Sample records for multiple computer platforms

  1. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms

    NASA Astrophysics Data System (ADS)

    Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian

    2018-01-01

    We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs.

  2. High-speed multiple sequence alignment on a reconfigurable platform.

    PubMed

    Oliver, Tim; Schmidt, Bertil; Maskell, Douglas; Nathan, Darran; Clemens, Ralf

    2006-01-01

    Progressive alignment is a widely used approach to compute multiple sequence alignments (MSAs). However, aligning several hundred sequences by popular progressive alignment tools requires hours on sequential computers. Due to the rapid growth of sequence databases biologists have to compute MSAs in a far shorter time. In this paper we present a new approach to MSA on reconfigurable hardware platforms to gain high performance at low cost. We have constructed a linear systolic array to perform pairwise sequence distance computations using dynamic programming. This results in an implementation with significant runtime savings on a standard FPGA.

  3. Study on the application of mobile internet cloud computing platform

    NASA Astrophysics Data System (ADS)

    Gong, Songchun; Fu, Songyin; Chen, Zheng

    2012-04-01

    The innovative development of computer technology promotes the application of the cloud computing platform, which actually is the substitution and exchange of a sort of resource service models and meets the needs of users on the utilization of different resources after changes and adjustments of multiple aspects. "Cloud computing" owns advantages in many aspects which not merely reduce the difficulties to apply the operating system and also make it easy for users to search, acquire and process the resources. In accordance with this point, the author takes the management of digital libraries as the research focus in this paper, and analyzes the key technologies of the mobile internet cloud computing platform in the operation process. The popularization and promotion of computer technology drive people to create the digital library models, and its core idea is to strengthen the optimal management of the library resource information through computers and construct an inquiry and search platform with high performance, allowing the users to access to the necessary information resources at any time. However, the cloud computing is able to promote the computations within the computers to distribute in a large number of distributed computers, and hence implement the connection service of multiple computers. The digital libraries, as a typical representative of the applications of the cloud computing, can be used to carry out an analysis on the key technologies of the cloud computing.

  4. Embedded-Based Graphics Processing Unit Cluster Platform for Multiple Sequence Alignments

    PubMed Central

    Wei, Jyh-Da; Cheng, Hui-Jun; Lin, Chun-Yuan; Ye, Jin; Yeh, Kuan-Yu

    2017-01-01

    High-end graphics processing units (GPUs), such as NVIDIA Tesla/Fermi/Kepler series cards with thousands of cores per chip, are widely applied to high-performance computing fields in a decade. These desktop GPU cards should be installed in personal computers/servers with desktop CPUs, and the cost and power consumption of constructing a GPU cluster platform are very high. In recent years, NVIDIA releases an embedded board, called Jetson Tegra K1 (TK1), which contains 4 ARM Cortex-A15 CPUs and 192 Compute Unified Device Architecture cores (belong to Kepler GPUs). Jetson Tegra K1 has several advantages, such as the low cost, low power consumption, and high applicability, and it has been applied into several specific applications. In our previous work, a bioinformatics platform with a single TK1 (STK platform) was constructed, and this previous work is also used to prove that the Web and mobile services can be implemented in the STK platform with a good cost-performance ratio by comparing a STK platform with the desktop CPU and GPU. In this work, an embedded-based GPU cluster platform will be constructed with multiple TK1s (MTK platform). Complex system installation and setup are necessary procedures at first. Then, 2 job assignment modes are designed for the MTK platform to provide services for users. Finally, ClustalW v2.0.11 and ClustalWtk will be ported to the MTK platform. The experimental results showed that the speedup ratios achieved 5.5 and 4.8 times for ClustalW v2.0.11 and ClustalWtk, respectively, by comparing 6 TK1s with a single TK1. The MTK platform is proven to be useful for multiple sequence alignments. PMID:28835734

  5. Embedded-Based Graphics Processing Unit Cluster Platform for Multiple Sequence Alignments.

    PubMed

    Wei, Jyh-Da; Cheng, Hui-Jun; Lin, Chun-Yuan; Ye, Jin; Yeh, Kuan-Yu

    2017-01-01

    High-end graphics processing units (GPUs), such as NVIDIA Tesla/Fermi/Kepler series cards with thousands of cores per chip, are widely applied to high-performance computing fields in a decade. These desktop GPU cards should be installed in personal computers/servers with desktop CPUs, and the cost and power consumption of constructing a GPU cluster platform are very high. In recent years, NVIDIA releases an embedded board, called Jetson Tegra K1 (TK1), which contains 4 ARM Cortex-A15 CPUs and 192 Compute Unified Device Architecture cores (belong to Kepler GPUs). Jetson Tegra K1 has several advantages, such as the low cost, low power consumption, and high applicability, and it has been applied into several specific applications. In our previous work, a bioinformatics platform with a single TK1 (STK platform) was constructed, and this previous work is also used to prove that the Web and mobile services can be implemented in the STK platform with a good cost-performance ratio by comparing a STK platform with the desktop CPU and GPU. In this work, an embedded-based GPU cluster platform will be constructed with multiple TK1s (MTK platform). Complex system installation and setup are necessary procedures at first. Then, 2 job assignment modes are designed for the MTK platform to provide services for users. Finally, ClustalW v2.0.11 and ClustalWtk will be ported to the MTK platform. The experimental results showed that the speedup ratios achieved 5.5 and 4.8 times for ClustalW v2.0.11 and ClustalWtk, respectively, by comparing 6 TK1s with a single TK1. The MTK platform is proven to be useful for multiple sequence alignments.

  6. Open-Phylo: a customizable crowd-computing platform for multiple sequence alignment

    PubMed Central

    2013-01-01

    Citizen science games such as Galaxy Zoo, Foldit, and Phylo aim to harness the intelligence and processing power generated by crowds of online gamers to solve scientific problems. However, the selection of the data to be analyzed through these games is under the exclusive control of the game designers, and so are the results produced by gamers. Here, we introduce Open-Phylo, a freely accessible crowd-computing platform that enables any scientist to enter our system and use crowds of gamers to assist computer programs in solving one of the most fundamental problems in genomics: the multiple sequence alignment problem. PMID:24148814

  7. Network-based drug discovery by integrating systems biology and computational technologies

    PubMed Central

    Leung, Elaine L.; Cao, Zhi-Wei; Jiang, Zhi-Hong; Zhou, Hua

    2013-01-01

    Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valuable resources for network-based multi-target drug discovery due to its potential treatment effects by synergy. Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and connections between the drugs and their targeting dynamic network. However, optimization methods of drug combination are insufficient, owning to lacking of tighter integration across multiple ‘-omics’ databases. The newly developed algorithm- or network-based computational models can tightly integrate ‘-omics’ databases and optimize combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of network-based multi-target drugs. However, challenges on further integration across the databases of medicinal herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the methodology and terminology of multiple system biology and herbal database would facilitate the integration. Enhance public accessible databases and the number of research using system biology platform on herbal medicine would be helpful. Further integration across various ‘-omics’ platforms and computational tools would accelerate development of network-based drug discovery and network medicine. PMID:22877768

  8. Teaching individuals with intellectual disability to email across multiple device platforms.

    PubMed

    Cihak, David F; McMahon, Donald; Smith, Cate C; Wright, Rachel; Gibbons, Melinda M

    2014-11-20

    The purpose of this study was to examine the use of email by people with intellectual disability across multiple technological devices or platforms. Four individuals with intellectual disability participated in this study. Participants were taught how to access and send an email on a Windows desktop computer, laptop, and an iPad tablet device. Results indicated a functional relation. All participants acquired and generalized sending and receiving an email from multiple platforms. Conclusions are discussed about the importance of empowering people with intellectual disability by providing multiple means of expression, including the ability to communicate effectively using a variety of devices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A Platform-Independent Plugin for Navigating Online Radiology Cases.

    PubMed

    Balkman, Jason D; Awan, Omer A

    2016-06-01

    Software methods that enable navigation of radiology cases on various digital platforms differ between handheld devices and desktop computers. This has resulted in poor compatibility of online radiology teaching files across mobile smartphones, tablets, and desktop computers. A standardized, platform-independent, or "agnostic" approach for presenting online radiology content was produced in this work by leveraging modern hypertext markup language (HTML) and JavaScript web software technology. We describe the design and evaluation of this software, demonstrate its use across multiple viewing platforms, and make it publicly available as a model for future development efforts.

  10. CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing.

    PubMed

    Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian

    2011-08-30

    Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.

  11. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

    PubMed

    Kumar, Sudhir; Stecher, Glen; Li, Michael; Knyaz, Christina; Tamura, Koichiro

    2018-06-01

    The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.

  12. Cellular computational platform and neurally inspired elements thereof

    DOEpatents

    Okandan, Murat

    2016-11-22

    A cellular computational platform is disclosed that includes a multiplicity of functionally identical, repeating computational hardware units that are interconnected electrically and optically. Each computational hardware unit includes a reprogrammable local memory and has interconnections to other such units that have reconfigurable weights. Each computational hardware unit is configured to transmit signals into the network for broadcast in a protocol-less manner to other such units in the network, and to respond to protocol-less broadcast messages that it receives from the network. Each computational hardware unit is further configured to reprogram the local memory in response to incoming electrical and/or optical signals.

  13. [Construction and analysis of a monitoring system with remote real-time multiple physiological parameters based on cloud computing].

    PubMed

    Zhu, Lingyun; Li, Lianjie; Meng, Chunyan

    2014-12-01

    There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.

  14. CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing

    PubMed Central

    2011-01-01

    Background Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. Results We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. Conclusion The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing. PMID:21878105

  15. e-Science platform for translational biomedical imaging research: running, statistics, and analysis

    NASA Astrophysics Data System (ADS)

    Wang, Tusheng; Yang, Yuanyuan; Zhang, Kai; Wang, Mingqing; Zhao, Jun; Xu, Lisa; Zhang, Jianguo

    2015-03-01

    In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. In past the two-years, we implemented a biomedical image chain including communication, storage, cooperation and computing based on this e-Science platform. In this presentation, we presented the operating status of this system in supporting biomedical imaging research, analyzed and discussed results of this system in supporting multi-disciplines collaboration cross-multiple institutions.

  16. Strategies for Sharing Seismic Data Among Multiple Computer Platforms

    NASA Astrophysics Data System (ADS)

    Baker, L. M.; Fletcher, J. B.

    2001-12-01

    Seismic waveform data is readily available from a variety of sources, but it often comes in a distinct, instrument-specific data format. For example, data may be from portable seismographs, such as those made by Refraction Technology or Kinemetrics, from permanent seismograph arrays, such as the USGS Parkfield Dense Array, from public data centers, such as the IRIS Data Center, or from personal communication with other researchers through e-mail or ftp. A computer must be selected to import the data - usually whichever is the most suitable for reading the originating format. However, the computer best suited for a specific analysis may not be the same. When copies of the data are then made for analysis, a proliferation of copies of the same data results, in possibly incompatible, computer-specific formats. In addition, if an error is detected and corrected in one copy, or some other change is made, all the other copies must be updated to preserve their validity. Keeping track of what data is available, where it is located, and which copy is authoritative requires an effort that is easy to neglect. We solve this problem by importing waveform data to a shared network file server that is accessible to all our computers on our campus LAN. We use a Network Appliance file server running Sun's Network File System (NFS) software. Using an NFS client software package on each analysis computer, waveform data can then be read by our MatLab or Fortran applications without first copying the data. Since there is a single copy of the waveform data in a single location, the NFS file system hierarchy provides an implicit complete waveform data catalog and the single copy is inherently authoritative. Another part of our solution is to convert the original data into a blocked-binary format (known historically as USGS DR100 or VFBB format) that is interpreted by MatLab or Fortran library routines available on each computer so that the idiosyncrasies of each machine are not visible to the user. Commercial software packages, such as MatLab, also have the ability to share data in their own formats across multiple computer platforms. Our Fortran applications can create plot files in Adobe PostScript, Illustrator, and Portable Document Format (PDF) formats. Vendor support for reading these files is readily available on multiple computer platforms. We will illustrate by example our strategies for sharing seismic data among our multiple computer platforms, and we will discuss our positive and negative experiences. We will include our solutions for handling the different byte ordering, floating-point formats, and text file ``end-of-line'' conventions on the various computer platforms we use (6 different operating systems on 5 processor architectures).

  17. Autonomous self-organizing resource manager for multiple networked platforms

    NASA Astrophysics Data System (ADS)

    Smith, James F., III

    2002-08-01

    A fuzzy logic based expert system for resource management has been developed that automatically allocates electronic attack (EA) resources in real-time over many dissimilar autonomous naval platforms defending their group against attackers. The platforms can be very general, e.g., ships, planes, robots, land based facilities, etc. Potential foes the platforms deal with can also be general. This paper provides an overview of the resource manager including the four fuzzy decision trees that make up the resource manager; the fuzzy EA model; genetic algorithm based optimization; co-evolutionary data mining through gaming; and mathematical, computational and hardware based validation. Methods of automatically designing new multi-platform EA techniques are considered. The expert system runs on each defending platform rendering it an autonomous system requiring no human intervention. There is no commanding platform. Instead the platforms work cooperatively as a function of battlespace geometry; sensor data such as range, bearing, ID, uncertainty measures for sensor output; intelligence reports; etc. Computational experiments will show the defending networked platform's ability to self- organize. The platforms' ability to self-organize is illustrated through the output of the scenario generator, a software package that automates the underlying data mining problem and creates a computer movie of the platforms' interaction for evaluation.

  18. Automated platform for designing multiple robot work cells

    NASA Astrophysics Data System (ADS)

    Osman, N. S.; Rahman, M. A. A.; Rahman, A. A. Abdul; Kamsani, S. H.; Bali Mohamad, B. M.; Mohamad, E.; Zaini, Z. A.; Rahman, M. F. Ab; Mohamad Hatta, M. N. H.

    2017-06-01

    Designing the multiple robot work cells is very knowledge-intensive, intricate, and time-consuming process. This paper elaborates the development process of a computer-aided design program for generating the multiple robot work cells which offer a user-friendly interface. The primary purpose of this work is to provide a fast and easy platform for less cost and human involvement with minimum trial and errors adjustments. The automated platform is constructed based on the variant-shaped configuration concept with its mathematical model. A robot work cell layout, system components, and construction procedure of the automated platform are discussed in this paper where integration of these items will be able to automatically provide the optimum robot work cell design according to the information set by the user. This system is implemented on top of CATIA V5 software and utilises its Part Design, Assembly Design, and Macro tool. The current outcomes of this work provide a basis for future investigation in developing a flexible configuration system for the multiple robot work cells.

  19. Convergence Is Real

    ERIC Educational Resources Information Center

    Enyeart, Mike; Staman, E. Michael; Valdes, Jose J., Jr.

    2007-01-01

    The concept of convergence has evolved significantly during recent years. Today, "convergence" refers to the integration of the communications and computing resources and services that seamlessly traverse multiple infrastructures and deliver content to multiple platforms or appliances. Convergence is real. Those in higher education, and especially…

  20. Parallel Agent-Based Simulations on Clusters of GPUs and Multi-Core Processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaby, Brandon G; Perumalla, Kalyan S; Seal, Sudip K

    2010-01-01

    An effective latency-hiding mechanism is presented in the parallelization of agent-based model simulations (ABMS) with millions of agents. The mechanism is designed to accommodate the hierarchical organization as well as heterogeneity of current state-of-the-art parallel computing platforms. We use it to explore the computation vs. communication trade-off continuum available with the deep computational and memory hierarchies of extant platforms and present a novel analytical model of the tradeoff. We describe our implementation and report preliminary performance results on two distinct parallel platforms suitable for ABMS: CUDA threads on multiple, networked graphical processing units (GPUs), and pthreads on multi-core processors. Messagemore » Passing Interface (MPI) is used for inter-GPU as well as inter-socket communication on a cluster of multiple GPUs and multi-core processors. Results indicate the benefits of our latency-hiding scheme, delivering as much as over 100-fold improvement in runtime for certain benchmark ABMS application scenarios with several million agents. This speed improvement is obtained on our system that is already two to three orders of magnitude faster on one GPU than an equivalent CPU-based execution in a popular simulator in Java. Thus, the overall execution of our current work is over four orders of magnitude faster when executed on multiple GPUs.« less

  1. Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds

    NASA Astrophysics Data System (ADS)

    Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.

    In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.

  2. Megatux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-09-25

    The Megatux platform enables the emulation of large scale (multi-million node) distributed systems. In particular, it allows for the emulation of large-scale networks interconnecting a very large number of emulated computer systems. It does this by leveraging virtualization and associated technologies to allow hundreds of virtual computers to be hosted on a single moderately sized server or workstation. Virtualization technology provided by modern processors allows for multiple guest OSs to run at the same time, sharing the hardware resources. The Megatux platform can be deployed on a single PC, a small cluster of a few boxes or a large clustermore » of computers. With a modest cluster, the Megatux platform can emulate complex organizational networks. By using virtualization, we emulate the hardware, but run actual software enabling large scale without sacrificing fidelity.« less

  3. CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research

    PubMed Central

    Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C.

    2014-01-01

    The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction. PMID:24904400

  4. CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research.

    PubMed

    Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C

    2014-01-01

    The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction.

  5. Cloud Computing for Geosciences--GeoCloud for standardized geospatial service platforms (Invited)

    NASA Astrophysics Data System (ADS)

    Nebert, D. D.; Huang, Q.; Yang, C.

    2013-12-01

    The 21st century geoscience faces challenges of Big Data, spike computing requirements (e.g., when natural disaster happens), and sharing resources through cyberinfrastructure across different organizations (Yang et al., 2011). With flexibility and cost-efficiency of computing resources a primary concern, cloud computing emerges as a promising solution to provide core capabilities to address these challenges. Many governmental and federal agencies are adopting cloud technologies to cut costs and to make federal IT operations more efficient (Huang et al., 2010). However, it is still difficult for geoscientists to take advantage of the benefits of cloud computing to facilitate the scientific research and discoveries. This presentation reports using GeoCloud to illustrate the process and strategies used in building a common platform for geoscience communities to enable the sharing, integration of geospatial data, information and knowledge across different domains. GeoCloud is an annual incubator project coordinated by the Federal Geographic Data Committee (FGDC) in collaboration with the U.S. General Services Administration (GSA) and the Department of Health and Human Services. It is designed as a staging environment to test and document the deployment of a common GeoCloud community platform that can be implemented by multiple agencies. With these standardized virtual geospatial servers, a variety of government geospatial applications can be quickly migrated to the cloud. In order to achieve this objective, multiple projects are nominated each year by federal agencies as existing public-facing geospatial data services. From the initial candidate projects, a set of common operating system and software requirements was identified as the baseline for platform as a service (PaaS) packages. Based on these developed common platform packages, each project deploys and monitors its web application, develops best practices, and documents cost and performance information. This paper presents the background, architectural design, and activities of GeoCloud in support of the Geospatial Platform Initiative. System security strategies and approval processes for migrating federal geospatial data, information, and applications into cloud, and cost estimation for cloud operations are covered. Finally, some lessons learned from the GeoCloud project are discussed as reference for geoscientists to consider in the adoption of cloud computing.

  6. A Novel Wiki-Based Remote Laboratory Platform for Engineering Education

    ERIC Educational Resources Information Center

    Wang, Ning; Chen, Xuemin; Lan, Qianlong; Song, Gangbing; Parsaei, Hamid R.; Ho, Siu-Chun

    2017-01-01

    With the unprecedented growth of e-learning, more and more new IT technologies are used to develop e-learning tools. As one of the most common forms of social computing, Wiki technology has been used to develop the collaborative and cooperative learning platform to support multiple users learning online effectively. In this paper, we propose a new…

  7. MeDICi Software Superglue for Data Analysis Pipelines

    ScienceCinema

    Ian Gorton

    2017-12-09

    The Middleware for Data-Intensive Computing (MeDICi) Integration Framework is an integrated middleware platform developed to solve data analysis and processing needs of scientists across many domains. MeDICi is scalable, easily modified, and robust to multiple languages, protocols, and hardware platforms, and in use today by PNNL scientists for bioinformatics, power grid failure analysis, and text analysis.

  8. Multi-source Geospatial Data Analysis with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T.

    2014-12-01

    The Google Earth Engine platform is a cloud computing environment for data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog is a multi-petabyte archive of georeferenced datasets that include images from Earth observing satellite and airborne sensors (examples: USGS Landsat, NASA MODIS, USDA NAIP), weather and climate datasets, and digital elevation models. Earth Engine supports both a just-in-time computation model that enables real-time preview and debugging during algorithm development for open-ended data exploration, and a batch computation mode for applying algorithms over large spatial and temporal extents. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, and resampling, which facilitates writing algorithms that combine data from multiple sensors and/or models. Although the primary use of Earth Engine, to date, has been the analysis of large Earth observing satellite datasets, the computational platform is generally applicable to a wide variety of use cases that require large-scale geospatial data analyses. This presentation will focus on how Earth Engine facilitates the analysis of geospatial data streams that originate from multiple separate sources (and often communities) and how it enables collaboration during algorithm development and data exploration. The talk will highlight current projects/analyses that are enabled by this functionality.https://earthengine.google.org

  9. A Virtual Radial Arm Maze for the Study of Multiple Memory Systems in a Functional Magnetic Resonance Imaging Environment

    PubMed Central

    Xu, Dongrong; Hao, Xuejun; Wang, Zhishun; Duan, Yunsuo; Liu, Feng; Marsh, Rachel; Yu, Shan; Peterson, Bradley S.

    2015-01-01

    An increasing number of functional brain imaging studies are employing computer-based virtual reality (VR) to study changes in brain activity during the performance of high-level psychological and cognitive tasks. We report the development of a VR radial arm maze that adapts for human use in a scanning environment with the same general experimental design of behavioral tasks as that has been used with remarkable effectiveness for the study of multiple memory systems in rodents. The software platform is independent of specific computer hardware and operating systems, as we aim to provide shared access to this technology by the research community. We hope that doing so will provide greater standardization of software platform and study paradigm that will reduce variability and improve the comparability of findings across studies. We report the details of the design and implementation of this platform and provide information for downloading of the system for demonstration and research applications. PMID:26366052

  10. Hypergraph partitioning implementation for parallelizing matrix-vector multiplication using CUDA GPU-based parallel computing

    NASA Astrophysics Data System (ADS)

    Murni, Bustamam, A.; Ernastuti, Handhika, T.; Kerami, D.

    2017-07-01

    Calculation of the matrix-vector multiplication in the real-world problems often involves large matrix with arbitrary size. Therefore, parallelization is needed to speed up the calculation process that usually takes a long time. Graph partitioning techniques that have been discussed in the previous studies cannot be used to complete the parallelized calculation of matrix-vector multiplication with arbitrary size. This is due to the assumption of graph partitioning techniques that can only solve the square and symmetric matrix. Hypergraph partitioning techniques will overcome the shortcomings of the graph partitioning technique. This paper addresses the efficient parallelization of matrix-vector multiplication through hypergraph partitioning techniques using CUDA GPU-based parallel computing. CUDA (compute unified device architecture) is a parallel computing platform and programming model that was created by NVIDIA and implemented by the GPU (graphics processing unit).

  11. Considerations for multiple hypothesis correlation on tactical platforms

    NASA Astrophysics Data System (ADS)

    Thomas, Alan M.; Turpen, James E.

    2013-05-01

    Tactical platforms benefit greatly from the fusion of tracks from multiple sources in terms of increased situation awareness. As a necessary precursor to this track fusion, track-to-track association, or correlation, must first be performed. The related measurement-to-track fusion problem has been well studied with multiple hypothesis tracking and multiple frame assignment methods showing the most success. The track-to-track problem differs from this one in that measurements themselves are not available but rather track state update reports from the measuring sensors. Multiple hypothesis, multiple frame correlation systems have previously been considered; however, their practical implementation under the constraints imposed by tactical platforms is daunting. The situation is further exacerbated by the inconvenient nature of reports from legacy sensor systems on bandwidth- limited communications networks. In this paper, consideration is given to the special difficulties encountered when attempting the correlation of tracks from legacy sensors on tactical aircraft. Those difficulties include the following: covariance information from reporting sensors is frequently absent or incomplete; system latencies can create temporal uncertainty in data; and computational processing is severely limited by hardware and architecture. Moreover, consideration is given to practical solutions for dealing with these problems in a multiple hypothesis correlator.

  12. Platform for efficient switching between multiple devices in the intensive care unit.

    PubMed

    De Backere, F; Vanhove, T; Dejonghe, E; Feys, M; Herinckx, T; Vankelecom, J; Decruyenaere, J; De Turck, F

    2015-01-01

    This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". Handheld computers, such as tablets and smartphones, are becoming more and more accessible in the clinical care setting and in Intensive Care Units (ICUs). By making the most useful and appropriate data available on multiple devices and facilitate the switching between those devices, staff members can efficiently integrate them in their workflow, allowing for faster and more accurate decisions. This paper addresses the design of a platform for the efficient switching between multiple devices in the ICU. The key functionalities of the platform are the integration of the platform into the workflow of the medical staff and providing tailored and dynamic information at the point of care. The platform is designed based on a 3-tier architecture with a focus on extensibility, scalability and an optimal user experience. After identification to a device using Near Field Communication (NFC), the appropriate medical information will be shown on the selected device. The visualization of the data is adapted to the type of the device. A web-centric approach was used to enable extensibility and portability. A prototype of the platform was thoroughly evaluated. The scalability, performance and user experience were evaluated. Performance tests show that the response time of the system scales linearly with the amount of data. Measurements with up to 20 devices have shown no performance loss due to the concurrent use of multiple devices. The platform provides a scalable and responsive solution to enable the efficient switching between multiple devices. Due to the web-centric approach new devices can easily be integrated. The performance and scalability of the platform have been evaluated and it was shown that the response time and scalability of the platform was within an acceptable range.

  13. Analysis of outcomes in radiation oncology: An integrated computational platform

    PubMed Central

    Liu, Dezhi; Ajlouni, Munther; Jin, Jian-Yue; Ryu, Samuel; Siddiqui, Farzan; Patel, Anushka; Movsas, Benjamin; Chetty, Indrin J.

    2009-01-01

    Radiotherapy research and outcome analyses are essential for evaluating new methods of radiation delivery and for assessing the benefits of a given technology on locoregional control and overall survival. In this article, a computational platform is presented to facilitate radiotherapy research and outcome studies in radiation oncology. This computational platform consists of (1) an infrastructural database that stores patient diagnosis, IMRT treatment details, and follow-up information, (2) an interface tool that is used to import and export IMRT plans in DICOM RT and AAPM/RTOG formats from a wide range of planning systems to facilitate reproducible research, (3) a graphical data analysis and programming tool that visualizes all aspects of an IMRT plan including dose, contour, and image data to aid the analysis of treatment plans, and (4) a software package that calculates radiobiological models to evaluate IMRT treatment plans. Given the limited number of general-purpose computational environments for radiotherapy research and outcome studies, this computational platform represents a powerful and convenient tool that is well suited for analyzing dose distributions biologically and correlating them with the delivered radiation dose distributions and other patient-related clinical factors. In addition the database is web-based and accessible by multiple users, facilitating its convenient application and use. PMID:19544785

  14. Software platform virtualization in chemistry research and university teaching

    PubMed Central

    2009-01-01

    Background Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Results Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Conclusion Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide. PMID:20150997

  15. Software platform virtualization in chemistry research and university teaching.

    PubMed

    Kind, Tobias; Leamy, Tim; Leary, Julie A; Fiehn, Oliver

    2009-11-16

    Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide.

  16. Multicore Architectures for Multiple Independent Levels of Security Applications

    DTIC Science & Technology

    2012-09-01

    to bolster the MILS effort. However, current MILS operating systems are not designed for multi-core platforms. They do not have the hardware support...current MILS operating systems are not designed for multi‐core platforms. They do not have the hardware support to ensure that the separation...the availability of information at different security classification levels while increasing the overall security of the computing system . Due to the

  17. Portability and Cross-Platform Performance of an MPI-Based Parallel Polygon Renderer

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1999-01-01

    Visualizing the results of computations performed on large-scale parallel computers is a challenging problem, due to the size of the datasets involved. One approach is to perform the visualization and graphics operations in place, exploiting the available parallelism to obtain the necessary rendering performance. Over the past several years, we have been developing algorithms and software to support visualization applications on NASA's parallel supercomputers. Our results have been incorporated into a parallel polygon rendering system called PGL. PGL was initially developed on tightly-coupled distributed-memory message-passing systems, including Intel's iPSC/860 and Paragon, and IBM's SP2. Over the past year, we have ported it to a variety of additional platforms, including the HP Exemplar, SGI Origin2OOO, Cray T3E, and clusters of Sun workstations. In implementing PGL, we have had two primary goals: cross-platform portability and high performance. Portability is important because (1) our manpower resources are limited, making it difficult to develop and maintain multiple versions of the code, and (2) NASA's complement of parallel computing platforms is diverse and subject to frequent change. Performance is important in delivering adequate rendering rates for complex scenes and ensuring that parallel computing resources are used effectively. Unfortunately, these two goals are often at odds. In this paper we report on our experiences with portability and performance of the PGL polygon renderer across a range of parallel computing platforms.

  18. Design of sensor node platform for wireless biomedical sensor networks.

    PubMed

    Xijun, Chen; -H Meng, Max; Hongliang, Ren

    2005-01-01

    Design of low-cost, miniature, lightweight, ultra low-power, flexible sensor platform capable of customization and seamless integration into a wireless biomedical sensor network(WBSN) for health monitoring applications presents one of the most challenging tasks. In this paper, we propose a WBSN node platform featuring an ultra low-power microcontroller, an IEEE 802.15.4 compatible transceiver, and a flexible expansion connector. The proposed solution promises a cost-effective, flexible platform that allows easy customization, energy-efficient computation and communication. The development of a common platform for multiple physical sensors will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of an ECG (Electrocardiogram) sensor.

  19. Real-time computing platform for spiking neurons (RT-spike).

    PubMed

    Ros, Eduardo; Ortigosa, Eva M; Agís, Rodrigo; Carrillo, Richard; Arnold, Michael

    2006-07-01

    A computing platform is described for simulating arbitrary networks of spiking neurons in real time. A hybrid computing scheme is adopted that uses both software and hardware components to manage the tradeoff between flexibility and computational power; the neuron model is implemented in hardware and the network model and the learning are implemented in software. The incremental transition of the software components into hardware is supported. We focus on a spike response model (SRM) for a neuron where the synapses are modeled as input-driven conductances. The temporal dynamics of the synaptic integration process are modeled with a synaptic time constant that results in a gradual injection of charge. This type of model is computationally expensive and is not easily amenable to existing software-based event-driven approaches. As an alternative we have designed an efficient time-based computing architecture in hardware, where the different stages of the neuron model are processed in parallel. Further improvements occur by computing multiple neurons in parallel using multiple processing units. This design is tested using reconfigurable hardware and its scalability and performance evaluated. Our overall goal is to investigate biologically realistic models for the real-time control of robots operating within closed action-perception loops, and so we evaluate the performance of the system on simulating a model of the cerebellum where the emulation of the temporal dynamics of the synaptic integration process is important.

  20. Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods

    PubMed Central

    Smith, David S.; Gore, John C.; Yankeelov, Thomas E.; Welch, E. Brian

    2012-01-01

    Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 40962 or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 10242 and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images. PMID:22481908

  1. Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods.

    PubMed

    Smith, David S; Gore, John C; Yankeelov, Thomas E; Welch, E Brian

    2012-01-01

    Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 4096(2) or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 1024(2) and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images.

  2. The Clinical Relevance of Force Platform Measures in Multiple Sclerosis: A Review

    PubMed Central

    Prosperini, Luca; Pozzilli, Carlo

    2013-01-01

    Balance impairment and falls are frequent in patients with multiple sclerosis (PwMS), and they may occur even at the earliest stage of the disease and in minimally impaired patients. The introduction of computer-based force platform measures (i.e., static and dynamic posturography) has provided an objective and sensitive tool to document both deficits and improvements in balance. By using more challenging test conditions, force platform measures can also reveal subtle balance disorders undetectable by common clinical scales. Furthermore, posturographic techniques may also allow to reliably identify PwMS who are at risk of accidental falls. Although force platform measures offer several theoretical advantages, only few studies extensively investigated their role in better managing PwMS. Standardised procedures, as well as clinical relevance of changes detected by static or dynamic posturography, are still lacking. In this review, we summarized studies which investigated balance deficit by means of force platform measures, focusing on their ability in detecting patients at high risk of falls and in estimating rehabilitation-induced changes, highlighting the pros and the cons with respect to clinical scales. PMID:23766910

  3. Reconstructing evolutionary trees in parallel for massive sequences.

    PubMed

    Zou, Quan; Wan, Shixiang; Zeng, Xiangxiang; Ma, Zhanshan Sam

    2017-12-14

    Building the evolutionary trees for massive unaligned DNA sequences is challenging and crucial. However, reconstructing evolutionary tree for ultra-large sequences is hard. Massive multiple sequence alignment is also challenging and time/space consuming. Hadoop and Spark are developed recently, which bring spring light for the classical computational biology problems. In this paper, we tried to solve the multiple sequence alignment and evolutionary reconstruction in parallel. HPTree, which is developed in this paper, can deal with big DNA sequence files quickly. It works well on the >1GB files, and gets better performance than other evolutionary reconstruction tools. Users could use HPTree for reonstructing evolutioanry trees on the computer clusters or cloud platform (eg. Amazon Cloud). HPTree could help on population evolution research and metagenomics analysis. In this paper, we employ the Hadoop and Spark platform and design an evolutionary tree reconstruction software tool for unaligned massive DNA sequences. Clustering and multiple sequence alignment are done in parallel. Neighbour-joining model was employed for the evolutionary tree building. We opened our software together with source codes via http://lab.malab.cn/soft/HPtree/ .

  4. Surviving sepsis--a 3D integrative educational simulator.

    PubMed

    Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka

    2015-08-01

    Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform.

  5. Constructing Cost-Effective and Targetable ICS Honeypots Suited for Production Networks

    DTIC Science & Technology

    2015-03-26

    introducing Honeyd+ has a marginal impact on performance. Notable findings are that the Raspberry Pi is the preferred hosting platform for the EtherNet/IP... Raspberry Pi or Gumstix, which is a low-cost approach to replicating multiple decoys. One hidden drawback to low- interaction honeypots is the extensive time...EtherNet/IP industrial protocol. Honeyd+ is hosted on a low-cost computing platform ( Raspberry Pi running Raspbian, approximately $50) and a high-cost

  6. Time and Space Partition Platform for Safe and Secure Flight Software

    NASA Astrophysics Data System (ADS)

    Esquinas, Angel; Zamorano, Juan; de la Puente, Juan A.; Masmano, Miguel; Crespo, Alfons

    2012-08-01

    There are a number of research and development activities that are exploring Time and Space Partition (TSP) to implement safe and secure flight software. This approach allows to execute different real-time applications with different levels of criticality in the same computer board. In order to do that, flight applications must be isolated from each other in the temporal and spatial domains. This paper presents the first results of a partitioning platform based on the Open Ravenscar Kernel (ORK+) and the XtratuM hypervisor. ORK+ is a small, reliable realtime kernel supporting the Ada Ravenscar Computational model that is central to the ASSERT development process. XtratuM supports multiple virtual machines, i.e. partitions, on a single computer and is being used in the Integrated Modular Avionics for Space study. ORK+ executes in an XtratuM partition enabling Ada applications to share the computer board with other applications.

  7. Parallel Domain Decomposition Formulation and Software for Large-Scale Sparse Symmetrical/Unsymmetrical Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Nguyen, D. T.; Watson, Willie R. (Technical Monitor)

    2005-01-01

    The overall objectives of this research work are to formulate and validate efficient parallel algorithms, and to efficiently design/implement computer software for solving large-scale acoustic problems, arised from the unified frameworks of the finite element procedures. The adopted parallel Finite Element (FE) Domain Decomposition (DD) procedures should fully take advantages of multiple processing capabilities offered by most modern high performance computing platforms for efficient parallel computation. To achieve this objective. the formulation needs to integrate efficient sparse (and dense) assembly techniques, hybrid (or mixed) direct and iterative equation solvers, proper pre-conditioned strategies, unrolling strategies, and effective processors' communicating schemes. Finally, the numerical performance of the developed parallel finite element procedures will be evaluated by solving series of structural, and acoustic (symmetrical and un-symmetrical) problems (in different computing platforms). Comparisons with existing "commercialized" and/or "public domain" software are also included, whenever possible.

  8. CMSA: a heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment.

    PubMed

    Chen, Xi; Wang, Chen; Tang, Shanjiang; Yu, Ce; Zou, Quan

    2017-06-24

    The multiple sequence alignment (MSA) is a classic and powerful technique for sequence analysis in bioinformatics. With the rapid growth of biological datasets, MSA parallelization becomes necessary to keep its running time in an acceptable level. Although there are a lot of work on MSA problems, their approaches are either insufficient or contain some implicit assumptions that limit the generality of usage. First, the information of users' sequences, including the sizes of datasets and the lengths of sequences, can be of arbitrary values and are generally unknown before submitted, which are unfortunately ignored by previous work. Second, the center star strategy is suited for aligning similar sequences. But its first stage, center sequence selection, is highly time-consuming and requires further optimization. Moreover, given the heterogeneous CPU/GPU platform, prior studies consider the MSA parallelization on GPU devices only, making the CPUs idle during the computation. Co-run computation, however, can maximize the utilization of the computing resources by enabling the workload computation on both CPU and GPU simultaneously. This paper presents CMSA, a robust and efficient MSA system for large-scale datasets on the heterogeneous CPU/GPU platform. It performs and optimizes multiple sequence alignment automatically for users' submitted sequences without any assumptions. CMSA adopts the co-run computation model so that both CPU and GPU devices are fully utilized. Moreover, CMSA proposes an improved center star strategy that reduces the time complexity of its center sequence selection process from O(mn 2 ) to O(mn). The experimental results show that CMSA achieves an up to 11× speedup and outperforms the state-of-the-art software. CMSA focuses on the multiple similar RNA/DNA sequence alignment and proposes a novel bitmap based algorithm to improve the center star strategy. We can conclude that harvesting the high performance of modern GPU is a promising approach to accelerate multiple sequence alignment. Besides, adopting the co-run computation model can maximize the entire system utilization significantly. The source code is available at https://github.com/wangvsa/CMSA .

  9. MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments.

    PubMed

    Martin, Daniel B; Holzman, Ted; May, Damon; Peterson, Amelia; Eastham, Ashley; Eng, Jimmy; McIntosh, Martin

    2008-11-01

    Multiple reaction monitoring (MRM) mass spectrometry identifies and quantifies specific peptides in a complex mixture with very high sensitivity and speed and thus has promise for the high throughput screening of clinical samples for candidate biomarkers. We have developed an interactive software platform, called MRMer, for managing highly complex MRM-MS experiments, including quantitative analyses using heavy/light isotopic peptide pairs. MRMer parses and extracts information from MS files encoded in the platform-independent mzXML data format. It extracts and infers precursor-product ion transition pairings, computes integrated ion intensities, and permits rapid visual curation for analyses exceeding 1000 precursor-product pairs. Results can be easily output for quantitative comparison of consecutive runs. Additionally MRMer incorporates features that permit the quantitative analysis experiments including heavy and light isotopic peptide pairs. MRMer is open source and provided under the Apache 2.0 license.

  10. Seven PC Purchasing Pitfalls.

    ERIC Educational Resources Information Center

    Wodarz, Nan

    1997-01-01

    Explores how to avoid common pitfalls when schools purchase computer equipment. Purchasing tips are provided in the areas of choosing multiple platforms, buying the cheapest model available, choosing a proprietary design, falling for untested technology, purchasing systems that are not upgradable, ignoring extended warranties, and failing to plan…

  11. Simulation Platform: a cloud-based online simulation environment.

    PubMed

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-09-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Reprint of: Simulation Platform: a cloud-based online simulation environment.

    PubMed

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-11-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The design of an m-Health monitoring system based on a cloud computing platform

    NASA Astrophysics Data System (ADS)

    Xu, Boyi; Xu, Lida; Cai, Hongming; Jiang, Lihong; Luo, Yang; Gu, Yizhi

    2017-01-01

    Compared to traditional medical services provided within hospitals, m-Health monitoring systems (MHMSs) face more challenges in personalised health data processing. To achieve personalised and high-quality health monitoring by means of new technologies, such as mobile network and cloud computing, in this paper, a framework of an m-Health monitoring system based on a cloud computing platform (Cloud-MHMS) is designed to implement pervasive health monitoring. Furthermore, the modules of the framework, which are Cloud Storage and Multiple Tenants Access Control Layer, Healthcare Data Annotation Layer, and Healthcare Data Analysis Layer, are discussed. In the data storage layer, a multiple tenant access method is designed to protect patient privacy. In the data annotation layer, linked open data are adopted to augment health data interoperability semantically. In the data analysis layer, the process mining algorithm and similarity calculating method are implemented to support personalised treatment plan selection. These three modules cooperate to implement the core functions in the process of health monitoring, which are data storage, data processing, and data analysis. Finally, we study the application of our architecture in the monitoring of antimicrobial drug usage to demonstrate the usability of our method in personal healthcare analysis.

  14. Hybrid Cloud Computing Environment for EarthCube and Geoscience Community

    NASA Astrophysics Data System (ADS)

    Yang, C. P.; Qin, H.

    2016-12-01

    The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.

  15. Cloud computing geospatial application for water resources based on free and open source software and open standards - a prototype

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj

    2016-04-01

    Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state-of-the-art cloud geospatial collaboration platform. The presented solution is a prototype and can be used as a foundation for developing of any specialized cloud geospatial applications. Further research will be focused on distributing the cloud application on additional VMs, testing the scalability and availability of services.

  16. The COMET Sleep Research Platform.

    PubMed

    Nichols, Deborah A; DeSalvo, Steven; Miller, Richard A; Jónsson, Darrell; Griffin, Kara S; Hyde, Pamela R; Walsh, James K; Kushida, Clete A

    2014-01-01

    The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments-positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment.

  17. The COMET Sleep Research Platform

    PubMed Central

    Nichols, Deborah A.; DeSalvo, Steven; Miller, Richard A.; Jónsson, Darrell; Griffin, Kara S.; Hyde, Pamela R.; Walsh, James K.; Kushida, Clete A.

    2014-01-01

    Introduction: The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Background: Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments—positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. Discussion: The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. Conclusion: COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment. PMID:25848590

  18. Examination of District Technology Coordinators in South Central Texas

    ERIC Educational Resources Information Center

    Egeolu, Charity Nnenna

    2013-01-01

    The profusion of computers and educational technologies in schools has precipitated the need for staff with technological skill sets necessary for the integration and support of educational technology infrastructures across multiple platforms at schools and district levels. The purpose of the quantitative survey study was to explore technology…

  19. Launching genomics into the cloud: deployment of Mercury, a next generation sequence analysis pipeline.

    PubMed

    Reid, Jeffrey G; Carroll, Andrew; Veeraraghavan, Narayanan; Dahdouli, Mahmoud; Sundquist, Andreas; English, Adam; Bainbridge, Matthew; White, Simon; Salerno, William; Buhay, Christian; Yu, Fuli; Muzny, Donna; Daly, Richard; Duyk, Geoff; Gibbs, Richard A; Boerwinkle, Eric

    2014-01-29

    Massively parallel DNA sequencing generates staggering amounts of data. Decreasing cost, increasing throughput, and improved annotation have expanded the diversity of genomics applications in research and clinical practice. This expanding scale creates analytical challenges: accommodating peak compute demand, coordinating secure access for multiple analysts, and sharing validated tools and results. To address these challenges, we have developed the Mercury analysis pipeline and deployed it in local hardware and the Amazon Web Services cloud via the DNAnexus platform. Mercury is an automated, flexible, and extensible analysis workflow that provides accurate and reproducible genomic results at scales ranging from individuals to large cohorts. By taking advantage of cloud computing and with Mercury implemented on the DNAnexus platform, we have demonstrated a powerful combination of a robust and fully validated software pipeline and a scalable computational resource that, to date, we have applied to more than 10,000 whole genome and whole exome samples.

  20. From sequencer to supercomputer: an automatic pipeline for managing and processing next generation sequencing data.

    PubMed

    Camerlengo, Terry; Ozer, Hatice Gulcin; Onti-Srinivasan, Raghuram; Yan, Pearlly; Huang, Tim; Parvin, Jeffrey; Huang, Kun

    2012-01-01

    Next Generation Sequencing is highly resource intensive. NGS Tasks related to data processing, management and analysis require high-end computing servers or even clusters. Additionally, processing NGS experiments requires suitable storage space and significant manual interaction. At The Ohio State University's Biomedical Informatics Shared Resource, we designed and implemented a scalable architecture to address the challenges associated with the resource intensive nature of NGS secondary analysis built around Illumina Genome Analyzer II sequencers and Illumina's Gerald data processing pipeline. The software infrastructure includes a distributed computing platform consisting of a LIMS called QUEST (http://bisr.osumc.edu), an Automation Server, a computer cluster for processing NGS pipelines, and a network attached storage device expandable up to 40TB. The system has been architected to scale to multiple sequencers without requiring additional computing or labor resources. This platform provides demonstrates how to manage and automate NGS experiments in an institutional or core facility setting.

  1. On efficiency of fire simulation realization: parallelization with greater number of computational meshes

    NASA Astrophysics Data System (ADS)

    Valasek, Lukas; Glasa, Jan

    2017-12-01

    Current fire simulation systems are capable to utilize advantages of high-performance computer (HPC) platforms available and to model fires efficiently in parallel. In this paper, efficiency of a corridor fire simulation on a HPC computer cluster is discussed. The parallel MPI version of Fire Dynamics Simulator is used for testing efficiency of selected strategies of allocation of computational resources of the cluster using a greater number of computational cores. Simulation results indicate that if the number of cores used is not equal to a multiple of the total number of cluster node cores there are allocation strategies which provide more efficient calculations.

  2. Loosely Coupled GPS-Aided Inertial Navigation System for Range Safety

    NASA Technical Reports Server (NTRS)

    Heatwole, Scott; Lanzi, Raymond J.

    2010-01-01

    The Autonomous Flight Safety System (AFSS) aims to replace the human element of range safety operations, as well as reduce reliance on expensive, downrange assets for launches of expendable launch vehicles (ELVs). The system consists of multiple navigation sensors and flight computers that provide a highly reliable platform. It is designed to ensure that single-event failures in a flight computer or sensor will not bring down the whole system. The flight computer uses a rules-based structure derived from range safety requirements to make decisions whether or not to destroy the rocket.

  3. An open source web interface for linking models to infrastructure system databases

    NASA Astrophysics Data System (ADS)

    Knox, S.; Mohamed, K.; Harou, J. J.; Rheinheimer, D. E.; Medellin-Azuara, J.; Meier, P.; Tilmant, A.; Rosenberg, D. E.

    2016-12-01

    Models of networked engineered resource systems such as water or energy systems are often built collaboratively with developers from different domains working at different locations. These models can be linked to large scale real world databases, and they are constantly being improved and extended. As the development and application of these models becomes more sophisticated, and the computing power required for simulations and/or optimisations increases, so has the need for online services and tools which enable the efficient development and deployment of these models. Hydra Platform is an open source, web-based data management system, which allows modellers of network-based models to remotely store network topology and associated data in a generalised manner, allowing it to serve multiple disciplines. Hydra Platform uses a web API using JSON to allow external programs (referred to as `Apps') to interact with its stored networks and perform actions such as importing data, running models, or exporting the networks to different formats. Hydra Platform supports multiple users accessing the same network and has a suite of functions for managing users and data. We present ongoing development in Hydra Platform, the Hydra Web User Interface, through which users can collaboratively manage network data and models in a web browser. The web interface allows multiple users to graphically access, edit and share their networks, run apps and view results. Through apps, which are located on the server, the web interface can give users access to external data sources and models without the need to install or configure any software. This also ensures model results can be reproduced by removing platform or version dependence. Managing data and deploying models via the web interface provides a way for multiple modellers to collaboratively manage data, deploy and monitor model runs and analyse results.

  4. Cross Validation of Selection of Variables in Multiple Regression.

    DTIC Science & Technology

    1979-12-01

    55 vii CROSS VALIDATION OF SELECTION OF VARIABLES IN MULTIPLE REGRESSION I Introduction Background Long term DoD planning gcals...028545024 .31109000 BF * SS - .008700618 .0471961 Constant - .70977903 85.146786 55 had adequate predictive capabilities; the other two models (the...71ZCO F111D Control 54 73EGO FlIID Computer, General Purpose 55 73EPO FII1D Converter-Multiplexer 56 73HAO flllD Stabilizer Platform 57 73HCO F1ID

  5. GLAD: a system for developing and deploying large-scale bioinformatics grid.

    PubMed

    Teo, Yong-Meng; Wang, Xianbing; Ng, Yew-Kwong

    2005-03-01

    Grid computing is used to solve large-scale bioinformatics problems with gigabytes database by distributing the computation across multiple platforms. Until now in developing bioinformatics grid applications, it is extremely tedious to design and implement the component algorithms and parallelization techniques for different classes of problems, and to access remotely located sequence database files of varying formats across the grid. In this study, we propose a grid programming toolkit, GLAD (Grid Life sciences Applications Developer), which facilitates the development and deployment of bioinformatics applications on a grid. GLAD has been developed using ALiCE (Adaptive scaLable Internet-based Computing Engine), a Java-based grid middleware, which exploits the task-based parallelism. Two bioinformatics benchmark applications, such as distributed sequence comparison and distributed progressive multiple sequence alignment, have been developed using GLAD.

  6. Monitoring system including an electronic sensor platform and an interrogation transceiver

    DOEpatents

    Kinzel, Robert L.; Sheets, Larry R.

    2003-09-23

    A wireless monitoring system suitable for a wide range of remote data collection applications. The system includes at least one Electronic Sensor Platform (ESP), an Interrogator Transceiver (IT) and a general purpose host computer. The ESP functions as a remote data collector from a number of digital and analog sensors located therein. The host computer provides for data logging, testing, demonstration, installation checkout, and troubleshooting of the system. The IT transmits signals from one or more ESP's to the host computer to the ESP's. The IT host computer may be powered by a common power supply, and each ESP is individually powered by a battery. This monitoring system has an extremely low power consumption which allows remote operation of the ESP for long periods; provides authenticated message traffic over a wireless network; utilizes state-of-health and tamper sensors to ensure that the ESP is secure and undamaged; has robust housing of the ESP suitable for use in radiation environments; and is low in cost. With one base station (host computer and interrogator transceiver), multiple ESP's may be controlled at a single monitoring site.

  7. The TeraShake Computational Platform for Large-Scale Earthquake Simulations

    NASA Astrophysics Data System (ADS)

    Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas

    Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

  8. The relational database model and multiple multicenter clinical trials.

    PubMed

    Blumenstein, B A

    1989-12-01

    The Southwest Oncology Group (SWOG) chose to use a relational database management system (RDBMS) for the management of data from multiple clinical trials because of the underlying relational model's inherent flexibility and the natural way multiple entity types (patients, studies, and participants) can be accommodated. The tradeoffs to using the relational model as compared to using the hierarchical model include added computing cycles due to deferred data linkages and added procedural complexity due to the necessity of implementing protections against referential integrity violations. The SWOG uses its RDBMS as a platform on which to build data operations software. This data operations software, which is written in a compiled computer language, allows multiple users to simultaneously update the database and is interactive with respect to the detection of conditions requiring action and the presentation of options for dealing with those conditions. The relational model facilitates the development and maintenance of data operations software.

  9. Single cell multiplexed assay for proteolytic activity using droplet microfluidics.

    PubMed

    Ng, Ee Xien; Miller, Miles A; Jing, Tengyang; Chen, Chia-Hung

    2016-07-15

    Cellular enzymes interact in a post-translationally regulated fashion to govern individual cell behaviors, yet current platform technologies are limited in their ability to measure multiple enzyme activities simultaneously in single cells. Here, we developed multi-color Förster resonance energy transfer (FRET)-based enzymatic substrates and use them in a microfluidics platform to simultaneously measure multiple specific protease activities from water-in-oil droplets that contain single cells. By integrating the microfluidic platform with a computational analytical method, Proteolytic Activity Matrix Analysis (PrAMA), we are able to infer six different protease activity signals from individual cells in a high throughput manner (~100 cells/experimental run). We characterized protease activity profiles at single cell resolution for several cancer cell lines including breast cancer cell line MDA-MB-231, lung cancer cell line PC-9, and leukemia cell line K-562 using both live-cell and in-situ cell lysis assay formats, with special focus on metalloproteinases important in metastasis. The ability to measure multiple proteases secreted from or expressed in individual cells allows us to characterize cell heterogeneity and has potential applications including systems biology, pharmacology, cancer diagnosis and stem cell biology. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Abstract of Capstone

    ERIC Educational Resources Information Center

    Pack, Della F.

    2013-01-01

    At the end of the Fall 2011 semester at Big Sandy Community and Technical College (BSCTC) a comparison of grade patterns in multiple CIS 100-Introduction to Computers courses was analyzed. This analysis found online courses returned a higher failure rate than those taught in a classroom setting. Why was there a difference? Is the platform of…

  11. The Effects of Integrating Social Learning Environment with Online Learning

    ERIC Educational Resources Information Center

    Raspopovic, Miroslava; Cvetanovic, Svetlana; Medan, Ivana; Ljubojevic, Danijela

    2017-01-01

    The aim of this paper is to present the learning and teaching styles using the Social Learning Environment (SLE), which was developed based on the computer supported collaborative learning approach. To avoid burdening learners with multiple platforms and tools, SLE was designed and developed in order to integrate existing systems, institutional…

  12. e-Collaboration for Earth observation (E-CEO): the Cloud4SAR interferometry data challenge

    NASA Astrophysics Data System (ADS)

    Casu, Francesco; Manunta, Michele; Boissier, Enguerran; Brito, Fabrice; Aas, Christina; Lavender, Samantha; Ribeiro, Rita; Farres, Jordi

    2014-05-01

    The e-Collaboration for Earth Observation (E-CEO) project addresses the technologies and architectures needed to provide a collaborative research Platform for automating data mining and processing, and information extraction experiments. The Platform serves for the implementation of Data Challenge Contests focusing on Information Extraction for Earth Observations (EO) applications. The possibility to implement multiple processors within a Common Software Environment facilitates the validation, evaluation and transparent peer comparison among different methodologies, which is one of the main requirements rose by scientists who develop algorithms in the EO field. In this scenario, we set up a Data Challenge, referred to as Cloud4SAR (http://wiki.services.eoportal.org/tiki-index.php?page=ECEO), to foster the deployment of Interferometric SAR (InSAR) processing chains within a Cloud Computing platform. While a large variety of InSAR processing software tools are available, they require a high level of expertise and a complex user interaction to be effectively run. Computing a co-seismic interferogram or a 20-years deformation time series on a volcanic area are not easy tasks to be performed in a fully unsupervised way and/or in very short time (hours or less). Benefiting from ESA's E-CEO platform, participants can optimise algorithms on a Virtual Sandbox environment without being expert programmers, and compute results on high performing Cloud platforms. Cloud4SAR requires solving a relatively easy InSAR problem by trying to maximize the exploitation of the processing capabilities provided by a Cloud Computing infrastructure. The proposed challenge offers two different frameworks, each dedicated to participants with different skills, identified as Beginners and Experts. For both of them, the contest mainly resides in the degree of automation of the deployed algorithms, no matter which one is used, as well as in the capability of taking effective benefit from a parallel computing environment.

  13. NiftyNet: a deep-learning platform for medical imaging.

    PubMed

    Gibson, Eli; Li, Wenqi; Sudre, Carole; Fidon, Lucas; Shakir, Dzhoshkun I; Wang, Guotai; Eaton-Rosen, Zach; Gray, Robert; Doel, Tom; Hu, Yipeng; Whyntie, Tom; Nachev, Parashkev; Modat, Marc; Barratt, Dean C; Ourselin, Sébastien; Cardoso, M Jorge; Vercauteren, Tom

    2018-05-01

    Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Enhancing battery efficiency for pervasive health-monitoring systems based on electronic textiles.

    PubMed

    Zheng, Nenggan; Wu, Zhaohui; Lin, Man; Yang, Laurence Tianruo

    2010-03-01

    Electronic textiles are regarded as one of the most important computation platforms for future computer-assisted health-monitoring applications. In these novel systems, multiple batteries are used in order to prolong their operational lifetime, which is a significant metric for system usability. However, due to the nonlinear features of batteries, computing systems with multiple batteries cannot achieve the same battery efficiency as those powered by a monolithic battery of equal capacity. In this paper, we propose an algorithm aiming to maximize battery efficiency globally for the computer-assisted health-care systems with multiple batteries. Based on an accurate analytical battery model, the concept of weighted battery fatigue degree is introduced and the novel battery-scheduling algorithm called predicted weighted fatigue degree least first (PWFDLF) is developed. Besides, we also discuss our attempts during search PWFDLF: a weighted round-robin (WRR) and a greedy algorithm achieving highest local battery efficiency, which reduces to the sequential discharging policy. Evaluation results show that a considerable improvement in battery efficiency can be obtained by PWFDLF under various battery configurations and current profiles compared to conventional sequential and WRR discharging policies.

  15. KeyWare: an open wireless distributed computing environment

    NASA Astrophysics Data System (ADS)

    Shpantzer, Isaac; Schoenfeld, Larry; Grindahl, Merv; Kelman, Vladimir

    1995-12-01

    Deployment of distributed applications in the wireless domain lack equivalent tools, methodologies, architectures, and network management that exist in LAN based applications. A wireless distributed computing environment (KeyWareTM) based on intelligent agents within a multiple client multiple server scheme was developed to resolve this problem. KeyWare renders concurrent application services to wireline and wireless client nodes encapsulated in multiple paradigms such as message delivery, database access, e-mail, and file transfer. These services and paradigms are optimized to cope with temporal and spatial radio coverage, high latency, limited throughput and transmission costs. A unified network management paradigm for both wireless and wireline facilitates seamless extensions of LAN- based management tools to include wireless nodes. A set of object oriented tools and methodologies enables direct asynchronous invocation of agent-based services supplemented by tool-sets matched to supported KeyWare paradigms. The open architecture embodiment of KeyWare enables a wide selection of client node computing platforms, operating systems, transport protocols, radio modems and infrastructures while maintaining application portability.

  16. WPSS: watching people security services

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Baan, Jan; Borsboom, Sander; van Zon, Kasper; Luo, Xinghan; Loke, Ben; Stoeller, Bram; van Kuilenburg, Hans; Dijk, Judith

    2013-10-01

    To improve security, the number of surveillance cameras is rapidly increasing. However, the number of human operators remains limited and only a selection of the video streams are observed. Intelligent software services can help to find people quickly, evaluate their behavior and show the most relevant and deviant patterns. We present a software platform that contributes to the retrieval and observation of humans and to the analysis of their behavior. The platform consists of mono- and stereo-camera tracking, re-identification, behavioral feature computation, track analysis, behavior interpretation and visualization. This system is demonstrated in a busy shopping mall with multiple cameras and different lighting conditions.

  17. A distributed system for fast alignment of next-generation sequencing data.

    PubMed

    Srimani, Jaydeep K; Wu, Po-Yen; Phan, John H; Wang, May D

    2010-12-01

    We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.

  18. The EPA CompTox Dashboard and Underpinning Software Architecture – a platform for data integration for environmental chemistry data (ACS Fall Meeting 7 of 12)

    EPA Science Inventory

    The CompTox Dashboard was developed by the Environmental Protection Agency’s National Center for Computational Toxicology. This dashboard has been architected in a manner that allows for the deployment of multiple “applications”, both as publicly available databases, and for dep...

  19. Cloud@Home: A New Enhanced Computing Paradigm

    NASA Astrophysics Data System (ADS)

    Distefano, Salvatore; Cunsolo, Vincenzo D.; Puliafito, Antonio; Scarpa, Marco

    Cloud computing is a distributed computing paradigm that mixes aspects of Grid computing, ("… hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities" (Foster, 2002)) Internet Computing ("…a computing platform geographically distributed across the Internet" (Milenkovic et al., 2003)), Utility computing ("a collection of technologies and business practices that enables computing to be delivered seamlessly and reliably across multiple computers, ... available as needed and billed according to usage, much like water and electricity are today" (Ross & Westerman, 2004)) Autonomic computing ("computing systems that can manage themselves given high-level objectives from administrators" (Kephart & Chess, 2003)), Edge computing ("… provides a generic template facility for any type of application to spread its execution across a dedicated grid, balancing the load …" Davis, Parikh, & Weihl, 2004) and Green computing (a new frontier of Ethical computing1 starting from the assumption that in next future energy costs will be related to the environment pollution).

  20. Optimization of sparse matrix-vector multiplication on emerging multicore platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Oliker, Leonid; Vuduc, Richard

    2007-01-01

    We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD dual-core and Intel quad-core designs, the heterogeneous STI Cell, as well as the first scientificmore » study of the highly multithreaded Sun Niagara2. We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural tradeoffs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.« less

  1. Launching genomics into the cloud: deployment of Mercury, a next generation sequence analysis pipeline

    PubMed Central

    2014-01-01

    Background Massively parallel DNA sequencing generates staggering amounts of data. Decreasing cost, increasing throughput, and improved annotation have expanded the diversity of genomics applications in research and clinical practice. This expanding scale creates analytical challenges: accommodating peak compute demand, coordinating secure access for multiple analysts, and sharing validated tools and results. Results To address these challenges, we have developed the Mercury analysis pipeline and deployed it in local hardware and the Amazon Web Services cloud via the DNAnexus platform. Mercury is an automated, flexible, and extensible analysis workflow that provides accurate and reproducible genomic results at scales ranging from individuals to large cohorts. Conclusions By taking advantage of cloud computing and with Mercury implemented on the DNAnexus platform, we have demonstrated a powerful combination of a robust and fully validated software pipeline and a scalable computational resource that, to date, we have applied to more than 10,000 whole genome and whole exome samples. PMID:24475911

  2. Computer-Assisted Transgenesis of Caenorhabditis elegans for Deep Phenotyping

    PubMed Central

    Gilleland, Cody L.; Falls, Adam T.; Noraky, James; Heiman, Maxwell G.; Yanik, Mehmet F.

    2015-01-01

    A major goal in the study of human diseases is to assign functions to genes or genetic variants. The model organism Caenorhabditis elegans provides a powerful tool because homologs of many human genes are identifiable, and large collections of genetic vectors and mutant strains are available. However, the delivery of such vector libraries into mutant strains remains a long-standing experimental bottleneck for phenotypic analysis. Here, we present a computer-assisted microinjection platform to streamline the production of transgenic C. elegans with multiple vectors for deep phenotyping. Briefly, animals are immobilized in a temperature-sensitive hydrogel using a standard multiwell platform. Microinjections are then performed under control of an automated microscope using precision robotics driven by customized computer vision algorithms. We demonstrate utility by phenotyping the morphology of 12 neuronal classes in six mutant backgrounds using combinations of neuron-type-specific fluorescent reporters. This technology can industrialize the assignment of in vivo gene function by enabling large-scale transgenic engineering. PMID:26163188

  3. A cyber infrastructure for the SKA Telescope Manager

    NASA Astrophysics Data System (ADS)

    Barbosa, Domingos; Barraca, João. P.; Carvalho, Bruno; Maia, Dalmiro; Gupta, Yashwant; Natarajan, Swaminathan; Le Roux, Gerhard; Swart, Paul

    2016-07-01

    The Square Kilometre Array Telescope Manager (SKA TM) will be responsible for assisting the SKA Operations and Observation Management, carrying out System diagnosis and collecting Monitoring and Control data from the SKA subsystems and components. To provide adequate compute resources, scalability, operation continuity and high availability, as well as strict Quality of Service, the TM cyber-infrastructure (embodied in the Local Infrastructure - LINFRA) consists of COTS hardware and infrastructural software (for example: server monitoring software, host operating system, virtualization software, device firmware), providing a specially tailored Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) solution. The TM infrastructure provides services in the form of computational power, software defined networking, power, storage abstractions, and high level, state of the art IaaS and PaaS management interfaces. This cyber platform will be tailored to each of the two SKA Phase 1 telescopes (SKA_MID in South Africa and SKA_LOW in Australia) instances, each presenting different computational and storage infrastructures and conditioned by location. This cyber platform will provide a compute model enabling TM to manage the deployment and execution of its multiple components (observation scheduler, proposal submission tools, MandC components, Forensic tools and several Databases, etc). In this sense, the TM LINFRA is primarily focused towards the provision of isolated instances, mostly resorting to virtualization technologies, while defaulting to bare hardware if specifically required due to performance, security, availability, or other requirement.

  4. A platform for population-based weight management: description of a health plan-based integrated systems approach.

    PubMed

    Pronk, Nicolaas P; Boucher, Jackie L; Gehling, Eve; Boyle, Raymond G; Jeffery, Robert W

    2002-10-01

    To describe an integrated, operational platform from which mail- and telephone-based health promotion programs are implemented and to specifically relate this approach to weight management programming in a managed care setting. In-depth description of essential systems structures, including people, computer technology, and decision-support protocols. The roles of support staff, counselors, a librarian, and a manager in delivering a weight management program are described. Information availability using computer technology is a critical component in making this system effective and is presented according to its architectural layout and design. Protocols support counselors and administrative support staff in decision making, and a detailed flowchart presents the layout of this part of the system. This platform is described in the context of a weight management program, and we present baseline characteristics of 1801 participants, their behaviors, self-reported medical conditions, and initial pattern of enrollment in the various treatment options. Considering the prevalence and upward trend of overweight and obesity in the United States, a need exists for robust intervention platforms that can systematically support multiple types of programs. Weight management interventions implemented using this platform are scalable to the population level and are sustainable over time despite the limits of defined resources and budgets. The present article describes an innovative approach to reaching a large population with effective programs in an integrated, coordinated, and systematic manner. This comprehensive, robust platform represents an example of how obesity prevention and treatment research may be translated into the applied setting.

  5. A Multiple Sphere T-Matrix Fortran Code for Use on Parallel Computer Clusters

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.; Mishchenko, M. I.

    2011-01-01

    A general-purpose Fortran-90 code for calculation of the electromagnetic scattering and absorption properties of multiple sphere clusters is described. The code can calculate the efficiency factors and scattering matrix elements of the cluster for either fixed or random orientation with respect to the incident beam and for plane wave or localized- approximation Gaussian incident fields. In addition, the code can calculate maps of the electric field both interior and exterior to the spheres.The code is written with message passing interface instructions to enable the use on distributed memory compute clusters, and for such platforms the code can make feasible the calculation of absorption, scattering, and general EM characteristics of systems containing several thousand spheres.

  6. Climate Modeling with a Million CPUs

    NASA Astrophysics Data System (ADS)

    Tobis, M.; Jackson, C. S.

    2010-12-01

    Michael Tobis, Ph.D. Research Scientist Associate University of Texas Institute for Geophysics Charles S. Jackson Research Scientist University of Texas Institute for Geophysics Meteorological, oceanographic, and climatological applications have been at the forefront of scientific computing since its inception. The trend toward ever larger and more capable computing installations is unabated. However, much of the increase in capacity is accompanied by an increase in parallelism and a concomitant increase in complexity. An increase of at least four additional orders of magnitude in the computational power of scientific platforms is anticipated. It is unclear how individual climate simulations can continue to make effective use of the largest platforms. Conversion of existing community codes to higher resolution, or to more complex phenomenology, or both, presents daunting design and validation challenges. Our alternative approach is to use the expected resources to run very large ensembles of simulations of modest size, rather than to await the emergence of very large simulations. We are already doing this in exploring the parameter space of existing models using the Multiple Very Fast Simulated Annealing algorithm, which was developed for seismic imaging. Our experiments have the dual intentions of tuning the model and identifying ranges of parameter uncertainty. Our approach is less strongly constrained by the dimensionality of the parameter space than are competing methods. Nevertheless, scaling up remains costly. Much could be achieved by increasing the dimensionality of the search and adding complexity to the search algorithms. Such ensemble approaches scale naturally to very large platforms. Extensions of the approach are anticipated. For example, structurally different models can be tuned to comparable effectiveness. This can provide an objective test for which there is no realistic precedent with smaller computations. We find ourselves inventing new code to manage our ensembles. Component computations involve tens to hundreds of CPUs and tens to hundreds of hours. The results of these moderately large parallel jobs influence the scheduling of subsequent jobs, and complex algorithms may be easily contemplated for this. The operating system concept of a "thread" re-emerges at a very coarse level, where each thread manages atomic computations of thousands of CPU-hours. That is, rather than multiple threads operating on a processor, at this level, multiple processors operate within a single thread. In collaboration with the Texas Advanced Computing Center, we are developing a software library at the system level, which should facilitate the development of computations involving complex strategies which invoke large numbers of moderately large multi-processor jobs. While this may have applications in other sciences, our key intent is to better characterize the coupled behavior of a very large set of climate model configurations.

  7. Multiple advanced logic gates made of DNA-Ag nanocluster and the application for intelligent detection of pathogenic bacterial genes.

    PubMed

    Lin, Xiaodong; Liu, Yaqing; Deng, Jiankang; Lyu, Yanlong; Qian, Pengcheng; Li, Yunfei; Wang, Shuo

    2018-02-21

    The integration of multiple DNA logic gates on a universal platform to implement advance logic functions is a critical challenge for DNA computing. Herein, a straightforward and powerful strategy in which a guanine-rich DNA sequence lighting up a silver nanocluster and fluorophore was developed to construct a library of logic gates on a simple DNA-templated silver nanoclusters (DNA-AgNCs) platform. This library included basic logic gates, YES, AND, OR, INHIBIT, and XOR, which were further integrated into complex logic circuits to implement diverse advanced arithmetic/non-arithmetic functions including half-adder, half-subtractor, multiplexer, and demultiplexer. Under UV irradiation, all the logic functions could be instantly visualized, confirming an excellent repeatability. The logic operations were entirely based on DNA hybridization in an enzyme-free and label-free condition, avoiding waste accumulation and reducing cost consumption. Interestingly, a DNA-AgNCs-based multiplexer was, for the first time, used as an intelligent biosensor to identify pathogenic genes, E. coli and S. aureus genes, with a high sensitivity. The investigation provides a prototype for the wireless integration of multiple devices on even the simplest single-strand DNA platform to perform diverse complex functions in a straightforward and cost-effective way.

  8. Earth system modelling on system-level heterogeneous architectures: EMAC (version 2.42) on the Dynamical Exascale Entry Platform (DEEP)

    NASA Astrophysics Data System (ADS)

    Christou, Michalis; Christoudias, Theodoros; Morillo, Julián; Alvarez, Damian; Merx, Hendrik

    2016-09-01

    We examine an alternative approach to heterogeneous cluster-computing in the many-core era for Earth system models, using the European Centre for Medium-Range Weather Forecasts Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model as a pilot application on the Dynamical Exascale Entry Platform (DEEP). A set of autonomous coprocessors interconnected together, called Booster, complements a conventional HPC Cluster and increases its computing performance, offering extra flexibility to expose multiple levels of parallelism and achieve better scalability. The EMAC model atmospheric chemistry code (Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA)) was taskified with an offload mechanism implemented using OmpSs directives. The model was ported to the MareNostrum 3 supercomputer to allow testing with Intel Xeon Phi accelerators on a production-size machine. The changes proposed in this paper are expected to contribute to the eventual adoption of Cluster-Booster division and Many Integrated Core (MIC) accelerated architectures in presently available implementations of Earth system models, towards exploiting the potential of a fully Exascale-capable platform.

  9. Performance, Agility and Cost of Cloud Computing Services for NASA GES DISC Giovanni Application

    NASA Astrophysics Data System (ADS)

    Pham, L.; Chen, A.; Wharton, S.; Winter, E. L.; Lynnes, C.

    2013-12-01

    The NASA Goddard Earth Science Data and Information Services Center (GES DISC) is investigating the performance, agility and cost of Cloud computing for GES DISC applications. Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure), one of the core applications at the GES DISC for online climate-related Earth science data access, subsetting, analysis, visualization, and downloading, was used to evaluate the feasibility and effort of porting an application to the Amazon Cloud Services platform. The performance and the cost of running Giovanni on the Amazon Cloud were compared to similar parameters for the GES DISC local operational system. A Giovanni Time-Series analysis of aerosol absorption optical depth (388nm) from OMI (Ozone Monitoring Instrument)/Aura was selected for these comparisons. All required data were pre-cached in both the Cloud and local system to avoid data transfer delays. The 3-, 6-, 12-, and 24-month data were used for analysis on the Cloud and local system respectively, and the processing times for the analysis were used to evaluate system performance. To investigate application agility, Giovanni was installed and tested on multiple Cloud platforms. The cost of using a Cloud computing platform mainly consists of: computing, storage, data requests, and data transfer in/out. The Cloud computing cost is calculated based on the hourly rate, and the storage cost is calculated based on the rate of Gigabytes per month. Cost for incoming data transfer is free, and for data transfer out, the cost is based on the rate in Gigabytes. The costs for a local server system consist of buying hardware/software, system maintenance/updating, and operating cost. The results showed that the Cloud platform had a 38% better performance and cost 36% less than the local system. This investigation shows the potential of cloud computing to increase system performance and lower the overall cost of system management.

  10. Computational and mathematical methods in brain atlasing.

    PubMed

    Nowinski, Wieslaw L

    2017-12-01

    Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.

  11. Rapid prototyping and evaluation of programmable SIMD SDR processors in LISA

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Liu, Hengzhu; Zhang, Botao; Liu, Dongpei

    2013-03-01

    With the development of international wireless communication standards, there is an increase in computational requirement for baseband signal processors. Time-to-market pressure makes it impossible to completely redesign new processors for the evolving standards. Due to its high flexibility and low power, software defined radio (SDR) digital signal processors have been proposed as promising technology to replace traditional ASIC and FPGA fashions. In addition, there are large numbers of parallel data processed in computation-intensive functions, which fosters the development of single instruction multiple data (SIMD) architecture in SDR platform. So a new way must be found to prototype the SDR processors efficiently. In this paper we present a bit-and-cycle accurate model of programmable SIMD SDR processors in a machine description language LISA. LISA is a language for instruction set architecture which can gain rapid model at architectural level. In order to evaluate the availability of our proposed processor, three common baseband functions, FFT, FIR digital filter and matrix multiplication have been mapped on the SDR platform. Analytical results showed that the SDR processor achieved the maximum of 47.1% performance boost relative to the opponent processor.

  12. SU-D-206-01: Employing a Novel Consensus Optimization Strategy to Achieve Iterative Cone Beam CT Reconstruction On a Multi-GPU Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B; Southern Medical University, Guangzhou, Guangdong; Tian, Z

    Purpose: While compressed sensing-based cone-beam CT (CBCT) iterative reconstruction techniques have demonstrated tremendous capability of reconstructing high-quality images from undersampled noisy data, its long computation time still hinders wide application in routine clinic. The purpose of this study is to develop a reconstruction framework that employs modern consensus optimization techniques to achieve CBCT reconstruction on a multi-GPU platform for improved computational efficiency. Methods: Total projection data were evenly distributed to multiple GPUs. Each GPU performed reconstruction using its own projection data with a conventional total variation regularization approach to ensure image quality. In addition, the solutions from GPUs were subjectmore » to a consistency constraint that they should be identical. We solved the optimization problem with all the constraints considered rigorously using an alternating direction method of multipliers (ADMM) algorithm. The reconstruction framework was implemented using OpenCL on a platform with two Nvidia GTX590 GPU cards, each with two GPUs. We studied the performance of our method and demonstrated its advantages through a simulation case with a NCAT phantom and an experimental case with a Catphan phantom. Result: Compared with the CBCT images reconstructed using conventional FDK method with full projection datasets, our proposed method achieved comparable image quality with about one third projection numbers. The computation time on the multi-GPU platform was ∼55 s and ∼ 35 s in the two cases respectively, achieving a speedup factor of ∼ 3.0 compared with single GPU reconstruction. Conclusion: We have developed a consensus ADMM-based CBCT reconstruction method which enabled performing reconstruction on a multi-GPU platform. The achieved efficiency made this method clinically attractive.« less

  13. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays.

    PubMed

    Padmanaban, Nitish; Konrad, Robert; Stramer, Tal; Cooper, Emily A; Wetzstein, Gordon

    2017-02-28

    From the desktop to the laptop to the mobile device, personal computing platforms evolve over time. Moving forward, wearable computing is widely expected to be integral to consumer electronics and beyond. The primary interface between a wearable computer and a user is often a near-eye display. However, current generation near-eye displays suffer from multiple limitations: they are unable to provide fully natural visual cues and comfortable viewing experiences for all users. At their core, many of the issues with near-eye displays are caused by limitations in conventional optics. Current displays cannot reproduce the changes in focus that accompany natural vision, and they cannot support users with uncorrected refractive errors. With two prototype near-eye displays, we show how these issues can be overcome using display modes that adapt to the user via computational optics. By using focus-tunable lenses, mechanically actuated displays, and mobile gaze-tracking technology, these displays can be tailored to correct common refractive errors and provide natural focus cues by dynamically updating the system based on where a user looks in a virtual scene. Indeed, the opportunities afforded by recent advances in computational optics open up the possibility of creating a computing platform in which some users may experience better quality vision in the virtual world than in the real one.

  14. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays

    NASA Astrophysics Data System (ADS)

    Padmanaban, Nitish; Konrad, Robert; Stramer, Tal; Cooper, Emily A.; Wetzstein, Gordon

    2017-02-01

    From the desktop to the laptop to the mobile device, personal computing platforms evolve over time. Moving forward, wearable computing is widely expected to be integral to consumer electronics and beyond. The primary interface between a wearable computer and a user is often a near-eye display. However, current generation near-eye displays suffer from multiple limitations: they are unable to provide fully natural visual cues and comfortable viewing experiences for all users. At their core, many of the issues with near-eye displays are caused by limitations in conventional optics. Current displays cannot reproduce the changes in focus that accompany natural vision, and they cannot support users with uncorrected refractive errors. With two prototype near-eye displays, we show how these issues can be overcome using display modes that adapt to the user via computational optics. By using focus-tunable lenses, mechanically actuated displays, and mobile gaze-tracking technology, these displays can be tailored to correct common refractive errors and provide natural focus cues by dynamically updating the system based on where a user looks in a virtual scene. Indeed, the opportunities afforded by recent advances in computational optics open up the possibility of creating a computing platform in which some users may experience better quality vision in the virtual world than in the real one.

  15. A multiple pointing-mount control strategy for space platforms

    NASA Technical Reports Server (NTRS)

    Johnson, C. D.

    1992-01-01

    A new disturbance-adaptive control strategy for multiple pointing-mount space platforms is proposed and illustrated by consideration of a simplified 3-link dynamic model of a multiple pointing-mount space platform. Simulation results demonstrate the effectiveness of the new platform control strategy. The simulation results also reveal a system 'destabilization phenomena' that can occur if the set of individual platform-mounted experiment controllers are 'too responsive.'

  16. Building A Community Focused Data and Modeling Collaborative platform with Hardware Virtualization Technology

    NASA Astrophysics Data System (ADS)

    Michaelis, A.; Wang, W.; Melton, F. S.; Votava, P.; Milesi, C.; Hashimoto, H.; Nemani, R. R.; Hiatt, S. H.

    2009-12-01

    As the length and diversity of the global earth observation data records grow, modeling and analyses of biospheric conditions increasingly requires multiple terabytes of data from a diversity of models and sensors. With network bandwidth beginning to flatten, transmission of these data from centralized data archives presents an increasing challenge, and costs associated with local storage and management of data and compute resources are often significant for individual research and application development efforts. Sharing community valued intermediary data sets, results and codes from individual efforts with others that are not in direct funded collaboration can also be a challenge with respect to time, cost and expertise. We purpose a modeling, data and knowledge center that houses NASA satellite data, climate data and ancillary data where a focused community may come together to share modeling and analysis codes, scientific results, knowledge and expertise on a centralized platform, named Ecosystem Modeling Center (EMC). With the recent development of new technologies for secure hardware virtualization, an opportunity exists to create specific modeling, analysis and compute environments that are customizable, “archiveable” and transferable. Allowing users to instantiate such environments on large compute infrastructures that are directly connected to large data archives may significantly reduce costs and time associated with scientific efforts by alleviating users from redundantly retrieving and integrating data sets and building modeling analysis codes. The EMC platform also provides the possibility for users receiving indirect assistance from expertise through prefabricated compute environments, potentially reducing study “ramp up” times.

  17. Multidimensional bioseparation with modular microfluidics

    DOEpatents

    Chirica, Gabriela S.; Renzi, Ronald F.

    2013-08-27

    A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.

  18. Effects of In-Class Hands-On Laboratories in a Large Enrollment, Multiple Section Blended Linear Circuits Course

    ERIC Educational Resources Information Center

    Ferri, Bonni H.; Ferri, Aldo A.; Majerich, David M.; Madden, Amanda G.

    2016-01-01

    This paper examines the effects of hands-on learning in an undergraduate circuits class that is taught to non-majors; i.e., students outside of electrical and computing engineering. The course, ECE3710, is taught in a blended format facilitated by the video lectures prepared for two Massive Open Online Courses developed for the Coursera Platform.…

  19. Development of a cloud-based Bioinformatics Training Platform.

    PubMed

    Revote, Jerico; Watson-Haigh, Nathan S; Quenette, Steve; Bethwaite, Blair; McGrath, Annette; Shang, Catherine A

    2017-05-01

    The Bioinformatics Training Platform (BTP) has been developed to provide access to the computational infrastructure required to deliver sophisticated hands-on bioinformatics training courses. The BTP is a cloud-based solution that is in active use for delivering next-generation sequencing training to Australian researchers at geographically dispersed locations. The BTP was built to provide an easy, accessible, consistent and cost-effective approach to delivering workshops at host universities and organizations with a high demand for bioinformatics training but lacking the dedicated bioinformatics training suites required. To support broad uptake of the BTP, the platform has been made compatible with multiple cloud infrastructures. The BTP is an open-source and open-access resource. To date, 20 training workshops have been delivered to over 700 trainees at over 10 venues across Australia using the BTP. © The Author 2016. Published by Oxford University Press.

  20. Development of a cloud-based Bioinformatics Training Platform

    PubMed Central

    Revote, Jerico; Watson-Haigh, Nathan S.; Quenette, Steve; Bethwaite, Blair; McGrath, Annette

    2017-01-01

    Abstract The Bioinformatics Training Platform (BTP) has been developed to provide access to the computational infrastructure required to deliver sophisticated hands-on bioinformatics training courses. The BTP is a cloud-based solution that is in active use for delivering next-generation sequencing training to Australian researchers at geographically dispersed locations. The BTP was built to provide an easy, accessible, consistent and cost-effective approach to delivering workshops at host universities and organizations with a high demand for bioinformatics training but lacking the dedicated bioinformatics training suites required. To support broad uptake of the BTP, the platform has been made compatible with multiple cloud infrastructures. The BTP is an open-source and open-access resource. To date, 20 training workshops have been delivered to over 700 trainees at over 10 venues across Australia using the BTP. PMID:27084333

  1. Virtual Systems Pharmacology (ViSP) software for simulation from mechanistic systems-level models.

    PubMed

    Ermakov, Sergey; Forster, Peter; Pagidala, Jyotsna; Miladinov, Marko; Wang, Albert; Baillie, Rebecca; Bartlett, Derek; Reed, Mike; Leil, Tarek A

    2014-01-01

    Multiple software programs are available for designing and running large scale system-level pharmacology models used in the drug development process. Depending on the problem, scientists may be forced to use several modeling tools that could increase model development time, IT costs and so on. Therefore, it is desirable to have a single platform that allows setting up and running large-scale simulations for the models that have been developed with different modeling tools. We developed a workflow and a software platform in which a model file is compiled into a self-contained executable that is no longer dependent on the software that was used to create the model. At the same time the full model specifics is preserved by presenting all model parameters as input parameters for the executable. This platform was implemented as a model agnostic, therapeutic area agnostic and web-based application with a database back-end that can be used to configure, manage and execute large-scale simulations for multiple models by multiple users. The user interface is designed to be easily configurable to reflect the specifics of the model and the user's particular needs and the back-end database has been implemented to store and manage all aspects of the systems, such as Models, Virtual Patients, User Interface Settings, and Results. The platform can be adapted and deployed on an existing cluster or cloud computing environment. Its use was demonstrated with a metabolic disease systems pharmacology model that simulates the effects of two antidiabetic drugs, metformin and fasiglifam, in type 2 diabetes mellitus patients.

  2. Virtual Systems Pharmacology (ViSP) software for simulation from mechanistic systems-level models

    PubMed Central

    Ermakov, Sergey; Forster, Peter; Pagidala, Jyotsna; Miladinov, Marko; Wang, Albert; Baillie, Rebecca; Bartlett, Derek; Reed, Mike; Leil, Tarek A.

    2014-01-01

    Multiple software programs are available for designing and running large scale system-level pharmacology models used in the drug development process. Depending on the problem, scientists may be forced to use several modeling tools that could increase model development time, IT costs and so on. Therefore, it is desirable to have a single platform that allows setting up and running large-scale simulations for the models that have been developed with different modeling tools. We developed a workflow and a software platform in which a model file is compiled into a self-contained executable that is no longer dependent on the software that was used to create the model. At the same time the full model specifics is preserved by presenting all model parameters as input parameters for the executable. This platform was implemented as a model agnostic, therapeutic area agnostic and web-based application with a database back-end that can be used to configure, manage and execute large-scale simulations for multiple models by multiple users. The user interface is designed to be easily configurable to reflect the specifics of the model and the user's particular needs and the back-end database has been implemented to store and manage all aspects of the systems, such as Models, Virtual Patients, User Interface Settings, and Results. The platform can be adapted and deployed on an existing cluster or cloud computing environment. Its use was demonstrated with a metabolic disease systems pharmacology model that simulates the effects of two antidiabetic drugs, metformin and fasiglifam, in type 2 diabetes mellitus patients. PMID:25374542

  3. Effective correlator for RadioAstron project

    NASA Astrophysics Data System (ADS)

    Sergeev, Sergey

    This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.

  4. A Web platform for the interactive visualization and analysis of the 3D fractal dimension of MRI data.

    PubMed

    Jiménez, J; López, A M; Cruz, J; Esteban, F J; Navas, J; Villoslada, P; Ruiz de Miras, J

    2014-10-01

    This study presents a Web platform (http://3dfd.ujaen.es) for computing and analyzing the 3D fractal dimension (3DFD) from volumetric data in an efficient, visual and interactive way. The Web platform is specially designed for working with magnetic resonance images (MRIs) of the brain. The program estimates the 3DFD by calculating the 3D box-counting of the entire volume of the brain, and also of its 3D skeleton. All of this is done in a graphical, fast and optimized way by using novel technologies like CUDA and WebGL. The usefulness of the Web platform presented is demonstrated by its application in a case study where an analysis and characterization of groups of 3D MR images is performed for three neurodegenerative diseases: Multiple Sclerosis, Intrauterine Growth Restriction and Alzheimer's disease. To the best of our knowledge, this is the first Web platform that allows the users to calculate, visualize, analyze and compare the 3DFD from MRI images in the cloud. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Implementation of cascade logic gates and majority logic gate on a simple and universal molecular platform.

    PubMed

    Gao, Jinting; Liu, Yaqing; Lin, Xiaodong; Deng, Jiankang; Yin, Jinjin; Wang, Shuo

    2017-10-25

    Wiring a series of simple logic gates to process complex data is significantly important and a large challenge for untraditional molecular computing systems. The programmable property of DNA endows its powerful application in molecular computing. In our investigation, it was found that DNA exhibits excellent peroxidase-like activity in a colorimetric system of TMB/H 2 O 2 /Hemin (TMB, 3,3', 5,5'-Tetramethylbenzidine) in the presence of K + and Cu 2+ , which is significantly inhibited by the addition of an antioxidant. According to the modulated catalytic activity of this DNA-based catalyst, three cascade logic gates including AND-OR-INH (INHIBIT), AND-INH and OR-INH were successfully constructed. Interestingly, by only modulating the concentration of Cu 2+ , a majority logic gate with a single-vote veto function was realized following the same threshold value as that of the cascade logic gates. The strategy is quite straightforward and versatile and provides an instructive method for constructing multiple logic gates on a simple platform to implement complex molecular computing.

  6. Optimization Model for Web Based Multimodal Interactive Simulations.

    PubMed

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-07-15

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.

  7. Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Oliker, Leonid; Vuduc, Richard

    2008-10-16

    We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific-optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD quad-core, AMD dual-core, and Intel quad-core designs, the heterogeneous STI Cell, as well as one ofmore » the first scientific studies of the highly multithreaded Sun Victoria Falls (a Niagara2 SMP). We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural trade-offs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.« less

  8. Optimization Model for Web Based Multimodal Interactive Simulations

    PubMed Central

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-01-01

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update. In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach. PMID:26085713

  9. Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges.

    PubMed

    Yin, Zekun; Lan, Haidong; Tan, Guangming; Lu, Mian; Vasilakos, Athanasios V; Liu, Weiguo

    2017-01-01

    The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the challenge of gaining a profound insight into the deepest biological functions from big biological data. This in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms. In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of different biological data analysis applications and a survey of the way they have been mapped onto various computing platforms. After that, we present a case study to compare the efficiency of different computing platforms for handling the classical biological sequence alignment problem. At last we discuss the open issues in big biological data analytics.

  10. A resilient and secure software platform and architecture for distributed spacecraft

    NASA Astrophysics Data System (ADS)

    Otte, William R.; Dubey, Abhishek; Karsai, Gabor

    2014-06-01

    A distributed spacecraft is a cluster of independent satellite modules flying in formation that communicate via ad-hoc wireless networks. This system in space is a cloud platform that facilitates sharing sensors and other computing and communication resources across multiple applications, potentially developed and maintained by different organizations. Effectively, such architecture can realize the functions of monolithic satellites at a reduced cost and with improved adaptivity and robustness. Openness of these architectures pose special challenges because the distributed software platform has to support applications from different security domains and organizations, and where information flows have to be carefully managed and compartmentalized. If the platform is used as a robust shared resource its management, configuration, and resilience becomes a challenge in itself. We have designed and prototyped a distributed software platform for such architectures. The core element of the platform is a new operating system whose services were designed to restrict access to the network and the file system, and to enforce resource management constraints for all non-privileged processes Mixed-criticality applications operating at different security labels are deployed and controlled by a privileged management process that is also pre-configuring all information flows. This paper describes the design and objective of this layer.

  11. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics.

    PubMed

    Tyanova, Stefka; Temu, Tikira; Cox, Juergen

    2016-12-01

    MaxQuant is one of the most frequently used platforms for mass-spectrometry (MS)-based proteomics data analysis. Since its first release in 2008, it has grown substantially in functionality and can be used in conjunction with more MS platforms. Here we present an updated protocol covering the most important basic computational workflows, including those designed for quantitative label-free proteomics, MS1-level labeling and isobaric labeling techniques. This protocol presents a complete description of the parameters used in MaxQuant, as well as of the configuration options of its integrated search engine, Andromeda. This protocol update describes an adaptation of an existing protocol that substantially modifies the technique. Important concepts of shotgun proteomics and their implementation in MaxQuant are briefly reviewed, including different quantification strategies and the control of false-discovery rates (FDRs), as well as the analysis of post-translational modifications (PTMs). The MaxQuant output tables, which contain information about quantification of proteins and PTMs, are explained in detail. Furthermore, we provide a short version of the workflow that is applicable to data sets with simple and standard experimental designs. The MaxQuant algorithms are efficiently parallelized on multiple processors and scale well from desktop computers to servers with many cores. The software is written in C# and is freely available at http://www.maxquant.org.

  12. Field programmable gate array-assigned complex-valued computation and its limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard-Schwarz, Maria, E-mail: maria.bernardschwarz@ni.com; Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8, 1040 Wien; Zwick, Wolfgang

    We discuss how leveraging Field Programmable Gate Array (FPGA) technology as part of a high performance computing platform reduces latency to meet the demanding real time constraints of a quantum optics simulation. Implementations of complex-valued operations using fixed point numeric on a Virtex-5 FPGA compare favorably to more conventional solutions on a central processing unit. Our investigation explores the performance of multiple fixed point options along with a traditional 64 bits floating point version. With this information, the lowest execution times can be estimated. Relative error is examined to ensure simulation accuracy is maintained.

  13. DIVE: A Graph-based Visual Analytics Framework for Big Data

    PubMed Central

    Rysavy, Steven J.; Bromley, Dennis; Daggett, Valerie

    2014-01-01

    The need for data-centric scientific tools is growing; domains like biology, chemistry, and physics are increasingly adopting computational approaches. As a result, scientists must now deal with the challenges of big data. To address these challenges, we built a visual analytics platform named DIVE: Data Intensive Visualization Engine. DIVE is a data-agnostic, ontologically-expressive software framework capable of streaming large datasets at interactive speeds. Here we present the technical details of the DIVE platform, multiple usage examples, and a case study from the Dynameomics molecular dynamics project. We specifically highlight our novel contributions to structured data model manipulation and high-throughput streaming of large, structured datasets. PMID:24808197

  14. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays

    PubMed Central

    Padmanaban, Nitish; Konrad, Robert; Stramer, Tal; Wetzstein, Gordon

    2017-01-01

    From the desktop to the laptop to the mobile device, personal computing platforms evolve over time. Moving forward, wearable computing is widely expected to be integral to consumer electronics and beyond. The primary interface between a wearable computer and a user is often a near-eye display. However, current generation near-eye displays suffer from multiple limitations: they are unable to provide fully natural visual cues and comfortable viewing experiences for all users. At their core, many of the issues with near-eye displays are caused by limitations in conventional optics. Current displays cannot reproduce the changes in focus that accompany natural vision, and they cannot support users with uncorrected refractive errors. With two prototype near-eye displays, we show how these issues can be overcome using display modes that adapt to the user via computational optics. By using focus-tunable lenses, mechanically actuated displays, and mobile gaze-tracking technology, these displays can be tailored to correct common refractive errors and provide natural focus cues by dynamically updating the system based on where a user looks in a virtual scene. Indeed, the opportunities afforded by recent advances in computational optics open up the possibility of creating a computing platform in which some users may experience better quality vision in the virtual world than in the real one. PMID:28193871

  15. The tracking performance of distributed recoverable flight control systems subject to high intensity radiated fields

    NASA Astrophysics Data System (ADS)

    Wang, Rui

    It is known that high intensity radiated fields (HIRF) can produce upsets in digital electronics, and thereby degrade the performance of digital flight control systems. Such upsets, either from natural or man-made sources, can change data values on digital buses and memory and affect CPU instruction execution. HIRF environments are also known to trigger common-mode faults, affecting nearly-simultaneously multiple fault containment regions, and hence reducing the benefits of n-modular redundancy and other fault-tolerant computing techniques. Thus, it is important to develop models which describe the integration of the embedded digital system, where the control law is implemented, as well as the dynamics of the closed-loop system. In this dissertation, theoretical tools are presented to analyze the relationship between the design choices for a class of distributed recoverable computing platforms and the tracking performance degradation of a digital flight control system implemented on such a platform while operating in a HIRF environment. Specifically, a tractable hybrid performance model is developed for a digital flight control system implemented on a computing platform inspired largely by the NASA family of fault-tolerant, reconfigurable computer architectures known as SPIDER (scalable processor-independent design for enhanced reliability). The focus will be on the SPIDER implementation, which uses the computer communication system known as ROBUS-2 (reliable optical bus). A physical HIRF experiment was conducted at the NASA Langley Research Center in order to validate the theoretical tracking performance degradation predictions for a distributed Boeing 747 flight control system subject to a HIRF environment. An extrapolation of these results for scenarios that could not be physically tested is also presented.

  16. Reconfigurable intelligent sensors for health monitoring: a case study of pulse oximeter sensor.

    PubMed

    Jovanov, E; Milenkovic, A; Basham, S; Clark, D; Kelley, D

    2004-01-01

    Design of low-cost, miniature, lightweight, ultra low-power, intelligent sensors capable of customization and seamless integration into a body area network for health monitoring applications presents one of the most challenging tasks for system designers. To answer this challenge we propose a reconfigurable intelligent sensor platform featuring a low-power microcontroller, a low-power programmable logic device, a communication interface, and a signal conditioning circuit. The proposed solution promises a cost-effective, flexible platform that allows easy customization, run-time reconfiguration, and energy-efficient computation and communication. The development of a common platform for multiple physical sensors and a repository of both software procedures and soft intellectual property cores for hardware acceleration will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of a reconfigurable pulse oximeter sensor.

  17. Patterns across multiple memories are identified over time.

    PubMed

    Richards, Blake A; Xia, Frances; Santoro, Adam; Husse, Jana; Woodin, Melanie A; Josselyn, Sheena A; Frankland, Paul W

    2014-07-01

    Memories are not static but continue to be processed after encoding. This is thought to allow the integration of related episodes via the identification of patterns. Although this idea lies at the heart of contemporary theories of systems consolidation, it has yet to be demonstrated experimentally. Using a modified water-maze paradigm in which platforms are drawn stochastically from a spatial distribution, we found that mice were better at matching platform distributions 30 d compared to 1 d after training. Post-training time-dependent improvements in pattern matching were associated with increased sensitivity to new platforms that conflicted with the pattern. Increased sensitivity to pattern conflict was reduced by pharmacogenetic inhibition of the medial prefrontal cortex (mPFC). These results indicate that pattern identification occurs over time, which can lead to conflicts between new information and existing knowledge that must be resolved, in part, by computations carried out in the mPFC.

  18. An Automated Parallel Image Registration Technique Based on the Correlation of Wavelet Features

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Campbell, William J.; Cromp, Robert F.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    With the increasing importance of multiple platform/multiple remote sensing missions, fast and automatic integration of digital data from disparate sources has become critical to the success of these endeavors. Our work utilizes maxima of wavelet coefficients to form the basic features of a correlation-based automatic registration algorithm. Our wavelet-based registration algorithm is tested successfully with data from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and the Landsat/Thematic Mapper(TM), which differ by translation and/or rotation. By the choice of high-frequency wavelet features, this method is similar to an edge-based correlation method, but by exploiting the multi-resolution nature of a wavelet decomposition, our method achieves higher computational speeds for comparable accuracies. This algorithm has been implemented on a Single Instruction Multiple Data (SIMD) massively parallel computer, the MasPar MP-2, as well as on the CrayT3D, the Cray T3E and a Beowulf cluster of Pentium workstations.

  19. Folding Proteins at 500 ns/hour with Work Queue.

    PubMed

    Abdul-Wahid, Badi'; Yu, Li; Rajan, Dinesh; Feng, Haoyun; Darve, Eric; Thain, Douglas; Izaguirre, Jesús A

    2012-10-01

    Molecular modeling is a field that traditionally has large computational costs. Until recently, most simulation techniques relied on long trajectories, which inherently have poor scalability. A new class of methods is proposed that requires only a large number of short calculations, and for which minimal communication between computer nodes is required. We considered one of the more accurate variants called Accelerated Weighted Ensemble Dynamics (AWE) and for which distributed computing can be made efficient. We implemented AWE using the Work Queue framework for task management and applied it to an all atom protein model (Fip35 WW domain). We can run with excellent scalability by simultaneously utilizing heterogeneous resources from multiple computing platforms such as clouds (Amazon EC2, Microsoft Azure), dedicated clusters, grids, on multiple architectures (CPU/GPU, 32/64bit), and in a dynamic environment in which processes are regularly added or removed from the pool. This has allowed us to achieve an aggregate sampling rate of over 500 ns/hour. As a comparison, a single process typically achieves 0.1 ns/hour.

  20. Folding Proteins at 500 ns/hour with Work Queue

    PubMed Central

    Abdul-Wahid, Badi’; Yu, Li; Rajan, Dinesh; Feng, Haoyun; Darve, Eric; Thain, Douglas; Izaguirre, Jesús A.

    2014-01-01

    Molecular modeling is a field that traditionally has large computational costs. Until recently, most simulation techniques relied on long trajectories, which inherently have poor scalability. A new class of methods is proposed that requires only a large number of short calculations, and for which minimal communication between computer nodes is required. We considered one of the more accurate variants called Accelerated Weighted Ensemble Dynamics (AWE) and for which distributed computing can be made efficient. We implemented AWE using the Work Queue framework for task management and applied it to an all atom protein model (Fip35 WW domain). We can run with excellent scalability by simultaneously utilizing heterogeneous resources from multiple computing platforms such as clouds (Amazon EC2, Microsoft Azure), dedicated clusters, grids, on multiple architectures (CPU/GPU, 32/64bit), and in a dynamic environment in which processes are regularly added or removed from the pool. This has allowed us to achieve an aggregate sampling rate of over 500 ns/hour. As a comparison, a single process typically achieves 0.1 ns/hour. PMID:25540799

  1. The Changing Role of Data Stewardship in Creating Trustworthy, Interdisciplinary High Performance Data Platforms for the Future.

    NASA Astrophysics Data System (ADS)

    Richards, C. J.; Evans, B. J. K.; Wyborn, L. A.; Wang, J.; Trenham, C. E.; Druken, K. A.

    2016-12-01

    The Australian National Computational Infrastructure (NCI) has ingested over 10PB of national and international environmental, Earth systems science and geophysics reference data onto a single platform to advance high performance data (HPD) techniques that enable interdisciplinary Data-intensive Science. Improved Data Stewardship is critical to evolve both data and data services that support the increasing need for programmatic usability and that prioritises interoperability rather than just traditional data download or portal access. A data platform designed for programmatic access requires quality checked collections that better utilise interoperable data formats and standards. Achieving this involves strategies to meet both the technical and `social' challenges. Aggregating datasets used by different communities and organisations requires satisfying multiple use cases for the broader research community, whilst addressing existing BAU requirements. For NCI, this requires working with data stewards to manage the process of replicating data to the common platform, community representatives and developers to confirm their requirements, and with international peers to better enable globally integrated data communities. It is particularly important to engage with representatives from each community who can work collaboratively to a common goal, as well as capture their community needs, apply quality assurance, determine any barriers to change and to understand priorities. This is critical when managing the aggregation of data collections from multiple producers with different levels of stewardship maturity, technologies and standards, and where organisational barriers can impact the transformation to interoperable and performant data access. To facilitate the management, development and operation of the HPD platform, NCI coordinates technical and domain committees made up of user representatives, data stewards and informatics experts to provide a forum to discuss, learn and advise NCI's management. This experience has been a useful collaboration and suggests that in the age of interdisciplinary HPD research, Data Stewardship is evolving from a focus on the needs of a single community to one which helps balance priorities and navigates change for multiple communities.

  2. A novel collaborative e-learning platform for medical students - ALERT STUDENT

    PubMed Central

    2014-01-01

    Background The increasing complexity of medical curricula would benefit from adaptive computer supported collaborative learning systems that support study management using instructional design and learning object principles. However, to our knowledge, there are scarce reports regarding applications developed to meet this goal and encompass the complete medical curriculum. The aim of ths study was to develop and assess the usability of an adaptive computer supported collaborative learning system for medical students to manage study sessions. Results A study platform named ALERT STUDENT was built as a free web application. Content chunks are represented as Flashcards that hold knowledge and open ended questions. These can be created in a collaborative fashion. Multiple Flashcards can be combined into custom stacks called Notebooks that can be accessed in study Groups that belong to the user institution. The system provides a Study Mode that features text markers, text notes, timers and color-coded content prioritization based on self-assessment of open ended questions presented in a Quiz Mode. Time spent studying and Perception of knowledge are displayed for each student and peers using charts. Computer supported collaborative learning is achieved by allowing for simultaneous creation of Notebooks and self-assessment questions by many users in a pre-defined Group. Past personal performance data is retrieved when studying new Notebooks containing previously studied Flashcards. Self-report surveys showed that students highly agreed that the system was useful and were willing to use it as a reference tool. Conclusions The platform employs various instructional design and learning object principles in a computer supported collaborative learning platform for medical students that allows for study management. The application broadens student insight over learning results and supports informed decisions based on past learning performance. It serves as a potential educational model for the medical education setting that has gathered strong positive feedback from students at our school. This platform provides a case study on how effective blending of instructional design and learning object principles can be brought together to manage study, and takes an important step towards bringing information management tools to support study decisions and improving learning outcomes. PMID:25017028

  3. A novel collaborative e-learning platform for medical students - ALERT STUDENT.

    PubMed

    Taveira-Gomes, Tiago; Saffarzadeh, Areo; Severo, Milton; Guimarães, M Jorge; Ferreira, Maria Amélia

    2014-07-14

    The increasing complexity of medical curricula would benefit from adaptive computer supported collaborative learning systems that support study management using instructional design and learning object principles. However, to our knowledge, there are scarce reports regarding applications developed to meet this goal and encompass the complete medical curriculum. The aim of ths study was to develop and assess the usability of an adaptive computer supported collaborative learning system for medical students to manage study sessions. A study platform named ALERT STUDENT was built as a free web application. Content chunks are represented as Flashcards that hold knowledge and open ended questions. These can be created in a collaborative fashion. Multiple Flashcards can be combined into custom stacks called Notebooks that can be accessed in study Groups that belong to the user institution. The system provides a Study Mode that features text markers, text notes, timers and color-coded content prioritization based on self-assessment of open ended questions presented in a Quiz Mode. Time spent studying and Perception of knowledge are displayed for each student and peers using charts. Computer supported collaborative learning is achieved by allowing for simultaneous creation of Notebooks and self-assessment questions by many users in a pre-defined Group. Past personal performance data is retrieved when studying new Notebooks containing previously studied Flashcards. Self-report surveys showed that students highly agreed that the system was useful and were willing to use it as a reference tool. The platform employs various instructional design and learning object principles in a computer supported collaborative learning platform for medical students that allows for study management. The application broadens student insight over learning results and supports informed decisions based on past learning performance. It serves as a potential educational model for the medical education setting that has gathered strong positive feedback from students at our school.This platform provides a case study on how effective blending of instructional design and learning object principles can be brought together to manage study, and takes an important step towards bringing information management tools to support study decisions and improving learning outcomes.

  4. The Perseus computational platform for comprehensive analysis of (prote)omics data.

    PubMed

    Tyanova, Stefka; Temu, Tikira; Sinitcyn, Pavel; Carlson, Arthur; Hein, Marco Y; Geiger, Tamar; Mann, Matthias; Cox, Jürgen

    2016-09-01

    A main bottleneck in proteomics is the downstream biological analysis of highly multivariate quantitative protein abundance data generated using mass-spectrometry-based analysis. We developed the Perseus software platform (http://www.perseus-framework.org) to support biological and biomedical researchers in interpreting protein quantification, interaction and post-translational modification data. Perseus contains a comprehensive portfolio of statistical tools for high-dimensional omics data analysis covering normalization, pattern recognition, time-series analysis, cross-omics comparisons and multiple-hypothesis testing. A machine learning module supports the classification and validation of patient groups for diagnosis and prognosis, and it also detects predictive protein signatures. Central to Perseus is a user-friendly, interactive workflow environment that provides complete documentation of computational methods used in a publication. All activities in Perseus are realized as plugins, and users can extend the software by programming their own, which can be shared through a plugin store. We anticipate that Perseus's arsenal of algorithms and its intuitive usability will empower interdisciplinary analysis of complex large data sets.

  5. Performance Analysis, Design Considerations, and Applications of Extreme-Scale In Situ Infrastructures

    DOE PAGES

    Ayachit, Utkarsh; Bauer, Andrew; Duque, Earl P. N.; ...

    2016-11-01

    A key trend facing extreme-scale computational science is the widening gap between computational and I/O rates, and the challenge that follows is how to best gain insight from simulation data when it is increasingly impractical to save it to persistent storage for subsequent visual exploration and analysis. One approach to this challenge is centered around the idea of in situ processing, where visualization and analysis processing is performed while data is still resident in memory. Our paper examines several key design and performance issues related to the idea of in situ processing at extreme scale on modern platforms: Scalability, overhead,more » performance measurement and analysis, comparison and contrast with a traditional post hoc approach, and interfacing with simulation codes. We illustrate these principles in practice with studies, conducted on large-scale HPC platforms, that include a miniapplication and multiple science application codes, one of which demonstrates in situ methods in use at greater than 1M-way concurrency.« less

  6. The ENSDF Java Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonzogni, A.A.

    2005-05-24

    A package of computer codes has been developed to process and display nuclear structure and decay data stored in the ENSDF (Evaluated Nuclear Structure Data File) library. The codes were written in an object-oriented fashion using the java language. This allows for an easy implementation across multiple platforms as well as deployment on web pages. The structure of the different java classes that make up the package is discussed as well as several different implementations.

  7. [Design of visualized medical images network and web platform based on MeVisLab].

    PubMed

    Xiang, Jun; Ye, Qing; Yuan, Xun

    2017-04-01

    With the trend of the development of "Internet +", some further requirements for the mobility of medical images have been required in the medical field. In view of this demand, this paper presents a web-based visual medical imaging platform. First, the feasibility of medical imaging is analyzed and technical points. CT (Computed Tomography) or MRI (Magnetic Resonance Imaging) images are reconstructed three-dimensionally by MeVisLab and packaged as X3D (Extensible 3D Graphics) files shown in the present paper. Then, the B/S (Browser/Server) system specially designed for 3D image is designed by using the HTML 5 and WebGL rendering engine library, and the X3D image file is parsed and rendered by the system. The results of this study showed that the platform was suitable for multiple operating systems to realize the platform-crossing and mobilization of medical image data. The development of medical imaging platform is also pointed out in this paper. It notes that web application technology will not only promote the sharing of medical image data, but also facilitate image-based medical remote consultations and distance learning.

  8. Multiple advanced logic gates made of DNA-Ag nanocluster and the application for intelligent detection of pathogenic bacterial genes† †Electronic supplementary information (ESI) available: Chemicals, materials and DNA sequences used in the investigation, the construction of YES, AND, OR, XOR and INH logic gates, CD and PAGE experimental results. See DOI: 10.1039/c7sc05246d

    PubMed Central

    Lin, Xiaodong; Deng, Jiankang; Lyu, Yanlong; Qian, Pengcheng; Li, Yunfei

    2018-01-01

    The integration of multiple DNA logic gates on a universal platform to implement advance logic functions is a critical challenge for DNA computing. Herein, a straightforward and powerful strategy in which a guanine-rich DNA sequence lighting up a silver nanocluster and fluorophore was developed to construct a library of logic gates on a simple DNA-templated silver nanoclusters (DNA-AgNCs) platform. This library included basic logic gates, YES, AND, OR, INHIBIT, and XOR, which were further integrated into complex logic circuits to implement diverse advanced arithmetic/non-arithmetic functions including half-adder, half-subtractor, multiplexer, and demultiplexer. Under UV irradiation, all the logic functions could be instantly visualized, confirming an excellent repeatability. The logic operations were entirely based on DNA hybridization in an enzyme-free and label-free condition, avoiding waste accumulation and reducing cost consumption. Interestingly, a DNA-AgNCs-based multiplexer was, for the first time, used as an intelligent biosensor to identify pathogenic genes, E. coli and S. aureus genes, with a high sensitivity. The investigation provides a prototype for the wireless integration of multiple devices on even the simplest single-strand DNA platform to perform diverse complex functions in a straightforward and cost-effective way. PMID:29675221

  9. Arc4nix: A cross-platform geospatial analytical library for cluster and cloud computing

    NASA Astrophysics Data System (ADS)

    Tang, Jingyin; Matyas, Corene J.

    2018-02-01

    Big Data in geospatial technology is a grand challenge for processing capacity. The ability to use a GIS for geospatial analysis on Cloud Computing and High Performance Computing (HPC) clusters has emerged as a new approach to provide feasible solutions. However, users lack the ability to migrate existing research tools to a Cloud Computing or HPC-based environment because of the incompatibility of the market-dominating ArcGIS software stack and Linux operating system. This manuscript details a cross-platform geospatial library "arc4nix" to bridge this gap. Arc4nix provides an application programming interface compatible with ArcGIS and its Python library "arcpy". Arc4nix uses a decoupled client-server architecture that permits geospatial analytical functions to run on the remote server and other functions to run on the native Python environment. It uses functional programming and meta-programming language to dynamically construct Python codes containing actual geospatial calculations, send them to a server and retrieve results. Arc4nix allows users to employ their arcpy-based script in a Cloud Computing and HPC environment with minimal or no modification. It also supports parallelizing tasks using multiple CPU cores and nodes for large-scale analyses. A case study of geospatial processing of a numerical weather model's output shows that arcpy scales linearly in a distributed environment. Arc4nix is open-source software.

  10. Energy Consumption Management of Virtual Cloud Computing Platform

    NASA Astrophysics Data System (ADS)

    Li, Lin

    2017-11-01

    For energy consumption management research on virtual cloud computing platforms, energy consumption management of virtual computers and cloud computing platform should be understood deeper. Only in this way can problems faced by energy consumption management be solved. In solving problems, the key to solutions points to data centers with high energy consumption, so people are in great need to use a new scientific technique. Virtualization technology and cloud computing have become powerful tools in people’s real life, work and production because they have strong strength and many advantages. Virtualization technology and cloud computing now is in a rapid developing trend. It has very high resource utilization rate. In this way, the presence of virtualization and cloud computing technologies is very necessary in the constantly developing information age. This paper has summarized, explained and further analyzed energy consumption management questions of the virtual cloud computing platform. It eventually gives people a clearer understanding of energy consumption management of virtual cloud computing platform and brings more help to various aspects of people’s live, work and son on.

  11. High resolution computational on-chip imaging of biological samples using sparsity constraint (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rivenson, Yair; Wu, Chris; Wang, Hongda; Zhang, Yibo; Ozcan, Aydogan

    2017-03-01

    Microscopic imaging of biological samples such as pathology slides is one of the standard diagnostic methods for screening various diseases, including cancer. These biological samples are usually imaged using traditional optical microscopy tools; however, the high cost, bulkiness and limited imaging throughput of traditional microscopes partially restrict their deployment in resource-limited settings. In order to mitigate this, we previously demonstrated a cost-effective and compact lens-less on-chip microscopy platform with a wide field-of-view of >20-30 mm^2. The lens-less microscopy platform has shown its effectiveness for imaging of highly connected biological samples, such as pathology slides of various tissue samples and smears, among others. This computational holographic microscope requires a set of super-resolved holograms acquired at multiple sample-to-sensor distances, which are used as input to an iterative phase recovery algorithm and holographic reconstruction process, yielding high-resolution images of the samples in phase and amplitude channels. Here we demonstrate that in order to reconstruct clinically relevant images with high resolution and image contrast, we require less than 50% of the previously reported nominal number of holograms acquired at different sample-to-sensor distances. This is achieved by incorporating a loose sparsity constraint as part of the iterative holographic object reconstruction. We demonstrate the success of this sparsity-based computational lens-less microscopy platform by imaging pathology slides of breast cancer tissue and Papanicolaou (Pap) smears.

  12. Web-based reactive transport modeling using PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Karra, S.; Lichtner, P. C.; Versteeg, R.; Zhang, Y.

    2017-12-01

    Actionable understanding of system behavior in the subsurface is required for a wide spectrum of societal and engineering needs by both commercial firms and government entities and academia. These needs include, for example, water resource management, precision agriculture, contaminant remediation, unconventional energy production, CO2 sequestration monitoring, and climate studies. Such understanding requires the ability to numerically model various coupled processes that occur across different temporal and spatial scales as well as multiple physical domains (reservoirs - overburden, surface-subsurface, groundwater-surface water, saturated-unsaturated zone). Currently, this ability is typically met through an in-house approach where computational resources, model expertise, and data for model parameterization are brought together to meet modeling needs. However, such an approach has multiple drawbacks which limit the application of high-end reactive transport codes such as the Department of Energy funded[?] PFLOTRAN code. In addition, while many end users have a need for the capabilities provided by high-end reactive transport codes, they do not have the expertise - nor the time required to obtain the expertise - to effectively use these codes. We have developed and are actively enhancing a cloud-based software platform through which diverse users are able to easily configure, execute, visualize, share, and interpret PFLOTRAN models. This platform consists of a web application and available on-demand HPC computational infrastructure. The web application consists of (1) a browser-based graphical user interface which allows users to configure models and visualize results interactively, and (2) a central server with back-end relational databases which hold configuration, data, modeling results, and Python scripts for model configuration, and (3) a HPC environment for on-demand model execution. We will discuss lessons learned in the development of this platform, the rationale for different interfaces, implementation choices, as well as the planned path forward.

  13. Acceleration of Radiance for Lighting Simulation by Using Parallel Computing with OpenCL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Wangda; McNeil, Andrew; Wetter, Michael

    2011-09-06

    We report on the acceleration of annual daylighting simulations for fenestration systems in the Radiance ray-tracing program. The algorithm was optimized to reduce both the redundant data input/output operations and the floating-point operations. To further accelerate the simulation speed, the calculation for matrix multiplications was implemented using parallel computing on a graphics processing unit. We used OpenCL, which is a cross-platform parallel programming language. Numerical experiments show that the combination of the above measures can speed up the annual daylighting simulations 101.7 times or 28.6 times when the sky vector has 146 or 2306 elements, respectively.

  14. FORCEnet Net Centric Architecture - A Standards View

    DTIC Science & Technology

    2006-06-01

    SHARED SERVICES NETWORKING/COMMUNICATIONS STORAGE COMPUTING PLATFORM DATA INTERCHANGE/INTEGRATION DATA MANAGEMENT APPLICATION...R V I C E P L A T F O R M S E R V I C E F R A M E W O R K USER-FACING SERVICES SHARED SERVICES NETWORKING/COMMUNICATIONS STORAGE COMPUTING PLATFORM...E F R A M E W O R K USER-FACING SERVICES SHARED SERVICES NETWORKING/COMMUNICATIONS STORAGE COMPUTING PLATFORM DATA INTERCHANGE/INTEGRATION

  15. An Optimization Framework for Dynamic Hybrid Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenbo Du; Humberto E Garcia; Christiaan J.J. Paredis

    A computational framework for the efficient analysis and optimization of dynamic hybrid energy systems (HES) is developed. A microgrid system with multiple inputs and multiple outputs (MIMO) is modeled using the Modelica language in the Dymola environment. The optimization loop is implemented in MATLAB, with the FMI Toolbox serving as the interface between the computational platforms. Two characteristic optimization problems are selected to demonstrate the methodology and gain insight into the system performance. The first is an unconstrained optimization problem that optimizes the dynamic properties of the battery, reactor and generator to minimize variability in the HES. The second problemmore » takes operating and capital costs into consideration by imposing linear and nonlinear constraints on the design variables. The preliminary optimization results obtained in this study provide an essential step towards the development of a comprehensive framework for designing HES.« less

  16. An Efficient Solution Method for Multibody Systems with Loops Using Multiple Processors

    NASA Technical Reports Server (NTRS)

    Ghosh, Tushar K.; Nguyen, Luong A.; Quiocho, Leslie J.

    2015-01-01

    This paper describes a multibody dynamics algorithm formulated for parallel implementation on multiprocessor computing platforms using the divide-and-conquer approach. The system of interest is a general topology of rigid and elastic articulated bodies with or without loops. The algorithm divides the multibody system into a number of smaller sets of bodies in chain or tree structures, called "branches" at convenient joints called "connection points", and uses an Order-N (O (N)) approach to formulate the dynamics of each branch in terms of the unknown spatial connection forces. The equations of motion for the branches, leaving the connection forces as unknowns, are implemented in separate processors in parallel for computational efficiency, and the equations for all the unknown connection forces are synthesized and solved in one or several processors. The performances of two implementations of this divide-and-conquer algorithm in multiple processors are compared with an existing method implemented on a single processor.

  17. Using PVM to host CLIPS in distributed environments

    NASA Technical Reports Server (NTRS)

    Myers, Leonard; Pohl, Kym

    1994-01-01

    It is relatively easy to enhance CLIPS (C Language Integrated Production System) to support multiple expert systems running in a distributed environment with heterogeneous machines. The task is minimized by using the PVM (Parallel Virtual Machine) code from Oak Ridge Labs to provide the distributed utility. PVM is a library of C and FORTRAN subprograms that supports distributive computing on many different UNIX platforms. A PVM deamon is easily installed on each CPU that enters the virtual machine environment. Any user with rsh or rexec access to a machine can use the one PVM deamon to obtain a generous set of distributed facilities. The ready availability of both CLIPS and PVM makes the combination of software particularly attractive for budget conscious experimentation of heterogeneous distributive computing with multiple CLIPS executables. This paper presents a design that is sufficient to provide essential message passing functions in CLIPS and enable the full range of PVM facilities.

  18. Application of A Mobile Platform-based System for the Management of Fundus Diease in Outpatient Settings.

    PubMed

    Dend, Xun; Li, Hong-Yan; Yin, Hong; Liang, Jian-Hong; Chen, Yi; Li, Xiao-Xin; Zhao, Ming-Wei

    2016-08-01

    Objective To evaluate the application of a mobile platform-based system in the management of fundus disease in outpatient settings. Methods In the outpatient departments of fundus disease,premature babies requiring eye examination under general anesthesia and adults requiring intraocular surgery were enrolled as the subjects. According to the existing clinical practices,we developed a system that met the requirements of clinical practices and optimized the clinical management. Based on the FileMaker database,the tablet computers were used as the mobile platform and the system could also be run in iPad and PC terminals.Results Since 2013,the system recorded 7500 cases of special examinations. Since July 2015,4100 cases of intravitreal drug injection were also recored in the system. Multiple-point and real-time reservation pattern increased the efficiency and opimize the clinical management. All the clinical data were digitalized. Conclusion The mobile platform-based system can increase the efficacy of examination and other clinical processes and standardize data collection;thus,it is feasible for the clinical practices in outpatient departments of ophthalmology.

  19. Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms

    PubMed Central

    Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon

    2011-01-01

    Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532

  20. Scalable Cloning on Large-Scale GPU Platforms with Application to Time-Stepped Simulations on Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B.; Perumalla, Kalyan S.

    Cloning is a technique to efficiently simulate a tree of multiple what-if scenarios that are unraveled during the course of a base simulation. However, cloned execution is highly challenging to realize on large, distributed memory computing platforms, due to the dynamic nature of the computational load across clones, and due to the complex dependencies spanning the clone tree. In this paper, we present the conceptual simulation framework, algorithmic foundations, and runtime interface of CloneX, a new system we designed for scalable simulation cloning. It efficiently and dynamically creates whole logical copies of a dynamic tree of simulations across a largemore » parallel system without full physical duplication of computation and memory. The performance of a prototype implementation executed on up to 1,024 graphical processing units of a supercomputing system has been evaluated with three benchmarks—heat diffusion, forest fire, and disease propagation models—delivering a speed up of over two orders of magnitude compared to replicated runs. Finally, the results demonstrate a significantly faster and scalable way to execute many what-if scenario ensembles of large simulations via cloning using the CloneX interface.« less

  1. Scalable Cloning on Large-Scale GPU Platforms with Application to Time-Stepped Simulations on Grids

    DOE PAGES

    Yoginath, Srikanth B.; Perumalla, Kalyan S.

    2018-01-31

    Cloning is a technique to efficiently simulate a tree of multiple what-if scenarios that are unraveled during the course of a base simulation. However, cloned execution is highly challenging to realize on large, distributed memory computing platforms, due to the dynamic nature of the computational load across clones, and due to the complex dependencies spanning the clone tree. In this paper, we present the conceptual simulation framework, algorithmic foundations, and runtime interface of CloneX, a new system we designed for scalable simulation cloning. It efficiently and dynamically creates whole logical copies of a dynamic tree of simulations across a largemore » parallel system without full physical duplication of computation and memory. The performance of a prototype implementation executed on up to 1,024 graphical processing units of a supercomputing system has been evaluated with three benchmarks—heat diffusion, forest fire, and disease propagation models—delivering a speed up of over two orders of magnitude compared to replicated runs. Finally, the results demonstrate a significantly faster and scalable way to execute many what-if scenario ensembles of large simulations via cloning using the CloneX interface.« less

  2. Functional comparison of microarray data across multiple platforms using the method of percentage of overlapping functions.

    PubMed

    Li, Zhiguang; Kwekel, Joshua C; Chen, Tao

    2012-01-01

    Functional comparison across microarray platforms is used to assess the comparability or similarity of the biological relevance associated with the gene expression data generated by multiple microarray platforms. Comparisons at the functional level are very important considering that the ultimate purpose of microarray technology is to determine the biological meaning behind the gene expression changes under a specific condition, not just to generate a list of genes. Herein, we present a method named percentage of overlapping functions (POF) and illustrate how it is used to perform the functional comparison of microarray data generated across multiple platforms. This method facilitates the determination of functional differences or similarities in microarray data generated from multiple array platforms across all the functions that are presented on these platforms. This method can also be used to compare the functional differences or similarities between experiments, projects, or laboratories.

  3. Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing.

    PubMed

    Park, Bongsoo; Park, Jongsun; Cheong, Kyeong-Chae; Choi, Jaeyoung; Jung, Kyongyong; Kim, Donghan; Lee, Yong-Hwan; Ward, Todd J; O'Donnell, Kerry; Geiser, David M; Kang, Seogchan

    2011-01-01

    The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education.

  4. MPHASYS: a mouse phenotype analysis system

    PubMed Central

    Calder, R Brent; Beems, Rudolf B; van Steeg, Harry; Mian, I Saira; Lohman, Paul HM; Vijg, Jan

    2007-01-01

    Background Systematic, high-throughput studies of mouse phenotypes have been hampered by the inability to analyze individual animal data from a multitude of sources in an integrated manner. Studies generally make comparisons at the level of genotype or treatment thereby excluding associations that may be subtle or involve compound phenotypes. Additionally, the lack of integrated, standardized ontologies and methodologies for data exchange has inhibited scientific collaboration and discovery. Results Here we introduce a Mouse Phenotype Analysis System (MPHASYS), a platform for integrating data generated by studies of mouse models of human biology and disease such as aging and cancer. This computational platform is designed to provide a standardized methodology for working with animal data; a framework for data entry, analysis and sharing; and ontologies and methodologies for ensuring accurate data capture. We describe the tools that currently comprise MPHASYS, primarily ones related to mouse pathology, and outline its use in a study of individual animal-specific patterns of multiple pathology in mice harboring a specific germline mutation in the DNA repair and transcription-specific gene Xpd. Conclusion MPHASYS is a system for analyzing multiple data types from individual animals. It provides a framework for developing data analysis applications, and tools for collecting and distributing high-quality data. The software is platform independent and freely available under an open-source license [1]. PMID:17553167

  5. Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing

    PubMed Central

    Park, Bongsoo; Park, Jongsun; Cheong, Kyeong-Chae; Choi, Jaeyoung; Jung, Kyongyong; Kim, Donghan; Lee, Yong-Hwan; Ward, Todd J.; O'Donnell, Kerry; Geiser, David M.; Kang, Seogchan

    2011-01-01

    The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education. PMID:21087991

  6. Using e-Learning Platforms for Mastery Learning in Developmental Mathematics Courses

    ERIC Educational Resources Information Center

    Boggs, Stacey; Shore, Mark; Shore, JoAnna

    2004-01-01

    Many colleges and universities have adopted e-learning platforms to utilize computers as an instructional tool in developmental (i.e., beginning and intermediate algebra) mathematics courses. An e-learning platform is a computer program used to enhance course instruction via computers and the Internet. Allegany College of Maryland is currently…

  7. Real-Time Detection and Tracking of Multiple People in Laser Scan Frames

    NASA Astrophysics Data System (ADS)

    Cui, J.; Song, X.; Zhao, H.; Zha, H.; Shibasaki, R.

    This chapter presents an approach to detect and track multiple people ro bustly in real time using laser scan frames. The detection and tracking of people in real time is a problem that arises in a variety of different contexts. Examples in clude intelligent surveillance for security purposes, scene analysis for service robot, and crowd behavior analysis for human behavior study. Over the last several years, an increasing number of laser-based people-tracking systems have been developed in both mobile robotics platforms and fixed platforms using one or multiple laser scanners. It has been proved that processing on laser scanner data makes the tracker much faster and more robust than a vision-only based one in complex situations. In this chapter, we present a novel robust tracker to detect and track multiple people in a crowded and open area in real time. First, raw data are obtained that measures two legs for each people at a height of 16 cm from horizontal ground with multiple registered laser scanners. A stable feature is extracted using accumulated distribu tion of successive laser frames. In this way, the noise that generates split and merged measurements is smoothed well, and the pattern of rhythmic swinging legs is uti lized to extract each leg. Second, a probabilistic tracking model is presented, and then a sequential inference process using a Bayesian rule is described. A sequential inference process is difficult to compute analytically, so two strategies are presented to simplify the computation. In the case of independent tracking, the Kalman fil ter is used with a more efficient measurement likelihood model based on a region coherency property. Finally, to deal with trajectory fragments we present a concise approach to fuse just a little visual information from synchronized video camera to laser data. Evaluation with real data shows that the proposed method is robust and effective. It achieves a significant improvement compared with existing laser-based trackers.

  8. Consolidation of cloud computing in ATLAS

    NASA Astrophysics Data System (ADS)

    Taylor, Ryan P.; Domingues Cordeiro, Cristovao Jose; Giordano, Domenico; Hover, John; Kouba, Tomas; Love, Peter; McNab, Andrew; Schovancova, Jaroslava; Sobie, Randall; ATLAS Collaboration

    2017-10-01

    Throughout the first half of LHC Run 2, ATLAS cloud computing has undergone a period of consolidation, characterized by building upon previously established systems, with the aim of reducing operational effort, improving robustness, and reaching higher scale. This paper describes the current state of ATLAS cloud computing. Cloud activities are converging on a common contextualization approach for virtual machines, and cloud resources are sharing monitoring and service discovery components. We describe the integration of Vacuum resources, streamlined usage of the Simulation at Point 1 cloud for offline processing, extreme scaling on Amazon compute resources, and procurement of commercial cloud capacity in Europe. Finally, building on the previously established monitoring infrastructure, we have deployed a real-time monitoring and alerting platform which coalesces data from multiple sources, provides flexible visualization via customizable dashboards, and issues alerts and carries out corrective actions in response to problems.

  9. Distributed Processing of Sentinel-2 Products using the BIGEARTH Platform

    NASA Astrophysics Data System (ADS)

    Bacu, Victor; Stefanut, Teodor; Nandra, Constantin; Mihon, Danut; Gorgan, Dorian

    2017-04-01

    The constellation of observational satellites orbiting around Earth is constantly increasing, providing more data that need to be processed in order to extract meaningful information and knowledge from it. Sentinel-2 satellites, part of the Copernicus Earth Observation program, aim to be used in agriculture, forestry and many other land management applications. ESA's SNAP toolbox can be used to process data gathered by Sentinel-2 satellites but is limited to the resources provided by a stand-alone computer. In this paper we present a cloud based software platform that makes use of this toolbox together with other remote sensing software applications to process Sentinel-2 products. The BIGEARTH software platform [1] offers an integrated solution for processing Earth Observation data coming from different sources (such as satellites or on-site sensors). The flow of processing is defined as a chain of tasks based on the WorDeL description language [2]. Each task could rely on a different software technology (such as Grass GIS and ESA's SNAP) in order to process the input data. One important feature of the BIGEARTH platform comes from this possibility of interconnection and integration, throughout the same flow of processing, of the various well known software technologies. All this integration is transparent from the user perspective. The proposed platform extends the SNAP capabilities by enabling specialists to easily scale the processing over distributed architectures, according to their specific needs and resources. The software platform [3] can be used in multiple configurations. In the basic one the software platform runs as a standalone application inside a virtual machine. Obviously in this case the computational resources are limited but it will give an overview of the functionalities of the software platform, and also the possibility to define the flow of processing and later on to execute it on a more complex infrastructure. The most complex and robust configuration is based on cloud computing and allows the installation on a private or public cloud infrastructure. In this configuration, the processing resources can be dynamically allocated and the execution time can be considerably improved by the available virtual resources and the number of parallelizable sequences in the processing flow. The presentation highlights the benefits and issues of the proposed solution by analyzing some significant experimental use cases. Main references for further information: [1] BigEarth project, http://cgis.utcluj.ro/projects/bigearth [2] Constantin Nandra, Dorian Gorgan: "Defining Earth data batch processing tasks by means of a flexible workflow description language", ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-4, 59-66, (2016). [3] Victor Bacu, Teodor Stefanut, Dorian Gorgan, "Adaptive Processing of Earth Observation Data on Cloud Infrastructures Based on Workflow Description", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp.444-454, (2015).

  10. Boutiques: a flexible framework to integrate command-line applications in computing platforms.

    PubMed

    Glatard, Tristan; Kiar, Gregory; Aumentado-Armstrong, Tristan; Beck, Natacha; Bellec, Pierre; Bernard, Rémi; Bonnet, Axel; Brown, Shawn T; Camarasu-Pop, Sorina; Cervenansky, Frédéric; Das, Samir; Ferreira da Silva, Rafael; Flandin, Guillaume; Girard, Pascal; Gorgolewski, Krzysztof J; Guttmann, Charles R G; Hayot-Sasson, Valérie; Quirion, Pierre-Olivier; Rioux, Pierre; Rousseau, Marc-Étienne; Evans, Alan C

    2018-05-01

    We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science.

  11. Cross-platform learning: on the nature of children's learning from multiple media platforms.

    PubMed

    Fisch, Shalom M

    2013-01-01

    It is increasingly common for an educational media project to span several media platforms (e.g., TV, Web, hands-on materials), assuming that the benefits of learning from multiple media extend beyond those gained from one medium alone. Yet research typically has investigated learning from a single medium in isolation. This paper reviews several recent studies to explore cross-platform learning (i.e., learning from combined use of multiple media platforms) and how such learning compares to learning from one medium. The paper discusses unique benefits of cross-platform learning, a theoretical mechanism to explain how these benefits might arise, and questions for future research in this emerging field. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.

  12. Hardware-Independent Proofs of Numerical Programs

    NASA Technical Reports Server (NTRS)

    Boldo, Sylvie; Nguyen, Thi Minh Tuyen

    2010-01-01

    On recent architectures, a numerical program may give different answers depending on the execution hardware and the compilation. Our goal is to formally prove properties about numerical programs that are true for multiple architectures and compilers. We propose an approach that states the rounding error of each floating-point computation whatever the environment. This approach is implemented in the Frama-C platform for static analysis of C code. Small case studies using this approach are entirely and automatically proved

  13. A high performance scientific cloud computing environment for materials simulations

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  14. Heart beats in the cloud: distributed analysis of electrophysiological ‘Big Data’ using cloud computing for epilepsy clinical research

    PubMed Central

    Sahoo, Satya S; Jayapandian, Catherine; Garg, Gaurav; Kaffashi, Farhad; Chung, Stephanie; Bozorgi, Alireza; Chen, Chien-Hun; Loparo, Kenneth; Lhatoo, Samden D; Zhang, Guo-Qiang

    2014-01-01

    Objective The rapidly growing volume of multimodal electrophysiological signal data is playing a critical role in patient care and clinical research across multiple disease domains, such as epilepsy and sleep medicine. To facilitate secondary use of these data, there is an urgent need to develop novel algorithms and informatics approaches using new cloud computing technologies as well as ontologies for collaborative multicenter studies. Materials and methods We present the Cloudwave platform, which (a) defines parallelized algorithms for computing cardiac measures using the MapReduce parallel programming framework, (b) supports real-time interaction with large volumes of electrophysiological signals, and (c) features signal visualization and querying functionalities using an ontology-driven web-based interface. Cloudwave is currently used in the multicenter National Institute of Neurological Diseases and Stroke (NINDS)-funded Prevention and Risk Identification of SUDEP (sudden unexplained death in epilepsy) Mortality (PRISM) project to identify risk factors for sudden death in epilepsy. Results Comparative evaluations of Cloudwave with traditional desktop approaches to compute cardiac measures (eg, QRS complexes, RR intervals, and instantaneous heart rate) on epilepsy patient data show one order of magnitude improvement for single-channel ECG data and 20 times improvement for four-channel ECG data. This enables Cloudwave to support real-time user interaction with signal data, which is semantically annotated with a novel epilepsy and seizure ontology. Discussion Data privacy is a critical issue in using cloud infrastructure, and cloud platforms, such as Amazon Web Services, offer features to support Health Insurance Portability and Accountability Act standards. Conclusion The Cloudwave platform is a new approach to leverage of large-scale electrophysiological data for advancing multicenter clinical research. PMID:24326538

  15. Heart beats in the cloud: distributed analysis of electrophysiological 'Big Data' using cloud computing for epilepsy clinical research.

    PubMed

    Sahoo, Satya S; Jayapandian, Catherine; Garg, Gaurav; Kaffashi, Farhad; Chung, Stephanie; Bozorgi, Alireza; Chen, Chien-Hun; Loparo, Kenneth; Lhatoo, Samden D; Zhang, Guo-Qiang

    2014-01-01

    The rapidly growing volume of multimodal electrophysiological signal data is playing a critical role in patient care and clinical research across multiple disease domains, such as epilepsy and sleep medicine. To facilitate secondary use of these data, there is an urgent need to develop novel algorithms and informatics approaches using new cloud computing technologies as well as ontologies for collaborative multicenter studies. We present the Cloudwave platform, which (a) defines parallelized algorithms for computing cardiac measures using the MapReduce parallel programming framework, (b) supports real-time interaction with large volumes of electrophysiological signals, and (c) features signal visualization and querying functionalities using an ontology-driven web-based interface. Cloudwave is currently used in the multicenter National Institute of Neurological Diseases and Stroke (NINDS)-funded Prevention and Risk Identification of SUDEP (sudden unexplained death in epilepsy) Mortality (PRISM) project to identify risk factors for sudden death in epilepsy. Comparative evaluations of Cloudwave with traditional desktop approaches to compute cardiac measures (eg, QRS complexes, RR intervals, and instantaneous heart rate) on epilepsy patient data show one order of magnitude improvement for single-channel ECG data and 20 times improvement for four-channel ECG data. This enables Cloudwave to support real-time user interaction with signal data, which is semantically annotated with a novel epilepsy and seizure ontology. Data privacy is a critical issue in using cloud infrastructure, and cloud platforms, such as Amazon Web Services, offer features to support Health Insurance Portability and Accountability Act standards. The Cloudwave platform is a new approach to leverage of large-scale electrophysiological data for advancing multicenter clinical research.

  16. Targeting multiple heterogeneous hardware platforms with OpenCL

    NASA Astrophysics Data System (ADS)

    Fox, Paul A.; Kozacik, Stephen T.; Humphrey, John R.; Paolini, Aaron; Kuller, Aryeh; Kelmelis, Eric J.

    2014-06-01

    The OpenCL API allows for the abstract expression of parallel, heterogeneous computing, but hardware implementations have substantial implementation differences. The abstractions provided by the OpenCL API are often insufficiently high-level to conceal differences in hardware architecture. Additionally, implementations often do not take advantage of potential performance gains from certain features due to hardware limitations and other factors. These factors make it challenging to produce code that is portable in practice, resulting in much OpenCL code being duplicated for each hardware platform being targeted. This duplication of effort offsets the principal advantage of OpenCL: portability. The use of certain coding practices can mitigate this problem, allowing a common code base to be adapted to perform well across a wide range of hardware platforms. To this end, we explore some general practices for producing performant code that are effective across platforms. Additionally, we explore some ways of modularizing code to enable optional optimizations that take advantage of hardware-specific characteristics. The minimum requirement for portability implies avoiding the use of OpenCL features that are optional, not widely implemented, poorly implemented, or missing in major implementations. Exposing multiple levels of parallelism allows hardware to take advantage of the types of parallelism it supports, from the task level down to explicit vector operations. Static optimizations and branch elimination in device code help the platform compiler to effectively optimize programs. Modularization of some code is important to allow operations to be chosen for performance on target hardware. Optional subroutines exploiting explicit memory locality allow for different memory hierarchies to be exploited for maximum performance. The C preprocessor and JIT compilation using the OpenCL runtime can be used to enable some of these techniques, as well as to factor in hardware-specific optimizations as necessary.

  17. Parallel and Preemptable Dynamically Dimensioned Search Algorithms for Single and Multi-objective Optimization in Water Resources

    NASA Astrophysics Data System (ADS)

    Tolson, B.; Matott, L. S.; Gaffoor, T. A.; Asadzadeh, M.; Shafii, M.; Pomorski, P.; Xu, X.; Jahanpour, M.; Razavi, S.; Haghnegahdar, A.; Craig, J. R.

    2015-12-01

    We introduce asynchronous parallel implementations of the Dynamically Dimensioned Search (DDS) family of algorithms including DDS, discrete DDS, PA-DDS and DDS-AU. These parallel algorithms are unique from most existing parallel optimization algorithms in the water resources field in that parallel DDS is asynchronous and does not require an entire population (set of candidate solutions) to be evaluated before generating and then sending a new candidate solution for evaluation. One key advance in this study is developing the first parallel PA-DDS multi-objective optimization algorithm. The other key advance is enhancing the computational efficiency of solving optimization problems (such as model calibration) by combining a parallel optimization algorithm with the deterministic model pre-emption concept. These two efficiency techniques can only be combined because of the asynchronous nature of parallel DDS. Model pre-emption functions to terminate simulation model runs early, prior to completely simulating the model calibration period for example, when intermediate results indicate the candidate solution is so poor that it will definitely have no influence on the generation of further candidate solutions. The computational savings of deterministic model preemption available in serial implementations of population-based algorithms (e.g., PSO) disappear in synchronous parallel implementations as these algorithms. In addition to the key advances above, we implement the algorithms across a range of computation platforms (Windows and Unix-based operating systems from multi-core desktops to a supercomputer system) and package these for future modellers within a model-independent calibration software package called Ostrich as well as MATLAB versions. Results across multiple platforms and multiple case studies (from 4 to 64 processors) demonstrate the vast improvement over serial DDS-based algorithms and highlight the important role model pre-emption plays in the performance of parallel, pre-emptable DDS algorithms. Case studies include single- and multiple-objective optimization problems in water resources model calibration and in many cases linear or near linear speedups are observed.

  18. Optimized Hypervisor Scheduler for Parallel Discrete Event Simulations on Virtual Machine Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2013-01-01

    With the advent of virtual machine (VM)-based platforms for parallel computing, it is now possible to execute parallel discrete event simulations (PDES) over multiple virtual machines, in contrast to executing in native mode directly over hardware as is traditionally done over the past decades. While mature VM-based parallel systems now offer new, compelling benefits such as serviceability, dynamic reconfigurability and overall cost effectiveness, the runtime performance of parallel applications can be significantly affected. In particular, most VM-based platforms are optimized for general workloads, but PDES execution exhibits unique dynamics significantly different from other workloads. Here we first present results frommore » experiments that highlight the gross deterioration of the runtime performance of VM-based PDES simulations when executed using traditional VM schedulers, quantitatively showing the bad scaling properties of the scheduler as the number of VMs is increased. The mismatch is fundamental in nature in the sense that any fairness-based VM scheduler implementation would exhibit this mismatch with PDES runs. We also present a new scheduler optimized specifically for PDES applications, and describe its design and implementation. Experimental results obtained from running PDES benchmarks (PHOLD and vehicular traffic simulations) over VMs show over an order of magnitude improvement in the run time of the PDES-optimized scheduler relative to the regular VM scheduler, with over 20 reduction in run time of simulations using up to 64 VMs. The observations and results are timely in the context of emerging systems such as cloud platforms and VM-based high performance computing installations, highlighting to the community the need for PDES-specific support, and the feasibility of significantly reducing the runtime overhead for scalable PDES on VM platforms.« less

  19. Integrative Utilization of Microenvironments, Biomaterials and Computational Techniques for Advanced Tissue Engineering.

    PubMed

    Shamloo, Amir; Mohammadaliha, Negar; Mohseni, Mina

    2015-10-20

    This review aims to propose the integrative implementation of microfluidic devices, biomaterials, and computational methods that can lead to a significant progress in tissue engineering and regenerative medicine researches. Simultaneous implementation of multiple techniques can be very helpful in addressing biological processes. Providing controllable biochemical and biomechanical cues within artificial extracellular matrix similar to in vivo conditions is crucial in tissue engineering and regenerative medicine researches. Microfluidic devices provide precise spatial and temporal control over cell microenvironment. Moreover, generation of accurate and controllable spatial and temporal gradients of biochemical factors is attainable inside microdevices. Since biomaterials with tunable properties are a worthwhile option to construct artificial extracellular matrix, in vitro platforms that simultaneously utilize natural, synthetic, or engineered biomaterials inside microfluidic devices are phenomenally advantageous to experimental studies in the field of tissue engineering. Additionally, collaboration between experimental and computational methods is a useful way to predict and understand mechanisms responsible for complex biological phenomena. Computational results can be verified by using experimental platforms. Computational methods can also broaden the understanding of the mechanisms behind the biological phenomena observed during experiments. Furthermore, computational methods are powerful tools to optimize the fabrication of microfluidic devices and biomaterials with specific features. Here we present a succinct review of the benefits of microfluidic devices, biomaterial, and computational methods in the case of tissue engineering and regeneration medicine. Furthermore, some breakthroughs in biological phenomena including the neuronal axon development, cancerous cell migration and blood vessel formation via angiogenesis by virtue of the aforementioned approaches are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Application of Soft Computing in Coherent Communications Phase Synchronization

    NASA Technical Reports Server (NTRS)

    Drake, Jeffrey T.; Prasad, Nadipuram R.

    2000-01-01

    The use of soft computing techniques in coherent communications phase synchronization provides an alternative to analytical or hard computing methods. This paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for phase synchronization in coherent communications systems utilizing Multiple Phase Shift Keying (MPSK) modulation. A brief overview of the M-PSK digital communications bandpass modulation technique is presented and it's requisite need for phase synchronization is discussed. We briefly describe the hybrid platform developed by Jang that incorporates fuzzy/neural structures namely the, Adaptive Neuro-Fuzzy Interference Systems (ANFIS). We then discuss application of ANFIS to phase estimation for M-PSK. The modeling of both explicit, and implicit phase estimation schemes for M-PSK symbols with unknown structure are discussed. Performance results from simulation of the above scheme is presented.

  1. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways

    NASA Astrophysics Data System (ADS)

    Kohlhoff, Kai J.; Shukla, Diwakar; Lawrenz, Morgan; Bowman, Gregory R.; Konerding, David E.; Belov, Dan; Altman, Russ B.; Pande, Vijay S.

    2014-01-01

    Simulations can provide tremendous insight into the atomistic details of biological mechanisms, but micro- to millisecond timescales are historically only accessible on dedicated supercomputers. We demonstrate that cloud computing is a viable alternative that brings long-timescale processes within reach of a broader community. We used Google's Exacycle cloud-computing platform to simulate two milliseconds of dynamics of a major drug target, the G-protein-coupled receptor β2AR. Markov state models aggregate independent simulations into a single statistical model that is validated by previous computational and experimental results. Moreover, our models provide an atomistic description of the activation of a G-protein-coupled receptor and reveal multiple activation pathways. Agonists and inverse agonists interact differentially with these pathways, with profound implications for drug design.

  2. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  3. Boutiques: a flexible framework to integrate command-line applications in computing platforms

    PubMed Central

    Glatard, Tristan; Kiar, Gregory; Aumentado-Armstrong, Tristan; Beck, Natacha; Bellec, Pierre; Bernard, Rémi; Bonnet, Axel; Brown, Shawn T; Camarasu-Pop, Sorina; Cervenansky, Frédéric; Das, Samir; Ferreira da Silva, Rafael; Flandin, Guillaume; Girard, Pascal; Gorgolewski, Krzysztof J; Guttmann, Charles R G; Hayot-Sasson, Valérie; Quirion, Pierre-Olivier; Rioux, Pierre; Rousseau, Marc-Étienne; Evans, Alan C

    2018-01-01

    Abstract We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science. PMID:29718199

  4. RMG An Open Source Electronic Structure Code for Multi-Petaflops Calculations

    NASA Astrophysics Data System (ADS)

    Briggs, Emil; Lu, Wenchang; Hodak, Miroslav; Bernholc, Jerzy

    RMG (Real-space Multigrid) is an open source, density functional theory code for quantum simulations of materials. It solves the Kohn-Sham equations on real-space grids, which allows for natural parallelization via domain decomposition. Either subspace or Davidson diagonalization, coupled with multigrid methods, are used to accelerate convergence. RMG is a cross platform open source package which has been used in the study of a wide range of systems, including semiconductors, biomolecules, and nanoscale electronic devices. It can optionally use GPU accelerators to improve performance on systems where they are available. The recently released versions (>2.0) support multiple GPU's per compute node, have improved performance and scalability, enhanced accuracy and support for additional hardware platforms. New versions of the code are regularly released at http://www.rmgdft.org. The releases include binaries for Linux, Windows and MacIntosh systems, automated builds for clusters using cmake, as well as versions adapted to the major supercomputing installations and platforms. Several recent, large-scale applications of RMG will be discussed.

  5. A Lightweight Remote Parallel Visualization Platform for Interactive Massive Time-varying Climate Data Analysis

    NASA Astrophysics Data System (ADS)

    Li, J.; Zhang, T.; Huang, Q.; Liu, Q.

    2014-12-01

    Today's climate datasets are featured with large volume, high degree of spatiotemporal complexity and evolving fast overtime. As visualizing large volume distributed climate datasets is computationally intensive, traditional desktop based visualization applications fail to handle the computational intensity. Recently, scientists have developed remote visualization techniques to address the computational issue. Remote visualization techniques usually leverage server-side parallel computing capabilities to perform visualization tasks and deliver visualization results to clients through network. In this research, we aim to build a remote parallel visualization platform for visualizing and analyzing massive climate data. Our visualization platform was built based on Paraview, which is one of the most popular open source remote visualization and analysis applications. To further enhance the scalability and stability of the platform, we have employed cloud computing techniques to support the deployment of the platform. In this platform, all climate datasets are regular grid data which are stored in NetCDF format. Three types of data access methods are supported in the platform: accessing remote datasets provided by OpenDAP servers, accessing datasets hosted on the web visualization server and accessing local datasets. Despite different data access methods, all visualization tasks are completed at the server side to reduce the workload of clients. As a proof of concept, we have implemented a set of scientific visualization methods to show the feasibility of the platform. Preliminary results indicate that the framework can address the computation limitation of desktop based visualization applications.

  6. Identification of Program Signatures from Cloud Computing System Telemetry Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Nicole M.; Greaves, Mark T.; Smith, William P.

    Malicious cloud computing activity can take many forms, including running unauthorized programs in a virtual environment. Detection of these malicious activities while preserving the privacy of the user is an important research challenge. Prior work has shown the potential viability of using cloud service billing metrics as a mechanism for proxy identification of malicious programs. Previously this novel detection method has been evaluated in a synthetic and isolated computational environment. In this paper we demonstrate the ability of billing metrics to identify programs, in an active cloud computing environment, including multiple virtual machines running on the same hypervisor. The openmore » source cloud computing platform OpenStack, is used for private cloud management at Pacific Northwest National Laboratory. OpenStack provides a billing tool (Ceilometer) to collect system telemetry measurements. We identify four different programs running on four virtual machines under the same cloud user account. Programs were identified with up to 95% accuracy. This accuracy is dependent on the distinctiveness of telemetry measurements for the specific programs we tested. Future work will examine the scalability of this approach for a larger selection of programs to better understand the uniqueness needed to identify a program. Additionally, future work should address the separation of signatures when multiple programs are running on the same virtual machine.« less

  7. High-throughput landslide modelling using computational grids

    NASA Astrophysics Data System (ADS)

    Wallace, M.; Metson, S.; Holcombe, L.; Anderson, M.; Newbold, D.; Brook, N.

    2012-04-01

    Landslides are an increasing problem in developing countries. Multiple landslides can be triggered by heavy rainfall resulting in loss of life, homes and critical infrastructure. Through computer simulation of individual slopes it is possible to predict the causes, timing and magnitude of landslides and estimate the potential physical impact. Geographical scientists at the University of Bristol have developed software that integrates a physically-based slope hydrology and stability model (CHASM) with an econometric model (QUESTA) in order to predict landslide risk over time. These models allow multiple scenarios to be evaluated for each slope, accounting for data uncertainties, different engineering interventions, risk management approaches and rainfall patterns. Individual scenarios can be computationally intensive, however each scenario is independent and so multiple scenarios can be executed in parallel. As more simulations are carried out the overhead involved in managing input and output data becomes significant. This is a greater problem if multiple slopes are considered concurrently, as is required both for landslide research and for effective disaster planning at national levels. There are two critical factors in this context: generated data volumes can be in the order of tens of terabytes, and greater numbers of simulations result in long total runtimes. Users of such models, in both the research community and in developing countries, need to develop a means for handling the generation and submission of landside modelling experiments, and the storage and analysis of the resulting datasets. Additionally, governments in developing countries typically lack the necessary computing resources and infrastructure. Consequently, knowledge that could be gained by aggregating simulation results from many different scenarios across many different slopes remains hidden within the data. To address these data and workload management issues, University of Bristol particle physicists and geographical scientists are collaborating to develop methods for providing simple and effective access to landslide models and associated simulation data. Particle physicists have valuable experience in dealing with data complexity and management due to the scale of data generated by particle accelerators such as the Large Hadron Collider (LHC). The LHC generates tens of petabytes of data every year which is stored and analysed using the Worldwide LHC Computing Grid (WLCG). Tools and concepts from the WLCG are being used to drive the development of a Software-as-a-Service (SaaS) platform to provide access to hosted landslide simulation software and data. It contains advanced data management features and allows landslide simulations to be run on the WLCG, dramatically reducing simulation runtimes by parallel execution. The simulations are accessed using a web page through which users can enter and browse input data, submit jobs and visualise results. Replication of the data ensures a local copy can be accessed should a connection to the platform be unavailable. The platform does not know the details of the simulation software it runs, so it is therefore possible to use it to run alternative models at similar scales. This creates the opportunity for activities such as model sensitivity analysis and performance comparison at scales that are impractical using standalone software.

  8. HERMIES-3: A step toward autonomous mobility, manipulation, and perception

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Burks, B. L.; Einstein, J. R.; Feezell, R. R.; Manges, W. W.; Thompson, D. H.

    1989-01-01

    HERMIES-III is an autonomous robot comprised of a seven degree-of-freedom (DOF) manipulator designed for human scale tasks, a laser range finder, a sonar array, an omni-directional wheel-driven chassis, multiple cameras, and a dual computer system containing a 16-node hypercube expandable to 128 nodes. The current experimental program involves performance of human-scale tasks (e.g., valve manipulation, use of tools), integration of a dexterous manipulator and platform motion in geometrically complex environments, and effective use of multiple cooperating robots (HERMIES-IIB and HERMIES-III). The environment in which the robots operate has been designed to include multiple valves, pipes, meters, obstacles on the floor, valves occluded from view, and multiple paths of differing navigation complexity. The ongoing research program supports the development of autonomous capability for HERMIES-IIB and III to perform complex navigation and manipulation under time constraints, while dealing with imprecise sensory information.

  9. Silicon CMOS architecture for a spin-based quantum computer.

    PubMed

    Veldhorst, M; Eenink, H G J; Yang, C H; Dzurak, A S

    2017-12-15

    Recent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.

  10. Intracalibration of particle detectors on a three-axis stabilized geostationary platform

    NASA Astrophysics Data System (ADS)

    Rowland, W.; Weigel, R. S.

    2012-11-01

    We describe an algorithm for intracalibration of measurements from plasma or energetic particle detectors on a three-axis stabilized platform. Modeling and forecasting of Earth's radiation belt environment requires data from particle instruments, and these data depend on measurements which have an inherent calibration uncertainty. Pre-launch calibration is typically performed, but on-orbit changes in the instrument often necessitate adjustment of calibration parameters to mitigate the effect of these changes on the measurements. On-orbit calibration practices for particle detectors aboard spin-stabilized spacecraft are well established. Three-axis stabilized platforms, however, pose unique challenges even when comparisons are being performed between multiple telescopes measuring the same energy ranges aboard the same satellite. This algorithm identifies time intervals when different telescopes are measuring particles with the same pitch angles. These measurements are used to compute scale factors which can be multiplied by the pre-launch geometric factor to correct any changes. The approach is first tested using measurements from GOES-13 MAGED particle detectors over a 5-month time period in 2010. We find statistically significant variations which are generally on the order of 5% or less. These results do not appear to be dependent on Poisson statistics nor upon whether a dead time correction was performed. When applied to data from a 5-month interval in 2011, one telescope shows a 10% shift from the 2010 scale factors. This technique has potential for operational use to help maintain relative calibration between multiple telescopes aboard a single satellite. It should also be extensible to inter-calibration between multiple satellites.

  11. Open Source Next Generation Visualization Software for Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Rinker, George

    2016-01-01

    Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (http://nasa.github.io/openmct).

  12. A Software Defined Radio Based Airplane Communication Navigation Simulation System

    NASA Astrophysics Data System (ADS)

    He, L.; Zhong, H. T.; Song, D.

    2018-01-01

    Radio communication and navigation system plays important role in ensuring the safety of civil airplane in flight. Function and performance should be tested before these systems are installed on-board. Conventionally, a set of transmitter and receiver are needed for each system, thus all the equipment occupy a lot of space and are high cost. In this paper, software defined radio technology is applied to design a common hardware communication and navigation ground simulation system, which can host multiple airplane systems with different operating frequency, such as HF, VHF, VOR, ILS, ADF, etc. We use a broadband analog frontend hardware platform, universal software radio peripheral (USRP), to transmit/receive signal of different frequency band. Software is compiled by LabVIEW on computer, which interfaces with USRP through Ethernet, and is responsible for communication and navigation signal processing and system control. An integrated testing system is established to perform functional test and performance verification of the simulation signal, which demonstrate the feasibility of our design. The system is a low-cost and common hardware platform for multiple airplane systems, which provide helpful reference for integrated avionics design.

  13. Development of a Prototype Algal Reactor for Removing CO2 from Cabin Air

    NASA Technical Reports Server (NTRS)

    Patel, Vrajen; Monje, Oscar

    2013-01-01

    Controlling carbon dioxide in spacecraft cabin air may be accomplished using algal photobioreactors (PBRs). The purpose of this project was to evaluate the use of a commercial microcontroller, the Arduino Mega 2560, for measuring key photioreactor variables: dissolved oxygen, pH, temperature, light, and carbon dioxide. The Arduino platform is an opensource physical computing platform composed of a compact microcontroller board and a C++/C computer language (Arduino 1.0.5). The functionality of the Arduino platform can be expanded by the use of numerous add-ons or 'shields'. The Arduino Mega 2560 was equipped with the following shields: datalogger, BNC shield for reading pH sensor, a Mega Moto shield for controlling CO2 addition, as well as multiple sensors. The dissolved oxygen (DO) probe was calibrated using a nitrogen bubbling technique and the pH probe was calibrated via an Omega pH simulator. The PBR was constructed using a 2 L beaker, a 66 L box for addition of CO2, a micro porous membrane, a diaphragm pump, four 25 watt light bulbs, a MasterFiex speed controller, and a fan. The algae (wild type Synechocystis PCC6803) was grown in an aerated flask until the algae was dense enough to used in the main reactor. After the algae was grown, it was transferred to the 2 L beaker where CO2 consumption and O2 production was measured using the microcontroller sensor suite. The data was recorded via the datalogger and transferred to a computer for analysis.

  14. Architecture for the Next Generation System Management Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallard, Jerome; Lebre, I Adrien; Morin, Christine

    2011-01-01

    To get more results or greater accuracy, computational scientists execute their applications on distributed computing platforms such as Clusters, Grids and Clouds. These platforms are different in terms of hardware and software resources as well as locality: some span across multiple sites and multiple administrative domains whereas others are limited to a single site/domain. As a consequence, in order to scale their applica- tions up the scientists have to manage technical details for each target platform. From our point of view, this complexity should be hidden from the scientists who, in most cases, would prefer to focus on their researchmore » rather than spending time dealing with platform configuration concerns. In this article, we advocate for a system management framework that aims to automatically setup the whole run-time environment according to the applications needs. The main difference with regards to usual approaches is that they generally only focus on the software layer whereas we address both the hardware and the software expecta- tions through a unique system. For each application, scientists describe their requirements through the definition of a Virtual Platform (VP) and a Virtual System Environment (VSE). Relying on the VP/VSE definitions, the framework is in charge of: (i) the configuration of the physical infrastructure to satisfy the VP requirements, (ii) the setup of the VP, and (iii) the customization of the execution environment (VSE) upon the former VP. We propose a new formalism that the system can rely upon to successfully perform each of these three steps without burdening the user with the specifics of the configuration for the physical resources, and system management tools. This formalism leverages Goldberg s theory for recursive virtual machines by introducing new concepts based on system virtualization (identity, partitioning, aggregation) and emulation (simple, abstraction). This enables the definition of complex VP/VSE configurations without making assumptions about the hardware and the software re- sources. For each requirement, the system executes the corresponding operation with the appropriate management tool. As a proof of concept, we implemented a first prototype that currently interacts with several system management tools (e.g., OSCAR, the Grid 5000 toolkit, and XtreemOS) and that can be easily extended to integrate new resource brokers or cloud systems such as Nimbus, OpenNebula or Eucalyptus for instance.« less

  15. NASA Computational Mobility

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This blue sky study was conducted in order to study the feasibility and scope of the notion of Computational Mobility to potential NASA applications such as control of multiple robotic platforms. The study was started on July lst, 2003 and concluded on September 30th, 2004. During the course of that period, four meetings were held for the participants to meet and discuss the concept, its viability, and potential applications. The study involved, at various stages, the following personnel: James Allen (IHMC), Albert0 Canas (IHMC), Daniel Cooke (Texas Tech), Kenneth Ford (IHMC - PI), Patrick Hayes (IHMC), Butler Hine (NASA), Robert Morris (NASA), Liam Pedersen (NASA), Jerry Pratt (IHMC), Raul Saavedra (IHMC), Niranjan Suri (IHMC), and Milind Tambe (USC). A white paper describing the notion of a Process Integrated Mechanism (PIM) was generated as a result of this study. The white paper is attached to this report. In addition, a number of presentations were generated during the four meetings, which are included in this report. Finally, an execution platform and a simulation environment were developed, which are available upon request from Niranjan Suri (nsuri@,ihmc.us).

  16. Formal design and verification of a reliable computing platform for real-time control. Phase 1: Results

    NASA Technical Reports Server (NTRS)

    Divito, Ben L.; Butler, Ricky W.; Caldwell, James L.

    1990-01-01

    A high-level design is presented for a reliable computing platform for real-time control applications. Design tradeoffs and analyses related to the development of the fault-tolerant computing platform are discussed. The architecture is formalized and shown to satisfy a key correctness property. The reliable computing platform uses replicated processors and majority voting to achieve fault tolerance. Under the assumption of a majority of processors working in each frame, it is shown that the replicated system computes the same results as a single processor system not subject to failures. Sufficient conditions are obtained to establish that the replicated system recovers from transient faults within a bounded amount of time. Three different voting schemes are examined and proved to satisfy the bounded recovery time conditions.

  17. Portable parallel stochastic optimization for the design of aeropropulsion components

    NASA Technical Reports Server (NTRS)

    Sues, Robert H.; Rhodes, G. S.

    1994-01-01

    This report presents the results of Phase 1 research to develop a methodology for performing large-scale Multi-disciplinary Stochastic Optimization (MSO) for the design of aerospace systems ranging from aeropropulsion components to complete aircraft configurations. The current research recognizes that such design optimization problems are computationally expensive, and require the use of either massively parallel or multiple-processor computers. The methodology also recognizes that many operational and performance parameters are uncertain, and that uncertainty must be considered explicitly to achieve optimum performance and cost. The objective of this Phase 1 research was to initialize the development of an MSO methodology that is portable to a wide variety of hardware platforms, while achieving efficient, large-scale parallelism when multiple processors are available. The first effort in the project was a literature review of available computer hardware, as well as review of portable, parallel programming environments. The first effort was to implement the MSO methodology for a problem using the portable parallel programming language, Parallel Virtual Machine (PVM). The third and final effort was to demonstrate the example on a variety of computers, including a distributed-memory multiprocessor, a distributed-memory network of workstations, and a single-processor workstation. Results indicate the MSO methodology can be well-applied towards large-scale aerospace design problems. Nearly perfect linear speedup was demonstrated for computation of optimization sensitivity coefficients on both a 128-node distributed-memory multiprocessor (the Intel iPSC/860) and a network of workstations (speedups of almost 19 times achieved for 20 workstations). Very high parallel efficiencies (75 percent for 31 processors and 60 percent for 50 processors) were also achieved for computation of aerodynamic influence coefficients on the Intel. Finally, the multi-level parallelization strategy that will be needed for large-scale MSO problems was demonstrated to be highly efficient. The same parallel code instructions were used on both platforms, demonstrating portability. There are many applications for which MSO can be applied, including NASA's High-Speed-Civil Transport, and advanced propulsion systems. The use of MSO will reduce design and development time and testing costs dramatically.

  18. Real-time Java simulations of multiple interference dielectric filters

    NASA Astrophysics Data System (ADS)

    Kireev, Alexandre N.; Martin, Olivier J. F.

    2008-12-01

    An interactive Java applet for real-time simulation and visualization of the transmittance properties of multiple interference dielectric filters is presented. The most commonly used interference filters as well as the state-of-the-art ones are embedded in this platform-independent applet which can serve research and education purposes. The Transmittance applet can be freely downloaded from the site http://cpc.cs.qub.ac.uk. Program summaryProgram title: Transmittance Catalogue identifier: AEBQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5778 No. of bytes in distributed program, including test data, etc.: 90 474 Distribution format: tar.gz Programming language: Java Computer: Developed on PC-Pentium platform Operating system: Any Java-enabled OS. Applet was tested on Windows ME, XP, Sun Solaris, Mac OS RAM: Variable Classification: 18 Nature of problem: Sophisticated wavelength selective multiple interference filters can include some tens or even hundreds of dielectric layers. The spectral response of such a stack is not obvious. On the other hand, there is a strong demand from application designers and students to get a quick insight into the properties of a given filter. Solution method: A Java applet was developed for the computation and the visualization of the transmittance of multilayer interference filters. It is simple to use and the embedded filter library can serve educational purposes. Also, its ability to handle complex structures will be appreciated as a useful research and development tool. Running time: Real-time simulations

  19. ArcGIS Framework for Scientific Data Analysis and Serving

    NASA Astrophysics Data System (ADS)

    Xu, H.; Ju, W.; Zhang, J.

    2015-12-01

    ArcGIS is a platform for managing, visualizing, analyzing, and serving geospatial data. Scientific data as part of the geospatial data features multiple dimensions (X, Y, time, and depth) and large volume. Multidimensional mosaic dataset (MDMD), a newly enhanced data model in ArcGIS, models the multidimensional gridded data (e.g. raster or image) as a hypercube and enables ArcGIS's capabilities to handle the large volume and near-real time scientific data. Built on top of geodatabase, the MDMD stores the dimension values and the variables (2D arrays) in a geodatabase table which allows accessing a slice or slices of the hypercube through a simple query and supports animating changes along time or vertical dimension using ArcGIS desktop or web clients. Through raster types, MDMD can manage not only netCDF, GRIB, and HDF formats but also many other formats or satellite data. It is scalable and can handle large data volume. The parallel geo-processing engine makes the data ingestion fast and easily. Raster function, definition of a raster processing algorithm, is a very important component in ArcGIS platform for on-demand raster processing and analysis. The scientific data analytics is achieved through the MDMD and raster function templates which perform on-demand scientific computation with variables ingested in the MDMD. For example, aggregating monthly average from daily data; computing total rainfall of a year; calculating heat index for forecasting data, and identifying fishing habitat zones etc. Addtionally, MDMD with the associated raster function templates can be served through ArcGIS server as image services which provide a framework for on-demand server side computation and analysis, and the published services can be accessed by multiple clients such as ArcMap, ArcGIS Online, JavaScript, REST, WCS, and WMS. This presentation will focus on the MDMD model and raster processing templates. In addtion, MODIS land cover, NDFD weather service, and HYCOM ocean model will be used to illustrate how ArcGIS platform and MDMD model can facilitate scientific data visualization and analytics and how the analysis results can be shared to more audience through ArcGIS Online and Portal.

  20. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.

    PubMed

    Scharfe, Michael; Pielot, Rainer; Schreiber, Falk

    2010-01-11

    Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  1. Moving Virtual Research Environments from high maintenance Stovepipes to Multi-purpose Sustainable Service-oriented Science Platforms

    NASA Astrophysics Data System (ADS)

    Klump, Jens; Fraser, Ryan; Wyborn, Lesley; Friedrich, Carsten; Squire, Geoffrey; Barker, Michelle; Moloney, Glenn

    2017-04-01

    The researcher of today is likely to be part of a team distributed over multiple sites that will access data from an external repository and then process the data on a public or private cloud or even on a large centralised supercomputer. They are increasingly likely to use a mixture of their own code, third party software and libraries, or even access global community codes. These components will be connected into a Virtual Research Environments (VREs) that will enable members of the research team who are not co-located to actively work together at various scales to share data, models, tools, software, workflows, best practices, infrastructures, etc. Many VRE's are built in isolation: designed to meet a specific research program with components tightly coupled and not capable of being repurposed for other use cases - they are becoming 'stovepipes'. The limited number of users of some VREs also means that the cost of maintenance per researcher can be unacceptably high. The alternative is to develop service-oriented Science Platforms that enable multiple communities to develop specialised solutions for specific research programs. The platforms can offer access to data, software tools and processing infrastructures (cloud, supercomputers) through globally distributed, interconnected modules. In Australia, the Virtual Geophysics Laboratory (VGL) was initially built to enable a specific set of researchers in government agencies access to specific data sets and a limited number of tools, that is now rapidly evolving into a multi-purpose Earth science platform with access to an increased variety of data, a broader range of tools, users from more sectors and a diversity of computational infrastructures. The expansion has been relatively easy, because of the architecture whereby data, tools and compute resources are loosely coupled via interfaces that are built on international standards and accessed as services wherever possible. In recent years, investments in discoverability and accessibility of data via online services in Australia mean that data resources can be easily added to the virtual environments as and when required. Another key to increasing to reusability and uptake of the VRE is the capability to capturing workflows so that they can be reused and repurposed both within and beyond the community that that defined the original use case. Unfortunately, Software-as-a-Service in the research sector is not yet mature. In response, we developed a Scientific Software solutions Center (SSSC) that enables researchers to discover, deploy and then share computational codes, code snippets or processes both in a human and machine-readable manner. Growth has come not only from within the Earth science community but from the Australian Virtual Laboratory community which is building VREs for a diversity of communities such as astronomy, genomics, environment, humanities, climate etc. Components such as access control, provenance, visualisation, accounting etc. are common to all scientific domains and sharing of these across multiple domains reduces costs, but more importantly increases the ability to undertake interdisciplinary science. These efforts are transitioning VREs to more sustainable Service-oriented Science Platforms that can be delivered in an agile, adaptable manner for broader community interests.

  2. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads.

    PubMed

    Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-05-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.

  3. MASPECTRAS: a platform for management and analysis of proteomics LC-MS/MS data

    PubMed Central

    Hartler, Jürgen; Thallinger, Gerhard G; Stocker, Gernot; Sturn, Alexander; Burkard, Thomas R; Körner, Erik; Rader, Robert; Schmidt, Andreas; Mechtler, Karl; Trajanoski, Zlatko

    2007-01-01

    Background The advancements of proteomics technologies have led to a rapid increase in the number, size and rate at which datasets are generated. Managing and extracting valuable information from such datasets requires the use of data management platforms and computational approaches. Results We have developed the MAss SPECTRometry Analysis System (MASPECTRAS), a platform for management and analysis of proteomics LC-MS/MS data. MASPECTRAS is based on the Proteome Experimental Data Repository (PEDRo) relational database schema and follows the guidelines of the Proteomics Standards Initiative (PSI). Analysis modules include: 1) import and parsing of the results from the search engines SEQUEST, Mascot, Spectrum Mill, X! Tandem, and OMSSA; 2) peptide validation, 3) clustering of proteins based on Markov Clustering and multiple alignments; and 4) quantification using the Automated Statistical Analysis of Protein Abundance Ratios algorithm (ASAPRatio). The system provides customizable data retrieval and visualization tools, as well as export to PRoteomics IDEntifications public repository (PRIDE). MASPECTRAS is freely available at Conclusion Given the unique features and the flexibility due to the use of standard software technology, our platform represents significant advance and could be of great interest to the proteomics community. PMID:17567892

  4. GPU-based relative fuzzy connectedness image segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuge Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.

    2013-01-15

    Purpose:Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an Script-Small-L {sub {infinity}}-based energy, are known as relative fuzzymore » connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8 Multiplication-Sign , 22.9 Multiplication-Sign , 20.9 Multiplication-Sign , and 17.5 Multiplication-Sign , correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.« less

  5. Operational flash flood forecasting platform based on grid technology

    NASA Astrophysics Data System (ADS)

    Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.

    2009-04-01

    Flash flood events of south of France such as the 8th and 9th September 2002 in the Grand Delta territory caused important economic and human damages. Further to this catastrophic hydrological situation, a reform of flood warning services have been initiated (set in 2006). Thus, this political reform has transformed the 52 existing flood warning services (SAC) in 22 flood forecasting services (SPC), in assigning them territories more hydrological consistent and new effective hydrological forecasting mission. Furthermore, national central service (SCHAPI) has been created to ease this transformation and support local services in their new objectives. New functioning requirements have been identified: - SPC and SCHAPI carry the responsibility to clearly disseminate to public organisms, civil protection actors and population, crucial hydrologic information to better anticipate potential dramatic flood event, - a new effective hydrological forecasting mission to these flood forecasting services seems essential particularly for the flash floods phenomenon. Thus, models improvement and optimization was one of the most critical requirements. Initially dedicated to support forecaster in their monitoring mission, thanks to measuring stations and rainfall radar images analysis, hydrological models have to become more efficient in their capacity to anticipate hydrological situation. Understanding natural phenomenon occuring during flash floods mainly leads present hydrological research. Rather than trying to explain such complex processes, the presented research try to manage the well-known need of computational power and data storage capacities of these services. Since few years, Grid technology appears as a technological revolution in high performance computing (HPC) allowing large-scale resource sharing, computational power using and supporting collaboration across networks. Nowadays, EGEE (Enabling Grids for E-science in Europe) project represents the most important effort in term of grid technology development. This paper presents an operational flash flood forecasting platform which have been developed in the framework of CYCLOPS European project providing one of virtual organizations of EGEE project. This platform has been designed to enable multi-simulations processes to ease forecasting operations of several supervised watersheds on Grand Delta (SPC-GD) territory. Grid technology infrastructure, in providing multiple remote computing elements enables the processing of multiple rainfall scenarios, derived to the original meteorological forecasting transmitted by Meteo-France, and their respective hydrological simulations. First results show that from one forecasting scenario, this new presented approach can permit simulations of more than 200 different scenarios to support forecasters in their aforesaid mission and appears as an efficient hydrological decision-making tool. Although, this system seems operational, model validity has to be confirmed. So, further researches are necessary to improve models core to be more efficient in term of hydrological aspects. Finally, this platform could be an efficient tool for developing others modelling aspects as calibration or data assimilation in real time processing.

  6. Development of a computer model to predict platform station keeping requirements in the Gulf of Mexico using remote sensing data

    NASA Technical Reports Server (NTRS)

    Barber, Bryan; Kahn, Laura; Wong, David

    1990-01-01

    Offshore operations such as oil drilling and radar monitoring require semisubmersible platforms to remain stationary at specific locations in the Gulf of Mexico. Ocean currents, wind, and waves in the Gulf of Mexico tend to move platforms away from their desired locations. A computer model was created to predict the station keeping requirements of a platform. The computer simulation uses remote sensing data from satellites and buoys as input. A background of the project, alternate approaches to the project, and the details of the simulation are presented.

  7. Decomposed multidimensional control grid interpolation for common consumer electronic image processing applications

    NASA Astrophysics Data System (ADS)

    Zwart, Christine M.; Venkatesan, Ragav; Frakes, David H.

    2012-10-01

    Interpolation is an essential and broadly employed function of signal processing. Accordingly, considerable development has focused on advancing interpolation algorithms toward optimal accuracy. Such development has motivated a clear shift in the state-of-the art from classical interpolation to more intelligent and resourceful approaches, registration-based interpolation for example. As a natural result, many of the most accurate current algorithms are highly complex, specific, and computationally demanding. However, the diverse hardware destinations for interpolation algorithms present unique constraints that often preclude use of the most accurate available options. For example, while computationally demanding interpolators may be suitable for highly equipped image processing platforms (e.g., computer workstations and clusters), only more efficient interpolators may be practical for less well equipped platforms (e.g., smartphones and tablet computers). The latter examples of consumer electronics present a design tradeoff in this regard: high accuracy interpolation benefits the consumer experience but computing capabilities are limited. It follows that interpolators with favorable combinations of accuracy and efficiency are of great practical value to the consumer electronics industry. We address multidimensional interpolation-based image processing problems that are common to consumer electronic devices through a decomposition approach. The multidimensional problems are first broken down into multiple, independent, one-dimensional (1-D) interpolation steps that are then executed with a newly modified registration-based one-dimensional control grid interpolator. The proposed approach, decomposed multidimensional control grid interpolation (DMCGI), combines the accuracy of registration-based interpolation with the simplicity, flexibility, and computational efficiency of a 1-D interpolation framework. Results demonstrate that DMCGI provides improved interpolation accuracy (and other benefits) in image resizing, color sample demosaicing, and video deinterlacing applications, at a computational cost that is manageable or reduced in comparison to popular alternatives.

  8. Traffic information computing platform for big data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Zongtao, E-mail: ztduan@chd.edu.cn; Li, Ying, E-mail: ztduan@chd.edu.cn; Zheng, Xibin, E-mail: ztduan@chd.edu.cn

    Big data environment create data conditions for improving the quality of traffic information service. The target of this article is to construct a traffic information computing platform for big data environment. Through in-depth analysis the connotation and technology characteristics of big data and traffic information service, a distributed traffic atomic information computing platform architecture is proposed. Under the big data environment, this type of traffic atomic information computing architecture helps to guarantee the traffic safety and efficient operation, more intelligent and personalized traffic information service can be used for the traffic information users.

  9. Software-codec-based full motion video conferencing on the PC using visual pattern image sequence coding

    NASA Astrophysics Data System (ADS)

    Barnett, Barry S.; Bovik, Alan C.

    1995-04-01

    This paper presents a real time full motion video conferencing system based on the Visual Pattern Image Sequence Coding (VPISC) software codec. The prototype system hardware is comprised of two personal computers, two camcorders, two frame grabbers, and an ethernet connection. The prototype system software has a simple structure. It runs under the Disk Operating System, and includes a user interface, a video I/O interface, an event driven network interface, and a free running or frame synchronous video codec that also acts as the controller for the video and network interfaces. Two video coders have been tested in this system. Simple implementations of Visual Pattern Image Coding and VPISC have both proven to support full motion video conferencing with good visual quality. Future work will concentrate on expanding this prototype to support the motion compensated version of VPISC, as well as encompassing point-to-point modem I/O and multiple network protocols. The application will be ported to multiple hardware platforms and operating systems. The motivation for developing this prototype system is to demonstrate the practicality of software based real time video codecs. Furthermore, software video codecs are not only cheaper, but are more flexible system solutions because they enable different computer platforms to exchange encoded video information without requiring on-board protocol compatible video codex hardware. Software based solutions enable true low cost video conferencing that fits the `open systems' model of interoperability that is so important for building portable hardware and software applications.

  10. A Modular Approach to Arithmetic and Logic Unit Design on a Reconfigurable Hardware Platform for Educational Purpose

    NASA Astrophysics Data System (ADS)

    Oztekin, Halit; Temurtas, Feyzullah; Gulbag, Ali

    The Arithmetic and Logic Unit (ALU) design is one of the important topics in Computer Architecture and Organization course in Computer and Electrical Engineering departments. There are ALU designs that have non-modular nature to be used as an educational tool. As the programmable logic technology has developed rapidly, it is feasible that ALU design based on Field Programmable Gate Array (FPGA) is implemented in this course. In this paper, we have adopted the modular approach to ALU design based on FPGA. All the modules in the ALU design are realized using schematic structure on Altera's Cyclone II Development board. Under this model, the ALU content is divided into four distinct modules. These are arithmetic unit except for multiplication and division operations, logic unit, multiplication unit and division unit. User can easily design any size of ALU unit since this approach has the modular nature. Then, this approach was applied to microcomputer architecture design named BZK.SAU.FPGA10.0 instead of the current ALU unit.

  11. GENESIS 1.1: A hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms.

    PubMed

    Kobayashi, Chigusa; Jung, Jaewoon; Matsunaga, Yasuhiro; Mori, Takaharu; Ando, Tadashi; Tamura, Koichi; Kamiya, Motoshi; Sugita, Yuji

    2017-09-30

    GENeralized-Ensemble SImulation System (GENESIS) is a software package for molecular dynamics (MD) simulation of biological systems. It is designed to extend limitations in system size and accessible time scale by adopting highly parallelized schemes and enhanced conformational sampling algorithms. In this new version, GENESIS 1.1, new functions and advanced algorithms have been added. The all-atom and coarse-grained potential energy functions used in AMBER and GROMACS packages now become available in addition to CHARMM energy functions. The performance of MD simulations has been greatly improved by further optimization, multiple time-step integration, and hybrid (CPU + GPU) computing. The string method and replica-exchange umbrella sampling with flexible collective variable choice are used for finding the minimum free-energy pathway and obtaining free-energy profiles for conformational changes of a macromolecule. These new features increase the usefulness and power of GENESIS for modeling and simulation in biological research. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm.

    PubMed

    Khaled, Heba; Faheem, Hossam El Deen Mostafa; El Gohary, Rania

    2015-01-01

    This paper provides a novel hybrid model for solving the multiple pair-wise sequence alignment problem combining message passing interface and CUDA, the parallel computing platform and programming model invented by NVIDIA. The proposed model targets homogeneous cluster nodes equipped with similar Graphical Processing Unit (GPU) cards. The model consists of the Master Node Dispatcher (MND) and the Worker GPU Nodes (WGN). The MND distributes the workload among the cluster working nodes and then aggregates the results. The WGN performs the multiple pair-wise sequence alignments using the Smith-Waterman algorithm. We also propose a modified implementation to the Smith-Waterman algorithm based on computing the alignment matrices row-wise. The experimental results demonstrate a considerable reduction in the running time by increasing the number of the working GPU nodes. The proposed model achieved a performance of about 12 Giga cell updates per second when we tested against the SWISS-PROT protein knowledge base running on four nodes.

  13. Open source acceleration of wave optics simulations on energy efficient high-performance computing platforms

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey; Bos, Jeremy P.

    2017-05-01

    We compare several modifications to the open-source wave optics package, WavePy, intended to improve execution time. Specifically, we compare the relative performance of the Intel MKL, a CPU based OpenCV distribution, and GPU-based version. Performance is compared between distributions both on the same compute platform and between a fully-featured computing workstation and the NVIDIA Jetson TX1 platform. Comparisons are drawn in terms of both execution time and power consumption. We have found that substituting the Fast Fourier Transform operation from OpenCV provides a marked improvement on all platforms. In addition, we show that embedded platforms offer some possibility for extensive improvement in terms of efficiency compared to a fully featured workstation.

  14. Interactive Computer-Assisted Instruction in Acid-Base Physiology for Mobile Computer Platforms

    ERIC Educational Resources Information Center

    Longmuir, Kenneth J.

    2014-01-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ~20 screens of information, on the subjects…

  15. Applying a cloud computing approach to storage architectures for spacecraft

    NASA Astrophysics Data System (ADS)

    Baldor, Sue A.; Quiroz, Carlos; Wood, Paul

    As sensor technologies, processor speeds, and memory densities increase, spacecraft command, control, processing, and data storage systems have grown in complexity to take advantage of these improvements and expand the possible missions of spacecraft. Spacecraft systems engineers are increasingly looking for novel ways to address this growth in complexity and mitigate associated risks. Looking to conventional computing, many solutions have been executed to solve both the problem of complexity and heterogeneity in systems. In particular, the cloud-based paradigm provides a solution for distributing applications and storage capabilities across multiple platforms. In this paper, we propose utilizing a cloud-like architecture to provide a scalable mechanism for providing mass storage in spacecraft networks that can be reused on multiple spacecraft systems. By presenting a consistent interface to applications and devices that request data to be stored, complex systems designed by multiple organizations may be more readily integrated. Behind the abstraction, the cloud storage capability would manage wear-leveling, power consumption, and other attributes related to the physical memory devices, critical components in any mass storage solution for spacecraft. Our approach employs SpaceWire networks and SpaceWire-capable devices, although the concept could easily be extended to non-heterogeneous networks consisting of multiple spacecraft and potentially the ground segment.

  16. Cross-Platform Learning: On the Nature of Children's Learning from Multiple Media Platforms

    ERIC Educational Resources Information Center

    Fisch, Shalom M.

    2013-01-01

    It is increasingly common for an educational media project to span several media platforms (e.g., TV, Web, hands-on materials), assuming that the benefits of learning from multiple media extend beyond those gained from one medium alone. Yet research typically has investigated learning from a single medium in isolation. This paper reviews several…

  17. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads

    PubMed Central

    Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-01-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922

  18. Uncover the Cloud for Geospatial Sciences and Applications to Adopt Cloud Computing

    NASA Astrophysics Data System (ADS)

    Yang, C.; Huang, Q.; Xia, J.; Liu, K.; Li, J.; Xu, C.; Sun, M.; Bambacus, M.; Xu, Y.; Fay, D.

    2012-12-01

    Cloud computing is emerging as the future infrastructure for providing computing resources to support and enable scientific research, engineering development, and application construction, as well as work force education. On the other hand, there is a lot of doubt about the readiness of cloud computing to support a variety of scientific research, development and educations. This research is a project funded by NASA SMD to investigate through holistic studies how ready is the cloud computing to support geosciences. Four applications with different computing characteristics including data, computing, concurrent, and spatiotemporal intensities are taken to test the readiness of cloud computing to support geosciences. Three popular and representative cloud platforms including Amazon EC2, Microsoft Azure, and NASA Nebula as well as a traditional cluster are utilized in the study. Results illustrates that cloud is ready to some degree but more research needs to be done to fully implemented the cloud benefit as advertised by many vendors and defined by NIST. Specifically, 1) most cloud platform could help stand up new computing instances, a new computer, in a few minutes as envisioned, therefore, is ready to support most computing needs in an on demand fashion; 2) the load balance and elasticity, a defining characteristic, is ready in some cloud platforms, such as Amazon EC2, to support bigger jobs, e.g., needs response in minutes, while some are not ready to support the elasticity and load balance well. All cloud platform needs further research and development to support real time application at subminute level; 3) the user interface and functionality of cloud platforms vary a lot and some of them are very professional and well supported/documented, such as Amazon EC2, some of them needs significant improvement for the general public to adopt cloud computing without professional training or knowledge about computing infrastructure; 4) the security is a big concern in cloud computing platform, with the sharing spirit of cloud computing, it is very hard to ensure higher level security, except a private cloud is built for a specific organization without public access, public cloud platform does not support FISMA medium level yet and may never be able to support FISMA high level; 5) HPC jobs needs of cloud computing is not well supported and only Amazon EC2 supports this well. The research is being taken by NASA and other agencies to consider cloud computing adoption. We hope the publication of the research would also benefit the public to adopt cloud computing.

  19. Multiscale Mechanics of Articular Cartilage: Potentials and Challenges of Coupling Musculoskeletal, Joint, and Microscale Computational Models

    PubMed Central

    Halloran, J. P.; Sibole, S.; van Donkelaar, C. C.; van Turnhout, M. C.; Oomens, C. W. J.; Weiss, J. A.; Guilak, F.; Erdemir, A.

    2012-01-01

    Articular cartilage experiences significant mechanical loads during daily activities. Healthy cartilage provides the capacity for load bearing and regulates the mechanobiological processes for tissue development, maintenance, and repair. Experimental studies at multiple scales have provided a fundamental understanding of macroscopic mechanical function, evaluation of the micromechanical environment of chondrocytes, and the foundations for mechanobiological response. In addition, computational models of cartilage have offered a concise description of experimental data at many spatial levels under healthy and diseased conditions, and have served to generate hypotheses for the mechanical and biological function. Further, modeling and simulation provides a platform for predictive risk assessment, management of dysfunction, as well as a means to relate multiple spatial scales. Simulation-based investigation of cartilage comes with many challenges including both the computational burden and often insufficient availability of data for model development and validation. This review outlines recent modeling and simulation approaches to understand cartilage function from a mechanical systems perspective, and illustrates pathways to associate mechanics with biological function. Computational representations at single scales are provided from the body down to the microstructure, along with attempts to explore multiscale mechanisms of load sharing that dictate the mechanical environment of the cartilage and chondrocytes. PMID:22648577

  20. A Standard Platform for Testing and Comparison of MDAO Architectures

    NASA Technical Reports Server (NTRS)

    Gray, Justin S.; Moore, Kenneth T.; Hearn, Tristan A.; Naylor, Bret A.

    2012-01-01

    The Multidisciplinary Design Analysis and Optimization (MDAO) community has developed a multitude of algorithms and techniques, called architectures, for performing optimizations on complex engineering systems which involve coupling between multiple discipline analyses. These architectures seek to efficiently handle optimizations with computationally expensive analyses including multiple disciplines. We propose a new testing procedure that can provide a quantitative and qualitative means of comparison among architectures. The proposed test procedure is implemented within the open source framework, OpenMDAO, and comparative results are presented for five well-known architectures: MDF, IDF, CO, BLISS, and BLISS-2000. We also demonstrate how using open source soft- ware development methods can allow the MDAO community to submit new problems and architectures to keep the test suite relevant.

  1. Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data.

    PubMed

    Li, Zitong; Sillanpää, Mikko J

    2015-12-01

    Advanced platforms have recently become available for automatic and systematic quantification of plant growth and development. These new techniques can efficiently produce multiple measurements of phenotypes over time, and introduce time as an extra dimension to quantitative trait locus (QTL) studies. Functional mapping utilizes a class of statistical models for identifying QTLs associated with the growth characteristics of interest. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. We review the current development of computationally efficient functional mapping methods which provide invaluable tools for analyzing large-scale timecourse data that are readily available in our post-genome era. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Rotating Desk for Collaboration by Two Computer Programmers

    NASA Technical Reports Server (NTRS)

    Riley, John Thomas

    2005-01-01

    A special-purpose desk has been designed to facilitate collaboration by two computer programmers sharing one desktop computer or computer terminal. The impetus for the design is a trend toward what is known in the software industry as extreme programming an approach intended to ensure high quality without sacrificing the quantity of computer code produced. Programmers working in pairs is a major feature of extreme programming. The present desk design minimizes the stress of the collaborative work environment. It supports both quality and work flow by making it unnecessary for programmers to get in each other s way. The desk (see figure) includes a rotating platform that supports a computer video monitor, keyboard, and mouse. The desk enables one programmer to work on the keyboard for any amount of time and then the other programmer to take over without breaking the train of thought. The rotating platform is supported by a turntable bearing that, in turn, is supported by a weighted base. The platform contains weights to improve its balance. The base includes a stand for a computer, and is shaped and dimensioned to provide adequate foot clearance for both users. The platform includes an adjustable stand for the monitor, a surface for the keyboard and mouse, and spaces for work papers, drinks, and snacks. The heights of the monitor, keyboard, and mouse are set to minimize stress. The platform can be rotated through an angle of 40 to give either user a straight-on view of the monitor and full access to the keyboard and mouse. Magnetic latches keep the platform preferentially at either of the two extremes of rotation. To switch between users, one simply grabs the edge of the platform and pulls it around. The magnetic latch is easily released, allowing the platform to rotate freely to the position of the other user

  3. Micromagnetics on high-performance workstation and mobile computational platforms

    NASA Astrophysics Data System (ADS)

    Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.

    2015-05-01

    The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.

  4. Continuous measurement of breast tumor hormone receptor expression: a comparison of two computational pathology platforms

    PubMed Central

    Ahern, Thomas P.; Beck, Andrew H.; Rosner, Bernard A.; Glass, Ben; Frieling, Gretchen; Collins, Laura C.; Tamimi, Rulla M.

    2017-01-01

    Background Computational pathology platforms incorporate digital microscopy with sophisticated image analysis to permit rapid, continuous measurement of protein expression. We compared two computational pathology platforms on their measurement of breast tumor estrogen receptor (ER) and progesterone receptor (PR) expression. Methods Breast tumor microarrays from the Nurses’ Health Study were stained for ER (n=592) and PR (n=187). One expert pathologist scored cases as positive if ≥1% of tumor nuclei exhibited stain. ER and PR were then measured with the Definiens Tissue Studio (automated) and Aperio Digital Pathology (user-supervised) platforms. Platform-specific measurements were compared using boxplots, scatter plots, and correlation statistics. Classification of ER and PR positivity by platform-specific measurements was evaluated with areas under receiver operating characteristic curves (AUC) from univariable logistic regression models, using expert pathologist classification as the standard. Results Both platforms showed considerable overlap in continuous measurements of ER and PR between positive and negative groups classified by expert pathologist. Platform-specific measurements were strongly and positively correlated with one another (rho≥0.77). The user-supervised Aperio workflow performed slightly better than the automated Definiens workflow at classifying ER positivity (AUCAperio=0.97; AUCDefiniens=0.90; difference=0.07, 95% CI: 0.05, 0.09) and PR positivity (AUCAperio=0.94; AUCDefiniens=0.87; difference=0.07, 95% CI: 0.03, 0.12). Conclusion Paired hormone receptor expression measurements from two different computational pathology platforms agreed well with one another. The user-supervised workflow yielded better classification accuracy than the automated workflow. Appropriately validated computational pathology algorithms enrich molecular epidemiology studies with continuous protein expression data and may accelerate tumor biomarker discovery. PMID:27729430

  5. New-Sum: A Novel Online ABFT Scheme For General Iterative Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Dingwen; Song, Shuaiwen; Krishnamoorthy, Sriram

    Emerging high-performance computing platforms, with large component counts and lower power margins, are anticipated to be more susceptible to soft errors in both logic circuits and memory subsystems. We present an online algorithm-based fault tolerance (ABFT) approach to efficiently detect and recover soft errors for general iterative methods. We design a novel checksum-based encoding scheme for matrix-vector multiplication that is resilient to both arithmetic and memory errors. Our design decouples the checksum updating process from the actual computation, and allows adaptive checksum overhead control. Building on this new encoding mechanism, we propose two online ABFT designs that can effectively recovermore » from errors when combined with a checkpoint/rollback scheme.« less

  6. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    PubMed Central

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  7. A field programmable gate array-based reconfigurable smart-sensor network for wireless monitoring of new generation computer numerically controlled machines.

    PubMed

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.

  8. Pacific Research Platform - Creation of a West Coast Big Data Freeway System Applied to the CONNected objECT (CONNECT) Data Mining Framework for Earth Science Knowledge Discovery

    NASA Astrophysics Data System (ADS)

    Sellars, S. L.; Nguyen, P.; Tatar, J.; Graham, J.; Kawsenuk, B.; DeFanti, T.; Smarr, L.; Sorooshian, S.; Ralph, M.

    2017-12-01

    A new era in computational earth sciences is within our grasps with the availability of ever-increasing earth observational data, enhanced computational capabilities, and innovative computation approaches that allow for the assimilation, analysis and ability to model the complex earth science phenomena. The Pacific Research Platform (PRP), CENIC and associated technologies such as the Flash I/O Network Appliance (FIONA) provide scientists a unique capability for advancing towards this new era. This presentation reports on the development of multi-institutional rapid data access capabilities and data pipeline for applying a novel image characterization and segmentation approach, CONNected objECT (CONNECT) algorithm to study Atmospheric River (AR) events impacting the Western United States. ARs are often associated with torrential rains, swollen rivers, flash flooding, and mudslides. CONNECT is computationally intensive, reliant on very large data transfers, storage and data mining techniques. The ability to apply the method to multiple variables and datasets located at different University of California campuses has previously been challenged by inadequate network bandwidth and computational constraints. The presentation will highlight how the inter-campus CONNECT data mining framework improved from our prior download speeds of 10MB/s to 500MB/s using the PRP and the FIONAs. We present a worked example using the NASA MERRA data to describe how the PRP and FIONA have provided researchers with the capability for advancing knowledge about ARs. Finally, we will discuss future efforts to expand the scope to additional variables in earth sciences.

  9. Virtualization and cloud computing in dentistry.

    PubMed

    Chow, Frank; Muftu, Ali; Shorter, Richard

    2014-01-01

    The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.

  10. A Systematic Approach for Obtaining Performance on Matrix-Like Operations

    NASA Astrophysics Data System (ADS)

    Veras, Richard Michael

    Scientific Computation provides a critical role in the scientific process because it allows us ask complex queries and test predictions that would otherwise be unfeasible to perform experimentally. Because of its power, Scientific Computing has helped drive advances in many fields ranging from Engineering and Physics to Biology and Sociology to Economics and Drug Development and even to Machine Learning and Artificial Intelligence. Common among these domains is the desire for timely computational results, thus a considerable amount of human expert effort is spent towards obtaining performance for these scientific codes. However, this is no easy task because each of these domains present their own unique set of challenges to software developers, such as domain specific operations, structurally complex data and ever-growing datasets. Compounding these problems are the myriads of constantly changing, complex and unique hardware platforms that an expert must target. Unfortunately, an expert is typically forced to reproduce their effort across multiple problem domains and hardware platforms. In this thesis, we demonstrate the automatic generation of expert level high-performance scientific codes for Dense Linear Algebra (DLA), Structured Mesh (Stencil), Sparse Linear Algebra and Graph Analytic. In particular, this thesis seeks to address the issue of obtaining performance on many complex platforms for a certain class of matrix-like operations that span across many scientific, engineering and social fields. We do this by automating a method used for obtaining high performance in DLA and extending it to structured, sparse and scale-free domains. We argue that it is through the use of the underlying structure found in the data from these domains that enables this process. Thus, obtaining performance for most operations does not occur in isolation of the data being operated on, but instead depends significantly on the structure of the data.

  11. FUX-Sim: Implementation of a fast universal simulation/reconstruction framework for X-ray systems.

    PubMed

    Abella, Monica; Serrano, Estefania; Garcia-Blas, Javier; García, Ines; de Molina, Claudia; Carretero, Jesus; Desco, Manuel

    2017-01-01

    The availability of digital X-ray detectors, together with advances in reconstruction algorithms, creates an opportunity for bringing 3D capabilities to conventional radiology systems. The downside is that reconstruction algorithms for non-standard acquisition protocols are generally based on iterative approaches that involve a high computational burden. The development of new flexible X-ray systems could benefit from computer simulations, which may enable performance to be checked before expensive real systems are implemented. The development of simulation/reconstruction algorithms in this context poses three main difficulties. First, the algorithms deal with large data volumes and are computationally expensive, thus leading to the need for hardware and software optimizations. Second, these optimizations are limited by the high flexibility required to explore new scanning geometries, including fully configurable positioning of source and detector elements. And third, the evolution of the various hardware setups increases the effort required for maintaining and adapting the implementations to current and future programming models. Previous works lack support for completely flexible geometries and/or compatibility with multiple programming models and platforms. In this paper, we present FUX-Sim, a novel X-ray simulation/reconstruction framework that was designed to be flexible and fast. Optimized implementation for different families of GPUs (CUDA and OpenCL) and multi-core CPUs was achieved thanks to a modularized approach based on a layered architecture and parallel implementation of the algorithms for both architectures. A detailed performance evaluation demonstrates that for different system configurations and hardware platforms, FUX-Sim maximizes performance with the CUDA programming model (5 times faster than other state-of-the-art implementations). Furthermore, the CPU and OpenCL programming models allow FUX-Sim to be executed over a wide range of hardware platforms.

  12. [The Key Technology Study on Cloud Computing Platform for ECG Monitoring Based on Regional Internet of Things].

    PubMed

    Yang, Shu; Qiu, Yuyan; Shi, Bo

    2016-09-01

    This paper explores the methods of building the internet of things of a regional ECG monitoring, focused on the implementation of ECG monitoring center based on cloud computing platform. It analyzes implementation principles of automatic identifi cation in the types of arrhythmia. It also studies the system architecture and key techniques of cloud computing platform, including server load balancing technology, reliable storage of massive smalfi les and the implications of quick search function.

  13. Multimodal browsing using VoiceXML

    NASA Astrophysics Data System (ADS)

    Caccia, Giuseppe; Lancini, Rosa C.; Peschiera, Giuseppe

    2003-06-01

    With the increasing development of devices such as personal computers, WAP and personal digital assistants connected to the World Wide Web, end users feel the need to browse the Internet through multiple modalities. We intend to investigate on how to create a user interface and a service distribution platform granting the user access to the Internet through standard I/O modalities and voice simultaneously. Different architectures are evaluated suggesting the more suitable for each client terminal (PC o WAP). In particular the design of the multimodal usermachine interface considers the synchronization issue between graphical and voice contents.

  14. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    PubMed Central

    2010-01-01

    Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics. PMID:20064262

  15. The development of a biomimetic acoustic direction finding system for use on multiple platforms

    NASA Astrophysics Data System (ADS)

    Deligeorges, Socrates; Anderson, David; Browning, Cassandra A.; Cohen, Howard; Freedman, David; Gore, Tyler; Karl, Christian; Kelsall, Sarah; Mountain, David; Nourzad, Marianne; Pu, Yirong; Sandifer, Matt; Xue, Shuwan; Ziph-Schatzberg, Leah; Hubbard, Allyn

    2008-04-01

    This paper describes the flow of scientific and technological achievements beginning with a stationary "small, smart, biomimetic acoustic processor" designed for DARPA that led to a program aimed at acoustic characterization and direction finding for multiple, mobile platforms. ARL support and collaboration has allowed us to adapt the core technology to multiple platforms including a Packbot robotic platform, a soldier worn platform, as well as a vehicle platform. Each of these has varying size and power requirements, but miniaturization is an important component of the program for creating practical systems which we address further in companion papers. We have configured the system to detect and localize gunfire and tested system performance with live fire from numerous weapons such as the AK47, the Dragunov, and the AR15. The ARL-sponsored work has led to connections with Natick Labs and the Future Force Warrior program, and in addition, the work has many and obvious applications to homeland defense, police, and civilian needs.

  16. Large Scale Document Inversion using a Multi-threaded Computing System

    PubMed Central

    Jung, Sungbo; Chang, Dar-Jen; Park, Juw Won

    2018-01-01

    Current microprocessor architecture is moving towards multi-core/multi-threaded systems. This trend has led to a surge of interest in using multi-threaded computing devices, such as the Graphics Processing Unit (GPU), for general purpose computing. We can utilize the GPU in computation as a massive parallel coprocessor because the GPU consists of multiple cores. The GPU is also an affordable, attractive, and user-programmable commodity. Nowadays a lot of information has been flooded into the digital domain around the world. Huge volume of data, such as digital libraries, social networking services, e-commerce product data, and reviews, etc., is produced or collected every moment with dramatic growth in size. Although the inverted index is a useful data structure that can be used for full text searches or document retrieval, a large number of documents will require a tremendous amount of time to create the index. The performance of document inversion can be improved by multi-thread or multi-core GPU. Our approach is to implement a linear-time, hash-based, single program multiple data (SPMD), document inversion algorithm on the NVIDIA GPU/CUDA programming platform utilizing the huge computational power of the GPU, to develop high performance solutions for document indexing. Our proposed parallel document inversion system shows 2-3 times faster performance than a sequential system on two different test datasets from PubMed abstract and e-commerce product reviews. CCS Concepts •Information systems➝Information retrieval • Computing methodologies➝Massively parallel and high-performance simulations. PMID:29861701

  17. Large Scale Document Inversion using a Multi-threaded Computing System.

    PubMed

    Jung, Sungbo; Chang, Dar-Jen; Park, Juw Won

    2017-06-01

    Current microprocessor architecture is moving towards multi-core/multi-threaded systems. This trend has led to a surge of interest in using multi-threaded computing devices, such as the Graphics Processing Unit (GPU), for general purpose computing. We can utilize the GPU in computation as a massive parallel coprocessor because the GPU consists of multiple cores. The GPU is also an affordable, attractive, and user-programmable commodity. Nowadays a lot of information has been flooded into the digital domain around the world. Huge volume of data, such as digital libraries, social networking services, e-commerce product data, and reviews, etc., is produced or collected every moment with dramatic growth in size. Although the inverted index is a useful data structure that can be used for full text searches or document retrieval, a large number of documents will require a tremendous amount of time to create the index. The performance of document inversion can be improved by multi-thread or multi-core GPU. Our approach is to implement a linear-time, hash-based, single program multiple data (SPMD), document inversion algorithm on the NVIDIA GPU/CUDA programming platform utilizing the huge computational power of the GPU, to develop high performance solutions for document indexing. Our proposed parallel document inversion system shows 2-3 times faster performance than a sequential system on two different test datasets from PubMed abstract and e-commerce product reviews. •Information systems➝Information retrieval • Computing methodologies➝Massively parallel and high-performance simulations.

  18. Cloud computing for comparative genomics with windows azure platform.

    PubMed

    Kim, Insik; Jung, Jae-Yoon; Deluca, Todd F; Nelson, Tristan H; Wall, Dennis P

    2012-01-01

    Cloud computing services have emerged as a cost-effective alternative for cluster systems as the number of genomes and required computation power to analyze them increased in recent years. Here we introduce the Microsoft Azure platform with detailed execution steps and a cost comparison with Amazon Web Services.

  19. Cloud Computing for Comparative Genomics with Windows Azure Platform

    PubMed Central

    Kim, Insik; Jung, Jae-Yoon; DeLuca, Todd F.; Nelson, Tristan H.; Wall, Dennis P.

    2012-01-01

    Cloud computing services have emerged as a cost-effective alternative for cluster systems as the number of genomes and required computation power to analyze them increased in recent years. Here we introduce the Microsoft Azure platform with detailed execution steps and a cost comparison with Amazon Web Services. PMID:23032609

  20. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.

  1. Multiple emulsions as effective platforms for controlled anti-cancer drug delivery.

    PubMed

    Dluska, Ewa; Markowska-Radomska, Agnieszka; Metera, Agata; Tudek, Barbara; Kosicki, Konrad

    2017-09-01

    Developing pH-responsive multiple emulsion platforms for effective glioblastoma multiforme therapy with reduced toxicity, a drug release study and modeling. Cancer cell line: U87 MG, multiple emulsions with pH-responsive biopolymer and encapsulated doxorubicin (DOX); preparation of multiple emulsions in a Couette-Taylor flow biocontactor, in vitro release study of DOX (fluorescence intensity analysis), in vitro cytotoxicity study (alamarBlue cell viability assay) and numerical simulation of DOX release rates. The multiple emulsions offered a high DOX encapsulation efficiency (97.4 ± 1%) and pH modulated release rates of a drug. Multiple emulsions with a low concentration of DOX (0.02 μM) exhibited broadly advanced cell (U87 MG) cytotoxicity than free DOX solution used at the same concentration. Emulsion platforms could be explored for potential delivery of chemotherapeutics in glioblastoma multiforme therapy.

  2. Conceptual spacecraft systems design and synthesis

    NASA Technical Reports Server (NTRS)

    Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.

    1984-01-01

    An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.

  3. Interactive systems design and synthesis of future spacecraft concepts

    NASA Technical Reports Server (NTRS)

    Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.

    1984-01-01

    An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced spacecraft (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze and conduct parametric studies and modify Earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.

  4. Accelerating Time Integration for the Shallow Water Equations on the Sphere Using GPUs

    DOE PAGES

    Archibald, R.; Evans, K. J.; Salinger, A.

    2015-06-01

    The push towards larger and larger computational platforms has made it possible for climate simulations to resolve climate dynamics across multiple spatial and temporal scales. This direction in climate simulation has created a strong need to develop scalable timestepping methods capable of accelerating throughput on high performance computing. This study details the recent advances in the implementation of implicit time stepping of the spectral element dynamical core within the United States Department of Energy (DOE) Accelerated Climate Model for Energy (ACME) on graphical processing units (GPU) based machines. We demonstrate how solvers in the Trilinos project are interfaced with ACMEmore » and GPU kernels to increase computational speed of the residual calculations in the implicit time stepping method for the atmosphere dynamics. We demonstrate the optimization gains and data structure reorganization that facilitates the performance improvements.« less

  5. A novel processing platform for post tape out flows

    NASA Astrophysics Data System (ADS)

    Vu, Hien T.; Kim, Soohong; Word, James; Cai, Lynn Y.

    2018-03-01

    As the computational requirements for post tape out (PTO) flows increase at the 7nm and below technology nodes, there is a need to increase the scalability of the computational tools in order to reduce the turn-around time (TAT) of the flows. Utilization of design hierarchy has been one proven method to provide sufficient partitioning to enable PTO processing. However, as the data is processed through the PTO flow, its effective hierarchy is reduced. The reduction is necessary to achieve the desired accuracy. Also, the sequential nature of the PTO flow is inherently non-scalable. To address these limitations, we are proposing a quasi-hierarchical solution that combines multiple levels of parallelism to increase the scalability of the entire PTO flow. In this paper, we describe the system and present experimental results demonstrating the runtime reduction through scalable processing with thousands of computational cores.

  6. Integrated Component-based Data Acquisition Systems for Aerospace Test Facilities

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.

    2001-01-01

    The Multi-Instrument Integrated Data Acquisition System (MIIDAS), developed by the NASA Langley Research Center, uses commercial off the shelf (COTS) products, integrated with custom software, to provide a broad range of capabilities at a low cost throughout the system s entire life cycle. MIIDAS combines data acquisition capabilities with online and post-test data reduction computations. COTS products lower purchase and maintenance costs by reducing the level of effort required to meet system requirements. Object-oriented methods are used to enhance modularity, encourage reusability, and to promote adaptability, reducing software development costs. Using only COTS products and custom software supported on multiple platforms reduces the cost of porting the system to other platforms. The post-test data reduction capabilities of MIIDAS have been installed at four aerospace testing facilities at NASA Langley Research Center. The systems installed at these facilities provide a common user interface, reducing the training time required for personnel that work across multiple facilities. The techniques employed by MIIDAS enable NASA to build a system with a lower initial purchase price and reduced sustaining maintenance costs. With MIIDAS, NASA has built a highly flexible next generation data acquisition and reduction system for aerospace test facilities that meets customer expectations.

  7. Low-cost embedded systems for democratizing ocean sensor technology in the coastal zone

    NASA Astrophysics Data System (ADS)

    Glazer, B. T.; Lio, H. I.

    2017-12-01

    Environmental sciences suffer from undersampling. Enabling sustained and unattended data collection in the coastal zone typically involves expensive instrumentation and infrastructure deployed as cabled observatories or moorings with little flexibility in deployment location following initial installation. High costs of commercially-available or custom instruments have limited the number of sensor sites that can be targeted by academic researchers, and have also limited engagement with the public. We have developed a novel, low-cost, open-source sensor and software platform to enable wireless data transfer of biogeochemical sensors in the coastal zone. The platform is centered upon widely available, low-cost, single board computers and microcontrollers. We have used a blend of on-hand research-grade sensors and low-cost open-source electronics that can be assembled by tech-savvy non-engineers. Robust, open-source code that remains customizable for specific miniNode configurations can match a specific site's measurement needs, depending on the scientific research priorities. We have demonstrated prototype capabilities and versatility through lab testing and field deployments of multiple sensor nodes with multiple sensor inputs, all of which are streaming near-real-time data from Kaneohe Bay over wireless RF links to a shore-based base station.

  8. Cloud Based Applications and Platforms (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  9. A cloud computing based platform for sleep behavior and chronic diseases collaborative research.

    PubMed

    Kuo, Mu-Hsing; Borycki, Elizabeth; Kushniruk, Andre; Huang, Yueh-Min; Hung, Shu-Hui

    2014-01-01

    The objective of this study is to propose a Cloud Computing based platform for sleep behavior and chronic disease collaborative research. The platform consists of two main components: (1) a sensing bed sheet with textile sensors to automatically record patient's sleep behaviors and vital signs, and (2) a service-oriented cloud computing architecture (SOCCA) that provides a data repository and allows for sharing and analysis of collected data. Also, we describe our systematic approach to implementing the SOCCA. We believe that the new cloud-based platform can provide nurse and other health professional researchers located in differing geographic locations with a cost effective, flexible, secure and privacy-preserved research environment.

  10. EOS workstation

    NASA Technical Reports Server (NTRS)

    Leberl, Franz; Karspeck, Milan; Millot, Michel; Maurice, Kelly; Jackson, Matt

    1992-01-01

    This final report summarizes the work done from mid-1989 until January 1992 to develop a prototype set of tools for the analysis of EOS-type images. Such images are characterized by great multiplicity and quantity. A single 'snapshot' of EOS-type imagery may contain several hundred component images so that on a particular pixel, one finds multiple gray values. A prototype EOS-sensor, AVIRIS, has 224 gray values at each pixel. The work focused on the ability to utilize very large images and continuously roam through those images, zoom and be able to hold more than one black and white or color image, for example for stereo viewing or for image comparisons. A second focus was the utilization of so-called 'image cubes', where multiple images need to be co-registered and then jointly analyzed, viewed, and manipulated. The target computer platform that was selected was a high-performance graphics superworkstation, Stardent 3000. This particular platform offered many particular graphics tools such as the Application Visualization System (AVS) or Dore, but it missed availability of commercial third-party software for relational data bases, image processing, etc. The project was able to cope with these limitations and a phase-3 activity is currently being negotiated to port the software and enhance it for use with a novel graphics superworkstation to be introduced into the market in the Spring of 1993.

  11. Acceleration of Cherenkov angle reconstruction with the new Intel Xeon/FPGA compute platform for the particle identification in the LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Faerber, Christian

    2017-10-01

    The LHCb experiment at the LHC will upgrade its detector by 2018/2019 to a ‘triggerless’ readout scheme, where all the readout electronics and several sub-detector parts will be replaced. The new readout electronics will be able to readout the detector at 40 MHz. This increases the data bandwidth from the detector down to the Event Filter farm to 40 TBit/s, which also has to be processed to select the interesting proton-proton collision for later storage. The architecture of such a computing farm, which can process this amount of data as efficiently as possible, is a challenging task and several compute accelerator technologies are being considered for use inside the new Event Filter farm. In the high performance computing sector more and more FPGA compute accelerators are used to improve the compute performance and reduce the power consumption (e.g. in the Microsoft Catapult project and Bing search engine). Also for the LHCb upgrade the usage of an experimental FPGA accelerated computing platform in the Event Building or in the Event Filter farm is being considered and therefore tested. This platform from Intel hosts a general CPU and a high performance FPGA linked via a high speed link which is for this platform a QPI link. On the FPGA an accelerator is implemented. The used system is a two socket platform from Intel with a Xeon CPU and an FPGA. The FPGA has cache-coherent memory access to the main memory of the server and can collaborate with the CPU. As a first step, a computing intensive algorithm to reconstruct Cherenkov angles for the LHCb RICH particle identification was successfully ported in Verilog to the Intel Xeon/FPGA platform and accelerated by a factor of 35. The same algorithm was ported to the Intel Xeon/FPGA platform with OpenCL. The implementation work and the performance will be compared. Also another FPGA accelerator the Nallatech 385 PCIe accelerator with the same Stratix V FPGA were tested for performance. The results show that the Intel Xeon/FPGA platforms, which are built in general for high performance computing, are also very interesting for the High Energy Physics community.

  12. Designing Effective Persuasive Systems Utilizing the Power of Entanglement: Communication Channel, Strategy and Affect

    NASA Astrophysics Data System (ADS)

    Li, Haiqing; Chatterjee, Samir

    With rapid advances in information and communication technology, computer-mediated communication (CMC) technologies are utilizing multiple IT platforms such as email, websites, cell-phones/PDAs, social networking sites, and gaming environments. However, no studies have compared the effectiveness of a persuasive system using such alternative channels and various persuasive techniques. Moreover, how affective computing impacts the effectiveness of persuasive systems is not clear. This study proposes (1) persuasive technology channels in combination with persuasive strategies will have different persuasive effectiveness; (2) Adding positive emotion to a message that leads to a better overall user experience could increase persuasive effectiveness. The affective computing or emotion information was added to the experiment using emoticons. The initial results of a pilot study show that computer-mediated communication channels along with various persuasive strategies can affect the persuasive effectiveness to varying degrees. These results also shows that adding a positive emoticon to a message leads to a better user experience which increases the overall persuasive effectiveness of a system.

  13. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  14. A case for spiking neural network simulation based on configurable multiple-FPGA systems.

    PubMed

    Yang, Shufan; Wu, Qiang; Li, Renfa

    2011-09-01

    Recent neuropsychological research has begun to reveal that neurons encode information in the timing of spikes. Spiking neural network simulations are a flexible and powerful method for investigating the behaviour of neuronal systems. Simulation of the spiking neural networks in software is unable to rapidly generate output spikes in large-scale of neural network. An alternative approach, hardware implementation of such system, provides the possibility to generate independent spikes precisely and simultaneously output spike waves in real time, under the premise that spiking neural network can take full advantage of hardware inherent parallelism. We introduce a configurable FPGA-oriented hardware platform for spiking neural network simulation in this work. We aim to use this platform to combine the speed of dedicated hardware with the programmability of software so that it might allow neuroscientists to put together sophisticated computation experiments of their own model. A feed-forward hierarchy network is developed as a case study to describe the operation of biological neural systems (such as orientation selectivity of visual cortex) and computational models of such systems. This model demonstrates how a feed-forward neural network constructs the circuitry required for orientation selectivity and provides platform for reaching a deeper understanding of the primate visual system. In the future, larger scale models based on this framework can be used to replicate the actual architecture in visual cortex, leading to more detailed predictions and insights into visual perception phenomenon.

  15. An Outdoor Navigation Platform with a 3D Scanner and Gyro-assisted Odometry

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomoaki; Irie, Kiyoshi; Koyanagi, Eiji; Tomono, Masahiro

    This paper proposes a light-weight navigation platform that consists of gyro-assisted odometry, a 3D laser scanner and map-based localization for human-scale robots. The gyro-assisted odometry provides highly accurate positioning only by dead-reckoning. The 3D laser scanner has a wide field of view and uniform measuring-point distribution. The map-based localization is robust and computationally inexpensive by utilizing a particle filter on a 2D grid map generated by projecting 3D points on to the ground. The system uses small and low-cost sensors, and can be applied to a variety of mobile robots in human-scale environments. Outdoor navigation experiments were conducted at the Tsukuba Challenge held in 2009 and 2010, which is an open proving ground for human-scale robots. Our robot successfully navigated the assigned 1-km courses in a fully autonomous mode multiple times.

  16. xQTL workbench: a scalable web environment for multi-level QTL analysis.

    PubMed

    Arends, Danny; van der Velde, K Joeri; Prins, Pjotr; Broman, Karl W; Möller, Steffen; Jansen, Ritsert C; Swertz, Morris A

    2012-04-01

    xQTL workbench is a scalable web platform for the mapping of quantitative trait loci (QTLs) at multiple levels: for example gene expression (eQTL), protein abundance (pQTL), metabolite abundance (mQTL) and phenotype (phQTL) data. Popular QTL mapping methods for model organism and human populations are accessible via the web user interface. Large calculations scale easily on to multi-core computers, clusters and Cloud. All data involved can be uploaded and queried online: markers, genotypes, microarrays, NGS, LC-MS, GC-MS, NMR, etc. When new data types come available, xQTL workbench is quickly customized using the Molgenis software generator. xQTL workbench runs on all common platforms, including Linux, Mac OS X and Windows. An online demo system, installation guide, tutorials, software and source code are available under the LGPL3 license from http://www.xqtl.org. m.a.swertz@rug.nl.

  17. xQTL workbench: a scalable web environment for multi-level QTL analysis

    PubMed Central

    Arends, Danny; van der Velde, K. Joeri; Prins, Pjotr; Broman, Karl W.; Möller, Steffen; Jansen, Ritsert C.; Swertz, Morris A.

    2012-01-01

    Summary: xQTL workbench is a scalable web platform for the mapping of quantitative trait loci (QTLs) at multiple levels: for example gene expression (eQTL), protein abundance (pQTL), metabolite abundance (mQTL) and phenotype (phQTL) data. Popular QTL mapping methods for model organism and human populations are accessible via the web user interface. Large calculations scale easily on to multi-core computers, clusters and Cloud. All data involved can be uploaded and queried online: markers, genotypes, microarrays, NGS, LC-MS, GC-MS, NMR, etc. When new data types come available, xQTL workbench is quickly customized using the Molgenis software generator. Availability: xQTL workbench runs on all common platforms, including Linux, Mac OS X and Windows. An online demo system, installation guide, tutorials, software and source code are available under the LGPL3 license from http://www.xqtl.org. Contact: m.a.swertz@rug.nl PMID:22308096

  18. Molecular Platform for Design and Synthesis of Targeted Dual-Modality Imaging Probes

    PubMed Central

    2015-01-01

    We report a versatile dendritic structure based platform for construction of targeted dual-modality imaging probes. The platform contains multiple copies of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) branching out from a 1,4,7-triazacyclononane-N,N′,N″-triacetic acid (NOTA) core. The specific coordination chemistries of the NOTA and DOTA moieties offer specific loading of 68/67Ga3+ and Gd3+, respectively, into a common molecular scaffold. The platform also contains three amino groups which can potentiate targeted dual-modality imaging of PET/MRI or SPECT/MRI (PET: positron emission tomography; SPECT: single photon emission computed tomography; MRI: magnetic resonance imaging) when further functionalized by targeting vectors of interest. To validate this design concept, a bimetallic complex was synthesized with six peripheral Gd-DOTA units and one Ga-NOTA core at the center, whose ion T1 relaxivity per gadolinium atom was measured to be 15.99 mM–1 s–1 at 20 MHz. Further, the bimetallic agent demonstrated its anticipated in vivo stability, tissue distribution, and pharmacokinetic profile when labeled with 67Ga. When conjugated with a model targeting peptide sequence, the trivalent construct was able to visualize tumors in a mouse xenograft model by both PET and MRI via a single dose injection. PMID:25615011

  19. Bridge-Scour Data Management System user's manual

    USGS Publications Warehouse

    Landers, Mark N.; Mueller, David S.; Martin, Gary R.

    1996-01-01

    The Bridge-Scour Data Management System (BSDMS) supports preparation, compilation, and analysis of bridge-scour data. The BSDMS provides interactive storage, retrieval, selection, editing, and display of bridge-scour data sets. Bridge-scour data sets include more than 200 site and measurement attributes of the channel geometry, flow hydraulics, hydrology, sediment, geomorphic-setting, location, and bridge specifications. This user's manual provides a general overview of the structure and organization of BSDMS data sets and detailed instructions to operate the program. Attributes stored by the BSDMS are described along with an illustration of the input screen where the attribute can be entered or edited. Measured scour depths can be compared with scour depths predicted by selected published equations using the BSDMS. The selected published equations available in the computational portion of the BSDMS are described. This manual is written for BSDMS, version 2.0. The data base will facilitate: (1) developing improved estimators of scour for specific regions or conditions; (2) describing scour processes; and (3) reducing risk from scour at bridges. BSDMS is available in DOS and UNIX versions. The program was written to be portable and, therefore, can be used on multiple computer platforms. Installation procedures depend on the computer platform, and specific installation instructions are distributed with the software. Sample data files and data sets of 384 pier-scour measurements from 56 bridges in 14 States are also distributed with the software.

  20. Bringing Web 2.0 to bioinformatics.

    PubMed

    Zhang, Zhang; Cheung, Kei-Hoi; Townsend, Jeffrey P

    2009-01-01

    Enabling deft data integration from numerous, voluminous and heterogeneous data sources is a major bioinformatic challenge. Several approaches have been proposed to address this challenge, including data warehousing and federated databasing. Yet despite the rise of these approaches, integration of data from multiple sources remains problematic and toilsome. These two approaches follow a user-to-computer communication model for data exchange, and do not facilitate a broader concept of data sharing or collaboration among users. In this report, we discuss the potential of Web 2.0 technologies to transcend this model and enhance bioinformatics research. We propose a Web 2.0-based Scientific Social Community (SSC) model for the implementation of these technologies. By establishing a social, collective and collaborative platform for data creation, sharing and integration, we promote a web services-based pipeline featuring web services for computer-to-computer data exchange as users add value. This pipeline aims to simplify data integration and creation, to realize automatic analysis, and to facilitate reuse and sharing of data. SSC can foster collaboration and harness collective intelligence to create and discover new knowledge. In addition to its research potential, we also describe its potential role as an e-learning platform in education. We discuss lessons from information technology, predict the next generation of Web (Web 3.0), and describe its potential impact on the future of bioinformatics studies.

  1. Bridging the provenance gap: opportunities and challenges tracking in and ex silico provenance in sUAS workflows

    NASA Astrophysics Data System (ADS)

    Thomer, A.

    2017-12-01

    Data provenance - the record of the varied processes that went into the creation of a dataset, as well as the relationships between resulting data objects - is necessary to support the reusability, reproducibility and reliability of earth science data. In sUAS-based research, capturing provenance can be particularly challenging because of the breadth and distributed nature of the many platforms used to collect, process and analyze data. In any given project, multiple drones, controllers, computers, software systems, sensors, cameras, imaging processing algorithms and data processing workflows are used over sometimes long periods of time. These platforms and processing result in dozens - if not hundreds - of data products in varying stages of readiness-for-analysis and sharing. Provenance tracking mechanisms are needed to make the relationships between these many data products explicit, and therefore more reusable and shareable. In this talk, I discuss opportunities and challenges in tracking provenance in sUAS-based research, and identify gaps in current workflow-capture technologies. I draw on prior work conducted as part of the IMLS-funded Site-Based Data Curation project in which we developed methods of documenting in and ex silico (that is, computational and non-computation) workflows, and demonstrate this approaches applicability to research with sUASes. I conclude with a discussion of ontologies and other semantic technologies that have potential application in sUAS research.

  2. The Cyborg Astrobiologist: testing a novelty detection algorithm on two mobile exploration systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Gross, C.; Wendt, L.; Bonnici, A.; Souza-Egipsy, V.; Ormö, J.; Díaz-Martínez, E.; Foing, B. H.; Bose, R.; Walter, S.; Oesker, M.; Ontrup, J.; Haschke, R.; Ritter, H.

    2010-01-01

    In previous work, a platform was developed for testing computer-vision algorithms for robotic planetary exploration. This platform consisted of a digital video camera connected to a wearable computer for real-time processing of images at geological and astrobiological field sites. The real-time processing included image segmentation and the generation of interest points based upon uncommonness in the segmentation maps. Also in previous work, this platform for testing computer-vision algorithms has been ported to a more ergonomic alternative platform, consisting of a phone camera connected via the Global System for Mobile Communications (GSM) network to a remote-server computer. The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon colour, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colours to test this algorithm. The algorithm robustly recognized previously observed units by their colour, while requiring only a single image or a few images to learn colours as familiar, demonstrating its fast learning capability.

  3. A service brokering and recommendation mechanism for better selecting cloud services.

    PubMed

    Gui, Zhipeng; Yang, Chaowei; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Yu, Manzhu; Sun, Min; Zhou, Nanyin; Jin, Baoxuan

    2014-01-01

    Cloud computing is becoming the new generation computing infrastructure, and many cloud vendors provide different types of cloud services. How to choose the best cloud services for specific applications is very challenging. Addressing this challenge requires balancing multiple factors, such as business demands, technologies, policies and preferences in addition to the computing requirements. This paper recommends a mechanism for selecting the best public cloud service at the levels of Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). A systematic framework and associated workflow include cloud service filtration, solution generation, evaluation, and selection of public cloud services. Specifically, we propose the following: a hierarchical information model for integrating heterogeneous cloud information from different providers and a corresponding cloud information collecting mechanism; a cloud service classification model for categorizing and filtering cloud services and an application requirement schema for providing rules for creating application-specific configuration solutions; and a preference-aware solution evaluation mode for evaluating and recommending solutions according to the preferences of application providers. To test the proposed framework and methodologies, a cloud service advisory tool prototype was developed after which relevant experiments were conducted. The results show that the proposed system collects/updates/records the cloud information from multiple mainstream public cloud services in real-time, generates feasible cloud configuration solutions according to user specifications and acceptable cost predication, assesses solutions from multiple aspects (e.g., computing capability, potential cost and Service Level Agreement, SLA) and offers rational recommendations based on user preferences and practical cloud provisioning; and visually presents and compares solutions through an interactive web Graphical User Interface (GUI).

  4. Platform-independent method for computer aided schematic drawings

    DOEpatents

    Vell, Jeffrey L [Slingerlands, NY; Siganporia, Darius M [Clifton Park, NY; Levy, Arthur J [Fort Lauderdale, FL

    2012-02-14

    A CAD/CAM method is disclosed for a computer system to capture and interchange schematic drawing and associated design information. The schematic drawing and design information are stored in an extensible, platform-independent format.

  5. Kinematics and dynamics of robotic systems with multiple closed loops

    NASA Astrophysics Data System (ADS)

    Zhang, Chang-De

    The kinematics and dynamics of robotic systems with multiple closed loops, such as Stewart platforms, walking machines, and hybrid manipulators, are studied. In the study of kinematics, focus is on the closed-form solutions of the forward position analysis of different parallel systems. A closed-form solution means that the solution is expressed as a polynomial in one variable. If the order of the polynomial is less than or equal to four, the solution has analytical closed-form. First, the conditions of obtaining analytical closed-form solutions are studied. For a Stewart platform, the condition is found to be that one rotational degree of freedom of the output link is decoupled from the other five. Based on this condition, a class of Stewart platforms which has analytical closed-form solution is formulated. Conditions of analytical closed-form solution for other parallel systems are also studied. Closed-form solutions of forward kinematics for walking machines and multi-fingered grippers are then studied. For a parallel system with three three-degree-of-freedom subchains, there are 84 possible ways to select six independent joints among nine joints. These 84 ways can be classified into three categories: Category 3:3:0, Category 3:2:1, and Category 2:2:2. It is shown that the first category has no solutions; the solutions of the second category have analytical closed-form; and the solutions of the last category are higher order polynomials. The study is then extended to a nearly general Stewart platform. The solution is a 20th order polynomial and the Stewart platform has a maximum of 40 possible configurations. Also, the study is extended to a new class of hybrid manipulators which consists of two serially connected parallel mechanisms. In the study of dynamics, a computationally efficient method for inverse dynamics of manipulators based on the virtual work principle is developed. Although this method is comparable with the recursive Newton-Euler method for serial manipulators, its advantage is more noteworthy when applied to parallel systems. An approach of inverse dynamics of a walking machine is also developed, which includes inverse dynamic modeling, foot force distribution, and joint force/torque allocation.

  6. A Big Data Platform for Storing, Accessing, Mining and Learning Geospatial Data

    NASA Astrophysics Data System (ADS)

    Yang, C. P.; Bambacus, M.; Duffy, D.; Little, M. M.

    2017-12-01

    Big Data is becoming a norm in geoscience domains. A platform that is capable to effiently manage, access, analyze, mine, and learn the big data for new information and knowledge is desired. This paper introduces our latest effort on developing such a platform based on our past years' experiences on cloud and high performance computing, analyzing big data, comparing big data containers, and mining big geospatial data for new information. The platform includes four layers: a) the bottom layer includes a computing infrastructure with proper network, computer, and storage systems; b) the 2nd layer is a cloud computing layer based on virtualization to provide on demand computing services for upper layers; c) the 3rd layer is big data containers that are customized for dealing with different types of data and functionalities; d) the 4th layer is a big data presentation layer that supports the effient management, access, analyses, mining and learning of big geospatial data.

  7. The Efficacy of the Internet-Based Blackboard Platform in Developmental Writing Classes

    ERIC Educational Resources Information Center

    Shudooh, Yusuf M.

    2016-01-01

    The application of computer-assisted platforms in writing classes is a relatively new paradigm in education. The adoption of computers-assisted writing classes is gaining ground in many western and non western universities. Numerous issues can be addressed when conducting computer-assisted classes (CAC). However, a few studies conducted to assess…

  8. Tri-Laboratory Linux Capacity Cluster 2007 SOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seager, M

    2007-03-22

    The Advanced Simulation and Computing (ASC) Program (formerly know as Accelerated Strategic Computing Initiative, ASCI) has led the world in capability computing for the last ten years. Capability computing is defined as a world-class platform (in the Top10 of the Top500.org list) with scientific simulations running at scale on the platform. Example systems are ASCI Red, Blue-Pacific, Blue-Mountain, White, Q, RedStorm, and Purple. ASC applications have scaled to multiple thousands of CPUs and accomplished a long list of mission milestones on these ASC capability platforms. However, the computing demands of the ASC and Stockpile Stewardship programs also include a vastmore » number of smaller scale runs for day-to-day simulations. Indeed, every 'hero' capability run requires many hundreds to thousands of much smaller runs in preparation and post processing activities. In addition, there are many aspects of the Stockpile Stewardship Program (SSP) that can be directly accomplished with these so-called 'capacity' calculations. The need for capacity is now so great within the program that it is increasingly difficult to allocate the computer resources required by the larger capability runs. To rectify the current 'capacity' computing resource shortfall, the ASC program has allocated a large portion of the overall ASC platforms budget to 'capacity' systems. In addition, within the next five to ten years the Life Extension Programs (LEPs) for major nuclear weapons systems must be accomplished. These LEPs and other SSP programmatic elements will further drive the need for capacity calculations and hence 'capacity' systems as well as future ASC capability calculations on 'capability' systems. To respond to this new workload analysis, the ASC program will be making a large sustained strategic investment in these capacity systems over the next ten years, starting with the United States Government Fiscal Year 2007 (GFY07). However, given the growing need for 'capability' systems as well, the budget demands are extreme and new, more cost effective ways of fielding these systems must be developed. This Tri-Laboratory Linux Capacity Cluster (TLCC) procurement represents the ASC first investment vehicle in these capacity systems. It also represents a new strategy for quickly building, fielding and integrating many Linux clusters of various sizes into classified and unclassified production service through a concept of Scalable Units (SU). The programmatic objective is to dramatically reduce the overall Total Cost of Ownership (TCO) of these 'capacity' systems relative to the best practices in Linux Cluster deployments today. This objective only makes sense in the context of these systems quickly becoming very robust and useful production clusters under the crushing load that will be inflicted on them by the ASC and SSP scientific simulation capacity workload.« less

  9. The cost of large numbers of hypothesis tests on power, effect size and sample size.

    PubMed

    Lazzeroni, L C; Ray, A

    2012-01-01

    Advances in high-throughput biology and computer science are driving an exponential increase in the number of hypothesis tests in genomics and other scientific disciplines. Studies using current genotyping platforms frequently include a million or more tests. In addition to the monetary cost, this increase imposes a statistical cost owing to the multiple testing corrections needed to avoid large numbers of false-positive results. To safeguard against the resulting loss of power, some have suggested sample sizes on the order of tens of thousands that can be impractical for many diseases or may lower the quality of phenotypic measurements. This study examines the relationship between the number of tests on the one hand and power, detectable effect size or required sample size on the other. We show that once the number of tests is large, power can be maintained at a constant level, with comparatively small increases in the effect size or sample size. For example at the 0.05 significance level, a 13% increase in sample size is needed to maintain 80% power for ten million tests compared with one million tests, whereas a 70% increase in sample size is needed for 10 tests compared with a single test. Relative costs are less when measured by increases in the detectable effect size. We provide an interactive Excel calculator to compute power, effect size or sample size when comparing study designs or genome platforms involving different numbers of hypothesis tests. The results are reassuring in an era of extreme multiple testing.

  10. Reducing audio stimulus presentation latencies across studies, laboratories, and hardware and operating system configurations.

    PubMed

    Babjack, Destiny L; Cernicky, Brandon; Sobotka, Andrew J; Basler, Lee; Struthers, Devon; Kisic, Richard; Barone, Kimberly; Zuccolotto, Anthony P

    2015-09-01

    Using differing computer platforms and audio output devices to deliver audio stimuli often introduces (1) substantial variability across labs and (2) variable time between the intended and actual sound delivery (the sound onset latency). Fast, accurate audio onset latencies are particularly important when audio stimuli need to be delivered precisely as part of studies that depend on accurate timing (e.g., electroencephalographic, event-related potential, or multimodal studies), or in multisite studies in which standardization and strict control over the computer platforms used is not feasible. This research describes the variability introduced by using differing configurations and introduces a novel approach to minimizing audio sound latency and variability. A stimulus presentation and latency assessment approach is presented using E-Prime and Chronos (a new multifunction, USB-based data presentation and collection device). The present approach reliably delivers audio stimuli with low latencies that vary by ≤1 ms, independent of hardware and Windows operating system (OS)/driver combinations. The Chronos audio subsystem adopts a buffering, aborting, querying, and remixing approach to the delivery of audio, to achieve a consistent 1-ms sound onset latency for single-sound delivery, and precise delivery of multiple sounds that achieves standard deviations of 1/10th of a millisecond without the use of advanced scripting. Chronos's sound onset latencies are small, reliable, and consistent across systems. Testing of standard audio delivery devices and configurations highlights the need for careful attention to consistency between labs, experiments, and multiple study sites in their hardware choices, OS selections, and adoption of audio delivery systems designed to sidestep the audio latency variability issue.

  11. Treatment Planning and Image Guidance for Radiofrequency Ablations of Large Tumors

    PubMed Central

    Ren, Hongliang; Campos-Nanez, Enrique; Yaniv, Ziv; Banovac, Filip; Abeledo, Hernan; Hata, Nobuhiko; Cleary, Kevin

    2014-01-01

    This article addresses the two key challenges in computer-assisted percutaneous tumor ablation: planning multiple overlapping ablations for large tumors while avoiding critical structures, and executing the prescribed plan. Towards semi-automatic treatment planning for image-guided surgical interventions, we develop a systematic approach to the needle-based ablation placement task, ranging from pre-operative planning algorithms to an intra-operative execution platform. The planning system incorporates clinical constraints on ablations and trajectories using a multiple objective optimization formulation, which consists of optimal path selection and ablation coverage optimization based on integer programming. The system implementation is presented and validated in phantom studies and on an animal model. The presented system can potentially be further extended for other ablation techniques such as cryotherapy. PMID:24235279

  12. Power Efficient Hardware Architecture of SHA-1 Algorithm for Trusted Mobile Computing

    NASA Astrophysics Data System (ADS)

    Kim, Mooseop; Ryou, Jaecheol

    The Trusted Mobile Platform (TMP) is developed and promoted by the Trusted Computing Group (TCG), which is an industry standard body to enhance the security of the mobile computing environment. The built-in SHA-1 engine in TMP is one of the most important circuit blocks and contributes the performance of the whole platform because it is used as key primitives supporting platform integrity and command authentication. Mobile platforms have very stringent limitations with respect to available power, physical circuit area, and cost. Therefore special architecture and design methods for low power SHA-1 circuit are required. In this paper, we present a novel and efficient hardware architecture of low power SHA-1 design for TMP. Our low power SHA-1 hardware can compute 512-bit data block using less than 7,000 gates and has a power consumption about 1.1 mA on a 0.25μm CMOS process.

  13. An Evaluation of Architectural Platforms for Parallel Navier-Stokes Computations

    NASA Technical Reports Server (NTRS)

    Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.

    1996-01-01

    We study the computational, communication, and scalability characteristics of a computational fluid dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architecture platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and distributed memory multiprocessors with different topologies - the IBM SP and the Cray T3D. We investigate the impact of various networks connecting the cluster of workstations on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.

  14. Parallelizing Navier-Stokes Computations on a Variety of Architectural Platforms

    NASA Technical Reports Server (NTRS)

    Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.

    1997-01-01

    We study the computational, communication, and scalability characteristics of a Computational Fluid Dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architectural platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), distributed memory multiprocessors with different topologies-the IBM SP and the Cray T3D. We investigate the impact of various networks, connecting the cluster of workstations, on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.

  15. A Web Tool for Research in Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Prikhod'ko, Nikolay V.; Abramovsky, Viktor A.; Abramovskaya, Natalia V.; Demichev, Andrey P.; Kryukov, Alexandr P.; Polyakov, Stanislav P.

    2016-02-01

    This paper presents a project of developing the web platform called WebNLO for computer modeling of nonlinear optics phenomena. We discuss a general scheme of the platform and a model for interaction between the platform modules. The platform is built as a set of interacting RESTful web services (SaaS approach). Users can interact with the platform through a web browser or command line interface. Such a resource has no analogues in the field of nonlinear optics and will be created for the first time therefore allowing researchers to access high-performance computing resources that will significantly reduce the cost of the research and development process.

  16. TTEthernet for Integrated Spacecraft Networks

    NASA Technical Reports Server (NTRS)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network determinism required by real-time spacecraft applications. Even with modern advancements, the uncoordinated (i.e. event-driven) nature of Ethernet communication unavoidably leads to message contention within network switches. The arbitration process used to resolve such conflicts introduces variation in the time it takes for messages to be forwarded. TTEthernet1 introduces decentralized clock synchronization to switched Ethernet, enabling message transmission according to a time-triggered (TT) paradigm. A network planning tool is used to allocate each device a finite amount of time in which it may transmit a frame. Each time slot is repeated sequentially to form a periodic communication schedule that is then loaded onto each TTEthernet device (e.g. switches and end systems). Each network participant references the synchronized time in order to dispatch messages at predetermined instances. This schedule guarantees that no contention exists between time-triggered Ethernet frames in the network switches, therefore eliminating the need for arbitration (and the timing variation it causes). Besides time-triggered messaging, TTEthernet networks may provide two additional traffic classes to support communication of different criticality levels. In the rate-constrained (RC) traffic class, the frame payload size and rate of transmission along each communication channel are limited to predetermined maximums. The network switches can therefore be configured to accommodate the known worst-case traffic pattern, and buffer overflows can be eliminated. The best-effort (BE) traffic class behaves akin to classical Ethernet. No guarantees are provided regarding transmission latency or successful message delivery. TTEthernet coordinates transmission of all three traffic classes over the same physical connections, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. Common computing platforms (e.g. LRUs) can share networking resources in such a way that failures in non-critical systems (using BE or RC communication modes) cannot impact flight-critical functions (using TT communication). Furthermore, TTEthernet hardware (e.g. switches, cabling) can be shared by both TTEthernet and classical Ethernet traffic.

  17. Continuous measurement of breast tumour hormone receptor expression: a comparison of two computational pathology platforms.

    PubMed

    Ahern, Thomas P; Beck, Andrew H; Rosner, Bernard A; Glass, Ben; Frieling, Gretchen; Collins, Laura C; Tamimi, Rulla M

    2017-05-01

    Computational pathology platforms incorporate digital microscopy with sophisticated image analysis to permit rapid, continuous measurement of protein expression. We compared two computational pathology platforms on their measurement of breast tumour oestrogen receptor (ER) and progesterone receptor (PR) expression. Breast tumour microarrays from the Nurses' Health Study were stained for ER (n=592) and PR (n=187). One expert pathologist scored cases as positive if ≥1% of tumour nuclei exhibited stain. ER and PR were then measured with the Definiens Tissue Studio (automated) and Aperio Digital Pathology (user-supervised) platforms. Platform-specific measurements were compared using boxplots, scatter plots and correlation statistics. Classification of ER and PR positivity by platform-specific measurements was evaluated with areas under receiver operating characteristic curves (AUC) from univariable logistic regression models, using expert pathologist classification as the standard. Both platforms showed considerable overlap in continuous measurements of ER and PR between positive and negative groups classified by expert pathologist. Platform-specific measurements were strongly and positively correlated with one another (r≥0.77). The user-supervised Aperio workflow performed slightly better than the automated Definiens workflow at classifying ER positivity (AUC Aperio =0.97; AUC Definiens =0.90; difference=0.07, 95% CI 0.05 to 0.09) and PR positivity (AUC Aperio =0.94; AUC Definiens =0.87; difference=0.07, 95% CI 0.03 to 0.12). Paired hormone receptor expression measurements from two different computational pathology platforms agreed well with one another. The user-supervised workflow yielded better classification accuracy than the automated workflow. Appropriately validated computational pathology algorithms enrich molecular epidemiology studies with continuous protein expression data and may accelerate tumour biomarker discovery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Opportunities and choice in a new vector era

    NASA Astrophysics Data System (ADS)

    Nowak, A.

    2014-06-01

    This work discusses the significant changes in computing landscape related to the progression of Moore's Law, and the implications on scientific computing. Particular attention is devoted to the High Energy Physics domain (HEP), which has always made good use of threading, but levels of parallelism closer to the hardware were often left underutilized. Findings of the CERN openlab Platform Competence Center are reported in the context of expanding "performance dimensions", and especially the resurgence of vectors. These suggest that data oriented designs are feasible in HEP and have considerable potential for performance improvements on multiple levels, but will rarely trump algorithmic enhancements. Finally, an analysis of upcoming hardware and software technologies identifies heterogeneity as a major challenge for software, which will require more emphasis on scalable, efficient design.

  19. Methods for open innovation on a genome-design platform associating scientific, commercial, and educational communities in synthetic biology.

    PubMed

    Toyoda, Tetsuro

    2011-01-01

    Synthetic biology requires both engineering efficiency and compliance with safety guidelines and ethics. Focusing on the rational construction of biological systems based on engineering principles, synthetic biology depends on a genome-design platform to explore the combinations of multiple biological components or BIO bricks for quickly producing innovative devices. This chapter explains the differences among various platform models and details a methodology for promoting open innovation within the scope of the statutory exemption of patent laws. The detailed platform adopts a centralized evaluation model (CEM), computer-aided design (CAD) bricks, and a freemium model. It is also important for the platform to support the legal aspects of copyrights as well as patent and safety guidelines because intellectual work including DNA sequences designed rationally by human intelligence is basically copyrightable. An informational platform with high traceability, transparency, auditability, and security is required for copyright proof, safety compliance, and incentive management for open innovation in synthetic biology. GenoCon, which we have organized and explained here, is a competition-styled, open-innovation method involving worldwide participants from scientific, commercial, and educational communities that aims to improve the designs of genomic sequences that confer a desired function on an organism. Using only a Web browser, a participating contributor proposes a design expressed with CAD bricks that generate a relevant DNA sequence, which is then experimentally and intensively evaluated by the GenoCon organizers. The CAD bricks that comprise programs and databases as a Semantic Web are developed, executed, shared, reused, and well stocked on the secure Semantic Web platform called the Scientists' Networking System or SciNetS/SciNeS, based on which a CEM research center for synthetic biology and open innovation should be established. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Investigation of automated feature extraction using multiple data sources

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Perkins, Simon J.; Pope, Paul A.; Theiler, James P.; David, Nancy A.; Porter, Reid B.

    2003-04-01

    An increasing number and variety of platforms are now capable of collecting remote sensing data over a particular scene. For many applications, the information available from any individual sensor may be incomplete, inconsistent or imprecise. However, other sources may provide complementary and/or additional data. Thus, for an application such as image feature extraction or classification, it may be that fusing the mulitple data sources can lead to more consistent and reliable results. Unfortunately, with the increased complexity of the fused data, the search space of feature-extraction or classification algorithms also greatly increases. With a single data source, the determination of a suitable algorithm may be a significant challenge for an image analyst. With the fused data, the search for suitable algorithms can go far beyond the capabilities of a human in a realistic time frame, and becomes the realm of machine learning, where the computational power of modern computers can be harnessed to the task at hand. We describe experiments in which we investigate the ability of a suite of automated feature extraction tools developed at Los Alamos National Laboratory to make use of multiple data sources for various feature extraction tasks. We compare and contrast this software's capabilities on 1) individual data sets from different data sources 2) fused data sets from multiple data sources and 3) fusion of results from multiple individual data sources.

  1. Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?

    PubMed Central

    Billah, Syed Masum; Ashok, Vikas; Porter, Donald E.; Ramakrishnan, IV

    2017-01-01

    Ubiquitous access is an increasingly common vision of computing, wherein users can interact with any computing device or service from anywhere, at any time. In the era of personal computing, users with visual impairments required special-purpose, assistive technologies, such as screen readers, to interact with computers. This paper investigates whether technologies like screen readers have kept pace with, or have created a barrier to, the trend toward ubiquitous access, with a specific focus on desktop computing as this is still the primary way computers are used in education and employment. Towards that, the paper presents a user study with 21 visually-impaired participants, specifically involving the switching of screen readers within and across different computing platforms, and the use of screen readers in remote access scenarios. Among the findings, the study shows that, even for remote desktop access—an early forerunner of true ubiquitous access—screen readers are too limited, if not unusable. The study also identifies several accessibility needs, such as uniformity of navigational experience across devices, and recommends potential solutions. In summary, assistive technologies have not made the jump into the era of ubiquitous access, and multiple, inconsistent screen readers create new practical problems for users with visual impairments. PMID:28782061

  2. Grids, virtualization, and clouds at Fermilab

    DOE PAGES

    Timm, S.; Chadwick, K.; Garzoglio, G.; ...

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less

  3. Grids, virtualization, and clouds at Fermilab

    NASA Astrophysics Data System (ADS)

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  4. Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?

    PubMed

    Billah, Syed Masum; Ashok, Vikas; Porter, Donald E; Ramakrishnan, I V

    2017-05-01

    Ubiquitous access is an increasingly common vision of computing, wherein users can interact with any computing device or service from anywhere, at any time. In the era of personal computing, users with visual impairments required special-purpose, assistive technologies, such as screen readers, to interact with computers. This paper investigates whether technologies like screen readers have kept pace with, or have created a barrier to, the trend toward ubiquitous access, with a specific focus on desktop computing as this is still the primary way computers are used in education and employment. Towards that, the paper presents a user study with 21 visually-impaired participants, specifically involving the switching of screen readers within and across different computing platforms, and the use of screen readers in remote access scenarios. Among the findings, the study shows that, even for remote desktop access-an early forerunner of true ubiquitous access-screen readers are too limited, if not unusable. The study also identifies several accessibility needs, such as uniformity of navigational experience across devices, and recommends potential solutions. In summary, assistive technologies have not made the jump into the era of ubiquitous access, and multiple, inconsistent screen readers create new practical problems for users with visual impairments.

  5. Demonstration of a small programmable quantum computer with atomic qubits.

    PubMed

    Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C

    2016-08-04

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  6. Demonstration of a small programmable quantum computer with atomic qubits

    NASA Astrophysics Data System (ADS)

    Debnath, S.; Linke, N. M.; Figgatt, C.; Landsman, K. A.; Wright, K.; Monroe, C.

    2016-08-01

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  7. HiC-bench: comprehensive and reproducible Hi-C data analysis designed for parameter exploration and benchmarking.

    PubMed

    Lazaris, Charalampos; Kelly, Stephen; Ntziachristos, Panagiotis; Aifantis, Iannis; Tsirigos, Aristotelis

    2017-01-05

    Chromatin conformation capture techniques have evolved rapidly over the last few years and have provided new insights into genome organization at an unprecedented resolution. Analysis of Hi-C data is complex and computationally intensive involving multiple tasks and requiring robust quality assessment. This has led to the development of several tools and methods for processing Hi-C data. However, most of the existing tools do not cover all aspects of the analysis and only offer few quality assessment options. Additionally, availability of a multitude of tools makes scientists wonder how these tools and associated parameters can be optimally used, and how potential discrepancies can be interpreted and resolved. Most importantly, investigators need to be ensured that slight changes in parameters and/or methods do not affect the conclusions of their studies. To address these issues (compare, explore and reproduce), we introduce HiC-bench, a configurable computational platform for comprehensive and reproducible analysis of Hi-C sequencing data. HiC-bench performs all common Hi-C analysis tasks, such as alignment, filtering, contact matrix generation and normalization, identification of topological domains, scoring and annotation of specific interactions using both published tools and our own. We have also embedded various tasks that perform quality assessment and visualization. HiC-bench is implemented as a data flow platform with an emphasis on analysis reproducibility. Additionally, the user can readily perform parameter exploration and comparison of different tools in a combinatorial manner that takes into account all desired parameter settings in each pipeline task. This unique feature facilitates the design and execution of complex benchmark studies that may involve combinations of multiple tool/parameter choices in each step of the analysis. To demonstrate the usefulness of our platform, we performed a comprehensive benchmark of existing and new TAD callers exploring different matrix correction methods, parameter settings and sequencing depths. Users can extend our pipeline by adding more tools as they become available. HiC-bench consists an easy-to-use and extensible platform for comprehensive analysis of Hi-C datasets. We expect that it will facilitate current analyses and help scientists formulate and test new hypotheses in the field of three-dimensional genome organization.

  8. Design of platform for removing screws from LCD display shields

    NASA Astrophysics Data System (ADS)

    Tu, Zimei; Qin, Qin; Dou, Jianfang; Zhu, Dongdong

    2017-11-01

    Removing the screws on the sides of a shield is a necessary process in disassembling a computer LCD display. To solve this issue, a platform has been designed for removing the screws on display shields. This platform uses virtual instrument technology with LabVIEW as the development environment to design the mechanical structure with the technologies of motion control, human-computer interaction and target recognition. This platform removes the screws from the sides of the shield of an LCD display mechanically thus to guarantee follow-up separation and recycle.

  9. On the performances of computer vision algorithms on mobile platforms

    NASA Astrophysics Data System (ADS)

    Battiato, S.; Farinella, G. M.; Messina, E.; Puglisi, G.; Ravì, D.; Capra, A.; Tomaselli, V.

    2012-01-01

    Computer Vision enables mobile devices to extract the meaning of the observed scene from the information acquired with the onboard sensor cameras. Nowadays, there is a growing interest in Computer Vision algorithms able to work on mobile platform (e.g., phone camera, point-and-shot-camera, etc.). Indeed, bringing Computer Vision capabilities on mobile devices open new opportunities in different application contexts. The implementation of vision algorithms on mobile devices is still a challenging task since these devices have poor image sensors and optics as well as limited processing power. In this paper we have considered different algorithms covering classic Computer Vision tasks: keypoint extraction, face detection, image segmentation. Several tests have been done to compare the performances of the involved mobile platforms: Nokia N900, LG Optimus One, Samsung Galaxy SII.

  10. Elastic Cloud Computing Architecture and System for Heterogeneous Spatiotemporal Computing

    NASA Astrophysics Data System (ADS)

    Shi, X.

    2017-10-01

    Spatiotemporal computation implements a variety of different algorithms. When big data are involved, desktop computer or standalone application may not be able to complete the computation task due to limited memory and computing power. Now that a variety of hardware accelerators and computing platforms are available to improve the performance of geocomputation, different algorithms may have different behavior on different computing infrastructure and platforms. Some are perfect for implementation on a cluster of graphics processing units (GPUs), while GPUs may not be useful on certain kind of spatiotemporal computation. This is the same situation in utilizing a cluster of Intel's many-integrated-core (MIC) or Xeon Phi, as well as Hadoop or Spark platforms, to handle big spatiotemporal data. Furthermore, considering the energy efficiency requirement in general computation, Field Programmable Gate Array (FPGA) may be a better solution for better energy efficiency when the performance of computation could be similar or better than GPUs and MICs. It is expected that an elastic cloud computing architecture and system that integrates all of GPUs, MICs, and FPGAs could be developed and deployed to support spatiotemporal computing over heterogeneous data types and computational problems.

  11. Discrete event command and control for networked teams with multiple missions

    NASA Astrophysics Data System (ADS)

    Lewis, Frank L.; Hudas, Greg R.; Pang, Chee Khiang; Middleton, Matthew B.; McMurrough, Christopher

    2009-05-01

    During mission execution in military applications, the TRADOC Pamphlet 525-66 Battle Command and Battle Space Awareness capabilities prescribe expectations that networked teams will perform in a reliable manner under changing mission requirements, varying resource availability and reliability, and resource faults. In this paper, a Command and Control (C2) structure is presented that allows for computer-aided execution of the networked team decision-making process, control of force resources, shared resource dispatching, and adaptability to change based on battlefield conditions. A mathematically justified networked computing environment is provided called the Discrete Event Control (DEC) Framework. DEC has the ability to provide the logical connectivity among all team participants including mission planners, field commanders, war-fighters, and robotic platforms. The proposed data management tools are developed and demonstrated on a simulation study and an implementation on a distributed wireless sensor network. The results show that the tasks of multiple missions are correctly sequenced in real-time, and that shared resources are suitably assigned to competing tasks under dynamically changing conditions without conflicts and bottlenecks.

  12. ALFA: The new ALICE-FAIR software framework

    NASA Astrophysics Data System (ADS)

    Al-Turany, M.; Buncic, P.; Hristov, P.; Kollegger, T.; Kouzinopoulos, C.; Lebedev, A.; Lindenstruth, V.; Manafov, A.; Richter, M.; Rybalchenko, A.; Vande Vyvre, P.; Winckler, N.

    2015-12-01

    The commonalities between the ALICE and FAIR experiments and their computing requirements led to the development of large parts of a common software framework in an experiment independent way. The FairRoot project has already shown the feasibility of such an approach for the FAIR experiments and extending it beyond FAIR to experiments at other facilities[1, 2]. The ALFA framework is a joint development between ALICE Online- Offline (O2) and FairRoot teams. ALFA is designed as a flexible, elastic system, which balances reliability and ease of development with performance using multi-processing and multithreading. A message- based approach has been adopted; such an approach will support the use of the software on different hardware platforms, including heterogeneous systems. Each process in ALFA assumes limited communication and reliance on other processes. Such a design will add horizontal scaling (multiple processes) to vertical scaling provided by multiple threads to meet computing and throughput demands. ALFA does not dictate any application protocols. Potentially, any content-based processor or any source can change the application protocol. The framework supports different serialization standards for data exchange between different hardware and software languages.

  13. Discovery and analysis of time delay sources in the USGS personal computer data collection platform (PCDCP) system

    USGS Publications Warehouse

    White, Timothy C.; Sauter, Edward A.; Stewart, Duff C.

    2014-01-01

    Intermagnet is an international oversight group which exists to establish a global network for geomagnetic observatories. This group establishes data standards and standard operating procedures for members and prospective members. Intermagnet has proposed a new One-Second Data Standard, for that emerging geomagnetic product. The standard specifies that all data collected must have a time stamp accuracy of ±10 milliseconds of the top-of-the-second Coordinated Universal Time. Therefore, the U.S. Geological Survey Geomagnetism Program has designed and executed several tests on its current data collection system, the Personal Computer Data Collection Platform. Tests are designed to measure the time shifts introduced by individual components within the data collection system, as well as to measure the time shift introduced by the entire Personal Computer Data Collection Platform. Additional testing designed for Intermagnet will be used to validate further such measurements. Current results of the measurements showed a 5.0–19.9 millisecond lag for the vertical channel (Z) of the Personal Computer Data Collection Platform and a 13.0–25.8 millisecond lag for horizontal channels (H and D) of the collection system. These measurements represent a dynamically changing delay introduced within the U.S. Geological Survey Personal Computer Data Collection Platform.

  14. An Interactive Platform to Visualize Data-Driven Clinical Pathways for the Management of Multiple Chronic Conditions.

    PubMed

    Zhang, Yiye; Padman, Rema

    2017-01-01

    Patients with multiple chronic conditions (MCC) pose an increasingly complex health management challenge worldwide, particularly due to the significant gap in our understanding of how to provide coordinated care. Drawing on our prior research on learning data-driven clinical pathways from actual practice data, this paper describes a prototype, interactive platform for visualizing the pathways of MCC to support shared decision making. Created using Python web framework, JavaScript library and our clinical pathway learning algorithm, the visualization platform allows clinicians and patients to learn the dominant patterns of co-progression of multiple clinical events from their own data, and interactively explore and interpret the pathways. We demonstrate functionalities of the platform using a cluster of 36 patients, identified from a dataset of 1,084 patients, who are diagnosed with at least chronic kidney disease, hypertension, and diabetes. Future evaluation studies will explore the use of this platform to better understand and manage MCC.

  15. SU-D-BRD-02: A Web-Based Image Processing and Plan Evaluation Platform (WIPPEP) for Future Cloud-Based Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, X; Liu, L; Xing, L

    Purpose: Visualization and processing of medical images and radiation treatment plan evaluation have traditionally been constrained to local workstations with limited computation power and ability of data sharing and software update. We present a web-based image processing and planning evaluation platform (WIPPEP) for radiotherapy applications with high efficiency, ubiquitous web access, and real-time data sharing. Methods: This software platform consists of three parts: web server, image server and computation server. Each independent server communicates with each other through HTTP requests. The web server is the key component that provides visualizations and user interface through front-end web browsers and relay informationmore » to the backend to process user requests. The image server serves as a PACS system. The computation server performs the actual image processing and dose calculation. The web server backend is developed using Java Servlets and the frontend is developed using HTML5, Javascript, and jQuery. The image server is based on open source DCME4CHEE PACS system. The computation server can be written in any programming language as long as it can send/receive HTTP requests. Our computation server was implemented in Delphi, Python and PHP, which can process data directly or via a C++ program DLL. Results: This software platform is running on a 32-core CPU server virtually hosting the web server, image server, and computation servers separately. Users can visit our internal website with Chrome browser, select a specific patient, visualize image and RT structures belonging to this patient and perform image segmentation running Delphi computation server and Monte Carlo dose calculation on Python or PHP computation server. Conclusion: We have developed a webbased image processing and plan evaluation platform prototype for radiotherapy. This system has clearly demonstrated the feasibility of performing image processing and plan evaluation platform through a web browser and exhibited potential for future cloud based radiotherapy.« less

  16. Doppler Lidar Vector Retrievals and Atmospheric Data Visualization in Mixed/Augmented Reality

    NASA Astrophysics Data System (ADS)

    Cherukuru, Nihanth Wagmi

    Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm control and short term wind prediction require knowledge of the vector wind field. Over the past couple of years, multiple works on lidars have explored three primary methods of retrieving wind vectors viz., using homogeneous windfield assumption, computationally extensive variational methods and the use of multiple Doppler lidars. Building on prior research, the current three-part study, first demonstrates the capabilities of single and dual Doppler lidar retrievals in capturing downslope windstorm-type flows occurring at Arizona's Barringer Meteor Crater as a part of the METCRAX II field experiment. Next, to address the need for a reliable and computationally efficient vector retrieval for adaptive wind farm control applications, a novel 2D vector retrieval based on a variational formulation was developed and applied on lidar scans from an offshore wind farm and validated with data from a cup and vane anemometer installed on a nearby research platform. Finally, a novel data visualization technique using Mixed Reality (MR)/ Augmented Reality (AR) technology is presented to visualize data from atmospheric sensors. MR is an environment in which the user's visual perception of the real world is enhanced with live, interactive, computer generated sensory input (in this case, data from atmospheric sensors like Doppler lidars). A methodology using modern game development platforms is presented and demonstrated with lidar retrieved wind fields. In the current study, the possibility of using this technology to visualize data from atmospheric sensors in mixed reality is explored and demonstrated with lidar retrieved wind fields as well as a few earth science datasets for education and outreach activities.

  17. Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics.

    PubMed

    Das, Abhiram; Schneider, Hannah; Burridge, James; Ascanio, Ana Karine Martinez; Wojciechowski, Tobias; Topp, Christopher N; Lynch, Jonathan P; Weitz, Joshua S; Bucksch, Alexander

    2015-01-01

    Plant root systems are key drivers of plant function and yield. They are also under-explored targets to meet global food and energy demands. Many new technologies have been developed to characterize crop root system architecture (CRSA). These technologies have the potential to accelerate the progress in understanding the genetic control and environmental response of CRSA. Putting this potential into practice requires new methods and algorithms to analyze CRSA in digital images. Most prior approaches have solely focused on the estimation of root traits from images, yet no integrated platform exists that allows easy and intuitive access to trait extraction and analysis methods from images combined with storage solutions linked to metadata. Automated high-throughput phenotyping methods are increasingly used in laboratory-based efforts to link plant genotype with phenotype, whereas similar field-based studies remain predominantly manual low-throughput. Here, we present an open-source phenomics platform "DIRT", as a means to integrate scalable supercomputing architectures into field experiments and analysis pipelines. DIRT is an online platform that enables researchers to store images of plant roots, measure dicot and monocot root traits under field conditions, and share data and results within collaborative teams and the broader community. The DIRT platform seamlessly connects end-users with large-scale compute "commons" enabling the estimation and analysis of root phenotypes from field experiments of unprecedented size. DIRT is an automated high-throughput computing and collaboration platform for field based crop root phenomics. The platform is accessible at http://www.dirt.iplantcollaborative.org/ and hosted on the iPlant cyber-infrastructure using high-throughput grid computing resources of the Texas Advanced Computing Center (TACC). DIRT is a high volume central depository and high-throughput RSA trait computation platform for plant scientists working on crop roots. It enables scientists to store, manage and share crop root images with metadata and compute RSA traits from thousands of images in parallel. It makes high-throughput RSA trait computation available to the community with just a few button clicks. As such it enables plant scientists to spend more time on science rather than on technology. All stored and computed data is easily accessible to the public and broader scientific community. We hope that easy data accessibility will attract new tool developers and spur creative data usage that may even be applied to other fields of science.

  18. vvtools v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, Richard R.

    Vvtools is a suite of testing tools, with a focus on reproducible verification and validation. They are written in pure Python, and contain a test harness and an automated process management tool. Users of vvtools can develop suites of verification and validation tests and run them on small to large high performance computing resources in an automated and reproducible way. The test harness enables complex processes to be performed in each test and even supports a one-level parent/child dependency between tests. It includes a built in capability to manage workloads requiring multiple processors and platforms that use batch queueing systems.

  19. Strain Multiplexed Metasurface Holograms on a Stretchable Substrate.

    PubMed

    Malek, Stephanie C; Ee, Ho-Seok; Agarwal, Ritesh

    2017-06-14

    We demonstrate reconfigurable phase-only computer-generated metasurface holograms with up to three image planes operating in the visible regime fabricated with gold nanorods on a stretchable polydimethylsiloxane substrate. Stretching the substrate enlarges the hologram image and changes the location of the image plane. Upon stretching, these devices can switch the displayed holographic image between multiple distinct images. This work opens up the possibilities for stretchable metasurface holograms as flat devices for dynamically reconfigurable optical communication and display. It also confirms that metasurfaces on stretchable substrates can serve as platform for a variety of reconfigurable optical devices.

  20. GenomicTools: a computational platform for developing high-throughput analytics in genomics.

    PubMed

    Tsirigos, Aristotelis; Haiminen, Niina; Bilal, Erhan; Utro, Filippo

    2012-01-15

    Recent advances in sequencing technology have resulted in the dramatic increase of sequencing data, which, in turn, requires efficient management of computational resources, such as computing time, memory requirements as well as prototyping of computational pipelines. We present GenomicTools, a flexible computational platform, comprising both a command-line set of tools and a C++ API, for the analysis and manipulation of high-throughput sequencing data such as DNA-seq, RNA-seq, ChIP-seq and MethylC-seq. GenomicTools implements a variety of mathematical operations between sets of genomic regions thereby enabling the prototyping of computational pipelines that can address a wide spectrum of tasks ranging from pre-processing and quality control to meta-analyses. Additionally, the GenomicTools platform is designed to analyze large datasets of any size by minimizing memory requirements. In practical applications, where comparable, GenomicTools outperforms existing tools in terms of both time and memory usage. The GenomicTools platform (version 2.0.0) was implemented in C++. The source code, documentation, user manual, example datasets and scripts are available online at http://code.google.com/p/ibm-cbc-genomic-tools.

  1. The performance of low-cost commercial cloud computing as an alternative in computational chemistry.

    PubMed

    Thackston, Russell; Fortenberry, Ryan C

    2015-05-05

    The growth of commercial cloud computing (CCC) as a viable means of computational infrastructure is largely unexplored for the purposes of quantum chemistry. In this work, the PSI4 suite of computational chemistry programs is installed on five different types of Amazon World Services CCC platforms. The performance for a set of electronically excited state single-point energies is compared between these CCC platforms and typical, "in-house" physical machines. Further considerations are made for the number of cores or virtual CPUs (vCPUs, for the CCC platforms), but no considerations are made for full parallelization of the program (even though parallelization of the BLAS library is implemented), complete high-performance computing cluster utilization, or steal time. Even with this most pessimistic view of the computations, CCC resources are shown to be more cost effective for significant numbers of typical quantum chemistry computations. Large numbers of large computations are still best utilized by more traditional means, but smaller-scale research may be more effectively undertaken through CCC services. © 2015 Wiley Periodicals, Inc.

  2. Unified, Cross-Platform, Open-Source Library Package for High-Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozacik, Stephen

    Compute power is continually increasing, but this increased performance is largely found in sophisticated computing devices and supercomputer resources that are difficult to use, resulting in under-utilization. We developed a unified set of programming tools that will allow users to take full advantage of the new technology by allowing them to work at a level abstracted away from the platform specifics, encouraging the use of modern computing systems, including government-funded supercomputer facilities.

  3. Multi-agent-based bio-network for systems biology: protein-protein interaction network as an example.

    PubMed

    Ren, Li-Hong; Ding, Yong-Sheng; Shen, Yi-Zhen; Zhang, Xiang-Feng

    2008-10-01

    Recently, a collective effort from multiple research areas has been made to understand biological systems at the system level. This research requires the ability to simulate particular biological systems as cells, organs, organisms, and communities. In this paper, a novel bio-network simulation platform is proposed for system biology studies by combining agent approaches. We consider a biological system as a set of active computational components interacting with each other and with an external environment. Then, we propose a bio-network platform for simulating the behaviors of biological systems and modelling them in terms of bio-entities and society-entities. As a demonstration, we discuss how a protein-protein interaction (PPI) network can be seen as a society of autonomous interactive components. From interactions among small PPI networks, a large PPI network can emerge that has a remarkable ability to accomplish a complex function or task. We also simulate the evolution of the PPI networks by using the bio-operators of the bio-entities. Based on the proposed approach, various simulators with different functions can be embedded in the simulation platform, and further research can be done from design to development, including complexity validation of the biological system.

  4. Cots Correlator Platform

    NASA Astrophysics Data System (ADS)

    Schaaf, Kjeld; Overeem, Ruud

    2004-06-01

    Moore’s law is best exploited by using consumer market hardware. In particular, the gaming industry pushes the limit of processor performance thus reducing the cost per raw flop even faster than Moore’s law predicts. Next to the cost benefits of Common-Of-The-Shelf (COTS) processing resources, there is a rapidly growing experience pool in cluster based processing. The typical Beowulf cluster of PC’s supercomputers are well known. Multiple examples exists of specialised cluster computers based on more advanced server nodes or even gaming stations. All these cluster machines build upon the same knowledge about cluster software management, scheduling, middleware libraries and mathematical libraries. In this study, we have integrated COTS processing resources and cluster nodes into a very high performance processing platform suitable for streaming data applications, in particular to implement a correlator. The required processing power for the correlator in modern radio telescopes is in the range of the larger supercomputers, which motivates the usage of supercomputer technology. Raw processing power is provided by graphical processors and is combined with an Infiniband host bus adapter with integrated data stream handling logic. With this processing platform a scalable correlator can be built with continuously growing processing power at consumer market prices.

  5. KOLAM: a cross-platform architecture for scalable visualization and tracking in wide-area imagery

    NASA Astrophysics Data System (ADS)

    Fraser, Joshua; Haridas, Anoop; Seetharaman, Guna; Rao, Raghuveer M.; Palaniappan, Kannappan

    2013-05-01

    KOLAM is an open, cross-platform, interoperable, scalable and extensible framework supporting a novel multi- scale spatiotemporal dual-cache data structure for big data visualization and visual analytics. This paper focuses on the use of KOLAM for target tracking in high-resolution, high throughput wide format video also known as wide-area motion imagery (WAMI). It was originally developed for the interactive visualization of extremely large geospatial imagery of high spatial and spectral resolution. KOLAM is platform, operating system and (graphics) hardware independent, and supports embedded datasets scalable from hundreds of gigabytes to feasibly petabytes in size on clusters, workstations, desktops and mobile computers. In addition to rapid roam, zoom and hyper- jump spatial operations, a large number of simultaneously viewable embedded pyramid layers (also referred to as multiscale or sparse imagery), interactive colormap and histogram enhancement, spherical projection and terrain maps are supported. The KOLAM software architecture was extended to support airborne wide-area motion imagery by organizing spatiotemporal tiles in very large format video frames using a temporal cache of tiled pyramid cached data structures. The current version supports WAMI animation, fast intelligent inspection, trajectory visualization and target tracking (digital tagging); the latter by interfacing with external automatic tracking software. One of the critical needs for working with WAMI is a supervised tracking and visualization tool that allows analysts to digitally tag multiple targets, quickly review and correct tracking results and apply geospatial visual analytic tools on the generated trajectories. One-click manual tracking combined with multiple automated tracking algorithms are available to assist the analyst and increase human effectiveness.

  6. A Framework for the Generation and Dissemination of Drop Size Distribution (DSD) Characteristics Using Multiple Platforms

    NASA Technical Reports Server (NTRS)

    Wolf, David B.; Tokay, Ali; Petersen, Walt; Williams, Christopher; Gatlin, Patrick; Wingo, Mathew

    2010-01-01

    Proper characterization of the precipitation drop size distribution (DSD) is integral to providing realistic and accurate space- and ground-based precipitation retrievals. Current technology allows for the development of DSD products from a variety of platforms, including disdrometers, vertical profilers and dual-polarization radars. Up to now, however, the dissemination or availability of such products has been limited to individual sites and/or field campaigns, in a variety of formats, often using inconsistent algorithms for computing the integral DSD parameters, such as the median- and mass-weighted drop diameter, total number concentration, liquid water content, rain rate, etc. We propose to develop a framework for the generation and dissemination of DSD characteristic products using a unified structure, capable of handling the myriad collection of disdrometers, profilers, and dual-polarization radar data currently available and to be collected during several upcoming GPM Ground Validation field campaigns. This DSD super-structure paradigm is an adaptation of the radar super-structure developed for NASA s Radar Software Library (RSL) and RSL_in_IDL. The goal is to provide the DSD products in a well-documented format, most likely NetCDF, along with tools to ingest and analyze the products. In so doing, we can develop a robust archive of DSD products from multiple sites and platforms, which should greatly benefit the development and validation of precipitation retrieval algorithms for GPM and other precipitation missions. An outline of this proposed framework will be provided as well as a discussion of the algorithms used to calculate the DSD parameters.

  7. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    PubMed Central

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A.D.; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation. PMID:23599905

  8. QuantWorm: a comprehensive software package for Caenorhabditis elegans phenotypic assays.

    PubMed

    Jung, Sang-Kyu; Aleman-Meza, Boanerges; Riepe, Celeste; Zhong, Weiwei

    2014-01-01

    Phenotypic assays are crucial in genetics; however, traditional methods that rely on human observation are unsuitable for quantitative, large-scale experiments. Furthermore, there is an increasing need for comprehensive analyses of multiple phenotypes to provide multidimensional information. Here we developed an automated, high-throughput computer imaging system for quantifying multiple Caenorhabditis elegans phenotypes. Our imaging system is composed of a microscope equipped with a digital camera and a motorized stage connected to a computer running the QuantWorm software package. Currently, the software package contains one data acquisition module and four image analysis programs: WormLifespan, WormLocomotion, WormLength, and WormEgg. The data acquisition module collects images and videos. The WormLifespan software counts the number of moving worms by using two time-lapse images; the WormLocomotion software computes the velocity of moving worms; the WormLength software measures worm body size; and the WormEgg software counts the number of eggs. To evaluate the performance of our software, we compared the results of our software with manual measurements. We then demonstrated the application of the QuantWorm software in a drug assay and a genetic assay. Overall, the QuantWorm software provided accurate measurements at a high speed. Software source code, executable programs, and sample images are available at www.quantworm.org. Our software package has several advantages over current imaging systems for C. elegans. It is an all-in-one package for quantifying multiple phenotypes. The QuantWorm software is written in Java and its source code is freely available, so it does not require use of commercial software or libraries. It can be run on multiple platforms and easily customized to cope with new methods and requirements.

  9. A Service Brokering and Recommendation Mechanism for Better Selecting Cloud Services

    PubMed Central

    Gui, Zhipeng; Yang, Chaowei; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Yu, Manzhu; Sun, Min; Zhou, Nanyin; Jin, Baoxuan

    2014-01-01

    Cloud computing is becoming the new generation computing infrastructure, and many cloud vendors provide different types of cloud services. How to choose the best cloud services for specific applications is very challenging. Addressing this challenge requires balancing multiple factors, such as business demands, technologies, policies and preferences in addition to the computing requirements. This paper recommends a mechanism for selecting the best public cloud service at the levels of Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). A systematic framework and associated workflow include cloud service filtration, solution generation, evaluation, and selection of public cloud services. Specifically, we propose the following: a hierarchical information model for integrating heterogeneous cloud information from different providers and a corresponding cloud information collecting mechanism; a cloud service classification model for categorizing and filtering cloud services and an application requirement schema for providing rules for creating application-specific configuration solutions; and a preference-aware solution evaluation mode for evaluating and recommending solutions according to the preferences of application providers. To test the proposed framework and methodologies, a cloud service advisory tool prototype was developed after which relevant experiments were conducted. The results show that the proposed system collects/updates/records the cloud information from multiple mainstream public cloud services in real-time, generates feasible cloud configuration solutions according to user specifications and acceptable cost predication, assesses solutions from multiple aspects (e.g., computing capability, potential cost and Service Level Agreement, SLA) and offers rational recommendations based on user preferences and practical cloud provisioning; and visually presents and compares solutions through an interactive web Graphical User Interface (GUI). PMID:25170937

  10. Protein alignment algorithms with an efficient backtracking routine on multiple GPUs.

    PubMed

    Blazewicz, Jacek; Frohmberg, Wojciech; Kierzynka, Michal; Pesch, Erwin; Wojciechowski, Pawel

    2011-05-20

    Pairwise sequence alignment methods are widely used in biological research. The increasing number of sequences is perceived as one of the upcoming challenges for sequence alignment methods in the nearest future. To overcome this challenge several GPU (Graphics Processing Unit) computing approaches have been proposed lately. These solutions show a great potential of a GPU platform but in most cases address the problem of sequence database scanning and computing only the alignment score whereas the alignment itself is omitted. Thus, the need arose to implement the global and semiglobal Needleman-Wunsch, and Smith-Waterman algorithms with a backtracking procedure which is needed to construct the alignment. In this paper we present the solution that performs the alignment of every given sequence pair, which is a required step for progressive multiple sequence alignment methods, as well as for DNA recognition at the DNA assembly stage. Performed tests show that the implementation, with performance up to 6.3 GCUPS on a single GPU for affine gap penalties, is very efficient in comparison to other CPU and GPU-based solutions. Moreover, multiple GPUs support with load balancing makes the application very scalable. The article shows that the backtracking procedure of the sequence alignment algorithms may be designed to fit in with the GPU architecture. Therefore, our algorithm, apart from scores, is able to compute pairwise alignments. This opens a wide range of new possibilities, allowing other methods from the area of molecular biology to take advantage of the new computational architecture. Performed tests show that the efficiency of the implementation is excellent. Moreover, the speed of our GPU-based algorithms can be almost linearly increased when using more than one graphics card.

  11. A Simple Tool for the Design and Analysis of Multiple-Reflector Antennas in a Multi-Disciplinary Environment

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.; Borgioli, Andrea

    2000-01-01

    The process of designing and analyzing a multiple-reflector system has traditionally been time-intensive, requiring large amounts of both computational and human time. At many frequencies, a discrete approximation of the radiation integral may be used to model the system. The code which implements this physical optics (PO) algorithm was developed at the Jet Propulsion Laboratory. It analyzes systems of antennas in pairs, and for each pair, the analysis can be computationally time-consuming. Additionally, the antennas must be described using a local coordinate system for each antenna, which makes it difficult to integrate the design into a multi-disciplinary framework in which there is traditionally one global coordinate system, even before considering deforming the antenna as prescribed by external structural and/or thermal factors. Finally, setting up the code to correctly analyze all the antenna pairs in the system can take a fair amount of time, and introduces possible human error. The use of parallel computing to reduce the computational time required for the analysis of a given pair of antennas has been previously discussed. This paper focuses on the other problems mentioned above. It will present a methodology and examples of use of an automated tool that performs the analysis of a complete multiple-reflector system in an integrated multi-disciplinary environment (including CAD modeling, and structural and thermal analysis) at the click of a button. This tool, named MOD Tool (Millimeter-wave Optics Design Tool), has been designed and implemented as a distributed tool, with a client that runs almost identically on Unix, Mac, and Windows platforms, and a server that runs primarily on a Unix workstation and can interact with parallel supercomputers with simple instruction from the user interacting with the client.

  12. Design of e-Science platform for biomedical imaging research cross multiple academic institutions and hospitals

    NASA Astrophysics Data System (ADS)

    Zhang, Jianguo; Zhang, Kai; Yang, Yuanyuan; Ling, Tonghui; Wang, Tusheng; Wang, Mingqing; Hu, Haibo; Xu, Xuemin

    2012-02-01

    More and more image informatics researchers and engineers are considering to re-construct imaging and informatics infrastructure or to build new framework to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment. In this presentation, we show an outline and our preliminary design work of building an e-Science platform for biomedical imaging and informatics research and application in Shanghai. We will present our consideration and strategy on designing this platform, and preliminary results. We also will discuss some challenges and solutions in building this platform.

  13. University Students Use of Computers and Mobile Devices for Learning and Their Reading Speed on Different Platforms

    ERIC Educational Resources Information Center

    Mpofu, Bongeka

    2016-01-01

    This research was aimed at the investigation of mobile device and computer use at a higher learning institution. The goal was to determine the current use of computers and mobile devices for learning and the students' reading speed on different platforms. The research was contextualised in a sample of students at the University of South Africa.…

  14. Application verification research of cloud computing technology in the field of real time aerospace experiment

    NASA Astrophysics Data System (ADS)

    Wan, Junwei; Chen, Hongyan; Zhao, Jing

    2017-08-01

    According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.

  15. Evaluating Unmanned Aerial Platforms for Cultural Heritage Large Scale Mapping

    NASA Astrophysics Data System (ADS)

    Georgopoulos, A.; Oikonomou, C.; Adamopoulos, E.; Stathopoulou, E. K.

    2016-06-01

    When it comes to large scale mapping of limited areas especially for cultural heritage sites, things become critical. Optical and non-optical sensors are developed to such sizes and weights that can be lifted by such platforms, like e.g. LiDAR units. At the same time there is an increase in emphasis on solutions that enable users to get access to 3D information faster and cheaper. Considering the multitude of platforms, cameras and the advancement of algorithms in conjunction with the increase of available computing power this challenge should and indeed is further investigated. In this paper a short review of the UAS technologies today is attempted. A discussion follows as to their applicability and advantages, depending on their specifications, which vary immensely. The on-board cameras available are also compared and evaluated for large scale mapping. Furthermore a thorough analysis, review and experimentation with different software implementations of Structure from Motion and Multiple View Stereo algorithms, able to process such dense and mostly unordered sequence of digital images is also conducted and presented. As test data set, we use a rich optical and thermal data set from both fixed wing and multi-rotor platforms over an archaeological excavation with adverse height variations and using different cameras. Dense 3D point clouds, digital terrain models and orthophotos have been produced and evaluated for their radiometric as well as metric qualities.

  16. Identification of species by multiplex analysis of variable-length sequences

    PubMed Central

    Pereira, Filipe; Carneiro, João; Matthiesen, Rune; van Asch, Barbara; Pinto, Nádia; Gusmão, Leonor; Amorim, António

    2010-01-01

    The quest for a universal and efficient method of identifying species has been a longstanding challenge in biology. Here, we show that accurate identification of species in all domains of life can be accomplished by multiplex analysis of variable-length sequences containing multiple insertion/deletion variants. The new method, called SPInDel, is able to discriminate 93.3% of eukaryotic species from 18 taxonomic groups. We also demonstrate that the identification of prokaryotic and viral species with numeric profiles of fragment lengths is generally straightforward. A computational platform is presented to facilitate the planning of projects and includes a large data set with nearly 1800 numeric profiles for species in all domains of life (1556 for eukaryotes, 105 for prokaryotes and 130 for viruses). Finally, a SPInDel profiling kit for discrimination of 10 mammalian species was successfully validated on highly processed food products with species mixtures and proved to be easily adaptable to multiple screening procedures routinely used in molecular biology laboratories. These results suggest that SPInDel is a reliable and cost-effective method for broad-spectrum species identification that is appropriate for use in suboptimal samples and is amenable to different high-throughput genotyping platforms without the need for DNA sequencing. PMID:20923781

  17. GATECloud.net: a platform for large-scale, open-source text processing on the cloud.

    PubMed

    Tablan, Valentin; Roberts, Ian; Cunningham, Hamish; Bontcheva, Kalina

    2013-01-28

    Cloud computing is increasingly being regarded as a key enabler of the 'democratization of science', because on-demand, highly scalable cloud computing facilities enable researchers anywhere to carry out data-intensive experiments. In the context of natural language processing (NLP), algorithms tend to be complex, which makes their parallelization and deployment on cloud platforms a non-trivial task. This study presents a new, unique, cloud-based platform for large-scale NLP research--GATECloud. net. It enables researchers to carry out data-intensive NLP experiments by harnessing the vast, on-demand compute power of the Amazon cloud. Important infrastructural issues are dealt with by the platform, completely transparently for the researcher: load balancing, efficient data upload and storage, deployment on the virtual machines, security and fault tolerance. We also include a cost-benefit analysis and usage evaluation.

  18. Solving the problem of comparing whole bacterial genomes across different sequencing platforms.

    PubMed

    Kaas, Rolf S; Leekitcharoenphon, Pimlapas; Aarestrup, Frank M; Lund, Ole

    2014-01-01

    Whole genome sequencing (WGS) shows great potential for real-time monitoring and identification of infectious disease outbreaks. However, rapid and reliable comparison of data generated in multiple laboratories and using multiple technologies is essential. So far studies have focused on using one technology because each technology has a systematic bias making integration of data generated from different platforms difficult. We developed two different procedures for identifying variable sites and inferring phylogenies in WGS data across multiple platforms. The methods were evaluated on three bacterial data sets and sequenced on three different platforms (Illumina, 454, Ion Torrent). We show that the methods are able to overcome the systematic biases caused by the sequencers and infer the expected phylogenies. It is concluded that the cause of the success of these new procedures is due to a validation of all informative sites that are included in the analysis. The procedures are available as web tools.

  19. Systems Medicine: The Future of Medical Genomics, Healthcare, and Wellness.

    PubMed

    Saqi, Mansoor; Pellet, Johann; Roznovat, Irina; Mazein, Alexander; Ballereau, Stéphane; De Meulder, Bertrand; Auffray, Charles

    2016-01-01

    Recent advances in genomics have led to the rapid and relatively inexpensive collection of patient molecular data including multiple types of omics data. The integration of these data with clinical measurements has the potential to impact on our understanding of the molecular basis of disease and on disease management. Systems medicine is an approach to understanding disease through an integration of large patient datasets. It offers the possibility for personalized strategies for healthcare through the development of a new taxonomy of disease. Advanced computing will be an important component in effectively implementing systems medicine. In this chapter we describe three computational challenges associated with systems medicine: disease subtype discovery using integrated datasets, obtaining a mechanistic understanding of disease, and the development of an informatics platform for the mining, analysis, and visualization of data emerging from translational medicine studies.

  20. How smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX.

    PubMed

    Boulos, Maged N Kamel; Wheeler, Steve; Tavares, Carlos; Jones, Ray

    2011-04-05

    The latest generation of smartphones are increasingly viewed as handheld computers rather than as phones, due to their powerful on-board computing capability, capacious memories, large screens and open operating systems that encourage application development. This paper provides a brief state-of-the-art overview of health and healthcare smartphone apps (applications) on the market today, including emerging trends and market uptake. Platforms available today include Android, Apple iOS, RIM BlackBerry, Symbian, and Windows (Windows Mobile 6.x and the emerging Windows Phone 7 platform). The paper covers apps targeting both laypersons/patients and healthcare professionals in various scenarios, e.g., health, fitness and lifestyle education and management apps; ambient assisted living apps; continuing professional education tools; and apps for public health surveillance. Among the surveyed apps are those assisting in chronic disease management, whether as standalone apps or part of a BAN (Body Area Network) and remote server configuration. We describe in detail the development of a smartphone app within eCAALYX (Enhanced Complete Ambient Assisted Living Experiment, 2009-2012), an EU-funded project for older people with multiple chronic conditions. The eCAALYX Android smartphone app receives input from a BAN (a patient-wearable smart garment with wireless health sensors) and the GPS (Global Positioning System) location sensor in the smartphone, and communicates over the Internet with a remote server accessible by healthcare professionals who are in charge of the remote monitoring and management of the older patient with multiple chronic conditions. Finally, we briefly discuss barriers to adoption of health and healthcare smartphone apps (e.g., cost, network bandwidth and battery power efficiency, usability, privacy issues, etc.), as well as some workarounds to mitigate those barriers.

  1. How smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX

    PubMed Central

    2011-01-01

    The latest generation of smartphones are increasingly viewed as handheld computers rather than as phones, due to their powerful on-board computing capability, capacious memories, large screens and open operating systems that encourage application development. This paper provides a brief state-of-the-art overview of health and healthcare smartphone apps (applications) on the market today, including emerging trends and market uptake. Platforms available today include Android, Apple iOS, RIM BlackBerry, Symbian, and Windows (Windows Mobile 6.x and the emerging Windows Phone 7 platform). The paper covers apps targeting both laypersons/patients and healthcare professionals in various scenarios, e.g., health, fitness and lifestyle education and management apps; ambient assisted living apps; continuing professional education tools; and apps for public health surveillance. Among the surveyed apps are those assisting in chronic disease management, whether as standalone apps or part of a BAN (Body Area Network) and remote server configuration. We describe in detail the development of a smartphone app within eCAALYX (Enhanced Complete Ambient Assisted Living Experiment, 2009-2012), an EU-funded project for older people with multiple chronic conditions. The eCAALYX Android smartphone app receives input from a BAN (a patient-wearable smart garment with wireless health sensors) and the GPS (Global Positioning System) location sensor in the smartphone, and communicates over the Internet with a remote server accessible by healthcare professionals who are in charge of the remote monitoring and management of the older patient with multiple chronic conditions. Finally, we briefly discuss barriers to adoption of health and healthcare smartphone apps (e.g., cost, network bandwidth and battery power efficiency, usability, privacy issues, etc.), as well as some workarounds to mitigate those barriers. PMID:21466669

  2. High-performance reconfigurable hardware architecture for restricted Boltzmann machines.

    PubMed

    Ly, Daniel Le; Chow, Paul

    2010-11-01

    Despite the popularity and success of neural networks in research, the number of resulting commercial or industrial applications has been limited. A primary cause for this lack of adoption is that neural networks are usually implemented as software running on general-purpose processors. Hence, a hardware implementation that can exploit the inherent parallelism in neural networks is desired. This paper investigates how the restricted Boltzmann machine (RBM), which is a popular type of neural network, can be mapped to a high-performance hardware architecture on field-programmable gate array (FPGA) platforms. The proposed modular framework is designed to reduce the time complexity of the computations through heavily customized hardware engines. A method to partition large RBMs into smaller congruent components is also presented, allowing the distribution of one RBM across multiple FPGA resources. The framework is tested on a platform of four Xilinx Virtex II-Pro XC2VP70 FPGAs running at 100 MHz through a variety of different configurations. The maximum performance was obtained by instantiating an RBM of 256 × 256 nodes distributed across four FPGAs, which resulted in a computational speed of 3.13 billion connection-updates-per-second and a speedup of 145-fold over an optimized C program running on a 2.8-GHz Intel processor.

  3. The BioExtract Server: a web-based bioinformatic workflow platform

    PubMed Central

    Lushbough, Carol M.; Jennewein, Douglas M.; Brendel, Volker P.

    2011-01-01

    The BioExtract Server (bioextract.org) is an open, web-based system designed to aid researchers in the analysis of genomic data by providing a platform for the creation of bioinformatic workflows. Scientific workflows are created within the system by recording tasks performed by the user. These tasks may include querying multiple, distributed data sources, saving query results as searchable data extracts, and executing local and web-accessible analytic tools. The series of recorded tasks can then be saved as a reproducible, sharable workflow available for subsequent execution with the original or modified inputs and parameter settings. Integrated data resources include interfaces to the National Center for Biotechnology Information (NCBI) nucleotide and protein databases, the European Molecular Biology Laboratory (EMBL-Bank) non-redundant nucleotide database, the Universal Protein Resource (UniProt), and the UniProt Reference Clusters (UniRef) database. The system offers access to numerous preinstalled, curated analytic tools and also provides researchers with the option of selecting computational tools from a large list of web services including the European Molecular Biology Open Software Suite (EMBOSS), BioMoby, and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The system further allows users to integrate local command line tools residing on their own computers through a client-side Java applet. PMID:21546552

  4. Open chemistry: RESTful web APIs, JSON, NWChem and the modern web application.

    PubMed

    Hanwell, Marcus D; de Jong, Wibe A; Harris, Christopher J

    2017-10-30

    An end-to-end platform for chemical science research has been developed that integrates data from computational and experimental approaches through a modern web-based interface. The platform offers an interactive visualization and analytics environment that functions well on mobile, laptop and desktop devices. It offers pragmatic solutions to ensure that large and complex data sets are more accessible. Existing desktop applications/frameworks were extended to integrate with high-performance computing resources, and offer command-line tools to automate interaction-connecting distributed teams to this software platform on their own terms. The platform was developed openly, and all source code hosted on the GitHub platform with automated deployment possible using Ansible coupled with standard Ubuntu-based machine images deployed to cloud machines. The platform is designed to enable teams to reap the benefits of the connected web-going beyond what conventional search and analytics platforms offer in this area. It also has the goal of offering federated instances, that can be customized to the sites/research performed. Data gets stored using JSON, extending upon previous approaches using XML, building structures that support computational chemistry calculations. These structures were developed to make it easy to process data across different languages, and send data to a JavaScript-based web client.

  5. GPU-based High-Performance Computing for Radiation Therapy

    PubMed Central

    Jia, Xun; Ziegenhein, Peter; Jiang, Steve B.

    2014-01-01

    Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. Graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past a few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of studies have been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this article, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented. PMID:24486639

  6. OpenACC performance for simulating 2D radial dambreak using FVM HLLE flux

    NASA Astrophysics Data System (ADS)

    Gunawan, P. H.; Pahlevi, M. R.

    2018-03-01

    The aim of this paper is to investigate the performances of openACC platform for computing 2D radial dambreak. Here, the shallow water equation will be used to describe and simulate 2D radial dambreak with finite volume method (FVM) using HLLE flux. OpenACC is a parallel computing platform based on GPU cores. Indeed, from this research this platform is used to minimize computational time on the numerical scheme performance. The results show the using OpenACC, the computational time is reduced. For the dry and wet radial dambreak simulations using 2048 grids, the computational time of parallel is obtained 575.984 s and 584.830 s respectively for both simulations. These results show the successful of OpenACC when they are compared with the serial time of dry and wet radial dambreak simulations which are collected 28047.500 s and 29269.40 s respectively.

  7. MACBenAbim: A Multi-platform Mobile Application for searching keyterms in Computational Biology and Bioinformatics.

    PubMed

    Oluwagbemi, Olugbenga O; Adewumi, Adewole; Esuruoso, Abimbola

    2012-01-01

    Computational biology and bioinformatics are gradually gaining grounds in Africa and other developing nations of the world. However, in these countries, some of the challenges of computational biology and bioinformatics education are inadequate infrastructures, and lack of readily-available complementary and motivational tools to support learning as well as research. This has lowered the morale of many promising undergraduates, postgraduates and researchers from aspiring to undertake future study in these fields. In this paper, we developed and described MACBenAbim (Multi-platform Mobile Application for Computational Biology and Bioinformatics), a flexible user-friendly tool to search for, define and describe the meanings of keyterms in computational biology and bioinformatics, thus expanding the frontiers of knowledge of the users. This tool also has the capability of achieving visualization of results on a mobile multi-platform context. MACBenAbim is available from the authors for non-commercial purposes.

  8. Workload Characterization of CFD Applications Using Partial Differential Equation Solvers

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Workload characterization is used for modeling and evaluating of computing systems at different levels of detail. We present workload characterization for a class of Computational Fluid Dynamics (CFD) applications that solve Partial Differential Equations (PDEs). This workload characterization focuses on three high performance computing platforms: SGI Origin2000, EBM SP-2, a cluster of Intel Pentium Pro bases PCs. We execute extensive measurement-based experiments on these platforms to gather statistics of system resource usage, which results in workload characterization. Our workload characterization approach yields a coarse-grain resource utilization behavior that is being applied for performance modeling and evaluation of distributed high performance metacomputing systems. In addition, this study enhances our understanding of interactions between PDE solver workloads and high performance computing platforms and is useful for tuning these applications.

  9. Multiple Intelligences: The Most Effective Platform for Global 21st Century Educational and Instructional Methodologies

    ERIC Educational Resources Information Center

    McFarlane, Donovan A.

    2011-01-01

    This paper examines the theory of Multiple Intelligences (MI) as the most viable and effective platform for 21st century educational and instructional methodologies based on the understanding of the value of diversity in today's classrooms and educational institutions, the unique qualities and characteristics of individual learners, the…

  10. A multicolor panel of TALE-KRAB based transcriptional repressor vectors enabling knockdown of multiple gene targets

    PubMed Central

    Zhang, Zhonghui; Wu, Elise; Qian, Zhijian; Wu, Wen-Shu

    2014-01-01

    Stable and efficient knockdown of multiple gene targets is highly desirable for dissection of molecular pathways. Because it allows sequence-specific DNA binding, transcription activator-like effector (TALE) offers a new genetic perturbation technique that allows for gene-specific repression. Here, we constructed a multicolor lentiviral TALE-Kruppel-associated box (KRAB) expression vector platform that enables knockdown of multiple gene targets. This platform is fully compatible with the Golden Gate TALEN and TAL Effector Kit 2.0, a widely used and efficient method for TALE assembly. We showed that this multicolor TALE-KRAB vector system when combined together with bone marrow transplantation could quickly knock down c-kit and PU.1 genes in hematopoietic stem and progenitor cells of recipient mice. Furthermore, our data demonstrated that this platform simultaneously knocked down both c-Kit and PU.1 genes in the same primary cell populations. Together, our results suggest that this multicolor TALE-KRAB vector platform is a promising and versatile tool for knockdown of multiple gene targets and could greatly facilitate dissection of molecular pathways. PMID:25475013

  11. A multicolor panel of TALE-KRAB based transcriptional repressor vectors enabling knockdown of multiple gene targets.

    PubMed

    Zhang, Zhonghui; Wu, Elise; Qian, Zhijian; Wu, Wen-Shu

    2014-12-05

    Stable and efficient knockdown of multiple gene targets is highly desirable for dissection of molecular pathways. Because it allows sequence-specific DNA binding, transcription activator-like effector (TALE) offers a new genetic perturbation technique that allows for gene-specific repression. Here, we constructed a multicolor lentiviral TALE-Kruppel-associated box (KRAB) expression vector platform that enables knockdown of multiple gene targets. This platform is fully compatible with the Golden Gate TALEN and TAL Effector Kit 2.0, a widely used and efficient method for TALE assembly. We showed that this multicolor TALE-KRAB vector system when combined together with bone marrow transplantation could quickly knock down c-kit and PU.1 genes in hematopoietic stem and progenitor cells of recipient mice. Furthermore, our data demonstrated that this platform simultaneously knocked down both c-Kit and PU.1 genes in the same primary cell populations. Together, our results suggest that this multicolor TALE-KRAB vector platform is a promising and versatile tool for knockdown of multiple gene targets and could greatly facilitate dissection of molecular pathways.

  12. Scalable and responsive event processing in the cloud

    PubMed Central

    Suresh, Visalakshmi; Ezhilchelvan, Paul; Watson, Paul

    2013-01-01

    Event processing involves continuous evaluation of queries over streams of events. Response-time optimization is traditionally done over a fixed set of nodes and/or by using metrics measured at query-operator levels. Cloud computing makes it easy to acquire and release computing nodes as required. Leveraging this flexibility, we propose a novel, queueing-theory-based approach for meeting specified response-time targets against fluctuating event arrival rates by drawing only the necessary amount of computing resources from a cloud platform. In the proposed approach, the entire processing engine of a distinct query is modelled as an atomic unit for predicting response times. Several such units hosted on a single node are modelled as a multiple class M/G/1 system. These aspects eliminate intrusive, low-level performance measurements at run-time, and also offer portability and scalability. Using model-based predictions, cloud resources are efficiently used to meet response-time targets. The efficacy of the approach is demonstrated through cloud-based experiments. PMID:23230164

  13. A Secure Web Application Providing Public Access to High-Performance Data Intensive Scientific Resources - ScalaBLAST Web Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Darren S.; Peterson, Elena S.; Oehmen, Chris S.

    2008-05-04

    This work presents the ScalaBLAST Web Application (SWA), a web based application implemented using the PHP script language, MySQL DBMS, and Apache web server under a GNU/Linux platform. SWA is an application built as part of the Data Intensive Computer for Complex Biological Systems (DICCBS) project at the Pacific Northwest National Laboratory (PNNL). SWA delivers accelerated throughput of bioinformatics analysis via high-performance computing through a convenient, easy-to-use web interface. This approach greatly enhances emerging fields of study in biology such as ontology-based homology, and multiple whole genome comparisons which, in the absence of a tool like SWA, require a heroicmore » effort to overcome the computational bottleneck associated with genome analysis. The current version of SWA includes a user account management system, a web based user interface, and a backend process that generates the files necessary for the Internet scientific community to submit a ScalaBLAST parallel processing job on a dedicated cluster.« less

  14. Volumetric visualization algorithm development for an FPGA-based custom computing machine

    NASA Astrophysics Data System (ADS)

    Sallinen, Sami J.; Alakuijala, Jyrki; Helminen, Hannu; Laitinen, Joakim

    1998-05-01

    Rendering volumetric medical images is a burdensome computational task for contemporary computers due to the large size of the data sets. Custom designed reconfigurable hardware could considerably speed up volume visualization if an algorithm suitable for the platform is used. We present an algorithm and speedup techniques for visualizing volumetric medical CT and MR images with a custom-computing machine based on a Field Programmable Gate Array (FPGA). We also present simulated performance results of the proposed algorithm calculated with a software implementation running on a desktop PC. Our algorithm is capable of generating perspective projection renderings of single and multiple isosurfaces with transparency, simulated X-ray images, and Maximum Intensity Projections (MIP). Although more speedup techniques exist for parallel projection than for perspective projection, we have constrained ourselves to perspective viewing, because of its importance in the field of radiotherapy. The algorithm we have developed is based on ray casting, and the rendering is sped up by three different methods: shading speedup by gradient precalculation, a new generalized version of Ray-Acceleration by Distance Coding (RADC), and background ray elimination by speculative ray selection.

  15. An intelligent monitoring and management system for cross-enterprise biomedical data sharing platform

    NASA Astrophysics Data System (ADS)

    Wang, Tusheng; Yang, Yuanyuan; Zhang, Jianguo

    2013-03-01

    In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai by using grid-based or cloud-based distributed architecture and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. However, when the platform integrates more and more nodes over different networks, the first challenge is that how to monitor and maintain all the hosts and services operating cross multiple academic institutions and hospitals in the e-Science platform, such as DICOM and Web based image communication services, messaging services and XDS ITI transaction services. In this presentation, we presented a system design and implementation of intelligent monitoring and management which can collect system resource status of every node in real time, alert when node or service failure occurs, and can finally improve the robustness, reliability and service continuity of this e-Science platform.

  16. G-DOC Plus - an integrative bioinformatics platform for precision medicine.

    PubMed

    Bhuvaneshwar, Krithika; Belouali, Anas; Singh, Varun; Johnson, Robert M; Song, Lei; Alaoui, Adil; Harris, Michael A; Clarke, Robert; Weiner, Louis M; Gusev, Yuriy; Madhavan, Subha

    2016-04-30

    G-DOC Plus is a data integration and bioinformatics platform that uses cloud computing and other advanced computational tools to handle a variety of biomedical BIG DATA including gene expression arrays, NGS and medical images so that they can be analyzed in the full context of other omics and clinical information. G-DOC Plus currently holds data from over 10,000 patients selected from private and public resources including Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA) and the recently added datasets from REpository for Molecular BRAin Neoplasia DaTa (REMBRANDT), caArray studies of lung and colon cancer, ImmPort and the 1000 genomes data sets. The system allows researchers to explore clinical-omic data one sample at a time, as a cohort of samples; or at the level of population, providing the user with a comprehensive view of the data. G-DOC Plus tools have been leveraged in cancer and non-cancer studies for hypothesis generation and validation; biomarker discovery and multi-omics analysis, to explore somatic mutations and cancer MRI images; as well as for training and graduate education in bioinformatics, data and computational sciences. Several of these use cases are described in this paper to demonstrate its multifaceted usability. G-DOC Plus can be used to support a variety of user groups in multiple domains to enable hypothesis generation for precision medicine research. The long-term vision of G-DOC Plus is to extend this translational bioinformatics platform to stay current with emerging omics technologies and analysis methods to continue supporting novel hypothesis generation, analysis and validation for integrative biomedical research. By integrating several aspects of the disease and exposing various data elements, such as outpatient lab workup, pathology, radiology, current treatments, molecular signatures and expected outcomes over a web interface, G-DOC Plus will continue to strengthen precision medicine research. G-DOC Plus is available at: https://gdoc.georgetown.edu .

  17. SU-C-BRC-06: OpenCL-Based Cross-Platform Monte Carlo Simulation Package for Carbon Ion Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, N; Tian, Z; Pompos, A

    2016-06-15

    Purpose: Monte Carlo (MC) simulation is considered to be the most accurate method for calculation of absorbed dose and fundamental physical quantities related to biological effects in carbon ion therapy. Its long computation time impedes clinical and research applications. We have developed an MC package, goCMC, on parallel processing platforms, aiming at achieving accurate and efficient simulations for carbon therapy. Methods: goCMC was developed under OpenCL framework. It supported transport simulation in voxelized geometry with kinetic energy up to 450 MeV/u. Class II condensed history algorithm was employed for charged particle transport with stopping power computed via Bethe-Bloch equation. Secondarymore » electrons were not transported with their energy locally deposited. Energy straggling and multiple scattering were modeled. Production of secondary charged particles from nuclear interactions was implemented based on cross section and yield data from Geant4. They were transported via the condensed history scheme. goCMC supported scoring various quantities of interest e.g. physical dose, particle fluence, spectrum, linear energy transfer, and positron emitting nuclei. Results: goCMC has been benchmarked against Geant4 with different phantoms and beam energies. For 100 MeV/u, 250 MeV/u and 400 MeV/u beams impinging to a water phantom, range difference was 0.03 mm, 0.20 mm and 0.53 mm, and mean dose difference was 0.47%, 0.72% and 0.79%, respectively. goCMC can run on various computing devices. Depending on the beam energy and voxel size, it took 20∼100 seconds to simulate 10{sup 7} carbons on an AMD Radeon GPU card. The corresponding CPU time for Geant4 with the same setup was 60∼100 hours. Conclusion: We have developed an OpenCL-based cross-platform carbon MC simulation package, goCMC. Its accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon therapy.« less

  18. An integrated compact airborne multispectral imaging system using embedded computer

    NASA Astrophysics Data System (ADS)

    Zhang, Yuedong; Wang, Li; Zhang, Xuguo

    2015-08-01

    An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.

  19. The Human Urine Metabolome

    PubMed Central

    Bouatra, Souhaila; Aziat, Farid; Mandal, Rupasri; Guo, An Chi; Wilson, Michael R.; Knox, Craig; Bjorndahl, Trent C.; Krishnamurthy, Ramanarayan; Saleem, Fozia; Liu, Philip; Dame, Zerihun T.; Poelzer, Jenna; Huynh, Jessica; Yallou, Faizath S.; Psychogios, Nick; Dong, Edison; Bogumil, Ralf; Roehring, Cornelia; Wishart, David S.

    2013-01-01

    Urine has long been a “favored” biofluid among metabolomics researchers. It is sterile, easy-to-obtain in large volumes, largely free from interfering proteins or lipids and chemically complex. However, this chemical complexity has also made urine a particularly difficult substrate to fully understand. As a biological waste material, urine typically contains metabolic breakdown products from a wide range of foods, drinks, drugs, environmental contaminants, endogenous waste metabolites and bacterial by-products. Many of these compounds are poorly characterized and poorly understood. In an effort to improve our understanding of this biofluid we have undertaken a comprehensive, quantitative, metabolome-wide characterization of human urine. This involved both computer-aided literature mining and comprehensive, quantitative experimental assessment/validation. The experimental portion employed NMR spectroscopy, gas chromatography mass spectrometry (GC-MS), direct flow injection mass spectrometry (DFI/LC-MS/MS), inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) experiments performed on multiple human urine samples. This multi-platform metabolomic analysis allowed us to identify 445 and quantify 378 unique urine metabolites or metabolite species. The different analytical platforms were able to identify (quantify) a total of: 209 (209) by NMR, 179 (85) by GC-MS, 127 (127) by DFI/LC-MS/MS, 40 (40) by ICP-MS and 10 (10) by HPLC. Our use of multiple metabolomics platforms and technologies allowed us to identify several previously unknown urine metabolites and to substantially enhance the level of metabolome coverage. It also allowed us to critically assess the relative strengths and weaknesses of different platforms or technologies. The literature review led to the identification and annotation of another 2206 urinary compounds and was used to help guide the subsequent experimental studies. An online database containing the complete set of 2651 confirmed human urine metabolite species, their structures (3079 in total), concentrations, related literature references and links to their known disease associations are freely available at http://www.urinemetabolome.ca. PMID:24023812

  20. The Design of a High Performance Earth Imagery and Raster Data Management and Processing Platform

    NASA Astrophysics Data System (ADS)

    Xie, Qingyun

    2016-06-01

    This paper summarizes the general requirements and specific characteristics of both geospatial raster database management system and raster data processing platform from a domain-specific perspective as well as from a computing point of view. It also discusses the need of tight integration between the database system and the processing system. These requirements resulted in Oracle Spatial GeoRaster, a global scale and high performance earth imagery and raster data management and processing platform. The rationale, design, implementation, and benefits of Oracle Spatial GeoRaster are described. Basically, as a database management system, GeoRaster defines an integrated raster data model, supports image compression, data manipulation, general and spatial indices, content and context based queries and updates, versioning, concurrency, security, replication, standby, backup and recovery, multitenancy, and ETL. It provides high scalability using computer and storage clustering. As a raster data processing platform, GeoRaster provides basic operations, image processing, raster analytics, and data distribution featuring high performance computing (HPC). Specifically, HPC features include locality computing, concurrent processing, parallel processing, and in-memory computing. In addition, the APIs and the plug-in architecture are discussed.

  1. A wireless modular multi-modal multi-node patch platform for robust biosignal monitoring.

    PubMed

    Pantelopoulos, Alexandros; Saldivar, Enrique; Roham, Masoud

    2011-01-01

    In this paper a wireless modular, multi-modal, multi-node patch platform is described. The platform comprises low-cost semi-disposable patch design aiming at unobtrusive ambulatory monitoring of multiple physiological parameters. Owing to its modular design it can be interfaced with various low-power RF communication and data storage technologies, while the data fusion of multi-modal and multi-node features facilitates measurement of several biosignals from multiple on-body locations for robust feature extraction. Preliminary results of the patch platform are presented which illustrate the capability to extract respiration rate from three different independent metrics, which combined together can give a more robust estimate of the actual respiratory rate.

  2. A comprehensive SNP and indel imputability database.

    PubMed

    Duan, Qing; Liu, Eric Yi; Croteau-Chonka, Damien C; Mohlke, Karen L; Li, Yun

    2013-02-15

    Genotype imputation has become an indispensible step in genome-wide association studies (GWAS). Imputation accuracy, directly influencing downstream analysis, has shown to be improved using re-sequencing-based reference panels; however, this comes at the cost of high computational burden due to the huge number of potentially imputable markers (tens of millions) discovered through sequencing a large number of individuals. Therefore, there is an increasing need for access to imputation quality information without actually conducting imputation. To facilitate this process, we have established a publicly available SNP and indel imputability database, aiming to provide direct access to imputation accuracy information for markers identified by the 1000 Genomes Project across four major populations and covering multiple GWAS genotyping platforms. SNP and indel imputability information can be retrieved through a user-friendly interface by providing the ID(s) of the desired variant(s) or by specifying the desired genomic region. The query results can be refined by selecting relevant GWAS genotyping platform(s). This is the first database providing variant imputability information specific to each continental group and to each genotyping platform. In Filipino individuals from the Cebu Longitudinal Health and Nutrition Survey, our database can achieve an area under the receiver-operating characteristic curve of 0.97, 0.91, 0.88 and 0.79 for markers with minor allele frequency >5%, 3-5%, 1-3% and 0.5-1%, respectively. Specifically, by filtering out 48.6% of markers (corresponding to a reduction of up to 48.6% in computational costs for actual imputation) based on the imputability information in our database, we can remove 77%, 58%, 51% and 42% of the poorly imputed markers at the cost of only 0.3%, 0.8%, 1.5% and 4.6% of the well-imputed markers with minor allele frequency >5%, 3-5%, 1-3% and 0.5-1%, respectively. http://www.unc.edu/∼yunmli/imputability.html

  3. Implementation of High Speed Distributed Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high accuracy, high speed, real time monitoring.

  4. The Generation Challenge Programme Platform: Semantic Standards and Workbench for Crop Science

    PubMed Central

    Bruskiewich, Richard; Senger, Martin; Davenport, Guy; Ruiz, Manuel; Rouard, Mathieu; Hazekamp, Tom; Takeya, Masaru; Doi, Koji; Satoh, Kouji; Costa, Marcos; Simon, Reinhard; Balaji, Jayashree; Akintunde, Akinnola; Mauleon, Ramil; Wanchana, Samart; Shah, Trushar; Anacleto, Mylah; Portugal, Arllet; Ulat, Victor Jun; Thongjuea, Supat; Braak, Kyle; Ritter, Sebastian; Dereeper, Alexis; Skofic, Milko; Rojas, Edwin; Martins, Natalia; Pappas, Georgios; Alamban, Ryan; Almodiel, Roque; Barboza, Lord Hendrix; Detras, Jeffrey; Manansala, Kevin; Mendoza, Michael Jonathan; Morales, Jeffrey; Peralta, Barry; Valerio, Rowena; Zhang, Yi; Gregorio, Sergio; Hermocilla, Joseph; Echavez, Michael; Yap, Jan Michael; Farmer, Andrew; Schiltz, Gary; Lee, Jennifer; Casstevens, Terry; Jaiswal, Pankaj; Meintjes, Ayton; Wilkinson, Mark; Good, Benjamin; Wagner, James; Morris, Jane; Marshall, David; Collins, Anthony; Kikuchi, Shoshi; Metz, Thomas; McLaren, Graham; van Hintum, Theo

    2008-01-01

    The Generation Challenge programme (GCP) is a global crop research consortium directed toward crop improvement through the application of comparative biology and genetic resources characterization to plant breeding. A key consortium research activity is the development of a GCP crop bioinformatics platform to support GCP research. This platform includes the following: (i) shared, public platform-independent domain models, ontology, and data formats to enable interoperability of data and analysis flows within the platform; (ii) web service and registry technologies to identify, share, and integrate information across diverse, globally dispersed data sources, as well as to access high-performance computational (HPC) facilities for computationally intensive, high-throughput analyses of project data; (iii) platform-specific middleware reference implementations of the domain model integrating a suite of public (largely open-access/-source) databases and software tools into a workbench to facilitate biodiversity analysis, comparative analysis of crop genomic data, and plant breeding decision making. PMID:18483570

  5. Sensor-based architecture for medical imaging workflow analysis.

    PubMed

    Silva, Luís A Bastião; Campos, Samuel; Costa, Carlos; Oliveira, José Luis

    2014-08-01

    The growing use of computer systems in medical institutions has been generating a tremendous quantity of data. While these data have a critical role in assisting physicians in the clinical practice, the information that can be extracted goes far beyond this utilization. This article proposes a platform capable of assembling multiple data sources within a medical imaging laboratory, through a network of intelligent sensors. The proposed integration framework follows a SOA hybrid architecture based on an information sensor network, capable of collecting information from several sources in medical imaging laboratories. Currently, the system supports three types of sensors: DICOM repository meta-data, network workflows and examination reports. Each sensor is responsible for converting unstructured information from data sources into a common format that will then be semantically indexed in the framework engine. The platform was deployed in the Cardiology department of a central hospital, allowing identification of processes' characteristics and users' behaviours that were unknown before the utilization of this solution.

  6. Inverse-designed stretchable metalens with tunable focal distance

    NASA Astrophysics Data System (ADS)

    Callewaert, Francois; Velev, Vesselin; Jiang, Shizhou; Sahakian, Alan Varteres; Kumar, Prem; Aydin, Koray

    2018-02-01

    In this paper, we present an inverse-designed 3D-printed all-dielectric stretchable millimeter wave metalens with a tunable focal distance. A computational inverse-design method is used to design a flat metalens made of disconnected polymer building blocks with complex shapes, as opposed to conventional monolithic lenses. The proposed metalens provides better performance than a conventional Fresnel lens, using lesser amount of material and enabling larger focal distance tunability. The metalens is fabricated using a commercial 3D-printer and attached to a stretchable platform. Measurements and simulations show that the focal distance can be tuned by a factor of 4 with a stretching factor of only 75%, a nearly diffraction-limited focal spot, and with a 70% relative focusing efficiency, defined as the ratio between power focused in the focal spot and power going through the focal plane. The proposed platform can be extended for design and fabrication of multiple electromagnetic devices working from visible to microwave radiation depending on scaling of the devices.

  7. Speech to Text Translation for Malay Language

    NASA Astrophysics Data System (ADS)

    Al-khulaidi, Rami Ali; Akmeliawati, Rini

    2017-11-01

    The speech recognition system is a front end and a back-end process that receives an audio signal uttered by a speaker and converts it into a text transcription. The speech system can be used in several fields including: therapeutic technology, education, social robotics and computer entertainments. In most cases in control tasks, which is the purpose of proposing our system, wherein the speed of performance and response concern as the system should integrate with other controlling platforms such as in voiced controlled robots. Therefore, the need for flexible platforms, that can be easily edited to jibe with functionality of the surroundings, came to the scene; unlike other software programs that require recording audios and multiple training for every entry such as MATLAB and Phoenix. In this paper, a speech recognition system for Malay language is implemented using Microsoft Visual Studio C#. 90 (ninety) Malay phrases were tested by 10 (ten) speakers from both genders in different contexts. The result shows that the overall accuracy (calculated from Confusion Matrix) is satisfactory as it is 92.69%.

  8. Parallel Solver for Diffuse Optical Tomography on Realistic Head Models With Scattering and Clear Regions.

    PubMed

    Placati, Silvio; Guermandi, Marco; Samore, Andrea; Scarselli, Eleonora Franchi; Guerrieri, Roberto

    2016-09-01

    Diffuse optical tomography is an imaging technique, based on evaluation of how light propagates within the human head to obtain the functional information about the brain. Precision in reconstructing such an optical properties map is highly affected by the accuracy of the light propagation model implemented, which needs to take into account the presence of clear and scattering tissues. We present a numerical solver based on the radiosity-diffusion model, integrating the anatomical information provided by a structural MRI. The solver is designed to run on parallel heterogeneous platforms based on multiple GPUs and CPUs. We demonstrate how the solver provides a 7 times speed-up over an isotropic-scattered parallel Monte Carlo engine based on a radiative transport equation for a domain composed of 2 million voxels, along with a significant improvement in accuracy. The speed-up greatly increases for larger domains, allowing us to compute the light distribution of a full human head ( ≈ 3 million voxels) in 116 s for the platform used.

  9. The ISB Cancer Genomics Cloud: A Flexible Cloud-Based Platform for Cancer Genomics Research.

    PubMed

    Reynolds, Sheila M; Miller, Michael; Lee, Phyliss; Leinonen, Kalle; Paquette, Suzanne M; Rodebaugh, Zack; Hahn, Abigail; Gibbs, David L; Slagel, Joseph; Longabaugh, William J; Dhankani, Varsha; Reyes, Madelyn; Pihl, Todd; Backus, Mark; Bookman, Matthew; Deflaux, Nicole; Bingham, Jonathan; Pot, David; Shmulevich, Ilya

    2017-11-01

    The ISB Cancer Genomics Cloud (ISB-CGC) is one of three pilot projects funded by the National Cancer Institute to explore new approaches to computing on large cancer datasets in a cloud environment. With a focus on Data as a Service, the ISB-CGC offers multiple avenues for accessing and analyzing The Cancer Genome Atlas, TARGET, and other important references such as GENCODE and COSMIC using the Google Cloud Platform. The open approach allows researchers to choose approaches best suited to the task at hand: from analyzing terabytes of data using complex workflows to developing new analysis methods in common languages such as Python, R, and SQL; to using an interactive web application to create synthetic patient cohorts and to explore the wealth of available genomic data. Links to resources and documentation can be found at www.isb-cgc.org Cancer Res; 77(21); e7-10. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Smoothing-Based Relative Navigation and Coded Aperture Imaging

    NASA Technical Reports Server (NTRS)

    Saenz-Otero, Alvar; Liebe, Carl Christian; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    This project will develop an efficient smoothing software for incremental estimation of the relative poses and velocities between multiple, small spacecraft in a formation, and a small, long range depth sensor based on coded aperture imaging that is capable of identifying other spacecraft in the formation. The smoothing algorithm will obtain the maximum a posteriori estimate of the relative poses between the spacecraft by using all available sensor information in the spacecraft formation.This algorithm will be portable between different satellite platforms that possess different sensor suites and computational capabilities, and will be adaptable in the case that one or more satellites in the formation become inoperable. It will obtain a solution that will approach an exact solution, as opposed to one with linearization approximation that is typical of filtering algorithms. Thus, the algorithms developed and demonstrated as part of this program will enhance the applicability of small spacecraft to multi-platform operations, such as precisely aligned constellations and fractionated satellite systems.

  11. Social Computing as Next-Gen Learning Paradigm: A Platform and Applications

    NASA Astrophysics Data System (ADS)

    Margherita, Alessandro; Taurino, Cesare; Del Vecchio, Pasquale

    As a field at the intersection between computer science and people behavior, social computing can contribute significantly in the endeavor of innovating how individuals and groups interact for learning and working purposes. In particular, the generation of Internet applications tagged as web 2.0 provides an opportunity to create new “environments” where people can exchange knowledge and experience, create new knowledge and learn together. This chapter illustrates the design and application of a prototypal platform which embeds tools such as blog, wiki, folksonomy and RSS in a unique web-based system. This platform has been developed to support a case-based and project-driven learning strategy for the development of business and technology management competencies in undergraduate and graduate education programs. A set of illustrative scenarios are described to show how a learning community can be promoted, created, and sustained through the technological platform.

  12. A generic, cost-effective, and scalable cell lineage analysis platform

    PubMed Central

    Biezuner, Tamir; Spiro, Adam; Raz, Ofir; Amir, Shiran; Milo, Lilach; Adar, Rivka; Chapal-Ilani, Noa; Berman, Veronika; Fried, Yael; Ainbinder, Elena; Cohen, Galit; Barr, Haim M.; Halaban, Ruth; Shapiro, Ehud

    2016-01-01

    Advances in single-cell genomics enable commensurate improvements in methods for uncovering lineage relations among individual cells. Current sequencing-based methods for cell lineage analysis depend on low-resolution bulk analysis or rely on extensive single-cell sequencing, which is not scalable and could be biased by functional dependencies. Here we show an integrated biochemical-computational platform for generic single-cell lineage analysis that is retrospective, cost-effective, and scalable. It consists of a biochemical-computational pipeline that inputs individual cells, produces targeted single-cell sequencing data, and uses it to generate a lineage tree of the input cells. We validated the platform by applying it to cells sampled from an ex vivo grown tree and analyzed its feasibility landscape by computer simulations. We conclude that the platform may serve as a generic tool for lineage analysis and thus pave the way toward large-scale human cell lineage discovery. PMID:27558250

  13. An interactive parallel programming environment applied in atmospheric science

    NASA Technical Reports Server (NTRS)

    vonLaszewski, G.

    1996-01-01

    This article introduces an interactive parallel programming environment (IPPE) that simplifies the generation and execution of parallel programs. One of the tasks of the environment is to generate message-passing parallel programs for homogeneous and heterogeneous computing platforms. The parallel programs are represented by using visual objects. This is accomplished with the help of a graphical programming editor that is implemented in Java and enables portability to a wide variety of computer platforms. In contrast to other graphical programming systems, reusable parts of the programs can be stored in a program library to support rapid prototyping. In addition, runtime performance data on different computing platforms is collected in a database. A selection process determines dynamically the software and the hardware platform to be used to solve the problem in minimal wall-clock time. The environment is currently being tested on a Grand Challenge problem, the NASA four-dimensional data assimilation system.

  14. Pharmacokinetics-on-a-Chip Using Label-Free SERS Technique for Programmable Dual-Drug Analysis.

    PubMed

    Fei, Jiayuan; Wu, Lei; Zhang, Yizhi; Zong, Shenfei; Wang, Zhuyuan; Cui, Yiping

    2017-06-23

    Synergistic effects of dual or multiple drugs have attracted great attention in medical fields, especially in cancer therapies. We provide a programmable microfluidic platform for pharmacokinetic detection of multiple drugs in multiple cells. The well-designed microfluidic platform includes two 2 × 3 microarrays of cell chambers, two gradient generators, and several pneumatic valves. Through the combined use of valves and gradient generators, each chamber can be controlled to infuse different kinds of living cells and drugs with specific concentrations as needed. In our experiments, 6-mercaptopurine (6MP) and methimazole (MMI) were chosen as two drug models and their pharmacokinetic parameters in different living cells were monitored through intracellular SERS spectra, which reflected the molecular structure of these drugs. The dynamic change of SERS fingerprints from 6MP and MMI molecules were recorded during drug metabolism in living cells. The results indicated that both 6MP and MMI molecules were diffused into the cells within 4 min and excreted out after 36 h. Moreover, the intracellular distribution of these drugs was monitored through SERS mapping. Thus, our microfluidic platform simultaneously accomplishes the functions to monitor pharmacokinetic action, distribution, and fingerprint of multiple drugs in multiple cells. Owing to its real-time, rapid-speed, high-precision, and programmable capability of multiple-drug and multicell analysis, such a microfluidic platform has great potential in drug design and development.

  15. Turbulence Measurements from Compliant Moorings - Part I: Motion Characterization

    DOE PAGES

    Harding, Samuel; Kilcher, Levi; Thomson, Jim

    2017-06-20

    High-fidelity measurements of turbulence in the ocean have long been challenging to collect, in particular in the middle of the water column. In response, a measurement technique has been developed to deploy an Acoustic Doppler Velocimeter (ADV) to mid-water locations on a compliant mooring. A variety of instrumentation platforms have been deployed as part of this work with a range of dynamic motion characteristics. The platforms discussed herein include the streamlined StableMoor™ buoy (SMB), the Tidal Turbulence Mooring (TTM) system based on a conventional 0.9 m spherical buoy, and a 100 lb sounding weight suspended from the stern of amore » research vessel. The ADV head motion is computed from inertial motion sensors integrated into an ADV, and the spectra of these signals are investigated to quantify the motion of each platform. The SMB with a single ADV head mounted on the nose provided the most stable platform for the measurement of tidal turbulence in the inertial sub-range for flow speeds exceeding 1:0 ms -1. The modification of the SMB with a transverse wing configuration for multiple ADVs showed a similar frequency response to the nose configuration in the horizontal plane but with large contamination in the vertical direction as a result of platform roll. While the ADV motion on the TTM was significant in the horizontal directions, the vertical motion of this configuration was the most stable of all configurations tested. The sounding weight measurements showed the greatest motion at the ADV head but are likely to be influenced by both prop-wash and vessel motion.« less

  16. Extending the BEAGLE library to a multi-FPGA platform.

    PubMed

    Jin, Zheming; Bakos, Jason D

    2013-01-19

    Maximum Likelihood (ML)-based phylogenetic inference using Felsenstein's pruning algorithm is a standard method for estimating the evolutionary relationships amongst a set of species based on DNA sequence data, and is used in popular applications such as RAxML, PHYLIP, GARLI, BEAST, and MrBayes. The Phylogenetic Likelihood Function (PLF) and its associated scaling and normalization steps comprise the computational kernel for these tools. These computations are data intensive but contain fine grain parallelism that can be exploited by coprocessor architectures such as FPGAs and GPUs. A general purpose API called BEAGLE has recently been developed that includes optimized implementations of Felsenstein's pruning algorithm for various data parallel architectures. In this paper, we extend the BEAGLE API to a multiple Field Programmable Gate Array (FPGA)-based platform called the Convey HC-1. The core calculation of our implementation, which includes both the phylogenetic likelihood function (PLF) and the tree likelihood calculation, has an arithmetic intensity of 130 floating-point operations per 64 bytes of I/O, or 2.03 ops/byte. Its performance can thus be calculated as a function of the host platform's peak memory bandwidth and the implementation's memory efficiency, as 2.03 × peak bandwidth × memory efficiency. Our FPGA-based platform has a peak bandwidth of 76.8 GB/s and our implementation achieves a memory efficiency of approximately 50%, which gives an average throughput of 78 Gflops. This represents a ~40X speedup when compared with BEAGLE's CPU implementation on a dual Xeon 5520 and 3X speedup versus BEAGLE's GPU implementation on a Tesla T10 GPU for very large data sizes. The power consumption is 92 W, yielding a power efficiency of 1.7 Gflops per Watt. The use of data parallel architectures to achieve high performance for likelihood-based phylogenetic inference requires high memory bandwidth and a design methodology that emphasizes high memory efficiency. To achieve this objective, we integrated 32 pipelined processing elements (PEs) across four FPGAs. For the design of each PE, we developed a specialized synthesis tool to generate a floating-point pipeline with resource and throughput constraints to match the target platform. We have found that using low-latency floating-point operators can significantly reduce FPGA area and still meet timing requirement on the target platform. We found that this design methodology can achieve performance that exceeds that of a GPU-based coprocessor.

  17. Parallel computing for automated model calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, John S.; Danielson, Gary R.; Schulz, Douglas A.

    2002-07-29

    Natural resources model calibration is a significant burden on computing and staff resources in modeling efforts. Most assessments must consider multiple calibration objectives (for example magnitude and timing of stream flow peak). An automated calibration process that allows real time updating of data/models, allowing scientists to focus effort on improving models is needed. We are in the process of building a fully featured multi objective calibration tool capable of processing multiple models cheaply and efficiently using null cycle computing. Our parallel processing and calibration software routines have been generically, but our focus has been on natural resources model calibration. Somore » far, the natural resources models have been friendly to parallel calibration efforts in that they require no inter-process communication, only need a small amount of input data and only output a small amount of statistical information for each calibration run. A typical auto calibration run might involve running a model 10,000 times with a variety of input parameters and summary statistical output. In the past model calibration has been done against individual models for each data set. The individual model runs are relatively fast, ranging from seconds to minutes. The process was run on a single computer using a simple iterative process. We have completed two Auto Calibration prototypes and are currently designing a more feature rich tool. Our prototypes have focused on running the calibration in a distributed computing cross platform environment. They allow incorporation of?smart? calibration parameter generation (using artificial intelligence processing techniques). Null cycle computing similar to SETI@Home has also been a focus of our efforts. This paper details the design of the latest prototype and discusses our plans for the next revision of the software.« less

  18. Back to the future: virtualization of the computing environment at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    McCann, Kevin L.; Birch, Denny A.; Holt, Jennifer M.; Randolph, William B.; Ward, Josephine A.

    2014-07-01

    Over its two decades of science operations, the W.M. Keck Observatory computing environment has evolved to contain a distributed hybrid mix of hundreds of servers, desktops and laptops of multiple different hardware platforms, O/S versions and vintages. Supporting the growing computing capabilities to meet the observatory's diverse, evolving computing demands within fixed budget constraints, presents many challenges. This paper describes the significant role that virtualization is playing in addressing these challenges while improving the level and quality of service as well as realizing significant savings across many cost areas. Starting in December 2012, the observatory embarked on an ambitious plan to incrementally test and deploy a migration to virtualized platforms to address a broad range of specific opportunities. Implementation to date has been surprisingly glitch free, progressing well and yielding tangible benefits much faster than many expected. We describe here the general approach, starting with the initial identification of some low hanging fruit which also provided opportunity to gain experience and build confidence among both the implementation team and the user community. We describe the range of challenges, opportunities and cost savings potential. Very significant among these was the substantial power savings which resulted in strong broad support for moving forward. We go on to describe the phasing plan, the evolving scalable architecture, some of the specific technical choices, as well as some of the individual technical issues encountered along the way. The phased implementation spans Windows and Unix servers for scientific, engineering and business operations, virtualized desktops for typical office users as well as more the more demanding graphics intensive CAD users. Other areas discussed in this paper include staff training, load balancing, redundancy, scalability, remote access, disaster readiness and recovery.

  19. The Effect of In-Service Training of Computer Science Teachers on Scratch Programming Language Skills Using an Electronic Learning Platform on Programming Skills and the Attitudes towards Teaching Programming

    ERIC Educational Resources Information Center

    Alkaria, Ahmed; Alhassan, Riyadh

    2017-01-01

    This study was conducted to examine the effect of in-service training of computer science teachers in Scratch language using an electronic learning platform on acquiring programming skills and attitudes towards teaching programming. The sample of this study consisted of 40 middle school computer science teachers. They were assigned into two…

  20. Feasibility of Floating Platform Systems for Wind Turbines: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musial, W.; Butterfield, S.; Boone, A.

    This paper provides a general technical description of several types of floating platforms for wind turbines. Platform topologies are classified into multiple- or single-turbine floaters and by mooring method. Platforms using catenary mooring systems are contrasted to vertical mooring systems and the advantages and disadvantages are discussed. Specific anchor types are described in detail. A rough cost comparison is performed for two different platform architectures using a generic 5-MW wind turbine. One platform is a Dutch study of a tri-floater platform using a catenary mooring system, and the other is a mono-column tension-leg platform developed at the National Renewable Energymore » Laboratory. Cost estimates showed that single unit production cost is $7.1 M for the Dutch tri-floater, and $6.5 M for the NREL TLP concept. However, value engineering, multiple unit series production, and platform/turbine system optimization can lower the unit platform costs to $4.26 M and $2.88 M, respectively, with significant potential to reduce cost further with system optimization. These foundation costs are within the range necessary to bring the cost of energy down to the DOE target range of $0.05/kWh for large-scale deployment of offshore floating wind turbines.« less

  1. Environmental Detectives--The Development of an Augmented Reality Platform for Environmental Simulations

    ERIC Educational Resources Information Center

    Klopfer, Eric; Squire, Kurt

    2008-01-01

    The form factors of handheld computers make them increasingly popular among K-12 educators. Although some compelling examples of educational software for handhelds exist, we believe that the potential of this platform are just being discovered. This paper reviews innovative applications for mobile computing for both education and entertainment…

  2. Beam Dynamics Simulation Platform and Studies of Beam Breakup in Dielectric Wakefield Structures

    NASA Astrophysics Data System (ADS)

    Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Gai, W.

    2010-11-01

    A particle-Green's function beam dynamics code (BBU-3000) to study beam breakup effects is incorporated into a parallel computing framework based on the Boinc software environment, and supports both task farming on a heterogeneous cluster and local grid computing. User access to the platform is through a web browser.

  3. Assessing the Decision Process towards Bring Your Own Device

    ERIC Educational Resources Information Center

    Koester, Richard F.

    2017-01-01

    Information technology continues to evolve to the point where mobile technologies--such as smart phones, tablets, and ultra-mobile computers have the embedded flexibility and power to be a ubiquitous platform to fulfill the entire user's computing needs. Mobile technology users view these platforms as adaptable enough to be the single solution for…

  4. Multivariate Gradient Analysis for Evaluating and Visualizing a Learning System Platform for Computer Programming

    ERIC Educational Resources Information Center

    Mather, Richard

    2015-01-01

    This paper explores the application of canonical gradient analysis to evaluate and visualize student performance and acceptance of a learning system platform. The subject of evaluation is a first year BSc module for computer programming. This uses "Ceebot," an animated and immersive game-like development environment. Multivariate…

  5. Swarmie User Manual: A Rover Used for Multi-agent Swarm Research

    NASA Technical Reports Server (NTRS)

    Montague, Gilbert

    2014-01-01

    The ability to create multiple functional yet cost effective robots is crucial for conducting swarming robotics research. The Center Innovation Fund (CIF) swarming robotics project is a collaboration among the KSC Granular Mechanics and Regolith Operations (GMRO) group, the University of New Mexico Biological Computation Lab, and the NASA Ames Intelligent Robotics Group (IRG) that uses rovers, dubbed "Swarmies", as test platforms for genetic search algorithms. This fall, I assisted in the development of the software modules used on the Swarmies and created this guide to provide thorough instructions on how to configure your workspace to operate a Swarmie both in simulation and out in the field.

  6. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation

    NASA Astrophysics Data System (ADS)

    Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy; Chen, Wei; Richards, William Davidson; Dacek, Stephen; Cholia, Shreyas; Gunter, Dan; Skinner, David; Ceder, Gerbrand; Persson, Kristin A.

    2013-07-01

    Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org), a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ``rapid-prototyping'' of new materials in silico, and provide researchers with new avenues for cost-effective, data-driven materials design.

  7. The community FabLab platform: applications and implications in biomedical engineering.

    PubMed

    Stephenson, Makeda K; Dow, Douglas E

    2014-01-01

    Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.

  8. Comparison of scientific computing platforms for MCNP4A Monte Carlo calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, J.S.; Brockhoff, R.C.

    1994-04-01

    The performance of seven computer platforms is evaluated with the widely used and internationally available MCNP4A Monte Carlo radiation transport code. All results are reproducible and are presented in such a way as to enable comparison with computer platforms not in the study. The authors observed that the HP/9000-735 workstation runs MCNP 50% faster than the Cray YMP 8/64. Compared with the Cray YMP 8/64, the IBM RS/6000-560 is 68% as fast, the Sun Sparc10 is 66% as fast, the Silicon Graphics ONYX is 90% as fast, the Gateway 2000 model 4DX2-66V personal computer is 27% as fast, and themore » Sun Sparc2 is 24% as fast. In addition to comparing the timing performance of the seven platforms, the authors observe that changes in compilers and software over the past 2 yr have resulted in only modest performance improvements, hardware improvements have enhanced performance by less than a factor of [approximately]3, timing studies are very problem dependent, MCNP4Q runs about as fast as MCNP4.« less

  9. A Multilevel Multiset Time-Series Model for Describing Complex Developmental Processes

    PubMed Central

    Ma, Xin; Shen, Jianping

    2017-01-01

    The authors sought to develop an analytical platform where multiple sets of time series can be examined simultaneously. This multivariate platform capable of testing interaction effects among multiple sets of time series can be very useful in empirical research. The authors demonstrated that the multilevel framework can readily accommodate this analytical capacity. Given their intention to use the multilevel multiset time-series model to pursue complicated research purposes, their resulting model is relatively simple to specify, to run, and to interpret. These advantages make the adoption of their model relatively effortless as long as researchers have the basic knowledge and skills in working with multilevel growth modeling. With multiple potential extensions of their model, the establishment of this analytical platform for analysis of multiple sets of time series can inspire researchers to pursue far more advanced research designs to address complex developmental processes in reality. PMID:29881094

  10. Homomorphic encryption experiments on IBM's cloud quantum computing platform

    NASA Astrophysics Data System (ADS)

    Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su

    2017-02-01

    Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.

  11. A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform

    PubMed Central

    Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.

    2013-01-01

    Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the K-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications. PMID:24308014

  12. the APL Balloonborne High Altitude Research Platform (HARP)

    NASA Astrophysics Data System (ADS)

    Adams, D.; Arnold, S.; Bernasconi, P.

    2015-09-01

    The Johns Hopkins University Applied Physics Laboratory (APL) has developed and demonstrated a multi-purpose stratospheric balloonborne gondola known as the High Altitude Research Platform (HARP). HARP provides the power, mechanical supports, thermal control, and data transmission for multiple forms of high-altitude scientific research equipment. The platform has been used for astronomy, cosmology and heliophysics experiments but can also be applied to atmospheric studies, space weather and other forms of high altitude research. HARP has executed five missions. The first was Flare Genesis from Antarctica in 1993 and the most recent was the Balloon Observation Platform for Planetary Science (BOPPS) from New Mexico in 2014. HARP will next be used to perform again the Stratospheric Terahertz Observatory mission, a mission that it first performed in 2009. The structure, composed of an aluminum framework is designed for easy transport and field assembly while providing ready access to the payload and supporting avionics. A light-weighted structure, capable of supporting Ultra-Long Duration Balloon (ULDB) flights that can last more than 100 days is available. Scientific research payloads as heavy as 600 kg (1322 pounds) and requiring up to 800 Watts electrical power can be supported. The platform comprises all subsystems required to support and operate the science payload, including both line-of-sight (LOS) and over-the-horizon (0TH) telecommunications, the latter provided by Iridium Pilot. Electrical power is produced by solar panels for multi-day missions and batteries for single-day missions. The avionics design is primarily single-string; however, use of ruggedized industrial components provides high reliability. The avionics features a Command and Control (C&C) computer and a Pointing Control System (PCS) computer housed within a common unpressurized unit. The avionics operates from ground pressure to 2 Torr and over a temperature range from —30 C to +85 C. Science data is stored on-board and also flows through the C&C computer where it is packetized for real-time downlink. The telecommunications system is capable of LOS downlink up to 3000 kbps and 0TH downlink up to 120 kbps. The pointing control system (PCS) provides three-axis attitude stability to 1 arcsec and can be used to aim at a fixed point for science observations, to perform science scans, and to track an object ephemeris. This paper provides a description of HARP, summarizes its performance on prior flights, describes its use on upcoming missions and outlines the characteristics that can be customized to meet the needs of the high altitude research community to support future missions.

  13. Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud

    PubMed Central

    Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew

    2015-01-01

    Background Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. Results We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. Conclusions This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the value added to the research community through the suite of services and resources provided by our implementation. PMID:26501966

  14. Performance of MCNP4A on seven computing platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, J.S.; Brockhoff, R.C.

    1994-12-31

    The performance of seven computer platforms has been evaluated with the MCNP4A Monte Carlo radiation transport code. For the first time we report timing results using MCNP4A and its new test set and libraries. Comparisons are made on platforms not available to us in previous MCNP timing studies. By using MCNP4A and its 325-problem test set, a widely-used and readily-available physics production code is used; the timing comparison is not limited to a single ``typical`` problem, demonstrating the problem dependence of timing results; the results are reproducible at the more than 100 installations around the world using MCNP; comparison ofmore » performance of other computer platforms to the ones tested in this study is possible because we present raw data rather than normalized results; and a measure of the increase in performance of computer hardware and software over the past two years is possible. The computer platforms reported are the Cray-YMP 8/64, IBM RS/6000-560, Sun Sparc10, Sun Sparc2, HP/9000-735, 4 processor 100 MHz Silicon Graphics ONYX, and Gateway 2000 model 4DX2-66V PC. In 1991 a timing study of MCNP4, the predecessor to MCNP4A, was conducted using ENDF/B-V cross-section libraries, which are export protected. The new study is based upon the new MCNP 25-problem test set which utilizes internationally available data. MCNP4A, its test problems and the test data library are available from the Radiation Shielding and Information Center in Oak Ridge, Tennessee, or from the NEA Data Bank in Saclay, France. Anyone with the same workstation and compiler can get the same test problem sets, the same library files, and the same MCNP4A code from RSIC or NEA and replicate our results. And, because we report raw data, comparison of the performance of other compute platforms and compilers can be made.« less

  15. Particle Identification on an FPGA Accelerated Compute Platform for the LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Fäerber, Christian; Schwemmer, Rainer; Machen, Jonathan; Neufeld, Niko

    2017-07-01

    The current LHCb readout system will be upgraded in 2018 to a “triggerless” readout of the entire detector at the Large Hadron Collider collision rate of 40 MHz. The corresponding bandwidth from the detector down to the foreseen dedicated computing farm (event filter farm), which acts as the trigger, has to be increased by a factor of almost 100 from currently 500 Gb/s up to 40 Tb/s. The event filter farm will preanalyze the data and will select the events on an event by event basis. This will reduce the bandwidth down to a manageable size to write the interesting physics data to tape. The design of such a system is a challenging task, and the reason why different new technologies are considered and have to be investigated for the different parts of the system. For the usage in the event building farm or in the event filter farm (trigger), an experimental field programmable gate array (FPGA) accelerated computing platform is considered and, therefore, tested. FPGA compute accelerators are used more and more in standard servers such as for Microsoft Bing search or Baidu search. The platform we use hosts a general Intel CPU and a high-performance FPGA linked via the high-speed Intel QuickPath Interconnect. An accelerator is implemented on the FPGA. It is very likely that these platforms, which are built, in general, for high-performance computing, are also very interesting for the high-energy physics community. First, the performance results of smaller test cases performed at the beginning are presented. Afterward, a part of the existing LHCb RICH particle identification is tested and is ported to the experimental FPGA accelerated platform. We have compared the performance of the LHCb RICH particle identification running on a normal CPU with the performance of the same algorithm, which is running on the Xeon-FPGA compute accelerator platform.

  16. Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud.

    PubMed

    Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew

    2015-01-01

    Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the value added to the research community through the suite of services and resources provided by our implementation.

  17. Semi-physical Simulation Platform of a Parafoil Nonlinear Dynamic System

    NASA Astrophysics Data System (ADS)

    Gao, Hai-Tao; Yang, Sheng-Bo; Zhu, Er-Lin; Sun, Qing-Lin; Chen, Zeng-Qiang; Kang, Xiao-Feng

    2013-11-01

    Focusing on the problems in the process of simulation and experiment on a parafoil nonlinear dynamic system, such as limited methods, high cost and low efficiency we present a semi-physical simulation platform. It is designed by connecting parts of physical objects to a computer, and remedies the defect that a computer simulation is divorced from a real environment absolutely. The main components of the platform and its functions, as well as simulation flows, are introduced. The feasibility and validity are verified through a simulation experiment. The experimental results show that the platform has significance for improving the quality of the parafoil fixed-point airdrop system, shortening the development cycle and saving cost.

  18. Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms.

    PubMed

    Burke, Órlaith; Benton, Samantha; Szafranski, Pawel; von Dadelszen, Peter; Buhimschi, S Catalin; Cetin, Irene; Chappell, Lucy; Figueras, Francesc; Galindo, Alberto; Herraiz, Ignacio; Holzman, Claudia; Hubel, Carl; Knudsen, Ulla; Kronborg, Camilla; Laivuori, Hannele; Lapaire, Olav; McElrath, Thomas; Moertl, Manfred; Myers, Jenny; Ness, Roberta B; Oliveira, Leandro; Olson, Gayle; Poston, Lucilla; Ris-Stalpers, Carrie; Roberts, James M; Schalekamp-Timmermans, Sarah; Schlembach, Dietmar; Steegers, Eric; Stepan, Holger; Tsatsaris, Vassilis; van der Post, Joris A; Verlohren, Stefan; Villa, Pia M; Williams, David; Zeisler, Harald; Redman, Christopher W G; Staff, Anne Cathrine

    2016-01-01

    A common challenge in medicine, exemplified in the analysis of biomarker data, is that large studies are needed for sufficient statistical power. Often, this may only be achievable by aggregating multiple cohorts. However, different studies may use disparate platforms for laboratory analysis, which can hinder merging. Using circulating placental growth factor (PlGF), a potential biomarker for hypertensive disorders of pregnancy (HDP) such as preeclampsia, as an example, we investigated how such issues can be overcome by inter-platform standardization and merging algorithms. We studied 16,462 pregnancies from 22 study cohorts. PlGF measurements (gestational age ⩾20 weeks) analyzed on one of four platforms: R&D Systems, AlereTriage, RocheElecsys or AbbottArchitect, were available for 13,429 women. Two merging algorithms, using Z-Score and Multiple of Median transformations, were applied. Best reference curves (BRC), based on merged, transformed PlGF measurements in uncomplicated pregnancy across six gestational age groups, were estimated. Identification of HDP by these PlGF-BRCs was compared to that of platform-specific curves. We demonstrate the feasibility of merging PlGF concentrations from different analytical platforms. Overall BRC identification of HDP performed at least as well as platform-specific curves. Our method can be extended to any set of biomarkers obtained from different laboratory platforms in any field. Merged biomarker data from multiple studies will improve statistical power and enlarge our understanding of the pathophysiology and management of medical syndromes. Copyright © 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  19. Load monitoring of aerospace structures utilizing micro-electro-mechanical systems for static and quasi-static loading conditions

    NASA Astrophysics Data System (ADS)

    Martinez, M.; Rocha, B.; Li, M.; Shi, G.; Beltempo, A.; Rutledge, R.; Yanishevsky, M.

    2012-11-01

    The National Research Council Canada (NRC) has worked on the development of structural health monitoring (SHM) test platforms for assessing the performance of sensor systems for load monitoring applications. The first SHM platform consists of a 5.5 m cantilever aluminum beam that provides an optimal scenario for evaluating the ability of a load monitoring system to measure bending, torsion and shear loads. The second SHM platform contains an added level of structural complexity, by consisting of aluminum skins with bonded/riveted stringers, typical of an aircraft lower wing structure. These two load monitoring platforms are well characterized and documented, providing loading conditions similar to those encountered during service. In this study, a micro-electro-mechanical system (MEMS) for acquiring data from triads of gyroscopes, accelerometers and magnetometers is described. The system was used to compute changes in angles at discrete stations along the platforms. The angles obtained from the MEMS were used to compute a second, third or fourth order degree polynomial surface from which displacements at every point could be computed. The use of a new Kalman filter was evaluated for angle estimation, from which displacements in the structure were computed. The outputs of the newly developed algorithms were then compared to the displacements obtained from the linear variable displacement transducers connected to the platforms. The displacement curves were subsequently post-processed either analytically, or with the help of a finite element model of the structure, to estimate strains and loads. The estimated strains were compared with baseline strain gauge instrumentation installed on the platforms. This new approach for load monitoring was able to provide accurate estimates of applied strains and shear loads.

  20. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks.

    PubMed

    Shen, Yiwen; Hattink, Maarten H N; Samadi, Payman; Cheng, Qixiang; Hu, Ziyiz; Gazman, Alexander; Bergman, Keren

    2018-04-16

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. We present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly network testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 µs control plane latency for data-center and high performance computing platforms.

  1. A Dedicated Computational Platform for Cellular Monte Carlo T-CAD Software Tools

    DTIC Science & Technology

    2015-07-14

    computer that establishes an encrypted Virtual Private Network ( OpenVPN [44]) based on the Secure Socket Layer (SSL) paradigm. Each user is given a...security certificate for each device used to connect to the computing nodes. Stable OpenVPN clients are available for Linux, Microsoft Windows, Apple OSX...platform is granted by an encrypted connection base on the Secure Socket Layer (SSL) protocol, and implemented in the OpenVPN Virtual Personal Network

  2. Wireless sensor platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  3. Drug Target Optimization in Chronic Myeloid Leukemia Using Innovative Computational Platform

    PubMed Central

    Chuang, Ryan; Hall, Benjamin A.; Benque, David; Cook, Byron; Ishtiaq, Samin; Piterman, Nir; Taylor, Alex; Vardi, Moshe; Koschmieder, Steffen; Gottgens, Berthold; Fisher, Jasmin

    2015-01-01

    Chronic Myeloid Leukemia (CML) represents a paradigm for the wider cancer field. Despite the fact that tyrosine kinase inhibitors have established targeted molecular therapy in CML, patients often face the risk of developing drug resistance, caused by mutations and/or activation of alternative cellular pathways. To optimize drug development, one needs to systematically test all possible combinations of drug targets within the genetic network that regulates the disease. The BioModelAnalyzer (BMA) is a user-friendly computational tool that allows us to do exactly that. We used BMA to build a CML network-model composed of 54 nodes linked by 104 interactions that encapsulates experimental data collected from 160 publications. While previous studies were limited by their focus on a single pathway or cellular process, our executable model allowed us to probe dynamic interactions between multiple pathways and cellular outcomes, suggest new combinatorial therapeutic targets, and highlight previously unexplored sensitivities to Interleukin-3. PMID:25644994

  4. Drug Target Optimization in Chronic Myeloid Leukemia Using Innovative Computational Platform

    NASA Astrophysics Data System (ADS)

    Chuang, Ryan; Hall, Benjamin A.; Benque, David; Cook, Byron; Ishtiaq, Samin; Piterman, Nir; Taylor, Alex; Vardi, Moshe; Koschmieder, Steffen; Gottgens, Berthold; Fisher, Jasmin

    2015-02-01

    Chronic Myeloid Leukemia (CML) represents a paradigm for the wider cancer field. Despite the fact that tyrosine kinase inhibitors have established targeted molecular therapy in CML, patients often face the risk of developing drug resistance, caused by mutations and/or activation of alternative cellular pathways. To optimize drug development, one needs to systematically test all possible combinations of drug targets within the genetic network that regulates the disease. The BioModelAnalyzer (BMA) is a user-friendly computational tool that allows us to do exactly that. We used BMA to build a CML network-model composed of 54 nodes linked by 104 interactions that encapsulates experimental data collected from 160 publications. While previous studies were limited by their focus on a single pathway or cellular process, our executable model allowed us to probe dynamic interactions between multiple pathways and cellular outcomes, suggest new combinatorial therapeutic targets, and highlight previously unexplored sensitivities to Interleukin-3.

  5. AutoAssemblyD: a graphical user interface system for several genome assemblers.

    PubMed

    Veras, Adonney Allan de Oliveira; de Sá, Pablo Henrique Caracciolo Gomes; Azevedo, Vasco; Silva, Artur; Ramos, Rommel Thiago Jucá

    2013-01-01

    Next-generation sequencing technologies have increased the amount of biological data generated. Thus, bioinformatics has become important because new methods and algorithms are necessary to manipulate and process such data. However, certain challenges have emerged, such as genome assembly using short reads and high-throughput platforms. In this context, several algorithms have been developed, such as Velvet, Abyss, Euler-SR, Mira, Edna, Maq, SHRiMP, Newbler, ALLPATHS, Bowtie and BWA. However, most such assemblers do not have a graphical interface, which makes their use difficult for users without computing experience given the complexity of the assembler syntax. Thus, to make the operation of such assemblers accessible to users without a computing background, we developed AutoAssemblyD, which is a graphical tool for genome assembly submission and remote management by multiple assemblers through XML templates. AssemblyD is freely available at https://sourceforge.net/projects/autoassemblyd. It requires Sun jdk 6 or higher.

  6. NORTICA—a new code for cyclotron analysis

    NASA Astrophysics Data System (ADS)

    Gorelov, D.; Johnson, D.; Marti, F.

    2001-12-01

    The new package NORTICA (Numerical ORbit Tracking In Cyclotrons with Analysis) of computer codes for beam dynamics simulations is under development at NSCL. The package was started as a replacement for the code MONSTER [1] developed in the laboratory in the past. The new codes are capable of beam dynamics simulations in both CCF (Coupled Cyclotron Facility) accelerators, the K500 and K1200 superconducting cyclotrons. The general purpose of this package is assisting in setting and tuning the cyclotrons taking into account the main field and extraction channel imperfections. The computer platform for the package is Alpha Station with UNIX operating system and X-Windows graphic interface. A multiple programming language approach was used in order to combine the reliability of the numerical algorithms developed over the long period of time in the laboratory and the friendliness of modern style user interface. This paper describes the capability and features of the codes in the present state.

  7. Open chemistry: RESTful web APIs, JSON, NWChem and the modern web application

    DOE PAGES

    Hanwell, Marcus D.; de Jong, Wibe A.; Harris, Christopher J.

    2017-10-30

    An end-to-end platform for chemical science research has been developed that integrates data from computational and experimental approaches through a modern web-based interface. The platform offers an interactive visualization and analytics environment that functions well on mobile, laptop and desktop devices. It offers pragmatic solutions to ensure that large and complex data sets are more accessible. Existing desktop applications/frameworks were extended to integrate with high-performance computing resources, and offer command-line tools to automate interaction - connecting distributed teams to this software platform on their own terms. The platform was developed openly, and all source code hosted on the GitHub platformmore » with automated deployment possible using Ansible coupled with standard Ubuntu-based machine images deployed to cloud machines. The platform is designed to enable teams to reap the benefits of the connected web - going beyond what conventional search and analytics platforms offer in this area. It also has the goal of offering federated instances, that can be customized to the sites/research performed. Data gets stored using JSON, extending upon previous approaches using XML, building structures that support computational chemistry calculations. These structures were developed to make it easy to process data across different languages, and send data to a JavaScript-based web client.« less

  8. Open chemistry: RESTful web APIs, JSON, NWChem and the modern web application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanwell, Marcus D.; de Jong, Wibe A.; Harris, Christopher J.

    An end-to-end platform for chemical science research has been developed that integrates data from computational and experimental approaches through a modern web-based interface. The platform offers an interactive visualization and analytics environment that functions well on mobile, laptop and desktop devices. It offers pragmatic solutions to ensure that large and complex data sets are more accessible. Existing desktop applications/frameworks were extended to integrate with high-performance computing resources, and offer command-line tools to automate interaction - connecting distributed teams to this software platform on their own terms. The platform was developed openly, and all source code hosted on the GitHub platformmore » with automated deployment possible using Ansible coupled with standard Ubuntu-based machine images deployed to cloud machines. The platform is designed to enable teams to reap the benefits of the connected web - going beyond what conventional search and analytics platforms offer in this area. It also has the goal of offering federated instances, that can be customized to the sites/research performed. Data gets stored using JSON, extending upon previous approaches using XML, building structures that support computational chemistry calculations. These structures were developed to make it easy to process data across different languages, and send data to a JavaScript-based web client.« less

  9. Wide-Field-of-View, High-Resolution, Stereoscopic Imager

    NASA Technical Reports Server (NTRS)

    Prechtl, Eric F.; Sedwick, Raymond J.

    2010-01-01

    A device combines video feeds from multiple cameras to provide wide-field-of-view, high-resolution, stereoscopic video to the user. The prototype under development consists of two camera assemblies, one for each eye. One of these assemblies incorporates a mounting structure with multiple cameras attached at offset angles. The video signals from the cameras are fed to a central processing platform where each frame is color processed and mapped into a single contiguous wide-field-of-view image. Because the resolution of most display devices is typically smaller than the processed map, a cropped portion of the video feed is output to the display device. The positioning of the cropped window will likely be controlled through the use of a head tracking device, allowing the user to turn his or her head side-to-side or up and down to view different portions of the captured image. There are multiple options for the display of the stereoscopic image. The use of head mounted displays is one likely implementation. However, the use of 3D projection technologies is another potential technology under consideration, The technology can be adapted in a multitude of ways. The computing platform is scalable, such that the number, resolution, and sensitivity of the cameras can be leveraged to improve image resolution and field of view. Miniaturization efforts can be pursued to shrink the package down for better mobility. Power savings studies can be performed to enable unattended, remote sensing packages. Image compression and transmission technologies can be incorporated to enable an improved telepresence experience.

  10. Monitoring of the data processing and simulated production at CMS with a web-based service: the Production Monitoring Platform (pMp)

    NASA Astrophysics Data System (ADS)

    Franzoni, G.; Norkus, A.; Pol, A. A.; Srimanobhas, N.; Walker, J.

    2017-10-01

    Physics analysis at the Compact Muon Solenoid requires both the production of simulated events and processing of the data collected by the experiment. Since the end of the LHC Run-I in 2012, CMS has produced over 20 billion simulated events, from 75 thousand processing requests organised in one hundred different campaigns. These campaigns emulate different configurations of collision events, the detector, and LHC running conditions. In the same time span, sixteen data processing campaigns have taken place to reconstruct different portions of the Run-I and Run-II data with ever improving algorithms and calibrations. The scale and complexity of the events simulation and processing, and the requirement that multiple campaigns must proceed in parallel, demand that a comprehensive, frequently updated and easily accessible monitoring be made available. The monitoring must serve both the analysts, who want to know which and when datasets will become available, and the central production teams in charge of submitting, prioritizing, and running the requests across the distributed computing infrastructure. The Production Monitoring Platform (pMp) web-based service, has been developed in 2015 to address those needs. It aggregates information from multiple services used to define, organize, and run the processing requests. Information is updated hourly using a dedicated elastic database and the monitoring provides multiple configurable views to assess the status of single datasets as well as entire production campaigns. This contribution will describe the pMp development, the evolution of its functionalities, and one and half year of operational experience.

  11. Collaborative workbench for cyberinfrastructure to accelerate science algorithm development

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Maskey, M.; Kuo, K.; Lynnes, C.

    2013-12-01

    There are significant untapped resources for information and knowledge creation within the Earth Science community in the form of data, algorithms, services, analysis workflows or scripts, and the related knowledge about these resources. Despite the huge growth in social networking and collaboration platforms, these resources often reside on an investigator's workstation or laboratory and are rarely shared. A major reason for this is that there are very few scientific collaboration platforms, and those that exist typically require the use of a new set of analysis tools and paradigms to leverage the shared infrastructure. As a result, adoption of these collaborative platforms for science research is inhibited by the high cost to an individual scientist of switching from his or her own familiar environment and set of tools to a new environment and tool set. This presentation will describe an ongoing project developing an Earth Science Collaborative Workbench (CWB). The CWB approach will eliminate this barrier by augmenting a scientist's current research environment and tool set to allow him or her to easily share diverse data and algorithms. The CWB will leverage evolving technologies such as commodity computing and social networking to design an architecture for scalable collaboration that will support the emerging vision of an Earth Science Collaboratory. The CWB is being implemented on the robust and open source Eclipse framework and will be compatible with widely used scientific analysis tools such as IDL. The myScience Catalog built into CWB will capture and track metadata and provenance about data and algorithms for the researchers in a non-intrusive manner with minimal overhead. Seamless interfaces to multiple Cloud services will support sharing algorithms, data, and analysis results, as well as access to storage and computer resources. A Community Catalog will track the use of shared science artifacts and manage collaborations among researchers.

  12. The Relationship between Chief Information Officer Transformational Leadership and Computing Platform Operating Systems

    ERIC Educational Resources Information Center

    Anderson, George W.

    2010-01-01

    The purpose of this study was to relate the strength of Chief Information Officer (CIO) transformational leadership behaviors to 1 of 5 computing platform operating systems (OSs) that may be selected for a firm's Enterprise Resource Planning (ERP) business system. Research shows executive leader behaviors may promote innovation through the use of…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.; Yu, G.; Wang, K.

    The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecturemore » achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)« less

  14. Modular HPC I/O characterization with Darshan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Shane; Carns, Philip; Harms, Kevin

    2016-11-13

    Contemporary high-performance computing (HPC) applications encompass a broad range of distinct I/O strategies and are often executed on a number of different compute platforms in their lifetime. These large-scale HPC platforms employ increasingly complex I/O subsystems to provide a suitable level of I/O performance to applications. Tuning I/O workloads for such a system is nontrivial, and the results generally are not portable to other HPC systems. I/O profiling tools can help to address this challenge, but most existing tools only instrument specific components within the I/O subsystem that provide a limited perspective on I/O performance. The increasing diversity of scientificmore » applications and computing platforms calls for greater flexibililty and scope in I/O characterization.« less

  15. Research on private cloud computing based on analysis on typical opensource platform: a case study with Eucalyptus and Wavemaker

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoyuan; Yuan, Jian; Chen, Shi

    2013-03-01

    Cloud computing is one of the most popular topics in the IT industry and is recently being adopted by many companies. It has four development models, as: public cloud, community cloud, hybrid cloud and private cloud. Except others, private cloud can be implemented in a private network, and delivers some benefits of cloud computing without pitfalls. This paper makes a comparison of typical open source platforms through which we can implement a private cloud. After this comparison, we choose Eucalyptus and Wavemaker to do a case study on the private cloud. We also do some performance estimation of cloud platform services and development of prototype software as cloud services.

  16. Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing

    PubMed Central

    Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong

    2014-01-01

    This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931

  17. Design Strategy for a Formally Verified Reliable Computing Platform

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Caldwell, James L.; DiVito, Ben L.

    1991-01-01

    This paper presents a high-level design for a reliable computing platform for real-time control applications. The design tradeoffs and analyses related to the development of a formally verified reliable computing platform are discussed. The design strategy advocated in this paper requires the use of techniques that can be completely characterized mathematically as opposed to more powerful or more flexible algorithms whose performance properties can only be analyzed by simulation and testing. The need for accurate reliability models that can be related to the behavior models is also stressed. Tradeoffs between reliability and voting complexity are explored. In particular, the transient recovery properties of the system are found to be fundamental to both the reliability analysis as well as the "correctness" models.

  18. Superconducting Optoelectronic Circuits for Neuromorphic Computing

    NASA Astrophysics Data System (ADS)

    Shainline, Jeffrey M.; Buckley, Sonia M.; Mirin, Richard P.; Nam, Sae Woo

    2017-03-01

    Neural networks have proven effective for solving many difficult computational problems, yet implementing complex neural networks in software is computationally expensive. To explore the limits of information processing, it is necessary to implement new hardware platforms with large numbers of neurons, each with a large number of connections to other neurons. Here we propose a hybrid semiconductor-superconductor hardware platform for the implementation of neural networks and large-scale neuromorphic computing. The platform combines semiconducting few-photon light-emitting diodes with superconducting-nanowire single-photon detectors to behave as spiking neurons. These processing units are connected via a network of optical waveguides, and variable weights of connection can be implemented using several approaches. The use of light as a signaling mechanism overcomes fanout and parasitic constraints on electrical signals while simultaneously introducing physical degrees of freedom which can be employed for computation. The use of supercurrents achieves the low power density (1 mW /cm2 at 20-MHz firing rate) necessary to scale to systems with enormous entropy. Estimates comparing the proposed hardware platform to a human brain show that with the same number of neurons (1 011) and 700 independent connections per neuron, the hardware presented here may achieve an order of magnitude improvement in synaptic events per second per watt.

  19. TDat: An Efficient Platform for Processing Petabyte-Scale Whole-Brain Volumetric Images.

    PubMed

    Li, Yuxin; Gong, Hui; Yang, Xiaoquan; Yuan, Jing; Jiang, Tao; Li, Xiangning; Sun, Qingtao; Zhu, Dan; Wang, Zhenyu; Luo, Qingming; Li, Anan

    2017-01-01

    Three-dimensional imaging of whole mammalian brains at single-neuron resolution has generated terabyte (TB)- and even petabyte (PB)-sized datasets. Due to their size, processing these massive image datasets can be hindered by the computer hardware and software typically found in biological laboratories. To fill this gap, we have developed an efficient platform named TDat, which adopts a novel data reformatting strategy by reading cuboid data and employing parallel computing. In data reformatting, TDat is more efficient than any other software. In data accessing, we adopted parallelization to fully explore the capability for data transmission in computers. We applied TDat in large-volume data rigid registration and neuron tracing in whole-brain data with single-neuron resolution, which has never been demonstrated in other studies. We also showed its compatibility with various computing platforms, image processing software and imaging systems.

  20. An innovative and multi-functional smart vibration platform

    NASA Astrophysics Data System (ADS)

    Olmi, C.; Song, G.; Mo, Y. L.

    2007-08-01

    Recently, there has been increasing efforts to incorporate vibration damping or energy dissipation mechanisms into civil structures, particularly by using smart materials technologies. Although papers about structural vibration control using smart materials have been published for more than two decades, there has been little research in developing teaching equipment to introduce smart materials to students via in-classroom demonstration or hands-on experiments. In this paper, an innovative and multi-functional smart vibration platform (SVP) has been developed by the Smart Materials and Structures Laboratory at the University of Houston to demonstrate vibration control techniques using multiple smart materials for educational and research purposes. The vibration is generated by a motor with a mass imbalance mounted on top of the frame. Shape memory alloys (SMA) and magneto-rheological (MR) fluid are used to increase the stiffness and damping ratio, respectively, while a piezoceramic sensor (lead zirconate titanate, or PZT) is used as a vibration sensing device. An electrical circuit has been designed to control the platform in computer-control or manual mode through the use of knobs. The former mode allows for an automated demonstration, while the latter requires the user to manually adjust the stiffness and damping ratio of the frame. In addition, the system accepts network connections and can be used in a remote experiment via the internet. This platform has great potential to become an effective tool for teaching vibration control and smart materials technologies to students in civil, mechanical and electrical engineering for both education and research purposes.

  1. Resealable, optically accessible, PDMS-free fluidic platform for ex vivo interrogation of pancreatic islets.

    PubMed

    Lenguito, Giovanni; Chaimov, Deborah; Weitz, Jonathan R; Rodriguez-Diaz, Rayner; Rawal, Siddarth A K; Tamayo-Garcia, Alejandro; Caicedo, Alejandro; Stabler, Cherie L; Buchwald, Peter; Agarwal, Ashutosh

    2017-02-28

    We report the design and fabrication of a robust fluidic platform built out of inert plastic materials and micromachined features that promote optimized convective fluid transport. The platform is tested for perfusion interrogation of rodent and human pancreatic islets, dynamic secretion of hormones, concomitant live-cell imaging, and optogenetic stimulation of genetically engineered islets. A coupled quantitative fluid dynamics computational model of glucose stimulated insulin secretion and fluid dynamics was first utilized to design device geometries that are optimal for complete perfusion of three-dimensional islets, effective collection of secreted insulin, and minimization of system volumes and associated delays. Fluidic devices were then fabricated through rapid prototyping techniques, such as micromilling and laser engraving, as two interlocking parts from materials that are non-absorbent and inert. Finally, the assembly was tested for performance using both rodent and human islets with multiple assays conducted in parallel, such as dynamic perfusion, staining and optogenetics on standard microscopes, as well as for integration with commercial perfusion machines. The optimized design of convective fluid flows, use of bio-inert and non-absorbent materials, reversible assembly, manual access for loading and unloading of islets, and straightforward integration with commercial imaging and fluid handling systems proved to be critical for perfusion assay, and particularly suited for time-resolved optogenetics studies.

  2. Development of a scalable generic platform for adaptive optics real time control

    NASA Astrophysics Data System (ADS)

    Surendran, Avinash; Burse, Mahesh P.; Ramaprakash, A. N.; Parihar, Padmakar

    2015-06-01

    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well-defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.

  3. Interfacing HTCondor-CE with OpenStack

    NASA Astrophysics Data System (ADS)

    Bockelman, B.; Caballero Bejar, J.; Hover, J.

    2017-10-01

    Over the past few years, Grid Computing technologies have reached a high level of maturity. One key aspect of this success has been the development and adoption of newer Compute Elements to interface the external Grid users with local batch systems. These new Compute Elements allow for better handling of jobs requirements and a more precise management of diverse local resources. However, despite this level of maturity, the Grid Computing world is lacking diversity in local execution platforms. As Grid Computing technologies have historically been driven by the needs of the High Energy Physics community, most resource providers run the platform (operating system version and architecture) that best suits the needs of their particular users. In parallel, the development of virtualization and cloud technologies has accelerated recently, making available a variety of solutions, both commercial and academic, proprietary and open source. Virtualization facilitates performing computational tasks on platforms not available at most computing sites. This work attempts to join the technologies, allowing users to interact with computing sites through one of the standard Computing Elements, HTCondor-CE, but running their jobs within VMs on a local cloud platform, OpenStack, when needed. The system will re-route, in a transparent way, end user jobs into dynamically-launched VM worker nodes when they have requirements that cannot be satisfied by the static local batch system nodes. Also, once the automated mechanisms are in place, it becomes straightforward to allow an end user to invoke a custom Virtual Machine at the site. This will allow cloud resources to be used without requiring the user to establish a separate account. Both scenarios are described in this work.

  4. COINSTAC: A Privacy Enabled Model and Prototype for Leveraging and Processing Decentralized Brain Imaging Data.

    PubMed

    Plis, Sergey M; Sarwate, Anand D; Wood, Dylan; Dieringer, Christopher; Landis, Drew; Reed, Cory; Panta, Sandeep R; Turner, Jessica A; Shoemaker, Jody M; Carter, Kim W; Thompson, Paul; Hutchison, Kent; Calhoun, Vince D

    2016-01-01

    The field of neuroimaging has embraced the need for sharing and collaboration. Data sharing mandates from public funding agencies and major journal publishers have spurred the development of data repositories and neuroinformatics consortia. However, efficient and effective data sharing still faces several hurdles. For example, open data sharing is on the rise but is not suitable for sensitive data that are not easily shared, such as genetics. Current approaches can be cumbersome (such as negotiating multiple data sharing agreements). There are also significant data transfer, organization and computational challenges. Centralized repositories only partially address the issues. We propose a dynamic, decentralized platform for large scale analyses called the Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation (COINSTAC). The COINSTAC solution can include data missing from central repositories, allows pooling of both open and "closed" repositories by developing privacy-preserving versions of widely-used algorithms, and incorporates the tools within an easy-to-use platform enabling distributed computation. We present an initial prototype system which we demonstrate on two multi-site data sets, without aggregating the data. In addition, by iterating across sites, the COINSTAC model enables meta-analytic solutions to converge to "pooled-data" solutions (i.e., as if the entire data were in hand). More advanced approaches such as feature generation, matrix factorization models, and preprocessing can be incorporated into such a model. In sum, COINSTAC enables access to the many currently unavailable data sets, a user friendly privacy enabled interface for decentralized analysis, and a powerful solution that complements existing data sharing solutions.

  5. COINSTAC: A Privacy Enabled Model and Prototype for Leveraging and Processing Decentralized Brain Imaging Data

    PubMed Central

    Plis, Sergey M.; Sarwate, Anand D.; Wood, Dylan; Dieringer, Christopher; Landis, Drew; Reed, Cory; Panta, Sandeep R.; Turner, Jessica A.; Shoemaker, Jody M.; Carter, Kim W.; Thompson, Paul; Hutchison, Kent; Calhoun, Vince D.

    2016-01-01

    The field of neuroimaging has embraced the need for sharing and collaboration. Data sharing mandates from public funding agencies and major journal publishers have spurred the development of data repositories and neuroinformatics consortia. However, efficient and effective data sharing still faces several hurdles. For example, open data sharing is on the rise but is not suitable for sensitive data that are not easily shared, such as genetics. Current approaches can be cumbersome (such as negotiating multiple data sharing agreements). There are also significant data transfer, organization and computational challenges. Centralized repositories only partially address the issues. We propose a dynamic, decentralized platform for large scale analyses called the Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation (COINSTAC). The COINSTAC solution can include data missing from central repositories, allows pooling of both open and “closed” repositories by developing privacy-preserving versions of widely-used algorithms, and incorporates the tools within an easy-to-use platform enabling distributed computation. We present an initial prototype system which we demonstrate on two multi-site data sets, without aggregating the data. In addition, by iterating across sites, the COINSTAC model enables meta-analytic solutions to converge to “pooled-data” solutions (i.e., as if the entire data were in hand). More advanced approaches such as feature generation, matrix factorization models, and preprocessing can be incorporated into such a model. In sum, COINSTAC enables access to the many currently unavailable data sets, a user friendly privacy enabled interface for decentralized analysis, and a powerful solution that complements existing data sharing solutions. PMID:27594820

  6. Cloud Computing with iPlant Atmosphere.

    PubMed

    McKay, Sheldon J; Skidmore, Edwin J; LaRose, Christopher J; Mercer, Andre W; Noutsos, Christos

    2013-10-15

    Cloud Computing refers to distributed computing platforms that use virtualization software to provide easy access to physical computing infrastructure and data storage, typically administered through a Web interface. Cloud-based computing provides access to powerful servers, with specific software and virtual hardware configurations, while eliminating the initial capital cost of expensive computers and reducing the ongoing operating costs of system administration, maintenance contracts, power consumption, and cooling. This eliminates a significant barrier to entry into bioinformatics and high-performance computing for many researchers. This is especially true of free or modestly priced cloud computing services. The iPlant Collaborative offers a free cloud computing service, Atmosphere, which allows users to easily create and use instances on virtual servers preconfigured for their analytical needs. Atmosphere is a self-service, on-demand platform for scientific computing. This unit demonstrates how to set up, access and use cloud computing in Atmosphere. Copyright © 2013 John Wiley & Sons, Inc.

  7. Optical RISC computer

    NASA Astrophysics Data System (ADS)

    Guilfoyle, Peter S.; Stone, Richard V.; Hessenbruch, John M.; Zeise, Frederick F.

    1993-07-01

    A second generation digital optical computer (DOC II) has been developed which utilizes a RISC based operating system as its host. This 32 bit, high performance (12.8 GByte/sec), computing platform demonstrates a number of basic principals that are inherent to parallel free space optical interconnects such as speed (up to 1012 bit operations per second) and low power 1.2 fJ per bit). Although DOC II is a general purpose machine, special purpose applications have been developed and are currently being evaluated on the optical platform.

  8. SOI layout decomposition for double patterning lithography on high-performance computer platforms

    NASA Astrophysics Data System (ADS)

    Verstov, Vladimir; Zinchenko, Lyudmila; Makarchuk, Vladimir

    2014-12-01

    In the paper silicon on insulator layout decomposition algorithms for the double patterning lithography on high performance computing platforms are discussed. Our approach is based on the use of a contradiction graph and a modified concurrent breadth-first search algorithm. We evaluate our technique on 45 nm Nangate Open Cell Library including non-Manhattan geometry. Experimental results show that our soft computing algorithms decompose layout successfully and a minimal distance between polygons in layout is increased.

  9. Transitioning ISR architecture into the cloud

    NASA Astrophysics Data System (ADS)

    Lash, Thomas D.

    2012-06-01

    Emerging cloud computing platforms offer an ideal opportunity for Intelligence, Surveillance, and Reconnaissance (ISR) intelligence analysis. Cloud computing platforms help overcome challenges and limitations of traditional ISR architectures. Modern ISR architectures can benefit from examining commercial cloud applications, especially as they relate to user experience, usage profiling, and transformational business models. This paper outlines legacy ISR architectures and their limitations, presents an overview of cloud technologies and their applications to the ISR intelligence mission, and presents an idealized ISR architecture implemented with cloud computing.

  10. Comparison of single cell sequencing data between two whole genome amplification methods on two sequencing platforms.

    PubMed

    Chen, DaYang; Zhen, HeFu; Qiu, Yong; Liu, Ping; Zeng, Peng; Xia, Jun; Shi, QianYu; Xie, Lin; Zhu, Zhu; Gao, Ya; Huang, GuoDong; Wang, Jian; Yang, HuanMing; Chen, Fang

    2018-03-21

    Research based on a strategy of single-cell low-coverage whole genome sequencing (SLWGS) has enabled better reproducibility and accuracy for detection of copy number variations (CNVs). The whole genome amplification (WGA) method and sequencing platform are critical factors for successful SLWGS (<0.1 × coverage). In this study, we compared single cell and multiple cells sequencing data produced by the HiSeq2000 and Ion Proton platforms using two WGA kits and then comprehensively evaluated the GC-bias, reproducibility, uniformity and CNV detection among different experimental combinations. Our analysis demonstrated that the PicoPLEX WGA Kit resulted in higher reproducibility, lower sequencing error frequency but more GC-bias than the GenomePlex Single Cell WGA Kit (WGA4 kit) independent of the cell number on the HiSeq2000 platform. While on the Ion Proton platform, the WGA4 kit (both single cell and multiple cells) had higher uniformity and less GC-bias but lower reproducibility than those of the PicoPLEX WGA Kit. Moreover, on these two sequencing platforms, depending on cell number, the performance of the two WGA kits was different for both sensitivity and specificity on CNV detection. The results can help researchers who plan to use SLWGS on single or multiple cells to select appropriate experimental conditions for their applications.

  11. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    NASA Technical Reports Server (NTRS)

    Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce

    2011-01-01

    Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases

  12. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices.

    PubMed

    Chen, Guan-Hua; Chen, Wei-Yu; Yen, Yu-Chun; Wang, Chia-Wei; Chang, Huan-Tsung; Chen, Chien-Fu

    2014-07-15

    An on-field colorimetric sensing strategy employing gold nanoparticles (AuNPs) and a paper-based analytical platform was investigated for mercury ion (Hg(2+)) detection at water sources. By utilizing thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry, label-free detection oligonucleotide sequences were attached to unmodified gold nanoparticles to provide rapid mercury ion sensing without complicated and time-consuming thiolated or other costly labeled probe preparation processes. Not only is this strategy's sensing mechanism specific toward Hg(2+), rather than other metal ions, but also the conformational change in the detection oligonucleotide sequences introduces different degrees of AuNP aggregation that causes the color of AuNPs to exhibit a mixture variance. To eliminate the use of sophisticated equipment and minimize the power requirement for data analysis and transmission, the color variance of multiple detection results were transferred and concentrated on cellulose-based paper analytical devices, and the data were subsequently transmitted for the readout and storage of results using cloud computing via a smartphone. As a result, a detection limit of 50 nM for Hg(2+) spiked pond and river water could be achieved. Furthermore, multiple tests could be performed simultaneously with a 40 min turnaround time. These results suggest that the proposed platform possesses the capability for sensitive and high-throughput on-site mercury pollution monitoring in resource-constrained settings.

  13. Integration of lyoplate based flow cytometry and computational analysis for standardized immunological biomarker discovery.

    PubMed

    Villanova, Federica; Di Meglio, Paola; Inokuma, Margaret; Aghaeepour, Nima; Perucha, Esperanza; Mollon, Jennifer; Nomura, Laurel; Hernandez-Fuentes, Maria; Cope, Andrew; Prevost, A Toby; Heck, Susanne; Maino, Vernon; Lord, Graham; Brinkman, Ryan R; Nestle, Frank O

    2013-01-01

    Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid) flow cytometry platform (CFP) and a unique lyoplate-based flow cytometry platform (LFP) in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10) and activation markers (Foxp3 and CD25). Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases.

  14. Integration of Lyoplate Based Flow Cytometry and Computational Analysis for Standardized Immunological Biomarker Discovery

    PubMed Central

    Villanova, Federica; Di Meglio, Paola; Inokuma, Margaret; Aghaeepour, Nima; Perucha, Esperanza; Mollon, Jennifer; Nomura, Laurel; Hernandez-Fuentes, Maria; Cope, Andrew; Prevost, A. Toby; Heck, Susanne; Maino, Vernon; Lord, Graham; Brinkman, Ryan R.; Nestle, Frank O.

    2013-01-01

    Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid) flow cytometry platform (CFP) and a unique lyoplate-based flow cytometry platform (LFP) in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10) and activation markers (Foxp3 and CD25). Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases. PMID:23843942

  15. Making Spatial Statistics Service Accessible On Cloud Platform

    NASA Astrophysics Data System (ADS)

    Mu, X.; Wu, J.; Li, T.; Zhong, Y.; Gao, X.

    2014-04-01

    Web service can bring together applications running on diverse platforms, users can access and share various data, information and models more effectively and conveniently from certain web service platform. Cloud computing emerges as a paradigm of Internet computing in which dynamical, scalable and often virtualized resources are provided as services. With the rampant growth of massive data and restriction of net, traditional web services platforms have some prominent problems existing in development such as calculation efficiency, maintenance cost and data security. In this paper, we offer a spatial statistics service based on Microsoft cloud. An experiment was carried out to evaluate the availability and efficiency of this service. The results show that this spatial statistics service is accessible for the public conveniently with high processing efficiency.

  16. High performance GPU processing for inversion using uniform grid searches

    NASA Astrophysics Data System (ADS)

    Venetis, Ioannis E.; Saltogianni, Vasso; Stiros, Stathis; Gallopoulos, Efstratios

    2017-04-01

    Many geophysical problems are described by systems of redundant, highly non-linear systems of ordinary equations with constant terms deriving from measurements and hence representing stochastic variables. Solution (inversion) of such problems is based on numerical, optimization methods, based on Monte Carlo sampling or on exhaustive searches in cases of two or even three "free" unknown variables. Recently the TOPological INVersion (TOPINV) algorithm, a grid search-based technique in the Rn space, has been proposed. TOPINV is not based on the minimization of a certain cost function and involves only forward computations, hence avoiding computational errors. The basic concept is to transform observation equations into inequalities on the basis of an optimization parameter k and of their standard errors, and through repeated "scans" of n-dimensional search grids for decreasing values of k to identify the optimal clusters of gridpoints which satisfy observation inequalities and by definition contain the "true" solution. Stochastic optimal solutions and their variance-covariance matrices are then computed as first and second statistical moments. Such exhaustive uniform searches produce an excessive computational load and are extremely time consuming for common computers based on a CPU. An alternative is to use a computing platform based on a GPU, which nowadays is affordable to the research community, which provides a much higher computing performance. Using the CUDA programming language to implement TOPINV allows the investigation of the attained speedup in execution time on such a high performance platform. Based on synthetic data we compared the execution time required for two typical geophysical problems, modeling magma sources and seismic faults, described with up to 18 unknown variables, on both CPU/FORTRAN and GPU/CUDA platforms. The same problems for several different sizes of search grids (up to 1012 gridpoints) and numbers of unknown variables were solved on both platforms, and execution time as a function of the grid dimension for each problem was recorded. Results indicate an average speedup in calculations by a factor of 100 on the GPU platform; for example problems with 1012 grid-points require less than two hours instead of several days on conventional desktop computers. Such a speedup encourages the application of TOPINV on high performance platforms, as a GPU, in cases where nearly real time decisions are necessary, for example finite fault modeling to identify possible tsunami sources.

  17. A hybrid computational strategy to address WGS variant analysis in >5000 samples.

    PubMed

    Huang, Zhuoyi; Rustagi, Navin; Veeraraghavan, Narayanan; Carroll, Andrew; Gibbs, Richard; Boerwinkle, Eric; Venkata, Manjunath Gorentla; Yu, Fuli

    2016-09-10

    The decreasing costs of sequencing are driving the need for cost effective and real time variant calling of whole genome sequencing data. The scale of these projects are far beyond the capacity of typical computing resources available with most research labs. Other infrastructures like the cloud AWS environment and supercomputers also have limitations due to which large scale joint variant calling becomes infeasible, and infrastructure specific variant calling strategies either fail to scale up to large datasets or abandon joint calling strategies. We present a high throughput framework including multiple variant callers for single nucleotide variant (SNV) calling, which leverages hybrid computing infrastructure consisting of cloud AWS, supercomputers and local high performance computing infrastructures. We present a novel binning approach for large scale joint variant calling and imputation which can scale up to over 10,000 samples while producing SNV callsets with high sensitivity and specificity. As a proof of principle, we present results of analysis on Cohorts for Heart And Aging Research in Genomic Epidemiology (CHARGE) WGS freeze 3 dataset in which joint calling, imputation and phasing of over 5300 whole genome samples was produced in under 6 weeks using four state-of-the-art callers. The callers used were SNPTools, GATK-HaplotypeCaller, GATK-UnifiedGenotyper and GotCloud. We used Amazon AWS, a 4000-core in-house cluster at Baylor College of Medicine, IBM power PC Blue BioU at Rice and Rhea at Oak Ridge National Laboratory (ORNL) for the computation. AWS was used for joint calling of 180 TB of BAM files, and ORNL and Rice supercomputers were used for the imputation and phasing step. All other steps were carried out on the local compute cluster. The entire operation used 5.2 million core hours and only transferred a total of 6 TB of data across the platforms. Even with increasing sizes of whole genome datasets, ensemble joint calling of SNVs for low coverage data can be accomplished in a scalable, cost effective and fast manner by using heterogeneous computing platforms without compromising on the quality of variants.

  18. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation.

    PubMed

    Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui

    2011-10-01

    Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi-scale electrical phenomena during atrial conduction and AF arrhythmogenesis. Results of such simulations can be directly compared with electrophysiological and endocardial mapping data, as well as clinical ECG recordings. The virtual human atria can provide in-depth insights into 3D excitation propagation processes within atrial walls of a whole heart in vivo, which is beyond the current technical capabilities of experimental or clinical set-ups. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Optofluidic devices for biomolecule sensing and multiplexing

    NASA Astrophysics Data System (ADS)

    Ozcelik, Damla

    Optofluidics which integrates photonics and microfluidics, has led to highly compact, sensitive and adaptable biomedical sensors. Optofluidic biosensors based on liquid-core anti-resonant reflecting optical waveguides (LC-ARROWs), have proven to be a highly sensitive, portable, and reconfigurable platform for fluorescence spectroscopy and detection of single biomolecules such as proteins, nucleic acids, and virus particles. However, continued improvements in sensitivity remain a major goal as we approach the ultimate limit of detecting individual bio-particles labeled by single or few fluorophores. Additionally, the ability to simultaneously detect and identify multiple biological particles or biomarkers is one of the key requirements for molecular diagnostic tests. The compactness and adaptability of these platforms can further be advanced by introducing tunability, integrating off-chip components, designing reconfigurable and customizable devices, which makes these platforms very good candidates for many different applications. The goal of this thesis was to introduce new elements in these LC-ARROW optofluidics platforms that provide major enhancements in their functionality, making them more sensitive, compact, customizable and multiplexed. First, a novel integrated tunable spectral filter that achieves effective elimination of background noise on the ARROW platform was demonstrated. A unique dual liquid-core design enabled the independent multi-wavelength tuning of the spectral filter by adjusting the refractive index and chemical properties of the liquid. In order to enhance the detection sensitivity of the platform, Y-splitter waveguides were integrated to create multiple excitation spots for each target molecule. A powerful signal processing algorithm was used to analyze the data to improve the signal-to-noise ratio (SNR) of the collected data. Next, the design, optimization and characterization of the Y-splitter waveguides are presented; and single influenza virus detection with an improved SNR was demonstrated using this platform. Finally, multiplexing capacity is introduced to the ARROW detection platform by integrating multi-mode interference (MMI) waveguides. MMI waveguides create wavelength dependent multiple excitation spots at the excitation region, allowing the spectral multiplexed detection of multiple different target molecules based on the excitation pattern, without the need for additional spectral filters. Successful spectral multiplexed detection of three different types of influenza viruses is achieved by using separate wavelengths and combination of wavelengths. This multiplexing capacity is further enhanced by taking advantage of the spatial properties of the MMI pattern, designing triple liquid-core waveguides that intersect the MMI waveguide in different locations. Furthermore, the spectral and spatial multiplexing capacities are combined in these triple liquid-core MMI platforms, allowing these devices to distinguish multiple different targets and samples simultaneously.

  20. A Set of Free Cross-Platform Authoring Programs for Flexible Web-Based CALL Exercises

    ERIC Educational Resources Information Center

    O'Brien, Myles

    2012-01-01

    The Mango Suite is a set of three freely downloadable cross-platform authoring programs for flexible network-based CALL exercises. They are Adobe Air applications, so they can be used on Windows, Macintosh, or Linux computers, provided the freely-available Adobe Air has been installed on the computer. The exercises which the programs generate are…

  1. Strategic Integration of Multiple Bioinformatics Resources for System Level Analysis of Biological Networks.

    PubMed

    D'Souza, Mark; Sulakhe, Dinanath; Wang, Sheng; Xie, Bing; Hashemifar, Somaye; Taylor, Andrew; Dubchak, Inna; Conrad Gilliam, T; Maltsev, Natalia

    2017-01-01

    Recent technological advances in genomics allow the production of biological data at unprecedented tera- and petabyte scales. Efficient mining of these vast and complex datasets for the needs of biomedical research critically depends on a seamless integration of the clinical, genomic, and experimental information with prior knowledge about genotype-phenotype relationships. Such experimental data accumulated in publicly available databases should be accessible to a variety of algorithms and analytical pipelines that drive computational analysis and data mining.We present an integrated computational platform Lynx (Sulakhe et al., Nucleic Acids Res 44:D882-D887, 2016) ( http://lynx.cri.uchicago.edu ), a web-based database and knowledge extraction engine. It provides advanced search capabilities and a variety of algorithms for enrichment analysis and network-based gene prioritization. It gives public access to the Lynx integrated knowledge base (LynxKB) and its analytical tools via user-friendly web services and interfaces. The Lynx service-oriented architecture supports annotation and analysis of high-throughput experimental data. Lynx tools assist the user in extracting meaningful knowledge from LynxKB and experimental data, and in the generation of weighted hypotheses regarding the genes and molecular mechanisms contributing to human phenotypes or conditions of interest. The goal of this integrated platform is to support the end-to-end analytical needs of various translational projects.

  2. Scaling up high throughput field phenotyping of corn and soy research plots using ground rovers

    NASA Astrophysics Data System (ADS)

    Peshlov, Boyan; Nakarmi, Akash; Baldwin, Steven; Essner, Scott; French, Jasenka

    2017-05-01

    Crop improvement programs require large and meticulous selection processes that effectively and accurately collect and analyze data to generate quality plant products as efficiently as possible, develop superior cropping and/or crop improvement methods. Typically, data collection for such testing is performed by field teams using hand-held instruments or manually-controlled devices. Although steps are taken to reduce error, the data collected in such manner can be unreliable due to human error and fatigue, which reduces the ability to make accurate selection decisions. Monsanto engineering teams have developed a high-clearance mobile platform (Rover) as a step towards high throughput and high accuracy phenotyping at an industrial scale. The rovers are equipped with GPS navigation, multiple cameras and sensors and on-board computers to acquire data and compute plant vigor metrics per plot. The supporting IT systems enable automatic path planning, plot identification, image and point cloud data QA/QC and near real-time analysis where results are streamed to enterprise databases for additional statistical analysis and product advancement decisions. Since the rover program was launched in North America in 2013, the number of research plots we can analyze in a growing season has expanded dramatically. This work describes some of the successes and challenges in scaling up of the rover platform for automated phenotyping to enable science at scale.

  3. Development of a Cloud Computing-Based Pier Type Port Structure Stability Evaluation Platform Using Fiber Bragg Grating Sensors.

    PubMed

    Jo, Byung Wan; Jo, Jun Ho; Khan, Rana Muhammad Asad; Kim, Jung Hoon; Lee, Yun Sung

    2018-05-23

    Structure Health Monitoring is a topic of great interest in port structures due to the ageing of structures and the limitations of evaluating structures. This paper presents a cloud computing-based stability evaluation platform for a pier type port structure using Fiber Bragg Grating (FBG) sensors in a system consisting of a FBG strain sensor, FBG displacement gauge, FBG angle meter, gateway, and cloud computing-based web server. The sensors were installed on core components of the structure and measurements were taken to evaluate the structures. The measurement values were transmitted to the web server via the gateway to analyze and visualize them. All data were analyzed and visualized in the web server to evaluate the structure based on the safety evaluation index (SEI). The stability evaluation platform for pier type port structures involves the efficient monitoring of the structures which can be carried out easily anytime and anywhere by converging new technologies such as cloud computing and FBG sensors. In addition, the platform has been successfully implemented at “Maryang Harbor” situated in Maryang-Meyon of Korea to test its durability.

  4. 20170312 - Computer Simulation of Developmental ...

    EPA Pesticide Factsheets

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  5. Computer Simulation of Developmental Processes and ...

    EPA Pesticide Factsheets

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  6. Numerical Technology for Large-Scale Computational Electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, R; Champagne, N; White, D

    The key bottleneck of implicit computational electromagnetics tools for large complex geometries is the solution of the resulting linear system of equations. The goal of this effort was to research and develop critical numerical technology that alleviates this bottleneck for large-scale computational electromagnetics (CEM). The mathematical operators and numerical formulations used in this arena of CEM yield linear equations that are complex valued, unstructured, and indefinite. Also, simultaneously applying multiple mathematical modeling formulations to different portions of a complex problem (hybrid formulations) results in a mixed structure linear system, further increasing the computational difficulty. Typically, these hybrid linear systems aremore » solved using a direct solution method, which was acceptable for Cray-class machines but does not scale adequately for ASCI-class machines. Additionally, LLNL's previously existing linear solvers were not well suited for the linear systems that are created by hybrid implicit CEM codes. Hence, a new approach was required to make effective use of ASCI-class computing platforms and to enable the next generation design capabilities. Multiple approaches were investigated, including the latest sparse-direct methods developed by our ASCI collaborators. In addition, approaches that combine domain decomposition (or matrix partitioning) with general-purpose iterative methods and special purpose pre-conditioners were investigated. Special-purpose pre-conditioners that take advantage of the structure of the matrix were adapted and developed based on intimate knowledge of the matrix properties. Finally, new operator formulations were developed that radically improve the conditioning of the resulting linear systems thus greatly reducing solution time. The goal was to enable the solution of CEM problems that are 10 to 100 times larger than our previous capability.« less

  7. Solving optimization problems on computational grids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, S. J.; Mathematics and Computer Science

    2001-05-01

    Multiprocessor computing platforms, which have become more and more widely available since the mid-1980s, are now heavily used by organizations that need to solve very demanding computational problems. Parallel computing is now central to the culture of many research communities. Novel parallel approaches were developed for global optimization, network optimization, and direct-search methods for nonlinear optimization. Activity was particularly widespread in parallel branch-and-bound approaches for various problems in combinatorial and network optimization. As the cost of personal computers and low-end workstations has continued to fall, while the speed and capacity of processors and networks have increased dramatically, 'cluster' platforms havemore » become popular in many settings. A somewhat different type of parallel computing platform know as a computational grid (alternatively, metacomputer) has arisen in comparatively recent times. Broadly speaking, this term refers not to a multiprocessor with identical processing nodes but rather to a heterogeneous collection of devices that are widely distributed, possibly around the globe. The advantage of such platforms is obvious: they have the potential to deliver enormous computing power. Just as obviously, however, the complexity of grids makes them very difficult to use. The Condor team, headed by Miron Livny at the University of Wisconsin, were among the pioneers in providing infrastructure for grid computations. More recently, the Globus project has developed technologies to support computations on geographically distributed platforms consisting of high-end computers, storage and visualization devices, and other scientific instruments. In 1997, we started the metaneos project as a collaborative effort between optimization specialists and the Condor and Globus groups. Our aim was to address complex, difficult optimization problems in several areas, designing and implementing the algorithms and the software infrastructure need to solve these problems on computational grids. This article describes some of the results we have obtained during the first three years of the metaneos project. Our efforts have led to development of the runtime support library MW for implementing algorithms with master-worker control structure on Condor platforms. This work is discussed here, along with work on algorithms and codes for integer linear programming, the quadratic assignment problem, and stochastic linear programmming. Our experiences in the metaneos project have shown that cheap, powerful computational grids can be used to tackle large optimization problems of various types. In an industrial or commercial setting, the results demonstrate that one may not have to buy powerful computational servers to solve many of the large problems arising in areas such as scheduling, portfolio optimization, or logistics; the idle time on employee workstations (or, at worst, an investment in a modest cluster of PCs) may do the job. For the optimization research community, our results motivate further work on parallel, grid-enabled algorithms for solving very large problems of other types. The fact that very large problems can be solved cheaply allows researchers to better understand issues of 'practical' complexity and of the role of heuristics.« less

  8. Waggle: A Framework for Intelligent Attentive Sensing and Actuation

    NASA Astrophysics Data System (ADS)

    Sankaran, R.; Jacob, R. L.; Beckman, P. H.; Catlett, C. E.; Keahey, K.

    2014-12-01

    Advances in sensor-driven computation and computationally steered sensing will greatly enable future research in fields including environmental and atmospheric sciences. We will present "Waggle," an open-source hardware and software infrastructure developed with two goals: (1) reducing the separation and latency between sensing and computing and (2) improving the reliability and longevity of sensing-actuation platforms in challenging and costly deployments. Inspired by "deep-space probe" systems, the Waggle platform design includes features that can support longitudinal studies, deployments with varying communication links, and remote management capabilities. Waggle lowers the barrier for scientists to incorporate real-time data from their sensors into their computations and to manipulate the sensors or provide feedback through actuators. A standardized software and hardware design allows quick addition of new sensors/actuators and associated software in the nodes and enables them to be coupled with computational codes both insitu and on external compute infrastructure. The Waggle framework currently drives the deployment of two observational systems - a portable and self-sufficient weather platform for study of small-scale effects in Chicago's urban core and an open-ended distributed instrument in Chicago that aims to support several research pursuits across a broad range of disciplines including urban planning, microbiology and computer science. Built around open-source software, hardware, and Linux OS, the Waggle system comprises two components - the Waggle field-node and Waggle cloud-computing infrastructure. Waggle field-node affords a modular, scalable, fault-tolerant, secure, and extensible platform for hosting sensors and actuators in the field. It supports insitu computation and data storage, and integration with cloud-computing infrastructure. The Waggle cloud infrastructure is designed with the goal of scaling to several hundreds of thousands of Waggle nodes. It supports aggregating data from sensors hosted by the nodes, staging computation, relaying feedback to the nodes and serving data to end-users. We will discuss the Waggle design principles and their applicability to various observational research pursuits, and demonstrate its capabilities.

  9. Parallelization of the Physical-Space Statistical Analysis System (PSAS)

    NASA Technical Reports Server (NTRS)

    Larson, J. W.; Guo, J.; Lyster, P. M.

    1999-01-01

    Atmospheric data assimilation is a method of combining observations with model forecasts to produce a more accurate description of the atmosphere than the observations or forecast alone can provide. Data assimilation plays an increasingly important role in the study of climate and atmospheric chemistry. The NASA Data Assimilation Office (DAO) has developed the Goddard Earth Observing System Data Assimilation System (GEOS DAS) to create assimilated datasets. The core computational components of the GEOS DAS include the GEOS General Circulation Model (GCM) and the Physical-space Statistical Analysis System (PSAS). The need for timely validation of scientific enhancements to the data assimilation system poses computational demands that are best met by distributed parallel software. PSAS is implemented in Fortran 90 using object-based design principles. The analysis portions of the code solve two equations. The first of these is the "innovation" equation, which is solved on the unstructured observation grid using a preconditioned conjugate gradient (CG) method. The "analysis" equation is a transformation from the observation grid back to a structured grid, and is solved by a direct matrix-vector multiplication. Use of a factored-operator formulation reduces the computational complexity of both the CG solver and the matrix-vector multiplication, rendering the matrix-vector multiplications as a successive product of operators on a vector. Sparsity is introduced to these operators by partitioning the observations using an icosahedral decomposition scheme. PSAS builds a large (approx. 128MB) run-time database of parameters used in the calculation of these operators. Implementing a message passing parallel computing paradigm into an existing yet developing computational system as complex as PSAS is nontrivial. One of the technical challenges is balancing the requirements for computational reproducibility with the need for high performance. The problem of computational reproducibility is well known in the parallel computing community. It is a requirement that the parallel code perform calculations in a fashion that will yield identical results on different configurations of processing elements on the same platform. In some cases this problem can be solved by sacrificing performance. Meeting this requirement and still achieving high performance is very difficult. Topics to be discussed include: current PSAS design and parallelization strategy; reproducibility issues; load balance vs. database memory demands, possible solutions to these problems.

  10. MultiPhyl: a high-throughput phylogenomics webserver using distributed computing

    PubMed Central

    Keane, Thomas M.; Naughton, Thomas J.; McInerney, James O.

    2007-01-01

    With the number of fully sequenced genomes increasing steadily, there is greater interest in performing large-scale phylogenomic analyses from large numbers of individual gene families. Maximum likelihood (ML) has been shown repeatedly to be one of the most accurate methods for phylogenetic construction. Recently, there have been a number of algorithmic improvements in maximum-likelihood-based tree search methods. However, it can still take a long time to analyse the evolutionary history of many gene families using a single computer. Distributed computing refers to a method of combining the computing power of multiple computers in order to perform some larger overall calculation. In this article, we present the first high-throughput implementation of a distributed phylogenetics platform, MultiPhyl, capable of using the idle computational resources of many heterogeneous non-dedicated machines to form a phylogenetics supercomputer. MultiPhyl allows a user to upload hundreds or thousands of amino acid or nucleotide alignments simultaneously and perform computationally intensive tasks such as model selection, tree searching and bootstrapping of each of the alignments using many desktop machines. The program implements a set of 88 amino acid models and 56 nucleotide maximum likelihood models and a variety of statistical methods for choosing between alternative models. A MultiPhyl webserver is available for public use at: http://www.cs.nuim.ie/distributed/multiphyl.php. PMID:17553837

  11. Implementation and performance test of cloud platform based on Hadoop

    NASA Astrophysics Data System (ADS)

    Xu, Jingxian; Guo, Jianhong; Ren, Chunlan

    2018-01-01

    Hadoop, as an open source project for the Apache foundation, is a distributed computing framework that deals with large amounts of data and has been widely used in the Internet industry. Therefore, it is meaningful to study the implementation of Hadoop platform and the performance of test platform. The purpose of this subject is to study the method of building Hadoop platform and to study the performance of test platform. This paper presents a method to implement Hadoop platform and a test platform performance method. Experimental results show that the proposed test performance method is effective and it can detect the performance of Hadoop platform.

  12. Efficient Sensor Integration on Platforms (NeXOS)

    NASA Astrophysics Data System (ADS)

    Memè, S.; Delory, E.; Del Rio, J.; Jirka, S.; Toma, D. M.; Martinez, E.; Frommhold, L.; Barrera, C.; Pearlman, J.

    2016-12-01

    In-situ ocean observing platforms provide power and information transmission capability to sensors. Ocean observing platforms can be mobile, such as ships, autonomous underwater vehicles, drifters and profilers, or fixed, such as buoys, moorings and cabled observatories. The process of integrating sensors on platforms can imply substantial engineering time and resources. Constraints range from stringent mechanical constraints to proprietary communication and control firmware. In NeXOS, the implementation of a PUCK plug and play capability is being done with applications to multiple sensors and platforms. This is complemented with a sensor web enablement that addresses the flow of information from sensor to user. Open standards are being tested in order to assess their costs and benefits in existing and future observing systems. Part of the testing implied open-source coding and hardware prototyping of specific control devices in particular for closed commercial platforms where firmware upgrading is not straightforward or possible without prior agreements or service fees. Some platform manufacturers such as European companies ALSEAMAR[1] and NKE Instruments [2] are currently upgrading their control and communication firmware as part of their activities in NeXOS. The sensor development companies Sensorlab[3] SMID[4] and TRIOS [5]upgraded their firmware with this plug and play functionality. Other industrial players in Europe and the US have been sent NeXOS sensors emulators to test the new protocol on their platforms. We are currently demonstrating that with little effort, it is also possible to have such middleware implemented on very low-cost compact computers such as the open Raspberry Pi[6], and have a full end-to-end interoperable communication path from sensor to user with sensor plug and play capability. The result is an increase in sensor integration cost-efficiency and the demonstration will be used to highlight the benefit to users and ocean observatory operators. [1] http://www.alseamar-alcen.com [2] http://www.nke-instrumentation.com [3] http://sensorlab.es [4] http://www.smidtechnology.it/ [5] http://www.trios.de/en/products/ [6] Raspberry Pi is a trademark of the Raspberry Pi Foundation

  13. The Perfect Neuroimaging-Genetics-Computation Storm: Collision of Petabytes of Data, Millions of Hardware Devices and Thousands of Software Tools

    PubMed Central

    Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Zamanyan, Alen; Torri, Federica; Macciardi, Fabio; Hobel, Sam; Moon, Seok Woo; Sung, Young Hee; Jiang, Zhiguo; Labus, Jennifer; Kurth, Florian; Ashe-McNalley, Cody; Mayer, Emeran; Vespa, Paul M.; Van Horn, John D.; Toga, Arthur W.

    2013-01-01

    The volume, diversity and velocity of biomedical data are exponentially increasing providing petabytes of new neuroimaging and genetics data every year. At the same time, tens-of-thousands of computational algorithms are developed and reported in the literature along with thousands of software tools and services. Users demand intuitive, quick and platform-agnostic access to data, software tools, and infrastructure from millions of hardware devices. This explosion of information, scientific techniques, computational models, and technological advances leads to enormous challenges in data analysis, evidence-based biomedical inference and reproducibility of findings. The Pipeline workflow environment provides a crowd-based distributed solution for consistent management of these heterogeneous resources. The Pipeline allows multiple (local) clients and (remote) servers to connect, exchange protocols, control the execution, monitor the states of different tools or hardware, and share complete protocols as portable XML workflows. In this paper, we demonstrate several advanced computational neuroimaging and genetics case-studies, and end-to-end pipeline solutions. These are implemented as graphical workflow protocols in the context of analyzing imaging (sMRI, fMRI, DTI), phenotypic (demographic, clinical), and genetic (SNP) data. PMID:23975276

  14. Fine-grained parallel RNAalifold algorithm for RNA secondary structure prediction on FPGA

    PubMed Central

    Xia, Fei; Dou, Yong; Zhou, Xingming; Yang, Xuejun; Xu, Jiaqing; Zhang, Yang

    2009-01-01

    Background In the field of RNA secondary structure prediction, the RNAalifold algorithm is one of the most popular methods using free energy minimization. However, general-purpose computers including parallel computers or multi-core computers exhibit parallel efficiency of no more than 50%. Field Programmable Gate-Array (FPGA) chips provide a new approach to accelerate RNAalifold by exploiting fine-grained custom design. Results RNAalifold shows complicated data dependences, in which the dependence distance is variable, and the dependence direction is also across two dimensions. We propose a systolic array structure including one master Processing Element (PE) and multiple slave PEs for fine grain hardware implementation on FPGA. We exploit data reuse schemes to reduce the need to load energy matrices from external memory. We also propose several methods to reduce energy table parameter size by 80%. Conclusion To our knowledge, our implementation with 16 PEs is the only FPGA accelerator implementing the complete RNAalifold algorithm. The experimental results show a factor of 12.2 speedup over the RNAalifold (ViennaPackage – 1.6.5) software for a group of aligned RNA sequences with 2981-residue running on a Personal Computer (PC) platform with Pentium 4 2.6 GHz CPU. PMID:19208138

  15. Strategies for comparing gene expression profiles from different microarray platforms: application to a case-control experiment.

    PubMed

    Severgnini, Marco; Bicciato, Silvio; Mangano, Eleonora; Scarlatti, Francesca; Mezzelani, Alessandra; Mattioli, Michela; Ghidoni, Riccardo; Peano, Clelia; Bonnal, Raoul; Viti, Federica; Milanesi, Luciano; De Bellis, Gianluca; Battaglia, Cristina

    2006-06-01

    Meta-analysis of microarray data is increasingly important, considering both the availability of multiple platforms using disparate technologies and the accumulation in public repositories of data sets from different laboratories. We addressed the issue of comparing gene expression profiles from two microarray platforms by devising a standardized investigative strategy. We tested this procedure by studying MDA-MB-231 cells, which undergo apoptosis on treatment with resveratrol. Gene expression profiles were obtained using high-density, short-oligonucleotide, single-color microarray platforms: GeneChip (Affymetrix) and CodeLink (Amersham). Interplatform analyses were carried out on 8414 common transcripts represented on both platforms, as identified by LocusLink ID, representing 70.8% and 88.6% of annotated GeneChip and CodeLink features, respectively. We identified 105 differentially expressed genes (DEGs) on CodeLink and 42 DEGs on GeneChip. Among them, only 9 DEGs were commonly identified by both platforms. Multiple analyses (BLAST alignment of probes with target sequences, gene ontology, literature mining, and quantitative real-time PCR) permitted us to investigate the factors contributing to the generation of platform-dependent results in single-color microarray experiments. An effective approach to cross-platform comparison involves microarrays of similar technologies, samples prepared by identical methods, and a standardized battery of bioinformatic and statistical analyses.

  16. Comparison of aerial imagery from manned and unmanned aircraft platforms for monitoring cotton growth

    USDA-ARS?s Scientific Manuscript database

    Unmanned aircraft systems (UAS) have emerged as a low-cost and versatile remote sensing platform in recent years, but little work has been done on comparing imagery from manned and unmanned platforms for crop assessment. The objective of this study was to compare imagery taken from multiple cameras ...

  17. Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Ting; Shen, Shu-Wei; Cheng, Chao-Min; Chen, Chien-Fu

    2013-08-01

    A colorimetric sensing strategy employing gold nanoparticles and a paper assay platform has been developed for tuberculosis diagnosis. Unmodified gold nanoparticles and single-stranded detection oligonucleotides are used to achieve rapid diagnosis without complicated and time-consuming thiolated or other surface-modified probe preparation processes. To eliminate the use of sophisticated equipment for data analysis, the color variance for multiple detection results was simultaneously collected and concentrated on cellulose paper with the data readout transmitted for cloud computing via a smartphone. The results show that the 2.6 nM tuberculosis mycobacterium target sequences extracted from patients can easily be detected, and the turnaround time after the human DNA is extracted from clinical samples was approximately 1 h.

  18. Beyond core count: a look at new mainstream computing platforms for HEP workloads

    NASA Astrophysics Data System (ADS)

    Szostek, P.; Nowak, A.; Bitzes, G.; Valsan, L.; Jarp, S.; Dotti, A.

    2014-06-01

    As Moore's Law continues to deliver more and more transistors, the mainstream processor industry is preparing to expand its investments in areas other than simple core count. These new interests include deep integration of on-chip components, advanced vector units, memory, cache and interconnect technologies. We examine these moving trends with parallelized and vectorized High Energy Physics workloads in mind. In particular, we report on practical experience resulting from experiments with scalable HEP benchmarks on the Intel "Ivy Bridge-EP" and "Haswell" processor families. In addition, we examine the benefits of the new "Haswell" microarchitecture and its impact on multiple facets of HEP software. Finally, we report on the power efficiency of new systems.

  19. TERRA REF: Advancing phenomics with high resolution, open access sensor and genomics data

    NASA Astrophysics Data System (ADS)

    LeBauer, D.; Kooper, R.; Burnette, M.; Willis, C.

    2017-12-01

    Automated plant measurement has the potential to improve understanding of genetic and environmental controls on plant traits (phenotypes). The application of sensors and software in the automation of high throughput phenotyping reflects a fundamental shift from labor intensive hand measurements to drone, tractor, and robot mounted sensing platforms. These tools are expected to speed the rate of crop improvement by enabling plant breeders to more accurately select plants with improved yields, resource use efficiency, and stress tolerance. However, there are many challenges facing high throughput phenomics: sensors and platforms are expensive, currently there are few standard methods of data collection and storage, and the analysis of large data sets requires high performance computers and automated, reproducible computing pipelines. To overcome these obstacles and advance the science of high throughput phenomics, the TERRA Phenotyping Reference Platform (TERRA-REF) team is developing an open-access database of high resolution sensor data. TERRA REF is an integrated field and greenhouse phenotyping system that includes: a reference field scanner with fifteen sensors that can generate terrabytes of data each day at mm resolution; UAV, tractor, and fixed field sensing platforms; and an automated controlled-environment scanner. These platforms will enable investigation of diverse sensing modalities, and the investigation of traits under controlled and field environments. It is the goal of TERRA REF to lower the barrier to entry for academic and industry researchers by providing high-resolution data, open source software, and online computing resources. Our project is unique in that all data will be made fully public in November 2018, and is already available to early adopters through the beta-user program. We will describe the datasets and how to use them as well as the databases and computing pipeline and how these can be reused and remixed in other phenomics pipelines. Finally, we will describe the National Data Service workbench, a cloud computing platform that can access the petabyte scale data while supporting reproducible research.

  20. Cpu/gpu Computing for AN Implicit Multi-Block Compressible Navier-Stokes Solver on Heterogeneous Platform

    NASA Astrophysics Data System (ADS)

    Deng, Liang; Bai, Hanli; Wang, Fang; Xu, Qingxin

    2016-06-01

    CPU/GPU computing allows scientists to tremendously accelerate their numerical codes. In this paper, we port and optimize a double precision alternating direction implicit (ADI) solver for three-dimensional compressible Navier-Stokes equations from our in-house Computational Fluid Dynamics (CFD) software on heterogeneous platform. First, we implement a full GPU version of the ADI solver to remove a lot of redundant data transfers between CPU and GPU, and then design two fine-grain schemes, namely “one-thread-one-point” and “one-thread-one-line”, to maximize the performance. Second, we present a dual-level parallelization scheme using the CPU/GPU collaborative model to exploit the computational resources of both multi-core CPUs and many-core GPUs within the heterogeneous platform. Finally, considering the fact that memory on a single node becomes inadequate when the simulation size grows, we present a tri-level hybrid programming pattern MPI-OpenMP-CUDA that merges fine-grain parallelism using OpenMP and CUDA threads with coarse-grain parallelism using MPI for inter-node communication. We also propose a strategy to overlap the computation with communication using the advanced features of CUDA and MPI programming. We obtain speedups of 6.0 for the ADI solver on one Tesla M2050 GPU in contrast to two Xeon X5670 CPUs. Scalability tests show that our implementation can offer significant performance improvement on heterogeneous platform.

  1. Engineering integrated digital circuits with allosteric ribozymes for scaling up molecular computation and diagnostics.

    PubMed

    Penchovsky, Robert

    2012-10-19

    Here we describe molecular implementations of integrated digital circuits, including a three-input AND logic gate, a two-input multiplexer, and 1-to-2 decoder using allosteric ribozymes. Furthermore, we demonstrate a multiplexer-decoder circuit. The ribozymes are designed to seek-and-destroy specific RNAs with a certain length by a fully computerized procedure. The algorithm can accurately predict one base substitution that alters the ribozyme's logic function. The ability to sense the length of RNA molecules enables single ribozymes to be used as platforms for multiple interactions. These ribozymes can work as integrated circuits with the functionality of up to five logic gates. The ribozyme design is universal since the allosteric and substrate domains can be altered to sense different RNAs. In addition, the ribozymes can specifically cleave RNA molecules with triplet-repeat expansions observed in genetic disorders such as oculopharyngeal muscular dystrophy. Therefore, the designer ribozymes can be employed for scaling up computing and diagnostic networks in the fields of molecular computing and diagnostics and RNA synthetic biology.

  2. Circuit design advances for ultra-low power sensing platforms

    NASA Astrophysics Data System (ADS)

    Wieckowski, Michael; Dreslinski, Ronald G.; Mudge, Trevor; Blaauw, David; Sylvester, Dennis

    2010-04-01

    This paper explores the recent advances in circuit structures and design methodologies that have enabled ultra-low power sensing platforms and opened up a host of new applications. Central to this theme is the development of Near Threshold Computing (NTC) as a viable design space for low power sensing platforms. In this paradigm, the system's supply voltage is approximately equal to the threshold voltage of its transistors. Operating in this "near-threshold" region provides much of the energy savings previously demonstrated for subthreshold operation while offering more favorable performance and variability characteristics. This makes NTC applicable to a broad range of power-constrained computing segments including energy constrained sensing platforms. This paper explores the barriers to the adoption of NTC and describes current work aimed at overcoming these obstacles in the circuit design space.

  3. Balloon platform for extended-life astronomy research

    NASA Technical Reports Server (NTRS)

    Ostwald, L. T.

    1974-01-01

    A configuration has been developed for a long-life balloon platform to carry pointing telescopes weighing as much as 80 pounds (36 kg) to point at selected celestial targets. A platform of this configuration weighs about 375 pounds (170 kg) gross and can be suspended from a high altitude super pressure balloon for a lifetime of several months. The balloon platform contains a solar array and storage batteries for electrical power, up and down link communications equipment, and navigational and attitude control systems for orienting the scientific instrument. A biaxial controller maintains the telescope attitude in response to look-angle data stored in an on-board computer memory which is updated periodically by ground command. Gimbal angles are computed by using location data derived by an on-board navigational receiver.

  4. Hierarchical parallelisation of functional renormalisation group calculations - hp-fRG

    NASA Astrophysics Data System (ADS)

    Rohe, Daniel

    2016-10-01

    The functional renormalisation group (fRG) has evolved into a versatile tool in condensed matter theory for studying important aspects of correlated electron systems. Practical applications of the method often involve a high numerical effort, motivating the question in how far High Performance Computing (HPC) can leverage the approach. In this work we report on a multi-level parallelisation of the underlying computational machinery and show that this can speed up the code by several orders of magnitude. This in turn can extend the applicability of the method to otherwise inaccessible cases. We exploit three levels of parallelisation: Distributed computing by means of Message Passing (MPI), shared-memory computing using OpenMP, and vectorisation by means of SIMD units (single-instruction-multiple-data). Results are provided for two distinct High Performance Computing (HPC) platforms, namely the IBM-based BlueGene/Q system JUQUEEN and an Intel Sandy-Bridge-based development cluster. We discuss how certain issues and obstacles were overcome in the course of adapting the code. Most importantly, we conclude that this vast improvement can actually be accomplished by introducing only moderate changes to the code, such that this strategy may serve as a guideline for other researcher to likewise improve the efficiency of their codes.

  5. A multilevel control approach for a modular structured space platform

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.; Borelli, M. T.

    1981-01-01

    A three axis mathematical representation of a modular assembled space platform consisting of interconnected discrete masses, including a deployable truss module, was derived for digital computer simulation. The platform attitude control system as developed to provide multilevel control utilizing the Gauss-Seidel second level formulation along with an extended form of linear quadratic regulator techniques. The objectives of the multilevel control are to decouple the space platform's spatial axes and to accommodate the modification of the platform's configuration for each of the decoupled axes.

  6. Formal design and verification of a reliable computing platform for real-time control. Phase 2: Results

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Divito, Ben L.

    1992-01-01

    The design and formal verification of the Reliable Computing Platform (RCP), a fault tolerant computing system for digital flight control applications is presented. The RCP uses N-Multiply Redundant (NMR) style redundancy to mask faults and internal majority voting to flush the effects of transient faults. The system is formally specified and verified using the Ehdm verification system. A major goal of this work is to provide the system with significant capability to withstand the effects of High Intensity Radiated Fields (HIRF).

  7. Architecture and Initial Development of a Digital Library Platform for Computable Knowledge Objects for Health.

    PubMed

    Flynn, Allen J; Bahulekar, Namita; Boisvert, Peter; Lagoze, Carl; Meng, George; Rampton, James; Friedman, Charles P

    2017-01-01

    Throughout the world, biomedical knowledge is routinely generated and shared through primary and secondary scientific publications. However, there is too much latency between publication of knowledge and its routine use in practice. To address this latency, what is actionable in scientific publications can be encoded to make it computable. We have created a purpose-built digital library platform to hold, manage, and share actionable, computable knowledge for health called the Knowledge Grid Library. Here we present it with its system architecture.

  8. A Geospatial Information Grid Framework for Geological Survey.

    PubMed

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.

  9. A Geospatial Information Grid Framework for Geological Survey

    PubMed Central

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255

  10. A comparative analysis of dynamic grids vs. virtual grids using the A3pviGrid framework.

    PubMed

    Shankaranarayanan, Avinas; Amaldas, Christine

    2010-11-01

    With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation. Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently. This paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters. We also analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research on improving the BLAST application framework using dynamic Grids on virtualization platforms such as the virtual box.

  11. A Novel Sensor Platform Matching the Improved Version of IPMVP Option C for Measuring Energy Savings

    PubMed Central

    Tseng, Yen-Chieh; Lee, Da-Sheng; Lin, Cheng-Fang; Chang, Ching-Yuan

    2013-01-01

    It is easy to measure energy consumption with a power meter. However, energy savings cannot be directly computed by the powers measured using existing power meter technologies, since the power consumption only reflects parts of the real energy flows. The International Performance Measurement and Verification Protocol (IPMVP) was proposed by the Efficiency Valuation Organization (EVO) to quantify energy savings using four different methodologies of A, B, C and D. Although energy savings can be estimated following the IPMVP, there are limitations on its practical implementation. Moreover, the data processing methods of the four IPMVP alternatives use multiple sensors (thermometer, hygrometer, Occupant information) and power meter readings to simulate all facilities, in order to determine an energy usage benchmark and the energy savings. This study proposes a simple sensor platform to measure energy savings. Using usually the Electronic Product Code (EPC) global standard, an architecture framework for an information system is constructed that integrates sensors data, power meter readings and occupancy conditions. The proposed sensor platform is used to monitor a building with a newly built vertical garden system (VGS). A VGS shields solar radiation and saves on energy that would be expended on air-conditioning. With this platform, the amount of energy saved in the whole facility is measured and reported in real-time. The data are compared with those obtained from detailed measurement and verification (M&V) processes. The discrepancy is less than 1.565%. Using measurements from the proposed sensor platform, the energy savings for the entire facility are quantified, with a resolution of ±1.2%. The VGS gives an 8.483% daily electricity saving for the building. Thus, the results show that the simple sensor platform proposed by this study is more widely applicable than the four complicated IPMVP alternatives and the VGS is an effective tool in reducing the carbon footprint of a building. PMID:23698273

  12. Leaf-GP: an open and automated software application for measuring growth phenotypes for arabidopsis and wheat.

    PubMed

    Zhou, Ji; Applegate, Christopher; Alonso, Albor Dobon; Reynolds, Daniel; Orford, Simon; Mackiewicz, Michal; Griffiths, Simon; Penfield, Steven; Pullen, Nick

    2017-01-01

    Plants demonstrate dynamic growth phenotypes that are determined by genetic and environmental factors. Phenotypic analysis of growth features over time is a key approach to understand how plants interact with environmental change as well as respond to different treatments. Although the importance of measuring dynamic growth traits is widely recognised, available open software tools are limited in terms of batch image processing, multiple traits analyses, software usability and cross-referencing results between experiments, making automated phenotypic analysis problematic. Here, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application that can be executed on different computing platforms. To facilitate diverse scientific communities, we provide three software versions, including a graphic user interface (GUI) for personal computer (PC) users, a command-line interface for high-performance computer (HPC) users, and a well-commented interactive Jupyter Notebook (also known as the iPython Notebook) for computational biologists and computer scientists. The software is capable of extracting multiple growth traits automatically from large image datasets. We have utilised it in Arabidopsis thaliana and wheat ( Triticum aestivum ) growth studies at the Norwich Research Park (NRP, UK). By quantifying a number of growth phenotypes over time, we have identified diverse plant growth patterns between different genotypes under several experimental conditions. As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices (e.g. smartphones and digital cameras) and still produced reliable biological outputs, we therefore believe that our automated analysis workflow and customised computer vision based feature extraction software implementation can facilitate a broader plant research community for their growth and development studies. Furthermore, because we implemented Leaf-GP based on open Python-based computer vision, image analysis and machine learning libraries, we believe that our software not only can contribute to biological research, but also demonstrates how to utilise existing open numeric and scientific libraries (e.g. Scikit-image, OpenCV, SciPy and Scikit-learn) to build sound plant phenomics analytic solutions, in a efficient and effective way. Leaf-GP is a sophisticated software application that provides three approaches to quantify growth phenotypes from large image series. We demonstrate its usefulness and high accuracy based on two biological applications: (1) the quantification of growth traits for Arabidopsis genotypes under two temperature conditions; and (2) measuring wheat growth in the glasshouse over time. The software is easy-to-use and cross-platform, which can be executed on Mac OS, Windows and HPC, with open Python-based scientific libraries preinstalled. Our work presents the advancement of how to integrate computer vision, image analysis, machine learning and software engineering in plant phenomics software implementation. To serve the plant research community, our modulated source code, detailed comments, executables (.exe for Windows; .app for Mac), and experimental results are freely available at https://github.com/Crop-Phenomics-Group/Leaf-GP/releases.

  13. Hippocampal activation during the recall of remote spatial memories in radial maze tasks.

    PubMed

    Schlesiger, Magdalene I; Cressey, John C; Boublil, Brittney; Koenig, Julie; Melvin, Neal R; Leutgeb, Jill K; Leutgeb, Stefan

    2013-11-01

    Temporally graded retrograde amnesia is observed in human patients with medial temporal lobe lesions as well as in animal models of medial temporal lobe lesions. A time-limited role for these structures in memory recall has also been suggested by the observation that the rodent hippocampus and entorhinal cortex are activated during the retrieval of recent but not of remote memories. One notable exception is the recall of remote memories for platform locations in the water maze, which requires an intact hippocampus and results in hippocampal activation irrespective of the age of the memory. These findings raise the question whether the hippocampus is always involved in the recall of spatial memories or, alternatively, whether it might be required for procedural computations in the water maze task, such as for calculating a path to a hidden platform. We performed spatial memory testing in radial maze tasks to distinguish between these possibilities. Radial maze tasks require a choice between spatial locations on a center platform and thus have a lesser requirement for navigation than the water maze. However, we used a behavioral design in the radial maze that retained other aspects of the standard water maze task, such as the use of multiple start locations and retention testing in a single trial. Using the immediate early gene c-fos as a marker for neuronal activation, we found that all hippocampal subregions were more activated during the recall of remote compared to recent spatial memories. In areas CA3 and CA1, activation during remote memory testing was higher than in rats that were merely reexposed to the testing environment after the same time interval. Conversely, Fos levels in the dentate gyrus were increased after retention testing to the extent that was also observed in the corresponding exposure control group. This pattern of hippocampal activation was also obtained in a second version of the task that only used a single start arm instead of multiple start arms. The CA3 and CA1 activation during remote memory recall is consistent with the interpretation that an older memory might require increased pattern completion and/or relearning after longer time intervals. Irrespective of whether the hippocampus is required for remote memory recall, the hippocampus might engage in computations that either support recall of remote memories or that update remote memories. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Drowned carbonate platforms in the Huon Gulf, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Webster, Jody M.; Wallace, Laura; Silver, Eli; Applegate, Bruce; Potts, Donald; Braga, Juan Carlos; Riker-Coleman, Kristin; Gallup, Christina

    2004-11-01

    The western Huon Gulf, Papua New Guinea, is an actively subsiding foreland basin dominated by drowned carbonate platforms. We investigated these platforms using new high-resolution multibeam, side-scan sonar and seismic data, combined with submersible observations and previously published radiometric and sedimentary facies data. The data reveal 14 distinct drowned carbonate platforms and numerous pinnacles/banks that increase in age (˜20-450 kyr) and depth (0.1-2.5 km) NE toward the Ramu-Markham Trench. Superimposed on this overall downward flexing of the platforms toward the trench is a systematic tilting of the deep platforms 15 m/km toward the NW and the shallow platforms 2 m/km toward the SE. This may reflect the encroaching thrust load from the NW (Finisterre Range) and spatial variations in the flexural rigidity of the underlying basement. The drowned platforms form a complex system of promontories and reentrants, with abundant pinnacles and banks preserved at similar depths seaward of the main platforms. This configuration closely mimics the present-day Huon coastline and its seaward islands fringed by modern coral reefs. The platforms retain structural, morphologic, and sedimentary facies evidence of primary platform growth, drowning, and subsequent backstepping, despite some lateral erosion of the platform margins (<100 m slope defacement) by mass wasting. Both platforms and pinnacles are composite features containing multiple terrace levels and notches, corresponding to multiple phases of growth, emergence, and drowning in response to rapid climatic and sea level changes during the evolution of each structure. On the basis of all observational and numerical modeling data, we propose a chronology for the initiation, growth, and drowning of the 14 platforms. Over shorter timescales (≤100 kyr) the rate and amplitude of eustatic sea level changes are critical in controlling initiation, growth, drowning or subaerial exposure, subsequent reinitiation, and final drowning of the platforms. However, continued tectonic subsidence and basement substrate morphology influence the overall backstepping geometry and subsequent tilting of the platforms over longer timescales (≥100-500 kyr).

  15. CBESW: sequence alignment on the Playstation 3.

    PubMed

    Wirawan, Adrianto; Kwoh, Chee Keong; Hieu, Nim Tri; Schmidt, Bertil

    2008-09-17

    The exponential growth of available biological data has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing exponentially as well. The recent emergence of accelerator technologies has made it possible to achieve an excellent improvement in execution time for many bioinformatics applications, compared to current general-purpose platforms. In this paper, we demonstrate how the PlayStation 3, powered by the Cell Broadband Engine, can be used as a computational platform to accelerate the Smith-Waterman algorithm. For large datasets, our implementation on the PlayStation 3 provides a significant improvement in running time compared to other implementations such as SSEARCH, Striped Smith-Waterman and CUDA. Our implementation achieves a peak performance of up to 3,646 MCUPS. The results from our experiments demonstrate that the PlayStation 3 console can be used as an efficient low cost computational platform for high performance sequence alignment applications.

  16. CBESW: Sequence Alignment on the Playstation 3

    PubMed Central

    Wirawan, Adrianto; Kwoh, Chee Keong; Hieu, Nim Tri; Schmidt, Bertil

    2008-01-01

    Background The exponential growth of available biological data has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing exponentially as well. The recent emergence of accelerator technologies has made it possible to achieve an excellent improvement in execution time for many bioinformatics applications, compared to current general-purpose platforms. In this paper, we demonstrate how the PlayStation® 3, powered by the Cell Broadband Engine, can be used as a computational platform to accelerate the Smith-Waterman algorithm. Results For large datasets, our implementation on the PlayStation® 3 provides a significant improvement in running time compared to other implementations such as SSEARCH, Striped Smith-Waterman and CUDA. Our implementation achieves a peak performance of up to 3,646 MCUPS. Conclusion The results from our experiments demonstrate that the PlayStation® 3 console can be used as an efficient low cost computational platform for high performance sequence alignment applications. PMID:18798993

  17. Computer-operated analytical platform for the determination of nutrients in hydroponic systems.

    PubMed

    Rius-Ruiz, F Xavier; Andrade, Francisco J; Riu, Jordi; Rius, F Xavier

    2014-03-15

    Hydroponics is a water, energy, space, and cost efficient system for growing plants in constrained spaces or land exhausted areas. Precise control of hydroponic nutrients is essential for growing healthy plants and producing high yields. In this article we report for the first time on a new computer-operated analytical platform which can be readily used for the determination of essential nutrients in hydroponic growing systems. The liquid-handling system uses inexpensive components (i.e., peristaltic pump and solenoid valves), which are discretely computer-operated to automatically condition, calibrate and clean a multi-probe of solid-contact ion-selective electrodes (ISEs). These ISEs, which are based on carbon nanotubes, offer high portability, robustness and easy maintenance and storage. With this new computer-operated analytical platform we performed automatic measurements of K(+), Ca(2+), NO3(-) and Cl(-) during tomato plants growth in order to assure optimal nutritional uptake and tomato production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. CFD and Neutron codes coupling on a computational platform

    NASA Astrophysics Data System (ADS)

    Cerroni, D.; Da Vià, R.; Manservisi, S.; Menghini, F.; Scardovelli, R.

    2017-01-01

    In this work we investigate the thermal-hydraulics behavior of a PWR nuclear reactor core, evaluating the power generation distribution taking into account the local temperature field. The temperature field, evaluated using a self-developed CFD module, is exchanged with a neutron code, DONJON-DRAGON, which updates the macroscopic cross sections and evaluates the new neutron flux. From the updated neutron flux the new peak factor is evaluated and the new temperature field is computed. The exchange of data between the two codes is obtained thanks to their inclusion into the computational platform SALOME, an open-source tools developed by the collaborative project NURESAFE. The numerical libraries MEDmem, included into the SALOME platform, are used in this work, for the projection of computational fields from one problem to another. The two problems are driven by a common supervisor that can access to the computational fields of both systems, in every time step, the temperature field, is extracted from the CFD problem and set into the neutron problem. After this iteration the new power peak factor is projected back into the CFD problem and the new time step can be computed. Several computational examples, where both neutron and thermal-hydraulics quantities are parametrized, are finally reported in this work.

  19. NMF-mGPU: non-negative matrix factorization on multi-GPU systems.

    PubMed

    Mejía-Roa, Edgardo; Tabas-Madrid, Daniel; Setoain, Javier; García, Carlos; Tirado, Francisco; Pascual-Montano, Alberto

    2015-02-13

    In the last few years, the Non-negative Matrix Factorization ( NMF ) technique has gained a great interest among the Bioinformatics community, since it is able to extract interpretable parts from high-dimensional datasets. However, the computing time required to process large data matrices may become impractical, even for a parallel application running on a multiprocessors cluster. In this paper, we present NMF-mGPU, an efficient and easy-to-use implementation of the NMF algorithm that takes advantage of the high computing performance delivered by Graphics-Processing Units ( GPUs ). Driven by the ever-growing demands from the video-games industry, graphics cards usually provided in PCs and laptops have evolved from simple graphics-drawing platforms into high-performance programmable systems that can be used as coprocessors for linear-algebra operations. However, these devices may have a limited amount of on-board memory, which is not considered by other NMF implementations on GPU. NMF-mGPU is based on CUDA ( Compute Unified Device Architecture ), the NVIDIA's framework for GPU computing. On devices with low memory available, large input matrices are blockwise transferred from the system's main memory to the GPU's memory, and processed accordingly. In addition, NMF-mGPU has been explicitly optimized for the different CUDA architectures. Finally, platforms with multiple GPUs can be synchronized through MPI ( Message Passing Interface ). In a four-GPU system, this implementation is about 120 times faster than a single conventional processor, and more than four times faster than a single GPU device (i.e., a super-linear speedup). Applications of GPUs in Bioinformatics are getting more and more attention due to their outstanding performance when compared to traditional processors. In addition, their relatively low price represents a highly cost-effective alternative to conventional clusters. In life sciences, this results in an excellent opportunity to facilitate the daily work of bioinformaticians that are trying to extract biological meaning out of hundreds of gigabytes of experimental information. NMF-mGPU can be used "out of the box" by researchers with little or no expertise in GPU programming in a variety of platforms, such as PCs, laptops, or high-end GPU clusters. NMF-mGPU is freely available at https://github.com/bioinfo-cnb/bionmf-gpu .

  20. ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research.

    PubMed

    Campagnola, Luke; Kratz, Megan B; Manis, Paul B

    2014-01-01

    The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org.

  1. Creating, generating and comparing random network models with NetworkRandomizer.

    PubMed

    Tosadori, Gabriele; Bestvina, Ivan; Spoto, Fausto; Laudanna, Carlo; Scardoni, Giovanni

    2016-01-01

    Biological networks are becoming a fundamental tool for the investigation of high-throughput data in several fields of biology and biotechnology. With the increasing amount of information, network-based models are gaining more and more interest and new techniques are required in order to mine the information and to validate the results. To fill the validation gap we present an app, for the Cytoscape platform, which aims at creating randomised networks and randomising existing, real networks. Since there is a lack of tools that allow performing such operations, our app aims at enabling researchers to exploit different, well known random network models that could be used as a benchmark for validating real, biological datasets. We also propose a novel methodology for creating random weighted networks, i.e. the multiplication algorithm, starting from real, quantitative data. Finally, the app provides a statistical tool that compares real versus randomly computed attributes, in order to validate the numerical findings. In summary, our app aims at creating a standardised methodology for the validation of the results in the context of the Cytoscape platform.

  2. The Human Serum Metabolome

    PubMed Central

    Psychogios, Nikolaos; Hau, David D.; Peng, Jun; Guo, An Chi; Mandal, Rupasri; Bouatra, Souhaila; Sinelnikov, Igor; Krishnamurthy, Ramanarayan; Eisner, Roman; Gautam, Bijaya; Young, Nelson; Xia, Jianguo; Knox, Craig; Dong, Edison; Huang, Paul; Hollander, Zsuzsanna; Pedersen, Theresa L.; Smith, Steven R.; Bamforth, Fiona; Greiner, Russ; McManus, Bruce; Newman, John W.; Goodfriend, Theodore; Wishart, David S.

    2011-01-01

    Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca. PMID:21359215

  3. PERI - Auto-tuning Memory Intensive Kernels for Multicore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H; Williams, Samuel; Datta, Kaushik

    2008-06-24

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to Sparse Matrix Vector Multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM (STI) Cell. Rather than hand-tuning each kernel for each system, we developmore » a code generator for each kernel that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned kernel applications often achieve a better than 4X improvement compared with the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware bottlenecks and software challenges for future multicore systems and applications.« less

  4. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME.

    PubMed

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2016-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.

  5. Controlling multiple security robots in a warehouse environment

    NASA Technical Reports Server (NTRS)

    Everett, H. R.; Gilbreath, G. A.; Heath-Pastore, T. A.; Laird, R. T.

    1994-01-01

    The Naval Command Control and Ocean Surveillance Center (NCCOSC) has developed an architecture to provide coordinated control of multiple autonomous vehicles from a single host console. The multiple robot host architecture (MRHA) is a distributed multiprocessing system that can be expanded to accommodate as many as 32 robots. The initial application will employ eight Cybermotion K2A Navmaster robots configured as remote security platforms in support of the Mobile Detection Assessment and Response System (MDARS) Program. This paper discusses developmental testing of the MRHA in an operational warehouse environment, with two actual and four simulated robotic platforms.

  6. Development of embedded real-time and high-speed vision platform

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhenxing; Dong, Yimin; Yang, Hua

    2015-12-01

    Currently, high-speed vision platforms are widely used in many applications, such as robotics and automation industry. However, a personal computer (PC) whose over-large size is not suitable and applicable in compact systems is an indispensable component for human-computer interaction in traditional high-speed vision platforms. Therefore, this paper develops an embedded real-time and high-speed vision platform, ER-HVP Vision which is able to work completely out of PC. In this new platform, an embedded CPU-based board is designed as substitution for PC and a DSP and FPGA board is developed for implementing image parallel algorithms in FPGA and image sequential algorithms in DSP. Hence, the capability of ER-HVP Vision with size of 320mm x 250mm x 87mm can be presented in more compact condition. Experimental results are also given to indicate that the real-time detection and counting of the moving target at a frame rate of 200 fps at 512 x 512 pixels under the operation of this newly developed vision platform are feasible.

  7. Maritime Analytics Prototype: Final Development Report

    DTIC Science & Technology

    2014-04-01

    access management platform OpenAM , support for multiple instances of the same type of widget and support for installation specific configuration files to...et de la gestion de l’accès OpenAM , le support pour plusieurs instances du même type de widget et le support des fichiers d’installation de...open source authentication and access management platform OpenAM , support for multiple instances of the same type of widget and support for

  8. Human-Robot Teaming for Hydrologic Data Gathering at Multiple Scales

    NASA Astrophysics Data System (ADS)

    Peschel, J.; Young, S. N.

    2017-12-01

    The use of personal robot-assistive technology by researchers and practitioners for hydrologic data gathering has grown in recent years as barriers to platform capability, cost, and human-robot interaction have been overcome. One consequence to this growth is a broad availability of unmanned platforms that might or might not be suitable for a specific hydrologic investigation. Through multiple field studies, a set of recommendations has been developed to help guide novice through experienced users in choosing the appropriate unmanned platforms for a given application. This talk will present a series of hydrologic data sets gathered using a human-robot teaming approach that has leveraged unmanned aerial, ground, and surface vehicles over multiple scales. The field case studies discussed will be connected to the best practices, also provided in the presentation. This talk will be of interest to geoscience researchers and practitioners, in general, as well as those working in fields related to emerging technologies.

  9. Final Report. Center for Scalable Application Development Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellor-Crummey, John

    2014-10-26

    The Center for Scalable Application Development Software (CScADS) was established as a part- nership between Rice University, Argonne National Laboratory, University of California Berkeley, University of Tennessee – Knoxville, and University of Wisconsin – Madison. CScADS pursued an integrated set of activities with the aim of increasing the productivity of DOE computational scientists by catalyzing the development of systems software, libraries, compilers, and tools for leadership computing platforms. Principal Center activities were workshops to engage the research community in the challenges of leadership computing, research and development of open-source software, and work with computational scientists to help them develop codesmore » for leadership computing platforms. This final report summarizes CScADS activities at Rice University in these areas.« less

  10. A Multi-Level Parallelization Concept for High-Fidelity Multi-Block Solvers

    NASA Technical Reports Server (NTRS)

    Hatay, Ferhat F.; Jespersen, Dennis C.; Guruswamy, Guru P.; Rizk, Yehia M.; Byun, Chansup; Gee, Ken; VanDalsem, William R. (Technical Monitor)

    1997-01-01

    The integration of high-fidelity Computational Fluid Dynamics (CFD) analysis tools with the industrial design process benefits greatly from the robust implementations that are transportable across a wide range of computer architectures. In the present work, a hybrid domain-decomposition and parallelization concept was developed and implemented into the widely-used NASA multi-block Computational Fluid Dynamics (CFD) packages implemented in ENSAERO and OVERFLOW. The new parallel solver concept, PENS (Parallel Euler Navier-Stokes Solver), employs both fine and coarse granularity in data partitioning as well as data coalescing to obtain the desired load-balance characteristics on the available computer platforms. This multi-level parallelism implementation itself introduces no changes to the numerical results, hence the original fidelity of the packages are identically preserved. The present implementation uses the Message Passing Interface (MPI) library for interprocessor message passing and memory accessing. By choosing an appropriate combination of the available partitioning and coalescing capabilities only during the execution stage, the PENS solver becomes adaptable to different computer architectures from shared-memory to distributed-memory platforms with varying degrees of parallelism. The PENS implementation on the IBM SP2 distributed memory environment at the NASA Ames Research Center obtains 85 percent scalable parallel performance using fine-grain partitioning of single-block CFD domains using up to 128 wide computational nodes. Multi-block CFD simulations of complete aircraft simulations achieve 75 percent perfect load-balanced executions using data coalescing and the two levels of parallelism. SGI PowerChallenge, SGI Origin 2000, and a cluster of workstations are the other platforms where the robustness of the implementation is tested. The performance behavior on the other computer platforms with a variety of realistic problems will be included as this on-going study progresses.

  11. A System Engineering Study and Concept Development for a Humanitarian Aid and Disaster Relief Operations Management Platform

    DTIC Science & Technology

    2016-09-01

    and network. The computing and network hardware are identified and include routers, servers, firewalls, laptops , backup hard drives, smart phones...deployable hardware units will be necessary. This includes the use of ruggedized laptops and desktop computers , a projector system, communications system...ENGINEERING STUDY AND CONCEPT DEVELOPMENT FOR A HUMANITARIAN AID AND DISASTER RELIEF OPERATIONS MANAGEMENT PLATFORM by Julie A. Reed September

  12. ROS-IGTL-Bridge: an open network interface for image-guided therapy using the ROS environment.

    PubMed

    Frank, Tobias; Krieger, Axel; Leonard, Simon; Patel, Niravkumar A; Tokuda, Junichi

    2017-08-01

    With the growing interest in advanced image-guidance for surgical robot systems, rapid integration and testing of robotic devices and medical image computing software are becoming essential in the research and development. Maximizing the use of existing engineering resources built on widely accepted platforms in different fields, such as robot operating system (ROS) in robotics and 3D Slicer in medical image computing could simplify these tasks. We propose a new open network bridge interface integrated in ROS to ensure seamless cross-platform data sharing. A ROS node named ROS-IGTL-Bridge was implemented. It establishes a TCP/IP network connection between the ROS environment and external medical image computing software using the OpenIGTLink protocol. The node exports ROS messages to the external software over the network and vice versa simultaneously, allowing seamless and transparent data sharing between the ROS-based devices and the medical image computing platforms. Performance tests demonstrated that the bridge could stream transforms, strings, points, and images at 30 fps in both directions successfully. The data transfer latency was <1.2 ms for transforms, strings and points, and 25.2 ms for color VGA images. A separate test also demonstrated that the bridge could achieve 900 fps for transforms. Additionally, the bridge was demonstrated in two representative systems: a mock image-guided surgical robot setup consisting of 3D slicer, and Lego Mindstorms with ROS as a prototyping and educational platform for IGT research; and the smart tissue autonomous robot surgical setup with 3D Slicer. The study demonstrated that the bridge enabled cross-platform data sharing between ROS and medical image computing software. This will allow rapid and seamless integration of advanced image-based planning/navigation offered by the medical image computing software such as 3D Slicer into ROS-based surgical robot systems.

  13. On the Impact of Execution Models: A Case Study in Computational Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavarría-Miranda, Daniel; Halappanavar, Mahantesh; Krishnamoorthy, Sriram

    2015-05-25

    Efficient utilization of high-performance computing (HPC) platforms is an important and complex problem. Execution models, abstract descriptions of the dynamic runtime behavior of the execution stack, have significant impact on the utilization of HPC systems. Using a computational chemistry kernel as a case study and a wide variety of execution models combined with load balancing techniques, we explore the impact of execution models on the utilization of an HPC system. We demonstrate a 50 percent improvement in performance by using work stealing relative to a more traditional static scheduling approach. We also use a novel semi-matching technique for load balancingmore » that has comparable performance to a traditional hypergraph-based partitioning implementation, which is computationally expensive. Using this study, we found that execution model design choices and assumptions can limit critical optimizations such as global, dynamic load balancing and finding the correct balance between available work units and different system and runtime overheads. With the emergence of multi- and many-core architectures and the consequent growth in the complexity of HPC platforms, we believe that these lessons will be beneficial to researchers tuning diverse applications on modern HPC platforms, especially on emerging dynamic platforms with energy-induced performance variability.« less

  14. Scalable, High-performance 3D Imaging Software Platform: System Architecture and Application to Virtual Colonoscopy

    PubMed Central

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin

    2013-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803

  15. Informatics in radiology (infoRAD): free DICOM image viewing and processing software for the Macintosh computer: what's available and what it can do for you.

    PubMed

    Escott, Edward J; Rubinstein, David

    2004-01-01

    It is often necessary for radiologists to use digital images in presentations and conferences. Most imaging modalities produce images in the Digital Imaging and Communications in Medicine (DICOM) format. The image files tend to be large and thus cannot be directly imported into most presentation software, such as Microsoft PowerPoint; the large files also consume storage space. There are many free programs that allow viewing and processing of these files on a personal computer, including conversion to more common file formats such as the Joint Photographic Experts Group (JPEG) format. Free DICOM image viewing and processing software for computers running on the Microsoft Windows operating system has already been evaluated. However, many people use the Macintosh (Apple Computer) platform, and a number of programs are available for these users. The World Wide Web was searched for free DICOM image viewing or processing software that was designed for the Macintosh platform or is written in Java and is therefore platform independent. The features of these programs and their usability were evaluated. There are many free programs for the Macintosh platform that enable viewing and processing of DICOM images. (c) RSNA, 2004.

  16. a Web-Based Interactive Platform for Co-Clustering Spatio-Temporal Data

    NASA Astrophysics Data System (ADS)

    Wu, X.; Poorthuis, A.; Zurita-Milla, R.; Kraak, M.-J.

    2017-09-01

    Since current studies on clustering analysis mainly focus on exploring spatial or temporal patterns separately, a co-clustering algorithm is utilized in this study to enable the concurrent analysis of spatio-temporal patterns. To allow users to adopt and adapt the algorithm for their own analysis, it is integrated within the server side of an interactive web-based platform. The client side of the platform, running within any modern browser, is a graphical user interface (GUI) with multiple linked visualizations that facilitates the understanding, exploration and interpretation of the raw dataset and co-clustering results. Users can also upload their own datasets and adjust clustering parameters within the platform. To illustrate the use of this platform, an annual temperature dataset from 28 weather stations over 20 years in the Netherlands is used. After the dataset is loaded, it is visualized in a set of linked visualizations: a geographical map, a timeline and a heatmap. This aids the user in understanding the nature of their dataset and the appropriate selection of co-clustering parameters. Once the dataset is processed by the co-clustering algorithm, the results are visualized in the small multiples, a heatmap and a timeline to provide various views for better understanding and also further interpretation. Since the visualization and analysis are integrated in a seamless platform, the user can explore different sets of co-clustering parameters and instantly view the results in order to do iterative, exploratory data analysis. As such, this interactive web-based platform allows users to analyze spatio-temporal data using the co-clustering method and also helps the understanding of the results using multiple linked visualizations.

  17. Low Cost Real Time Autonomous Remote Monitoring Platform

    NASA Astrophysics Data System (ADS)

    Rodríguez, J. R.; Maldonado, P. M.; Pierson, J. J.; Harris, L.

    2016-02-01

    Environmental scientists have a need for gathering multiple parameters during specific time periods to answer their research questions. Most available monitoring systems are very expensive and closed systems, which limits the potential to scale up research projects. We developed a low cost, autonomous, real-time monitoring platform that is both open hardware/software and easy to build, deploy, manage and maintain. The hardware is built with off-the-shelf components and a credit card sized computer called Raspberry Pi, running an open source operating (Raspbian). The system runs off a set of batteries and a solar panel, which makes it ideal for remote locations. The software is divided into three parts: 1) a framework for abstracting the sensors (initializing, pooling and communications) designed in python and using a fully object-oriented design, making it easy for new sensor to be added with minimal code changes, 2) a web front end for managing the entire system, 3) a data store (database) framework for local and remote data retrieval and reporting services. Connectivity to the system can be accomplished through a Wi-Fi or cellular Internet connection. Scientists are being forced to do more with less, in response our platform will provide them with a flexible system that can improve the process of data gathering with an accessible, modular, low-cost, and efficient monitoring system. Currently, we have the required permits from the Department of Natural Resources in Puerto Rico to deploy the platform at the Laguna Grande Bioluminescence Lagoon in Fajardo, PR. This station will include probes for pH, DO, Conductivity and water temperature.

  18. ePlant and the 3D data display initiative: integrative systems biology on the world wide web.

    PubMed

    Fucile, Geoffrey; Di Biase, David; Nahal, Hardeep; La, Garon; Khodabandeh, Shokoufeh; Chen, Yani; Easley, Kante; Christendat, Dinesh; Kelley, Lawrence; Provart, Nicholas J

    2011-01-10

    Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant) - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org).

  19. Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis

    NASA Astrophysics Data System (ADS)

    Moore, R. T.; Hansen, M. C.

    2011-12-01

    Google Earth Engine is a new technology platform that enables monitoring and measurement of changes in the earth's environment, at planetary scale, on a large catalog of earth observation data. The platform offers intrinsically-parallel computational access to thousands of computers in Google's data centers. Initial efforts have focused primarily on global forest monitoring and measurement, in support of REDD+ activities in the developing world. The intent is to put this platform into the hands of scientists and developing world nations, in order to advance the broader operational deployment of existing scientific methods, and strengthen the ability for public institutions and civil society to better understand, manage and report on the state of their natural resources. Earth Engine currently hosts online nearly the complete historical Landsat archive of L5 and L7 data collected over more than twenty-five years. Newly-collected Landsat imagery is downloaded from USGS EROS Center into Earth Engine on a daily basis. Earth Engine also includes a set of historical and current MODIS data products. The platform supports generation, on-demand, of spatial and temporal mosaics, "best-pixel" composites (for example to remove clouds and gaps in satellite imagery), as well as a variety of spectral indices. Supervised learning methods are available over the Landsat data catalog. The platform also includes a new application programming framework, or "API", that allows scientists access to these computational and data resources, to scale their current algorithms or develop new ones. Under the covers of the Google Earth Engine API is an intrinsically-parallel image-processing system. Several forest monitoring applications powered by this API are currently in development and expected to be operational in 2011. Combining science with massive data and technology resources in a cloud-computing framework can offer advantages of computational speed, ease-of-use and collaboration, as well as transparency in data and methods. Methods developed for global processing of MODIS data to map land cover are being adopted for use with Landsat data. Specifically, the MODIS Vegetation Continuous Field product methodology has been applied for mapping forest extent and change at national scales using Landsat time-series data sets. Scaling this method to continental and global scales is enabled by Google Earth Engine computing capabilities. By combining the supervised learning VCF approach with the Landsat archive and cloud computing, unprecedented monitoring of land cover dynamics is enabled.

  20. SU-E-T-628: A Cloud Computing Based Multi-Objective Optimization Method for Inverse Treatment Planning.

    PubMed

    Na, Y; Suh, T; Xing, L

    2012-06-01

    Multi-objective (MO) plan optimization entails generation of an enormous number of IMRT or VMAT plans constituting the Pareto surface, which presents a computationally challenging task. The purpose of this work is to overcome the hurdle by developing an efficient MO method using emerging cloud computing platform. As a backbone of cloud computing for optimizing inverse treatment planning, Amazon Elastic Compute Cloud with a master node (17.1 GB memory, 2 virtual cores, 420 GB instance storage, 64-bit platform) is used. The master node is able to scale seamlessly a number of working group instances, called workers, based on the user-defined setting account for MO functions in clinical setting. Each worker solved the objective function with an efficient sparse decomposition method. The workers are automatically terminated if there are finished tasks. The optimized plans are archived to the master node to generate the Pareto solution set. Three clinical cases have been planned using the developed MO IMRT and VMAT planning tools to demonstrate the advantages of the proposed method. The target dose coverage and critical structure sparing of plans are comparable obtained using the cloud computing platform are identical to that obtained using desktop PC (Intel Xeon® CPU 2.33GHz, 8GB memory). It is found that the MO planning speeds up the processing of obtaining the Pareto set substantially for both types of plans. The speedup scales approximately linearly with the number of nodes used for computing. With the use of N nodes, the computational time is reduced by the fitting model, 0.2+2.3/N, with r̂2>0.99, on average of the cases making real-time MO planning possible. A cloud computing infrastructure is developed for MO optimization. The algorithm substantially improves the speed of inverse plan optimization. The platform is valuable for both MO planning and future off- or on-line adaptive re-planning. © 2012 American Association of Physicists in Medicine.

  1. Treatment patterns in disease-modifying therapy for patients with multiple sclerosis in the United States.

    PubMed

    Bonafede, Machaon M; Johnson, Barbara H; Wenten, Madé; Watson, Crystal

    2013-10-01

    Patients with multiple sclerosis (MS) whose disease activity is inadequately controlled with a platform therapy (interferon beta or glatiramer acetate [GA]) may switch to another platform therapy or escalate therapy to natalizumab or fingolimod, which were approved in the US in 2006 and 2010, respectively. The objective of this study was to describe treatment patterns in patients with multiple sclerosis (MS) in the United States who were followed for 2 years after initiating a disease-modifying therapy (DMT). A retrospective observational cohort study was conducted to examine treatment patterns of initial DMT use (on initial therapy for 2 years with and without gaps of ≥ 60 days, medication switching, and discontinuation) among patients with MS who initiated a platform therapy (interferon-β or glatiramer acetate) or natalizumab between January 1, 2007, and September 30, 2009; the first DMT claim was the index. Eligible patients were identified in the MarketScan Commercial and Medicare Supplemental databases based on continuous enrollment for 6 months before (preindex period) and 24 months after their index date, with a diagnosis of MS and no claim for a previous DMT in the 6-month preindex period. Demographics at index and clinical characteristics during the preindex period were also analyzed. A total of 6181 MS patients were included, with 5735 (92.8%) starting on platform therapy. Natalizumab initiators were more likely to stay on index therapy (32.3% vs 16.9%, P < 0.001) and have fewer treatment gaps of ≥ 60 days (44.8% vs 55.3%, P < 0.001) compared with platform initiators. In addition, natalizumab initiators were less likely to switch treatment (13.9% vs 19.1%, P = 0.007) and took longer to switch (400.9 days vs 330.7 days, P < 0.001) compared with platform initiators. Nearly 79% of platform initiators who switched went to another platform therapy. Approximately two thirds of patients who switched to a third DMT (n = 130) switched to another platform therapy. A total of 9% of natalizumab and platform initiators discontinued DMT within the 2 years. Most MS patients initiating DMT started on platform therapy. Natalizumab initiators tended to stay on index therapy, have fewer treatment gaps, and switch less than platform initiators in the 2 years after treatment initiation. Switching between platform therapies is common despite evidence that MS patients on platform therapy may benefit from switching to natalizumab. © 2013 Elsevier HS Journals, Inc. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadayappan, Ponnuswamy

    Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today's machines. Systems software for exascale machines must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. We propose a new approach to the data and work distribution model provided by system software based on the unifying formalism of an abstract file system. The proposed hierarchical data model providesmore » simple, familiar visibility and access to data structures through the file system hierarchy, while providing fault tolerance through selective redundancy. The hierarchical task model features work queues whose form and organization are represented as file system objects. Data and work are both first class entities. By exposing the relationships between data and work to the runtime system, information is available to optimize execution time and provide fault tolerance. The data distribution scheme provides replication (where desirable and possible) for fault tolerance and efficiency, and it is hierarchical to make it possible to take advantage of locality. The user, tools, and applications, including legacy applications, can interface with the data, work queues, and one another through the abstract file model. This runtime environment will provide multiple interfaces to support traditional Message Passing Interface applications, languages developed under DARPA's High Productivity Computing Systems program, as well as other, experimental programming models. We will validate our runtime system with pilot codes on existing platforms and will use simulation to validate for exascale-class platforms. In this final report, we summarize research results from the work done at the Ohio State University towards the larger goals of the project listed above.« less

  3. Open Land-Use Map: A Regional Land-Use Mapping Strategy for Incorporating OpenStreetMap with Earth Observations

    NASA Astrophysics Data System (ADS)

    Yang, D.; Fu, C. S.; Binford, M. W.

    2017-12-01

    The southeastern United States has high landscape heterogeneity, withheavily managed forestlands, highly developed agriculture lands, and multiple metropolitan areas. Human activities are transforming and altering land patterns and structures in both negative and positive manners. A land-use map for at the greater scale is a heavy computation task but is critical to most landowners, researchers, and decision makers, enabling them to make informed decisions for varying objectives. There are two major difficulties in generating the classification maps at the regional scale: the necessity of large training point sets and the expensive computation cost-in terms of both money and time-in classifier modeling. Volunteered Geographic Information (VGI) opens a new era in mapping and visualizing our world, where the platform is open for collecting valuable georeferenced information by volunteer citizens, and the data is freely available to the public. As one of the most well-known VGI initiatives, OpenStreetMap (OSM) contributes not only road network distribution, but also the potential for using this data to justify land cover and land use classifications. Google Earth Engine (GEE) is a platform designed for cloud-based mapping with a robust and fast computing power. Most large scale and national mapping approaches confuse "land cover" and "land-use", or build up the land-use database based on modeled land cover datasets. Unlike most other large-scale approaches, we distinguish and differentiate land-use from land cover. By focusing our prime objective of mapping land-use and management practices, a robust regional land-use mapping approach is developed by incorporating the OpenstreepMap dataset into Earth observation remote sensing imageries instead of the often-used land cover base maps.

  4. FOCU:S--future operator control unit: soldier

    NASA Astrophysics Data System (ADS)

    O'Brien, Barry J.; Karan, Cem; Young, Stuart H.

    2009-05-01

    The U.S. Army Research Laboratory's (ARL) Computational and Information Sciences Directorate (CISD) has long been involved in autonomous asset control, specifically as it relates to small robots. Over the past year, CISD has been making strides in the implementation of three areas of small robot autonomy, namely platform autonomy, Soldier-robot interface, and tactical behaviors. It is CISD's belief that these three areas must be considered as a whole in order to provide Soldiers with useful capabilities. In addressing the Soldier-robot interface aspect, CISD has begun development on a unique dismounted controller called the Future Operator Control Unit: Soldier (FOCU:S) that is based on an Apple iPod Touch. The iPod Touch's small form factor, unique touch-screen input device, and the presence of general purpose computing applications such as a web browser combine to give this device the potential to be a disruptive technology. Setting CISD's implementation apart from other similar iPod or iPhone-based devices is the ARL software that allows multiple robotic platforms to be controlled from a single OCU. The FOCU:S uses the same Agile Computing Infrastructure (ACI) that all other assets in the ARL robotic control system use, enabling automated asset discovery on any type of network. Further, a custom ad hoc routing implementation allows the FOCU:S to communicate with the ARL ad hoc communications system and enables it to extend the range of the network. This paper will briefly describe the current robotic control architecture employed by ARL and provide short descriptions of existing capabilities. Further, the paper will discuss FOCU:S specific software developed for the iPod Touch, including unique capabilities enabled by the device's unique hardware.

  5. A Platform for Scalable Satellite and Geospatial Data Analysis

    NASA Astrophysics Data System (ADS)

    Beneke, C. M.; Skillman, S.; Warren, M. S.; Kelton, T.; Brumby, S. P.; Chartrand, R.; Mathis, M.

    2017-12-01

    At Descartes Labs, we use the commercial cloud to run global-scale machine learning applications over satellite imagery. We have processed over 5 Petabytes of public and commercial satellite imagery, including the full Landsat and Sentinel archives. By combining open-source tools with a FUSE-based filesystem for cloud storage, we have enabled a scalable compute platform that has demonstrated reading over 200 GB/s of satellite imagery into cloud compute nodes. In one application, we generated global 15m Landsat-8, 20m Sentinel-1, and 10m Sentinel-2 composites from 15 trillion pixels, using over 10,000 CPUs. We recently created a public open-source Python client library that can be used to query and access preprocessed public satellite imagery from within our platform, and made this platform available to researchers for non-commercial projects. In this session, we will describe how you can use the Descartes Labs Platform for rapid prototyping and scaling of geospatial analyses and demonstrate examples in land cover classification.

  6. FPGA platform for prototyping and evaluation of neural network automotive applications

    NASA Technical Reports Server (NTRS)

    Aranki, N.; Tawel, R.

    2002-01-01

    In this paper we present an FPGA based reconfigurable computing platform for prototyping and evaluation of advanced neural network based applications for control and diagnostics in an automotive sub-systems.

  7. User testing and performance evaluation of the Electronic Quality Improvement Platform for Plans and Pharmacies.

    PubMed

    Pringle, Janice L; Kearney, Shannon M; Grasso, Kim; Boyer, Annette D; Conklin, Mark H; Szymanski, Keith A

    2015-01-01

    To user-test and evaluate a performance information management platform that makes standardized, benchmarked medication use quality data available to both health plans and community pharmacy organizations. Multiple health/drug plans and multiple chain and independent pharmacies across the United States. During the first phase of the study, user experience was measured via user satisfaction surveys and interviews with key personnel (pharmacists, pharmacy leaders, and health plan leadership). Improvements were subsequently made to the platform based on these findings. During the second phase of the study, the platform was implemented in a greater number of pharmacies and by a greater number of payers. User experience was then reevaluated to gather information for further improvements. The surveys and interviews revealed that users found the Web-based platform easy to use and beneficial in terms of understanding and comparing performance metrics. Primary concerns included lack of access to real-time data and patient-specific data. Many users also expressed uncertainty as to how they could use the information and data provided by the platform. The study findings indicate that while information management platforms can be used effectively in both pharmacy and health plan settings, future development is needed to ensure that the provided data can be transferred to pharmacy best practices and improved quality care.

  8. Design and implementation of a UNIX based distributed computing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, J.S.; Michael, M.W.

    1994-12-31

    We have designed, implemented, and are running a corporate-wide distributed processing batch queue on a large number of networked workstations using the UNIX{reg_sign} operating system. Atlas Wireline researchers and scientists have used the system for over a year. The large increase in available computer power has greatly reduced the time required for nuclear and electromagnetic tool modeling. Use of remote distributed computing has simultaneously reduced computation costs and increased usable computer time. The system integrates equipment from different manufacturers, using various CPU architectures, distinct operating system revisions, and even multiple processors per machine. Various differences between the machines have tomore » be accounted for in the master scheduler. These differences include shells, command sets, swap spaces, memory sizes, CPU sizes, and OS revision levels. Remote processing across a network must be performed in a manner that is seamless from the users` perspective. The system currently uses IBM RISC System/6000{reg_sign}, SPARCstation{sup TM}, HP9000s700, HP9000s800, and DEC Alpha AXP{sup TM} machines. Each CPU in the network has its own speed rating, allowed working hours, and workload parameters. The system if designed so that all of the computers in the network can be optimally scheduled without adversely impacting the primary users of the machines. The increase in the total usable computational capacity by means of distributed batch computing can change corporate computing strategy. The integration of disparate computer platforms eliminates the need to buy one type of computer for computations, another for graphics, and yet another for day-to-day operations. It might be possible, for example, to meet all research and engineering computing needs with existing networked computers.« less

  9. An Approach to Integrate a Space-Time GIS Data Model with High Performance Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dali; Zhao, Ziliang; Shaw, Shih-Lung

    2011-01-01

    In this paper, we describe an approach to integrate a Space-Time GIS data model on a high performance computing platform. The Space-Time GIS data model has been developed on a desktop computing environment. We use the Space-Time GIS data model to generate GIS module, which organizes a series of remote sensing data. We are in the process of porting the GIS module into an HPC environment, in which the GIS modules handle large dataset directly via parallel file system. Although it is an ongoing project, authors hope this effort can inspire further discussions on the integration of GIS on highmore » performance computing platforms.« less

  10. Reprocessing Multiyear GPS Data from Continuously Operating Reference Stations on Cloud Computing Platform

    NASA Astrophysics Data System (ADS)

    Yoon, S.

    2016-12-01

    To define geodetic reference frame using GPS data collected by Continuously Operating Reference Stations (CORS) network, historical GPS data needs to be reprocessed regularly. Reprocessing GPS data collected by upto 2000 CORS sites for the last two decades requires a lot of computational resource. At National Geodetic Survey (NGS), there has been one completed reprocessing in 2011, and currently, the second reprocessing is undergoing. For the first reprocessing effort, in-house computing resource was utilized. In the current second reprocessing effort, outsourced cloud computing platform is being utilized. In this presentation, the outline of data processing strategy at NGS is described as well as the effort to parallelize the data processing procedure in order to maximize the benefit of the cloud computing. The time and cost savings realized by utilizing cloud computing approach will also be discussed.

  11. System and method for detecting components of a mixture including tooth elements for alignment

    DOEpatents

    Sommer, Gregory Jon; Schaff, Ulrich Y.

    2016-11-22

    Examples are described including assay platforms having tooth elements. An impinging element may sequentially engage tooth elements on the assay platform to sequentially align corresponding detection regions with a detection unit. In this manner, multiple measurements may be made of detection regions on the assay platform without necessarily requiring the starting and stopping of a motor.

  12. Single-Cell-Based Platform for Copy Number Variation Profiling through Digital Counting of Amplified Genomic DNA Fragments.

    PubMed

    Li, Chunmei; Yu, Zhilong; Fu, Yusi; Pang, Yuhong; Huang, Yanyi

    2017-04-26

    We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.

  13. GOLIAH: A Gaming Platform for Home-Based Intervention in Autism – Principles and Design

    PubMed Central

    Bono, Valentina; Narzisi, Antonio; Jouen, Anne-Lise; Tilmont, Elodie; Hommel, Stephane; Jamal, Wasifa; Xavier, Jean; Billeci, Lucia; Maharatna, Koushik; Wald, Mike; Chetouani, Mohamed; Cohen, David; Muratori, Filippo

    2016-01-01

    Children with Autism need intensive intervention and this is challenging in terms of manpower, costs, and time. Advances in Information Communication Technology and computer gaming may help in this respect by creating a nomadically deployable closed-loop intervention system involving the child and active participation of parents and therapists. An automated serious gaming platform enabling intensive intervention in nomadic settings has been developed by mapping two pivotal skills in autism spectrum disorder: Imitation and Joint Attention (JA). Eleven games – seven Imitations and four JA – were derived from the Early Start Denver Model. The games involved application of visual and audio stimuli with multiple difficulty levels and a wide variety of tasks and actions pertaining to the Imitation and JA. The platform runs on mobile devices and allows the therapist to (1) characterize the child’s initial difficulties/strengths, ensuring tailored and adapted intervention by choosing appropriate games and (2) investigate and track the temporal evolution of the child’s progress through a set of automatically extracted quantitative performance metrics. The platform allows the therapist to change the game or its difficulty levels during the intervention depending on the child’s progress. Performance of the platform was assessed in a 3-month open trial with 10 children with autism (Trial ID: NCT02560415, Clinicaltrials.gov). The children and the parents participated in 80% of the sessions both at home (77.5%) and at the hospital (90%). All children went through all the games but, given the diversity of the games and the heterogeneity of children profiles and abilities, for a given game the number of sessions dedicated to the game varied and could be tailored through automatic scoring. Parents (N = 10) highlighted enhancement in the child’s concentration, flexibility, and self-esteem in 78, 89, and 44% of the cases, respectively, and 56% observed an enhanced parents–child relationship. This pilot study shows the feasibility of using the developed gaming platform for home-based intensive intervention. However, the overall capability of the platform in delivering intervention needs to be assessed in a bigger open trial. PMID:27199777

  14. GOLIAH: A Gaming Platform for Home-Based Intervention in Autism - Principles and Design.

    PubMed

    Bono, Valentina; Narzisi, Antonio; Jouen, Anne-Lise; Tilmont, Elodie; Hommel, Stephane; Jamal, Wasifa; Xavier, Jean; Billeci, Lucia; Maharatna, Koushik; Wald, Mike; Chetouani, Mohamed; Cohen, David; Muratori, Filippo

    2016-01-01

    Children with Autism need intensive intervention and this is challenging in terms of manpower, costs, and time. Advances in Information Communication Technology and computer gaming may help in this respect by creating a nomadically deployable closed-loop intervention system involving the child and active participation of parents and therapists. An automated serious gaming platform enabling intensive intervention in nomadic settings has been developed by mapping two pivotal skills in autism spectrum disorder: Imitation and Joint Attention (JA). Eleven games - seven Imitations and four JA - were derived from the Early Start Denver Model. The games involved application of visual and audio stimuli with multiple difficulty levels and a wide variety of tasks and actions pertaining to the Imitation and JA. The platform runs on mobile devices and allows the therapist to (1) characterize the child's initial difficulties/strengths, ensuring tailored and adapted intervention by choosing appropriate games and (2) investigate and track the temporal evolution of the child's progress through a set of automatically extracted quantitative performance metrics. The platform allows the therapist to change the game or its difficulty levels during the intervention depending on the child's progress. Performance of the platform was assessed in a 3-month open trial with 10 children with autism (Trial ID: NCT02560415, Clinicaltrials.gov). The children and the parents participated in 80% of the sessions both at home (77.5%) and at the hospital (90%). All children went through all the games but, given the diversity of the games and the heterogeneity of children profiles and abilities, for a given game the number of sessions dedicated to the game varied and could be tailored through automatic scoring. Parents (N = 10) highlighted enhancement in the child's concentration, flexibility, and self-esteem in 78, 89, and 44% of the cases, respectively, and 56% observed an enhanced parents-child relationship. This pilot study shows the feasibility of using the developed gaming platform for home-based intensive intervention. However, the overall capability of the platform in delivering intervention needs to be assessed in a bigger open trial.

  15. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Plutonium Metals, Oxides, and Solutions on the High Performance Computing Platform Moonlight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Bryan Scott; Gough, Sean T.

    This report documents a validation of the MCNP6 Version 1.0 computer code on the high performance computing platform Moonlight, for operations at Los Alamos National Laboratory (LANL) that involve plutonium metals, oxides, and solutions. The validation is conducted using the ENDF/B-VII.1 continuous energy group cross section library at room temperature. The results are for use by nuclear criticality safety personnel in performing analysis and evaluation of various facility activities involving plutonium materials.

  16. Development of a Very Dense Liquid Cooled Compute Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Phillip N.; Lipp, Robert J.

    2013-12-10

    The objective of this project was to design and develop a prototype very energy efficient high density compute platform with 100% pumped refrigerant liquid cooling using commodity components and high volume manufacturing techniques. Testing at SLAC has indicated that we achieved a DCIE of 0.93 against our original goal of 0.85. This number includes both cooling and power supply and was achieved employing some of the highest wattage processors available.

  17. Design Tools for Accelerating Development and Usage of Multi-Core Computing Platforms

    DTIC Science & Technology

    2014-04-01

    Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation ; or convey...multicore PDSP platforms. The GPU- based capabilities of TDIF are currently oriented towards NVIDIA GPUs, based on the Compute Unified Device Architecture...CUDA) programming language [ NVIDIA 2007], which can be viewed as an extension of C. The multicore PDSP capabilities currently in TDIF are oriented

  18. Technical Note: scuda: A software platform for cumulative dose assessment.

    PubMed

    Park, Seyoun; McNutt, Todd; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2016-10-01

    Accurate tracking of anatomical changes and computation of actually delivered dose to the patient are critical for successful adaptive radiation therapy (ART). Additionally, efficient data management and fast processing are practically important for the adoption in clinic as ART involves a large amount of image and treatment data. The purpose of this study was to develop an accurate and efficient Software platform for CUmulative Dose Assessment (scuda) that can be seamlessly integrated into the clinical workflow. scuda consists of deformable image registration (DIR), segmentation, dose computation modules, and a graphical user interface. It is connected to our image PACS and radiotherapy informatics databases from which it automatically queries/retrieves patient images, radiotherapy plan, beam data, and daily treatment information, thus providing an efficient and unified workflow. For accurate registration of the planning CT and daily CBCTs, the authors iteratively correct CBCT intensities by matching local intensity histograms during the DIR process. Contours of the target tumor and critical structures are then propagated from the planning CT to daily CBCTs using the computed deformations. The actual delivered daily dose is computed using the registered CT and patient setup information by a superposition/convolution algorithm, and accumulated using the computed deformation fields. Both DIR and dose computation modules are accelerated by a graphics processing unit. The cumulative dose computation process has been validated on 30 head and neck (HN) cancer cases, showing 3.5 ± 5.0 Gy (mean±STD) absolute mean dose differences between the planned and the actually delivered doses in the parotid glands. On average, DIR, dose computation, and segmentation take 20 s/fraction and 17 min for a 35-fraction treatment including additional computation for dose accumulation. The authors developed a unified software platform that provides accurate and efficient monitoring of anatomical changes and computation of actually delivered dose to the patient, thus realizing an efficient cumulative dose computation workflow. Evaluation on HN cases demonstrated the utility of our platform for monitoring the treatment quality and detecting significant dosimetric variations that are keys to successful ART.

  19. Technical Note: SCUDA: A software platform for cumulative dose assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Seyoun; McNutt, Todd; Quon, Harry

    Purpose: Accurate tracking of anatomical changes and computation of actually delivered dose to the patient are critical for successful adaptive radiation therapy (ART). Additionally, efficient data management and fast processing are practically important for the adoption in clinic as ART involves a large amount of image and treatment data. The purpose of this study was to develop an accurate and efficient Software platform for CUmulative Dose Assessment (SCUDA) that can be seamlessly integrated into the clinical workflow. Methods: SCUDA consists of deformable image registration (DIR), segmentation, dose computation modules, and a graphical user interface. It is connected to our imagemore » PACS and radiotherapy informatics databases from which it automatically queries/retrieves patient images, radiotherapy plan, beam data, and daily treatment information, thus providing an efficient and unified workflow. For accurate registration of the planning CT and daily CBCTs, the authors iteratively correct CBCT intensities by matching local intensity histograms during the DIR process. Contours of the target tumor and critical structures are then propagated from the planning CT to daily CBCTs using the computed deformations. The actual delivered daily dose is computed using the registered CT and patient setup information by a superposition/convolution algorithm, and accumulated using the computed deformation fields. Both DIR and dose computation modules are accelerated by a graphics processing unit. Results: The cumulative dose computation process has been validated on 30 head and neck (HN) cancer cases, showing 3.5 ± 5.0 Gy (mean±STD) absolute mean dose differences between the planned and the actually delivered doses in the parotid glands. On average, DIR, dose computation, and segmentation take 20 s/fraction and 17 min for a 35-fraction treatment including additional computation for dose accumulation. Conclusions: The authors developed a unified software platform that provides accurate and efficient monitoring of anatomical changes and computation of actually delivered dose to the patient, thus realizing an efficient cumulative dose computation workflow. Evaluation on HN cases demonstrated the utility of our platform for monitoring the treatment quality and detecting significant dosimetric variations that are keys to successful ART.« less

  20. Node Resource Manager: A Distributed Computing Software Framework Used for Solving Geophysical Problems

    NASA Astrophysics Data System (ADS)

    Lawry, B. J.; Encarnacao, A.; Hipp, J. R.; Chang, M.; Young, C. J.

    2011-12-01

    With the rapid growth of multi-core computing hardware, it is now possible for scientific researchers to run complex, computationally intensive software on affordable, in-house commodity hardware. Multi-core CPUs (Central Processing Unit) and GPUs (Graphics Processing Unit) are now commonplace in desktops and servers. Developers today have access to extremely powerful hardware that enables the execution of software that could previously only be run on expensive, massively-parallel systems. It is no longer cost-prohibitive for an institution to build a parallel computing cluster consisting of commodity multi-core servers. In recent years, our research team has developed a distributed, multi-core computing system and used it to construct global 3D earth models using seismic tomography. Traditionally, computational limitations forced certain assumptions and shortcuts in the calculation of tomographic models; however, with the recent rapid growth in computational hardware including faster CPU's, increased RAM, and the development of multi-core computers, we are now able to perform seismic tomography, 3D ray tracing and seismic event location using distributed parallel algorithms running on commodity hardware, thereby eliminating the need for many of these shortcuts. We describe Node Resource Manager (NRM), a system we developed that leverages the capabilities of a parallel computing cluster. NRM is a software-based parallel computing management framework that works in tandem with the Java Parallel Processing Framework (JPPF, http://www.jppf.org/), a third party library that provides a flexible and innovative way to take advantage of modern multi-core hardware. NRM enables multiple applications to use and share a common set of networked computers, regardless of their hardware platform or operating system. Using NRM, algorithms can be parallelized to run on multiple processing cores of a distributed computing cluster of servers and desktops, which results in a dramatic speedup in execution time. NRM is sufficiently generic to support applications in any domain, as long as the application is parallelizable (i.e., can be subdivided into multiple individual processing tasks). At present, NRM has been effective in decreasing the overall runtime of several algorithms: 1) the generation of a global 3D model of the compressional velocity distribution in the Earth using tomographic inversion, 2) the calculation of the model resolution matrix, model covariance matrix, and travel time uncertainty for the aforementioned velocity model, and 3) the correlation of waveforms with archival data on a massive scale for seismic event detection. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.

    2016-12-01

    Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We tested the performance of the platform based on taxi trajectory analysis. Results suggested that GISpark achieves excellent run time performance in spatiotemporal big data applications.

  2. Simulation tools for robotics research and assessment

    NASA Astrophysics Data System (ADS)

    Fields, MaryAnne; Brewer, Ralph; Edge, Harris L.; Pusey, Jason L.; Weller, Ed; Patel, Dilip G.; DiBerardino, Charles A.

    2016-05-01

    The Robotics Collaborative Technology Alliance (RCTA) program focuses on four overlapping technology areas: Perception, Intelligence, Human-Robot Interaction (HRI), and Dexterous Manipulation and Unique Mobility (DMUM). In addition, the RCTA program has a requirement to assess progress of this research in standalone as well as integrated form. Since the research is evolving and the robotic platforms with unique mobility and dexterous manipulation are in the early development stage and very expensive, an alternate approach is needed for efficient assessment. Simulation of robotic systems, platforms, sensors, and algorithms, is an attractive alternative to expensive field-based testing. Simulation can provide insight during development and debugging unavailable by many other means. This paper explores the maturity of robotic simulation systems for applications to real-world problems in robotic systems research. Open source (such as Gazebo and Moby), commercial (Simulink, Actin, LMS), government (ANVEL/VANE), and the RCTA-developed RIVET simulation environments are examined with respect to their application in the robotic research domains of Perception, Intelligence, HRI, and DMUM. Tradeoffs for applications to representative problems from each domain are presented, along with known deficiencies and disadvantages. In particular, no single robotic simulation environment adequately covers the needs of the robotic researcher in all of the domains. Simulation for DMUM poses unique constraints on the development of physics-based computational models of the robot, the environment and objects within the environment, and the interactions between them. Most current robot simulations focus on quasi-static systems, but dynamic robotic motion places an increased emphasis on the accuracy of the computational models. In order to understand the interaction of dynamic multi-body systems, such as limbed robots, with the environment, it may be necessary to build component-level computational models to provide the necessary simulation fidelity for accuracy. However, the Perception domain remains the most problematic for adequate simulation performance due to the often cartoon nature of computer rendering and the inability to model realistic electromagnetic radiation effects, such as multiple reflections, in real-time.

  3. Solvation Structure and Thermodynamic Mapping (SSTMap): An Open-Source, Flexible Package for the Analysis of Water in Molecular Dynamics Trajectories.

    PubMed

    Haider, Kamran; Cruz, Anthony; Ramsey, Steven; Gilson, Michael K; Kurtzman, Tom

    2018-01-09

    We have developed SSTMap, a software package for mapping structural and thermodynamic water properties in molecular dynamics trajectories. The package introduces automated analysis and mapping of local measures of frustration and enhancement of water structure. The thermodynamic calculations are based on Inhomogeneous Fluid Solvation Theory (IST), which is implemented using both site-based and grid-based approaches. The package also extends the applicability of solvation analysis calculations to multiple molecular dynamics (MD) simulation programs by using existing cross-platform tools for parsing MD parameter and trajectory files. SSTMap is implemented in Python and contains both command-line tools and a Python module to facilitate flexibility in setting up calculations and for automated generation of large data sets involving analysis of multiple solutes. Output is generated in formats compatible with popular Python data science packages. This tool will be used by the molecular modeling community for computational analysis of water in problems of biophysical interest such as ligand binding and protein function.

  4. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks

    DOE PAGES

    Shen, Yiwen; Hattink, Maarten; Samadi, Payman; ...

    2018-04-13

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. Here, we present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly networkmore » testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 microsecond control plane latency for data-center and high performance computing platforms.« less

  5. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yiwen; Hattink, Maarten; Samadi, Payman

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. Here, we present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly networkmore » testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 microsecond control plane latency for data-center and high performance computing platforms.« less

  6. A photonic circuit for complementary frequency shifting, in-phase quadrature/single sideband modulation and frequency multiplication: analysis and integration feasibility

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hu, Jianqi; Nikkhah, Hamdam; Hall, Trevor

    2017-08-01

    A novel photonic integrated circuit architecture for implementing orthogonal frequency division multiplexing by means of photonic generation of phase-correlated sub-carriers is proposed. The circuit can also be used for implementing complex modulation, frequency up-conversion of the electrical signal to the optical domain and frequency multiplication. The principles of operation of the circuit are expounded using transmission matrices and the predictions of the analysis are verified by computer simulation using an industry-standard software tool. Non-ideal scenarios that may affect the correct function of the circuit are taken into consideration and quantified. The discussion of integration feasibility is illustrated by a photonic integrated circuit that has been fabricated using 'library' components and which features most of the elements of the proposed circuit architecture. The circuit is found to be practical and may be fabricated in any material platform that offers a linear electro-optic modulator such as organic or ferroelectric thin films hybridized with silicon photonics.

  7. Real-time multiple objects tracking on Raspberry-Pi-based smart embedded camera

    NASA Astrophysics Data System (ADS)

    Dziri, Aziz; Duranton, Marc; Chapuis, Roland

    2016-07-01

    Multiple-object tracking constitutes a major step in several computer vision applications, such as surveillance, advanced driver assistance systems, and automatic traffic monitoring. Because of the number of cameras used to cover a large area, these applications are constrained by the cost of each node, the power consumption, the robustness of the tracking, the processing time, and the ease of deployment of the system. To meet these challenges, the use of low-power and low-cost embedded vision platforms to achieve reliable tracking becomes essential in networks of cameras. We propose a tracking pipeline that is designed for fixed smart cameras and which can handle occlusions between objects. We show that the proposed pipeline reaches real-time processing on a low-cost embedded smart camera composed of a Raspberry-Pi board and a RaspiCam camera. The tracking quality and the processing speed obtained with the proposed pipeline are evaluated on publicly available datasets and compared to the state-of-the-art methods.

  8. Aspiring to Spectral Ignorance in Earth Observation

    NASA Astrophysics Data System (ADS)

    Oliver, S. A.

    2016-12-01

    Enabling robust, defensible and integrated decision making in the Era of Big Earth Data requires the fusion of data from multiple and diverse sensor platforms and networks. While the application of standardised global grid systems provides a common spatial analytics framework that facilitates the computationally efficient and statistically valid integration and analysis of these various data sources across multiple scales, there remains the challenge of sensor equivalency; particularly when combining data from different earth observation satellite sensors (e.g. combining Landsat and Sentinel-2 observations). To realise the vision of a sensor ignorant analytics platform for earth observation we require automation of spectral matching across the available sensors. Ultimately, the aim is to remove the requirement for the user to possess any sensor knowledge in order to undertake analysis. This paper introduces the concept of spectral equivalence and proposes a methodology through which equivalent bands may be sourced from a set of potential target sensors through application of equivalence metrics and thresholds. A number of parameters can be used to determine whether a pair of spectra are equivalent for the purposes of analysis. A baseline set of thresholds for these parameters and how to apply them systematically to enable relation of spectral bands amongst numerous different sensors is proposed. The base unit for comparison in this work is the relative spectral response. From this input, determination of a what may constitute equivalence can be related by a user, based on their own conceptualisation of equivalence.

  9. Climate@Home: Crowdsourcing Climate Change Research

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate scientists configure computer model parameters through the portal user interface. After model configuration, scientists then launch the computing task. Next, data is atomized and distributed to computing engines that are running on citizen participants' computers. Scientists will receive notifications on the completion of computing tasks, and examine modeling results via visualization modules of the portal. Computing tasks, computing resources, and participants are managed by project managers via portal tools. A portal prototype has been built for proof of concept. Three forums have been setup for different groups of users to share information on science aspect, technology aspect, and educational outreach aspect. A facebook account has been setup to distribute messages via the most popular social networking platform. New treads are synchronized from the forums to facebook. A mapping tool displays geographic locations of the participants and the status of tasks on each client node. A group of users have been invited to test functions such as forums, blogs, and computing resource monitoring.

  10. Concepts for a geostationary-like polar mission

    NASA Astrophysics Data System (ADS)

    Macdonald, Malcolm; Anderson, Pamela; Carrea, Laura; Dobke, Benjamin; Embury, Owen; Merchant, Chris; Bensi, Paolo

    2014-10-01

    An evidence-led scientific case for development of a space-based polar remote sensing platform at geostationary-like (GEO-like) altitudes is developed through methods including a data user survey. Whilst a GEO platform provides a nearstatic perspective, multiple platforms are required to provide circumferential coverage. Systems for achieving GEO-like polar observation likewise require multiple platforms however the perspective is non-stationery. A key choice is between designs that provide complete polar view from a single platform at any given instant, and designs where this is obtained by compositing partial views from multiple sensors. Users foresee an increased challenge in extracting geophysical information from composite images and consider the use of non-composited images advantageous. Users also find the placement of apogee over the pole to be preferable to the alternative scenarios. Thus, a clear majority of data users find the "Taranis" orbit concept to be better than a critical inclination orbit, due to the improved perspective offered. The geophysical products that would benefit from a GEO-like polar platform are mainly estimated from radiances in the visible/near infrared and thermal parts of the electromagnetic spectrum, which is consistent with currently proven technologies from GEO. Based on the survey results, needs analysis, and current technology proven from GEO, scientific and observation requirements are developed along with two instrument concepts with eight and four channels, based on Flexible Combined Imager heritage. It is found that an operational system could, mostly likely, be deployed from an Ariane 5 ES to a 16-hour orbit, while a proof-of-concept system could be deployed from a Soyuz launch to the same orbit.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y. M., E-mail: ymingy@gmail.com; Bednarz, B.; Svatos, M.

    Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship withinmore » a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead.« less

  12. Concurrent Monte Carlo transport and fluence optimization with fluence adjusting scalable transport Monte Carlo

    PubMed Central

    Svatos, M.; Zankowski, C.; Bednarz, B.

    2016-01-01

    Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship within a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead. PMID:27277051

  13. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.

    2014-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving geoscientists, earthquake engineers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform (BBP) is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms for a well-observed historical earthquake. Then, the BBP calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, and several new data products, such as map and distance-based goodness of fit plots. As the number and complexity of scenarios simulated using the Broadband Platform increases, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.

  14. Global Software Development with Cloud Platforms

    NASA Astrophysics Data System (ADS)

    Yara, Pavan; Ramachandran, Ramaseshan; Balasubramanian, Gayathri; Muthuswamy, Karthik; Chandrasekar, Divya

    Offshore and outsourced distributed software development models and processes are facing challenges, previously unknown, with respect to computing capacity, bandwidth, storage, security, complexity, reliability, and business uncertainty. Clouds promise to address these challenges by adopting recent advances in virtualization, parallel and distributed systems, utility computing, and software services. In this paper, we envision a cloud-based platform that addresses some of these core problems. We outline a generic cloud architecture, its design and our first implementation results for three cloud forms - a compute cloud, a storage cloud and a cloud-based software service- in the context of global distributed software development (GSD). Our ”compute cloud” provides computational services such as continuous code integration and a compile server farm, ”storage cloud” offers storage (block or file-based) services with an on-line virtual storage service, whereas the on-line virtual labs represent a useful cloud service. We note some of the use cases for clouds in GSD, the lessons learned with our prototypes and identify challenges that must be conquered before realizing the full business benefits. We believe that in the future, software practitioners will focus more on these cloud computing platforms and see clouds as a means to supporting a ecosystem of clients, developers and other key stakeholders.

  15. Control system design for the large space systems technology reference platform

    NASA Technical Reports Server (NTRS)

    Edmunds, R. S.

    1982-01-01

    Structural models and classical frequency domain control system designs were developed for the large space systems technology (LSST) reference platform which consists of a central bus structure, solar panels, and platform arms on which a variety of experiments may be mounted. It is shown that operation of multiple independently articulated payloads on a single platform presents major problems when subarc second pointing stability is required. Experiment compatibility will be an important operational consideration for systems of this type.

  16. Design and performance of the virtualization platform for offline computing on the ATLAS TDAQ Farm

    NASA Astrophysics Data System (ADS)

    Ballestrero, S.; Batraneanu, S. M.; Brasolin, F.; Contescu, C.; Di Girolamo, A.; Lee, C. J.; Pozo Astigarraga, M. E.; Scannicchio, D. A.; Twomey, M. S.; Zaytsev, A.

    2014-06-01

    With the LHC collider at CERN currently going through the period of Long Shutdown 1 there is an opportunity to use the computing resources of the experiments' large trigger farms for other data processing activities. In the case of the ATLAS experiment, the TDAQ farm, consisting of more than 1500 compute nodes, is suitable for running Monte Carlo (MC) production jobs that are mostly CPU and not I/O bound. This contribution gives a thorough review of the design and deployment of a virtualized platform running on this computing resource and of its use to run large groups of CernVM based virtual machines operating as a single CERN-P1 WLCG site. This platform has been designed to guarantee the security and the usability of the ATLAS private network, and to minimize interference with TDAQ's usage of the farm. Openstack has been chosen to provide a cloud management layer. The experience gained in the last 3.5 months shows that the use of the TDAQ farm for the MC simulation contributes to the ATLAS data processing at the level of a large Tier-1 WLCG site, despite the opportunistic nature of the underlying computing resources being used.

  17. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    ERIC Educational Resources Information Center

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  18. Cloud Computing in Support of Applied Learning: A Baseline Study of Infrastructure Design at Southern Polytechnic State University

    ERIC Educational Resources Information Center

    Conn, Samuel S.; Reichgelt, Han

    2013-01-01

    Cloud computing represents an architecture and paradigm of computing designed to deliver infrastructure, platforms, and software as constructible computing resources on demand to networked users. As campuses are challenged to better accommodate academic needs for applications and computing environments, cloud computing can provide an accommodating…

  19. A Multimodal Search Engine for Medical Imaging Studies.

    PubMed

    Pinho, Eduardo; Godinho, Tiago; Valente, Frederico; Costa, Carlos

    2017-02-01

    The use of digital medical imaging systems in healthcare institutions has increased significantly, and the large amounts of data in these systems have led to the conception of powerful support tools: recent studies on content-based image retrieval (CBIR) and multimodal information retrieval in the field hold great potential in decision support, as well as for addressing multiple challenges in healthcare systems, such as computer-aided diagnosis (CAD). However, the subject is still under heavy research, and very few solutions have become part of Picture Archiving and Communication Systems (PACS) in hospitals and clinics. This paper proposes an extensible platform for multimodal medical image retrieval, integrated in an open-source PACS software with profile-based CBIR capabilities. In this article, we detail a technical approach to the problem by describing its main architecture and each sub-component, as well as the available web interfaces and the multimodal query techniques applied. Finally, we assess our implementation of the engine with computational performance benchmarks.

  20. Methods for extracting social network data from chatroom logs

    NASA Astrophysics Data System (ADS)

    Osesina, O. Isaac; McIntire, John P.; Havig, Paul R.; Geiselman, Eric E.; Bartley, Cecilia; Tudoreanu, M. Eduard

    2012-06-01

    Identifying social network (SN) links within computer-mediated communication platforms without explicit relations among users poses challenges to researchers. Our research aims to extract SN links in internet chat with multiple users engaging in synchronous overlapping conversations all displayed in a single stream. We approached this problem using three methods which build on previous research. Response-time analysis builds on temporal proximity of chat messages; word context usage builds on keywords analysis and direct addressing which infers links by identifying the intended message recipient from the screen name (nickname) referenced in the message [1]. Our analysis of word usage within the chat stream also provides contexts for the extracted SN links. To test the capability of our methods, we used publicly available data from Internet Relay Chat (IRC), a real-time computer-mediated communication (CMC) tool used by millions of people around the world. The extraction performances of individual methods and their hybrids were assessed relative to a ground truth (determined a priori via manual scoring).

Top