust public health surveillance systems can help address. It is unknown, however, whether existing surveillance systems in the United States have adequate capacity to serve that role, nor what actions may be needed to develop adequate capacity. Objective Our goals were to review efforts to assess and strengthen the capacity of public health surveillance systems to support health-related adaptation to climate change in the United States and to determine whether additional efforts are warranted. Methods Building on frameworks issued by the Intergovernmental Panel on Climate Change and the Centers for Disease Control and Prevention, we specified 4 core components of public health surveillance capacity relevant to climate change health threats. Using standard methods, we next identified and analyzed multiple assessments of the existing, relevant capacity of public health surveillance systems as well as attempts to improve that capacity. We also received information from selected national public health associations. Findings Multiple federal, state, and local public health agencies, professional associations, and researchers have made valuable, initial efforts to assess and strengthen surveillance capacity. These efforts, however, have been made by entities working independently and without the benefit of a shared conceptual framework or strategy. Their principal focus has been on identifying suitable indicators and data sources largely to the exclusion of other core components of surveillance capacity. Conclusions A more comprehensive and strategic approach is needed to build the public health surveillance capacity required to protect the health of Americans in a world of rapidly evolving climate change. Public health practitioners and policy makers at all levels can use the findings and issues reviewed in this article as they lead design and execution of a coordinated, multisector strategic plan to create and sustain that capacity. PMID:28169865

  12. Beyond exposure, sensitivity and adaptive capacity: A response based ecological framework to assess species climate change vulnerability

    USGS Publications Warehouse

    Fortini, Lucas B.; Schubert, Olivia

    2017-01-01

    As the impacts of global climate change on species are increasingly evident, there is a clear need to adapt conservation efforts worldwide. Species vulnerability assessments (VAs) are increasingly used to summarize all relevant information to determine a species’ potential vulnerability to climate change and are frequently the first step in informing climate adaptation efforts. VAs commonly integrate multiple sources of information by utilizing a framework that distinguishes factors relevant to species exposure, sensitivity, and adaptive capacity. However, this framework was originally developed for human systems, and its use to evaluate species vulnerability has serious practical and theoretical limitations. By instead defining vulnerability as the degree to which a species is unable to exhibit any of the responses necessary for persistence under climate change (i.e., toleration of projected changes, migration to new climate-compatible areas, enduring in microrefugia, and evolutionary adaptation), we can bring VAs into the realm of ecological science without applying borrowed abstract concepts that have consistently challenged species-centric research and management. This response-based framework to assess species vulnerability to climate change allows better integration of relevant ecological data and past research, yielding results with much clearer implications for conservation and research prioritization.

  13. Landscape-and regional-scale shifts in forest composition under climate change in the Central Hardwood Region of the United States

    Treesearch

    Wen J. Wang; Hong S. He; Frank R. Thompson; Jacob S. Fraser; William D. Dijak

    2016-01-01

    Tree species distribution and abundance are affected by forces operating at multiple scales. Niche and biophysical process models have been commonly used to predict climate change effects at regional scales, however, these models have limited capability to include site-scale population dynamics and landscape- scale disturbance and dispersal. We applied a landscape...

  14. Climate Change Resilience Planning at the Department of Energy's Savannah River Site

    NASA Astrophysics Data System (ADS)

    Werth, D. W.; Johnson, A.

    2015-12-01

    The Savannah River National Laboratory (SRNL) is developing a site sustainability plan for the Department of Energy's Savannah River Site (SRS) in South Carolina in accordance with Executive Order 13693, which charges each DOE agency with "identifying and addressing projected impacts of climate change" and "calculating the potential cost and risk to mission associated with agency operations". The plan will comprise i) projections of climate change, ii) surveys of site managers to estimate the effects of climate change on site operations, and iii) a determination of adaptive actions. Climate change projections for SRS are obtained from multiple sources, including an online repository of downscaled global climate model (GCM) simulations of future climate and downscaled GCM simulations produced at SRNL. Taken together, we have projected data for temperature, precipitation, humidity, and wind - all variables with a strong influence on site operations. SRNL is working to engage site facility managers and facilitate a "bottom up" approach to climate change resilience planning, where the needs and priorities of stakeholders are addressed throughout the process. We make use of the Vulnerability Assessment Scoring Tool, an Excel-based program designed to accept as input various climate scenarios ('exposure'), the susceptibility of assets to climate change ('sensitivity'), and the ability of these assets to cope with climate change ('adaptive capacity'). These are combined to produce a series of scores that highlight vulnerabilities. Working with site managers, we have selected the most important assets, estimated their expected response to climate change, and prepared a report highlighting the most endangered facilities. Primary risks include increased energy consumption, decreased water availability, increased forest fire danger, natural resource degradation, and compromised outdoor worker safety in a warmer and more humid climate. Results of this study will aid in driving future management decisions and promoting sustainable practices at SRS.

  15. 36 CFR 219.10 - Multiple use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., disturbance regimes, and stressors, such as natural succession, wildland fire, invasive species, and climate change; and the ability of the terrestrial and aquatic ecosystems on the plan area to adapt to change...

  16. 36 CFR 219.10 - Multiple use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., disturbance regimes, and stressors, such as natural succession, wildland fire, invasive species, and climate change; and the ability of the terrestrial and aquatic ecosystems on the plan area to adapt to change...

  17. 36 CFR 219.10 - Multiple use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., disturbance regimes, and stressors, such as natural succession, wildland fire, invasive species, and climate change; and the ability of the terrestrial and aquatic ecosystems on the plan area to adapt to change...

  18. Multi-scale connectivity and graph theory highlight critical areas for conservation under climate change

    USGS Publications Warehouse

    Dilts, Thomas E.; Weisberg, Peter J.; Leitner, Phillip; Matocq, Marjorie D.; Inman, Richard D.; Nussear, Ken E.; Esque, Todd C.

    2016-01-01

    Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land-use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multi-scale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods including graph theory, circuit theory and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this California threatened species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American Southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously-distributed habitat, and should be applicable across a broad range of taxa.

  19. Recent climate variability and its impacts on soybean yields in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ferreira, Danielle Barros; Rao, V. Brahmananda

    2011-08-01

    Recent climate variability in rainfall, temperatures (maximum and minimum), and the diurnal temperature range is studied with emphasis on its influence over soybean yields in southern Brazil, during 1969 to 2002. The results showed that the soybean ( Glycine max L. Merril) yields are more affected by changes in temperature during summer, while changes in rainfall are more important during the beginning of plantation and at its peak of development. Furthermore, soybean yields in Paraná are more sensitive to rainfall variations, while soybean yields in the Rio Grande do Sul are more sensitive to variations in temperature. Effects of interannual climatic variability on soybean yields are evaluated through three agro-meteorological models: additive Stewart, multiplicative Rao, and multiplicative Jensen. The Jensen model is able to reproduce the interannual behavior of soybean yield reasonably well.

  20. Signs of the Land: Reaching Arctic Communities Facing Climate Change

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Chase, M. J.; Demientieff, S.; Pfirman, S. L.; Brunacini, J.

    2014-12-01

    In July 2014, a diverse and intergenerational group of Alaskan Natives came together on Howard Luke's Galee'ya Camp by the Tanana River in Fairbanks, Alaska to talk about climate change and it's impacts on local communities. Over a period of four days, the Signs of the Land Climate Change Camp wove together traditional knowledge, local observations, Native language, and climate science through a mix of storytelling, presentations, dialogue, and hands-on, community-building activities. This camp adapted the model developed several years ago under the Association for Interior Native Educators (AINE)'s Elder Academy. Part of the Polar Learning and Responding Climate Change Education Partnership, the Signs of the Land Climate Change Camp was developed and conducted collaboratively with multiple partners to test a model for engaging indigenous communities in the co-production of climate change knowledge, communication tools, and solutions-building. Native Alaskans have strong subsistence and cultural connections to the land and its resources, and, in addition to being keen observers of their environment, have a long history of adapting to changing conditions. Participants in the camp included Elders, classroom teachers, local resource managers and planners, community members, and climate scientists. Based on their experiences during the camp, participants designed individualized outreach plans for bringing culturally-responsive climate learning to their communities and classrooms throughout the upcoming year. Plans included small group discussions, student projects, teacher training, and conference presentations.

  1. A changing climate: impacts on human exposures to O3 using ...

    EPA Pesticide Factsheets

    Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposures due to these impacts was developed by linking climate, air quality, land-use, and human exposure models. This methodology was then applied to characterize changes in predicted human exposures to O3 under multiple future scenarios. Regional climate projections for the U.S. were developed by downscaling global circulation model (GCM) scenarios for three of the Intergovernmental Panel on Climate Change’s (IPCC’s) Representative Concentration Pathways (RCPs) using the Weather Research and Forecasting (WRF) model. The regional climate results were in turn used to generate air quality (concentration) projections using the Community Multiscale Air Quality (CMAQ) model. For each of the climate change scenarios, future U.S. census-tract level population distributions from the Integrated Climate and Land Use Scenarios (ICLUS) model for four future scenarios based on the IPCC’s Special Report on Emissions Scenarios (SRES) storylines were used. These climate, air quality, and population projections were used as inputs to EPA’s Air Pollutants Exposure (APEX) model for 12 U.S. cities. Probability density functions show changes in the population distribution of 8 h maximum daily O3 exposur

  2. Using Probabilistic Methods in Water Scarcity Assessments: A First Step Towards a Water Scarcity Risk Assessment Framework

    NASA Technical Reports Server (NTRS)

    Veldkamp, Ted; Wada, Yoshihide; Aerts, Jeroen; Ward, Phillip

    2016-01-01

    Water scarcity -driven by climate change, climate variability, and socioeconomic developments- is recognized as one of the most important global risks, both in terms of likelihood and impact. Whilst a wide range of studies have assessed the role of long term climate change and socioeconomic trends on global water scarcity, the impact of variability is less well understood. Moreover, the interactions between different forcing mechanisms, and their combined effect on changes in water scarcity conditions, are often neglected. Therefore, we provide a first step towards a framework for global water scarcity risk assessments, applying probabilistic methods to estimate water scarcity risks for different return periods under current and future conditions while using multiple climate and socioeconomic scenarios.

  3. Impacts of Model Bias on the Climate Change Signal and Effects of Weighted Ensembles of Regional Climate Model Simulations: A Case Study over Southern Québec, Canada

    DOE PAGES

    Eum, Hyung-Il; Gachon, Philippe; Laprise, René

    2016-01-01

    This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affectedmore » by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. Finally, these results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.« less

  4. Impacts of Model Bias on the Climate Change Signal and Effects of Weighted Ensembles of Regional Climate Model Simulations: A Case Study over Southern Québec, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eum, Hyung-Il; Gachon, Philippe; Laprise, René

    This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affectedmore » by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. Finally, these results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.« less

  5. Multiple Adaptation Types with Mitigation: A Framework for Policy Analysis

    EPA Science Inventory

    Effective climate policy will consist of mitigation and adaptation implemented simultaneously in a policy portfolio to reduce the risks of climate change. The relative share of these responses will vary over time and will be adjusted in response to new information. Furthermore,...

  6. The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation research activity for historical period model intercomparison and future climate change conditions with participation of multiple crop and agricultural economic model groups around the...

  7. Rural Nevada and climate change: vulnerability, beliefs, and risk perception.

    PubMed

    Safi, Ahmad Saleh; Smith, William James; Liu, Zhnongwei

    2012-06-01

    In this article, we present the results of a study investigating the influence of vulnerability to climate change as a function of physical vulnerability, sensitivity, and adaptive capacity on climate change risk perception. In 2008/2009, we surveyed Nevada ranchers and farmers to assess their climate change-related beliefs, and risk perceptions, political orientations, and socioeconomic characteristics. Ranchers' and farmers' sensitivity to climate change was measured through estimating the proportion of their household income originating from highly scarce water-dependent agriculture to the total income. Adaptive capacity was measured as a combination of the Social Status Index and the Poverty Index. Utilizing water availability and use, and population distribution GIS databases; we assessed water resource vulnerability in Nevada by zip code as an indicator of physical vulnerability to climate change. We performed correlation tests and multiple regression analyses to examine the impact of vulnerability and its three distinct components on risk perception. We find that vulnerability is not a significant determinant of risk perception. Physical vulnerability alone also does not impact risk perception. Both sensitivity and adaptive capacity increase risk perception. While age is not a significant determinant of it, gender plays an important role in shaping risk perception. Yet, general beliefs such as political orientations and climate change-specific beliefs such as believing in the anthropogenic causes of climate change and connecting the locally observed impacts (in this case drought) to climate change are the most prominent determinants of risk perception. © 2012 Society for Risk Analysis.

  8. Variation in Estimated Ozone-Related Health Impacts of Climate Change due to Modeling Choices and Assumptions

    PubMed Central

    Post, Ellen S.; Grambsch, Anne; Weaver, Chris; Morefield, Philip; Leung, Lai-Yung; Nolte, Christopher G.; Adams, Peter; Liang, Xin-Zhong; Zhu, Jin-Hong; Mahoney, Hardee

    2012-01-01

    Background: Future climate change may cause air quality degradation via climate-induced changes in meteorology, atmospheric chemistry, and emissions into the air. Few studies have explicitly modeled the potential relationships between climate change, air quality, and human health, and fewer still have investigated the sensitivity of estimates to the underlying modeling choices. Objectives: Our goal was to assess the sensitivity of estimated ozone-related human health impacts of climate change to key modeling choices. Methods: Our analysis included seven modeling systems in which a climate change model is linked to an air quality model, five population projections, and multiple concentration–response functions. Using the U.S. Environmental Protection Agency’s (EPA’s) Environmental Benefits Mapping and Analysis Program (BenMAP), we estimated future ozone (O3)-related health effects in the United States attributable to simulated climate change between the years 2000 and approximately 2050, given each combination of modeling choices. Health effects and concentration–response functions were chosen to match those used in the U.S. EPA’s 2008 Regulatory Impact Analysis of the National Ambient Air Quality Standards for O3. Results: Different combinations of methodological choices produced a range of estimates of national O3-related mortality from roughly 600 deaths avoided as a result of climate change to 2,500 deaths attributable to climate change (although the large majority produced increases in mortality). The choice of the climate change and the air quality model reflected the greatest source of uncertainty, with the other modeling choices having lesser but still substantial effects. Conclusions: Our results highlight the need to use an ensemble approach, instead of relying on any one set of modeling choices, to assess the potential risks associated with O3-related human health effects resulting from climate change. PMID:22796531

  9. Temperate Mountain Forest Biodiversity under Climate Change: Compensating Negative Effects by Increasing Structural Complexity

    PubMed Central

    Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt

    2014-01-01

    Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change. PMID:24823495

  10. Temperate mountain forest biodiversity under climate change: compensating negative effects by increasing structural complexity.

    PubMed

    Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt

    2014-01-01

    Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species' occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species' occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.

  11. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks

    USGS Publications Warehouse

    Euskirchen, Eugénie S.; McGuire, Anthony David; Chapin, F. Stuart; Yi, S.; Thompson, Catharine Copass

    2009-01-01

    Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in ecotonal northern Alaska, USA, for the years 2003–2100. We compared energy feedbacks associated with increases in biomass to energy feedbacks associated with changes in the duration of the snow-free season. We based our simulations on nine input climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) and a new version of the Terrestrial Ecosystem Model (TEM) that incorporates biogeochemistry, vegetation dynamics for multiple PFTs (e.g., trees, shrubs, grasses, sedges, mosses), multiple vegetation pools, and soil thermal regimes. We found mean increases in net primary productivity (NPP) in all PFTs. Most notably, birch (Betula spp.) in the shrub tundra showed increases that were at least three times larger than any other PFT. Increases in NPP were positively related to increases in growing-season length in the sedge tundra, but PFTs in boreal forest and shrub tundra showed a significant response to changes in light availability as well as growing-season length. Significant NPP responses to changes in vegetation uptake of nitrogen by PFT indicated that some PFTs were better competitors for nitrogen than other PFTs. While NPP increased, heterotrophic respiration (RH) also increased, resulting in decreases or no change in net ecosystem carbon uptake. Greater aboveground biomass from increased NPP produced a decrease in summer albedo, greater regional heat absorption (0.34 ± 0.23 W·m−2·10 yr−1 [mean ± SD]), and a positive feedback to climate warming. However, the decrease in albedo due to a shorter snow season (−5.1 ± 1.6 d/10 yr) resulted in much greater regional heat absorption (3.3 ± 1.24 W·m−2·10 yr−1) than that associated with increases in vegetation. Through quantifying feedbacks associated with changes in vegetation and those associated with changes in the snow season length, we can reach a more integrated understanding of the manner in which climate change may impact interactions between high-latitude ecosystems and the climate system.

  12. Building Capacity: The National Network for Ocean and Climate Change Interpretation

    NASA Astrophysics Data System (ADS)

    Spitzer, W.

    2014-12-01

    In the US, more than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks) are visited annually by 61% of the population. Research shows that these visitors are receptive to learning about climate change, and expect these institutions to provide reliable information about environmental issues and solutions. These informal science venues play a critical role in shaping public understanding. Since 2007, the New England Aquarium has led a national effort to increase the capacity of informal science venues to effectively communicate about climate change. We are now leading the NSF-funded National Network for Ocean and Climate Change Interpretation (NNOCCI), partnering with the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. After two years of project implementation, key findings include: 1. Importance of adaptive management - We continue to make ongoing changes in training format, content, and roles of facilitators and participants. 2. Impacts on interpreters - We have multiple lines of evidence for changes in knowledge, skills, attitudes, and behaviors. 3. Social radiation - Trained interpreters have a significant influence on their friends, family and colleagues. 4. Visitor impacts - "Exposure to "strategically framed" interpretation does change visitors' perceptions about climate change. 5. Community of practice - We are seeing evidence of growing participation, leadership, and sustainability. 6. Diffusion of innovation - Peer networks are facilitating dissemination throughout the informal science education community. Over the next five years, NNOCCI will achieve a systemic national impact across the ISE community, embed its work within multiple ongoing regional and national climate change education networks, and leave an enduring legacy of impact. We believe that the NNOCCI project can serve as a model for how ISEIs can address other complex environmental, scientific, and policy topics as well.

  13. Screening regional management options for their impact on climate resilience: an approach and case study in the Venen-Vechtstreek wetlands in the Netherlands.

    PubMed

    Wardekker, J A; Wildschut, D; Stemberger, S; van der Sluijs, J P

    2016-01-01

    Freshwater systems provide various resources and services. These are often vulnerable to climate change and other pressures. Therefore, enhancing resilience to climate change is important for their long term viability. This paper explores how management options can be evaluated on their resilience implications. The approach included five steps: (1) characterizing the system, (2) characterizing the impacts of climate change and other disturbances, (3) inventorying management options, (4) assessing the impacts of these on climate resilience, and (5) follow-up analysis. For the resilience assessment, we used a set of 'resilience principles': homeostasis, omnivory, high flux, flatness, buffering, and redundancy. We applied the approach in a case study in a Dutch wetlands region. Many options in the region's management plan contribute to resilience, however, the plan underutilised several principles, particularly flatness, but also redundancy and omnivory for agriculture, and high flux for nature. Co-benefits was identified as an important additional criterion to obtain support for adaptation from local stakeholders, such as farmers. The approach provided a relatively quick and participatory way to screen options. It allowed us to consider multiple impacts and sectors, multiple dimensions of resilience, and stakeholder perspectives. The results can be used to identify gaps or pitfalls, and set priorities for follow-up analyses.

  14. Climate change has indirect effects on resource use and overlap among coexisting bird species with negative consequences for their reproductive success

    USGS Publications Warehouse

    Martin, Thomas E.; Auer, Sonya K.

    2013-01-01

    Climate change can modify ecological interactions, but whether it can have cascading effects throughout ecological networks of multiple interacting species remains poorly studied. Climate-driven alterations in the intensity of plant–herbivore interactions may have particularly profound effects on the larger community because plants provide habitat for a wide diversity of organisms. Here we show that changes in vegetation over the last 21 years, due to climate effects on plant–herbivore interactions, have consequences for songbird nest site overlap and breeding success. Browsing-induced reductions in the availability of preferred nesting sites for two of three ground nesting songbirds led to increasing overlap in nest site characteristics among all three bird species with increasingly negative consequences for reproductive success over the long term. These results demonstrate that changes in the vegetation community from effects of climate change on plant–herbivore interactions can cause subtle shifts in ecological interactions that have critical demographic ramifications for other species in the larger community.

  15. Predicted effects of gypsy moth defoliation and climate change on forest carbon dynamics in the New Jersey pine barrens.

    PubMed

    Kretchun, Alec M; Scheller, Robert M; Lucash, Melissa S; Clark, Kenneth L; Hom, John; Van Tuyl, Steve

    2014-01-01

    Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to model the effects of climate change, gypsy moth (Lymantria dispar L.) defoliation, and wildfire on the C dynamics of the forests of the New Jersey Pine Barrens over the next century. Climate scenarios were simulated using current climate conditions (baseline), as well as a high emissions scenario (HadCM3 A2 emissions scenario). Our results suggest that long-term changes in C cycling will be driven more by climate change than by fire or gypsy moths over the next century. We also found that simulated disturbances will affect species composition more than tree growth or C sequestration rates at the landscape level. Projected changes in tree species biomass indicate a potential increase in oaks with climate change and gypsy moth defoliation over the course of the 100-year simulation, exacerbating current successional trends towards increased oak abundance. Our research suggests that defoliation under climate change may play a critical role in increasing the variability of tree growth rates and in determining landscape species composition over the next 100 years.

  16. Predicted Effects of Gypsy Moth Defoliation and Climate Change on Forest Carbon Dynamics in the New Jersey Pine Barrens

    PubMed Central

    Kretchun, Alec M.; Scheller, Robert M.; Lucash, Melissa S.; Clark, Kenneth L.; Hom, John; Van Tuyl, Steve

    2014-01-01

    Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to model the effects of climate change, gypsy moth (Lymantria dispar L.) defoliation, and wildfire on the C dynamics of the forests of the New Jersey Pine Barrens over the next century. Climate scenarios were simulated using current climate conditions (baseline), as well as a high emissions scenario (HadCM3 A2 emissions scenario). Our results suggest that long-term changes in C cycling will be driven more by climate change than by fire or gypsy moths over the next century. We also found that simulated disturbances will affect species composition more than tree growth or C sequestration rates at the landscape level. Projected changes in tree species biomass indicate a potential increase in oaks with climate change and gypsy moth defoliation over the course of the 100-year simulation, exacerbating current successional trends towards increased oak abundance. Our research suggests that defoliation under climate change may play a critical role in increasing the variability of tree growth rates and in determining landscape species composition over the next 100 years. PMID:25119162

  17. Ecological grief as a mental health response to climate change-related loss

    NASA Astrophysics Data System (ADS)

    Cunsolo, Ashlee; Ellis, Neville R.

    2018-04-01

    Climate change is increasingly understood to impact mental health through multiple pathways of risk, including intense feelings of grief as people suffer climate-related losses to valued species, ecosystems and landscapes. Despite growing research interest, ecologically driven grief, or `ecological grief', remains an underdeveloped area of inquiry. We argue that grief is a natural and legitimate response to ecological loss, and one that may become more common as climate impacts worsen. Drawing upon our own research in Northern Canada and the Australian Wheatbelt, combined with a synthesis of the literature, we offer future research directions for the study of ecological grief.

  18. Toward optimizing the delivery and use of climate science for natural resource management: lessons learned from recent adaptation efforts in the southwestern U.S.

    NASA Astrophysics Data System (ADS)

    Enquist, C.

    2014-12-01

    Within the past decade, a wealth of federal, state, and NGO-driven initiatives has emerged across managed landscapes in the United States with the goal of facilitating a coordinated response to rapidly changing climate and environmental conditions. In addition to acquisition and translation of the latest climate science, climate vulnerability assessment and scenario planning at multiple spatial and temporal scales are typically major components of such broad adaptation efforts. Numerous approaches for conducting this work have emerged in recent years and have culminated in general guidance and trainings for resource professionals that are specifically designed to help practitioners face the challenges of climate change. In particular, early engagement of stakeholders across multiple jurisdictions is particularly critical to cultivate buy-in and other enabling conditions for moving the science to on-the-ground action. I report on a suite of adaptation efforts in the southwestern US and interior Rockies, highlighting processes used, actions taken, lessons learned, and recommended next steps to facilitate achieving desired management outcomes. This includes a discussion of current efforts to optimize funding for actionable climate science, formalize science-management collaborations, and facilitate new investments in approaches for strategic climate-informed monitoring and evaluation.

  19. Effects of cumulus entrainment and multiple cloud types on a January global climate model simulation

    NASA Technical Reports Server (NTRS)

    Yao, Mao-Sung; Del Genio, Anthony D.

    1989-01-01

    An improved version of the GISS Model II cumulus parameterization designed for long-term climate integrations is used to study the effects of entrainment and multiple cloud types on the January climate simulation. Instead of prescribing convective mass as a fixed fraction of the cloud base grid-box mass, it is calculated based on the closure assumption that the cumulus convection restores the atmosphere to a neutral moist convective state at cloud base. This change alone significantly improves the distribution of precipitation, convective mass exchanges, and frequencies in the January climate. The vertical structure of the tropical atmosphere exhibits quasi-equilibrium behavior when this closure is used, even though there is no explicit constraint applied above cloud base.

  20. Soil ecosystem functioning under climate change: plant species and community effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardol, Paul; Cregger, Melissa; Campany, Courtney E

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneathmore » dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct impact of climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting how climate change will alter ecosystem functioning.« less

  1. High-Resolution Climate Data Visualization through GIS- and Web-based Data Portals

    NASA Astrophysics Data System (ADS)

    WANG, X.; Huang, G.

    2017-12-01

    Sound decisions on climate change adaptation rely on an in-depth assessment of potential climate change impacts at regional and local scales, which usually requires finer resolution climate projections at both spatial and temporal scales. However, effective downscaling of global climate projections is practically difficult due to the lack of computational resources and/or long-term reference data. Although a large volume of downscaled climate data has been make available to the public, how to understand and interpret the large-volume climate data and how to make use of the data to drive impact assessment and adaptation studies are still challenging for both impact researchers and decision makers. Such difficulties have become major barriers preventing informed climate change adaptation planning at regional scales. Therefore, this research will explore new GIS- and web-based technologies to help visualize the large-volume regional climate data with high spatiotemporal resolutions. A user-friendly public data portal, named Climate Change Data Portal (CCDP, http://ccdp.network), will be established to allow intuitive and open access to high-resolution regional climate projections at local scales. The CCDP offers functions of visual representation through geospatial maps and data downloading for a variety of climate variables (e.g., temperature, precipitation, relative humidity, solar radiation, and wind) at multiple spatial resolutions (i.e., 25 - 50 km) and temporal resolutions (i.e., annual, seasonal, monthly, daily, and hourly). The vast amount of information the CCDP encompasses can provide a crucial basis for assessing impacts of climate change on local communities and ecosystems and for supporting better decision making under a changing climate.

  2. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures.

    PubMed

    Xie, Gisselle Yang; Olson, Deanna H; Blaustein, Andrew R

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.

  3. Conservation in the face of climate change: The roles of alternative models, monitoring, and adaptation in confronting and reducing uncertainty

    USGS Publications Warehouse

    Conroy, M.J.; Runge, M.C.; Nichols, J.D.; Stodola, K.W.; Cooper, R.J.

    2011-01-01

    The broad physical and biological principles behind climate change and its potential large scale ecological impacts on biota are fairly well understood, although likely responses of biotic communities at fine spatio-temporal scales are not, limiting the ability of conservation programs to respond effectively to climate change outside the range of human experience. Much of the climate debate has focused on attempts to resolve key uncertainties in a hypothesis-testing framework. However, conservation decisions cannot await resolution of these scientific issues and instead must proceed in the face of uncertainty. We suggest that conservation should precede in an adaptive management framework, in which decisions are guided by predictions under multiple, plausible hypotheses about climate impacts. Under this plan, monitoring is used to evaluate the response of the system to climate drivers, and management actions (perhaps experimental) are used to confront testable predictions with data, in turn providing feedback for future decision making. We illustrate these principles with the problem of mitigating the effects of climate change on terrestrial bird communities in the southern Appalachian Mountains, USA. ?? 2010 Elsevier Ltd.

  4. Responses of the Tropical Atmospheric Circulation to Climate Change and Connection to the Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Chadwick, Robin; Seo, Kyong-Hwan; Dong, Changming; Huang, Gang; Foltz, Gregory R.; Jiang, Jonathan H.

    2018-05-01

    This review describes the climate change–induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle. We depict the theoretically predicted changes and diagnose physical mechanisms for observational and model-projected trends in large-scale and regional climate. The tropical circulation slows down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a shift of the intertropical convergence zone. Redistributions of regional precipitation consist of thermodynamic and dynamical components, including a strong offset between moisture increase and circulation weakening throughout the tropics. This allows other dynamical processes to dominate local circulation changes, such as a surface warming pattern effect over oceans and multiple mechanisms over land. To improve reliability in climate projections, more fundamental understandings of pattern formation, circulation change, and the balance of various processes redistributing land rainfall are suggested to be important.

  5. Adapting inland fisheries management to a changing climate

    USGS Publications Warehouse

    Paukert, Craig P.; Glazer, Bob A.; Hansen, Gretchen J. A.; Irwin, Brian J.; Jacobson, Peter C.; Kershner, Jeffrey L.; Shuter, Brian J.; Whitney, James E.; Lynch, Abigail J.

    2016-01-01

    Natural resource decision makers are challenged to adapt management to a changing climate while balancing short-term management goals with long-term changes in aquatic systems. Adaptation will require developing resilient ecosystems and resilient management systems. Decision makers already have tools to develop or ensure resilient aquatic systems and fisheries such as managing harvest and riparian zones. Because fisheries management often interacts with multiple stakeholders, adaptation strategies involving fisheries managers and other partners focused on land use, policy, and human systems, coupled with long-term monitoring, are necessary for resilient systems. We show how agencies and organizations are adapting to a changing climate in Minnesota and Ontario lakes and Montana streams. We also present how the Florida Fish and Wildlife Commission created a management structure to develop adaptation strategies. These examples demonstrate how organizations and agencies can cope with climate change effects on fishes and fisheries through creating resilient management and ecological systems.

  6. The integration of climate change, spatial dynamics, and habitat fragmentation: A conceptual overview.

    PubMed

    Holyoak, Marcel; Heath, Sacha K

    2016-01-01

    A growing number of studies have looked at how climate change alters the effects of habitat fragmentation and degradation on both single and multiple species; some raise concern that biodiversity loss and its effects will be exacerbated. The published literature on spatial dynamics (such as dispersal and metapopulation dynamics), habitat fragmentation and climate change requires synthesis and a conceptual framework to simplify thinking. We propose a framework that integrates how climate change affects spatial population dynamics and the effects of habitat fragmentation in terms of: (i) habitat quality, quantity and distribution; (ii) habitat connectivity; and (iii) the dynamics of habitat itself. We use the framework to categorize existing autecological studies and investigate how each is affected by anthropogenic climate change. It is clear that a changing climate produces changes in the geographic distribution of climatic conditions, and the amount and quality of habitat. The most thorough published studies show how such changes impact metapopulation persistence, source-sink dynamics, changes in species' geographic range and community composition. Climate-related changes in movement behavior and quantity, quality and distribution of habitat have also produced empirical changes in habitat connectivity for some species. An underexplored area is how habitat dynamics that are driven by climatic processes will affect species that live in dynamic habitats. We end our discussion by suggesting ways to improve current attempts to integrate climate change, spatial population dynamics and habitat fragmentation effects, and suggest distinct areas of study that might provide opportunities for more fully integrative work. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  7. Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tian; Voisin, Nathalie; Leng, Guoyong

    Water management activities or flow regulations modify water fluxes at the land surface and affect water resources in space and time. We hypothesize that flow regulations change the sensitivity of river flow to climate change with respect to unmanaged water resources. Quantifying these changes in sensitivity could help elucidate the impacts of water management at different spatiotemporal scales and inform climate adaptation decisions. In this study, we compared the emergence of significant changes in natural and regulated river flow regimes across the Western United States from simulations driven by multiple climate models and scenarios. We find that significant climate change-inducedmore » alterations in natural flow do not cascade linearly through water management activities. At the annual time scale, 50% of the Hydrologic Unit Code 4 (HUC4) sub-basins over the Western U.S. regions tend to have regulated flow regime more sensitive to the climate change than natural flow regime. Seasonality analyses show that the sensitivity varies remarkably across the seasons. We also find that the sensitivity is related to the level of water management. For 35% of the HUC4 sub-basins with the highest level of water management, the summer and winter flows tend to show a heightened sensitivity to climate change due to the complexity of joint reservoir operations. We further demonstrate that the impacts of considering water management in models are comparable to those that arises from uncertainties across climate models and emission scenarios. This prompts further climate adaptation studies research about nonlinearity effects of climate change through water management activities.« less

  8. Moving forward with imperfect information: chapter 19

    USGS Publications Warehouse

    Averyt, Kristen; Brekke, Levi D.; Kaatz, Laurna; Welling, Leigh; Hartge, Eric H.; Iseman, Tom

    2013-01-01

    - Climate change is one of multiple stresses affecting the physical, biological, social, and economic systems of the Southwest, with population growth (and its related resource consumption, pollution, and land-sue changes) being particularly important.

  9. Time-varying environmental control of phytoplankton in a changing estuarine system.

    PubMed

    López Abbate, M Celeste; Molinero, Juan Carlos; Guinder, Valeria A; Perillo, Gerardo M E; Freije, R Hugo; Sommer, Ulrich; Spetter, Carla V; Marcovecchio, Jorge E

    2017-12-31

    Estuaries are among the most valuable aquatic systems by their services to human welfare. However, increasing human activities at the watershed along with the pressure of climate change are fostering the co-occurrence of multiple environmental drivers, and warn of potential negative impacts on estuaries resources. At present, no clear understanding of how coastal ecosystems will respond to the non-stationary effect of multiple drivers. Here we analysed the temporal interaction among multiple environmental drivers and their changing priority on shaping phytoplankton response in the Bahía Blanca Estuary, SW Atlantic Ocean. The interaction among environmental drivers and the number of significant direct and indirect effects on chlorophyll concentration increased over time in concurrence with enhanced anthropogenic stress, changing winter climate and wind patterns. Over the period 1978-1993, proximal variables such as nutrients, water temperature and salinity, showed a dominant effect on chlorophyll, whereas in more recent years (1993-2009) climate signals (SAM and ENSO) boosted indirect effects through its influence on precipitation, wind, water temperature and turbidity. Turbidity emerged as the dominant driver of chlorophyll while in recent years acted synergistically with the concentration of dissolved nitrogen. As a result, chlorophyll concentration showed a significant negative trend and a loss of seasonal peaks reflecting a pronounced reorganisation of the phytoplankton community. We stress the need to account for the changing priority of drivers to understand, and eventually forecast, biological responses under projected scenarios of global anthropogenic change. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Climate change impacts on human exposures to air pollution ...

    EPA Pesticide Factsheets

    This is an abstract for a presentations at the Annual Conference of the International Society on Exposure Science and Environmental Epidemiology. This presentation will serve as an introduction to the symposium. As we consider the potential health impacts of a warming planet, the relationships between climate change and air pollutants become increasingly important to understand. These relationships are complex and highly variable, causing a variety of environmental impacts at local, regional and global scales. Human exposures and health impacts for air pollutants have the potential to be altered by changes in climate through multiple factors that drive population exposures to these pollutants. Research on this topic will provide both state and local governments with the tools and scientific knowledge base to undertake any necessary adaptation of the air pollution regulations and/or public health management systems in the face of climate change.

  11. Climate change, multiple stressors, and the decline of ectotherms.

    PubMed

    Rohr, Jason R; Palmer, Brent D

    2013-08-01

    Climate change is believed to be causing declines of ectothermic vertebrates, but there is little evidence that climatic conditions associated with declines have exceeded critical (i.e., acutely lethal) maxima or minima, and most relevant studies are correlative, anecdotal, or short-term (hours). We conducted an 11-week factorial experiment to examine the effects of temperature (22 °C or 27 °C), moisture (wet or dry), and atrazine (an herbicide; 0, 4, 40, 400 μg/L exposure as embryos and larvae) on the survival, growth, behavior, and foraging rates of postmetamorphic streamside salamanders (Ambystoma barbouri), a species of conservation concern. The tested climatic conditions were between the critical maxima and minima of streamside salamanders; thus, this experiment quantified the long-term effects of climate change within the noncritical range of this species. Despite a suite of behavioral adaptations to warm and dry conditions (e.g., burrowing, refuge use, huddling with conspecifics, and a reduction in activity), streamside salamanders exhibited significant loss of mass and significant mortality in all but the cool and moist conditions, which were closest to the climatic conditions in which they are most active in nature. A temperature of 27 °C represented a greater mortality risk than dry conditions; death occurred rapidly at this temperature and more gradually under cool and dry conditions. Foraging decreased under dry conditions, which suggests there were opportunity costs to water conservation. Exposure to the herbicide atrazine additively decreased water-conserving behaviors, foraging efficiency, mass, and time to death. Hence, the hypothesis that moderate climate change can cause population declines is even more plausible under scenarios with multiple stressors. These results suggest that climate change within the noncritical range of species and pollution may reduce individual performance by altering metabolic demands, hydration, and foraging effort and may facilitate population declines of amphibians and perhaps other ectothermic vertebrates. © 2013 Society for Conservation Biology.

  12. Considering Students' Out-of-School Lives and Values in Designing Learning Environments for Climate Change

    NASA Astrophysics Data System (ADS)

    Walsh, E.; Tsurusaki, B.

    2012-12-01

    What are the implications of social controversy for the teaching and learning of climate change science? How do the political dimensions of this controversy affect learners' attitudes towards and reasoning about climate change and climate science? Case studies from a pilot enactment of an ecological impacts of climate change curriculum explore these questions by describing how five high school students' understandings of climate change science developed at the intersection of political and scientific values, attitudes, and ways of knowing. Case studies combine qualitative, ethnographic methods including interviews and classroom video observations with quantitative pre/post-assessments of student conceptual understandings and weekly surveys of student engagement. Data indicate that students had initial perceptions of climate change informed by the media and their families—both supporting and rejecting the scientific consensus—that influenced how they engaged with the scientific evidence. While students who were initially antagonistic to anthropogenic climate change did develop conceptual understandings of the scientific evidence for human-influences on climate change, this work was challenging and at times frustrating for them. These case studies demonstrate the wide range of initial attitudes and understandings that students bring to the study of climate change. They also demonstrate that it is possible to make significant shifts in students' understandings of climate change science, even in students who were initially resistant to the idea of anthropogenic climate change. Finally, multiple case studies discuss ways that the learning that occurred in the classroom crossed out of the classroom into the students' homes and family talk. This work highlights how learners' pathways are shaped not only by their developing understanding of the scientific evidence but also by the political and social influences that learners navigate across the contexts of their lives. It underscores the need to understand and support students as they interact with climate change across the contexts of their lives.

  13. Meteorological Modes of Variability for Fine Particulate Matter (PM2.5) Air Quality in the United States: Implications for PM2.5 Sensitivity to Climate Change

    EPA Science Inventory

    We applied a multiple linear regression model to understand the relationships of PM2.5 with meteorological variables in the contiguous US and from there to infer the sensitivity of PM2.5 to climate change. We used 2004-2008 PM2.5 observations fro...

  14. Overcoming a Diabolical Challenge: Comparing Journalists' and Researchers' Views on the Performance of the Media as a Channel of Climate Change Information

    ERIC Educational Resources Information Center

    Rice, Martin; Henderson-Sellers, Ann; Walkerden, Greg

    2015-01-01

    The mass media has a fundamental role to sustain an informed citizenry as a prerequisite for democratic politics. It is, therefore, vital that an evidence-based approach is used when reporting on climate change. Yet, multiple and arguably irreconcilable tensions exist between science and mass media. For example, as media workers are trained to…

  15. The North American Regional Climate Change Assessment Program (NARCCAP): Status and results

    NASA Astrophysics Data System (ADS)

    Gutowski, W. J.

    2009-12-01

    NARCCAP is a multi-institutional program that is investigating systematically the uncertainties in regional scale simulations of contemporary climate and projections of future climate. NARCCAP is supported by multiple federal agencies. NARCCAP is producing an ensemble of high-resolution climate-change scenarios by nesting multiple RCMs in reanalyses and multiple atmosphere-ocean GCM simulations of contemporary and future-scenario climates. The RCM domains cover the contiguous U.S., northern Mexico, and most of Canada. The simulation suite also includes time-slice, high resolution GCMs that use sea-surface temperatures from parent atmosphere-ocean GCMs. The baseline resolution of the RCMs and time-slice GCMs is 50 km. Simulations use three sources of boundary conditions: National Centers for Environmental Prediction (NCEP)/Department of Energy (DOE) AMIP-II Reanalysis, GCMs simulating contemporary climate and GCMs using the A2 SRES emission scenario for the twenty-first century. Simulations cover 1979-2004 and 2038-2060, with the first 3 years discarded for spin-up. The resulting RCM and time-slice simulations offer opportunity for extensive analysis of RCM simulations as well as a basis for multiple high-resolution climate scenarios for climate change impacts assessments. Geophysical statisticians are developing measures of uncertainty from the ensemble. To enable very high-resolution simulations of specific regions, both RCM and high-resolution time-slice simulations are saving output needed for further downscaling. All output is publically available to the climate analysis and the climate impacts assessment community, through an archiving and data-distribution plan. Some initial results show that the models closely reproduce ENSO-related precipitation variations in coastal California, where the correlation between the simulated and observed monthly time series exceeds 0.94 for all models. The strong El Nino events of 1982-83 and 1997-98 are well reproduced for the Pacific coastal region of the U.S. in all models. ENSO signals are less well reproduced in other regions. The models also produce well extreme monthly precipitation in coastal California and the Upper Midwest. Model performance tends to deteriorate from west to east across the domain, or roughly from the inflow boundary toward the outflow boundary. This deterioration with distance from the inflow boundary is ameliorated to some extent in models formulated such that large-scale information is included in the model solution, whether implemented by spectral nudging or by use of a perturbation form of the governing equations.

  16. Weighting climate model projections using observational constraints.

    PubMed

    Gillett, Nathan P

    2015-11-13

    Projected climate change integrates the net response to multiple climate feedbacks. Whereas existing long-term climate change projections are typically based on unweighted individual climate model simulations, as observed climate change intensifies it is increasingly becoming possible to constrain the net response to feedbacks and hence projected warming directly from observed climate change. One approach scales simulated future warming based on a fit to observations over the historical period, but this approach is only accurate for near-term projections and for scenarios of continuously increasing radiative forcing. For this reason, the recent Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) included such observationally constrained projections in its assessment of warming to 2035, but used raw model projections of longer term warming to 2100. Here a simple approach to weighting model projections based on an observational constraint is proposed which does not assume a linear relationship between past and future changes. This approach is used to weight model projections of warming in 2081-2100 relative to 1986-2005 under the Representative Concentration Pathway 4.5 forcing scenario, based on an observationally constrained estimate of the Transient Climate Response derived from a detection and attribution analysis. The resulting observationally constrained 5-95% warming range of 0.8-2.5 K is somewhat lower than the unweighted range of 1.1-2.6 K reported in the IPCC AR5. © 2015 The Authors.

  17. Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America

    USGS Publications Warehouse

    Collingsworth, Paris D.; Bunnell, David B.; Murray, Michael W.; Kao, Yu-Chun; Feiner, Zachary S.; Claramunt, Randall M.; Lofgren, Brent M.; Höök, Tomas O.; Ludsin, Stuart A.

    2017-01-01

    The Laurentian Great Lakes of North America provide valuable ecosystem services, including fisheries, to the surrounding population. Given the prevalence of other anthropogenic stressors that have historically affected the fisheries of the Great Lakes (e.g., eutrophication, invasive species, overfishing), climate change is often viewed as a long-term stressor and, subsequently, may not always be prioritized by managers and researchers. However, climate change has the potential to negatively affect fish and fisheries in the Great Lakes through its influence on habitat. In this paper, we (1) summarize projected changes in climate and fish habitat in the Great Lakes; (2) summarize fish responses to climate change in the Great Lakes; (3) describe key interactions between climate change and other stressors relevant to Great Lakes fish, and (4) summarize how climate change can be incorporated into fisheries management. In general, fish habitat is projected to be characterized by warmer temperatures throughout the water column, less ice cover, longer periods of stratification, and more frequent and widespread periods of bottom hypoxia in productive areas of the Great Lakes. Based solely on thermal habitat, fish populations theoretically could experience prolonged optimal growth environment within a changing climate, however, models that assess physical habitat influences at specific life stages convey a more complex picture. Looking at specific interactions with other stressors, climate change may exacerbate the negative impacts of both eutrophication and invasive species for fish habitat in the Great Lakes. Although expanding monitoring and research to consider climate change interactions with currently studied stressors, may offer managers the best opportunity to keep the valuable Great Lakes fisheries sustainable, this expansion is globally applicable for large lake ecosystem dealing with multiple stressors in the face of continued human-driven changes.

  18. Landscape Conservation Cooperatives: Creating a Collaborative Conservation Vision in the Face of Climate Change Uncertainty

    NASA Astrophysics Data System (ADS)

    Athearn, N.; Schlafmann, D.

    2015-12-01

    The 22 Landscape Conservation Cooperatives (LCCs) form a "network of networks," each defined by the characteristics of its ecoregion and its unique community of conservation managers, practitioners, and scientists. As self-directed partnerships, LCCs are strongly influenced not only by the landscape but by the evolving cultures and values that define the multi-faceted relationships between people and place. LCCs maintain an ecologically connected network across these diverse landscapes by transcending borders and leveraging resources. Natural resource managers are challenged to make decisions in the face of multiple uncertainties, and several partners across the network have recognized that climate change is one important uncertainty that spans boundaries - both across the conservation community and beyond. The impacts of climate change across the LCC Network are likely to be as diverse as the network itself - manifesting as, for example, sea level rise, ocean acidification, loss of sea ice, and shifts in climate patterns and timing - but synergies are being leveraged within and between LCCs and national climate-focused programs to systematically address the needs of the network to support a collaborative conservation vision that addresses multiple landscape-scale stressors in the face of climate uncertainties. This vision is being achieved by leveraging the convening power of the LCCs and collaborating with DOI Climate Science Centers and others. Selected case studies will demonstrate how the network finds strength in its differences, but also reveals powerful collaborative opportunities through integrated science, shared conservation strategies, and strategic approaches for translating targeted science to conservation action. These examples exemplify past successes as well as ongoing efforts as the network continues to bring about effective application of climate science to achieve conservation outcomes across the LCC Network in an uncertain future climate.

  19. Climate change, coral reef ecosystems, and management options for marine protected areas.

    PubMed

    Keller, Brian D; Gleason, Daniel F; McLeod, Elizabeth; Woodley, Christa M; Airamé, Satie; Causey, Billy D; Friedlander, Alan M; Grober-Dunsmore, Rikki; Johnson, Johanna E; Miller, Steven L; Steneck, Robert S

    2009-12-01

    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more "traditional" stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation.

  20. Climate change, wine, and conservation.

    PubMed

    Hannah, Lee; Roehrdanz, Patrick R; Ikegami, Makihiko; Shepard, Anderson V; Shaw, M Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A; Hijmans, Robert J

    2013-04-23

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects.

  1. Climate change impacts on soil carbon storage in global croplands: 1901-2010

    NASA Astrophysics Data System (ADS)

    Ren, W.; Tian, H.

    2015-12-01

    New global data finds 12% of earth's surface in cropland at present. Croplands will take on the responsibility to support approximate 60% increase in food production by 2050 as FAO estimates. In addition to nutrient supply to plants, cropland soils also play a major source and sink of greenhouse gases regulating global climate system. It is a big challenge to understand how soils function under global changes, but it is also a great opportunity for agricultural sector to manage soils to assure sustainability of agroecosystems and mitigate climate change. Previous studies have attempted to investigate the impacts of different land uses and climates on cropland soil carbon storage. However, large uncertainty still exists in magnitude and spatiotemporal patterns of global cropland soil organic carbon, due to the lack of reliable environmental databases and relatively poorly understanding of multiple controlling factors involved climate change and land use etc. Here, we use a process-based agroecosystem model (DLEM-Ag) in combination with diverse data sources to quantify magnitude and tempo-spatial patterns of soil carbon storage in global croplands during 1901-2010. We also analyze the relative contributions of major environmental variables (climate change, land use and management etc.). Our results indicate that intensive land use management may hidden the vulnerability of cropland soils to climate change in some regions, which may greatly weaken soil carbon sequestration under future climate change.

  2. Climate change, wine, and conservation

    PubMed Central

    Hannah, Lee; Roehrdanz, Patrick R.; Ikegami, Makihiko; Shepard, Anderson V.; Shaw, M. Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A.; Hijmans, Robert J.

    2013-01-01

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects. PMID:23569231

  3. Nano- and Macroscale Responses of the Deep Pink Sea Urchin, Strongylocentrotus fragilis, to Multiple Stressors Associated with the Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Sato, K.; Jung, J. Y.; Levin, L. A.

    2016-02-01

    The rapid pace of deoxygenation and ocean acidification associated with anthropogenic climate change on upwelling margins will have differing effects on marine species from the population level down to the nanoscale. Driven by the understudied effects of climate change in the deep sea, we address the question, how will dominant echinoid urchins respond to future changes in multiple stressors (i.e. ocean acidification, deoxygenation, and shoaling of hypoxic water and calcium carbonate saturation horizons) on the southern California continental slope? Samples of the sea urchin, Strongylocentrotus fragilis, were collected along gradients of multiple hydrographic variables and analyzed for phenotypic variation with respect to multiple climate change stressors (oxygen, pH, and temperature). We compare fitness traits of S. fragilis collected along the continental slope and through the Oxygen Minimum Zone (OMZ), which include growth rate, morphology, and reproductive output, in addition to nanoscale structural and biomechanical test properties. Our results indicate that growth rate of S. fragilis is directly correlated with dissolved oxygen and pH, but not depth or temperature. Reproductive output, as measured by a standard gonad index, was found to be sensitive at the OMZ core (pH 7.40; O2 0.25 mL/L), which suggests a nonlinear response to chemical stressors. Preliminary analysis of mineral density in test pieces imaged using micro- and nano- computed tomography indicates exposure to conditions in the OMZ reduces calcification. This improved understanding of how continental margin urchins differ along natural physicochemical gradients will provide modern-day insight into the threshold tolerances of species to multiple stressors and will help guide future manipulation experiments as well as fisheries and spatial management.

  4. Monitoring the Impact of Climate Change on Soil Salinity in Agricultural Areas Using Ground and Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Corwin, D. L.; Scudiero, E.

    2017-12-01

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California's San Joaquin Valley (SJV), or areas receiving above average rainfall for a decade or more, such as Minnesota's Red River Valley (RRV). Climate change has impacted water availability with an under or over abundance, which subsequently has impacted soil salinity levels in the root zone primarily from the upward movement of salts from shallow water tables. Inventorying and monitoring the impact of climate change on soil salinity is crucial to evaluate the extent of the problem, to recognize trends, and to formulate state-wide and field-scale irrigation, drainage, and crop management strategies that will sustain the agricultural productivity of the SJV and RRV. Over the past 3 decades, Corwin and colleagues at the U.S. Salinity Laboratory have developed proximal sensor (i.e., electrical resistivity and electromagnetic induction) and remote imagery (i.e., MODIS and Landsat 7) methodologies for assessing soil salinity at multiple scales: field (0.5 ha to 3 km2), landscape (3 to 10 km2), and regional (10 to 105 km2) scales. The purpose of this presentation is to provide an overview of these scale-dependent salinity assessment technologies. Case studies for SJV and RRV are presented to demonstrate at multiple scales the utility of these approaches in assessing soil salinity changes due to management-induced changes and to changes in climate patterns, and in providing site-specific irrigation management information for salinity control. Decision makers in state and federal agencies, irrigation and drainage district managers, soil and water resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of this information.

  5. Coastal Climate Change Education, Mitigation, and Adaptation in the Natural and Built Environments: Progress of the Coastal Areas Climate Change Education Partnership

    NASA Astrophysics Data System (ADS)

    Feldman, A.; Herman, B.; Vernaza-Hernández, V.; Ryan, J. G.; Muller-Karger, F. E.; Gilbes, F.

    2011-12-01

    The Coastal Area Climate Change Education (CACCE) Partnership, funded by the National Science Foundation, seeks to develop new ways to educate citizens about global climate change. The core themes are sea level rise and impacts of climate change in the southeastern United States and the Caribbean Sea. CACCE focuses on helping partners, educators, students, and the general public gain a fundamental and working understanding of the interrelation among the natural environment, built environment, and social aspects in the context of climate change in coastal regions. To this end, CACCE's objectives reported here include: 1) defining the current state of awareness, perceptions, and literacy about the impacts of climate change; and 2) testing a model of transdisciplinary research and learning as a means of training a new generation of climate professionals. Objective one is met in part by CACCE survey efforts that reveal Florida and Puerto Rico secondary science teachers hold many non-scientific views about climate change and climate change science and provide inadequate instruction about climate change. Associated with objective two are five Multiple Outcome Interdisciplinary Research and Learning (MOIRL) pilot projects underway in schools in Florida and Puerto Rico. In the CACCE Partnership the stakeholders include: students (K-16 and graduate); teachers and education researchers; informal science educators; scientists and engineers; business and industry; policy makers; and community members. CACCE combines interdisciplinary research with action research and community-based participatory research in a way that is best described as "transdisciplinary". Learning occurs in all spheres of interactions among stakeholders as they engage in scientific, educational, community and business activities through their legitimate peripheral participation in research communities of practice. We will describe the process of seeking and building partnerships, and call for a dialogue with groups pursuing climate and climate change education.

  6. Soil ecosystem functioning under climate change: plant species and community effects.

    PubMed

    Kardol, Paul; Cregger, Melissa A; Campany, Courtney E; Classen, Aimee T

    2010-03-01

    Feedbacks of terrestrial ecosystems to atmospheric and climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the soil communities that depend on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and precipitation in Tennessee (USA). Specifically, we collected soils at the plot level (plant community soils) and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: (1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activity, and soil nematodes. Multiple climate-change factors can interact to shape ecosystems, but in our study, those interactions were largely driven by changes in water. (2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning, and this impact was not obvious when looking at plant community soils. Climate-change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. These results indicate that accurate assessments of climate-change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate-change-induced shifts in plant community composition will likely modify or counteract the direct impact of atmospheric and climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting the manner in which global change will alter ecosystem functioning.

  7. Revealing, Reducing, and Representing Uncertainties in New Hydrologic Projections for Climate-changed Futures

    NASA Astrophysics Data System (ADS)

    Arnold, Jeffrey; Clark, Martyn; Gutmann, Ethan; Wood, Andy; Nijssen, Bart; Rasmussen, Roy

    2016-04-01

    The United States Army Corps of Engineers (USACE) has had primary responsibility for multi-purpose water resource operations on most of the major river systems in the U.S. for more than 200 years. In that time, the USACE projects and programs making up those operations have proved mostly robust against the range of natural climate variability encountered over their operating life spans. However, in some watersheds and for some variables, climate change now is known to be shifting the hydroclimatic baseline around which that natural variability occurs and changing the range of that variability as well. This makes historical stationarity an inappropriate basis for assessing continued project operations under climate-changed futures. That means new hydroclimatic projections are required at multiple scales to inform decisions about specific threats and impacts, and for possible adaptation responses to limit water-resource vulnerabilities and enhance operational resilience. However, projections of possible future hydroclimatologies have myriad complex uncertainties that require explicit guidance for interpreting and using them to inform those decisions about climate vulnerabilities and resilience. Moreover, many of these uncertainties overlap and interact. Recent work, for example, has shown the importance of assessing the uncertainties from multiple sources including: global model structure [Meehl et al., 2005; Knutti and Sedlacek, 2013]; internal climate variability [Deser et al., 2012; Kay et al., 2014]; climate downscaling methods [Gutmann et al., 2012; Mearns et al., 2013]; and hydrologic models [Addor et al., 2014; Vano et al., 2014; Mendoza et al., 2015]. Revealing, reducing, and representing these uncertainties is essential for defining the plausible quantitative climate change narratives required to inform water-resource decision-making. And to be useful, such quantitative narratives, or storylines, of climate change threats and hydrologic impacts must sample from the full range of uncertainties associated with all parts of the simulation chain, from global climate models with simulations of natural climate variability, through regional climate downscaling, and on to modeling of affected hydrologic processes and downstream water resources impacts. This talk will present part of the work underway now both to reveal and reduce some important uncertainties and to develop explicit guidance for future generation of quantitative hydroclimatic storylines. Topics will include: 1- model structural and parameter-set limitations of some methods widely used to quantify climate impacts to hydrologic processes [Gutmann et al., 2014; Newman et al., 2015]; 2- development and evaluation of new, spatially consistent, U.S. national-scale climate downscaling and hydrologic simulation capabilities directly relevant at the multiple scales of water-resource decision-making [Newman et al., 2015; Mizukami et al., 2015; Gutmann et al., 2016]; and 3- development and evaluation of advanced streamflow forecasting methods to reduce and represent integrated uncertainties in a tractable way [Wood et al., 2014; Wood et al., 2015]. A key focus will be areas where climatologic and hydrologic science is currently under-developed to inform decisions - or is perhaps wrongly scaled or misapplied in practice - indicating the need for additional fundamental science and interpretation.

  8. Vegetation productivity responds to sub-annual climate conditions across semiarid biomes

    USDA-ARS?s Scientific Manuscript database

    In the Southwestern United States (SW), the current prolonged warm drought is similar to the predicted future climate change scenarios for the region. This study aimed to determine patterns in vegetation response to the early 21st century drought across multiple biomes. We hypothesized that differen...

  9. EXAMINING THE IMPACT OF CLIMATE CHANGE AND VARIABILITY OF REGIONAL AIR QUALITY OVER THE UNITED STATES

    EPA Science Inventory

    The United States has established a series of standards for criteria and other air pollutants to safeguard air quality to protect human health and the environment. The Climate Impact on Regional Air Quality (CIRAQ) project, a collaborative research effort involving multiple Fede...

  10. Impacts of Future Climate Change on California Perennial Crop Yields: Model Projections with Climate and Crop Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobell, D; Field, C; Cahill, K

    2006-01-10

    Most research on the agricultural impacts of climate change has focused on the major annual crops, yet perennial cropping systems are less adaptable and thus potentially more susceptible to damage. Improved assessments of yield responses to future climate are needed to prioritize adaptation strategies in the many regions where perennial crops are economically and culturally important. These impact assessments, in turn, must rely on climate and crop models that contain often poorly defined uncertainties. We evaluated the impact of climate change on six major perennial crops in California: wine grapes, almonds, table grapes, oranges, walnuts, and avocados. Outputs from multiplemore » climate models were used to evaluate climate uncertainty, while multiple statistical crop models, derived by resampling historical databases, were used to address crop response uncertainties. We find that, despite these uncertainties, climate change in California is very likely to put downward pressure on yields of almonds, walnuts, avocados, and table grapes by 2050. Without CO{sub 2} fertilization or adaptation measures, projected losses range from 0 to >40% depending on the crop and the trajectory of climate change. Climate change uncertainty generally had a larger impact on projections than crop model uncertainty, although the latter was substantial for several crops. Opportunities for expansion into cooler regions are identified, but this adaptation would require substantial investments and may be limited by non-climatic constraints. Given the long time scales for growth and production of orchards and vineyards ({approx}30 years), climate change should be an important factor in selecting perennial varieties and deciding whether and where perennials should be planted.« less

  11. Clime: analyzing and producing climate data in GIS environment

    NASA Astrophysics Data System (ADS)

    Cattaneo, Luigi; Rillo, Valeria; Mercogliano, Paola

    2014-05-01

    In the last years, Impacts on Soil and Coasts Division (ISC) of CMCC (Euro-Mediterranean Center on Climate Change) had several collaboration experiences with impact communities, including IS-ENES (FP7-INF) and SafeLand (FP7-ENV) projects, which involved a study of landslide risk in Europe, and is currently active in GEMINA (FIRB) and ORIENTGATE (SEE Transnational Cooperation Programme) research projects. As a result, it has brought research activities about different impact of climate changes as flood and landslide hazards, based on climate simulation obtained from the high resolution regional climate models COSMO CLM, developed at CMCC as member of the consortium CLM Assembly. ISC-Capua also collaborates with local institutions interested in atmospherical climate change and also of their impacts on the soil, such as river basin authorities in the Campania region, ARPA Emilia Romagna and ARPA Calabria. Impact models (e.g. hydraulic or stability models) are usually developed in a GIS environment, since they need an accurate territory description, so Clime has been designed to bridge the usually existing gap between climate data - both observed and simulated - gathered from different sources, and impact communities. The main goal of Clime, special purpose Geographic Information System (GIS) software integrated in ESRI ArcGIS Desktop 10, is to easily evaluate multiple climate features and study climate changes over specific geographical domains with their related effects on environment, including impacts on soil. Developed as an add-in tool, this software has been conceived for research activities of ISC Division in order to provide a substantial contribution during post-processing and validation phase. Therefore, it is possible to analyze and compare multiple datasets (observations, climate simulations, etc.) through processes involving statistical functions, percentiles, trends test and evaluation of extreme events with a flexible system of temporal and spatial filtering, and to represent results as maps, temporal and statistic plots (time series, seasonal cycles, PDFs, scatter plots, Taylor diagrams) or Excel tables; in addition, it features bias correction techniques for climate model results. Summarizing, Clime is able to provide users a simple and fast way to retrieve analysis over simulated climate data and observations within any geographical site of interest (provinces, regions, countries, etc.).

  12. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    NASA Astrophysics Data System (ADS)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  13. Predictive Seagrass Habitat Model

    EPA Science Inventory

    Restoration of ecosystem services provided by seagrass habitats in estuaries requires a firm understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We explored the application...

  14. Merging Methods to Manage Uncertainty: Combining Simulation Modeling and Scenario Planning to Inform Resource Management Under Climate Change

    NASA Astrophysics Data System (ADS)

    Miller, B. W.; Schuurman, G. W.; Symstad, A.; Fisichelli, N. A.; Frid, L.

    2017-12-01

    Managing natural resources in this era of anthropogenic climate change is fraught with uncertainties around how ecosystems will respond to management actions and a changing climate. Scenario planning (oftentimes implemented as a qualitative, participatory exercise for exploring multiple possible futures) is a valuable tool for addressing this challenge. However, this approach may face limits in resolving responses of complex systems to altered climate and management conditions, and may not provide the scientific credibility that managers often require to support actions that depart from current practice. Quantitative information on projected climate changes and ecological responses is rapidly growing and evolving, but this information is often not at a scale or in a form that is `actionable' for resource managers. We describe a project that sought to create usable information for resource managers in the northern Great Plains by combining qualitative and quantitative methods. In particular, researchers, resource managers, and climate adaptation specialists co-produced a simulation model in conjunction with scenario planning workshops to inform natural resource management in southwest South Dakota. Scenario planning for a wide range of resources facilitated open-minded thinking about a set of divergent and challenging, yet relevant and plausible, climate scenarios and management alternatives that could be implemented in the simulation. With stakeholder input throughout the process, we built a simulation of key vegetation types, grazing, exotic plants, fire, and the effects of climate and management on rangeland productivity and composition. By simulating multiple land management jurisdictions, climate scenarios, and management alternatives, the model highlighted important tradeoffs between herd sizes and vegetation composition, and between the short- versus long-term costs of invasive species management. It also identified impactful uncertainties related to the effects of fire and grazing on vegetation. Ultimately, this integrative and iterative approach yielded counter-intuitive and surprising findings, and resulted in a more tractable set of possible futures for resource management planning.

  15. Is There a Temperate Bias in Our Understanding of How Climate Change Will Alter Plant-Herbivore Interactions? A Meta-analysis of Experimental Studies.

    PubMed

    Mundim, Fabiane M; Bruna, Emilio M

    2016-09-01

    Climate change can drive major shifts in community composition and interactions between resident species. However, the magnitude of these changes depends on the type of interactions and the biome in which they take place. We review the existing conceptual framework for how climate change will influence tropical plant-herbivore interactions and formalize a similar framework for the temperate zone. We then conduct the first biome-specific tests of how plant-herbivore interactions change in response to climate-driven changes in temperature, precipitation, ambient CO2, and ozone. We used quantitative meta-analysis to compare predicted and observed changes in experimental studies. Empirical studies were heavily biased toward temperate systems, so testing predicted changes in tropical plant-herbivore interactions was virtually impossible. Furthermore, most studies investigated the effects of CO2 with limited plant and herbivore species. Irrespective of location, most studies manipulated only one climate change factor despite the fact that different factors can act in synergy to alter responses of plants and herbivores. Finally, studies of belowground plant-herbivore interactions were also rare; those conducted suggest that climate change could have major effects on belowground subsystems. Our results suggest that there is a disconnection between the growing literature proposing how climate change will influence plant-herbivore interactions and the studies testing these predictions. General conclusions will also be hampered without better integration of above- and belowground systems, assessing the effects of multiple climate change factors simultaneously, and using greater diversity of species in experiments.

  16. Building a foundation for continued dialogue between climate science and water resource communities

    NASA Astrophysics Data System (ADS)

    Vano, J. A.; Arnold, J.; Clark, M. P.; Gutmann, E. D.; Hamman, J.; Nijssen, B.; Wood, A.

    2017-12-01

    Research into climate change has led to the development of many global climate models, downscaling techniques, and impacts models. This proliferation of information has resulted in insights into how climate change will impact hydrology that are more robust than any single approach, which is helpful for advancing the science. However, the variety of approaches makes navigating what information to use in water resource planning and management challenging. Each technique has strengths and weaknesses and associated uncertainties, and approaches are always being updated. Here we provide a user-focused, modularly framed guidance that is designed to be expandable and where updates can be targeted. This includes describing dos and don'ts for how to use climate change information in water resource planning and management that can be read at multiple levels. It can provide context for those seeking to understand the general need, opportunities, and challenges of including climate change information. It also provides details (frequently asked questions and examples) and direction to further guidance and resources for those engaged in the technical work. This guidance is intended to provide a foundation for continued dialogue within and between the climate science and application communities, to increase the utility and appropriate use of climate change information.

  17. How pre-service elementary teachers express emotions about climate change and related disciplinary ideas

    NASA Astrophysics Data System (ADS)

    Hufnagel, Elizabeth J.

    As we face the challenges of serious environmental issues, science education has made a commitment to improving environmental literacy, in particular climate literacy (NRC, 2012; 2013). With an increased focus on climate change education in the United States, more research on the teaching and learning of this problem in science classrooms is occurring (e.g. Arslan, Cigdemoglu, & Moseley, 2012; Svihla & Linn, 2012). However, even though people experience a range of emotions about global problems like climate change (Hicks & Holden, 2007; Ojala, 2012; Rickinson, 2001), little attention is given to their emotions about the problem in science classrooms. Because emotions are evaluative (Boler, 1999; Keltner & Gross, 1999), they provided a lens for understanding how students engage personally with climate change. In this study, I drew from sociolinguistics, social psychology, and the sociology of emotions to examine a) the social interactions that allowed for emotional expressions to be constructed and b) the ways in which pre-service elementary teachers constructed emotional expressions about climate change in a science course. Three overall findings emerged: 1) emotions provided a means of understanding how students' conceptualized climate to be relevant to their lives, 2) emotional expressions and the aboutness of these expressions indicated that the students conceptualized climate change as distanced, both temporally and spatially, and 3) although most emotional constructions were distanced, there were multiple instances of emotional expressions in which students took climate change personally. Following a discussion of the findings, implications, limitations, and directions for future research are also described.

  18. Coastline degradation as an indicator of global change

    USGS Publications Warehouse

    Nicholls, Robert J.; Woodroffe, Colin D.; Burkett, Virginia; Letcher, Trevor M.

    2009-01-01

    Finding a climate change signal on coasts is more problematic than often assumed. Coasts undergo natural dynamics at many scales, with erosion and recovery in response to climate variability such as El Niño, or extreme events such as storms and infrequent tsunamis. Additionally, humans have had enormous impacts on most coasts, overshadowing most changes that one can presently attribute directly to climate change. Each area of coast is experiencing its own pattern of relative sea-level change and climate change, making discrimination of the component of degradation that results from climate change problems. The best examples of a climate influence are related to temperature rise at low and high latitudes, as seen by the impacts on coral reefs and polar coasts, respectively. Observations through the twentieth century demonstrate the importance of understanding the impacts of sea-level rise and climate change in the context of multiple drivers of change; this will remain a challenge under a more rapidly changing climate. Nevertheless, there are emerging signs that climate change provides a global threat—sea ice is retreating, permafrost in coastal areas is widely melting. Reefs are bleaching more often, and the sea is rising—amplifying widespread trends of subsidence and threatening low-lying areas. To enhance the sustainability of coastal systems, management strategies will also need to address this challenge, focusing on the drivers that are dominant at each section of coast. Global warming through the twentieth century has caused a series of changes with important implications for coastal areas. These include rising temperatures, rising sea level, increasing CO2 concentrations with an associated reduction in seawater pH, and more intense precipitation on average.

  19. Temperature variability is a key component in accurately forecasting the effects of climate change on pest phenology.

    PubMed

    Merrill, Scott C; Peairs, Frank B

    2017-02-01

    Models describing the effects of climate change on arthropod pest ecology are needed to help mitigate and adapt to forthcoming changes. Challenges arise because climate data are at resolutions that do not readily synchronize with arthropod biology. Here we explain how multiple sources of climate and weather data can be synthesized to quantify the effects of climate change on pest phenology. Predictions of phenological events differ substantially between models that incorporate scale-appropriate temperature variability and models that do not. As an illustrative example, we predicted adult emergence of a pest of sunflower, the sunflower stem weevil Cylindrocopturus adspersus (LeConte). Predictions of the timing of phenological events differed by an average of 11 days between models with different temperature variability inputs. Moreover, as temperature variability increases, developmental rates accelerate. Our work details a phenological modeling approach intended to help develop tools to plan for and mitigate the effects of climate change. Results show that selection of scale-appropriate temperature data is of more importance than selecting a climate change emission scenario. Predictions derived without appropriate temperature variability inputs will likely result in substantial phenological event miscalculations. Additionally, results suggest that increased temperature instability will lead to accelerated pest development. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Climate change, biotic interactions and ecosystem services

    PubMed Central

    Montoya, José M.; Raffaelli, Dave

    2010-01-01

    Climate change is real. The wrangling debates are over, and we now need to move onto a predictive ecology that will allow managers of landscapes and policy makers to adapt to the likely changes in biodiversity over the coming decades. There is ample evidence that ecological responses are already occurring at the individual species (population) level. The challenge is how to synthesize the growing list of such observations with a coherent body of theory that will enable us to predict where and when changes will occur, what the consequences might be for the conservation and sustainable use of biodiversity and what we might do practically in order to maintain those systems in as good condition as possible. It is thus necessary to investigate the effects of climate change at the ecosystem level and to consider novel emergent ecosystems composed of new species assemblages arising from differential rates of range shifts of species. Here, we present current knowledge on the effects of climate change on biotic interactions and ecosystem services supply, and summarize the papers included in this volume. We discuss how resilient ecosystems are in the face of the multiple components that characterize climate change, and suggest which current ecological theories may be used as a starting point to predict ecosystem-level effects of climate change. PMID:20513709

  1. Disease emergence from global climate and land use change.

    PubMed

    Patz, Jonathan A; Olson, Sarah H; Uejio, Christopher K; Gibbs, Holly K

    2008-11-01

    Climate change and land use change can affect multiple infectious diseases of humans, acting either independently or synergistically. Expanded efforts in empiric and future scenario-based risk assessment are required to anticipate problems. Moreover, the many health impacts of climate and land use change must be examined in the context of the myriad other environmental and behavioral determinants of disease. To optimize prevention capabilities, upstream environmental approaches must be part of any intervention, rather than assaults on single agents of disease. Clinicians must develop stronger ties, not only to public health officials and scientists, but also to earth and environmental scientists and policy makers. Without such efforts, we will inevitably benefit our current generation at the cost of generations to come.

  2. An Overview of Occupational Risks From Climate Change.

    PubMed

    Applebaum, Katie M; Graham, Jay; Gray, George M; LaPuma, Peter; McCormick, Sabrina A; Northcross, Amanda; Perry, Melissa J

    2016-03-01

    Changes in atmosphere and temperature are affecting multiple environmental indicators from extreme heat events to global air quality. Workers will be uniquely affected by climate change, and the occupational impacts of major shifts in atmospheric and weather conditions need greater attention. Climate change-related exposures most likely to differentially affect workers in the USA and globally include heat, ozone, polycyclic aromatic hydrocarbons, other chemicals, pathogenic microorganisms, vector-borne diseases, violence, and wildfires. Epidemiologic evidence documents a U-, J-, or V-shaped relationship between temperature and mortality. Whereas heat-related morbidity and mortality risks are most evident in agriculture, many other outdoor occupational sectors are also at risk, including construction, transportation, landscaping, firefighting, and other emergency response operations. The toxicity of chemicals change under hyperthermic conditions, particularly for pesticides and ozone. Combined with climate-related changes in chemical transport and distribution, these interactions represent unique health risks specifically to workers. Links between heat and interpersonal conflict including violence require attention because they pose threats to the safety of emergency medicine, peacekeeping and humanitarian relief, and public safety professionals. Recommendations for anticipating how US workers will be most susceptible to climate change include formal monitoring systems for agricultural workers; modeling scenarios focusing on occupational impacts of extreme climate events including floods, wildfires, and chemical spills; and national research agenda setting focusing on control and mitigation of occupational susceptibility to climate change.

  3. Assessing NARCCAP climate model effects using spatial confidence regions.

    PubMed

    French, Joshua P; McGinnis, Seth; Schwartzman, Armin

    2017-01-01

    We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP) climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference.

  4. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semiarid forests.

    PubMed

    O'Donnell, Frances C; Flatley, William T; Springer, Abraham E; Fulé, Peter Z

    2018-06-25

    Climate change and wildfire are interacting to drive vegetation change and potentially reduce water quantity and quality in the southwestern United States, Forest restoration is a management approach that could mitigate some of these negative outcomes. However, little information exists on how restoration combined with climate change might influence hydrology across large forest landscapes that incorporate multiple vegetation types and complex fire regimes. We combined spatially explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape (335,000 ha) on the Kaibab Plateau in northern Arizona, USA. Our objective was to assess the impacts of climate change and forest restoration on the future fire regime, forest vegetation, and watershed outputs. Our model results predict that the combination of climate change and high-severity fire will drive forest turnover, biomass declines, and compositional change in future forests. Restoration treatments may reduce the area burned in high-severity fires and reduce conversions from forested to non-forested conditions. Even though mid-elevation forests are the targets of restoration, the treatments are expected to delay the decline of high-elevation spruce-fir, aspen, and mixed conifer forests by reducing the occurrence of high-severity fires that may spread across ecoregions. We estimate that climate-induced vegetation changes will result in annual runoff declines of up to 10%, while restoration reduced or reversed this decline. The hydrologic model suggests that mid-elevation forests, which are the targets of restoration treatments, provide around 80% of runoff in this system and the conservation of mid- to high-elevation forests types provides the greatest benefit in terms of water conservation. We also predict that restoration treatments will conserve water quality by reducing patches of high-severity fire that are associated with high sediment yield. Restoration treatments are a management strategy that may reduce undesirable outcomes for multiple ecosystem services. © 2018 by the Ecological Society of America.

  5. Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe.

    PubMed

    Durán, Jorge; Delgado-Baquerizo, Manuel; Dougill, Andrew J; Guuroh, Reginald T; Linstädter, Anja; Thomas, Andrew D; Maestre, Fernando T

    2018-05-01

    The relationship between the spatial variability of soil multifunctionality (i.e., the capacity of soils to conduct multiple functions; SVM) and major climatic drivers, such as temperature and aridity, has never been assessed globally in terrestrial ecosystems. We surveyed 236 dryland ecosystems from six continents to evaluate the relative importance of aridity and mean annual temperature, and of other abiotic (e.g., texture) and biotic (e.g., plant cover) variables as drivers of SVM, calculated as the averaged coefficient of variation for multiple soil variables linked to nutrient stocks and cycling. We found that increases in temperature and aridity were globally correlated to increases in SVM. Some of these climatic effects on SVM were direct, but others were indirectly driven through reductions in the number of vegetation patches and increases in soil sand content. The predictive capacity of our structural equation modelling was clearly higher for the spatial variability of N- than for C- and P-related soil variables. In the case of N cycling, the effects of temperature and aridity were both direct and indirect via changes in soil properties. For C and P, the effect of climate was mainly indirect via changes in plant attributes. These results suggest that future changes in climate may decouple the spatial availability of these elements for plants and microbes in dryland soils. Our findings significantly advance our understanding of the patterns and mechanisms driving SVM in drylands across the globe, which is critical for predicting changes in ecosystem functioning in response to climate change. © 2018 by the Ecological Society of America.

  6. Deciphering the expression of climate change within the Lower Colorado River basin by stochastic simulation of convective rainfall

    NASA Astrophysics Data System (ADS)

    Bliss Singer, Michael; Michaelides, Katerina

    2017-10-01

    In drylands, convective rainstorms typically control runoff, streamflow, water supply and flood risk to human populations, and ecological water availability at multiple spatial scales. Since drainage basin water balance is sensitive to climate, it is important to improve characterization of convective rainstorms in a manner that enables statistical assessment of rainfall at high spatial and temporal resolution, and the prediction of plausible manifestations of climate change. Here we present a simple rainstorm generator, STORM, for convective storm simulation. It was created using data from a rain gauge network in one dryland drainage basin, but is applicable anywhere. We employ STORM to assess watershed rainfall under climate change simulations that reflect differences in wetness/storminess, and thus provide insight into observed or projected regional hydrologic trends. Our analysis documents historical, regional climate change manifesting as a multidecadal decline in rainfall intensity, which we suggest has negatively impacted ephemeral runoff in the Lower Colorado River basin, but has not contributed substantially to regional negative streamflow trends.

  7. Lightning-Related Indicators for National Climate Assessment (NCA) Studies

    NASA Astrophysics Data System (ADS)

    Koshak, W. J.

    2017-12-01

    With the recent advent of space-based lightning mappers [i.e., the Geostationary Lightning Mapper (GLM) on GOES-16, and the Lightning Imaging Sensor (LIS) on the International Space Station], improved investigations on the inter-relationships between lightning and climate are now possible and can directly support the goals of the National Climate Assessment (NCA) program. Lightning nitrogen oxides (LNOx) affect greenhouse gas concentrations such as ozone that influences changes in climate. Conversely, changes in climate (from any causes) can affect the characteristics of lightning (e.g., frequency, current amplitudes, multiplicity, polarity) that in turn leads to changes in lightning-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality). This study discusses improvements to, and recent results from, the NASA/MSFC NCA Lightning Analysis Tool (LAT). It includes key findings on the development of different types of lightning flash energy indicators derived from space-based lightning observations, and demonstrates how these indicators can be used to estimate trends in LNOx across the continental US.

  8. Spatiotemporal patterns of evapotranspiration along the North American east coast as influenced by multiple environmental changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Tian, Hanqin; Li, Xia

    The North American east coast has experienced significant land-use and climate changes since the beginning of the 20th century. In this study, using the Dynamic Land Ecosystem Model 2.0 driven by time-series input data of land use, climate and atmospheric CO 2, we examined how these driving forces have affected the spatiotemporal trends and variability of evapotranspiration (ET) in this region during 1901–2008. Annual ET in the North American east coast during this period was 648.3 ± 38.6 mm/year and demonstrated an increasing trend. Factorial model simulations indicated that climate variability explained 76% of the inter-annual ET variability. Although land-usemore » change only explained 16% of the ET temporal variability, afforestation induced the upward trend of ET and increased annual ET by 12.8 mm/year. Elevated atmospheric CO 2 reduced annual ET by 0.84 mm, and its potential impacts under future atmospheric CO 2 levels could be much larger than estimates for the historical 1901–2008 period. Climate change determined the spatial pattern of ET changes across the entire study area, whereas land-use changes dramatically affected ET in watersheds with significant land conversions. In spite of the multiple benefits from afforestation, its impacts on water resources should be considered in future land-use policy making. As a result, elevated ET may also affect fresh water availability for the increasing social and economic water demands.« less

  9. Spatiotemporal patterns of evapotranspiration along the North American east coast as influenced by multiple environmental changes

    DOE PAGES

    Yang, Qichun; Tian, Hanqin; Li, Xia; ...

    2014-08-08

    The North American east coast has experienced significant land-use and climate changes since the beginning of the 20th century. In this study, using the Dynamic Land Ecosystem Model 2.0 driven by time-series input data of land use, climate and atmospheric CO 2, we examined how these driving forces have affected the spatiotemporal trends and variability of evapotranspiration (ET) in this region during 1901–2008. Annual ET in the North American east coast during this period was 648.3 ± 38.6 mm/year and demonstrated an increasing trend. Factorial model simulations indicated that climate variability explained 76% of the inter-annual ET variability. Although land-usemore » change only explained 16% of the ET temporal variability, afforestation induced the upward trend of ET and increased annual ET by 12.8 mm/year. Elevated atmospheric CO 2 reduced annual ET by 0.84 mm, and its potential impacts under future atmospheric CO 2 levels could be much larger than estimates for the historical 1901–2008 period. Climate change determined the spatial pattern of ET changes across the entire study area, whereas land-use changes dramatically affected ET in watersheds with significant land conversions. In spite of the multiple benefits from afforestation, its impacts on water resources should be considered in future land-use policy making. As a result, elevated ET may also affect fresh water availability for the increasing social and economic water demands.« less

  10. Constant Chinese Loess Plateau dust source since the Late Miocene

    NASA Astrophysics Data System (ADS)

    Bird, Anna; Millar, Ian; Stevens, Thomas; Rodenburg, Tanja; Rittner, Martin; Vermeesch, Pieter; Lu, Huayu

    2017-04-01

    The dramatic deepening of northern hemisphere glaciation at the Pliocene-Pleistocene boundary is accompanied by major changes in global climate. The role of the global atmospheric dust cycle in this event is not clear; in particular, whether, changes in the dust cycle influenced climates change, or resulted from it. Miocene and Quaternary wind-blown Chinese loess records past dust-cycle history, influences of aridification and monsoon circulation. Previous work on the vast Chinese Loess Plateau is in conflict over whether changes in dust source occur at the Pliocene-Pleistocene boundary (2.59 Ma), or at 1.2 Ma, despite these intervals marking major shifts in monsoon dynamics (Sun 2005; Nie et al. 2014a). Here we present Sr, Nd and Hf isotopic data from multiple sites and show that the dust source remains the same across these boundaries. The use of isotope tracers from multiple sites allows us to demonstrate that shifts in sediment geochemistry can be explained by grain-size and weathering changes. Nd and Hf isotopes show that the dust was dominantly sourced from the Tibetan Plateau, with some input from bedrock underlying the Badain Jaran/Tengger deserts. This shows that a major established and constant dust source on the northern Tibetan Plateau has been active and unchanged since the late Miocene, despite dramatically changing climate conditions. Changes in loess accumulation are therefore a function of climate change in the Tibetan Plateau source regions rather than due to expanding source areas controlled by aridification over a widening area over the Pliocene and Quaternary.

  11. Can metric-based approaches really improve multi-model climate projections? A perfect model framework applied to summer temperature change in France.

    NASA Astrophysics Data System (ADS)

    Boé, Julien; Terray, Laurent

    2014-05-01

    Ensemble approaches for climate change projections have become ubiquitous. Because of large model-to-model variations and, generally, lack of rationale for the choice of a particular climate model against others, it is widely accepted that future climate change and its impacts should not be estimated based on a single climate model. Generally, as a default approach, the multi-model ensemble mean (MMEM) is considered to provide the best estimate of climate change signals. The MMEM approach is based on the implicit hypothesis that all the models provide equally credible projections of future climate change. This hypothesis is unlikely to be true and ideally one would want to give more weight to more realistic models. A major issue with this alternative approach lies in the assessment of the relative credibility of future climate projections from different climate models, as they can only be evaluated against present-day observations: which present-day metric(s) should be used to decide which models are "good" and which models are "bad" in the future climate? Once a supposedly informative metric has been found, other issues arise. What is the best statistical method to combine multiple models results taking into account their relative credibility measured by a given metric? How to be sure in the end that the metric-based estimate of future climate change is not in fact less realistic than the MMEM? It is impossible to provide strict answers to those questions in the climate change context. Yet, in this presentation, we propose a methodological approach based on a perfect model framework that could bring some useful elements of answer to the questions previously mentioned. The basic idea is to take a random climate model in the ensemble and treat it as if it were the truth (results of this model, in both past and future climate, are called "synthetic observations"). Then, all the other members from the multi-model ensemble are used to derive thanks to a metric-based approach a posterior estimate of climate change, based on the synthetic observation of the metric. Finally, it is possible to compare the posterior estimate to the synthetic observation of future climate change to evaluate the skill of the method. The main objective of this presentation is to describe and apply this perfect model framework to test different methodological issues associated with non-uniform model weighting and similar metric-based approaches. The methodology presented is general, but will be applied to the specific case of summer temperature change in France, for which previous works have suggested potentially useful metrics associated with soil-atmosphere and cloud-temperature interactions. The relative performances of different simple statistical approaches to combine multiple model results based on metrics will be tested. The impact of ensemble size, observational errors, internal variability, and model similarity will be characterized. The potential improvements associated with metric-based approaches compared to the MMEM is terms of errors and uncertainties will be quantified.

  12. Energy efficiency to reduce residential electricity and natural gas use under climate change.

    PubMed

    Reyna, Janet L; Chester, Mikhail V

    2017-05-15

    Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple climate change projections and investigate the potential for energy efficiency to offset increased demand. We calibrate residential energy use against metered data, accounting for differences in building materials and appliances. Under temperature increases, we find that without policy intervention, residential electricity demand could increase by as much as 41-87% between 2020 and 2060. However, aggressive policies aimed at upgrading heating/cooling systems and appliances could result in electricity use increases as low as 28%, potentially avoiding the installation of new generation capacity. We therefore recommend aggressive energy efficiency, in combination with low-carbon generation sources, to offset projected increases in residential energy demand.

  13. Energy efficiency to reduce residential electricity and natural gas use under climate change

    NASA Astrophysics Data System (ADS)

    Reyna, Janet L.; Chester, Mikhail V.

    2017-05-01

    Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple climate change projections and investigate the potential for energy efficiency to offset increased demand. We calibrate residential energy use against metered data, accounting for differences in building materials and appliances. Under temperature increases, we find that without policy intervention, residential electricity demand could increase by as much as 41-87% between 2020 and 2060. However, aggressive policies aimed at upgrading heating/cooling systems and appliances could result in electricity use increases as low as 28%, potentially avoiding the installation of new generation capacity. We therefore recommend aggressive energy efficiency, in combination with low-carbon generation sources, to offset projected increases in residential energy demand.

  14. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison

    PubMed Central

    Rosenzweig, Cynthia; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Müller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay; Neumann, Kathleen; Piontek, Franziska; Pugh, Thomas A. M.; Schmid, Erwin; Stehfest, Elke; Yang, Hong; Jones, James W.

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies. PMID:24344314

  15. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Mueller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.

  16. Global Potential for Hydro-generated Electricity and Climate Change Impact

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Hejazi, M. I.; Leon, C.; Calvin, K. V.; Thomson, A. M.; Li, H. Y.

    2014-12-01

    Hydropower is a dominant renewable energy source at the global level, accounting for more than 15% of the world's total power supply. It is also very vulnerable to climate change. Improved understanding of climate change impact on hydropower can help develop adaptation measures to increase the resilience of energy system. In this study, we developed a comprehensive estimate of global hydropower potential using runoff and stream flow data derived from a global hydrologic model with a river routing sub-model, along with turbine technology performance, cost assumptions, and environmental consideration (Figure 1). We find that hydropower has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by regions. Resources in a number of countries exceed by multiple folds the total current demand for electricity, e.g., Russia and Indonesia. A sensitivity analysis indicates that hydropower potential can be highly sensitive to a number of parameters including designed flow for capacity, cost and financing, turbine efficiency, and stream flow. The climate change impact on hydropower potential was evaluated by using runoff outputs from 4 climate models (HadCM3, PCM, CGCM2, and CSIRO2). It was found that the climate change on hydropower shows large variation not only by regions, but also climate models, and this demonstrates the importance of incorporating climate change into infrastructure-planning at the regional level though the existing uncertainties.

  17. Multiple causes of the Younger Dryas cold period: new insights from coupled model experiments constrained by data assimilation

    NASA Astrophysics Data System (ADS)

    Renssen, Hans; Mairesse, Aurélien; Goosse, Hugues; Mathiot, Pierre; Heiri, Oliver; Roche, Didier M.; Nisancioglu, Kerim H.; Valdes, Paul J.

    2016-04-01

    The Younger Dryas cooling event disrupted the overall warming trend in the North Atlantic region during the last deglaciation. Climate change during the Younger Dryas was abrupt, and thus provides insights into the sensitivity of the climate system to perturbations. The sudden Younger Dryas cooling has traditionally been attributed to a shut-down of the Atlantic meridional overturning circulation by meltwater discharges. However, alternative explanations such as strong negative radiative forcing and a shift in atmospheric circulation have also been offered. In this study we investigate the importance of these different forcings in coupled climate model experiments constrained by data assimilation. We find that the Younger Dryas climate signal as registered in proxy evidence is best simulated using a combination of processes: a weakened Atlantic meridional overturning circulation, moderate negative radiative forcing and an altered atmospheric circulation. We conclude that none of the individual mechanisms alone provide a plausible explanation for the Younger Dryas cold period. We suggest that the triggers for abrupt climate changes like the Younger Dryas are more complex than suggested so far, and that studies on the response of the climate system to perturbations should account for this complexity. Reference: Renssen, H. et al. (2015) Multiple causes of the Younger Dryas cold period. Nature Geoscience 8, 946-949.

  18. Fine- and coarse-filter conservation strategies in a time of climate change.

    PubMed

    Tingley, Morgan W; Darling, Emily S; Wilcove, David S

    2014-08-01

    As species adapt to a changing climate, so too must humans adapt to a new conservation landscape. Classical frameworks have distinguished between fine- and coarse-filter conservation strategies, focusing on conserving either the species or the landscapes, respectively, that together define extant biodiversity. Adapting this framework for climate change, conservationists are using fine-filter strategies to assess species vulnerability and prioritize the most vulnerable species for conservation actions. Coarse-filter strategies seek to conserve either key sites as determined by natural elements unaffected by climate change, or sites with low climate velocity that are expected to be refugia for climate-displaced species. Novel approaches combine coarse- and fine-scale approaches--for example, prioritizing species within pretargeted landscapes--and accommodate the difficult reality of multiple interacting stressors. By taking a diversified approach to conservation actions and decisions, conservationists can hedge against uncertainty, take advantage of new methods and information, and tailor actions to the unique needs and limitations of places, thereby ensuring that the biodiversity show will go on. © 2014 New York Academy of Sciences.

  19. Overcoming barriers to public understanding of climate change

    NASA Astrophysics Data System (ADS)

    Hayhoe, K.

    2012-12-01

    Humans are interfering with global climate, increasing the risk of serious consequences for human society and the natural environment. As the scientific evidence builds, however, so does the public controversy surrounding this issue. Why is climate change so contentious? What makes it so hard to comprehend? I argue that there is no single reason for this, but rather a perfect storm of multiple confounding factors; scientific, historical, ideological, psychological and even physiological in nature. Education—of both the messengers and the audience—can play a critical role in surmounting many of the common barriers to understanding, accepting, and acting this important issue.

  20. Modeling complex effects of multiple environmental stresses on carbon dynamics of Mid-Atlantic temperate forests

    Treesearch

    Yude Pan; Richard Birdsey; John Hom; Kevin McCullough

    2007-01-01

    We used our GIS variant of the PnET-CN model to investigate changes of forest carbon stocks and fluxes in Mid-Atlantic temperate forests over the last century (1900-2000). Forests in this region are affected by multiple environmental changes including climate, atmospheric CO2 concentration, N deposition and tropospheric ozone, and extensive land disturbances. Our...

  1. Water resources sensitivity to the isolated effects of land use, water demand and climate change under 2 degree global warming

    NASA Astrophysics Data System (ADS)

    Bisselink, Berny; Bernhard, Jeroen; de Roo, Ad

    2017-04-01

    One of the key impacts of global change are the future water resources. These water resources are influenced by changes in land use (LU), water demand (WD) and climate change. Recent developments in scenario modelling opened new opportunities for an integrated assessment. However, for identifying water resource management strategies it is helpful to focus on the isolated effects of possible changes in LU, WD and climate that may occur in the near future. In this work, we quantify the isolated contribution of LU, WD and climate to the integrated total water resources assuming a linear model behavior. An ensemble of five EURO-CORDEX RCP8.5 climate projections for the 31-year periods centered on the year of exceeding the global-mean temperature of 2 degree is used to drive the fully distributed hydrological model LISFLOOD for multiple river catchments in Europe. The JRC's Land Use Modelling Platform LUISA was used to obtain a detailed pan-European reference land use scenario until 2050. Water demand is estimated based on socio-economic (GDP, population estimates etc.), land use and climate projections as well. For each climate projection, four model runs have been performed including an integrated (LU, WD and climate) simulation and other three simulations to isolate the effect of LU, WD and climate. Changes relative to the baseline in terms of water resources indicators of the ensemble means of the 2 degree warming period and their associated uncertainties will reveal the integrated and isolated effect of LU, WD and climate change on water resources.

  2. Climatology of salt transitions and implications for stone weathering.

    PubMed

    Grossi, C M; Brimblecombe, P; Menéndez, B; Benavente, D; Harris, I; Déqué, M

    2011-06-01

    This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Köppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Köppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). Copyright © 2011 Elsevier B.V. All rights reserved.

  3. An Assessment of IPCC 20th Century Climate Simulations Using the 15-year Sea Level Record from Altimetry

    NASA Astrophysics Data System (ADS)

    Leuliette, E.; Nerem, S.; Jakub, T.

    2006-07-01

    Recen tly, multiple ensemble climate simulations h ave been produced for th e forthco ming Fourth A ssessment Report of the Intergovernmental Panel on Climate Change (IPCC). N early two dozen coupled ocean- atmo sphere models have contr ibuted output for a variety of climate scen arios. One scenar io, the climate of the 20th century exper imen t (20C3 M), produces model output that can be comp ared to th e long record of sea level provided by altimetry . Generally , the output from the 20C3M runs is used to initialize simulations of future climate scenar ios. Hence, v alidation of the 20 C3 M experiment resu lts is crucial to the goals of th e IPCC. We present compar isons of global mean sea level (G MSL) , global mean steric sea level change, and regional patterns of sea lev el chang e from these models to r esults from altimetry, tide gauge measurements, and reconstructions.

  4. Taming the Beast: Policy-based Solutions for Addressing Corporate Interference in Climate Policy Development

    NASA Astrophysics Data System (ADS)

    Grifo, F.

    2012-12-01

    Inappropriate corporate influence in science-based policy has been a persistent problem in the United States across multiple issue areas and through many administrations. Interference in climate change policy has been especially pervasive in recent years, with tremendous levels of corporate resources being utilized to spread misinformation on climate science and reduce and postpone regulatory action. Much of the influence exerted by these forces is concealed from public view. Better corporate disclosure laws would reveal who is influencing climate policy to policy makers, investors, and the public. Greater transparency in the political activity of corporate actors is needed to shed light on who is responsible for the misinformation campaigns clouding the discussion around climate change in the United States. Such transparency will empower diverse stakeholders to hold corporations accountable. Specific federal policy reforms can be made in order to guide the nation down a path of greater corporate accountability in climate change policy efforts.

  5. The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Kravitz, Ben; Tilmes, Simone; Richter, Jadwiga H.; Mills, Michael J.; Lamarque, Jean-Francois; Tribbia, Joseph J.; Vitt, Francis

    2017-12-01

    By injecting different amounts of SO2 at multiple different latitudes, the spatial pattern of aerosol optical depth (AOD) can be partially controlled. This leads to the ability to influence the climate response to geoengineering with stratospheric aerosols, providing the potential for design. We use simulations from the fully coupled whole-atmosphere chemistry climate model CESM1(WACCM) to demonstrate that by appropriately combining injection at just four different locations, 30°S, 15°S, 15°N, and 30°N, then three spatial degrees of freedom of AOD can be achieved: an approximately spatially uniform AOD distribution, the relative difference in AOD between Northern and Southern Hemispheres, and the relative AOD in high versus low latitudes. For forcing levels that yield 1-2°C cooling, the AOD and surface temperature response are sufficiently linear in this model so that the response to different combinations of injection at different latitudes can be estimated from single-latitude injection simulations; nonlinearities associated with both aerosol growth and changes to stratospheric circulation will be increasingly important at higher forcing levels. Optimized injection at multiple locations is predicted to improve compensation of CO2-forced climate change relative to a case using only equatorial aerosol injection (which overcools the tropics relative to high latitudes). The additional degrees of freedom can be used, for example, to balance the interhemispheric temperature gradient and the equator to pole temperature gradient in addition to the global mean temperature. Further research is needed to better quantify the impacts of these strategies on changes to long-term temperature, precipitation, and other climate parameters.

  6. Microhabitat and Climatic Niche Change Explain Patterns of Diversification among Frog Families.

    PubMed

    Moen, Daniel S; Wiens, John J

    2017-07-01

    A major goal of ecology and evolutionary biology is to explain patterns of species richness among clades. Differences in rates of net diversification (speciation minus extinction over time) may often explain these patterns, but the factors that drive variation in diversification rates remain uncertain. Three important candidates are climatic niche position (e.g., whether clades are primarily temperate or tropical), rates of climatic niche change among species within clades, and microhabitat (e.g., aquatic, terrestrial, arboreal). The first two factors have been tested separately in several studies, but the relative importance of all three is largely unknown. Here we explore the correlates of diversification among families of frogs, which collectively represent ∼88% of amphibian species. We assemble and analyze data on phylogeny, climate, and microhabitat for thousands of species. We find that the best-fitting phylogenetic multiple regression model includes all three types of variables: microhabitat, rates of climatic niche change, and climatic niche position. This model explains 67% of the variation in diversification rates among frog families, with arboreal microhabitat explaining ∼31%, niche rates ∼25%, and climatic niche position ∼11%. Surprisingly, we show that microhabitat can have a much stronger influence on diversification than climatic niche position or rates of climatic niche change.

  7. Theoretical electron scattering amplitudes and spin polarizations. Electron energies 100 to 1500 eV Part II. Be, N, O, Al, Cl, V, Co, Cu, As, Nb, Ag, Sn, Sb, I, and Ta targets

    NASA Astrophysics Data System (ADS)

    Wildhaber, M. L.; Wikle, C. K.; Anderson, C. J.; Franz, K. J.; Moran, E. H.; Dey, R.

    2012-12-01

    Recent decades have brought substantive changes in land use and climate across the earth, prompting a need to think of population and community ecology not as a static entity, but as a dynamic process. Increasingly there is evidence of ecological changes due to climate change. Although much of this evidence comes from ground-truth observations of biogeographic data, there is increasing reliance on models that relate climate variables to biological systems. Such models can then be used to explore potential changes to population and community level ecological systems in response to climate scenarios as obtained from global climate models (GCMs). A key issue associated with modeling ecosystem response to climate is GCM downscaling to regional and local ecological/biological response models that can be used in vulnerability and risk assessments of the potential effects of climate change. The need is for an explicit means for scaling results up or down multiple hierarchical levels and an effective assessment of the level of uncertainty surrounding current knowledge, data, and data collection methods with these goals identified as in need of acceleration in the U.S. Climate Change Science Program FY2009 Implementation Priorities. In the end, such work should provide the information needed to develop adaptation and mitigation methodologies to minimize the effects of directional and nonlinear climate change on the Nation's land, water, ecosystems, and biological populations. We are working to develop an approach that includes multi-scale and hierarchical Bayesian modeling of Missouri River sturgeon population dynamics. Statistical linkages are defined to quantify implications of climate on fish populations of the Missouri River ecosystem. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. The model must include linkages between climate and habitat, and between habitat and population. A key advantage of the hierarchical approach used in this study is that it incorporates various sources of observations and includes established scientific knowledge, and associated uncertainties. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. The predictive modeling system being developed will be a powerful tool for evaluating management options for coping with global change consequences and assessing uncertainty of those evaluations. Specifically for the endangered pallid sturgeon (Scaphirhynchus albus), we are already able to assess potential effects of any climate scenario on growth and population size distribution. Future models will incorporate survival and reproduction. Ultimately, these models provide guidance for successful recovery and conservation of the pallid sturgeon. Here we present a basic outline of the approach we are developing and a simple pallid sturgeon example to demonstrate how multiple scales and parameter uncertainty are incorporated.

  8. Increasing drought in Jordan: Climate change and cascading Syrian land-use impacts on reducing transboundary flow.

    PubMed

    Rajsekhar, Deepthi; Gorelick, Steven M

    2017-08-01

    In countries where severe drought is an anticipated effect of climate change and in those that heavily depend on upstream nations for fresh water, the effect of drier conditions and consequent changes in the transboundary streamflow regime induced by anthropogenic interventions and disasters leads to uncertainty in regional water security. As a case in point, we analyze Jordan's surface water resources and agricultural water demand through 2100, considering the combined impacts of climate change and land-use change driven by the Syrian conflict. We use bias-corrected regional climate simulations as input to high-resolution hydrologic models to assess three drought types: meteorological (rainfall decrease), agricultural (soil moisture deficit), and hydrologic (streamflow decline) under future scenarios. The historical baseline period (1981-2010) is compared to the future (2011-2100), divided into three 30-year periods. Comparing the baseline period to 2070-2100, average temperature increases by 4.5°C, rainfall decreases by 30%, and multiple drought-type occurrences increase from ~8 in 30 years to ~25 in 30 years. There is a significant increase in the contemporaneous occurrence of multiple drought types along with an 80% increase in simultaneous warm and dry events. Watershed simulations of future transboundary Yarmouk-Jordan River flow from Syria show that Jordan would receive 51 to 75% less Yarmouk water compared to historical flow. Recovery of Syrian irrigated agriculture to pre-conflict conditions would produce twice the decline in transboundary flow as that due to climate change. In Jordan, the confluence of limited water supply, future drought, and transboundary hydrologic impacts of land use severely challenges achieving freshwater sustainability.

  9. Increasing drought in Jordan: Climate change and cascading Syrian land-use impacts on reducing transboundary flow

    PubMed Central

    Rajsekhar, Deepthi; Gorelick, Steven M.

    2017-01-01

    In countries where severe drought is an anticipated effect of climate change and in those that heavily depend on upstream nations for fresh water, the effect of drier conditions and consequent changes in the transboundary streamflow regime induced by anthropogenic interventions and disasters leads to uncertainty in regional water security. As a case in point, we analyze Jordan’s surface water resources and agricultural water demand through 2100, considering the combined impacts of climate change and land-use change driven by the Syrian conflict. We use bias-corrected regional climate simulations as input to high-resolution hydrologic models to assess three drought types: meteorological (rainfall decrease), agricultural (soil moisture deficit), and hydrologic (streamflow decline) under future scenarios. The historical baseline period (1981–2010) is compared to the future (2011–2100), divided into three 30-year periods. Comparing the baseline period to 2070–2100, average temperature increases by 4.5°C, rainfall decreases by 30%, and multiple drought-type occurrences increase from ~8 in 30 years to ~25 in 30 years. There is a significant increase in the contemporaneous occurrence of multiple drought types along with an 80% increase in simultaneous warm and dry events. Watershed simulations of future transboundary Yarmouk-Jordan River flow from Syria show that Jordan would receive 51 to 75% less Yarmouk water compared to historical flow. Recovery of Syrian irrigated agriculture to pre-conflict conditions would produce twice the decline in transboundary flow as that due to climate change. In Jordan, the confluence of limited water supply, future drought, and transboundary hydrologic impacts of land use severely challenges achieving freshwater sustainability. PMID:28875164

  10. Analyzing the contribution of climate change to long-term variations in sediment nitrogen sources for reservoirs/lakes.

    PubMed

    Xia, Xinghui; Wu, Qiong; Zhu, Baotong; Zhao, Pujun; Zhang, Shangwei; Yang, Lingyan

    2015-08-01

    We applied a mixing model based on stable isotopic δ(13)C, δ(15)N, and C:N ratios to estimate the contributions of multiple sources to sediment nitrogen. We also developed a conceptual model describing and analyzing the impacts of climate change on nitrogen enrichment. These two models were conducted in Miyun Reservoir to analyze the contribution of climate change to the variations in sediment nitrogen sources based on two (210)Pb and (137)Cs dated sediment cores. The results showed that during the past 50years, average contributions of soil and fertilizer, submerged macrophytes, N2-fixing phytoplankton, and non-N2-fixing phytoplankton were 40.7%, 40.3%, 11.8%, and 7.2%, respectively. In addition, total nitrogen (TN) contents in sediment showed significant increasing trends from 1960 to 2010, and sediment nitrogen of both submerged macrophytes and phytoplankton sources exhibited significant increasing trends during the past 50years. In contrast, soil and fertilizer sources showed a significant decreasing trend from 1990 to 2010. According to the changing trend of N2-fixing phytoplankton, changes of temperature and sunshine duration accounted for at least 43% of the trend in the sediment nitrogen enrichment over the past 50years. Regression analysis of the climatic factors on nitrogen sources showed that the contributions of precipitation, temperature, and sunshine duration to the variations in sediment nitrogen sources ranged from 18.5% to 60.3%. The study demonstrates that the mixing model provides a robust method for calculating the contribution of multiple nitrogen sources in sediment, and this study also suggests that N2-fixing phytoplankton could be regarded as an important response factor for assessing the impacts of climate change on nitrogen enrichment. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Exploring Resilience of Canadian Rivers to Climate Change

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Paltsev, A.; Accatino, F.; Aldred, D. A.; Guo, J.; Lehner, B.; Ouellet Dallaire, C. O.

    2015-12-01

    Climate change is leading to a hydrological intensification (i.e., wet areas and periods are becoming wetter; dry areas and periods are becoming drier). Impacts of climate change across Canada will vary, and Canadians would benefit from insights as to where these impacts will occur and what these impacts will be in order to be in a position to effectively respond to these changes. Resilience is a term that is often used - and occasionally misused. We make the distinction between engineering resilience and ecological resilience. Engineering resilience assumes that a system may exist in only one stable equilibrium state, and measures the system's resistance to change. In contrast, ecological resilience assumes that a system may exist in multiple equilibrium states and measures the magnitude of change a system can absorb before shifting from one equilibrium state to another. We adopt the concept of engineering resilience and explore the ability of riverscapes (rivers and their watersheds) to maintain or quickly return to an equilibrium state in response to changing climatic conditions. We use the Budyko curve to examine interactions of climate and water yield in riverscapes across Canada. The Budyko curve describes the relationship between a riverscape's potential evapotranspiration (PET) and its actual evapotranspiration (AET) both normalized by precipitation (P) - i.e., the curve describes AET/P as a function of PET/P. We define elasticity is a measure of a system's ability to maintain this relationship consistent with the Budyko curve as climate changes (ratio of range of PET/P to range of AET/P between different climate periods). We classify each riverscape as resilient (elasticity > 1) or non-resilient (elasticity ≤ 1) in response to climate change - exploring both past and future climate change scenarios. This Budyko approach enables us to characterize the resilience of riverscapes, predict their vulnerability to climate change, and propose management measures that will enable societies to adapt to climate change.

  12. Disentangling synergistic climate drivers on the evolution of two species of planktonic foraminifera on regional and global scales

    NASA Astrophysics Data System (ADS)

    Brombacher, A.; Wilson, P. A.; Bailey, I.; Ezard, T. H. G.

    2016-02-01

    Evolution is driven by a combination of biotic and abiotic factors. When quantifying the effects of abiotic drivers, evolutionary change is generally described as a response to a single environmental parameter assumed to represent global climate. However, climate is a complex system of many interacting factors and characterized by high regional variability. Therefore, to understand the role of climate in evolutionary change, we need to consider multiple environmental parameters, across local, regional and global scales, as well as their interactions. The deep-sea microfossil record is sufficiently complete that sufficiently continuous multivariate climatic and multivariate trait data can be obtained from the same samples. Here we present morphological records of the planktonic foraminifera species Globoconella puncticulata and Truncorotalia crassaformis over a 500,000-year interval directly preceding the extinction of G. puncticulata (2.41 Ma). Material was collected from five North Atlantic sites (ODP Sites 659 [18° N], 925 [3° N] and 981 [55° N], IODP Site U1313 [41° N] and DSDP Site 606 [37° N]). Test size and shape of over 35,000 individuals were measured and compared to site-specific records of sea surface temperature, primary productivity and marine aeolian dust deposition, as well as to global records of ice volume, ocean circulation and atmospheric CO2, and all two-way interactions. Morphological parameters respond weakly to individual climate parameters. Once interactions among all studied climate parameters were incorporated, abiotic change explained around 35% of the evolutionary variance. Observed covariances between environmental parameters vary strongly with glacial-interglacial cyclicity, implying that the relationships among climate variables and their relative influences on evolutionary change varied through time. This time dependence cautions against unfettered use of dimension reduction techniques, such as principal components analysis, to extract a single, supposedly dominant, proxy. Furthermore species' responses differed between geographic locations, impressing the need to test how interactions among multiple climate variables at different regional settings shape the biotic microevolutionary response to local and global abiotic change.

  13. The Fate of the World is in your hands: computer gaming for multi-faceted climate change education

    NASA Astrophysics Data System (ADS)

    Bedford, D. P.

    2015-12-01

    Climate change is a multi-faceted (or 'wicked') problem. True climate literacy therefore requires understanding not only the workings of the climate system, but also the current and potential future impacts of climate change and sea level rise on individuals, communities and countries around the world, as noted in the US Global Change Research Program's (2009) Climate Literacy: The Essential Principles of Climate Sciences. The asymmetric nature of climate change impacts, whereby the world's poorest countries have done the least to cause the problem but will suffer disproportionate consequences, has also been widely noted. Education in climate literacy therefore requires an element of ethics in addition to physical and social sciences. As if addressing these multiple aspects of climate change were not challenging enough, polling data has repeatedly shown that many members of the public tend to see climate change as a far away problem affecting people remote from them at a point in the future, but not themselves. This perspective is likely shared by many students. Computer gaming provides a possible solution to the combined problems of, on the one hand, addressing the multi-faceted nature of climate change, and, on the other hand, making the issue real to students. Fate of the World, a game produced by the company Red Redemption, has been used on several occasions in a small (20-30 students) introductory level general education course on global warming at Weber State University. Players are required to balance difficult decisions about energy investment while managing regional political disputes and attempting to maintain minimum levels of development in the world's poorer countries. By providing a realistic "total immersion" experience, the game has the potential to make climate change issues more immediate to players, and presents them with the ethical dilemmas inherent in climate change. This presentation reports on the use of Fate of the World in an educational setting, highlighting student experiences and lessons learned from two attempts to use the game as a tool for teaching the multi-faceted nature of climate change.

  14. The Challenges of Creating Climate Change Education Cross-Sector Partnerships

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.

    2017-12-01

    Communities will have to address the impacts of climate change on their environment whether it is for adaptation - to build resilience and establish preparedness, or for mitigation - to migrate to cleaner energy sources and reduce energy use. To effectively address these impacts community leaders and professionals will need to develop an understanding of and solutions to the problems that result from climate change. The effort will need to be conducted with a cross-sector approach as all members of a community (individuals and organizations/businesses/ groups) will be impacted. Students should be involved in this effort to help them develop the critical thinking and data analysis skills they will need in the future to make responsible decisions for themselves, their community, and professionally. However, engaging businesses, organizations, and government in a coherent aligned partnership that addresses short and long term local impacts of climate change as well as the longer-term goal of preparing the future climate ready workforce has multiple challenges. Each business, organization and government agency has it own mission and goals, and metrics of achieving them. In creating an effective cross-sector partnership it is essential to determine for each partner where their mission, services, products, and activities can benefit the partnership and where the partnership can help them improve their multiple bottom lines (financial, social, envionmental) and show the value of their participation to their boards and leadership. Cross-sector partnerships have begun to form in many communities, however, financing them is difficult and most do not include education, a critical leverage element, for either the future workforce or to support current decision makers. In this presentation we will examine community partnerships that are working to address local climate issues and explore the obstacles to integrating education in these cross-sector climate change partnerships and how to overcome them.

  15. Effectiveness and Tradeoffs between Portfolios of Adaptation Strategies Addressing Future Climate and Socioeconomic Uncertainties in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Tansey, M. K.; Van Lienden, B.; Das, T.; Munevar, A.; Young, C. A.; Flores-Lopez, F.; Huntington, J. L.

    2013-12-01

    The Central Valley of California is one of the major agricultural areas in the United States. The Central Valley Project (CVP) is operated by the Bureau of Reclamation to serve multiple purposes including generating approximately 4.3 million gigawatt hours of hydropower and providing, on average, 5 million acre-feet of water per year to irrigate approximately 3 million acres of land in the Sacramento, San Joaquin, and Tulare Lake basins, 600,000 acre-feet per year of water for urban users, and 800,000 acre-feet of annual supplies for environmental purposes. The development of effective adaptation and mitigation strategies requires assessing multiple risks including potential climate changes as well as uncertainties in future socioeconomic conditions. In this study, a scenario-based analytical approach was employed by combining three potential 21st century socioeconomic futures with six representative climate and sea level change projections developed using a transient hybrid delta ensemble method from an archive of 112 bias corrected spatially downscaled CMIP3 global climate model simulations to form 18 future socioeconomic-climate scenarios. To better simulate the effects of climate changes on agricultural water demands, analyses of historical agricultural meteorological station records were employed to develop estimates of future changes in solar radiation and atmospheric humidity from the GCM simulated temperature and precipitation. Projected changes in atmospheric carbon dioxide were computed directly by weighting SRES emissions scenarios included in each representative climate projection. These results were used as inputs to a calibrated crop water use, growth and yield model to simulate the effects of climate changes on the evapotranspiration and yields of major crops grown in the Central Valley. Existing hydrologic, reservoir operations, water quality, hydropower, greenhouse gas (GHG) emissions and both urban and agricultural economic models were integrated into a suite of decision support tools to assess the impacts of future socioeconomic-climate uncertainties on key performance metrics for the CVP, State Water Project and other Central Valley water management systems under current regulatory requirements. Four thematic portfolios consisting of regional and local adaptation strategies including changes in reservoir operations, increased water conservation, storage and conveyance were developed and simulated to evaluate their potential effectiveness in meeting delivery reliability, water quality, environmental, hydropower, GHG, urban and agricultural economic performance criteria. The results indicate that the portfolios exhibit a considerable range of effectiveness depending on the socioeconomic-climate scenario. For most criteria, the portfolios were more sensitive to climate projections than socioeconomic assumptions. However, the results demonstrate that important tradeoffs occur between portfolios depending on the performance criteria considered.

  16. Disentangling the relative role of climate change on tree growth in an extreme Mediterranean environment.

    PubMed

    Madrigal-González, Jaime; Andivia, Enrique; Zavala, Miguel A; Stoffel, Markus; Calatayud, Joaquín; Sánchez-Salguero, Raúl; Ballesteros-Cánovas, Juan

    2018-06-14

    Climate change can impair ecosystem functions and services in extensive dry forests worldwide. However, attribution of climate change impacts on tree growth and forest productivity is challenging due to multiple inter-annual patterns of climatic variability associated with atmospheric and oceanic circulations. Moreover, growth responses to rising atmospheric CO 2 , namely carbon fertilization, as well as size ontogenetic changes can obscure the climate change signature as well. Here we apply Structural Equation Models (SEM) to investigate the relative role of climate change on tree growth in an extreme Mediterranean environment (i.e., extreme in terms of the combination of sandy-unconsolidated soils and climatic aridity). Specifically, we analyzed potential direct and indirect pathways by which different sources of climatic variability (i.e. warming and precipitation trends, the North Atlantic Oscillation, [NAO]; the Mediterranean Oscillation, [MOI]; the Atlantic Mediterranean Oscillation, [AMO]) affect aridity through their control on local climate (in terms of mean annual temperature and total annual precipitation), and subsequently tree productivity, in terms of basal area increments (BAI). Our results support the predominant role of Diameter at Breast Height (DHB) as the main growth driver. In terms of climate, NAO and AMO are the most important drivers of tree growth through their control of aridity (via effects of precipitation and temperature, respectively). Furthermore and contrary to current expectations, our findings also support a net positive role of climate warming on growth over the last 50 years and suggest that impacts of climate warming should be evaluated considering multi-annual and multi-decadal periods of local climate defined by atmospheric and oceanic circulation in the North Atlantic. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Multi-objective optimization for evaluation of simulation fidelity for precipitation, cloudiness and insolation in regional climate models

    NASA Astrophysics Data System (ADS)

    Lee, H.

    2016-12-01

    Precipitation is one of the most important climate variables that are taken into account in studying regional climate. Nevertheless, how precipitation will respond to a changing climate and even its mean state in the current climate are not well represented in regional climate models (RCMs). Hence, comprehensive and mathematically rigorous methodologies to evaluate precipitation and related variables in multiple RCMs are required. The main objective of the current study is to evaluate the joint variability of climate variables related to model performance in simulating precipitation and condense multiple evaluation metrics into a single summary score. We use multi-objective optimization, a mathematical process that provides a set of optimal tradeoff solutions based on a range of evaluation metrics, to characterize the joint representation of precipitation, cloudiness and insolation in RCMs participating in the North American Regional Climate Change Assessment Program (NARCCAP) and Coordinated Regional Climate Downscaling Experiment-North America (CORDEX-NA). We also leverage ground observations, NASA satellite data and the Regional Climate Model Evaluation System (RCMES). Overall, the quantitative comparison of joint probability density functions between the three variables indicates that performance of each model differs markedly between sub-regions and also shows strong seasonal dependence. Because of the large variability across the models, it is important to evaluate models systematically and make future projections using only models showing relatively good performance. Our results indicate that the optimized multi-model ensemble always shows better performance than the arithmetic ensemble mean and may guide reliable future projections.

  18. Assessing the effects of climate change on aquatic invasive species.

    PubMed

    Rahel, Frank J; Olden, Julian D

    2008-06-01

    Different components of global environmental change are typically studied and managed independently, although there is a growing recognition that multiple drivers often interact in complex and nonadditive ways. We present a conceptual framework and empirical review of the interactive effects of climate change and invasive species in freshwater ecosystems. Climate change is expected to result in warmer water temperatures, shorter duration of ice cover, altered streamflow patterns, increased salinization, and increased demand for water storage and conveyance structures. These changes will alter the pathways by which non-native species enter aquatic systems by expanding fish-culture facilities and water gardens to new areas and by facilitating the spread of species during floods. Climate change will influence the likelihood of new species becoming established by eliminating cold temperatures or winter hypoxia that currently prevent survival and by increasing the construction of reservoirs that serve as hotspots for invasive species. Climate change will modify the ecological impacts of invasive species by enhancing their competitive and predatory effects on native species and by increasing the virulence of some diseases. As a result of climate change, new prevention and control strategies such as barrier construction or removal efforts may be needed to control invasive species that currently have only moderate effects or that are limited by seasonally unfavorable conditions. Although most researchers focus on how climate change will increase the number and severity of invasions, some invasive coldwater species may be unable to persist under the new climate conditions. Our findings highlight the complex interactions between climate change and invasive species that will influence how aquatic ecosystems and their biota will respond to novel environmental conditions.

  19. Climate change collaboration among natural resource management agencies: lessons learned from two US regions

    USGS Publications Warehouse

    Lemieux, Christopher J.; Thompson, Jessica; Slocombe, D. Scott; Schuster, Rudy

    2015-01-01

    It has been argued that regional collaboration can facilitate adaptation to climate change impacts through integrated planning and management. In an attempt to understand the underlying institutional factors that either support or contest this assumption, this paper explores the institutional factors influencing adaptation to climate change at the regional scale, where multiple public land and natural resource management jurisdictions are involved. Insights from two mid-western US case studies reveal that several challenges to collaboration persist and prevent fully integrative multi-jurisdictional adaptation planning at a regional scale. We propose that some of these challenges, such as lack of adequate time, funding and communication channels, be reframed as opportunities to build interdependence, identify issue-linkages and collaboratively explore the nature and extent of organisational trade-offs with respect to regional climate change adaptation efforts. Such a reframing can better facilitate multi-jurisdictional adaptation planning and management of shared biophysical resources generally while simultaneously enhancing organisational capacity to mitigate negative effects and take advantage of potentially favourable future conditions in an era characterised by rapid climate change.

  20. Criteria for selecting a CO/sub 2//climate change region of study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmonds, J.; Cushman, R.; Easterling, W.

    One of the most important research issues active today is the greenhouse issue. Progress has been made in exploring the relationship between human activities and the accumulation of CO/sub 2/ and other radiatively important gases in the atmosphere. While significant research remains in refining our understanding of the timing of possible CO/sub 2//climate change, the examination of the nature and magnitude of consequences of CO/sub 2//climate change remains in a relatively early stage of development. While the accumulation of greenhouse gases in the atmosphere may be a global problem, the consequences of CO/sub 2//climate change will be experienced regionally. Itmore » is therefore critical that methods be developed to address the regional examination of CO/sub 2//climate change. An analytical framework is described and a ''cookie cutter'' technique is utilized to deal with multiple resource sectors in selecting a Region of Study. The result leads to the selection of the four midwestern states of Kansas, Nebraska, Iowa, and Missouri. The role of information systems, uncertainty analysis, and knowledge transfer is discussed. 19 refs., 2 figs.« less

  1. Climate change has indirect effects on resource use and overlap among coexisting bird species with negative consequences for their reproductive success.

    PubMed

    Auer, Sonya K; Martin, Thomas E

    2013-02-01

    Climate change can modify ecological interactions, but whether it can have cascading effects throughout ecological networks of multiple interacting species remains poorly studied. Climate-driven alterations in the intensity of plant-herbivore interactions may have particularly profound effects on the larger community because plants provide habitat for a wide diversity of organisms. Here we show that changes in vegetation over the last 21 years, due to climate effects on plant-herbivore interactions, have consequences for songbird nest site overlap and breeding success. Browsing-induced reductions in the availability of preferred nesting sites for two of three ground nesting songbirds led to increasing overlap in nest site characteristics among all three bird species with increasingly negative consequences for reproductive success over the long term. These results demonstrate that changes in the vegetation community from effects of climate change on plant-herbivore interactions can cause subtle shifts in ecological interactions that have critical demographic ramifications for other species in the larger community. © 2012 Blackwell Publishing Ltd.

  2. Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders.

    PubMed

    Ordonez, Alejandro; Svenning, Jens-Christian

    2017-02-23

    Current and historical environmental conditions are known to determine jointly contemporary species distributions and richness patterns. However, whether historical dynamics in species distributions and richness translate to functional diversity patterns remains, for the most part, unknown. The geographic patterns of plant functional space size (richness) and packing (dispersion) for six widely distributed orders of European angiosperms were estimated using atlas distribution data and trait information. Then the relative importance of late-Quaternary glacial-interglacial climate change and contemporary environmental factors (climate, productivity, and topography) as determinants of functional diversity of evaluated orders was assesed. Functional diversity patterns of all evaluated orders exhibited prominent glacial-interglacial climate change imprints, complementing the influence of contemporary environmental conditions. The importance of Quaternary glacial-interglacial climate change factors was comparable to that of contemporary environmental factors across evaluated orders. Therefore, high long-term paleoclimate variability has imposed consistent supplementary constraints on functional diversity of multiple plant groups, a legacy that may permeate to ecosystem functioning and resilience. These findings suggest that strong near-future anthropogenic climate change may elicit long-term functional disequilibria in plant functional diversity.

  3. Climate Change and Risks to National Security

    NASA Astrophysics Data System (ADS)

    Titley, D.

    2017-12-01

    Climate change impacts national security in three ways: through changes in the operating environments of the military; by increasing risks to security infrastructure, specifically bases and training ranges; and by exacerbating and accelerating the risks of state collapse and conflict in regions that are already fragile and unstable. Additionally there will be unique security challenges in the Arctic as sea-ice melts out and human activities increase across multiple dimensions. Military forces will also likely see increased demand for Humanitarian Assistance and Disaster Relief resulting from a combination of increased human population, rising sea-level, and potentially stronger and wetter storms. The talk will explore some of the lesser known aspects of these changes, examine selected climate-driven 'wild cards' that have the potential to disrupt regional and global security, and explore how migration in the face of a changing climate may heighten security issues. I will assess the positions U.S. executive and legislative branches with respect to climate & security, and how those positions have evolved since the November 2016 election, sometimes in counter-intuitive ways. The talk will close with some recommended courses of action the security enterprise can take to manage this climate risk.

  4. Predicting shifting sustainability trade-offs in marine finfish aquaculture under climate change.

    PubMed

    Sarà, Gianluca; Gouhier, Tarik C; Brigolin, Daniele; Porporato, Erika M D; Mangano, Maria Cristina; Mirto, Simone; Mazzola, Antonio; Pastres, Roberto

    2018-05-03

    Defining sustainability goals is a crucial but difficult task because it often involves the quantification of multiple interrelated and sometimes conflicting components. This complexity may be exacerbated by climate change, which will increase environmental vulnerability in aquaculture and potentially compromise the ability to meet the needs of a growing human population. Here, we developed an approach to inform sustainable aquaculture by quantifying spatio-temporal shifts in critical trade-offs between environmental costs and benefits using the time to reach the commercial size as a possible proxy of economic implications of aquaculture under climate change. Our results indicate that optimizing aquaculture practices by minimizing impact (this study considers as impact a benthic carbon deposition ≥ 1 g C m -2  day -1 ) will become increasingly difficult under climate change. Moreover, an increasing temperature will produce a poleward shift in sustainability trade-offs. These findings suggest that future sustainable management strategies and plans will need to account for the effects of climate change across scales. Overall, our results highlight the importance of integrating environmental factors in order to sustainably manage critical natural resources under shifting climatic conditions. © 2018 John Wiley & Sons Ltd.

  5. Search for Remnant Water Ice from Past Glacial Climates on Mars: The Mars Odyssey Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Prettyman, T. H.; Maurice, S.; Lawrence, D. J.; Pathare, A.; Milliken, R. E.; Travis, B. J.

    2011-03-01

    We find at least three likely target locations of presently existing deposits of buried "bulk" water ice that may be remnants of multiple episodes of dirty ice precipitation events at low to mid-martian latitudes driven by climate changes during the last 1 to 10 Ma.

  6. The multitrophic consequences of concurrent insect invasions: a range-expanding herbivore and its associated parasitoid affect native tritrophic interactions

    USDA-ARS?s Scientific Manuscript database

    Global climatic changes may lead to the arrival of range-expanding species into new environments. Species from different trophic levels sharing the same climatic niche may invade new habitats simultaneously or in quick succession, causing the formation of multiple novel interactions into native food...

  7. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities.

    PubMed

    Barton, Andrew D; Irwin, Andrew J; Finkel, Zoe V; Stock, Charles A

    2016-03-15

    Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951-2000) and future (2051-2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 km per decade (km⋅dec(-1)), and 90% of taxa shift eastward at a median rate of 42.7 km⋅dec(-1) The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles.

  8. Climate Change Education in Earth System Science

    NASA Astrophysics Data System (ADS)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory data analysis the approaches on climate time series, trend analysis and extreme events analysis are explained. Tools to describe relations within the data sets and significance tests further corroborate this. Within the weekly exercises that have to be prepared at home, the students work with self-selected climate data sets and apply the learned methods. The presentation and discussion of intermediate results by the students is as much part of the exercises as the illustration of possible methodological procedures by the teacher using exemplary data sets. The total time expenditure of the course is 270 hours with 90 attendance hours. The remainder consists of individual studies, e.g., preparation of discussions and presentations, statistical data analysis, and scientific writing. Different forms of examination are applied including written or oral examination, scientific report, presentation and portfolio work.

  9. Mid-latitude shrub steppe plant communities: Climate change consequences for soil water resources

    USGS Publications Warehouse

    Palmquist, Kyle A.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, Willliam K.

    2016-01-01

    In the coming century, climate change is projected to impact precipitation and temperature regimes worldwide, with especially large effects in drylands. We use big sagebrush ecosystems as a model dryland ecosystem to explore the impacts of altered climate on ecohydrology and the implications of those changes for big sagebrush plant communities using output from 10 Global Circulation Models (GCMs) for two representative concentration pathways (RCPs). We ask: 1) What is the magnitude of variability in future temperature and precipitation regimes among GCMs and RCPs for big sagebrush ecosystems and 2) How will altered climate and uncertainty in climate forecasts influence key aspects of big sagebrush water balance? We explored these questions across 1980-2010, 2030-2060, and 2070-2100 to determine how changes in water balance might develop through the 21st century. We assessed ecohydrological variables at 898 sagebrush sites across the western US using a process-based soil water model, SOILWAT to model all components of daily water balance using site-specific vegetation parameters and site-specific soil properties for multiple soil layers. Our modeling approach allowed for changes in vegetation based on climate. Temperature increased across all GCMs and RCPs, while changes in precipitation were more variable across GCMs. Winter and spring precipitation was predicted to increase in the future (7% by 2030-2060, 12% by 2070-2100), resulting in slight increases in soil water potential (SWP) in winter. Despite wetter winter soil conditions, SWP decreased in late spring and summer due to increased evapotranspiration (6% by 2030-2060, 10% by 2070-2100) and groundwater recharge (26% and 30% increase by 2030-2060 and 2070-2100). Thus, despite increased precipitation in the cold season, soils may dry out earlier in the year, resulting in potentially longer drier summer conditions. If winter precipitation cannot offset drier summer conditions in the future, we expect big sagebrush regeneration and survival will be negatively impacted, potentially resulting in shifts in the relative abundance of big sagebrush plant functional groups. Our results also highlight the importance of assessing multiple GCMs to understand the range of climate change outcomes on ecohydrology, which was contingent on the GCM chosen.

  10. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources.

    PubMed

    Yang, Xiaoying; Tan, Lit; He, Ruimin; Fu, Guangtao; Ye, Jinyin; Liu, Qun; Wang, Guoqing

    2017-12-01

    It is increasingly recognized that climate change could impose both direct and indirect impacts on the quality of the water environment. Previous studies have mostly concentrated on evaluating the impacts of climate change on non-point source pollution in agricultural watersheds. Few studies have assessed the impacts of climate change on the water quality of river basins with complex point and non-point pollution sources. In view of the gap, this paper aims to establish a framework for stochastic assessment of the sensitivity of water quality to future climate change in a river basin with complex pollution sources. A sub-daily soil and water assessment tool (SWAT) model was developed to simulate the discharge, transport, and transformation of nitrogen from multiple point and non-point pollution sources in the upper Huai River basin of China. A weather generator was used to produce 50 years of synthetic daily weather data series for all 25 combinations of precipitation (changes by - 10, 0, 10, 20, and 30%) and temperature change (increases by 0, 1, 2, 3, and 4 °C) scenarios. The generated daily rainfall series was disaggregated into the hourly scale and then used to drive the sub-daily SWAT model to simulate the nitrogen cycle under different climate change scenarios. Our results in the study region have indicated that (1) both total nitrogen (TN) loads and concentrations are insensitive to temperature change; (2) TN loads are highly sensitive to precipitation change, while TN concentrations are moderately sensitive; (3) the impacts of climate change on TN concentrations are more spatiotemporally variable than its impacts on TN loads; and (4) wide distributions of TN loads and TN concentrations under individual climate change scenario illustrate the important role of climatic variability in affecting water quality conditions. In summary, the large variability in SWAT simulation results within and between each climate change scenario highlights the uncertainty of the impacts of climate change and the need to incorporate extreme conditions in managing water environment and developing climate change adaptation and mitigation strategies.

  11. Perceptions of climate-related risk among water sector professionals in Africa-Insights from the 2016 African Water Association Congress.

    PubMed

    Connolly, Katherine; Mbutu, Mwaura; Bartram, Jamie; Fuente, David

    2018-06-01

    The ability of water and wastewater utilities to provide safe and reliable water and sanitation services now and in the future will be determined, in part, by their resilience to climate change. Investment in infrastructure, planning, and operational practices that increase resilience are affected, in turn, by how water sector professionals perceive the risks posed to utilities by climate change and its related impacts. We surveyed water sector professionals at the 2016 African Water Association's Congress in Nairobi, Kenya to assess their perceptions of climate-specific and general risks that may disrupt utility service. We find that water sector professionals are most concerned about climate-specific and general risks that affect utility water supplies (quantity), followed by adequacy of utility infrastructure. We also find that professionals tend to rank climate-specific risks as less concerning than general risks facing utilities. Furthermore, non-utility professionals are more concerned about climate-specific risks and climate change in general than utility professionals. These findings highlight the multiple, competing risks utilities face and the need for adaptation strategies that simultaneously address climate-specific and general concerns of utilities. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. Effects of temperature change on mussel, Mytilus.

    PubMed

    Zippay, Mackenzie L; Helmuth, Brian

    2012-09-01

    An increasing body of research has demonstrated the often idiosyncratic responses of organisms to climate-related factors, such as increases in air, sea and land surface temperatures, especially when coupled with non-climatic stressors. This argues that sweeping generalizations about the likely impacts of climate change on organisms and ecosystems are likely less valuable than process-based explorations that focus on key species and ecosystems. Mussels in the genus Mytilus have been studied for centuries, and much is known of their physiology and ecology. Like other intertidal organisms, these animals may serve as early indicators of climate change impacts. As structuring species, their survival has cascading impacts on many other species, making them ecologically important, in addition to their economic value as a food source. Here, we briefly review the categories of information available on the effects of temperature change on mussels within this genus. Although a considerable body of information exists about the genus in general, knowledge gaps still exist, specifically in our ability to predict how specific populations are likely to respond to the effects of multiple stressors, both climate and non-climate related, and how these changes are likely to result in ecosystem-level responses. Whereas this genus provides an excellent model for exploring the effects of climate change on natural and human-managed ecosystems, much work remains if we are to make predictions of likely impacts of environmental change on scales that are relevant to climate adaptation. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  13. Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout

    USGS Publications Warehouse

    Bassar, Ronald D.; Letcher, Benjamin H.; Nislow, Keith H.; Whiteley, Andrew R.

    2016-01-01

    Understanding how multiple extrinsic (density-independent) factors and intrinsic (density-dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density-dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) versus density-dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10-year capture-mark-recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete-time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density-dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate-driven environmental change.

  14. Attributing Climate Conditions for Stable Malaria Transmission to Human Activity in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Sheldrake, L.; Mitchell, D.; Allen, M. R.

    2015-12-01

    Temperature and precipitation limit areas of stable malaria transmission, but the effects of climate change on the disease remain controversial. Previously, studies have not separated the influence of anthropogenic climate change and natural variability, despite being an essential step in the attribution of climate change impacts. Ensembles of 2900 simulations of regional climate in sub-Saharan Africa for the year 2013, one representing realistic conditions and the other how climate might have been in the absence of human influence, were used to force a P.falciparium climate suitability model developed by the Mapping Malaria Risk in Africa project. Strongest signals were detected in areas of unstable transmission, indicating their heightened sensitivity to climatic factors. Evidently, impacts of human-induced climate change were unevenly distributed: the probability of conditions being suitable for stable malaria transmission were substantially reduced (increased) in the Sahel (Greater Horn of Africa (GHOA), particularly in the Ethiopian and Kenyan highlands). The length of the transmission season was correspondingly shortened in the Sahel and extended in the GHOA, by 1 to 2 months, including in Kericho (Kenya), where the role of climate change in driving recent malaria occurrence is hotly contested. Human-induced warming was primarily responsible for positive anomalies in the GHOA, while reduced rainfall caused negative anomalies in the Sahel. The latter was associated with anthropogenic impacts on the West African Monsoon, but uncertainty in the RCM's ability to reproduce precipitation trends in the region weakens confidence in the result. That said, outputs correspond well with broad-scale changes in observed endemicity, implying a potentially important contribution of anthropogenic climate change to the malaria burden during the past century. Results support the health-framing of climate risk and help indicate hotspots of climate vulnerability, providing information to direct control interventions and investment, and allude to climate injustices. Extending methods, such as by using multiple climate and malaria models and investigating trends over longer timescales, would make results more generally applicable and improve their policy relevance.

  15. Predicting Vulnerabilities of North American Shorebirds to Climate Change

    PubMed Central

    Galbraith, Hector; DesRochers, David W.; Brown, Stephen; Reed, J. Michael

    2014-01-01

    Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at–risk species. Virtually all of the shorebird species breeding in the USA and Canada are migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by Partners–in–Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding, migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2 distinct populations each, and found that 47 (90%) taxa are predicted to experience an increase in risk of extinction. No species was reclassified into a lower–risk category, although 6 species had at least one risk factor decrease in association with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change. Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions for predicting change in extinction risk due to climate change. PMID:25268907

  16. Predicting vulnerabilities of North American shorebirds to climate change.

    PubMed

    Galbraith, Hector; DesRochers, David W; Brown, Stephen; Reed, J Michael

    2014-01-01

    Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at-risk species. Virtually all of the shorebird species breeding in the USA and Canada are migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by Partners-in-Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding, migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2 distinct populations each, and found that 47 (90%) taxa are predicted to experience an increase in risk of extinction. No species was reclassified into a lower-risk category, although 6 species had at least one risk factor decrease in association with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change. Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions for predicting change in extinction risk due to climate change.

  17. Development of a Climate Resilience Screening Index (CRSI) ...

    EPA Pesticide Factsheets

    A Climate Resilience Screening Index is being developed that is applicable at multiple scales for the United States. Those scales include national, state, county and community. The index will be applied at the first three scales and at selected communities. The index was developed in order to explicitly include domains, indicators and metrics addressing environmental, economic and societal aspects of climate resilience. In addition, the index uses indicators and metrics that assess ecosystem, economic, governance and social services at these scales. Finally, we are developing forecasting approaches that can relate intended changes in services and governance to likely levels of changes in the resiliency of communities to climate change impacts. The present challenge is the incorporation of the index, its relationships to governance and the developing forecasting tools into Federal decision-making across US government and into state/county/community decision-making across the US. Governmental acceptance of changes to policies often can be just as challenging as the initial technical acceptance of the index and its relation to climate change. Climate Resilience Index is a requested product by ORD AA and EPA Administrator through SHC Program. Index needed to assess states', counties', and communities' abilities of recovery from climate events. Audience: Internal EPA (Administrator, IO, OLEM, OW and OAR) and external (states, counties and communities). Product

  18. Climate Change and Infectious Disease Risk in Western Europe: A Survey of Dutch Expert Opinion on Adaptation Responses and Actors

    PubMed Central

    Akin, Su-Mia; Martens, Pim; Huynen, Maud M.T.E.

    2015-01-01

    There is growing evidence of climate change affecting infectious disease risk in Western Europe. The call for effective adaptation to this challenge becomes increasingly stronger. This paper presents the results of a survey exploring Dutch expert perspectives on adaptation responses to climate change impacts on infectious disease risk in Western Europe. Additionally, the survey explores the expert sample’s prioritization of mitigation and adaptation, and expert views on the willingness and capacity of relevant actors to respond to climate change. An integrated view on the causation of infectious disease risk is employed, including multiple (climatic and non-climatic) factors. The results show that the experts consider some adaptation responses as relatively more cost-effective, like fostering interagency and community partnerships, or beneficial to health, such as outbreak investigation and response. Expert opinions converge and diverge for different adaptation responses. Regarding the prioritization of mitigation and adaptation responses expert perspectives converge towards a 50/50 budgetary allocation. The experts consider the national government/health authority as the most capable actor to respond to climate change-induced infectious disease risk. Divergence and consensus among expert opinions can influence adaptation policy processes. Further research is necessary to uncover prevailing expert perspectives and their roots, and compare these. PMID:26295247

  19. National climate policies across Europe and their impacts on cities strategies.

    PubMed

    Heidrich, O; Reckien, D; Olazabal, M; Foley, A; Salvia, M; de Gregorio Hurtado, S; Orru, H; Flacke, J; Geneletti, D; Pietrapertosa, F; Hamann, J J-P; Tiwary, A; Feliu, E; Dawson, R J

    2016-03-01

    Globally, efforts are underway to reduce anthropogenic greenhouse gas emissions and to adapt to climate change impacts at the local level. However, there is a poor understanding of the relationship between city strategies on climate change mitigation and adaptation and the relevant policies at national and European level. This paper describes a comparative study and evaluation of cross-national policy. It reports the findings of studying the climate change strategies or plans from 200 European cities from Austria, Belgium, Estonia, Finland, France, Germany, Ireland, Italy, Netherlands, Spain and the United Kingdom. The study highlights the shared responsibility of global, European, national, regional and city policies. An interpretation and illustration of the influences from international and national networks and policy makers in stimulating the development of local strategies and actions is proposed. It was found that there is no archetypical way of planning for climate change, and multiple interests and motivations are inevitable. Our research warrants the need for a multi-scale approach to climate policy in the future, mainly ensuring sufficient capacity and resource to enable local authorities to plan and respond to their specific climate change agenda for maximising the management potentials for translating environmental challenges into opportunities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Climate Change and Infectious Disease Risk in Western Europe: A Survey of Dutch Expert Opinion on Adaptation Responses and Actors.

    PubMed

    Akin, Su-Mia; Martens, Pim; Huynen, Maud M T E

    2015-08-18

    There is growing evidence of climate change affecting infectious disease risk in Western Europe. The call for effective adaptation to this challenge becomes increasingly stronger. This paper presents the results of a survey exploring Dutch expert perspectives on adaptation responses to climate change impacts on infectious disease risk in Western Europe. Additionally, the survey explores the expert sample's prioritization of mitigation and adaptation, and expert views on the willingness and capacity of relevant actors to respond to climate change. An integrated view on the causation of infectious disease risk is employed, including multiple (climatic and non-climatic) factors. The results show that the experts consider some adaptation responses as relatively more cost-effective, like fostering interagency and community partnerships, or beneficial to health, such as outbreak investigation and response. Expert opinions converge and diverge for different adaptation responses. Regarding the prioritization of mitigation and adaptation responses expert perspectives converge towards a 50/50 budgetary allocation. The experts consider the national government/health authority as the most capable actor to respond to climate change-induced infectious disease risk. Divergence and consensus among expert opinions can influence adaptation policy processes. Further research is necessary to uncover prevailing expert perspectives and their roots, and compare these.

  1. Inter-comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA

    PubMed Central

    Jiang, Yueyang; Kim, John B.; Still, Christopher J.; Kerns, Becky K.; Kline, Jeffrey D.; Cunningham, Patrick G.

    2018-01-01

    Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies. PMID:29461513

  2. Inter-comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA.

    PubMed

    Jiang, Yueyang; Kim, John B; Still, Christopher J; Kerns, Becky K; Kline, Jeffrey D; Cunningham, Patrick G

    2018-02-20

    Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies.

  3. How Multiple Interventions Influenced Employee Turnover: A Case Study.

    ERIC Educational Resources Information Center

    Hatcher, Timothy

    1999-01-01

    A 3-year study of 46 textile industry workers identified causes of employee turnover (supervision, training, organizational communication) using performance analysis. A study of multiple interventions based on the analysis resulted in changes in orientation procedures, organizational leadership, and climate, reducing turnover by 24%. (SK)

  4. DESYCO: a Decision Support System to provide climate services for coastal stakeholders dealing with climate change impacts.

    NASA Astrophysics Data System (ADS)

    Torresan, S.; Gallina, V.; Giannini, V.; Rizzi, J.; Zabeo, A.; Critto, A.; Marcomini, A.

    2012-04-01

    At the international level climate services are recognized as innovative tools aimed at providing and distributing climate data and information according to the needs of end-users. Furthermore, needs-based climate services are extremely effective to manage climate risks and take advantage of the opportunities associated with climate change impacts. To date, climate services are mainly related to climate models that supply climate data (e.g. temperature, precipitations) at different spatial and time scales. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. DESYCO is a GIS-Decision Support System aimed at the integrated assessment of multiple climate change impacts on vulnerable coastal systems (e.g. beaches, river deltas, estuaries and lagoons, wetlands, agricultural and urban areas). It is an open source software that manages different input data (e.g. raster or shapefiles) coming from climate models (e.g. global and regional climate projections) and high resolution impact models (e.g. hydrodynamic, hydrological and biogeochemical simulations) in order to provide hazard, exposure, susceptibility, risk and damage maps for the identification and prioritization of hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies. Within the CLIM-RUN project (FP7) DESYCO is proposed as an helpful tool to bridge the gap between climate data and stakeholder needs and will be applied to the coastal area of the North Adriatic Sea (Italy) in order to provide climate services for local authorities involved in coastal zone management. Accordingly, a first workshop was held in Venice (Italy) with coastal authorities, climate experts and climate change risk experts, in order to start an iterative exchange of information about the knowledge related to climate change, climate models and projections, impact and risk parameters and to know what are stakeholder needs related to climate change in a climate service perspective. The preliminary results gained from the workshop showed that DESYCO is an helpful tool for the impact and risk assessment related to climate change that could be improved in order to fulfill stakeholder needs.

  5. Western North Pacific Tropical Cyclone Model Tracks in Present and Future Climates

    NASA Astrophysics Data System (ADS)

    Nakamura, Jennifer; Camargo, Suzana J.; Sobel, Adam H.; Henderson, Naomi; Emanuel, Kerry A.; Kumar, Arun; LaRow, Timothy E.; Murakami, Hiroyuki; Roberts, Malcolm J.; Scoccimarro, Enrico; Vidale, Pier Luigi; Wang, Hui; Wehner, Michael F.; Zhao, Ming

    2017-09-01

    Western North Pacific tropical cyclone (TC) model tracks are analyzed in two large multimodel ensembles, spanning a large variety of models and multiple future climate scenarios. Two methodologies are used to synthesize the properties of TC tracks in this large data set: cluster analysis and mass moment ellipses. First, the models' TC tracks are compared to observed TC tracks' characteristics, and a subset of the models is chosen for analysis, based on the tracks' similarity to observations and sample size. Potential changes in track types in a warming climate are identified by comparing the kernel smoothed probability distributions of various track variables in historical and future scenarios using a Kolmogorov-Smirnov significance test. Two track changes are identified. The first is a statistically significant increase in the north-south expansion, which can also be viewed as a poleward shift, as TC tracks are prevented from expanding equatorward due to the weak Coriolis force near the equator. The second change is an eastward shift in the storm tracks that occur near the central Pacific in one of the multimodel ensembles, indicating a possible increase in the occurrence of storms near Hawaii in a warming climate. The dependence of the results on which model and future scenario are considered emphasizes the necessity of including multiple models and scenarios when considering future changes in TC characteristics.

  6. Methodology for the assessment of the impacts of climate change on land degradation at multiple scales: Use of high resolution satellite imagery, modelling, and ground measurements for the assessment in Ethiopia

    NASA Astrophysics Data System (ADS)

    Ahmed, Oumer

    In this study, a new multi-scalar methodology for assessing land degradation response to climate change is presented by analyzing 22 years of both climatic data and satellite observations, together with future projections from modelling, for Ethiopia. A comprehensive analysis of the impacts of climate change on land degradation was performed as evidenced from the integration of a host of land degradation indicators, namely: normalized difference vegetation Index (NDVI), net primary productivity (NPP), crop yield, biomass, length of growing period (LGP), rainfall use efficiency (RUE), energy use efficiency (EUE) and aridity index (AI). The results from the national level assessment indicate that over the period of 1984-2006, NPP decreased overall. Degrading areas occupy 30% of the country and suffer an average loss of NPP 10.3 kg C ha-1 y-1. The crop yield prediction results indicate a wide range of outcomes is to be expected for the country, due to the heterogeneity of the agro-climatic resources as well as of projected climate change. The results of the sub-national level assessment show that about 29% of the Awash watershed is degrading, and these degrading areas experience an average loss of NPP 4.6 kg C ha-1 y-1. Further, about 33.8% of the degrading area in the watershed is associated with bare land and 25% with agricultural land. Finally, since remotely sensed estimates are frequently used to assess land degradation at multiple scales, scale transfer methods are evaluated in this study to provide a tool to rank both upscaling and downscaling procedures.

  7. Multiple methods for multiple futures: Integrating qualitative scenario planning and quantitative simulation modeling for natural resource decision making

    USGS Publications Warehouse

    Symstad, Amy J.; Fisichelli, Nicholas A.; Miller, Brian W.; Rowland, Erika; Schuurman, Gregor W.

    2017-01-01

    Scenario planning helps managers incorporate climate change into their natural resource decision making through a structured “what-if” process of identifying key uncertainties and potential impacts and responses. Although qualitative scenarios, in which ecosystem responses to climate change are derived via expert opinion, often suffice for managers to begin addressing climate change in their planning, this approach may face limits in resolving the responses of complex systems to altered climate conditions. In addition, this approach may fall short of the scientific credibility managers often require to take actions that differ from current practice. Quantitative simulation modeling of ecosystem response to climate conditions and management actions can provide this credibility, but its utility is limited unless the modeling addresses the most impactful and management-relevant uncertainties and incorporates realistic management actions. We use a case study to compare and contrast management implications derived from qualitative scenario narratives and from scenarios supported by quantitative simulations. We then describe an analytical framework that refines the case study’s integrated approach in order to improve applicability of results to management decisions. The case study illustrates the value of an integrated approach for identifying counterintuitive system dynamics, refining understanding of complex relationships, clarifying the magnitude and timing of changes, identifying and checking the validity of assumptions about resource responses to climate, and refining management directions. Our proposed analytical framework retains qualitative scenario planning as a core element because its participatory approach builds understanding for both managers and scientists, lays the groundwork to focus quantitative simulations on key system dynamics, and clarifies the challenges that subsequent decision making must address.

  8. From Global Climate Model Projections to Local Impacts Assessments: Analyses in Support of Planning for Climate Change

    NASA Astrophysics Data System (ADS)

    Snover, A. K.; Littell, J. S.; Mantua, N. J.; Salathe, E. P.; Hamlet, A. F.; McGuire Elsner, M.; Tohver, I.; Lee, S.

    2010-12-01

    Assessing and planning for the impacts of climate change require regionally-specific information. Information is required not only about projected changes in climate but also the resultant changes in natural and human systems at the temporal and spatial scales of management and decision making. Therefore, climate impacts assessment typically results in a series of analyses, in which relatively coarse-resolution global climate model projections of changes in regional climate are downscaled to provide appropriate input to local impacts models. This talk will describe recent examples in which coarse-resolution (~150 to 300km) GCM output was “translated” into information requested by decision makers at relatively small (watershed) and large (multi-state) scales using regional climate modeling, statistical downscaling, hydrologic modeling, and sector-specific impacts modeling. Projected changes in local air temperature, precipitation, streamflow, and stream temperature were developed to support Seattle City Light’s assessment of climate change impacts on hydroelectric operations, future electricity load, and resident fish populations. A state-wide assessment of climate impacts on eight sectors (agriculture, coasts, energy, forests, human health, hydrology and water resources, salmon, and urban stormwater infrastructure) was developed for Washington State to aid adaptation planning. Hydro-climate change scenarios for approximately 300 streamflow locations in the Columbia River basin and selected coastal drainages west of the Cascades were developed in partnership with major water management agencies in the Pacific Northwest to allow planners to consider how hydrologic changes may affect management objectives. Treatment of uncertainty in these assessments included: using “bracketing” scenarios to describe a range of impacts, using ensemble averages to characterize the central estimate of future conditions (given an emissions scenario), and explicitly assessing the impacts of multiple GCM ensemble members. The implications of various approaches to dealing with uncertainty, such as these, must be carefully communicated to decision makers in order for projected climate impacts to be viewed as credible and used appropriately.

  9. Hotspots of Community Change: Temporal Dynamics Are Spatially Variable in Understory Plant Composition of a California Oak Woodland

    PubMed Central

    Spotswood, Erica N.; Bartolome, James W.; Allen-Diaz, Barbara

    2015-01-01

    Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery. PMID:26222069

  10. Hotspots of Community Change: Temporal Dynamics Are Spatially Variable in Understory Plant Composition of a California Oak Woodland.

    PubMed

    Spotswood, Erica N; Bartolome, James W; Allen-Diaz, Barbara

    2015-01-01

    Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery.

  11. Designing a new cropping system for high productivity and sustainable water usage under climate change

    NASA Astrophysics Data System (ADS)

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-02-01

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) -summer maize system. The M-M system improved yield by 14-31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr-1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions.

  12. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures

    PubMed Central

    Olson, Deanna H.; Blaustein, Andrew R.

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats. PMID:27513565

  13. Climate change and pastoralism: impacts, consequences and adaptation.

    PubMed

    Herrero, M; Addison, J; Bedelian, C; Carabine, E; Havlík, P; Henderson, B; Van De Steeg, J; Thornton, P K

    2016-11-01

    The authors discuss the main climate change impacts on pastoralist societies, including those on rangelands, livestock and other natural resources, and their extended repercussions on food security, incomes and vulnerability. The impacts of climate change on the rangelands of the globe and on the vulnerability of the people who inhabit them will be severe and diverse, and will require multiple, simultaneous responses. In higher latitudes, the removal of temperature constraints might increase pasture production and livestock productivity, but in tropical arid lands, the impacts are highly location specific, but mostly negative. The authors outline several adaptation options, ranging from implementing new technical practices and diversifying income sources to finding institutional support and introducing new market mechanisms, all of which are pivotal for enhancing the capacity of pastoralists to adapt to climate variability and change. Due to the dynamism of all the changes affecting pastoral societies, strategies that lock pastoral societies into specified development pathways could be maladaptive. Flexible and evolving combinations of practices and policies are the key to successful pastoral adaptation.

  14. A dataset mapping the potential biophysical effects of vegetation cover change

    NASA Astrophysics Data System (ADS)

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-02-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.

  15. A dataset mapping the potential biophysical effects of vegetation cover change

    PubMed Central

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-01-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes. PMID:29461538

  16. A worldwide analysis of the impact of forest cover change on annual runoff across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Liu, S.

    2017-12-01

    Despite extensive studies on hydrological responses to forest cover change in small watersheds, the hydrological responses to forest change and associated mechanisms across multiple spatial scales have not been fully understood. This review thus examined about 312 watersheds worldwide to provide a generalized framework to evaluate hydrological responses to forest cover change and to identify the contribution of spatial scale, climate, forest type and hydrological regime in determining the intensity of forest change related hydrological responses in small (<1000 km2) and large watersheds (≥1000 km2). Key findings include: 1) the increase in annual runoff associated with forest cover loss is statistically significant at multiple spatial scales whereas the effect of forest cover gain is statistically inconsistent; 2) the sensitivity of annual runoff to forest cover change tends to attenuate as watershed size increases only in large watersheds; 3) annual runoff is more sensitive to forest cover change in water-limited watersheds than in energy-limited watersheds across all spatial scales; and 4) small mixed forest-dominated watersheds or large snow-dominated watersheds are more hydrologically resilient to forest cover change. These findings improve the understanding of hydrological response to forest cover change at different spatial scales and provide a scientific underpinning to future watershed management in the context of climate change and increasing anthropogenic disturbances.

  17. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strzepek, K.; Neumann, Jim; Smith, Joel

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  18. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE PAGES

    Strzepek, K.; Neumann, Jim; Smith, Joel; ...

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  19. Climate change and physical disturbance manipulations result in distinct biological soil crust communities.

    PubMed

    Steven, Blaire; Kuske, Cheryl R; Gallegos-Graves, La Verne; Reed, Sasha C; Belnap, Jayne

    2015-11-01

    Biological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remains poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2°C soil warming, altered summer precipitation [wetting], and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional changes. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in the cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreased Cyanobacteria abundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities, and the communities' functional profiles can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Climate change and physical disturbance manipulations result in distinct biological soil crust communities

    USGS Publications Warehouse

    Steven, Blaire; Kuske, Cheryl R.; Gallegos-Graves, La Verne; Reed, Sasha C.; Belnap, Jayne

    2015-01-01

    Biological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remain poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2 °C soil warming, altered summer precipitation (wetting), and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional change. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreased cyanobacteria abundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities and the community functional profile can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands.

  1. Climate and atmosphere simulator for experiments on ecological systems in changing environments.

    PubMed

    Verdier, Bruno; Jouanneau, Isabelle; Simonnet, Benoit; Rabin, Christian; Van Dooren, Tom J M; Delpierre, Nicolas; Clobert, Jean; Abbadie, Luc; Ferrière, Régis; Le Galliard, Jean-François

    2014-01-01

    Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability. The centerpiece is a highly contained, 13-m(3) chamber to host communities of aquatic and terrestrial species and control climate (temperature, humidity, rainfall, irradiance) and atmosphere conditions (O2 and CO2 concentrations). Temperature in the atmosphere and in the water or soil column can be controlled independently of each other. All climatic and atmospheric variables can be programmed to follow dynamical trajectories and simulate gradual as well as step changes. We demonstrate the Ecolab's capacity to simulate a broad range of atmospheric and climatic conditions, their diurnal and seasonal variations, and to support the growth of a model terrestrial plant in two contrasting climate scenarios. The adaptability of the Ecolab design makes it possible to study interactions between variable climate-atmosphere factors and biotic disturbances. Developed as an open-access, multichamber platform, this equipment is available to the international scientific community for exploring interactions and feedbacks between ecological and climate systems.

  2. Relationships between Spontaneous Note-Taking, Self-Reported Strategies and Comprehension When Reading Multiple Texts in Different Task Conditions

    ERIC Educational Resources Information Center

    Hagen, Åste M.; Braasch, Jason L. G.; Bråten, Ivar

    2014-01-01

    This study investigated note-taking during multiple-text reading across two different task conditions in relation to comprehension performance and self-reports of strategy use. Forty-four undergraduates read multiple texts about climate change to write an argument or a summary. Analysis of students' spontaneous note-taking during reading…

  3. When Law Students Read Multiple Documents about Global Warming: Examining the Role of Topic-Specific Beliefs about the Nature of Knowledge and Knowing

    ERIC Educational Resources Information Center

    Braten, Ivar; Stromso, Helge I.

    2010-01-01

    In this study, law students (n = 49) read multiple authentic documents presenting conflicting information on the topic of climate change and responded to verification tasks assessing their superficial as well as their deeper-level within- and across-documents comprehension. Hierarchical multiple regression analyses showed that even after variance…

  4. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes

    PubMed Central

    Charmantier, Anne; Gienapp, Phillip

    2014-01-01

    There are multiple observations around the globe showing that in many avian species, both the timing of migration and breeding have advanced, due to warmer springs. Here, we review the literature to disentangle the actions of evolutionary changes in response to selection induced by climate change versus changes due to individual plasticity, that is, the capacity of an individual to adjust its phenology to environmental variables. Within the abundant literature on climate change effects on bird phenology, only a small fraction of studies are based on individual data, yet individual data are required to quantify the relative importance of plastic versus evolutionary responses. While plasticity seems common and often adaptive, no study so far has provided direct evidence for an evolutionary response of bird phenology to current climate change. This assessment leads us to notice the alarming lack of tests for microevolutionary changes in bird phenology in response to climate change, in contrast with the abundant claims on this issue. In short, at present we cannot draw reliable conclusions on the processes underlying the observed patterns of advanced phenology in birds. Rapid improvements in techniques for gathering and analysing individual data offer exciting possibilities that should encourage research activity to fill this knowledge gap. PMID:24454545

  5. Ecological contingency in the effects of climatic warming on forest herb communities.

    PubMed

    Harrison, Susan; Damschen, Ellen I; Grace, James B

    2010-11-09

    Downscaling from the predictions of general climate models is critical to current strategies for mitigating species loss caused by climate change. A key impediment to this downscaling is that we lack a fully developed understanding of how variation in physical, biological, or land-use characteristics mediates the effects of climate change on ecological communities within regions. We analyzed change in understory herb communities over a 60-y period (1949/1951-2007/2009) in a complex montane landscape (the Siskiyou Mountains, Oregon) where mean temperatures have increased 2 °C since 1948, similar to projections for other terrestrial communities. Our 185 sites included primary and secondary-growth lower montane forests (500-1.200 m above sea level) and primary upper montane to subalpine forests (1,500-2,100 m above sea level). In lower montane forests, regardless of land-use history, we found multiple herb-community changes consistent with an effectively drier climate, including lower mean specific leaf area, lower relative cover by species of northern biogeographic affinity, and greater compositional resemblance to communities in southerly topographic positions. At higher elevations we found qualitatively different and more modest changes, including increases in herbs of northern biogeographic affinity and in forest canopy cover. Our results provide community-level validation of predicted nonlinearities in climate change effects.

  6. Comparing Climate Change and Species Invasions as Drivers of Coldwater Fish Population Extirpations

    PubMed Central

    Sharma, Sapna; Vander Zanden, M. Jake; Magnuson, John J.; Lyons, John

    2011-01-01

    Species are influenced by multiple environmental stressors acting simultaneously. Our objective was to compare the expected effects of climate change and invasion of non-indigenous rainbow smelt (Osmerus mordax) on cisco (Coregonus artedii) population extirpations at a regional level. We assembled a database of over 13,000 lakes in Wisconsin, USA, summarising fish occurrence, lake morphology, water chemistry, and climate. We used A1, A2, and B1 scenarios from the Intergovernmental Panel on Climate Change (IPCC) of future temperature conditions for 15 general circulation models in 2046–2065 and 2081–2100 totalling 78 projections. Logistic regression indicated that cisco tended to occur in cooler, larger, and deeper lakes. Depending upon the amount of warming, 25–70% of cisco populations are predicted to be extirpated by 2100. In addition, cisco are influenced by the invasion of rainbow smelt, which prey on young cisco. Projecting current estimates of rainbow smelt spread and impact into the future will result in the extirpation of about 1% of cisco populations by 2100 in Wisconsin. Overall, the effect of climate change is expected to overshadow that of species invasion as a driver of coldwater fish population extirpations. Our results highlight the potentially dominant role of climate change as a driver of biotic change. PMID:21860661

  7. Comparing climate change and species invasions as drivers of coldwater fish population extirpations.

    PubMed

    Sharma, Sapna; Vander Zanden, M Jake; Magnuson, John J; Lyons, John

    2011-01-01

    Species are influenced by multiple environmental stressors acting simultaneously. Our objective was to compare the expected effects of climate change and invasion of non-indigenous rainbow smelt (Osmerus mordax) on cisco (Coregonus artedii) population extirpations at a regional level. We assembled a database of over 13,000 lakes in Wisconsin, USA, summarising fish occurrence, lake morphology, water chemistry, and climate. We used A1, A2, and B1 scenarios from the Intergovernmental Panel on Climate Change (IPCC) of future temperature conditions for 15 general circulation models in 2046-2065 and 2081-2100 totalling 78 projections. Logistic regression indicated that cisco tended to occur in cooler, larger, and deeper lakes. Depending upon the amount of warming, 25-70% of cisco populations are predicted to be extirpated by 2100. In addition, cisco are influenced by the invasion of rainbow smelt, which prey on young cisco. Projecting current estimates of rainbow smelt spread and impact into the future will result in the extirpation of about 1% of cisco populations by 2100 in Wisconsin. Overall, the effect of climate change is expected to overshadow that of species invasion as a driver of coldwater fish population extirpations. Our results highlight the potentially dominant role of climate change as a driver of biotic change.

  8. Ecological contingency in the effects of climatic warming on forest herb communities

    USGS Publications Warehouse

    Harrison, Susan; Damschen, Ellen Ingman; Grace, James B.

    2010-01-01

    Downscaling from the predictions of general climate models is critical to current strategies for mitigating species loss caused by climate change. A key impediment to this downscaling is that we lack a fully developed understanding of how variation in physical, biological, or land-use characteristics mediates the effects of climate change on ecological communities within regions. We analyzed change in understory herb communities over a 60-y period (1949/1951–2007/2009) in a complex montane landscape (the Siskiyou Mountains, Oregon) where mean temperatures have increased 2 °C since 1948, similar to projections for other terrestrial communities. Our 185 sites included primary and secondary-growth lower montane forests (500–1.200 m above sea level) and primary upper montane to subalpine forests (1,500–2,100 m above sea level). In lower montane forests, regardless of land-use history, we found multiple herb-community changes consistent with an effectively drier climate, including lower mean specific leaf area, lower relative cover by species of northern biogeographic affinity, and greater compositional resemblance to communities in southerly topographic positions. At higher elevations we found qualitatively different and more modest changes, including increases in herbs of northern biogeographic affinity and in forest canopy cover. Our results provide community-level validation of predicted nonlinearities in climate change effects.

  9. Changes in Concurrent Risk of Warm and Dry Years under Impact of Climate Change

    NASA Astrophysics Data System (ADS)

    Sarhadi, A.; Wiper, M.; Touma, D. E.; Ausín, M. C.; Diffenbaugh, N. S.

    2017-12-01

    Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena. The changing concurrence of multiple climatic extremes (warm and dry years) may result in intensification of undesirable consequences for water resources, human and ecosystem health, and environmental equity. The present study assesses how global warming influences the probability that warm and dry years co-occur in a global scale. In the first step of the study a designed multivariate Mann-Kendall trend analysis is used to detect the areas in which the concurrence of warm and dry years has increased in the historical climate records and also climate models in the global scale. The next step investigates the concurrent risk of the extremes under dynamic nonstationary conditions. A fully generalized multivariate risk framework is designed to evolve through time under dynamic nonstationary conditions. In this methodology, Bayesian, dynamic copulas are developed to model the time-varying dependence structure between the two different climate extremes (warm and dry years). The results reveal an increasing trend in the concurrence risk of warm and dry years, which are in agreement with the multivariate trend analysis from historical and climate models. In addition to providing a novel quantification of the changing probability of compound extreme events, the results of this study can help decision makers develop short- and long-term strategies to prepare for climate stresses now and in the future.

  10. Estimation of ozone dry deposition over Europe for the period 2071-2100

    NASA Astrophysics Data System (ADS)

    Komjáthy, Eszter; Gelybó, Györgyi; László Lagzi, István.; Mészáros, Róbert

    2010-05-01

    Ozone in the lower troposphere is a phytotoxic air pollutant which can cause injury to plant tissues, causing reduction in plant growth and productivity. In the last decades, several investigations have been carried out for the purpose to estimate ozone load over different surface types. At the same time, the changes of atmospheric variables as well as surface/vegetation parameters due to the global climate change could also strongly modify both temporal and spatial variations of ozone load over Europe. In this study, the possible effects of climate change on ozone deposition are analyzed. Using a sophisticated deposition model, ozone deposition was estimated on a regular grid over Europe for the period 2071-2100. Our aim is to determine the uncertainties and the possible degree of change in ozone deposition velocity as an important predictor of total ozone load using climate data from multiple climate models and runs. For these model calculations, results of the PRUDENCE (Predicting of Regional Scenarios and Uncertainties for Defining European Climate Change Risks and Effects) climate prediction project were used. As a first step, seasonal variations of ozone deposition over different vegetation types in case of different climate scenarios are presented in this study. Besides model calculations, in the frame of a sensitivity analyses, the effects of surface/vegetation parameters (e.g. leaf area index or stomatal resistance) on ozone deposition under a modified climate regime have also been analyzed.

  11. The effects of elevated temperature and dissolved ρCO2 on a marine foundation species.

    PubMed

    Speights, Cori J; Silliman, Brian R; McCoy, Michael W

    2017-06-01

    Understanding how climate change and other environmental stressors will affect species is a fundamental concern of modern ecology. Indeed, numerous studies have documented how climate stressors affect species distributions and population persistence. However, relatively few studies have investigated how multiple climate stressors might affect species. In this study, we investigate the impacts of how two climate change factors affect an important foundation species. Specifically, we tested how ocean acidification from dissolution of CO 2 and increased sea surface temperatures affect multiple characteristics of juvenile eastern oysters ( Crassostrea virginica ). We found strong impacts of each stressor, but no interaction between the two. Simulated warming to mimic heat stressed summers reduced oyster growth, survival, and filtration rates. Additionally, we found that CO 2 -induced acidification reduced strength of oyster shells, which could potentially facilitate crab predation. As past studies have detected few impacts of these stressors on adult oysters, these results indicate that early life stages of calcareous marine organisms may be more susceptible to effects of ocean acidification and global warming. Overall, these data show that predicted changes in temperature and CO 2 can differentially influence direct effects on individual species, which could have important implications for the nature of their trophic interactions.

  12. Assessing NARCCAP climate model effects using spatial confidence regions

    PubMed Central

    French, Joshua P.; McGinnis, Seth; Schwartzman, Armin

    2017-01-01

    We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP) climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference. PMID:28936474

  13. Climate Change Education Today in K-12: What's Happening in the Earth and Space Science Classroom?

    NASA Astrophysics Data System (ADS)

    Holzer, M. A.; National Earth Science Teachers Association

    2011-12-01

    Climate change is a highly interdisciplinary topic, involving not only multiple fields of science, but also social science and the humanities. There are many aspects of climate change science that make it particularly well-suited for exploration in the K-12 setting, including opportunities to explore the unifying processes of science such as complex systems, models, observations, change and evolution. Furthermore, this field of science offers the opportunity to observe the nature of science in action - including how scientists develop and improve their understanding through research and debate. Finally, climate change is inherently highly relevant to students - indeed, students today will need to deal with the consequences of the climate change. The science of climate change is clearly present in current science education standards, both at the National level as well as in the majority of states. Nonetheless, a significant number of teachers across the country report difficulties addressing climate change in the classroom. The National Earth Science Teachers Association has conducted several surveys of Earth and space science educators across the country over the past several years on a number of issues, including their needs and concerns, including their experience of external influences on what they teach. While the number of teachers that report external pressures to not teach climate change science are in the minority (and less than the pressure to not teach evolution and related topics), our results suggest that this pressure against climate change science in the K-12 classroom has grown over the past several years. Some teachers report being threatened by parents, being encouraged by administrators to not teach the subject, and a belief that the "two sides" of climate change should be taught. Survey results indicate that teachers in religious or politically-conservative districts are more likely to report difficulties in teaching about climate change than in other areas of the country. This presentation will provide an overview of our most recent survey results on climate change education in the K-12 Earth and space science classroom, including highlighting some of the strategies that teachers are using to bring this critically important area of science to their students.

  14. Climate Change Impacts on North Dakota: Agriculture and Hydrology

    NASA Technical Reports Server (NTRS)

    Kirilenko, Andrei; Zhang, Xiaodong; Lim, Yeo Howe; Teng, William L.

    2011-01-01

    North Dakota is one of the principal producers of agricultural commodities in the USA, including over half of the total spring wheat production. While the region includes some of the best agricultural lands in the world, the steep temperature and precipitation gradients also make it one of the most sensitive to climate change. Over the 20th century, both the temperature and the pattern of precipitation in the state have changed; one of the most dramatic examples of the consequences of this change is the Devils Lake flooding. In two studies, we estimated the climate change impacts on crop yields and on the hydrology of the Devils Lake basin. The projections of six GCMs, driven by three SRES scenarios were statistically downscaled for multiple locations throughout the state, for the 2020s, 2050s, and 2080s climate. Averaged over all GCMs, there is a small increase in precipitation, by 0.6 - 1.1% in 2020s, 3.1 - 3.5% in 2050s, and 3.0 - 7.6% in 2080s. This change in precipitation varies with the seasons, with cold seasons becoming wetter and warm seasons not changing.

  15. Allergenic pollen season variations in the past two decades under changing climate in the United States

    PubMed Central

    Zhang, Yong; Bielory, Leonard; Mi, Zhongyuan; Cai, Ting; Robock, Alan; Georgopoulos, Panos

    2014-01-01

    Many diseases are linked with climate trends and variations. In particular, climate change is expected to alter the spatiotemporal dynamics of allergenic airborne pollen and potentially increase occurrence of allergic airway disease. Understanding the spatiotemporal patterns of changes in pollen season timing and levels is thus important in assessing climate impacts on aerobiology and allergy caused by allergenic airborne pollen. Here we describe the spatiotemporal patterns of changes in the seasonal timing and levels of allergenic airborne pollen for multiple taxa in different climate regions at a continental scale. The allergenic pollen seasons of representative trees, weeds and grass during the past decade (2001–2010) across the contiguous United States have been observed to start 3.0 (95% Confidence Interval (CI), 1.1–4.9) days earlier on average than in the 1990s (1994–2000). The average peak value and annual total of daily counted airborne pollen have increased by 42.4% (95% CI, 21.9%–62.9%) and 46.0% (95% CI, 21.5%–70.5%), respectively. Changes of pollen season timing and airborne levels depend on latitude, and are associated with changes of growing degree days, frost free days, and precipitation. These changes are likely due to recent climate change and particularly the enhanced warming and precipitation at higher latitudes in the contiguous United States. PMID:25266307

  16. Alpine treeline of western North America: Linking organism-to-landscape dynamics

    USGS Publications Warehouse

    Malanson, George P.; Butler, David R.; Fagre, Daniel B.; Walsh, Stephen J; Tomback, Diana F.; Daniels, Lori D.; Resler, Lynn M.; Smith, William K.; Weiss, Daniel J.; Peterson, David L.; Bunn, Andrew G.; Hiemstra, Christopher A.; Liptzin, Daniel; Bourgeron, Patrick S.; Shen, Zehao; Millar, Constance I.

    2007-01-01

    Although the ecological dynamics of the alpine treeline ecotone are influenced by climate, it is an imperfect indicator of climate change. Mechanistic processes that shape the ecotone—seed rain, seed germination, seedling establishment and subsequent tree growth form, or, conversely tree dieback—depend on microsite patterns. Growth forms affect wind and snow, and so develop positive and negative feedback loops that create these microsites. As a result, complex landscape patterns are generated at multiple spatial scales. Although these mechanistic processes are fundamentally the same for all forest-tundra ecotones across western North America, factors such as prior climate, underlying geology and geomorphology, and genetic constraints of dominant tree species lead to geographic differences in the responses of particular ecotones to climate change.

  17. Satellite lidar and radar: Key components of the future climate observing system

    NASA Astrophysics Data System (ADS)

    Winker, D. M.

    2017-12-01

    Cloud feedbacks represent the dominant source of uncertainties in estimates of climate sensitivity and aerosols represent the largest source of uncertainty in climate forcing. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. The existing 30-year record of passive satellite observations has not yet provided constraints to significantly reduce these uncertainties, though. We now have more than a decade of experience with active sensors flying in the A-Train. These new observations have demonstrated the strengths of active sensors and the benefits of continued and more advanced active sensors. This talk will discuss the multiple roles for active sensors as an essential component of a global climate observing system.

  18. Does climate variability influence the demography of wild primates? Evidence from long-term life-history data in seven species.

    PubMed

    Campos, Fernando A; Morris, William F; Alberts, Susan C; Altmann, Jeanne; Brockman, Diane K; Cords, Marina; Pusey, Anne; Stoinski, Tara S; Strier, Karen B; Fedigan, Linda M

    2017-11-01

    Earth's rapidly changing climate creates a growing need to understand how demographic processes in natural populations are affected by climate variability, particularly among organisms threatened by extinction. Long-term, large-scale, and cross-taxon studies of vital rate variation in relation to climate variability can be particularly valuable because they can reveal environmental drivers that affect multiple species over extensive regions. Few such data exist for animals with slow life histories, particularly in the tropics, where climate variation over large-scale space is asynchronous. As our closest relatives, nonhuman primates are especially valuable as a resource to understand the roles of climate variability and climate change in human evolutionary history. Here, we provide the first comprehensive investigation of vital rate variation in relation to climate variability among wild primates. We ask whether primates are sensitive to global changes that are universal (e.g., higher temperature, large-scale climate oscillations) or whether they are more sensitive to global change effects that are local (e.g., more rain in some places), which would complicate predictions of how primates in general will respond to climate change. To address these questions, we use a database of long-term life-history data for natural populations of seven primate species that have been studied for 29-52 years to investigate associations between vital rate variation, local climate variability, and global climate oscillations. Associations between vital rates and climate variability varied among species and depended on the time windows considered, highlighting the importance of temporal scale in detection of such effects. We found strong climate signals in the fertility rates of three species. However, survival, which has a greater impact on population growth, was little affected by climate variability. Thus, we found evidence for demographic buffering of life histories, but also evidence of mechanisms by which climate change could affect the fates of wild primates. © 2017 John Wiley & Sons Ltd.

  19. Geospatial interface and model for predicting potential seagrass habitat

    EPA Science Inventory

    Restoration of ecosystem services provided by seagrass habitats in estuaries requires a clear understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We have developed a geos...

  20. An empirical test of the relative and combined effects of land-cover and climate change on local colonization and extinction.

    PubMed

    Yalcin, Semra; Leroux, Shawn James

    2018-04-14

    Land-cover and climate change are two main drivers of changes in species ranges. Yet, the majority of studies investigating the impacts of global change on biodiversity focus on one global change driver and usually use simulations to project biodiversity responses to future conditions. We conduct an empirical test of the relative and combined effects of land-cover and climate change on species occurrence changes. Specifically, we examine whether observed local colonization and extinctions of North American birds between 1981-1985 and 2001-2005 are correlated with land-cover and climate change and whether bird life history and ecological traits explain interspecific variation in observed occurrence changes. We fit logistic regression models to test the impact of physical land-cover change, changes in net primary productivity, winter precipitation, mean summer temperature, and mean winter temperature on the probability of Ontario breeding bird local colonization and extinction. Models with climate change, land-cover change, and the combination of these two drivers were the top ranked models of local colonization for 30%, 27%, and 29% of species, respectively. Conversely, models with climate change, land-cover change, and the combination of these two drivers were the top ranked models of local extinction for 61%, 7%, and 9% of species, respectively. The quantitative impacts of land-cover and climate change variables also vary among bird species. We then fit linear regression models to test whether the variation in regional colonization and extinction rate could be explained by mean body mass, migratory strategy, and habitat preference of birds. Overall, species traits were weakly correlated with heterogeneity in species occurrence changes. We provide empirical evidence showing that land-cover change, climate change, and the combination of multiple global change drivers can differentially explain observed species local colonization and extinction. © 2018 John Wiley & Sons Ltd.

  1. Putting climate impact estimates to work: the empirical approach of the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Jina, A.; Hsiang, S. M.; Kopp, R. E., III; Rasmussen, D.; Rising, J.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assesses climate risks posed to the United States' economy in a number of sectors [1]. Four of these - crop yield, crime, labor productivity, and mortality - draw upon research which identifies social impacts using contemporary variability in climate. We first identify a group of rigorous studies that use climate variability to identify responses to temperature and precipitation, while controlling for unobserved differences between locations. To incorporate multiple studies from a single sector, we employ a meta-analytical approach that draws on Bayesian methods commonly used in medical research and previously implemented in [2]. We generate a series of aggregate response functions for each sector using this meta-analytical method. We combine response functions with downscaled physical climate projections to estimate climate impacts out to the end of the century, incorporating uncertainty from statistical estimates, weather, climate models, and different emissions scenarios. Incorporating multiple studies in a single estimation framework allows us to directly compare impacts across the economy. We find that increased mortality has the largest effect on the US economy, followed by costs associated with decreased labor productivity. Agricultural losses and increases in crime contribute lesser but nonetheless substantial costs, and agriculture, notably, shows many areas benefitting from projected climate changes. The ACP also presents results throughout the 21stcentury. The dynamics of each of the impact categories differs, with, for example, mortality showing little change until the end of the century, but crime showing a monotonic increase from the present day. The ACP approach can expand to include new findings in current sectors, new sectors, and new geographical areas of interest. It represents an analytical framework that can incorporate empirical studies into a broad characterization of climate impacts across an economy, ensuring that each individual study can contribute to guiding policy priorities on climate change. References: [1] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org. [2] Hsiang, Burke, and Miguel (2013), Science.

  2. Assessing the Vulnerability of Streams to Increased Frequency and Severity of Low Flows in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Konrad, C. P.

    2014-12-01

    A changing climate poses risks to the availability and quality of water resources. Among the risks, increased frequency and severity of low flow periods in streams would be significant for many in-stream and out-of-stream uses of water. While down-scaled climate projections serve as the basis for understanding impacts of climate change on hydrologic systems, a robust framework for risk assessment incorporates multiple dimensions of risks including the vulnerability of hydrologic systems to climate change impacts. Streamflow records from the southeastern US were examined to assess the vulnerability of streams to increased frequency and severity of low flows. Long-term (>50 years) records provide evidence of more frequent and severe low flows in more streams than would be expected from random chance. Trends in low flows appear to be a result of changes in the temporal distribution rather than the annual amount of preciptation and/or in evaporation. Base flow recession provides an indicator of a stream's vulnerability to such changes. Linkages between streamflow patterns across temporal scales can be used for understanding and asessing stream responses to the various possible expressions of a changing climate.

  3. Ecological contingency in the effects of climatic warming on forest herb communities

    USGS Publications Warehouse

    Harrison, S.; Damschen, E.I.; Grace, J.B.

    2010-01-01

    Downscalingfromthe predictions ofgeneral climatemodels is critical to current strategies for mitigating species loss caused by climate change. A key impediment to this downscaling is that we lack a fully developed understanding of howvariation in physical, biological, or land-use characteristics mediates the effects of climate change on ecological communities within regions. We analyzed change in understory herb communities over a 60-y period (1949/1951-2007/ 2009) in a complexmontane landscape (the SiskiyouMountains, Oregon) where mean temperatures have increased 2 ??C since 1948, similar to projections for other terrestrial communities. Our 185 sites included primary and secondary-growth lower montane forests (500-1.200 m above sea level) and primary upper montane to subalpine forests (1,500-2,100 m above sea level). In lower montane forests, regardless of land-use history, we found multiple herbcommunity changes consistent with an effectively drier climate, including lower mean specific leaf area, lower relative cover by species of northern biogeographic affinity, and greater compositional resemblance to communities in southerly topographic positions. At higher elevations we found qualitatively different andmoremodest changes, including increases in herbs of northern biogeographic affinity and in forest canopy cover. Our results provide communitylevel validation of predicted nonlinearities in climate change effects.

  4. The Agriculture Model Intercomparison and Improvement Project (AgMIP) (Invited)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2010-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and world agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Historical period results will spur model improvement and interaction among major modeling groups, while future period results will lead directly to tests of adaptation and mitigation strategies across a range of scales. AgMIP will consist of a multi-scale impact assessment utilizing the latest methods for climate and agricultural scenario generation. Scenarios and modeling protocols will be distributed on the web, and multi-model results will be collated and analyzed to ensure the widest possible coverage of agricultural crops and regions. AgMIP will place regional changes in agricultural production in a global context that reflects new trading opportunities, imbalances, and shortages in world markets resulting from climate change and other driving forces for food supply. Such projections are essential inputs from the Vulnerability, Impacts, and Adaptation (VIA) research community to the Intergovernmental Panel on Climate Change Fifth Assessment (AR5), now underway, and the UN Framework Convention on Climate Change. They will set the context for local-scale vulnerability and adaptation studies, supply test scenarios for national-scale development of trade policy instruments, provide critical information on changing supply and demand for water resources, and elucidate interactive effects of climate change and land use change. AgMIP will not only provide crucially-needed new global estimates of how climate change will affect food supply and hunger in the agricultural regions of the world, but it will also build the capabilities of developing countries to estimate how climate change will affect their supply and demand for food.

  5. Using Remotely Sensed Data to Map Urban Vulnerability to Heat

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2010-01-01

    This slide presentation defines remote sensing, and presents examples of remote sensing and astronaut photography, which has been a part of many space missions. The presentation then reviews the project aimed at analyzing urban vulnerability to climate change, which is to test the hypotheses that Exposure to excessively warm weather threatens human health in all types of climate regimes; Heat kills and sickens multitudes of people around the globe every year -- directly and indirectly, and Climate change, coupled with urban development, will impact human health. Using Multiple Endmember Spectral Mixing Analysis (MESMA), and the Phoenix urban area as the example, the Normalized Difference Vegetation Index (NDVI) is calculated, a change detection analysis is shown, and surface temperature is shown.

  6. Cumulative effects of climate and landscape change drive spatial distribution of Rocky Mountain wolverine (Gulo gulo L.).

    PubMed

    Heim, Nicole; Fisher, Jason T; Clevenger, Anthony; Paczkowski, John; Volpe, John

    2017-11-01

    Contemporary landscapes are subject to a multitude of human-derived stressors. Effects of such stressors are increasingly realized by population declines and large-scale extirpation of taxa worldwide. Most notably, cumulative effects of climate and landscape change can limit species' local adaptation and dispersal capabilities, thereby reducing realized niche space and range extent. Resolving the cumulative effects of multiple stressors on species persistence is a pressing challenge in ecology, especially for declining species. For example, wolverines ( Gulo gulo L.) persist on only 40% of their historic North American range. While climate change has been shown to be a mechanism of range retractions, anthropogenic landscape disturbance has been recently implicated. We hypothesized these two interact to effect declines. We surveyed wolverine occurrence using camera trapping and genetic tagging at 104 sites at the wolverine range edge, spanning a 15,000 km 2 gradient of climate, topographic, anthropogenic, and biotic variables. We used occupancy and generalized linear models to disentangle the factors explaining wolverine distribution. Persistent spring snow pack-expected to decrease with climate change-was a significant predictor, but so was anthropogenic landscape change. Canid mesocarnivores, which we hypothesize are competitors supported by anthropogenic landscape change, had comparatively weaker effect. Wolverine population declines and range shifts likely result from climate change and landscape change operating in tandem. We contend that similar results are likely for many species and that research that simultaneously examines climate change, landscape change, and the biotic landscape is warranted. Ecology research and species conservation plans that address these interactions are more likely to meet their objectives.

  7. Using Bayesian networks to assess the vulnerability of Hawaiian terrestrial biota to climate change

    NASA Astrophysics Data System (ADS)

    Fortini, L.; Jacobi, J.; Price, J.; Vorsino, A.; Paxton, E.; Amidon, F.; 'Ohukani'ohi'a Gon, S., III; Koob, G.; Brink, K.; Burgett, J.; Miller, S.

    2012-12-01

    As the effects of climate change on individual species become increasingly apparent, there is a clear need for effective adaptation planning to prevent an increase in species extinctions worldwide. Given the limited understanding of species responses to climate change, vulnerability assessments and species distribution models (SDMs) have been two common tools used to jump-start climate change adaptation efforts. However, although these two approaches generally serve the same purpose of understanding species future responses to climate change, they have rarely mixed. In collaboration with research and management partners from federal, state and non-profit organizations, we are conducting a climate change vulnerability assessment for hundreds of plant and forest bird species of the Main Hawaiian Islands. This assessment is the first to comprehensively consider the potential threats of climate change to a significant portion of Hawaii's fauna and flora (over one thousand species considered) and thus fills a critical gap defined by natural resource scientists and managers in the region. We have devised a flexible approach that effectively integrates species distribution models into a vulnerability assessment framework that can be easily updated with improved models and data. This tailors our assessment approach to the Pacific Island reality of often limited and fragmented information on species and large future climate uncertainties, This vulnerability assessment is based on a Bayesian network-based approach that integrates multiple landscape (e.g., topographic diversity, dispersal barriers), species trait (e.g., generation length, fecundity) and expert-knowledge based information (e.g., capacity to colonize restored habitat) relevant to long-term persistence of species under climate change. Our presentation will highlight some of the results from our assessment but will mainly focus on the utility of the flexible approach we have developed and its potential application in other settings.

  8. Comparative risk assessment of the burden of disease from climate change.

    PubMed

    Campbell-Lendrum, Diarmid; Woodruff, Rosalie

    2006-12-01

    The World Health Organization has developed standardized comparative risk assessment methods for estimating aggregate disease burdens attributable to different risk factors. These have been applied to existing and new models for a range of climate-sensitive diseases in order to estimate the effect of global climate change on current disease burdens and likely proportional changes in the future. The comparative risk assessment approach has been used to assess the health consequences of climate change worldwide, to inform decisions on mitigating greenhouse gas emissions, and in a regional assessment of the Oceania region in the Pacific Ocean to provide more location-specific information relevant to local mitigation and adaptation decisions. The approach places climate change within the same criteria for epidemiologic assessment as other health risks and accounts for the size of the burden of climate-sensitive diseases rather than just proportional change, which highlights the importance of small proportional changes in diseases such as diarrhea and malnutrition that cause a large burden. These exercises help clarify important knowledge gaps such as a relatively poor understanding of the role of nonclimatic factors (socioeconomic and other) that may modify future climatic influences and a lack of empiric evidence and methods for quantifying more complex climate-health relationships, which consequently are often excluded from consideration. These exercises highlight the need for risk assessment frameworks that make the best use of traditional epidemiologic methods and that also fully consider the specific characteristics of climate change. These include the longterm and uncertain nature of the exposure and the effects on multiple physical and biotic systems that have the potential for diverse and widespread effects, including high-impact events.

  9. The North American Regional Climate Change Assessment Program (NARCCAP): Status and results

    NASA Astrophysics Data System (ADS)

    Arritt, R.

    2009-04-01

    NARCCAP is an international program that is generating projections of climate change for the U.S., Canada, and northern Mexico at decision-relevant regional scales. NARCCAP uses multiple limited-area regional climate models (RCMs) nested within multiple atmosphere-ocean general circulation models (AOGCMs). The use of multiple regional and global models allows us to investigate the uncertainty in model responses to future emissions (here, the A2 SRES scenario). The project also includes global time-slice experiments at the same discretization (50 km) using the GFDL atmospheric model (AM2.1) and the NCAR atmospheric model (CAM3). Phase I of the experiment uses the regional models nested within reanalysis in order to establish uncertainty attributable to the RCMs themselves. Phase II of the project then nests the RCMs within results from the current and future runs of the AOGCMs to explore the cascade of uncertainty from the global to the regional models. Phase I has been completed and the results to be shown include findings that spectral nudging is beneficial in some regions but not in others. Phase II is nearing completion and some preliminary results will be shown.

  10. Influence of climate drivers on colonization and extinction dynamics of wetland-dependent species

    USGS Publications Warehouse

    Ray, Andrew M.; Gould, William R.; Hossack, Blake R.; Sepulveda, Adam; Thoma, David P.; Patla, Debra A.; Daley, Rob; Al-Chokhachy, Robert K.

    2016-01-01

    Freshwater wetlands are particularly vulnerable to climate change. Specifically, changes in temperature, precipitation, and evapotranspiration (i.e., climate drivers) are likely to alter flooding regimes of wetlands and affect the vital rates, abundance, and distributions of wetland-dependent species. Amphibians may be among the most climate-sensitive wetland-dependent groups, as many species rely on shallow or intermittently flooded wetland habitats for breeding. Here, we integrated multiple years of high-resolution gridded climate and amphibian monitoring data from Grand Teton and Yellowstone National Parks to explicitly model how variations in climate drivers and habitat conditions affect the occurrence and breeding dynamics (i.e., annual extinction and colonization rates) of amphibians. Our results showed that models incorporating climate drivers outperformed models of amphibian breeding dynamics that were exclusively habitat based. Moreover, climate-driven variation in extinction rates, but not colonization rates, disproportionately influenced amphibian occupancy in monitored wetlands. Long-term monitoring from national parks coupled with high-resolution climate data sets will be crucial to describing population dynamics and characterizing the sensitivity of amphibians and other wetland-dependent species to climate change. Further, long-term monitoring of wetlands in national parks will help reduce uncertainty surrounding wetland resources and strengthen opportunities to make informed, science-based decisions that have far-reaching benefits.

  11. Unified Synthesis Product (USP) Recommendations

    NASA Astrophysics Data System (ADS)

    Peterson, T. C.

    2009-05-01

    The USP identifies a number of areas in which inadequate information or understanding hampers our ability to estimate likely future climate change and its impacts. For example, our knowledge of changes in tornadoes, hail, and ice storms is quite limited, making it difficult to know if and how such events have changed as climate has warmed, and how they might change in the future. Research on ecological responses to climate change also is limited, as is our understanding of social responses. The Report identifies the five most important gaps in knowledge and offers some thoughts on how to address those gaps: 1. Expand our understanding of climate change impacts. There is a clear need to increase understanding of how ecosystems, social and economic systems, human health, and the built environment will be affected by climate change in the context of other stresses. This includes ecosystems as well as economic systems, human health, and the built environment. 2. Refine ability to project climate change at local scales. One of the main messages to emerge from the past decade of synthesis and assessments is that while climate change is a global issue, it has a great deal of regional variability. There is an indisputable need to improve understanding of climate system effects at these smaller scales, because these are often the scales of decision-making in society. 3. Expand capacity to provide decision makers and the public with relevant information on climate change and its impacts. The United States has tremendous potential to create more comprehensive measurement, archive, and data-access systems that could provide great benefit to society. 4. Improve understanding of and ability to identify thresholds likely to lead to abrupt changes in the climate system. Paleoclimatic data shows that climate can and has changed quite abruptly when certain thresholds are crossed. Similarly, there is evidence that ecological and human systems can undergo abrupt change when tipping points are reached. 5. Enhance understanding of how society can adapt to climate change in the context of multiple stresses. There is currently limited knowledge about the ability of communities, regions, and sectors to adapt to future climate change. It is essential to improve understanding of how the capacity to adapt to a changing climate might be exercised, and the vulnerabilities to climate change and other environmental stresses that might remain. Results from these efforts would inform future assessments that continue building our understanding of humanity's impacts on climate, and climate's impacts on us. Such assessments will continue to play a role in helping the U.S. respond to changing conditions. A vision for future climate change assessments includes both sustained extensive practitioner and stakeholder involvement, and periodic, targeted, scientifically rigorous reports similar to the CCSP Synthesis and Assessment Products.

  12. Loci under selection during multiple range expansions of an invasive plant are mostly population specific, but patterns are associated with climate.

    PubMed

    Zenni, Rafael D; Hoban, Sean M

    2015-07-01

    Identifying the genes underlying rapid evolutionary changes, describing their function and ascertaining the environmental pressures that determine fitness are the central elements needed for understanding of evolutionary processes and phenotypic changes that improve the fitness of populations. It has been hypothesized that rapid adaptive changes in new environments may contribute to the rapid spread and success of invasive plants and animals. As yet, studies of adaptation during invasion are scarce, as is knowledge of the genes underlying adaptation, especially in multiple replicated invasions. Here, we quantified how genotype frequencies change during invasions, resulting in rapid evolution of naturalized populations. We used six fully replicated common garden experiments in Brazil where Pinus taeda (loblolly pine) was introduced at the same time, in the same numbers, from the same seed sources, and has formed naturalized populations expanding outward from the plantations. We used a combination of nonparametric, population genetics and multivariate statistics to detect changes in genotype frequencies along each of the six naturalization gradients and their association with climate as well as shifts in allele frequencies compared to the source populations. Results show 25 genes with significant shifts in genotype frequencies. Six genes had shifts in more than one population. Climate explained 25% of the variation in the groups of genes under selection across all locations, but specific genes under strong selection during invasions did not show climate-related convergence. In conclusion, we detected rapid evolutionary changes during invasive range expansions, but the particular gene-level patterns of evolution may be population specific. © 2015 John Wiley & Sons Ltd.

  13. Soil Polygenesis as a Function of Quaternary Climate, Northern Great Basin, USA

    NASA Technical Reports Server (NTRS)

    Chadwick, O. A.; Nettleton, W. D.; Staidl, G. J.

    1995-01-01

    Polygenetic soils are those that record multiple morphological, mineralogical, and chemical imprints as the geographical pattern of climates shifts spatially and new boundaries are established. Optimal conditions for interpreting paleoclimates from polygenetic soils occur when precipitation and/or temperature changes are great enough to produce new soil properties without obliterating existing properties.

  14. Communicating Climate and Ecosystem Change in the Arctic

    NASA Astrophysics Data System (ADS)

    Soreide, N. N.; Overland, J. E.; Calder, J. A.; Rodionov, S.

    2005-12-01

    There is an explosion of interest in Northern Hemisphere climate, highlighting the importance of recent changes in the Arctic on mid-latitude climate and its impact on marine and terrestrial ecosystems. Traditional sea ice and tundra dominated arctic ecosystems are being reorganizing into warmer sub-arctic ecosystem types. Over the previous two years we have developed a comprehensive, near real-time arctic change detection protocol to track physical and biological changes for presentation on the web: http://www.arctic.noaa.gov/detect. The effort provides a continuous update to the Arctic Climate Impact Assessment (ACIA) Report, released in November 2004. Principles for the protocol include an accessible narrative style, scientifically credible and objective indicators, notes multiple uses for the information, acknowledges uncertainties, and balances having too many indicators-which leads to information overload-and too few-which does not capture the complexity of the system. Screening criteria include concreteness, public awareness, being understandable, availability of historical time series, and sensitivity. The site provides sufficient information for an individual to make their own assessment regarding the balance of the evidence for tracking change. The product provides an overview, recent news, links to many arctic websites, and highlights climate, global impacts, land and marine ecosystems, and human consequences. Since its inception a year ago, it has averaged about 9000 hits an day on the web, and is a major information source as determined by Google search. The future direction focuses on understanding the causes for change. In spring 2005 we also presented a near real-time ecological and climatic surveillance website for the Bering Sea: www.beringclimate.noaa.gov. The site provides up-to-date information which ties northward shifts of fish, invertebrate and marine mammal populations to physical changes in the Arctic. This site is more technical than the arctic change detection site and provides support to the North Pacific Fisheries Management Council and other interested parties. The site anticipates multiple uses by providing access and analysis tools for a set of Bering Sea indicator time series.

  15. Testing a Weather Generator for Downscaling Climate Change Projections over Switzerland

    NASA Astrophysics Data System (ADS)

    Keller, Denise E.; Fischer, Andreas M.; Liniger, Mark A.; Appenzeller, Christof; Knutti, Reto

    2016-04-01

    Climate information provided by global or regional climate models (RCMs) are often too coarse and prone to substantial biases, making it impossible to directly use daily time-series of the RCMs for local assessments and in climate impact models. Hence, statistical downscaling becomes necessary. For the Swiss National Climate Change Initiative (CH2011), a delta-change approach was used to provide daily climate projections at the local scale. This data have the main limitations that changes in variability, extremes and in the temporal structure, such as changes in the wet day frequency, are not reproduced. The latter is a considerable downside of the delta-change approach for many impact applications. In this regard, stochastic weather generators (WGs) are an appealing technique that allow the simulation of multiple realizations of synthetic weather sequences consistent with the locally observed weather statistics and its future changes. Here, we analyse a Richardson-type weather generator (WG) as an alternative method to downscale daily precipitation, minimum and maximum temperature. The WG is calibrated for 26 Swiss stations and the reference period 1980-2009. It is perturbed with change factors derived from 12 RCMs (ENSEMBLES) to represent the climate of 2070-2099 assuming the SRES A1B emission scenario. The WG can be run in multi-site mode, making it especially attractive for impact-modelers that rely on a realistic spatial structure in downscaled time-series. The results from the WG are benchmarked against the original delta-change approach that applies mean additive or multiplicative adjustments to the observations. According to both downscaling methods, the results reveal area-wide mean temperature increases and a precipitation decrease in summer, consistent with earlier studies. For the summer drying, the WG indicates primarily a decrease in wet-day frequency and correspondingly an increase in mean dry spell length by around 18% - 40% at low-elevation stations. By construction, these potential changes cannot be represented by a delta-change approach. In winter, both methods project a shortening of the frost period (-30 to -60 days) and a decrease of snow days (-20% to -100%). The WG demonstrates though, that almost present-day conditions in snow-days could still occur in the future. As expected, both methods have difficulties in representing extremes. If users focus on changes in temporal sequences and need a large number of future realizations that are spatially consistent, it is recommended to use data from a WG instead of a delta-change approach.

  16. Temporal, spatial and ecological dynamics of speciation among amphi-Beringian small mammals

    USGS Publications Warehouse

    Hope, Andrew G.; Takebayashi, Naoki; Galbreath, Kurt E.; Talbot, Sandra L.; Cook, Joseph A.

    2013-01-01

    Quaternary climate cycles played an important role in promoting diversification across the Northern Hemisphere, although details of the mechanisms driving evolutionary change are still poorly resolved. In a comparative phylogeographical framework, we investigate temporal, spatial and ecological components of evolution within a suite of Holarctic small mammals. We test a hypothesis of simultaneous divergence among multiple taxon pairs, investigating time to coalescence and demographic change for each taxon in response to a combination of climate and geography.

  17. Increasing Mississippi river discharge throughout the twenty-first century influenced by changes in climate, land use and atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Tao, B.; Tian, H.; Ren, W.; Yang, J.; Yang, Q.; He, R.; Cai, W. J.; Lohrenz, S. E.

    2014-12-01

    Previous studies have demonstrated that changes in temperature and precipitation (hereafter climate change) would influence river discharge, but the relative importance of climate change, land use, and elevated atmospheric CO2 have not yet been fully investigated. Here we examined how river discharge in the Mississippi River basin in the 21st century might be influenced by these factors using the Dynamic Land Ecosystem Model driven by atmospheric CO2, downscaled GCMs climate and land use scenarios. Our results suggest that river discharge would be substantially enhanced (10.7-59.8%) by the 2090s compared to the recent decade (2000s), though large discrepancies exist among different climate, atmospheric CO2, and land use change scenarios. Our factorial analyses further indicate that the combined effects of land use change and human-induced atmospheric CO2 elevation on river discharge would outweigh climate change effect under the high emission scenario (A2) of Intergovernmental Panel for Climate Change. Our study offers the first attempt to project potential changes in river discharge in response to multiple future environmental changes. It demonstrates the importance of land use change and atmospheric CO2 concentrations in projecting future changes in hydrologic processes. The projected increase river discharge implies that riverine fluxes of carbon, nutrients and pesticide from the MRB to the coastal regions would increase in the future, and thus may influence the states of ocean acidification and hypoxia and deteriorate ocean water quality. Further efforts will also be needed to account for additional environmental factors (such as nitrogen deposition, tropospheric ozone pollution, dam construction, etc.) in projecting changes in the hydrological cycle.

  18. Impacts of climate change on prioritizing conservation areas of hydrological ecosystem services

    NASA Astrophysics Data System (ADS)

    Lien, Wan Yu; Lin, Yu Pin

    2015-04-01

    Ecosystem services (ESs) including hydrological services play important roles in our daily life and provide a lot of benefits for human beings from ecological systems. The systems and their services may be threatened by climate change from global to local scales. We herein developed a systematic approach to assess the impacts of climate change on the hydrological ecosystem services, such as water yield, nutrient (nitrogen and phosphorous) retention, and soil retention in a watershed in Northern Taiwan. We first used an ecosystem service evaluation model, InVEST, to estimate the amount and spatial patterns of annual and monthly hydrological ecosystem services under historical weather data, and different climate change scenarios based on five GMSs. The monthly and annual spatiotemporal variations of the ESs were analyzed in this study. Finally, the multiple estimated ESs were considered as the protection conservation targets and regarded as the input data of the systematic conservation planning software, Zonation, to systematically prioritize reserve areas of the ESs under the climate change scenarios. The ES estimation results indicated that the increasing rainfall in wet season leads to the higher water yield and results in the higher sediment and nutrient export indirectly. The Zonation successfully fielded conservation priorities of the ESs. The conservation priorities of the ESs significantly varied spatially and monthly under the climate change scenarios. The ESs results also indicated that the areas where ESs values and conservation priorities with low resilience under climate change should be considered as high priority protected area to ensure the hydrological services in future. Our proposed approach is a novel systematic approach which can be applied to assess impacts of climate change on spatiotemporal variations of ESs as well as prioritize protected area of the ESs under various climate change scenarios. Keyword: climate change, ecosystem service, conservation planning, spatial analysis.

  19. Assessing Climate Change Risks Using a Multi-Model Approach

    NASA Astrophysics Data System (ADS)

    Knorr, W.; Scholze, M.; Prentice, C.

    2007-12-01

    We quantify the risks of climate-induced changes in key ecosystem processes during the 21st century by forcing a dynamic global vegetation model with multiple scenarios from the IPCC AR4 data archive using 16 climate models and mapping the proportions of model runs showing exceedance of natural variability in wildfire frequency and freshwater supply or shifts in vegetation cover. Our analysis does not assign probabilities to scenarios. Instead, we consider the distribution of outcomes within three sets of model runs grouped according to the amount of global warming they simulate: < 2 degree C (including committed climate change simulations), 2-3 degree C, and >3 degree C. Here, we are contrasting two different methods for calculating the risks: first we use an equal weighting approach giving every model within one of the three sets the same weight, and second, we weight the models according to their ability to model ENSO. The differences are underpinning the need for the development of more robust performance metrics for global climate models.

  20. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa.

    PubMed

    Moncrieff, Glenn R; Scheiter, Simon; Bond, William J; Higgins, Steven I

    2014-02-01

    The dominant vegetation over much of the global land surface is not predetermined by contemporary climate, but also influenced by past environmental conditions. This confounds attempts to predict current and future biome distributions, because even a perfect model would project multiple possible biomes without knowledge of the historical vegetation state. Here we compare the distribution of tree- and grass-dominated biomes across Africa simulated using a dynamic global vegetation model (DGVM). We explicitly evaluate where and under what conditions multiple stable biome states are possible for current and projected future climates. Our simulation results show that multiple stable biomes states are possible for vast areas of tropical and subtropical Africa under current conditions. Widespread loss of the potential for multiple stable biomes states is projected in the 21st Century, driven by increasing atmospheric CO2 . Many sites where currently both tree-dominated and grass-dominated biomes are possible become deterministically tree-dominated. Regions with multiple stable biome states are widespread and require consideration when attempting to predict future vegetation changes. Testing for behaviour characteristic of systems with multiple stable equilibria, such as hysteresis and dependence on historical conditions, and the resulting uncertainty in simulated vegetation, will lead to improved projections of global change impacts. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    NASA Astrophysics Data System (ADS)

    Sarofim, M. C.; Martinich, J.; Waldhoff, S.; DeAngelo, B. J.; McFarland, J.; Jantarasami, L.; Shouse, K.; Crimmins, A.; Li, J.

    2014-12-01

    The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the physical impacts, economic damages, and risks from climate change. The primary goal of this framework is to estimate the degree to which climate change impacts and damages in the United States are avoided or reduced in the 21st century under multiple greenhouse gas (GHG) emissions mitigation scenarios. The first phase of the CIRA project is a modeling exercise that included two integrated assessment models and 15 sectoral models encompassing five broad impacts sectors: water resources, electric power, infrastructure, human health, and ecosystems. Three consistent socioeconomic and climate scenarios are used to analyze the benefits of global GHG mitigation targets: a reference scenario and two policy scenarios with total radiative forcing targets in 2100 of 4.5 W/m2 and 3.7 W/m2. In this exercise, the implications of key uncertainties are explored, including climate sensitivity, climate model, natural variability, and model structures and parameters. This presentation describes the motivations and goals of the CIRA project; the design and academic contribution of the first CIRA modeling exercise; and briefly summarizes several papers published in a special issue of Climatic Change. The results across impact sectors show that GHG mitigation provides benefits to the United States that increase over time, the effects of climate change can be strongly influenced by near-term policy choices, adaptation can reduce net damages, and impacts exhibit spatial and temporal patterns that may inform mitigation and adaptation policy discussions.

  2. Quantitative Assessment of Antarctic Climate Variability and Change

    NASA Astrophysics Data System (ADS)

    Ordonez, A.; Schneider, D. P.

    2013-12-01

    The Antarctic climate is both extreme and highly variable, but there are indications it may be changing. As the climate in Antarctica can affect global sea level and ocean circulation, it is important to understand and monitor its behavior. Observational and model data have been used to study climate change in Antarctica and the Southern Ocean, though observational data is sparse and models have difficulty reproducing many observed climate features. For example, a leading hypothesis that ozone depletion has been responsible for sea ice trends is struggling with the inability of ozone-forced models to reproduce the observed sea ice increase. The extent to which this data-model disagreement represents inadequate observations versus model biases is unknown. This research assessed a variety of climate change indicators to present an overview of Antarctic climate that will allow scientists to easily access this data and compare indicators with other observational data and model output. Indicators were obtained from observational and reanalysis data for variables such as temperature, sea ice area, and zonal wind stress. Multiple datasets were used for key variables. Monthly and annual anomaly data from Antarctica and the Southern Ocean as well as tropical indices were plotted as time series on common axes for comparison. Trends and correlations were also computed. Zonal wind, surface temperature, and austral springtime sea ice had strong relationships and were further discussed in terms of how they may relate to climate variability and change in the Antarctic. This analysis will enable hypothesized mechanisms of Antarctic climate change to be critically evaluated.

  3. An integrated assessment of climate change impacts for Athens- relevance to stakeholders and policy makers

    NASA Astrophysics Data System (ADS)

    Giannakopoulos, C.; Hatzaki, M.; Kostopoulou, E.; Varotsos, K.

    2010-09-01

    Analysing climate change and its impact needs a production of relevant elements for policy making that can be very different from the parameters considered by climate experts. In the framework of EU project CIRCE, a more realistic approach to match stakeholders and policy-makers demands is attempted. For this reason, within CIRCE selected case studies have been chosen that will provide assessments that can be integrated in practical decision making. In this work, an integrated assessment of climate change impacts on several sectors for the urban site of Athens in Greece is presented. The Athens urban case study has been chosen since it provides excellent opportunities for using an integrated approach across multiple temporal and spatial scales and sectors. In the spatial dimension, work extends from the inner city boundaries to the surrounding mountains and forests. In the temporal dimension, research ranges from the current observed time period (using available meteorological and sector data) to future time periods using data from several climate change projections. In addition, a multi-sector approach to climate change impacts is adopted. Impacts sectors covered range from direct climate impacts on natural ecosystems (such as flash floods, air pollution and forest fire risk) to indirect impacts resulting from combined climate-social-economic linkages (such as energy demand, tourism and health). Discussion of impact sector risks and adaptation measures are also exploited. Case-study work on impact sector risk to climate change is of particular interest to relevant policy makers and stakeholders, communication with who is ensured through a series of briefing notes and information sheets and through regional workshops.

  4. Options for national parks and reserves for adapting to climate change.

    PubMed

    Baron, Jill S; Gunderson, Lance; Allen, Craig D; Fleishman, Erica; McKenzie, Donald; Meyerson, Laura A; Oropeza, Jill; Stephenson, Nate

    2009-12-01

    Past and present climate has shaped the valued ecosystems currently protected in parks and reserves, but future climate change will redefine these conditions. Continued conservation as climate changes will require thinking differently about resource management than we have in the past; we present some logical steps and tools for doing so. Three critical tenets underpin future management plans and activities: (1) climate patterns of the past will not be the climate patterns of the future; (2) climate defines the environment and influences future trajectories of the distributions of species and their habitats; (3) specific management actions may help increase the resilience of some natural resources, but fundamental changes in species and their environment may be inevitable. Science-based management will be necessary because past experience may not serve as a guide for novel future conditions. Identifying resources and processes at risk, defining thresholds and reference conditions, and establishing monitoring and assessment programs are among the types of scientific practices needed to support a broadened portfolio of management activities. In addition to the control and hedging management strategies commonly in use today, we recommend adaptive management wherever possible. Adaptive management increases our ability to address the multiple scales at which species and processes function, and increases the speed of knowledge transfer among scientists and managers. Scenario planning provides a broad forward-thinking framework from which the most appropriate management tools can be chosen. The scope of climate change effects will require a shared vision among regional partners. Preparing for and adapting to climate change is as much a cultural and intellectual challenge as an ecological challenge.

  5. Options for national parks and reserves for adapting to climate change

    USGS Publications Warehouse

    Baron, Jill S.; Gunderson, Lance; Allen, Craig D.; Fleishman, Erica; McKenzie, Donald; Meyerson, Laura A.; Oropeza, Jill; Stephenson, Nathan L.

    2009-01-01

    Past and present climate has shaped the valued ecosystems currently protected in parks and reserves, but future climate change will redefine these conditions. Continued conservation as climate changes will require thinking differently about resource management than we have in the past; we present some logical steps and tools for doing so. Three critical tenets underpin future management plans and activities: (1) climate patterns of the past will not be the climate patterns of the future; (2) climate defines the environment and influences future trajectories of the distributions of species and their habitats; (3) specific management actions may help increase the resilience of some natural resources, but fundamental changes in species and their environment may be inevitable. Science-based management will be necessary because past experience may not serve as a guide for novel future conditions. Identifying resources and processes at risk, defining thresholds and reference conditions, and establishing monitoring and assessment programs are among the types of scientific practices needed to support a broadened portfolio of management activities. In addition to the control and hedging management strategies commonly in use today, we recommend adaptive management wherever possible. Adaptive management increases our ability to address the multiple scales at which species and processes function, and increases the speed of knowledge transfer among scientists and managers. Scenario planning provides a broad forward-thinking framework from which the most appropriate management tools can be chosen. The scope of climate change effects will require a shared vision among regional partners. Preparing for and adapting to climate change is as much a cultural and intellectual challenge as an ecological challenge.

  6. Addressing socioeconomic and political challenges posed by climate change

    NASA Astrophysics Data System (ADS)

    Fernando, Harindra Joseph; Klaic, Zvjezdana Bencetic

    2011-08-01

    NATO Advanced Research Workshop: Climate Change, Human Health and National Security; Dubrovnik, Croatia, 28-30 April 2011; Climate change has been identified as one of the most serious threats to humanity. It not only causes sea level rise, drought, crop failure, vector-borne diseases, extreme events, degradation of water and air quality, heat waves, and other phenomena, but it is also a threat multiplier wherein concatenation of multiple events may lead to frequent human catastrophes and intranational and international conflicts. In particular, urban areas may bear the brunt of climate change because of the amplification of climate effects that cascade down from global to urban scales, but current modeling and downscaling capabilities are unable to predict these effects with confidence. These were the main conclusions of a NATO Advanced Research Workshop (ARW) sponsored by the NATO Science for Peace and Security program. Thirty-two invitees from 17 counties, including leading modelers; natural, political, and social scientists; engineers; politicians; military experts; urban planners; industry analysts; epidemiologists; and health care professionals, parsed the topic on a common platform.

  7. Combining landscape variables and species traits can improve the utility of climate change vulnerability assessments

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2016-01-01

    Conservation organizations worldwide are investing in climate change vulnerability assessments. Most vulnerability assessment methods focus on either landscape features or species traits that can affect a species vulnerability to climate change. However, landscape features and species traits likely interact to affect vulnerability. We compare a landscape-based assessment, a trait-based assessment, and an assessment that combines landscape variables and species traits for 113 species of birds, herpetofauna, and mammals in the northeastern United States. Our aim is to better understand which species traits and landscape variables have the largest influence on assessment results and which types of vulnerability assessments are most useful for different objectives. Species traits were most important for determining which species will be most vulnerable to climate change. The sensitivity of species to dispersal barriers and the species average natal dispersal distance were the most important traits. Landscape features were most important for determining where species will be most vulnerable because species were most vulnerable in areas where multiple landscape features combined to increase vulnerability, regardless of species traits. The interaction between landscape variables and species traits was important when determining how to reduce climate change vulnerability. For example, an assessment that combines information on landscape connectivity, climate change velocity, and natal dispersal distance suggests that increasing landscape connectivity may not reduce the vulnerability of many species. Assessments that include landscape features and species traits will likely be most useful in guiding conservation under climate change.

  8. Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America

    NASA Astrophysics Data System (ADS)

    Soares dos Santos, T.; Mendes, D.; Rodrigues Torres, R.

    2016-01-01

    Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANNs) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon; northeastern Brazil; and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model output and observed monthly precipitation. We used general circulation model (GCM) experiments for the 20th century (RCP historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results indicate that the ANNs significantly outperform the MLR downscaling of monthly precipitation variability.

  9. Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America

    NASA Astrophysics Data System (ADS)

    dos Santos, T. S.; Mendes, D.; Torres, R. R.

    2015-08-01

    Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANN) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon, Northeastern Brazil and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model out- put and observed monthly precipitation. We used GCMs experiments for the 20th century (RCP Historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results indicate that the ANN significantly outperforms the MLR downscaling of monthly precipitation variability.

  10. Phenological responses to multiple environmental drivers under climate change: insights from a long-term observational study and a manipulative field experiment.

    PubMed

    Wadgymar, Susana M; Ogilvie, Jane E; Inouye, David W; Weis, Arthur E; Anderson, Jill T

    2018-04-01

    Climate change has induced pronounced shifts in the reproductive phenology of plants, yet we know little about which environmental factors contribute to interspecific variation in responses and their effects on fitness. We integrate data from a 43 yr record of first flowering for six species in subalpine Colorado meadows with a 3 yr snow manipulation experiment on the perennial forb Boechera stricta (Brassicaceae) from the same site. We analyze shifts in the onset of flowering in relation to environmental drivers known to influence phenology: the timing of snowmelt, the accumulation of growing degree days, and photoperiod. Variation in responses to climate change depended on the sequence in which species flowered, with early-flowering species reproducing faster, at a lower heat sum, and under increasingly disparate photoperiods relative to later-flowering species. Early snow-removal treatments confirm that the timing of snowmelt governs observed trends in flowering phenology of B. stricta and that climate change can reduce the probability of flowering, thereby depressing fitness. Our findings suggest that climate change is decoupling historical combinations of photoperiod and temperature and outpacing phenological changes for our focal species. Accurate predictions of biological responses to climate change require a thorough understanding of the factors driving shifts in phenology. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  11. Structure and vulnerability of Pacific Northwest tidal wetlands – A summary of wetland climate change research by the Western Ecology Division, U.S. EPA

    USGS Publications Warehouse

    Folger, Christina L; Lee, Henry; Janousek, Christopher N.; Reusser, Deborah A.

    2014-01-01

    Climate change poses a serious threat to the tidal wetlands of the Pacific Northwest (PNW) region of the U.S. In response to this threat, scientists at the Western Ecology Division of the U.S. EPA at and the Western Fisheries Research Center of the U.S. Geological Survey, along with other partners, initiated a series of studies on the structure and vulnerability of tidal wetlands to climate change. One research thrust was to evaluate community structure of PNW marshes, experimentally assess the vulnerability of marsh plants to inundation and salinity stress (as would happen with sea level rise), and evaluate the utility of the National Wetland Inventory (NWI) classification system. Another research thrust was to develop tools that provide insights into possible impacts of climate change. This effort included enhancing the Sea Level Affecting Marshes Model (SLAMM) to predict the effects of sea level rise on submerged aquatic vegetation (Zostera marina) distributions, evaluating changes in river flow into coastal estuaries in response to precipitation changes, and synthesizing Pacific Coast estuary, watershed, and climate data in a downloadable tool. Because the research resulting from these efforts was published in multiple venues, we summarized them in this document. We anticipate that future research efforts by the U.S. EPA will continue with a focus on climate change impacts on a regional scale.

  12. Impacts of Air Pollution and Climate Change on Forest Ecosystems — Emerging Research Needs

    PubMed Central

    Paoletti, Elena; Bytnerowicz, Andrzej; Andersen, Chris; Augustaitis, Algirdas; Ferretti, Marco; Grulke, Nancy; Günthardt-Goerg, Madeleine S.; Innes, John; Johnson, Dale; Karnosky, Dave; Luangjame, Jesada; Matyssek, Rainer; McNulty, Steven; Müller-Starck, Gerhard; Musselman, Robert; Percy, Kevin

    2007-01-01

    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems “Forests under Anthropogenic Pressure Effects of Air Pollution, Climate Change and Urban Development”, September 1016, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3) is still the phytotoxic air pollutant of major interest. Challenging issues are how to make O3 standards or critical levels more biologically based and at the same time practical for wide use; quantification of plant detoxification processes in flux modeling; inclusion of multiple environmental stresses in critical load determinations; new concept development for nitrogen saturation; interactions between air pollution, climate, and forest pests; effects of forest fire on air quality; the capacity of forests to sequester carbon under changing climatic conditions and coexposure to elevated levels of air pollutants; enhanced linkage between molecular biology, biochemistry, physiology, and morphological traits. PMID:17450274

  13. Symbiont diversity may help coral reefs survive moderate climate change.

    PubMed

    Baskett, Marissa L; Gaines, Steven D; Nisbet, Roger M

    2009-01-01

    Given climate change, thermal stress-related mass coral-bleaching events present one of the greatest anthropogenic threats to coral reefs. While corals and their symbiotic algae may respond to future temperatures through genetic adaptation and shifts in community compositions, the climate may change too rapidly for coral response. To test this potential for response, here we develop a model of coral and symbiont ecological dynamics and symbiont evolutionary dynamics. Model results without variation in symbiont thermal tolerance predict coral reef collapse within decades under multiple future climate scenarios, consistent with previous threshold-based predictions. However, model results with genetic or community-level variation in symbiont thermal tolerance can predict coral reef persistence into the next century, provided low enough greenhouse gas emissions occur. Therefore, the level of greenhouse gas emissions will have a significant effect on the future of coral reefs, and accounting for biodiversity and biological dynamics is vital to estimating the size of this effect.

  14. When smoke gets in our eyes: the multiple impacts of atmospheric black carbon on climate, air quality and health.

    PubMed

    Highwood, Eleanor J; Kinnersley, Robert P

    2006-05-01

    With both climate change and air quality on political and social agendas from local to global scale, the links between these hitherto separate fields are becoming more apparent. Black carbon, largely from combustion processes, scatters and absorbs incoming solar radiation, contributes to poor air quality and induces respiratory and cardiovascular problems. Uncertainties in the amount, location, size and shape of atmospheric black carbon cause large uncertainty in both climate change estimates and toxicology studies alike. Increased research has led to new effects and areas of uncertainty being uncovered. Here we draw together recent results and explore the increasing opportunities for synergistic research that will lead to improved confidence in the impact of black carbon on climate change, air quality and human health. Topics of mutual interest include better information on spatial distribution, size, mixing state and measuring and monitoring.

  15. Deglacial variability of Antarctic Intermediate Water penetration into the North Atlantic from authigenic neodymium isotope ratios

    NASA Astrophysics Data System (ADS)

    Xie, Ruifang C.; Marcantonio, Franco; Schmidt, Matthew W.

    2012-09-01

    Understanding intermediate water circulation across the last deglacial is critical in assessing the role of oceanic heat transport associated with Atlantic Meridional Overturning Circulation variability across abrupt climate events. However, the links between intermediate water circulation and abrupt climate events such as the Younger Dryas (YD) and Heinrich Event 1 (H1) are still poorly constrained. Here, we reconstruct changes in Antarctic Intermediate Water (AAIW) circulation in the subtropical North Atlantic over the past 25 kyr by measuring authigenic neodymium isotope ratios in sediments from two sites in the Florida Straits. Our authigenic Nd isotope records suggest that there was little to no penetration of AAIW into the subtropical North Atlantic during the YD and H1. Variations in the northward penetration of AAIW into the Florida Straits documented in our authigenic Nd isotope record are synchronous with multiple climatic archives, including the Greenland ice core δ18O record, the Cariaco Basin atmosphere Δ14C reconstruction, the Bermuda Rise sedimentary Pa/Th record, and nutrient and stable isotope data from the tropical North Atlantic. The synchroneity of our Nd records with multiple climatic archives suggests a tight connection between AAIW variability and high-latitude North Atlantic climate change.

  16. Local adaptation in migrated interior Douglas-fir seedlings is mediated by ectomycorrhizas and other soil factors.

    PubMed

    Pickles, Brian J; Twieg, Brendan D; O'Neill, Gregory A; Mohn, William W; Simard, Suzanne W

    2015-08-01

    Separating edaphic impacts on tree distributions from those of climate and geography is notoriously difficult. Aboveground and belowground factors play important roles, and determining their relative contribution to tree success will greatly assist in refining predictive models and forestry strategies in a changing climate. In a common glasshouse, seedlings of interior Douglas-fir (Pseudotsuga menziesii var. glauca) from multiple populations were grown in multiple forest soils. Fungicide was applied to half of the seedlings to separate soil fungal and nonfungal impacts on seedling performance. Soils of varying geographic and climatic distance from seed origin were compared, using a transfer function approach. Seedling height and biomass were optimized following seed transfer into drier soils, whereas survival was optimized when elevation transfer was minimised. Fungicide application reduced ectomycorrhizal root colonization by c. 50%, with treated seedlings exhibiting greater survival but reduced biomass. Local adaptation of Douglas-fir populations to soils was mediated by soil fungi to some extent in 56% of soil origin by response variable combinations. Mediation by edaphic factors in general occurred in 81% of combinations. Soil biota, hitherto unaccounted for in climate models, interacts with biogeography to influence plant ranges in a changing climate. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management.

    PubMed

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T

    2016-07-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring. © 2016 John Wiley & Sons Ltd.

  18. Climate change impacts on ecosystems and ecosystem services in the United States: Process and prospects for sustained assessment

    USGS Publications Warehouse

    Grimm, Nancy B.; Groffman, Peter M; Staudinger, Michelle D.; Tallis, Heather

    2016-01-01

    The third United States National Climate Assessment emphasized an evaluation of not just the impacts of climate change on species and ecosystems, but also the impacts of climate change on the benefits that people derive from nature, known as ecosystem services. The ecosystems, biodiversity, and ecosystem services component of the assessment largely drew upon the findings of a transdisciplinary workshop aimed at developing technical input for the assessment, involving participants from diverse sectors. A small author team distilled and synthesized this and hundreds of other technical input to develop the key findings of the assessment. The process of developing and ranking key findings hinged on identifying impacts that had particular, demonstrable effects on the U.S. public via changes in national ecosystem services. Findings showed that ecosystem services are threatened by the impacts of climate change on water supplies, species distributions and phenology, as well as multiple assaults on ecosystem integrity that, when compounded by climate change, reduce the capacity of ecosystems to buffer against extreme events. As ecosystems change, such benefits as water sustainability and protection from storms that are afforded by intact ecosystems are projected to decline across the continent due to climate change. An ongoing, sustained assessment that focuses on the co-production of actionable climate science will allow scientists from a range of disciplines to ascertain the capability of their forecasting models to project environmental and ecological change and link it to ecosystem services; additionally, an iterative process of evaluation, development of management strategies, monitoring, and reevaluation will increase the applicability and usability of the science by the U.S. public.

  19. Multiple climate drivers accelerate Arctic plant community senescence

    NASA Astrophysics Data System (ADS)

    Livensperger, C.; Steltzer, H.; Wallenstein, M. D.; Weintraub, M. N.

    2015-12-01

    Alteration of seasonal phenology cues due to climate change has led to changes in the onset and duration of the growing season. While photoperiod often acts as an ultimate control on phenological events, recent studies have shown that environmental cues such as temperature and soil water content can modify the direction and rate of senescence processes. Warmer temperatures have resulted in an observed trend towards delayed senescence across temperate latitudes. However, Arctic regions are characterized by extreme seasonality and rapidly decreasing photoperiod, and consequently senescence may not shift as climate warms. We monitored the timing of Arctic plant community senescence for three years under the framework of an experimental manipulation that altered seasonal phenological cues through warming and earlier snowmelt. Alternative models of senescence were tested to determine if microclimate (air temperature, soil temperature, and soil moisture) or start of season phenology affect the timing and rate of community senescence. We found that all three microclimate predictors contributed to explaining variation in timing of senescence, suggesting that photoperiod is not the sole control on timing of senescence in Arctic plant communities. Rather, increased air and soil temperatures along with drier soil conditions, led to acceleration in the onset of senescence at a community level. Our data suggest that (1) multiple climate drivers predict timing of plant community senescence, and (2) climate change could result in a shorter peak season due to earlier onset of senescence, which would decrease the potential carbon uptake in moist acidic tundra.

  20. Quantifying the effects of overgrazing on mountainous watershed vegetation dynamics under a changing climate.

    PubMed

    Hao, Lu; Pan, Cen; Fang, Di; Zhang, Xiaoyu; Zhou, Decheng; Liu, Peilong; Liu, Yongqiang; Sun, Ge

    2018-10-15

    Grazing is a major ecosystem disturbance in arid regions that are increasingly threatened by climate change. Understanding the long-term impacts of grazing on rangeland vegetation dynamics in a complex terrain in mountainous regions is important for quantifying dry land ecosystem services for integrated watershed management and climate change adaptation. However, data on the detailed long-term spatial distribution of grazing activities are rare, which prevents trend detection and environmental impact assessments of grazing. This study quantified the impacts of grazing on vegetation dynamics for the period of 1983-2010 in the Upper Heihe River basin, a complex multiple-use watershed in northwestern China. We also examined the relative contributions of grazing and climate to vegetation change using a dynamic grazing pressure method. Spatial grazing patterns and temporal dynamics were mapped at a 1 km × 1 km pixel scale using satellite-derived leaf area index (LAI) data. We found that overgrazing was a dominant driver for LAI reduction in alpine grasslands and shrubs, especially for the periods of 1985-1991 and 1997-2004. Although the recent decade-long active grazing management contributed to the improvement of LAI and partially offset the negative effects of increased livestock, overgrazing has posed significant challenges to shrub-grassland ecosystem recovery in the eastern part of the study basin. We conclude that the positive effects of a warming and wetting climate on vegetation could be underestimated if the negative long-term grazing effects are not considered. Findings from the present case study show that assessing long-term climate change impacts on watersheds must include the influences of human activities. Our study provides important guidance for ecological restoration efforts in locating vulnerable areas and designing effective management practices in the study watershed. Such information is essential for natural resource management that aims at meeting multiple demands of watershed ecosystem services in arid and semiarid rangelands. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Introduction to Climate Change from an Indigenous Perspective: an undergraduate course developed by and for Tribal Colleges and Universities

    NASA Astrophysics Data System (ADS)

    Mitchell, K. A.; Pandya, R. E.; Kahn-Thornbrugh, C.; Newberry, T.; Carroll, M.; Guinn, M.; Vanlopik, W.; Haines, C.; Wildcat, D.

    2010-12-01

    Thirty-six Tribal Colleges and Universities (TCUs) serve over 20,000 Native American undergraduate students across the US. TCUs were created in response to the higher education needs of American Indians and generally serve geographically isolated populations that have no other means accessing education beyond the high school level. TCUs have become increasingly important to educational opportunity for Native American students and are unique institutions that combine personal attention with cultural relevance to encourage Native Americans to overcome the barriers they face to higher education. The American Indian Higher Education Consortium (AIHEC) coordinated development of a semester-long geosciences program of study with a unique curriculum that introduces tribal college students to multiple disciplines in the geosciences within the topic of global climate change. Importantly, the curriculum structure does not parallel typical college climate change survey courses, but rather is taught from the perspective of the traditional ecological knowledge held by native peoples of North America. The richly varied history, geography, ecology, culture and scientific knowledge of Native American tribes across the US serves as the starting point from which students are taught about atmospheric and earth sciences and the connection of climate change to all our lives. In addition, examples and case studies focusing specifically on tribal lands foster the development of future Native American leaders with the scientific, technological and cultural skills required to assist tribal communities in managing their lands and maintaining their cultures as they face a climate-altered future. The "Introduction to Climate Change from an Indigenous Perspective" curriculum was developed by tribal college faculty from multiple institutions through a collaborative workshop process. The course was piloted and taught at 5 tribal colleges during spring semester 2010. This presentation provides an overview of the course goals, content and delivery.

  2. North American Vegetation Dynamics Observed with Multi-Resolution Satellite Data

    NASA Technical Reports Server (NTRS)

    Neigh, Christopher S. R.; Tucker, Compton J.; Townshend, John R. G.

    2007-01-01

    North American vegetation has been discovered to be a net carbon sink, with atypical behavior of drawing down more carbon from the atmosphere during the past century. It has been suggested that the Northern Hemisphere will respond favorably to climate warming by enhancing productivity and reducing the impact of fossil fuel emissions into the atmosphere. Many investigations are currently underway to understand and identify mechanisms of storage so they might be actively managed to offset carbon emissions which have detrimental consequences to the functioning of ecosystems and human well being. This paper used a time series of satellite data from multiple sensors at multiple resolutions over the past thlrty years to identify and understand mechanisms of change to vegetation productivity throughout North America. We found that humans had a marked impact to vegetation growth in half of the six selected study regions which cover greater than two million km2. We found climatic influences of increasing temperatures, and longer growing seasons with reduced snow cover in the northern regions of North America with forest fire recovery in the Northern coniferous forests of Canada. The Mid-latitudes had more direct land cover changes induced by humans coupled with climatic influences such as severe drought and altered production strategies of rain-fed agriculture in the upper Midwest, expansion of irrigated agriculture in the lower Midwest, and insect outbreaks followed by subsequent logging in the upper Northeast. Vegetation growth over long time periods (20+ years) in North America appears to be associated with long term climate change but most of the marked changes appear to be associated with climate variability on decadal and shorter time scales along with direct human land cover conversions. Our results document regional land cover land use change and climatic influences that have altered continental scale vegetation dynamics in North America.

  3. Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America.

    PubMed

    Rollinson, Christine R; Liu, Yao; Raiho, Ann; Moore, David J P; McLachlan, Jason; Bishop, Daniel A; Dye, Alex; Matthes, Jaclyn H; Hessl, Amy; Hickler, Thomas; Pederson, Neil; Poulter, Benjamin; Quaife, Tristan; Schaefer, Kevin; Steinkamp, Jörg; Dietze, Michael C

    2017-07-01

    Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data-based evaluations of emergent ecosystem responses to climate and CO 2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO 2 in ten ecosystem models with the sensitivities found in tree-ring reconstructions of NPP and raw ring-width series at six temperate forest sites. These model-data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO 2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree-ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm-growing season temperatures, while tree-ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO 2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO 2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO 2 , but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the feedbacks with moisture balance and CO 2 in individual models. © 2017 John Wiley & Sons Ltd.

  4. Robust Spring Drying in the Southwestern U.S. and Seasonal Migration of Wet/Dry Patterns in a Warmer Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yang; Leung, Lai-Yung R.; Lu, Jian

    2014-03-16

    This study compares climate simulations over the United States produced by a regional climate model with the driving global climate simulations as well as a large multi-model ensemble of global climate simulations to investigate robust changes in water availability (precipitation (P) – evapotranspiration (E)). A robust spring dry signal across multiple models is identified in the Southwest that results from a decrease in P and an increase in E in the future. In the boreal winter and summer, the prominent changes in P – E are associated with a north – south dipole pattern, while in spring, the prominent changesmore » in P – E appear as an east – west dipole pattern. The progression of the north – south and east – west dipole patterns through the seasons manifests clearly as a seasonal “clockwise” migration of wet/dry patterns, which is shown to be a robust feature of water availability changes in the US consistent across regional and global climate simulations.« less

  5. Modeling non-linear growth responses to temperature and hydrology in wetland trees

    NASA Astrophysics Data System (ADS)

    Keim, R.; Allen, S. T.

    2016-12-01

    Growth responses of wetland trees to flooding and climate variations are difficult to model because they depend on multiple, apparently interacting factors, but are a critical link in hydrological control of wetland carbon budgets. To more generally understand tree growth to hydrological forcing, we modeled non-linear responses of tree ring growth to flooding and climate at sub-annual time steps, using Vaganov-Shashkin response functions. We calibrated the model to six baldcypress tree-ring chronologies from two hydrologically distinct sites in southern Louisiana, and tested several hypotheses of plasticity in wetlands tree responses to interacting environmental variables. The model outperformed traditional multiple linear regression. More importantly, optimized response parameters were generally similar among sites with varying hydrological conditions, suggesting generality to the functions. Model forms that included interacting responses to multiple forcing factors were more effective than were single response functions, indicating the principle of a single limiting factor is not correct in wetlands and both climatic and hydrological variables must be considered in predicting responses to hydrological or climate change.

  6. Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species' response to climate change.

    PubMed

    Lawing, A Michelle; Polly, P David

    2011-01-01

    Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM) and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation paleoclimate models, species' evolutionary relatedness, and species' geographic distributions. We use the stable oxygen isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of change derived from these reconstructions to predict magnitudes and rates of change in species' suitable habitat over the next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We use multiple lines of evidence of past climate (isotopes and climate models), phylogenetic topology (to correct the models for long-term changes in the suitable habitat of a species), and the fossil record, however sparse, to cross check the models. Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of magnitude greater (430-2,420 m/yr) than it has been on average for the past 320 ky (2.3 m/yr).

  7. Pleistocene Climate, Phylogeny, and Climate Envelope Models: An Integrative Approach to Better Understand Species' Response to Climate Change

    PubMed Central

    Lawing, A. Michelle; Polly, P. David

    2011-01-01

    Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM) and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation paleoclimate models, species' evolutionary relatedness, and species' geographic distributions. We use the stable oxygen isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of change derived from these reconstructions to predict magnitudes and rates of change in species' suitable habitat over the next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We use multiple lines of evidence of past climate (isotopes and climate models), phylogenetic topology (to correct the models for long-term changes in the suitable habitat of a species), and the fossil record, however sparse, to cross check the models. Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of magnitude greater (430-2,420 m/yr) than it has been on average for the past 320 ky (2.3 m/yr). PMID:22164305

  8. Exploring climate change vulnerability across sectors and scenarios using indicators of impacts and coping capacity.

    PubMed

    Dunford, R; Harrison, P A; Jäger, J; Rounsevell, M D A; Tinch, R

    Addressing climate change vulnerability requires an understanding of both the level of climate impacts and the capacity of the exposed population to cope. This study developed a methodology for allowing users to explore vulnerability to changes in ecosystem services as a result of climatic and socio-economic changes. It focuses on the vulnerability of Europe across multiple sectors by combining the outputs of a regional integrated assessment (IA) model, the CLIMSAVE IA Platform, with maps of coping capacity based on the five capitals approach. The presented methodology enables stakeholder-derived socio-economic futures to be represented within a quantitative integrated modelling framework in a way that changes spatially and temporally with the socio-economic storyline. Vulnerability was mapped for six key ecosystem services in 40 combined climate and socio-economic scenarios. The analysis shows that, whilst the north and west of Europe are generally better placed to cope with climate impacts than the south and east, coping could be improved in all areas. Furthermore, whilst the lack of coping capacity in dystopian scenarios often leads to greater vulnerability, there are complex interactions between sectors that lead to patterns of vulnerability that vary spatially, with scenario and by sector even within the more utopian futures.

  9. Quantification of biophysical adaptation benefits from Climate-Smart Agriculture using a Bayesian Belief Network.

    PubMed

    de Nijs, Patrick J; Berry, Nicholas J; Wells, Geoff J; Reay, Dave S

    2014-10-20

    The need for smallholder farmers to adapt their practices to a changing climate is well recognised, particularly in Africa. The cost of adapting to climate change in Africa is estimated to be $20 to $30 billion per year, but the total amount pledged to finance adaptation falls significantly short of this requirement. The difficulty of assessing and monitoring when adaptation is achieved is one of the key barriers to the disbursement of performance-based adaptation finance. To demonstrate the potential of Bayesian Belief Networks for describing the impacts of specific activities on climate change resilience, we developed a simple model that incorporates climate projections, local environmental data, information from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from Climate-Smart Agriculture activities in Malawi. This novel approach allows assessment of vulnerability to climate change under different land use activities and can be used to identify appropriate adaptation strategies and to quantify biophysical adaptation benefits from activities that are implemented. We suggest that multiple-indicator Bayesian Belief Network approaches can provide insights into adaptation planning for a wide range of applications and, if further explored, could be part of a set of important catalysts for the expansion of adaptation finance.

  10. Quantification of biophysical adaptation benefits from Climate-Smart Agriculture using a Bayesian Belief Network

    NASA Astrophysics Data System (ADS)

    de Nijs, Patrick J.; Berry, Nicholas J.; Wells, Geoff J.; Reay, Dave S.

    2014-10-01

    The need for smallholder farmers to adapt their practices to a changing climate is well recognised, particularly in Africa. The cost of adapting to climate change in Africa is estimated to be $20 to $30 billion per year, but the total amount pledged to finance adaptation falls significantly short of this requirement. The difficulty of assessing and monitoring when adaptation is achieved is one of the key barriers to the disbursement of performance-based adaptation finance. To demonstrate the potential of Bayesian Belief Networks for describing the impacts of specific activities on climate change resilience, we developed a simple model that incorporates climate projections, local environmental data, information from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from Climate-Smart Agriculture activities in Malawi. This novel approach allows assessment of vulnerability to climate change under different land use activities and can be used to identify appropriate adaptation strategies and to quantify biophysical adaptation benefits from activities that are implemented. We suggest that multiple-indicator Bayesian Belief Network approaches can provide insights into adaptation planning for a wide range of applications and, if further explored, could be part of a set of important catalysts for the expansion of adaptation finance.

  11. Energy efficiency to reduce residential electricity and natural gas use under climate change

    PubMed Central

    Reyna, Janet L.; Chester, Mikhail V.

    2017-01-01

    Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple climate change projections and investigate the potential for energy efficiency to offset increased demand. We calibrate residential energy use against metered data, accounting for differences in building materials and appliances. Under temperature increases, we find that without policy intervention, residential electricity demand could increase by as much as 41–87% between 2020 and 2060. However, aggressive policies aimed at upgrading heating/cooling systems and appliances could result in electricity use increases as low as 28%, potentially avoiding the installation of new generation capacity. We therefore recommend aggressive energy efficiency, in combination with low-carbon generation sources, to offset projected increases in residential energy demand. PMID:28504255

  12. Does what you know matter? Investigating the relationship between mental models of climate change and pro-environmental behaviors

    NASA Astrophysics Data System (ADS)

    Davis, R.

    2013-12-01

    The purpose of this study is to test the conjecture that environmentally sustainable decisions and behaviors are related to individuals' conceptions of the natural world, in this case climate change; individuals' attitudes towards climate change; and the situations in which these decisions are made. The nature of mental models is an ongoing subject of disagreement. Some argue that mental models are coherent theories, much like scientific theories, that individuals employ systematically when reasoning about the world (Gopnik & Meltzoff, 1998). Others maintain that mental models are cobbled together from fragmented collections of ideas that are only loosely connected and context dependent (Disessa, 1988; Minstrell, 2000). It is likely that individuals sometimes reason about complex phenomena using systematic mental models and at other times reason using knowledge that is organized in fragmented pieces (Steedle & Shavelson, 2009). Thus, in measuring mental models of complex environmental systems, such as climate change, the assumption of systematicity may not be justified. Individuals may apply certain chains of reasoning in some contexts but not in others. The current study hypothesizes that an accurate mental model of climate change enables an individual to make effective evaluative judgments of environmental behavior options. The more an individual's mental model resembles that of an expert, the more consistent, accurate and automatic these judgments become. However, an accurate mental model is not sufficient to change environmental behavior. Real decisions and behaviors are products of a person-situation interaction: an interplay between psychosocial factors (such as knowledge and attitudes) and the situation in which the decision is made. This study investigates the relationship between both psychosocial and situational factors for climate change decisions. Data was collected from 436 adult participants through an online survey. The survey was comprised of demographic questions; three discreet instruments measuring (1) mental models of climate change, (2) attitudes and beliefs about climate change, and (3) self-reported behaviors; and an experimental intervention, followed by a behavioral intention question. Latent class analysis (LCA) and item-response theory (IRT) will be employed to analyze multiple-choice responses to the mental model survey to create groupings of individuals assumed to hold similar mental of climate change. A principal component analysis (PCA) using oblique rotation was employed to identify five scales (Chronbach's alpha > 0.80) within the attitude/belief instrument. Total and sub-scale scores were also calculated for self-reported behaviors. The relationships between mental models, attitudes and behaviors will be analyzed using multiple regression models. This work presents not only the development and validation of three novel instruments for accurately and efficiently measuring mental models, attitudes, and self-reported behaviors, but also provides insight into the types of mental models individuals hold. Understanding how climate change is conceptualized and how such knowledge influences attitudes and behaviors gives educators tools for guiding students towards more expert understandings while also enabling environmentalists to craft more effective messages.

  13. Downscaled climate projections for the Southeast United States: evaluation and use for ecological applications

    USGS Publications Warehouse

    Wootten, Adrienne; Smith, Kara; Boyles, Ryan; Terando, Adam; Stefanova, Lydia; Misra, Vasru; Smith, Tom; Blodgett, David L.; Semazzi, Fredrick

    2014-01-01

    Climate change is likely to have many effects on natural ecosystems in the Southeast U.S. The National Climate Assessment Southeast Technical Report (SETR) indicates that natural ecosystems in the Southeast are likely to be affected by warming temperatures, ocean acidification, sea-level rise, and changes in rainfall and evapotranspiration. To better assess these how climate changes could affect multiple sectors, including ecosystems, climatologists have created several downscaled climate projections (or downscaled datasets) that contain information from the global climate models (GCMs) translated to regional or local scales. The process of creating these downscaled datasets, known as downscaling, can be carried out using a broad range of statistical or numerical modeling techniques. The rapid proliferation of techniques that can be used for downscaling and the number of downscaled datasets produced in recent years present many challenges for scientists and decisionmakers in assessing the impact or vulnerability of a given species or ecosystem to climate change. Given the number of available downscaled datasets, how do these model outputs compare to each other? Which variables are available, and are certain downscaled datasets more appropriate for assessing vulnerability of a particular species? Given the desire to use these datasets for impact and vulnerability assessments and the lack of comparison between these datasets, the goal of this report is to synthesize the information available in these downscaled datasets and provide guidance to scientists and natural resource managers with specific interests in ecological modeling and conservation planning related to climate change in the Southeast U.S. This report enables the Southeast Climate Science Center (SECSC) to address an important strategic goal of providing scientific information and guidance that will enable resource managers and other participants in Landscape Conservation Cooperatives to make science-based climate change adaptation decisions.

  14. Increasing Communities Capacity to Effectively Address Climate Change Through Education, Civic Engagement and Workforce Development

    NASA Astrophysics Data System (ADS)

    Niepold, F., III; Ledley, T. S.; Stanton, C.; Fraser, J.; Scowcroft, G. A.

    2017-12-01

    Understanding the causes, effects, risks, and developing the social will and skills for responses to global change is a major challenge of the 21st century that requires coordinated contributions from the sciences, social sciences, humanities, arts, and beyond. There have been many effective efforts to implement climate change education, civic engagement and related workforce development programs focused on a multitude of audiences, topics and in multiple regions. This talk will focus on how comprehensive educational efforts across our communities are needed to support cities and their primary industries as they prepare for, and embrace, a low-carbon economy and develop the related workforce.While challenges still exist in identifying and coordinating all stakeholders, managing and leveraging resources, and resourcing and scaling effective programs to increase impact and reach, climate and energy literacy leaders have developed initiatives with broad input to identify the understandings and structures for climate literacy collective impact and to develop regional/metropolitan strategy that focuses its collective impact efforts on local climate issues, impacts and opportunities. This Climate Literacy initiative envisions education as a central strategy for community's civic actions in the coming decades by key leaders who have the potential to foster the effective and innovative strategies that will enable their communities to seize opportunity and prosperity in a post-carbon and resilient future. This talk discusses the advances and collaborations in the Climate Change Education community over the last decade by U.S. federal and non-profit organization that have been made possible through the partnerships of the Climate Literacy & Energy Awareness Network (CLEAN), U.S. National Science Foundation funded Climate Change Education Partnership (CCEP) Alliance, and the Tri-Agency Climate Change Education Collaborative.

  15. Geophysical features influence the climate change sensitivity of northern Wisconsin pine and oak forests.

    PubMed

    Tweiten, Michael A; Calcote, Randy R; Lynch, Elizabeth A; Hotchkiss, Sara C; Schuurman, Gregor W

    2015-10-01

    Landscape-scale vulnerability assessment from multiple sources, including paleoecological site histories, can inform climate change adaptation. We used an array of lake sediment pollen and charcoal records to determine how soils and landscape factors influenced the variability of forest composition change over the past 2000 years. The forests in this study are located in northwestern Wisconsin on a sandy glacial outwash plain. Soils and local climate vary across the study area. We used the Natural Resource Conservation Service's Soil Survey Geographic soil database and published fire histories to characterize differences in soils and fire history around each lake site. Individual site histories differed in two metrics of past vegetation dynamics: the extent to which white pine (Pinus strobus) increased during the Little Ice Age (LIA) climate period and the volatility in the rate of change between samples at 50-120 yr intervals. Greater increases of white pine during the LIA occurred on sites with less sandy soils (R² = 0.45, P < 0.0163) and on sites with relatively warmer and drier local climate (R² = 0.55, P < 0.0056). Volatility in the rate of change between samples was positively associated with LIA fire frequency (R² = 0.41, P < 0.0256). Over multi-decadal to centennial timescales, forest compositional change and rate-of-change volatility were associated with higher fire frequency. Over longer (multi-centennial) time frames, forest composition change, especially increased white pine, shifted most in sites with more soil moisture. Our results show that responsiveness of forest composition to climate change was influenced by soils, local climate, and fire. The anticipated climatic changes in the next century will not produce the same community dynamics on the same soil types as in the past, but understanding past dynamics and relationships can help us assess how novel factors and combinations of factors in the future may influence various site types. Our results support climate change adaptation efforts to monitor and conserve the landscape's full range of geophysical features.

  16. Diverse Responses of Global Vegetation to Climate Changes: Spatial Patterns and Time-lag Effects

    NASA Astrophysics Data System (ADS)

    Wu, D.; Zhao, X.; Zhou, T.; Huang, K.; Xu, W.

    2014-12-01

    Global climate changes have enormous influences on vegetation growth, meanwhile, response of vegetation to climate express space diversity and time-lag effects, which account for spatial-temporal disparities of climate change and spatial heterogeneity of ecosystem. Revelation of this phenomenon will help us further understanding the impact of climate change on vegetation. Assessment and forecast of global environmental change can be also improved under further climate change. Here we present space diversity and time-lag effects patterns of global vegetation respond to three climate factors (temperature, precipitation and solar radiation) based on quantitative analysis of satellite data (NDVI) and Climate data (Climate Research Unit). We assessed the time-lag effects of global vegetation to main climate factors based on the great correlation fitness between NDVI and the three climate factors respectively among 0-12 months' temporal lags. On this basis, integrated response model of NDVI and the three climate factors was built to analyze contribution of different climate factors to vegetation growth with multiple regression model and partial correlation model. In the result, different vegetation types have distinct temporal lags to the three climate factors. For the precipitation, temporal lags of grasslands are the shortest while the evergreen broad-leaf forests are the longest, which means that grasslands are more sensitive to precipitation than evergreen broad-leaf forests. Analysis of different climate factors' contribution to vegetation reveal that vegetation are dominated by temperature in the high northern latitudes; they are mainly restricted by precipitation in arid and semi-arid areas (Australia, Western America); in humid areas of low and intermediate latitudes (Amazon, Eastern America), vegetation are mainly influenced by solar radiation. Our results reveal the time-lag effects and major driving factors of global vegetation growth and explain the spatiotemporal variations of global vegetation in last 30 years. Significantly, it is as well as in forecasting and assessing the influences of future climate change on the vegetation dynamics. This work was supported by the High Technology Research and Development Program of China (Grant NO.2013AA122801).

  17. Global Climate Change for Kids: Making Difficult Ideas Accessible and Exciting

    NASA Astrophysics Data System (ADS)

    Fisher, D. K.; Leon, N.; Greene, M. P.

    2009-12-01

    NASA has recently launched its Global Climate Change web site (http://climate.nasa.gov), and it has been very well received. It has now also launched in preliminary form an associated site for children and educators, with a plan for completion in the near future. The goals of the NASA Global Climate Change Education site are: To increase awareness and understanding of climate change science in upper-elementary and middle-school students, reinforcing and building upon basic concepts introduced in the formal science education curriculum for these grades; To present, insofar as possible, a holistic picture of climate change science and current evidence of climate change, describing Earth as a system of interconnected processes; To be entertaining and motivating; To be clear and easy to understand; To be easy to navigate; To address multiple learning styles; To describe and promote "green" careers; To increase awareness of NASA's contributions to climate change science; To provide valuable resources for educators; To be compliant with Section 508 of the Americans with Disabilities Act. The site incorporates research findings not only on climate change, but also on effective web design for children. It is envisioned that most of the content of the site will ultimately be presented in multimedia forms. These will include illustrated and narrated "slide shows," animated expositions, interactive concept-rich games and demonstrations, videos, animated fictionalized stories, and printable picture galleries. In recognition of the attention span of the audience, content is presented in short, modular form, with a suggested, but not mandatory order of access. Empathetic animal and human cartoon personalities are used to explain concepts and tell stories. Expository, fiction, game, video, text, and image modules are interlinked for reinforcement of similar ideas. NASA's Global Climate Change Education web site addresses the vital need to impart and emphasize Earth system science concepts at or near the beginning of the education pipeline.

  18. Difficult decisions: Migration from Small Island Developing States under climate change

    NASA Astrophysics Data System (ADS)

    Kelman, Ilan

    2015-04-01

    The impacts of climate change on Small Island Developing States (SIDS) are leading to discussions regarding decision-making about the potential need to migrate. Despite the situation being well-documented, with many SIDS aiming to raise the topic to prominence and to take action for themselves, limited support and interest has been forthcoming from external sources. This paper presents, analyzes, and critiques a decision-making flowchart to support actions for SIDS dealing with climate change-linked migration. The flowchart contributes to identifying the pertinent topics to consider and the potential support needed to implement decision-making. The flowchart has significant limitations and there are topics which it cannot resolve. On-the-ground considerations include who decides, finances, implements, monitors, and enforces each decision. Additionally, views within communities differ, hence mechanisms are needed for dealing with differences, while issues to address include moral and legal blame for any climate change-linked migration, the ultimate goal of the decision-making process, the wider role of migration in SIDS communities and the right to judge decision-making and decisions. The conclusions summarize the paper, emphasizing the importance of considering contexts beyond climate change and multiple SIDS voices.

  19. Global water resources affected by human interventions and climate change.

    PubMed

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-04

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.

  20. Global water resources affected by human interventions and climate change

    PubMed Central

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  1. Use of NARCCAP Model Projections to Develop a Future Typical Meteorological Year and Estimate the Impact of a Changing Climate on Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Patton, S. L.; Takle, E. S.; Passe, U.; Kalvelage, K.

    2013-12-01

    Current simulations of building energy consumption use weather input files based on the past thirty years of climate observations. These 20th century climate conditions may be inadequate when designing buildings meant to function well into the 21st century. An alternative is using model projections of climate change to estimate future risk to the built environment. In this study, model-projected changes in climate were combined with existing typical meteorological year data to create future typical meteorological year data. These data were then formatted for use in EnergyPlus simulation software to evaluate their potential impact on commercial building energy consumption. The modeled climate data were taken from the North American Regional Climate Change Assessment Program (NARCCAP). NARCCAP uses results of global climate models to drive regional climate models, also known as dynamical downscaling. This downscaling gives higher resolution results over specific locations, and the multiple global/regional climate model combinations provide a unique opportunity to quantify the uncertainty of climate change projections and their impacts. Our results show a projected decrease in heating energy consumption and a projected increase in cooling energy consumption for nine locations across the United States for all model combinations. Warmer locations may expect a decrease in heating load of around 30% to 45% and an increase in cooling load of around 25% to 35%. Colder locations may expect a decrease in heating load of around 15% to 25% and an increase in cooling load of around 40% to 70%. The change in net energy consumption is determined by the balance between the magnitudes of heating change and cooling change. Net energy consumption is projected to increase by an average of 5% for lower-latitude locations and decrease by an average of 5% for higher-latitude locations. With these projected annual and seasonal changes presenting strong evidence for the unsuitable nature of current building practices holding up under future climate change, we recommend using our methods and results to make modifications and adaptations to existing buildings and to aid in the design of future buildings.

  2. ECOLOGICAL RISK ASSESSMENT IN THE CONTEXT OF GLOBAL CLIMATE CHANGE

    PubMed Central

    Landis, Wayne G; Durda, Judi L; Brooks, Marjorie L; Chapman, Peter M; Menzie, Charles A; Stahl, Ralph G; Stauber, Jennifer L

    2013-01-01

    Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause–effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses—include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process. Environ. Toxicol. Chem. 2013;32:79–92. © 2012 SETAC PMID:23161373

  3. Ecological risk assessment in the context of global climate change.

    PubMed

    Landis, Wayne G; Durda, Judi L; Brooks, Marjorie L; Chapman, Peter M; Menzie, Charles A; Stahl, Ralph G; Stauber, Jennifer L

    2013-01-01

    Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause-effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses-include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process. Copyright © 2012 SETAC.

  4. Grassland agriculture

    USDA-ARS?s Scientific Manuscript database

    Agriculture in grassland environments is facing multiple stresses from: shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Degrad...

  5. Selecting climate change scenarios for regional hydrologic impact studies based on climate extremes indices

    NASA Astrophysics Data System (ADS)

    Seo, Seung Beom; Kim, Young-Oh; Kim, Youngil; Eum, Hyung-Il

    2018-04-01

    When selecting a subset of climate change scenarios (GCM models), the priority is to ensure that the subset reflects the comprehensive range of possible model results for all variables concerned. Though many studies have attempted to improve the scenario selection, there is a lack of studies that discuss methods to ensure that the results from a subset of climate models contain the same range of uncertainty in hydrologic variables as when all models are considered. We applied the Katsavounidis-Kuo-Zhang (KKZ) algorithm to select a subset of climate change scenarios and demonstrated its ability to reduce the number of GCM models in an ensemble, while the ranges of multiple climate extremes indices were preserved. First, we analyzed the role of 27 ETCCDI climate extremes indices for scenario selection and selected the representative climate extreme indices. Before the selection of a subset, we excluded a few deficient GCM models that could not represent the observed climate regime. Subsequently, we discovered that a subset of GCM models selected by the KKZ algorithm with the representative climate extreme indices could not capture the full potential range of changes in hydrologic extremes (e.g., 3-day peak flow and 7-day low flow) in some regional case studies. However, the application of the KKZ algorithm with a different set of climate indices, which are correlated to the hydrologic extremes, enabled the overcoming of this limitation. Key climate indices, dependent on the hydrologic extremes to be projected, must therefore be determined prior to the selection of a subset of GCM models.

  6. Using multiple climate projections for assessing hydrological response to climate change in the Thukela River Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Graham, L. Phil; Andersson, Lotta; Horan, Mark; Kunz, Richard; Lumsden, Trevor; Schulze, Roland; Warburton, Michele; Wilk, Julie; Yang, Wei

    This study used climate change projections from different regional approaches to assess hydrological effects on the Thukela River Basin in KwaZulu-Natal, South Africa. Projecting impacts of future climate change onto hydrological systems can be undertaken in different ways and a variety of effects can be expected. Although simulation results from global climate models (GCMs) are typically used to project future climate, different outcomes from these projections may be obtained depending on the GCMs themselves and how they are applied, including different ways of downscaling from global to regional scales. Projections of climate change from different downscaling methods, different global climate models and different future emissions scenarios were used as input to simulations in a hydrological model to assess climate change impacts on hydrology. A total of 10 hydrological change simulations were made, resulting in a matrix of hydrological response results. This matrix included results from dynamically downscaled climate change projections from the same regional climate model (RCM) using an ensemble of three GCMs and three global emissions scenarios, and from statistically downscaled projections using results from five GCMs with the same emissions scenario. Although the matrix of results does not provide complete and consistent coverage of potential uncertainties from the different methods, some robust results were identified. In some regards, the results were in agreement and consistent for the different simulations. For others, particularly rainfall, the simulations showed divergence. For example, all of the statistically downscaled simulations showed an annual increase in precipitation and corresponding increase in river runoff, while the RCM downscaled simulations showed both increases and decreases in runoff. According to the two projections that best represent runoff for the observed climate, increased runoff would generally be expected for this basin in the future. Dealing with such variability in results is not atypical for assessing climate change impacts in Africa and practitioners are faced with how to interpret them. This work highlights the need for additional, well-coordinated regional climate downscaling for the region to further define the range of uncertainties involved.

  7. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks

    Treesearch

    John B. Bradford; Shawn Fraver; Amy M. Milo; Anthony W. D' Amato; Brian J. Palik

    2012-01-01

    Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing...

  8. Optimal function explains forest responses to global change

    Treesearch

    Roderick Dewar; Oskar Franklin; Annikki Makela; Ross E. McMurtrie; Harry T. Valentine

    2009-01-01

    Plant responses to global changes in carbon dioxide (CO2), nitrogen, and water availability are critical to future atmospheric CO2 concentrations, hydrology, and hence climate. Our understanding of those responses is incomplete, however. Multiple-resource manipulation experiments and empirical observations have revealed a...

  9. EXPLAINING FOREST COMPOSITION AND BIOMASS ACROSS MULTIPLE BIOGEOGRAPHIC REGIONS

    EPA Science Inventory

    Current scientific concerns regarding the impacts of global change include the responses of forest composition and biomass to rapid changes in climate, and forest gap models, have often been used to address this issue. These models reflect the concept that forest composition and...

  10. Warming and Elevated CO2 Interact to Drive Rapid Shifts in Marine Community Production.

    PubMed

    Sorte, Cascade J B; Bracken, Matthew E S

    2015-01-01

    Predicting the outcome of future climate change requires an understanding of how alterations in multiple environmental factors manifest in natural communities and affect ecosystem functioning. We conducted an in situ, fully factorial field manipulation of CO2 and temperature on a rocky shoreline in southeastern Alaska, USA. Warming strongly impacted functioning of tide pool systems within one month, with the rate of net community production (NCP) more than doubling in warmed pools under ambient CO2 levels relative to initial NCP values. However, in pools with added CO2, NCP was unaffected by warming. Productivity responses paralleled changes in the carbon-to-nitrogen ratio of a red alga, the most abundant primary producer species in the system, highlighting the direct link between physiology and ecosystem functioning. These observed changes in algal physiology and community productivity in response to our manipulations indicate the potential for natural systems to shift rapidly in response to changing climatic conditions and for multiple environmental factors to act antagonistically.

  11. Warming and Elevated CO2 Interact to Drive Rapid Shifts in Marine Community Production

    PubMed Central

    Sorte, Cascade J. B.; Bracken, Matthew E. S.

    2015-01-01

    Predicting the outcome of future climate change requires an understanding of how alterations in multiple environmental factors manifest in natural communities and affect ecosystem functioning. We conducted an in situ, fully factorial field manipulation of CO2 and temperature on a rocky shoreline in southeastern Alaska, USA. Warming strongly impacted functioning of tide pool systems within one month, with the rate of net community production (NCP) more than doubling in warmed pools under ambient CO2 levels relative to initial NCP values. However, in pools with added CO2, NCP was unaffected by warming. Productivity responses paralleled changes in the carbon-to-nitrogen ratio of a red alga, the most abundant primary producer species in the system, highlighting the direct link between physiology and ecosystem functioning. These observed changes in algal physiology and community productivity in response to our manipulations indicate the potential for natural systems to shift rapidly in response to changing climatic conditions and for multiple environmental factors to act antagonistically. PMID:26714167

  12. Using conceptual maps to assess students' climate change understanding and misconceptions

    NASA Astrophysics Data System (ADS)

    Gautier, C.

    2011-12-01

    The complex and interdisciplinary nature of climate change science poses special challenges for educators in helping students understand the climate system, and how it is evolving under natural and anthropogenic forcing. Students and citizens alike have existing mental models that may limit their perception and processing of the multiple relationships between processes (e.g., feedback) that arise in global change science, and prevent adoption of complex scientific concepts. Their prior knowledge base serves as the scaffold for all future learning and grasping its range and limitations serves as an important basis upon which to anchor instruction. Different instructional strategies can be adopted to help students understand the inherently interdisciplinary topic of global climate change, its interwoven human and natural causes, and the connections it has with society through a complex range of political, social, technological and economic factors. One assessment method for students' understanding of global climate change with its many uncertainties, whether associated with the workings of the climate system or with respect to social, cultural and economic processes that mediate human responses to changes within the system, is through the use of conceptual maps. When well designed, they offer a representation of students' mental model prior and post instruction. We will present two conceptual mapping activities used in the classroom to assess students' knowledge and understanding about global climate change and uncover misconceptions. For the first one, concept maps will be used to demonstrate evidence of learning and conceptual change, while for the second we will show how conceptual maps can provide information about gaps in knowledge and misconceptions students have about the topic.

  13. Team climate at Antarctic research stations 1996-2000: leadership matters.

    PubMed

    Schmidt, Lacey L; Wood, JoAnna; Lugg, Desmond J

    2004-08-01

    The popular assumption is that extreme environments induce a climate of hostility, incompatibility, and tension by intensifying differences and disagreements among team members. Team members' perceptions of team climate are likely to change over time in an extreme environment, and thus team climate should be considered as a dynamic outcome variable resulting from multiple factors. In order to explore team climate as a dynamic outcome, we explored whether variables at multiple levels of analysis contributed to team climate over time for teams living and working in Antarctica. Data for this study were collected from volunteers involved in Australian National Antarctic Research Expeditions conducted from 1996 to 2000. Multilevel analysis was used to partition and estimate the variance in team climate and to explore factors explaining variance at the group/team, individual, and weekly levels. Most of the variance in perceptions of team climate was at the individual level (57%). Team climate had less variance at the group level (16%) and at the weekly level (26%). Results indicated that perceived leadership effectiveness was significantly related to team climate. Perceived leadership effectiveness accounted for an estimated 77% of the group level variance, which equated to 14% of the overall variance in team climate. Our results suggest that exploring the characteristics and behaviors that constitute effective leadership would contribute to a more complete and useful picture of team climate, as well as guide selection research.

  14. Multiple greenhouse gas feedbacks from the land biosphere under future climate change scenarios

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin; Roth, Raphael; Joos, Fortunat; Spahni, Renato; Steinacher, Marco; Zaehle, Soenke; Bouwman, Lex; Xu-Ri, Xu-Ri; Prentice, Colin

    2013-04-01

    Atmospheric concentrations of the three important greenhouse gases (GHG) CO2, CH4, and N2O are mediated by processes in the terrestrial biosphere. The sensitivity of terrestrial GHG emissions to climate and CO2 contributed to the sharp rise in atmospheric GHG concentrations since preindustrial times and leads to multiple feedbacks between the terrestrial biosphere and the climate system. The strength of these feedbacks is determined by (i) the sensitivity of terrestrial GHG emissions to climate and CO2 and (ii) the greenhouse warming potential of the respective gas. Here, we quantify feedbacks from CO2, CH4, N2O, and land surface albedo in a consistent and comprehensive framework based on a large set of simulations conducted with an Earth System Model of Intermediate Complexity. The modeled sensitivities of CH4 and N2O emissions are tested, demonstrating that independent data for non-land (anthropogenic, oceanic, etc.) GHG emissions, combined with simulated emissions from natural and agricultural land reproduces historical atmospheric budgets within their uncertainties. 21st-century scenarios for climate, land use change and reactive nitrogen inputs (Nr) are applied to investigate future GHG emissions. Results suggest that in a business-as-usual scenario, terrestrial N2O emissions increase from 9.0 by today to 9.8-11.1 (RCP 2.6) and 14.2-17.0 TgN2O-N/yr by 2100 (RCP 8.5). Without anthropogenic Nr inputs, the amplification is reduced by 24-32%. Soil CH4 emissions increase from 221 at present to 228-245 in RCP 2.6 and to 303-343 TgCH4/yr in RCP 8.5, and the land becomes a net source of C by 2100 AD. Feedbacks from land imply an additional warming of 1.3-1.5°C by 2300 in RCP 8.5, 0.4-0.5°C of which are due to N2O and CH4. The combined effect of multiple GHGs and albedo represents an increasingly positive total feedback to anthropogenic climate change with positive individual feedbacks from CH4, N2O, and albedo outweighing the diminishing negative feedback from CO2 fertilisation of terrestrial C storage. This positive feedback from terrestrial biogeochemistry amplifies the traditionally defined physical equilibrium climate sensitivity by 23-28%, Strong mitigation, reducing Nr inputs and preserving natural vegetation limits the amplification of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier of anthropogenic climate change.

  15. Air Pollution Prevention and Control Policy in China.

    PubMed

    Huang, Cunrui; Wang, Qiong; Wang, Suhan; Ren, Meng; Ma, Rui; He, Yiling

    2017-01-01

    With rapid urbanization and development of transport infrastructure, air pollution caused by multiple-pollutant emissions and vehicle exhaust has been aggravated year by year in China. In order to improve air quality, the Chinese authorities have taken a series of actions to control air pollution emission load within a permissible range. However, although China has made positive progress on tackling air pollution, these actions have not kept up with its economy growth and fossil-fuel use. The traditional single-pollutant approach is far from enough in China now, and in the near future, air pollution control strategies should move in the direction of the multiple-pollutant approach. In addition, undesirable air quality is usually linked with the combination of high emissions and adverse weather conditions. However, few studies have been done on the influence of climate change on atmospheric chemistry in the global perspective. Available evidence suggested that climate change is likely to exacerbate certain kinds of air pollutants including ozone and smoke from wildfires. This has become a major public health problem because the interactions of global climate change, urban heat islands, and air pollution have adverse effects on human health. In this chapter, we first review the past and current circumstances of China's responses to air pollution. Then we discuss the control challenges and future options for a better air quality in China. Finally, we begin to unravel links between air pollution and climate change, providing new opportunities for integrated research and actions in China.

  16. Climate Literacy Partnership in the Southeast (CLiPSE): A Focus on Climate Change-related Dialogs with Faith-Based Groups as a form of Network Building in the Southeast United States - Lessons Learned

    NASA Astrophysics Data System (ADS)

    Carroll, F. J.; McNeal, K. S.; Hammerman, J.; Christiansen, J.

    2013-05-01

    The Climate Literacy Partnership in the Southeast (CLiPSE, http://CLiPSE-project.org), funded through the National Science Foundation Climate Change Education Partnership program, is dedicated to improving climate literacy in the Southeastern United States (SE US). By promoting science-based formal and informal educational resources, CLiPSE works through a diverse network of key partner organizations in the SE US to conduct effective public dialogues that address diverse audiences and support learning about climate, climate change, and its impact on human and environmental systems. The CLiPSE project successfully created partnerships with more than fifty key stakeholders, including agriculture, education, leisure, and religious organizations, along with culturally diverse communities. This presentation will explain the CLiPSE model for reaching key publics who hold traditional ideologies typically perceived as incompatible with climate change science. We will discuss the results of our interactions with the leaders of our partnering organizations, their knowledge, perceptions, needs, and input in crafting effective messages for their audiences, through addressing both learners' affective and cognitive domains. For the informal education sector, CLiPSE utilized several open discussion and learning forums aimed to promote critical thinking and civil conversation about climate change. Focusing on Faith-based audiences, a key demographic, in the Southeast US, CLiPSE also conducted an online, moderated, author-attended book study, discussing the thoughts and ideas contained in the work, "Green Like God," by Jonathan Merritt. We will share the questions we faced as we focused on and learned about faith-based audiences, such as: What are the barriers and opportunities?; How do we break out of the assumptions that we have to find the common ground?; How do the audiences understand the issues?; How do we understand the issues?; What common language can we find?; What happens when we bringing the multiple the multiple identities of faith and science together within ourselves and those we are trying to build relationships with? We will also share the lessons we learned while attempting to answer these questions, such as the role of trust and key influentials/leaders in talking with target audiences, the importance of face-to-face dialog and relationships in trust building.

  17. Spatiotemporal Trends in late-Holocene Fire Regimes in Arctic and Boreal Alaska

    NASA Astrophysics Data System (ADS)

    Hoecker, T. J.; Higuera, P. E.; Hu, F.; Kelly, R.

    2015-12-01

    Alaskan arctic and boreal ecosystems are of global importance owing to their sensitivity and feedbacks to directional climate change. Wildfires are a primary driver of boreal carbon balance, and altered fire regimes may significantly impact global climate through the release of stored carbon and changes to surface albedo. Paleoecological records provide a window to how these systems respond to change by revealing climatic and disturbance variability throughout the Holocene. These long-term records highlight the sensitivity of fire regimes to climate and vegetation change, including responses to the relatively warm Medieval Climate Anomaly (MCA), and the relatively cool Little Ice Age (LIA). Over millennial timescales, boreal forests and arctic tundra have been resilient to climate change, but continued directional climate change may result in novel vegetation compositions and fire regimes, with potentially significant implications for global climate. Here we present a spatiotemporal synthesis of 22 published sediment-charcoal records from three Alaskan ecoregions. We add to this network eight records collected in June 2015 from an additional ecoregion. Variability in fire return intervals (FRIs) was quantified within and among ecoregions and climatic periods spanning the past 2 millennia, based on a peak analysis representing local fire events. Preliminary results suggest that fire regimes were responsive to centennial-scale climatic shifts, including the MCA and LIA, but the degree of sensitivity varies by ecoregion. Over the past 2000 years, FRIs were shortest during the MCA, indicating the potential for climate warming to promote high rates of burning. FRIs in tundra regions of northwestern Alaska and in interior boreal forests were 20% shorter during the MCA than during the LIA, and 25% shorter in boreal forest in the south-central Brooks Range. Burning was likely promoted during the warmer, drier MCA through lower fuel moisture. Quantifying fire-regime response to climate forcing across multiple ecoregions helps reveal the mechanisms that connect fire and climate in Alaskan ecosystems.

  18. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin D.; Roth, Raphael; Joos, Fortunat; Spahni, Renato; Steinacher, Marco; Zaehle, Soenke; Bouwman, Lex; Xu-Ri; Prentice, Iain Colin

    2013-07-01

    Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4-0.5°C by AD 2300; on top of 0.8-1.0°C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22-27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.

  19. Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources.

    PubMed

    Buotte, Polly C; Peterson, David L; McKelvey, Kevin S; Hicke, Jeffrey A

    2016-03-15

    Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability assessment conducted by the US Forest Service. During this assessment, five subregional workshops were held to capture variability in vulnerability and to develop adaptation tactics. At each workshop, participants answered a questionnaire to: 1) identify species, resources, or other information missing from the regional assessment, and 2) describe subregional vulnerability to climate change. Workshop participants divided into six resource groups; here we focus on wildlife resources. Participants identified information missing from the regional assessment and multiple instances of subregional variability in climate change vulnerability. We provide recommendations for improving the process of capturing subregional variability in a regional vulnerability assessment. We propose a revised conceptual framework structured around pathways of climate influence, each with separate rankings for exposure, sensitivity, and adaptive capacity. These revisions allow for a quantitative ranking of species, pathways, exposure, sensitivity, and adaptive capacity across subregions. Rankings can be used to direct the development and implementation of future regional research and monitoring programs. The revised conceptual framework is equally applicable as a stand-alone model for assessing climate change vulnerability and as a nested model within a regional assessment for capturing subregional variability in vulnerability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. How are coastal households responding to climate change?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrick-Barr, Carmen E.; Smith, Timothy F.; Preston, Benjamin L.

    In Australia, shared responsibility is a concept advocated to promote collective climate change adaptation by multiple actors and institutions. However, a shared response is often promoted in the absence of information regarding actions currently taken; in particular, there is limited knowledge regarding action occurring at the household scale. To address this gap, we examine household actions taken to address climate change and associated hazards in two Australian coastal communities. Mixed methods research is conducted to answer three questions: (1) what actions are currently taken (mitigation, actions to lobby for change or adaptation to climate impacts)? (2) why are these actionsmore » taken (e.g. are they consistent with capacity, experience, perceptions of risk); and (3) what are the implications for adaptation? We find that households are predominantly mitigating greenhouse gas emissions and that impact orientated adaptive actions are limited. Coping strategies are considered sufficient to mange climate risks, proving a disincentive for additional adaptive action. Influencing factors differ, but generally, risk perception and climate change belief are associated with action. Furthermore, the likelihood of more action is a function of homeownership and a tendency to plan ahead. Addressing factors that support or constrain household adaptive decision-making and action, from the physical (e.g. homeownership) to the social (e.g. skills in planning and a culture of adapting to change) will be critical in increasing household participation in adaptation.« less

  1. How are coastal households responding to climate change?

    DOE PAGES

    Elrick-Barr, Carmen E.; Smith, Timothy F.; Preston, Benjamin L.; ...

    2016-06-13

    In Australia, shared responsibility is a concept advocated to promote collective climate change adaptation by multiple actors and institutions. However, a shared response is often promoted in the absence of information regarding actions currently taken; in particular, there is limited knowledge regarding action occurring at the household scale. To address this gap, we examine household actions taken to address climate change and associated hazards in two Australian coastal communities. Mixed methods research is conducted to answer three questions: (1) what actions are currently taken (mitigation, actions to lobby for change or adaptation to climate impacts)? (2) why are these actionsmore » taken (e.g. are they consistent with capacity, experience, perceptions of risk); and (3) what are the implications for adaptation? We find that households are predominantly mitigating greenhouse gas emissions and that impact orientated adaptive actions are limited. Coping strategies are considered sufficient to mange climate risks, proving a disincentive for additional adaptive action. Influencing factors differ, but generally, risk perception and climate change belief are associated with action. Furthermore, the likelihood of more action is a function of homeownership and a tendency to plan ahead. Addressing factors that support or constrain household adaptive decision-making and action, from the physical (e.g. homeownership) to the social (e.g. skills in planning and a culture of adapting to change) will be critical in increasing household participation in adaptation.« less

  2. A multiple-proxy approach to understanding rapid Holocene climate change in Southeast Greenland

    NASA Astrophysics Data System (ADS)

    Davin, S. H.; Bradley, R. S.; Balascio, N. L.; de Wet, G.

    2012-12-01

    The susceptibility of the Arctic to climate change has made it an excellent workshop for paleoclimatological research. Although there have been previous studies concerning climate variability carried out in the Arctic, there remains a critical dearth of knowledge due the limited number of high-resolution Holocene climate-proxy records available from this region. This gap skews our understanding of observed and predicted climate change, and fuels uncertainty both in the realms of science and policy. This study takes a comprehensive approach to tracking Holocene climate variability in the vicinity of Tasiilaq, Southeast Greenland using a ~5.6 m sediment core from Lower Sermilik Lake. An age-depth model for the core has been established using 8 radiocarbon dates, the oldest of which was taken at 4 m down core and has been been dated to approximately 6.2 kyr BP. The bottom meter of the core below the final radiocarbon date contains a transition from cobbles and coarse sand to organic-rich laminations, indicating the termination of direct glacial influence and therefore likely marking the end of the last glacial period in this region. The remainder of the core is similarly organic-rich, with light-to-dark brown laminations ranging from 0.5 -1 cm in thickness and riddled with turbidites. Using this core in tandem with findings from an on-site assessment of the geomorphic history of the locale we attempt to assess and infer the rapid climatic shifts associated with the Holocene on a sub-centennial scale. Such changes include the termination of the last glacial period, the Mid-Holocene Climatic Optimum, the Neoglacial Period, the Medieval Climatic Optimum, and the Little Ice Age. A multiple proxy approach including magnetic susceptibility, bulk organic geochemistry, elemental profiles acquired by XRF scanning, grain-size, and spectral data will be used to characterize the sediment and infer paleoclimate conditions. Additionally, percent biogenic silica by weight has been quantified via diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and validated by a traditional wet leaching method. The use of the emerging DRIFTS technology to obtain inferred biogenic silica concentrations has not been widely applied to arctic lacustrine sediments and will help to contribute to the presently limited pool of literature on the topic. Preliminary results of the data reveal high frequency fluctuations between laminations superimposed on long-term trends, which has revealed already some correlation with Holocene climatic events. The data provided by this barrage of proxies is to be presented and will contribute to the understanding of Holocene Arctic climate change at a sub-centennial scale.

  3. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change.

    PubMed

    Carroll, Carlos; Lawler, Joshua J; Roberts, David R; Hamann, Andreas

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth's surface to maintain constant climatic conditions. However, "analog-based" velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961-2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site's future climate, can facilitate conservation of diversity at multiple scales in the face of climate change.

  4. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change

    PubMed Central

    Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site’s future climate, can facilitate conservation of diversity at multiple scales in the face of climate change. PMID:26466364

  5. Designing a new cropping system for high productivity and sustainable water usage under climate change

    PubMed Central

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-01-01

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) –summer maize system. The M-M system improved yield by 14–31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr−1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions. PMID:28155860

  6. A multi-disciplinary approach for the integrated assessment of water alterations under climate change

    NASA Astrophysics Data System (ADS)

    Sperotto, Anna; Torresan, Silvia; Molina, Jose Luis; Pulido Velazquez, Manuel; Critto, Andrea; Marcomini, Antonio

    2017-04-01

    Understanding the co-evolution and interrelations between natural and human pressures on water systems is required to ensure a sustainable management of resources under uncertain climate change conditions. To pursue multi-disciplinary research is therefore necessary to consider the multiplicity of stressors affecting water resources, take into account alternative perspectives (i.e. social, economic and environmental objective and priorities) and deal with uncertainty which characterize climate change scenarios. However, approaches commonly adopted in water quality assessment are predominantly mono-disciplinary, single-stressors oriented and apply concepts and models specific of different academic disciplines (e.g. physics, hydrology, ecology, sociology, economy) which, in fact, seldom shed their conceptual blinders failing to provide truly integrated results. In this context, the paper discusses the benefits and limits of adopting a multi-disciplinary approach where different knowledge domains collaborate and quantitative and qualitative information, coming from multiple conceptual and model-based research, are integrated in a harmonic manner. Specifically, Bayesian Networks are used as meta-modelling tool for structuring and combining the probabilistic information available in existing hydrological models, climate change and land use projections, historical observations and expert opinion. The developed network allows to perform a stochastic multi-risk assessment considering the interlacing between climate (i.e. irregularities in water regime) and land use changes (i.e. agriculture, urbanization) and their cascading impacts on water quality parameters (i.e. nutrients loadings). Main objective of the model is the development of multi-risk scenarios to assess and communicate the probability of not meeting a "Good chemical water status" over future timeframe taking into account projected climatic and not climatic conditions. The outcomes are finally used to identify tradeoffs between different water uses and perspectives, thus promoting the implementation of best practices for adaptation and management with ancillary co-benefits and cross-sectoral implications (i.e. tourism, fishing, biodiversity). Some preliminary results, describing the application of the model in the Dese-Zero river estuary, one of the main tributaries of the Venice Lagoon in Italy, will be here presented and discussed.

  7. How Philadelphia is Integrating Climate Science and Policy: Changing Capital Planning Processes and Developing Flood-Depth Tools

    NASA Astrophysics Data System (ADS)

    Bhat, C.; Dix, B.; Choate, A.; Wong, A.; Asam, S.; Schultz, P. A.

    2016-12-01

    Policy makers can implement more effective climate change adaptation programs if they are provided with two tools: accessible information on the impacts that they need to prepare for, and clear guidance on how to integrate climate change considerations into their work. This presentation will highlight recent and ongoing efforts at the City of Philadelphia to integrate climate science into their decision-making. These efforts include developing a climate change information visualization tool, climate change risk assessments across the city, and processes to integrate climate change into routine planning and budgeting practices. The goal of these efforts is to make climate change science highly targeted to decision maker needs, non-political, easily accessible, and actionable. While sea level rise inundation maps have been available to communities for years, the maps do not effectively communicate how the design of a building or a piece of infrastructure would need to be modified to protect it. The Philadelphia Flood Risk Viewer is an interactive planning tool that allows Philadelphia to identify projected depths of flooding for any location within the City, for a variety of sea level rise and storm surge scenarios. Users can also determine whether a location is located in a FEMA floodplain. By having access to information on the projected depth of flooding at a given location, the City can determine what flood protection measures may be effective, or even inform the long-term viability of developing a particular area. With an understanding of climate vulnerabilities, cities have the opportunity to make smart, climate-resilient investments with their capital budgets that will yield multiple benefits for years to come. Few, however, have established protocols for doing so. Philadelphia, with support from ICF, developed a guidance document that identifies recommendations for integrating climate change considerations throughout the Capital Program and capital budgeting process. For each recommendation, the guidance also provides supplemental resources and information to make the recommendations actionable. Philadelphia is applying the guidance in their FY 2017 capital planning activities and taking advantage of opportunities to grow stronger in the face of climate change.

  8. Climate change indices for Greenland applied directly for other arctic regions - Enhanced and utilized climate information from one high resolution RCM downscaling for Greenland evaluated through pattern scaling and CMIP5

    NASA Astrophysics Data System (ADS)

    Olesen, M.; Christensen, J. H.; Boberg, F.

    2016-12-01

    Climate change indices for Greenland applied directly for other arctic regions - Enhanced and utilized climate information from one high resolution RCM downscaling for Greenland evaluated through pattern scaling and CMIP5Climate change affects the Greenlandic society both advantageously and disadvantageously. Changes in temperature and precipitation patterns may result in changes in a number of derived society related climate indices, such as the length of growing season or the number of annual dry days or a combination of the two - indices of substantial importance to society in a climate adaptation context.Detailed climate indices require high resolution downscaling. We have carried out a very high resolution (5 km) simulation with the regional climate model HIRHAM5, forced by the global model EC-Earth. Evaluation of RCM output is usually done with an ensemble of downscaled output with multiple RCM's and GCM's. Here we have introduced and tested a new technique; a translation of the robustness of an ensemble of GCM models from CMIP5 into the specific index from the HIRHAM5 downscaling through a correlation between absolute temperatures and its corresponding index values from the HIRHAM5 output.The procedure is basically conducted in two steps: First, the correlation between temperature and a given index for the HIRHAM5 simulation by a best fit to a second order polynomial is identified. Second, the standard deviation from the CMIP5 simulations is introduced to show the corresponding standard deviation of the index from the HIRHAM5 run. The change of specific climate indices due to global warming will then be possible to evaluate elsewhere corresponding to the change in absolute temperature.Results based on selected indices with focus on the future climate in Greenland calculated for the rcp4.5 and rcp8.5 scenarios will be presented.

  9. Identification of Photosynthetic Plankton Communities Using Sedimentary Ancient DNA and Their Response to late-Holocene Climate Change on the Tibetan Plateau

    PubMed Central

    Hou, Weiguo; Dong, Hailiang; Li, Gaoyuan; Yang, Jian; Coolen, Marco J. L.; Liu, Xingqi; Wang, Shang; Jiang, Hongchen; Wu, Xia; Xiao, Haiyi; Lian, Bin; Wan, Yunyang

    2014-01-01

    Sediments from Tibetan lakes in NW China are potentially sensitive recorders of climate change and its impact on ecosystem function. However, the important plankton members in many Tibetan Lakes do not make and leave microscopically diagnostic features in the sedimentary record. Here we established a taxon-specific molecular approach to specifically identify and quantify sedimentary ancient DNA (sedaDNA) of non-fossilized planktonic organisms preserved in a 5-m sediment core from Kusai Lake spanning the last 3100 years. The reliability of the approach was validated with multiple independent genetic markers. Parallel analyses of the geochemistry of the core and paleo-climate proxies revealed that Monsoon strength-driven changes in nutrient availability, temperature, and salinity as well as orbitally-driven changes in light intensity were all responsible for the observed temporal changes in the abundance of two dominant phytoplankton groups in the lake, Synechococcus (cyanobacteria) and Isochrysis (haptophyte algae). Collectively our data show that global and regional climatic events exhibited a strong influence on the paleoecology of phototrophic plankton in Kusai Lake. PMID:25323386

  10. Quantifying the Climate Impacts of Land Use Change (Invited)

    NASA Astrophysics Data System (ADS)

    Anderson-Teixeira, K. J.; Snyder, P. K.; Twine, T. E.

    2010-12-01

    Climate change mitigation efforts that involve land use decisions call for comprehensive quantification of the climate services of terrestrial ecosystems. This is particularly imperative for analyses of the climate impact of bioenergy production, as land use change is often the single most important factor in determining bioenergy’s sustainability. However, current metrics of the climate services of terrestrial ecosystems used for policy applications—including biofuels life cycle analyses—account only for biogeochemical climate services (greenhouse gas regulation), ignoring biophysical climate regulation services (regulation of water and energy balances). Policies thereby run the risk of failing to advance the best climate solutions. Here, we present a quantitative metric that combines biogeochemical and biophysical climate services of terrestrial ecosystems, the ‘climate regulation value’ (CRV), which characterizes the climate benefit of maintaining an ecosystem over a multiple-year time frame. Using a combination of data synthesis and modeling, we calculate the CRV for a variety of natural and managed ecosystem types within the western hemisphere. Biogeochemical climate services are generally positive in unmanaged ecosystems (clearing the ecosystem has a warming effect), and may be positive or negative (clearing the ecosystem has a cooling effect) for managed ecosystems. Biophysical climate services may be either positive (e.g., tropical forests) or negative (e.g., high latitude forests). When averaged on a global scale, biogeochemical services usually outweigh biophysical services; however, biophysical climate services are not negligible. This implies that effective analysis of the climate impacts of bioenergy production must consider the integrated effects of biogeochemical and biophysical ecosystem climate services.

  11. Mid-latitude shrub steppe plant communities: climate change consequences for soil water resources.

    PubMed

    Palmquist, Kyle A; Schlaepfer, Daniel R; Bradford, John B; Lauenroth, William K

    2016-09-01

    In the coming century, climate change is projected to impact precipitation and temperature regimes worldwide, with especially large effects in drylands. We use big sagebrush ecosystems as a model dryland ecosystem to explore the impacts of altered climate on ecohydrology and the implications of those changes for big sagebrush plant communities using output from 10 Global Circulation Models (GCMs) for two representative concentration pathways (RCPs). We ask: (1) What is the magnitude of variability in future temperature and precipitation regimes among GCMs and RCPs for big sagebrush ecosystems, and (2) How will altered climate and uncertainty in climate forecasts influence key aspects of big sagebrush water balance? We explored these questions across 1980-2010, 2030-2060, and 2070-2100 to determine how changes in water balance might develop through the 21st century. We assessed ecohydrological variables at 898 sagebrush sites across the western US using a process-based soil water model, SOILWAT, to model all components of daily water balance using site-specific vegetation parameters and site-specific soil properties for multiple soil layers. Our modeling approach allowed for changes in vegetation based on climate. Temperature increased across all GCMs and RCPs, whereas changes in precipitation were more variable across GCMs. Winter and spring precipitation was predicted to increase in the future (7% by 2030-2060, 12% by 2070-2100), resulting in slight increases in soil water potential (SWP) in winter. Despite wetter winter soil conditions, SWP decreased in late spring and summer due to increased evapotranspiration (6% by 2030-2060, 10% by 2070-2100) and groundwater recharge (26% and 30% increase by 2030-2060 and 2070-2100). Thus, despite increased precipitation in the cold season, soils may dry out earlier in the year, resulting in potentially longer, drier summer conditions. If winter precipitation cannot offset drier summer conditions in the future, we expect big sagebrush regeneration and survival will be negatively impacted, potentially resulting in shifts in the relative abundance of big sagebrush plant functional groups. Our results also highlight the importance of assessing multiple GCMs to understand the range of climate change outcomes on ecohydrology, which was contingent on the GCM chosen. © 2016 by the Ecological Society of America.

  12. Climate change: the evidence and our options.

    PubMed

    Thompson, Lonnie G

    2010-01-01

    Glaciers serve as early indicators of climate change. Over the last 35 years, our research team has recovered ice-core records of climatic and environmental variations from the polar regions and from low-latitude high-elevation ice fields from 16 countries. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides some of the strongest evidence to date that a large-scale, pervasive, and, in some cases, rapid change in Earth's climate system is underway. This paper highlights observations of 20th and 21st century glacier shrinkage in the Andes, the Himalayas, and on Mount Kilimanjaro. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds of years to multiple millennia, suggesting that climatological conditions that dominate those regions today are different from those under which these ice fields originally accumulated and have been sustained. The current warming is therefore unusual when viewed from the millennial perspective provided by multiple lines of proxy evidence and the 160-year record of direct temperature measurements. Despite all this evidence, plus the well-documented continual increase in atmospheric greenhouse gas concentrations, societies have taken little action to address this global-scale problem. Hence, the rate of global carbon dioxide emissions continues to accelerate. As a result of our inaction, we have three options: mitigation, adaptation, and suffering.

  13. Climate Change: The Evidence and Our Options

    PubMed Central

    Thompson, Lonnie G

    2010-01-01

    Glaciers serve as early indicators of climate change. Over the last 35 years, our research team has recovered ice-core records of climatic and environmental variations from the polar regions and from low-latitude high-elevation ice fields from 16 countries. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides some of the strongest evidence to date that a large-scale, pervasive, and, in some cases, rapid change in Earth's climate system is underway. This paper highlights observations of 20th and 21st century glacier shrinkage in the Andes, the Himalayas, and on Mount Kilimanjaro. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds of years to multiple millennia, suggesting that climatological conditions that dominate those regions today are different from those under which these ice fields originally accumulated and have been sustained. The current warming is therefore unusual when viewed from the millennial perspective provided by multiple lines of proxy evidence and the 160-year record of direct temperature measurements. Despite all this evidence, plus the well-documented continual increase in atmospheric greenhouse gas concentrations, societies have taken little action to address this global-scale problem. Hence, the rate of global carbon dioxide emissions continues to accelerate. As a result of our inaction, we have three options: mitigation, adaptation, and suffering. PMID:22532707

  14. Spatiotemporal Patterns of Evapotranspiration in Response to Multiple Environmental Factors Simulated by the Community Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoying; Mao, Jiafu; Thornton, P.

    Spatiotemporal patterns of evapotranspiration (ET) over the period from 1982 to 2008 are investigated and attributed to multiple environmental factors using the Community Land Model version 4 (CLM4). Our results show that CLM4 captures the spatial distribution and interannual variability of ET well when compared to observation-based estimates. We find that climate dominates the predicted variability in ET. Elevated atmospheric CO2 concentration also plays an important role in modulating the trend of predicted ET over most land areas, and replaces climate to function as the dominant factor controlling ET changes over the North America, South America and Asia regions. Comparedmore » to the effect of climate and CO2 concentration, the roles of other factors such as nitrogen deposition, land use change and aerosol deposition are less pronounced and regionally dependent. The aerosol deposition contribution is the third most important factor for trends of ET over Europe, while it has the smallest impact over other regions. As ET is a dominant component of the terrestrial water cycle, our results suggest that environmental factors like elevated CO2, nitrogen and aerosol depositions, and land use change, in addition to climate, could have significant impact on future projections of water resources and water cycle dynamics at global and regional scales.« less

  15. Beyond climate envelopes: effects of weather on regional population trends in butterflies.

    PubMed

    WallisDeVries, Michiel F; Baxter, Wendy; Van Vliet, Arnold J H

    2011-10-01

    Although the effects of climate change on biodiversity are increasingly evident by the shifts in species ranges across taxonomical groups, the underlying mechanisms affecting individual species are still poorly understood. The power of climate envelopes to predict future ranges has been seriously questioned in recent studies. Amongst others, an improved understanding of the effects of current weather on population trends is required. We analysed the relation between butterfly abundance and the weather experienced during the life cycle for successive years using data collected within the framework of the Dutch Butterfly Monitoring Scheme for 40 species over a 15-year period and corresponding climate data. Both average and extreme temperature and precipitation events were identified, and multiple regression was applied to explain annual changes in population indices. Significant weather effects were obtained for 39 species, with the most frequent effects associated with temperature. However, positive density-dependence suggested climatic independent trends in at least 12 species. Validation of the short-term predictions revealed a good potential for climate-based predictions of population trends in 20 species. Nevertheless, data from the warm and dry year of 2003 indicate that negative effects of climatic extremes are generally underestimated for habitat specialists in drought-susceptible habitats, whereas generalists remain unaffected. Further climatic warming is expected to influence the trends of 13 species, leading to an improvement for nine species, but a continued decline in the majority of species. Expectations from climate envelope models overestimate the positive effects of climate change in northwestern Europe. Our results underline the challenge to include population trends in predicting range shifts in response to climate change.

  16. An Integrated Modeling Framework Forecasting Ecosystem Exposure— A Systems Approach to the Cumulative Impacts of Multiple Stressors

    EPA Science Inventory

    Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change enco...

  17. Vulnerability of eco-environmental health to climate change: the views of government stakeholders and other specialists in Queensland, Australia.

    PubMed

    Strand, Linn B; Tong, Shilu; Aird, Rosemary; McRae, David

    2010-07-28

    There is overwhelming scientific evidence that human activities have changed and will continue to change the climate of the Earth. Eco-environmental health, which refers to the interdependencies between ecological systems and population health and well-being, is likely to be significantly influenced by climate change. The aim of this study was to examine perceptions from government stakeholders and other relevant specialists about the threat of climate change, their capacity to deal with it, and how to develop and implement a framework for assessing vulnerability of eco-environmental health to climate change. Two focus groups were conducted in Brisbane, Australia with representatives from relevant government agencies, non-governmental organisations, and the industry sector (n = 15) involved in the discussions. The participants were specialists on climate change and public health from governmental agencies, industry, and non-governmental organisations in South-East Queensland. The specialists perceived climate change to be a threat to eco-environmental health and had substantial knowledge about possible implications and impacts. A range of different methods for assessing vulnerability were suggested by the participants and the complexity of assessment when dealing with multiple hazards was acknowledged. Identified factors influencing vulnerability were perceived to be of a social, physical and/or economic nature. They included population growth, the ageing population with associated declines in general health and changes in the vulnerability of particular geographical areas due to for example, increased coastal development, and financial stress. Education, inter-sectoral collaboration, emergency management (e.g. development of early warning systems), and social networks were all emphasised as a basis for adapting to climate change. To develop a framework, different approaches were discussed for assessing eco-environmental health vulnerability, including literature reviews to examine the components of vulnerability such as natural hazard risk and exposure and to investigate already existing frameworks for assessing vulnerability. The study has addressed some important questions in regard to government stakeholders and other specialists' views on the threat of climate change and its potential impacts on eco-environmental health. These findings may have implications in climate change and public health decision-making.

  18. Vulnerability of eco-environmental health to climate change: the views of government stakeholders and other specialists in Queensland, Australia

    PubMed Central

    2010-01-01

    Background There is overwhelming scientific evidence that human activities have changed and will continue to change the climate of the Earth. Eco-environmental health, which refers to the interdependencies between ecological systems and population health and well-being, is likely to be significantly influenced by climate change. The aim of this study was to examine perceptions from government stakeholders and other relevant specialists about the threat of climate change, their capacity to deal with it, and how to develop and implement a framework for assessing vulnerability of eco-environmental health to climate change. Methods Two focus groups were conducted in Brisbane, Australia with representatives from relevant government agencies, non-governmental organisations, and the industry sector (n = 15) involved in the discussions. The participants were specialists on climate change and public health from governmental agencies, industry, and non-governmental organisations in South-East Queensland. Results The specialists perceived climate change to be a threat to eco-environmental health and had substantial knowledge about possible implications and impacts. A range of different methods for assessing vulnerability were suggested by the participants and the complexity of assessment when dealing with multiple hazards was acknowledged. Identified factors influencing vulnerability were perceived to be of a social, physical and/or economic nature. They included population growth, the ageing population with associated declines in general health and changes in the vulnerability of particular geographical areas due to for example, increased coastal development, and financial stress. Education, inter-sectoral collaboration, emergency management (e.g. development of early warning systems), and social networks were all emphasised as a basis for adapting to climate change. To develop a framework, different approaches were discussed for assessing eco-environmental health vulnerability, including literature reviews to examine the components of vulnerability such as natural hazard risk and exposure and to investigate already existing frameworks for assessing vulnerability. Conclusion The study has addressed some important questions in regard to government stakeholders and other specialists' views on the threat of climate change and its potential impacts on eco-environmental health. These findings may have implications in climate change and public health decision-making. PMID:20663227

  19. Past and future hydro-climatic change and the 2015 drought in the interior of western Canada

    NASA Astrophysics Data System (ADS)

    DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Szeto, K.; Brimelow, J.; Chun, K. P.; Masud, M. B.; Bonsal, B. R.

    2015-12-01

    The interior of western Canada has experienced rapid and severe hydro-climatic change in recent decades. This is projected to continue in future. Since 1950, mean annual air temperature has increased by 2 °C (4 °C increase in winter daily means) with associated changes in cryospheric regime. Changes in precipitation have varied regionally; in the Prairies there has been a decrease in winter precipitation, shift from snowfall to rainfall, and increased clustering of summer rainfall events into multiple day storms. Regionally, river discharge indicates an earlier spring freshet and increased incidence of rain-on-snow peak flow events, but otherwise mixed responses due to multiple process interactions. In winter/spring 2015, persistent anomalous ridging conditions developed over western North America causing widespread drought. This produced abnormally warm and dry conditions over the Rocky Mountain headwaters of the Mackenzie and Saskatchewan Rivers, resulting in low spring snowpacks that melted earlier than normal and were followed by an atypical lack of spring rainfall. By summer 2015, most of western Canada was subject to extreme drought conditions leading to record dry soil moisture conditions in parts of the Prairies during a key crop growth time, streamflows that were greatly diminished, and extensive wildfires across the Boreal Forest. The importance of the warmer winter to this drought and the contextual trend for increasing winter warmth provide new insight into the impact of climate warming on droughts in cold regions. This talk will discuss efforts by the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) to understand and diagnose the 2015 drought, its potential linkages with the concurrent California drought and other continental events, and its relevance in the context of historical and predicted future climate change.

  20. A boundary current drives synchronous growth of marine fishes across tropical and temperate latitudes.

    PubMed

    Ong, Joyce J L; Rountrey, Adam N; Black, Bryan A; Nguyen, Hoang Minh; Coulson, Peter G; Newman, Stephen J; Wakefield, Corey B; Meeuwig, Jessica J; Meekan, Mark G

    2018-05-01

    Entrainment of growth patterns of multiple species to single climatic drivers can lower ecosystem resilience and increase the risk of species extinction during stressful climatic events. However, predictions of the effects of climate change on the productivity and dynamics of marine fishes are hampered by a lack of historical data on growth patterns. We use otolith biochronologies to show that the strength of a boundary current, modulated by the El Niño-Southern Oscillation, accounted for almost half of the shared variance in annual growth patterns of five of six species of tropical and temperate marine fishes across 23° of latitude (3000 km) in Western Australia. Stronger flow during La Niña years drove increased growth of five species, whereas weaker flow during El Niño years reduced growth. Our work is the first to link the growth patterns of multiple fishes with a single oceanographic/climate phenomenon at large spatial scales and across multiple climate zones, habitat types, trophic levels and depth ranges. Extreme La Niña and El Niño events are predicted to occur more frequently in the future and these are likely to have implications for these vulnerable ecosystems, such as a limited capacity of the marine taxa to recover from stressful climatic events. © 2018 John Wiley & Sons Ltd.

  1. Aiding cities in their work on climate change adaptation

    NASA Astrophysics Data System (ADS)

    Hamilton, P.

    2013-12-01

    Urban areas around the world are at the frontlines of climate change because of their enormous aggregate populations and because of their vulnerability to multiple climate change stressors. Half of our planet's 7.1 billion inhabitants currently reside in cities with six billion people projected to call cities home by 2050. In the U.S. and much of the rest of the world, cities are warming at twice the rate of the planet. Superimposed on urban climate changes driven by global warming are the regional effects of urban heat domes driven by large differences in land use, building materials, and vegetation between cities and their rural surroundings. In megacities - those with populations exceeding 10 million people - such as Tokyo - urban heat domes can contribute to daytime temperatures that soar to more than 11°C higher than their rural surroundings. In addition, the localized warming can alter patterns of precipitation in metropolitan regions and perhaps even influence the frequency and severity of severe weather. Municipal officials need to accelerate their efforts to prepare and implement climate change adaptation strategies but what are the institutions that can help enable this work? Informal science education centers can play vital roles because they are overwhelmingly in urban settings and because they can act as ';competent outsiders.' They are neither responsible for conducting climate change research nor accountable for implementing public policies to address climate change. They instead can play an essential role of ensuring that solid science informs the formulation of good practices and policies. It is incumbent, therefore, for informal science education centers to accelerate and enhance their abilities to help translate scientific insights into on-the-ground actions. This session will explore the potential roles of informal science education centers to advance climate change adaptation through a review of the urban climate change education initiatives for municipal officials that the Science Museum of Minnesota has implemented over the past two years.

  2. Avoided economic impacts of energy demand changes by 1.5 and 2 °C climate stabilization

    NASA Astrophysics Data System (ADS)

    Park, Chan; Fujimori, Shinichiro; Hasegawa, Tomoko; Takakura, Jun’ya; Takahashi, Kiyoshi; Hijioka, Yasuaki

    2018-04-01

    Energy demand associated with space heating and cooling is expected to be affected by climate change. There are several global projections of space heating and cooling use that take into consideration climate change, but a comprehensive uncertainty of socioeconomic and climate conditions, including a 1.5 °C global mean temperature change, has never been assessed. This paper shows the economic impact of changes in energy demand for space heating and cooling under multiple socioeconomic and climatic conditions. We use three shared socioeconomic pathways as socioeconomic conditions. For climate conditions, we use two representative concentration pathways that correspond to 4.0 °C and 2.0 °C scenarios, and a 1.5 °C scenario driven from the 2.0 °C scenario with assumption in conjunction with five general circulation models. We find that the economic impacts of climate change are largely affected by socioeconomic assumptions, and global GDP change rates range from +0.21% to ‑2.01% in 2100 under the 4.0 °C scenario, depending on the socioeconomic condition. Sensitivity analysis that differentiates the thresholds of heating and cooling degree days clarifies that the threshold is a strong factor that generates these differences. Meanwhile, the impact of the 1.5 °C is small regardless of socioeconomic assumptions (‑0.02% to ‑0.06%). The economic loss caused by differences in socioeconomic assumption under the 1.5 °C scenario is much smaller than that under the 2 °C scenario, which implies that stringent climate mitigation can work as a risk hedge to socioeconomic development diversity.

  3. Plant developmental responses to climate change.

    PubMed

    Gray, Sharon B; Brady, Siobhan M

    2016-11-01

    Climate change is multi-faceted, and includes changing concentrations of greenhouse gases in the atmosphere, rising temperatures, changes in precipitation patterns, and increasing frequency of extreme weather events. Here, we focus on the effects of rising atmospheric CO 2 concentrations, rising temperature, and drought stress and their interaction on plant developmental processes in leaves, roots, and in reproductive structures. While in some cases these responses are conserved across species, such as decreased root elongation, perturbation of root growth angle and reduced seed yield in response to drought, or an increase in root biomass in shallow soil in response to elevated CO 2 , most responses are variable within and between species and are dependent on developmental stage. These variable responses include species-specific thresholds that arrest development of reproductive structures, reduce root growth rate and the rate of leaf initiation and expansion in response to elevated temperature. Leaf developmental responses to elevated CO 2 vary by cell type and by species. Variability also exists between C 3 and C 4 species in response to elevated CO 2 , especially in terms of growth and seed yield stimulation. At the molecular level, significantly less is understood regarding conservation and variability in molecular mechanisms underlying these traits. Abscisic acid-mediated changes in cell wall expansion likely underlie reductions in growth rate in response to drought, and changes in known regulators of flowering time likely underlie altered reproductive transitions in response to elevated temperature and CO 2 . Genes that underlie most other organ or tissue-level responses have largely only been identified in a single species in response to a single stress and their level of conservation is unknown. We conclude that there is a need for further research regarding the molecular mechanisms of plant developmental responses to climate change factors in general, and that this lack of data is particularly prevalent in the case of interactive effects of multiple climate change factors. As future growing conditions will likely expose plants to multiple climate change factors simultaneously, with a sum negative influence on global agriculture, further research in this area is critical. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Improving models to assess impacts of climate change on Mediterranean water resources

    NASA Astrophysics Data System (ADS)

    Rocha, João; Carvalho Santos, Cláudia; Keizer, Jan Jacob; Alexandre Diogo, Paulo; Nunes, João Pedro

    2016-04-01

    In recent decades, water availability for human consumption has faced major constraints due to increasing pollution and reduced water availability. Water resources availability can gain additional stresses and pressures in the context of potential climate change scenarios. For the last decades, the climate change paradigm has been the scope of many researchers and the focus of decision makers, policies and environmental/climate legislation. Decision-makers face a wide range of constrains, as they are forced to define new strategies that merge planning, management and climate change adaptations. In turn, decision-makers must create integrated strategies aiming at the sustainable use of resources. There are multiple uncertainties associated with climate change impact assessment and water resources. Typically, most studies have dealt with uncertainties in emission scenarios and resulting socio-economic conditions, including land-use and water use. Less frequently, studies have address the disparities between the future climates generated by climate models for the same greenhouse gas concentrations; and the uncertainties related with the limited knowledge of how watersheds work, which also limits the capacity to simulate them with models. Therefore, the objective of this study is to apply the SWAT (Soil and Water Assessment Tool) hydrological model to a catchment in Alentejo, southern Portugal; and to evaluate the uncertainty associated both to the calibration of hydrological models and the use of different climate change scenarios and models (a combination of 4 GCM (General Circulation Models) and 1 RCM (Regional Circulation Models) for the scenarios RCP 4.5 and 8.5. The Alentejo region is highly vulnerable to the effects of potential climate changes with particular focus on water resources availability, despite several reservoirs used for freshwater supply and agriculture irrigation (e.g. the Alqueva reservoir - the largest artificial lake of the Iberian Peninsula). Here the SWAT2012 model was applied to the catchment of Monte Novo and Vigia. The Monte Novo and Vigia reservoirs were selected due to their importance for the district of Évora, respectively for urban water supply and irrigation. The catchment is a multipurpose reservoir system that covers an area of about 81473 ha and drains into the Alqueva reservoir (25.000 ha). The SWAT2012 model was run for 1973-2012. The calibration routines were conducted on a monthly basis using the SWATCUP. The calibration performance rating is expressed by: NSE 0.89, bR² 0.89, Pbias 7.29 (Vigia) and NSE 0.84, bR² 0.83, Pbias 6.29 (Monte Novo). Expected results are a generalized decrease of water availability in the basin, more intense under the scenario RCP 8.5. However the uncertainty related to the use of different climate change models show different outcomes, which may be considered for the strategies to be adopted. We will take advantage of SWAT's automatic calibration capacities to explore how multiple interpretations of present-day hydrological processes could lead to different outputs in future climate scenarios, and compare this uncertainty with other sources of uncertainty related with future scenarios or different outputs from climate models.

  5. Green Hospital and Climate Change: Their Interrelationship and the Way Forward

    PubMed Central

    Kaur, Dilpreet

    2015-01-01

    Climate change is a reality, and the modern healthcare sector not just contributes towards this grave phenomenon but is itself being affected by it. The present review was thus conducted to understand the meaning of ‘Green Hospital’, to identify the many ways in which health sector is contributing towards climate change, to explore possibilities for countering this grave trend and last of all to look for institutions that are pioneering change. Data for the review was extracted from multiple online sources using the Google search engine. It was found that hospitals, being resource intensive establishments, consume vast amounts of electricity, water, food and construction materials to provide high quality care. It was also found that certain healthcare institutions, by employing simple, smart and sustainable measures can greatly reduce their environmental footprint. But constructing Green Hospitals can be a challenge considering the local conditions and growing customer expectations. PMID:26814377

  6. The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacMartin, Douglas G.; Kravitz, Ben; Tilmes, Simone

    The climate response to geoengineering with stratospheric aerosols has the potential to be designed to achieve some chosen objectives. By injecting different amounts of SO2 at multiple different latitudes, the spatial pattern of aerosol optical depth (AOD) can be partially controlled. We use simulations from the fully-coupled whole-atmosphere chemistry-climate model CESM1(WACCM), to demonstrate that three spatial degrees of freedom of AOD can be achieved by appropriately combining injection at different locations: an approximately spatially-uniform AOD distribution, the relative difference in AOD between Northern and Southern hemispheres, and the relative AOD in high versus low latitudes. For forcing levels that yieldmore » 1–2°C cooling, the AOD and surface temperature response are sufficiently linear in this model so that many climate effects can be predicted from single-latitude injection simulations. Optimized injection at multiple locations is predicted to improve compensation of CO2-forced climate change, relative to a case using only equatorial aerosol injection. The additional degrees of freedom can be used, for example, to balance interhemispheric temperature differences and the equator to pole temperature difference in addition to the global mean temperature; this is projected in this model to reduce the mean-square error in temperature compensation by 30%.« less

  7. Energy and technology lessons since Rio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.

    2012-11-01

    The 1992 Framework Convention on Climate Change created the basic international architecture for addressing climate change. That treaty was negotiated at a time when the research literature examining emissions mitigation and the role of energy technology was relatively limited. In the two subsequent decades a great deal has been learned. The problem of stabilizing the concentration of greenhouse gases in the atmosphere has proved far more difficult than envisioned in 1992 and the role of technology appears even more important when emissions mitigation strategies are co-developed in the context of multiple competing ends.

  8. Climate uncertainty and implications for U.S. state-level risk assessment through 2050.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loose, Verne W.; Lowry, Thomas Stephen; Malczynski, Leonard A.

    2009-10-01

    Decisions for climate policy will need to take place in advance of climate science resolving all relevant uncertainties. Further, if the concern of policy is to reduce risk, then the best-estimate of climate change impacts may not be so important as the currently understood uncertainty associated with realizable conditions having high consequence. This study focuses on one of the most uncertain aspects of future climate change - precipitation - to understand the implications of uncertainty on risk and the near-term justification for interventions to mitigate the course of climate change. We show that the mean risk of damage to themore » economy from climate change, at the national level, is on the order of one trillion dollars over the next 40 years, with employment impacts of nearly 7 million labor-years. At a 1% exceedance-probability, the impact is over twice the mean-risk value. Impacts at the level of individual U.S. states are then typically in the multiple tens of billions dollar range with employment losses exceeding hundreds of thousands of labor-years. We used results of the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report 4 (AR4) climate-model ensemble as the referent for climate uncertainty over the next 40 years, mapped the simulated weather hydrologically to the county level for determining the physical consequence to economic activity at the state level, and then performed a detailed, seventy-industry, analysis of economic impact among the interacting lower-48 states. We determined industry GDP and employment impacts at the state level, as well as interstate population migration, effect on personal income, and the consequences for the U.S. trade balance.« less

  9. Effectiveness of forest management strategies to mitigate effects of global change in Siberia

    Treesearch

    Eric Gustafson; Anatoly Shvidenko; Robert Scheller; Brian Sturtevant

    2011-01-01

    Siberian forest ecosystems are experiencing multiple global changes. Climate change produces direct (temperature and precipitation) and indirect (altered fire regimes and increase in cold-limited insect outbreaks) effects. Although much of Siberia has not yet been subject to timber harvest, the frontier of timber cutting is advancing steadily across the region. We...

  10. Changes in the probability of co-occurring extreme climate events

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.

    2017-12-01

    Extreme climate events such as floods, droughts, heatwaves, and severe storms exert acute stresses on natural and human systems. When multiple extreme events co-occur, either in space or time, the impacts can be substantially compounded. A diverse set of human interests - including supply chains, agricultural commodities markets, reinsurance, and deployment of humanitarian aid - have historically relied on the rarity of extreme events to provide a geographic hedge against the compounded impacts of co-occuring extremes. However, changes in the frequency of extreme events in recent decades imply that the probability of co-occuring extremes is also changing, and is likely to continue to change in the future in response to additional global warming. This presentation will review the evidence for historical changes in extreme climate events and the response of extreme events to continued global warming, and will provide some perspective on methods for quantifying changes in the probability of co-occurring extremes in the past and future.

  11. A Multihazard Regional Level Impact Assessment for South Asia

    NASA Astrophysics Data System (ADS)

    Amarnath, Giriraj; Alahacoon, Niranga; Aggarwal, Pramod; Smakhtin, Vladimir

    2016-04-01

    To prioritize climate adaptation strategies, there is a need for quantitative and systematic regional-level assessments which are comparable across multiple climatic hazard regimes. Assessing which countries in a region are most vulnerable to climate change requires analysis of multiple climatic hazards including: droughts, floods, extreme temperature as well as rainfall and sea-level rise. These five climatic hazards, along with population densities were modelled using GIS which enabled a summary of associated human exposure and agriculture losses. A combined index based on hazard, exposure and adaptive capacity is introduced to identify areas of extreme risks. The analysis results in population climate hazard exposure defined as the relative likelihood that a person in a given location was exposed to a given climate-hazard event in a given period of time. The study presents a detailed and coherent approach to fine-scale climate hazard mapping and identification of risks areas for the regions of South Asia that, for the first time, combines the following unique features: (a) methodological consistency across different climate-related hazards, (b) assessment of total exposure on population and agricultural losses, (c) regional-level spatial coverage, and (d) development of customized tools using ArcGIS toolbox that allow assessment of changes in exposure over time and easy replacement of existing datasets with a newly released or superior datasets. The resulting maps enable comparison of the most vulnerable regions in South Asia to climate-related hazards and is among the most urgent of policy needs. Subnational areas (regions/districts/provinces) most vulnerable to climate change impacts in South Asia are documented. The approach involves overlaying climate hazard maps, sensitivity maps, and adaptive capacity maps following the vulnerability assessment framework of the United Nations' Intergovernmental Panel on Climate Change (IPCC). The study used data on the spatial distribution of various climate-related hazards in 1,398 subnational areas of Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka. An analysis of country-level population exposure showed that approximately 750 million people are affected from combined climate-hazards. Of the affected population 72% are in India, followed by 12% each from Bangladesh and Pakistan. Due in part to the economic importance of agriculture, it was found to be most vulnerable and exposed to climate extremes. An analysis of individual hazards indicates that floods and droughts) are the dominant hazards impacting agricultural areas followed by extreme rainfall, extreme temperature and sea-level rise. Based on this vulnerability assessment, all the regions of Bangladesh and the Indian States in Andhra Pradesh, Bihar, Maharashtra, Karnataka and Orissa; Ampara, Puttalam, Trincomalee, Mannar and Batticaloa in Sri Lanka; Sind and Baluchistan in Pakistan; Central and East Nepal; and the transboundary river basins of Indus, Ganges and Brahmaputra are among the most vulnerable regions in South Asia.

  12. Modeling hydrologic responses to deforestation/forestation and climate change at multiple scales in the Southern US and China

    Treesearch

    Ge Sun; Steven McNulty; Jianbiao Lu; James Vose; Devendra Amayta; Guoyi Zhou; Zhiqiang Zhang

    2006-01-01

    Watershed management and restoration practices require a clear understanding of the basic eco-hydrologic processes and ecosystem responses to disturbances at multiple scales (Bruijnzeel, 2004; Scott et al., 2005). Worldwide century-long forest hydrologic research has documented that deforestation and forestation (i.e. reforestation and afforestation) can have variable...

  13. Reading Multiple Texts about Climate Change: The Relationship between Memory for Sources and Text Comprehension

    ERIC Educational Resources Information Center

    Stromso, Helge I.; Braten, Ivar; Britt, M. Anne

    2010-01-01

    In many situations, readers are asked to learn from multiple documents. Many studies have found that evaluating the trustworthiness and usefulness of document sources is an important skill in such learning situations. There has been, however, no direct evidence that attending to source information helps readers learn from and interpret a…

  14. A multi-disciplinary approach for the integrated assessment of multiple risks in delta areas.

    NASA Astrophysics Data System (ADS)

    Sperotto, Anna; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio

    2016-04-01

    The assessment of climate change related risks is notoriously difficult due to the complex and uncertain combinations of hazardous events that might happen, the multiplicity of physical processes involved, the continuous changes and interactions of environmental and socio-economic systems. One important challenge lies in predicting and modelling cascades of natural and man -made hazard events which can be triggered by climate change, encompassing different spatial and temporal scales. Another regard the potentially difficult integration of environmental, social and economic disciplines in the multi-risk concept. Finally, the effective interaction between scientists and stakeholders is essential to ensure that multi-risk knowledge is translated into efficient adaptation and management strategies. The assessment is even more complex at the scale of deltaic systems which are particularly vulnerable to global environmental changes, due to the fragile equilibrium between the presence of valuable natural ecosystems and relevant economic activities. Improving our capacity to assess the combined effects of multiple hazards (e.g. sea-level rise, storm surges, reduction in sediment load, local subsidence, saltwater intrusion) is therefore essential to identify timely opportunities for adaptation. A holistic multi-risk approach is here proposed to integrate terminology, metrics and methodologies from different research fields (i.e. environmental, social and economic sciences) thus creating shared knowledge areas to advance multi risk assessment and management in delta regions. A first testing of the approach, including the application of Bayesian network analysis for the assessment of impacts of climate change on key natural systems (e.g. wetlands, protected areas, beaches) and socio-economic activities (e.g. agriculture, tourism), is applied in the Po river delta in Northern Italy. The approach is based on a bottom-up process involving local stakeholders early in different stages of the multi-risk assessment process (i.e. identification of objectives, collection of data, definition of risk thresholds and indicators). The results of the assessment will allow the development of multi-risk scenarios enabling the evaluation and prioritization of risk management and adaptation options under changing climate conditions.

  15. Future scenarios of impacts to ecosystem services on California rangelands

    USGS Publications Warehouse

    Byrd, Kristin; Alvarez, Pelayo; Flint, Lorraine; Flint, Alan

    2014-01-01

    The 18 million acres of rangelands in the Central Valley of California provide multiple benefits or “ecosystem services” to people—including wildlife habitat, water supply, open space, recreation, and cultural resources. Most of this land is privately owned and managed for livestock production. These rangelands are vulnerable to land-use conversion and climate change. To help resource managers assess the impacts of land-use change and climate change, U.S. Geological Survey scientists and their cooperators developed scenarios to quantify and map changes to three main rangeland ecosystem services—wildlife habitat, water supply, and carbon sequestration. Project results will help prioritize strategies to conserve these rangelands and the ecosystem services that they provide.

  16. Vulnerability of climate change and its adaptation in the Mekong Delta: monitoring and resident's perception along the coast

    NASA Astrophysics Data System (ADS)

    Tamura, M.; Yasuhara, K.

    2014-12-01

    The Mekong Delta in Vietnam is expected to face challenges from various forms of climate-induced events. In addition, a growing population, which currently stands at 18.6 million people lives in the Mekong Delta, Vietnam. Therefore, the Mekong Delta is the focus of international action for adaptation. However, many climate sensitive regions and communities are unprepared for climate-induced natural disasters due to mismatch in perception with their respective risks. This study examines the vulnerability and appropriate adaptation in the Mekong Delta from both scientific and regional aspects. First, we show the change in coastal areas in Soc Trang province, comparing the past to the present images using Unmanned Aerial Vehicle (UAV) and satellite. We identify some vulnerable areas which derived from multiple factors due to coastal erosion, flooding, and sea level rise. Second, we present results of perception survey about climate change and the adaptation at community level in Ca Mau, Soc Trang, and An Giang Provinces, which were conducted in 2012 and 2014. While the findings suggest varying degrees of adaptation to seasonal flooding by raising the ground floors of their homes and repairing houses, their capacity to prepare for extreme flooding is limited in spite of the residents' awareness of the increasing frequency and intensity of natural disasters. Third, we propose an erosion-resistant dyke reinforcement technique by mixing natural palm tree fiber and cement, both of which are locally available materials in the Mekong Delta. It is expected that adaptation with multiple protections in accordance to regional feature can work well for such coastal disasters.

  17. Visualizing projected Climate Changes - the CMIP5 Multi-Model Ensemble

    NASA Astrophysics Data System (ADS)

    Böttinger, Michael; Eyring, Veronika; Lauer, Axel; Meier-Fleischer, Karin

    2017-04-01

    Large ensembles add an additional dimension to climate model simulations. Internal variability of the climate system can be assessed for example by multiple climate model simulations with small variations in the initial conditions or by analyzing the spread in large ensembles made by multiple climate models under common protocols. This spread is often used as a measure of uncertainty in climate projections. In the context of the fifth phase of the WCRP's Coupled Model Intercomparison Project (CMIP5), more than 40 different coupled climate models were employed to carry out a coordinated set of experiments. Time series of the development of integral quantities such as the global mean temperature change for all models visualize the spread in the multi-model ensemble. A similar approach can be applied to 2D-visualizations of projected climate changes such as latitude-longitude maps showing the multi-model mean of the ensemble by adding a graphical representation of the uncertainty information. This has been demonstrated for example with static figures in chapter 12 of the last IPCC report (AR5) using different so-called stippling and hatching techniques. In this work, we focus on animated visualizations of multi-model ensemble climate projections carried out within CMIP5 as a way of communicating climate change results to the scientific community as well as to the public. We take a closer look at measures of robustness or uncertainty used in recent publications suitable for animated visualizations. Specifically, we use the ESMValTool [1] to process and prepare the CMIP5 multi-model data in combination with standard visualization tools such as NCL and the commercial 3D visualization software Avizo to create the animations. We compare different visualization techniques such as height fields or shading with transparency for creating animated visualization of ensemble mean changes in temperature and precipitation including corresponding robustness measures. [1] Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones, C., Anav, A., Andrews, O., Cionni, I., Davin, E. L., Deser, C., Ehbrecht, C., Friedlingstein, P., Gleckler, P., Gottschaldt, K.-D., Hagemann, S., Juckes, M., Kindermann, S., Krasting, J., Kunert, D., Levine, R., Loew, A., Mäkelä, J., Martin, G., Mason, E., Phillips, A. S., Read, S., Rio, C., Roehrig, R., Senftleben, D., Sterl, A., van Ulft, L. H., Walton, J., Wang, S., and Williams, K. D.: ESMValTool (v1.0) - a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP, Geosci. Model Dev., 9, 1747-1802, doi:10.5194/gmd-9-1747-2016, 2016.

  18. Effects of the Bering Strait closure on AMOC and global climate under different background climates

    NASA Astrophysics Data System (ADS)

    Hu, Aixue; Meehl, Gerald A.; Han, Weiqing; Otto-Bliestner, Bette; Abe-Ouchi, Ayako; Rosenbloom, Nan

    2015-03-01

    Previous studies have suggested that the status of the Bering Strait may have a significant influence on global climate variability on centennial, millennial, and even longer time scales. Here we use multiple versions of the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM, versions 2 and 3) to investigate the influence of the Bering Strait closure/opening on the Atlantic Meridional Overturning Circulation (AMOC) and global mean climate under present-day, 15 thousand-year before present (kyr BP), and 112 kyr BP climate boundary conditions. Our results show that regardless of the version of the model used or the widely different background climates, the Bering Strait's closure produces a robust result of a strengthening of the AMOC, and an increase in the northward meridional heat transport in the Atlantic. As a consequence, the climate becomes warmer in the North Atlantic and the surrounding regions, but cooler in the North Pacific, leading to a seesaw-like climate change between these two basins. For the first time it is noted that the absence of the Bering Strait throughflow causes a slower motion of Arctic sea ice, a reduced upper ocean water exchange between the Arctic and North Atlantic, reduced sea ice export and less fresh water in the North Atlantic. These changes contribute positively to the increased upper ocean density there, thus strengthening the AMOC. Potentially these changes in the North Atlantic could have a significant effect on the ice sheets both upstream and downstream in ice age climate, and further influence global sea level changes.

  19. Climate change impacts on West Nile virus transmission in a global context

    PubMed Central

    Paz, Shlomit

    2015-01-01

    West Nile virus (WNV), the most widely distributed virus of the encephalitic flaviviruses, is a vector-borne pathogen of global importance. The transmission cycle exists in rural and urban areas where the virus infects birds, humans, horses and other mammals. Multiple factors impact the transmission and distribution of WNV, related to the dynamics and interactions between pathogen, vector, vertebrate hosts and environment. Hence, among other drivers, weather conditions have direct and indirect influences on vector competence (the ability to acquire, maintain and transmit the virus), on the vector population dynamic and on the virus replication rate within the mosquito, which are mostly weather dependent. The importance of climatic factors (temperature, precipitation, relative humidity and winds) as drivers in WNV epidemiology is increasing under conditions of climate change. Indeed, recent changes in climatic conditions, particularly increased ambient temperature and fluctuations in rainfall amounts, contributed to the maintenance (endemization process) of WNV in various locations in southern Europe, western Asia, the eastern Mediterranean, the Canadian Prairies, parts of the USA and Australia. As predictions show that the current trends are expected to continue, for better preparedness, any assessment of future transmission of WNV should take into consideration the impacts of climate change. PMID:25688020

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinzman, Larry D.; Bolton, William Robert; Young-Robertson, Jessica

    This project improves meso-scale hydrologic modeling in the boreal forest by: (1) demonstrating the importance of capturing the heterogeneity of the landscape using small scale datasets for parameterization for both small and large basins; (2) demonstrating that in drier parts of the landscape and as the boreal forest dries with climate change, modeling approaches must consider the sensitivity of simulations to soil hydraulic parameters - such as residual water content - that are usually held constant. Thus, variability / flexibility in residual water content must be considered for accurate simulation of hydrologic processes in the boreal forest; (3) demonstrating thatmore » assessing climate change impacts on boreal forest hydrology through multiple model integration must account for direct effects of climate change (temperature and precipitation), and indirect effects from climate impacts on landscape characteristics (permafrost and vegetation distribution). Simulations demonstrated that climate change will increase runoff, but will increase ET to a greater extent and result in a drying of the landscape; and (4) vegetation plays a significant role in boreal hydrologic processes in permafrost free areas that have deciduous trees. This landscape type results in a decoupling of ET and precipitation, a tight coupling of ET and temperature, low runoff, and overall soil drying.« less

Top