NASA Technical Reports Server (NTRS)
Mann, R. C.; Fujimura, K.; Unseren, M. A.
1992-01-01
One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of position and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace.
Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.
2004-02-03
A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.
Cooperative Robots to Observe Moving Targets: Review.
Khan, Asif; Rinner, Bernhard; Cavallaro, Andrea
2018-01-01
The deployment of multiple robots for achieving a common goal helps to improve the performance, efficiency, and/or robustness in a variety of tasks. In particular, the observation of moving targets is an important multirobot application that still exhibits numerous open challenges, including the effective coordination of the robots. This paper reviews control techniques for cooperative mobile robots monitoring multiple targets. The simultaneous movement of robots and targets makes this problem particularly interesting, and our review systematically addresses this cooperative multirobot problem for the first time. We classify and critically discuss the control techniques: cooperative multirobot observation of multiple moving targets, cooperative search, acquisition, and track, cooperative tracking, and multirobot pursuit evasion. We also identify the five major elements that characterize this problem, namely, the coordination method, the environment, the target, the robot and its sensor(s). These elements are used to systematically analyze the control techniques. The majority of the studied work is based on simulation and laboratory studies, which may not accurately reflect real-world operational conditions. Importantly, while our systematic analysis is focused on multitarget observation, our proposed classification is useful also for related multirobot applications.
KALI - An environment for the programming and control of cooperative manipulators
NASA Technical Reports Server (NTRS)
Hayward, Vincent; Hayati, Samad
1988-01-01
A design description is given of a controller for cooperative robots. The background and motivation for multiple arm control are discussed. A set of programming primitives which permit a programmer to specify cooperative tasks are described. Motion primitives specify asynchronous motions, master/slave motions, and cooperative motions. In the context of cooperative robots, trajectory generation issues are discussed and the authors' implementation briefly described. The relations between programming and control in the case of multiple robots are examined. The allocation of various tasks among a multiprocessor computer is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.; Fujimura, K.; Unseren, M.A.
One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR)at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of positionmore » and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace. 15 refs., 3 figs.« less
Cooperative system and method using mobile robots for testing a cooperative search controller
Byrne, Raymond H.; Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.
2002-01-01
A test system for testing a controller provides a way to use large numbers of miniature mobile robots to test a cooperative search controller in a test area, where each mobile robot has a sensor, a communication device, a processor, and a memory. A method of using a test system provides a way for testing a cooperative search controller using multiple robots sharing information and communicating over a communication network.
Concurrent Path Planning with One or More Humanoid Robots
NASA Technical Reports Server (NTRS)
Reiland, Matthew J. (Inventor); Sanders, Adam M. (Inventor)
2014-01-01
A robotic system includes a controller and one or more robots each having a plurality of robotic joints. Each of the robotic joints is independently controllable to thereby execute a cooperative work task having at least one task execution fork, leading to multiple independent subtasks. The controller coordinates motion of the robot(s) during execution of the cooperative work task. The controller groups the robotic joints into task-specific robotic subsystems, and synchronizes motion of different subsystems during execution of the various subtasks of the cooperative work task. A method for executing the cooperative work task using the robotic system includes automatically grouping the robotic joints into task-specific subsystems, and assigning subtasks of the cooperative work task to the subsystems upon reaching a task execution fork. The method further includes coordinating execution of the subtasks after reaching the task execution fork.
Cooperative path following control of multiple nonholonomic mobile robots.
Cao, Ke-Cai; Jiang, Bin; Yue, Dong
2017-11-01
Cooperative path following control problem of multiple nonholonomic mobile robots has been considered in this paper. Based on the framework of decomposition, the cooperative path following problem has been transformed into path following problem and cooperative control problem; Then cascaded theory of non-autonomous system has been employed in the design of controllers without resorting to feedback linearization. One time-varying coordinate transformation based on dilation has been introduced to solve the uncontrollable problem of nonholonomic robots when the whole group's reference converges to stationary point. Cooperative path following controllers for nonholonomic robots have been proposed under persistent reference or reference target that converges to stationary point respectively. Simulation results using Matlab have illustrated the effectiveness of the obtained theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Design principles of a cooperative robot controller
NASA Technical Reports Server (NTRS)
Hayward, Vincent; Hayati, Samad
1987-01-01
The paper describes the design of a controller for cooperative robots being designed at McGill University in a collaborative effort with the Jet Propulsion Laboratory. The first part of the paper discusses the background and motivation for multiple arm control. Then, a set of programming primitives, which are based on the RCCL system and which permit a programmer to specify cooperative tasks are described. The first group of primitives are motion primitives which specify asynchronous motions, master/slave motions, and cooperative motions. In the context of cooperative robots, trajectory generation issues will be discussed and the implementation described. A second set of primitives provides for the specification of spatial relationships. The relations between programming and control in the case of multiple robot are examined. Finally, the paper describes the allocation of various tasks among a set of microprocessors sharing a common bus.
Towards a sustainable modular robot system for planetary exploration
NASA Astrophysics Data System (ADS)
Hossain, S. G. M.
This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.
Distributed Finite-Time Cooperative Control of Multiple High-Order Nonholonomic Mobile Robots.
Du, Haibo; Wen, Guanghui; Cheng, Yingying; He, Yigang; Jia, Ruting
2017-12-01
The consensus problem of multiple nonholonomic mobile robots in the form of high-order chained structure is considered in this paper. Based on the model features and the finite-time control technique, a finite-time cooperative controller is explicitly constructed which guarantees that the states consensus is achieved in a finite time. As an application of the proposed results, finite-time formation control of multiple wheeled mobile robots is studied and a finite-time formation control algorithm is proposed. To show effectiveness of the proposed approach, a simulation example is given.
Dynamical modelling of coordinated multiple robot systems
NASA Technical Reports Server (NTRS)
Hayati, Samad
1987-01-01
The state of the art in the modeling of the dynamics of coordinated multiple robot manipulators is summarized and various problems related to this subject are discussed. It is recognized that dynamics modeling is a component used in the design of controllers for multiple cooperating robots. As such, the discussion addresses some problems related to the control of multiple robots. The techniques used to date in the modeling of closed kinematic chains are summarized. Various efforts made to date for the control of coordinated multiple manipulators is summarized.
Robotic Precursor Missions for Mars Habitats
NASA Technical Reports Server (NTRS)
Huntsberger, Terry; Pirjanian, Paolo; Schenker, Paul S.; Trebi-Ollennu, Ashitey; Das, Hari; Joshi, Sajay
2000-01-01
Infrastructure support for robotic colonies, manned Mars habitat, and/or robotic exploration of planetary surfaces will need to rely on the field deployment of multiple robust robots. This support includes such tasks as the deployment and servicing of power systems and ISRU generators, construction of beaconed roadways, and the site preparation and deployment of manned habitat modules. The current level of autonomy of planetary rovers such as Sojourner will need to be greatly enhanced for these types of operations. In addition, single robotic platforms will not be capable of complicated construction scenarios. Precursor robotic missions to Mars that involve teams of multiple cooperating robots to accomplish some of these tasks is a cost effective solution to the possible long timeline necessary for the deployment of a manned habitat. Ongoing work at JPL under the Mars Outpost Program in the area of robot colonies is investigating many of the technology developments necessary for such an ambitious undertaking. Some of the issues that are being addressed include behavior-based control systems for multiple cooperating robots (CAMPOUT), development of autonomous robotic systems for the rescue/repair of trapped or disabled robots, and the design and development of robotic platforms for construction tasks such as material transport and surface clearing.
Control of free-flying space robot manipulator systems
NASA Technical Reports Server (NTRS)
Cannon, Robert H., Jr.
1989-01-01
Control techniques for self-contained, autonomous free-flying space robots are being tested and developed. Free-flying space robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require astronaut extra-vehicular activity (EVA). Use of robots will provide economic savings as well as improved astronaut safety by reducing and in many cases, eliminating the need for human EVA. The focus of the work is to develop and carry out a set of research projects using laboratory models of satellite robots. These devices use air-cushion-vehicle (ACV) technology to simulate in two dimensions the drag-free, zero-g conditions of space. Current work is divided into six major projects or research areas. Fixed-base cooperative manipulation work represents our initial entry into multiple arm cooperation and high-level control with a sophisticated user interface. The floating-base cooperative manipulation project strives to transfer some of the technologies developed in the fixed-base work onto a floating base. The global control and navigation experiment seeks to demonstrate simultaneous control of the robot manipulators and the robot base position so that tasks can be accomplished while the base is undergoing a controlled motion. The multiple-vehicle cooperation project's goal is to demonstrate multiple free-floating robots working in teams to carry out tasks too difficult or complex for a single robot to perform. The Location Enhancement Arm Push-off (LEAP) activity's goal is to provide a viable alternative to expendable gas thrusters for vehicle propulsion wherein the robot uses its manipulators to throw itself from place to place. Because the successful execution of the LEAP technique requires an accurate model of the robot and payload mass properties, it was deemed an attractive testbed for adaptive control technology.
Control of free-flying space robot manipulator systems
NASA Technical Reports Server (NTRS)
Cannon, Robert H., Jr.
1977-01-01
To accelerate the development of multi-armed, free-flying satellite manipulators, a fixed-base cooperative manipulation facility is being developed. The work performed on multiple arm cooperation on a free-flying robot is summarized. Research is also summarized on global navigation and control of free-flying space robots. The Locomotion Enhancement via Arm Pushoff (LEAP) approach is described and progress to date is presented.
Laser-based pedestrian tracking in outdoor environments by multiple mobile robots.
Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko
2012-10-29
This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures.
Laser-Based Pedestrian Tracking in Outdoor Environments by Multiple Mobile Robots
Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko
2012-01-01
This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures. PMID:23202171
Control of free-flying space robot manipulator systems
NASA Technical Reports Server (NTRS)
Cannon, Robert H., Jr.
1990-01-01
New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.
Robotics technology discipline
NASA Technical Reports Server (NTRS)
Montemerlo, Melvin D.
1990-01-01
Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.
Cooperative Environment Scans Based on a Multi-Robot System
Kwon, Ji-Wook
2015-01-01
This paper proposes a cooperative environment scan system (CESS) using multiple robots, where each robot has low-cost range finders and low processing power. To organize and maintain the CESS, a base robot monitors the positions of the child robots, controls them, and builds a map of the unknown environment, while the child robots with low performance range finders provide obstacle information. Even though each child robot provides approximated and limited information of the obstacles, CESS replaces the single LRF, which has a high cost, because much of the information is acquired and accumulated by a number of the child robots. Moreover, the proposed CESS extends the measurement boundaries and detects obstacles hidden behind others. To show the performance of the proposed system and compare this with the numerical models of the commercialized 2D and 3D laser scanners, simulation results are included. PMID:25789491
Simulation of cooperating robot manipulators on a mobile platform
NASA Technical Reports Server (NTRS)
Murphy, Stephen H.; Wen, John Ting-Yung; Saridis, George N.
1991-01-01
The dynamic equations of motion are presented for two or more cooperating manipulators on a freely moving mobile platform. The system of cooperating robot manipulators forms a closed kinematic chain where the force of interaction must be included in the formulation of robot and platform dynamics. The formulation includes the full dynamic interactions from arms to platform and arm tip to arm tip, and the possible translation and rotation of the platform. The equations of motion are shown to be identical in structure to the fixed-platform cooperative manipulator dynamics. The number of DOFs of the system is sufficiently large to make recursive dynamic calculation methods potentially more efficient than closed-form solutions. A complete simulation with two 6-DOF manipulators of a free-floating platform is presented along a with a multiple-arm controller to position the common load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czejdo, Bogdan; Bhattacharya, Sambit; Ferragut, Erik M
2012-01-01
This paper describes the syntax and semantics of multi-level state diagrams to support probabilistic behavior of cooperating robots. The techniques are presented to analyze these diagrams by querying combined robots behaviors. It is shown how to use state abstraction and transition abstraction to create, verify and process large probabilistic state diagrams.
NASA Astrophysics Data System (ADS)
Dong, Gangqi; Zhu, Z. H.
2016-04-01
This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.
Optimal Modality Selection for Cooperative Human-Robot Task Completion.
Jacob, Mithun George; Wachs, Juan P
2016-12-01
Human-robot cooperation in complex environments must be fast, accurate, and resilient. This requires efficient communication channels where robots need to assimilate information using a plethora of verbal and nonverbal modalities such as hand gestures, speech, and gaze. However, even though hybrid human-robot communication frameworks and multimodal communication have been studied, a systematic methodology for designing multimodal interfaces does not exist. This paper addresses the gap by proposing a novel methodology to generate multimodal lexicons which maximizes multiple performance metrics over a wide range of communication modalities (i.e., lexicons). The metrics are obtained through a mixture of simulation and real-world experiments. The methodology is tested in a surgical setting where a robot cooperates with a surgeon to complete a mock abdominal incision and closure task by delivering surgical instruments. Experimental results show that predicted optimal lexicons significantly outperform predicted suboptimal lexicons (p <; 0.05) in all metrics validating the predictability of the methodology. The methodology is validated in two scenarios (with and without modeling the risk of a human-robot collision) and the differences in the lexicons are analyzed.
Liu, Chun; Kroll, Andreas
2016-01-01
Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.
Cooperative Robot Localization Using Event-Triggered Estimation
NASA Astrophysics Data System (ADS)
Iglesias Echevarria, David I.
It is known that multiple robot systems that need to cooperate to perform certain activities or tasks incur in high energy costs that hinder their autonomous functioning and limit the benefits provided to humans by these kinds of platforms. This work presents a communications-based method for cooperative robot localization. Implementing concepts from event-triggered estimation, used with success in the field of wireless sensor networks but rarely to do robot localization, agents are able to only send measurements to their neighbors when the expected novelty in this information is high. Since all agents know the condition that triggers a measurement to be sent or not, the lack of a measurement is therefore informative and fused into state estimates. In the case agents do not receive either direct nor indirect measurements of all others, the agents employ a covariance intersection fusion rule in order to keep the local covariance error metric bounded. A comprehensive analysis of the proposed algorithm and its estimation performance in a variety of scenarios is performed, and the algorithm is compared to similar cooperative localization approaches. Extensive simulations are performed that illustrate the effectiveness of this method.
A Car Transportation System in Cooperation by Multiple Mobile Robots for Each Wheel: iCART II
NASA Astrophysics Data System (ADS)
Kashiwazaki, Koshi; Yonezawa, Naoaki; Kosuge, Kazuhiro; Sugahara, Yusuke; Hirata, Yasuhisa; Endo, Mitsuru; Kanbayashi, Takashi; Shinozuka, Hiroyuki; Suzuki, Koki; Ono, Yuki
The authors proposed a car transportation system, iCART (intelligent Cooperative Autonomous Robot Transporters), for automation of mechanical parking systems by two mobile robots. However, it was difficult to downsize the mobile robot because the length of it requires at least the wheelbase of a car. This paper proposes a new car transportation system, iCART II (iCART - type II), based on “a-robot-for-a-wheel” concept. A prototype system, MRWheel (a Mobile Robot for a Wheel), is designed and downsized less than half the conventional robot. First, a method for lifting up a wheel by MRWheel is described. In general, it is very difficult for mobile robots such as MRWheel to move to desired positions without motion errors caused by slipping, etc. Therefore, we propose a follower's motion error estimation algorithm based on the internal force applied to each follower by extending a conventional leader-follower type decentralized control algorithm for cooperative object transportation. The proposed algorithm enables followers to estimate their motion errors and enables the robots to transport a car to a desired position. In addition, we analyze and prove the stability and convergence of the resultant system with the proposed algorithm. In order to extract only the internal force from the force applied to each robot, we also propose a model-based external force compensation method. Finally, proposed methods are applied to the car transportation system, the experimental results confirm their validity.
Control Architecture for Robotic Agent Command and Sensing
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance; Aghazarian, Hrand; Estlin, Tara; Gaines, Daniel
2008-01-01
Control Architecture for Robotic Agent Command and Sensing (CARACaS) is a recent product of a continuing effort to develop architectures for controlling either a single autonomous robotic vehicle or multiple cooperating but otherwise autonomous robotic vehicles. CARACaS is potentially applicable to diverse robotic systems that could include aircraft, spacecraft, ground vehicles, surface water vessels, and/or underwater vessels. CARACaS incudes an integral combination of three coupled agents: a dynamic planning engine, a behavior engine, and a perception engine. The perception and dynamic planning en - gines are also coupled with a memory in the form of a world model. CARACaS is intended to satisfy the need for two major capabilities essential for proper functioning of an autonomous robotic system: a capability for deterministic reaction to unanticipated occurrences and a capability for re-planning in the face of changing goals, conditions, or resources. The behavior engine incorporates the multi-agent control architecture, called CAMPOUT, described in An Architecture for Controlling Multiple Robots (NPO-30345), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 65. CAMPOUT is used to develop behavior-composition and -coordination mechanisms. Real-time process algebra operators are used to compose a behavior network for any given mission scenario. These operators afford a capability for producing a formally correct kernel of behaviors that guarantee predictable performance. By use of a method based on multi-objective decision theory (MODT), recommendations from multiple behaviors are combined to form a set of control actions that represents their consensus. In this approach, all behaviors contribute simultaneously to the control of the robotic system in a cooperative rather than a competitive manner. This approach guarantees a solution that is good enough with respect to resolution of complex, possibly conflicting goals within the constraints of the mission to be accomplished by the vehicle(s).
Distributing Planning and Control for Teams of Cooperating Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, L.E.
2004-07-19
This CRADA project involved the cooperative research of investigators in ORNL's Center for Engineering Science Advanced Research (CESAR) with researchers at Caterpillar, Inc. The subject of the research was the development of cooperative control strategies for autonomous vehicles performing applications of interest to Caterpillar customers. The project involved three Phases of research, conducted over the time period of November 1998 through December 2001. This project led to the successful development of several technologies and demonstrations in realistic simulation that illustrated the effectiveness of our control approaches for distributed planning and cooperation in multi-robot teams. The primary objectives of this researchmore » project were to: (1) Develop autonomous control technologies to enable multiple vehicles to work together cooperatively, (2) Provide the foundational capabilities for a human operator to exercise oversight and guidance during the multi-vehicle task execution, and (3) Integrate these capabilities to the ALLIANCE-based autonomous control approach for multi-robot teams. These objectives have been successfully met with the results implemented and demonstrated in a near real-time multi-vehicle simulation of up to four vehicles performing mission-relevant tasks.« less
Aerial cooperative transporting and assembling control using multiple quadrotor-manipulator systems
NASA Astrophysics Data System (ADS)
Qi, Yuhua; Wang, Jianan; Shan, Jiayuan
2018-02-01
In this paper, a fully distributed control scheme for aerial cooperative transporting and assembling is proposed using multiple quadrotor-manipulator systems with each quadrotor equipped with a robotic manipulator. First, the kinematic and dynamic models of a quadrotor with multi-Degree of Freedom (DOF) robotic manipulator are established together using Euler-Lagrange equations. Based on the aggregated dynamic model, the control scheme consisting of position controller, attitude controller and manipulator controller is presented. Regarding cooperative transporting and assembling, multiple quadrotor-manipulator systems should be able to form a desired formation without collision among quadrotors from any initial position. The desired formation is achieved by the distributed position controller and attitude controller, while the collision avoidance is guaranteed by an artificial potential function method. Then, the transporting and assembling tasks request the manipulators to reach the desired angles cooperatively, which is achieved by the distributed manipulator controller. The overall stability of the closed-loop system is proven by a Lyapunov method and Matrosov's theorem. In the end, the proposed control scheme is simplified for the real application and then validated by two formation flying missions of four quadrotors with 2-DOF manipulators.
Experiments in Nonlinear Adaptive Control of Multi-Manipulator, Free-Flying Space Robots
NASA Technical Reports Server (NTRS)
Chen, Vincent Wei-Kang
1992-01-01
Sophisticated robots can greatly enhance the role of humans in space by relieving astronauts of low level, tedious assembly and maintenance chores and allowing them to concentrate on higher level tasks. Robots and astronauts can work together efficiently, as a team; but the robot must be capable of accomplishing complex operations and yet be easy to use. Multiple cooperating manipulators are essential to dexterity and can broaden greatly the types of activities the robot can achieve; adding adaptive control can ease greatly robot usage by allowing the robot to change its own controller actions, without human intervention, in response to changes in its environment. Previous work in the Aerospace Robotics Laboratory (ARL) have shown the usefulness of a space robot with cooperating manipulators. The research presented in this dissertation extends that work by adding adaptive control. To help achieve this high level of robot sophistication, this research made several advances to the field of nonlinear adaptive control of robotic systems. A nonlinear adaptive control algorithm developed originally for control of robots, but requiring joint positions as inputs, was extended here to handle the much more general case of manipulator endpoint-position commands. A new system modelling technique, called system concatenation was developed to simplify the generation of a system model for complicated systems, such as a free-flying multiple-manipulator robot system. Finally, the task-space concept was introduced wherein the operator's inputs specify only the robot's task. The robot's subsequent autonomous performance of each task still involves, of course, endpoint positions and joint configurations as subsets. The combination of these developments resulted in a new adaptive control framework that is capable of continuously providing full adaptation capability to the complex space-robot system in all modes of operation. The new adaptive control algorithm easily handles free-flying systems with multiple, interacting manipulators, and extends naturally to even larger systems. The new adaptive controller was experimentally demonstrated on an ideal testbed in the ARL-A first-ever experimental model of a multi-manipulator, free-flying space robot that is capable of capturing and manipulating free-floating objects without requiring human assistance. A graphical user interface enhanced the robot usability: it enabled an operator situated at a remote location to issue high-level task description commands to the robot, and to monitor robot activities as it then carried out each assignment autonomously.
Combined virtual and real robotic test-bed for single operator control of multiple robots
NASA Astrophysics Data System (ADS)
Lee, Sam Y.-S.; Hunt, Shawn; Cao, Alex; Pandya, Abhilash
2010-04-01
Teams of heterogeneous robots with different dynamics or capabilities could perform a variety of tasks such as multipoint surveillance, cooperative transport and explorations in hazardous environments. In this study, we work with heterogeneous robots of semi-autonomous ground and aerial robots for contaminant localization. We developed a human interface system which linked every real robot to its virtual counterpart. A novel virtual interface has been integrated with Augmented Reality that can monitor the position and sensory information from video feed of ground and aerial robots in the 3D virtual environment, and improve user situational awareness. An operator can efficiently control the real multi-robots using the Drag-to-Move method on the virtual multi-robots. This enables an operator to control groups of heterogeneous robots in a collaborative way for allowing more contaminant sources to be pursued simultaneously. The advanced feature of the virtual interface system is guarded teleoperation. This can be used to prevent operators from accidently driving multiple robots into walls and other objects. Moreover, the feature of the image guidance and tracking is able to reduce operator workload.
NASA Astrophysics Data System (ADS)
Ren, Wei
Cooperative control problems for multiple vehicle systems can be categorized as either formation control problems with applications to mobile robots, unmanned air vehicles, autonomous underwater vehicles, satellites, aircraft, spacecraft, and automated highway systems, or non-formation control problems such as task assignment, cooperative transport, cooperative role assignment, air traffic control, cooperative timing, and cooperative search. The cooperative control of multiple vehicle systems poses significant theoretical and practical challenges. For cooperative control strategies to be successful, numerous issues must be addressed. We consider three important and correlated issues: consensus seeking, formation keeping, and trajectory tracking. For consensus seeking, we investigate algorithms and protocols so that a team of vehicles can reach consensus on the values of the coordination data in the presence of imperfect sensors, communication dropout, sparse communication topologies, and noisy and unreliable communication links. The main contribution of this dissertation in this area is that we show necessary and/or sufficient conditions for consensus seeking with limited, unidirectional, and unreliable information exchange under fixed and switching interaction topologies (through either communication or sensing). For formation keeping, we apply a so-called "virtual structure" approach to spacecraft formation flying and multi-vehicle formation maneuvers. As a result, single vehicle path planning and trajectory generation techniques can be employed for the virtual structure while trajectory tracking strategies can be employed for each vehicle. The main contribution of this dissertation in this area is that we propose a decentralized architecture for multiple spacecraft formation flying in deep space with formation feedback introduced. This architecture ensures the necessary precision in the presence of actuator saturation, internal and external disturbances, and stringent inter-vehicle communication limitations. A constructive approach based on the satisficing control paradigm is also applied to multi-robot coordination in hardware. For trajectory tracking, we investigate nonlinear tracking controllers for fixed wing unmanned air vehicles and nonholonomic mobile robots with velocity and heading rate constraints. The main contribution of this dissertation in this area is that our proposed tracking controllers are shown to be robust to input uncertainties and measurement noise, and are computationally simple and can be implemented with low-cost, low-power microcontrollers. In addition, our approach allows piecewise continuous reference velocity and heading rate and can be extended to derive a variety of other trajectory tracking strategies.
Finite-time tracking control for multiple non-holonomic mobile robots based on visual servoing
NASA Astrophysics Data System (ADS)
Ou, Meiying; Li, Shihua; Wang, Chaoli
2013-12-01
This paper investigates finite-time tracking control problem of multiple non-holonomic mobile robots via visual servoing. It is assumed that the pinhole camera is fixed to the ceiling, and camera parameters are unknown. The desired reference trajectory is represented by a virtual leader whose states are available to only a subset of the followers, and the followers have only interaction. First, the camera-objective visual kinematic model is introduced by utilising the pinhole camera model for each mobile robot. Second, a unified tracking error system between camera-objective visual servoing model and desired reference trajectory is introduced. Third, based on the neighbour rule and by using finite-time control method, continuous distributed cooperative finite-time tracking control laws are designed for each mobile robot with unknown camera parameters, where the communication topology among the multiple mobile robots is assumed to be a directed graph. Rigorous proof shows that the group of mobile robots converges to the desired reference trajectory in finite time. Simulation example illustrates the effectiveness of our method.
NASA Technical Reports Server (NTRS)
Erickson, Jon D. (Editor)
1992-01-01
The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.
Juang, Chia-Feng; Lai, Min-Ge; Zeng, Wan-Ting
2015-09-01
This paper presents a method that allows two wheeled, mobile robots to navigate unknown environments while cooperatively carrying an object. In the navigation method, a leader robot and a follower robot cooperatively perform either obstacle boundary following (OBF) or target seeking (TS) to reach a destination. The two robots are controlled by fuzzy controllers (FC) whose rules are learned through an adaptive fusion of continuous ant colony optimization and particle swarm optimization (AF-CACPSO), which avoids the time-consuming task of manually designing the controllers. The AF-CACPSO-based evolutionary fuzzy control approach is first applied to the control of a single robot to perform OBF. The learning approach is then applied to achieve cooperative OBF with two robots, where an auxiliary FC designed with the AF-CACPSO is used to control the follower robot. For cooperative TS, a rule for coordination of the two robots is developed. To navigate cooperatively, a cooperative behavior supervisor is introduced to select between cooperative OBF and cooperative TS. The performance of the AF-CACPSO is verified through comparisons with various population-based optimization algorithms for the OBF learning problem. Simulations and experiments verify the effectiveness of the approach for cooperative navigation of two robots.
Peer-to-peer model for the area coverage and cooperative control of mobile sensor networks
NASA Astrophysics Data System (ADS)
Tan, Jindong; Xi, Ning
2004-09-01
This paper presents a novel model and distributed algorithms for the cooperation and redeployment of mobile sensor networks. A mobile sensor network composes of a collection of wireless connected mobile robots equipped with a variety of sensors. In such a sensor network, each mobile node has sensing, computation, communication, and locomotion capabilities. The locomotion ability enhances the autonomous deployment of the system. The system can be rapidly deployed to hostile environment, inaccessible terrains or disaster relief operations. The mobile sensor network is essentially a cooperative multiple robot system. This paper first presents a peer-to-peer model to define the relationship between neighboring communicating robots. Delaunay Triangulation and Voronoi diagrams are used to define the geometrical relationship between sensor nodes. This distributed model allows formal analysis for the fusion of spatio-temporal sensory information of the network. Based on the distributed model, this paper discusses a fault tolerant algorithm for autonomous self-deployment of the mobile robots. The algorithm considers the environment constraints, the presence of obstacles and the nonholonomic constraints of the robots. The distributed algorithm enables the system to reconfigure itself such that the area covered by the system can be enlarged. Simulation results have shown the effectiveness of the distributed model and deployment algorithms.
HERMIES-3: A step toward autonomous mobility, manipulation, and perception
NASA Technical Reports Server (NTRS)
Weisbin, C. R.; Burks, B. L.; Einstein, J. R.; Feezell, R. R.; Manges, W. W.; Thompson, D. H.
1989-01-01
HERMIES-III is an autonomous robot comprised of a seven degree-of-freedom (DOF) manipulator designed for human scale tasks, a laser range finder, a sonar array, an omni-directional wheel-driven chassis, multiple cameras, and a dual computer system containing a 16-node hypercube expandable to 128 nodes. The current experimental program involves performance of human-scale tasks (e.g., valve manipulation, use of tools), integration of a dexterous manipulator and platform motion in geometrically complex environments, and effective use of multiple cooperating robots (HERMIES-IIB and HERMIES-III). The environment in which the robots operate has been designed to include multiple valves, pipes, meters, obstacles on the floor, valves occluded from view, and multiple paths of differing navigation complexity. The ongoing research program supports the development of autonomous capability for HERMIES-IIB and III to perform complex navigation and manipulation under time constraints, while dealing with imprecise sensory information.
An Advice Mechanism for Heterogeneous Robot Teams
NASA Astrophysics Data System (ADS)
Daniluk, Steven
The use of reinforcement learning for robot teams has enabled complex tasks to be performed, but at the cost of requiring a large amount of exploration. Exchanging information between robots in the form of advice is one method to accelerate performance improvements. This thesis presents an advice mechanism for robot teams that utilizes advice from heterogeneous advisers via a method guaranteeing convergence to an optimal policy. The presented mechanism has the capability to use multiple advisers at each time step, and decide when advice should be requested and accepted, such that the use of advice decreases over time. Additionally, collective collaborative, and cooperative behavioural algorithms are integrated into a robot team architecture, to create a new framework that provides fault tolerance and modularity for robot teams.
Boucher, Jean-David; Pattacini, Ugo; Lelong, Amelie; Bailly, Gerrard; Elisei, Frederic; Fagel, Sascha; Dominey, Peter Ford; Ventre-Dominey, Jocelyne
2012-01-01
Human-human interaction in natural environments relies on a variety of perceptual cues. Humanoid robots are becoming increasingly refined in their sensorimotor capabilities, and thus should now be able to manipulate and exploit these social cues in cooperation with their human partners. Previous studies have demonstrated that people follow human and robot gaze, and that it can help them to cope with spatially ambiguous language. Our goal is to extend these findings into the domain of action, to determine how human and robot gaze can influence the speed and accuracy of human action. We report on results from a human-human cooperation experiment demonstrating that an agent's vision of her/his partner's gaze can significantly improve that agent's performance in a cooperative task. We then implement a heuristic capability to generate such gaze cues by a humanoid robot that engages in the same cooperative interaction. The subsequent human-robot experiments demonstrate that a human agent can indeed exploit the predictive gaze of their robot partner in a cooperative task. This allows us to render the humanoid robot more human-like in its ability to communicate with humans. The long term objectives of the work are thus to identify social cooperation cues, and to validate their pertinence through implementation in a cooperative robot. The current research provides the robot with the capability to produce appropriate speech and gaze cues in the context of human-robot cooperation tasks. Gaze is manipulated in three conditions: Full gaze (coordinated eye and head), eyes hidden with sunglasses, and head fixed. We demonstrate the pertinence of these cues in terms of statistical measures of action times for humans in the context of a cooperative task, as gaze significantly facilitates cooperation as measured by human response times.
Cooperative Autonomous Robots for Reconnaissance
2009-03-06
REPORT Cooperative Autonomous Robots for Reconnaissance 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Collaborating mobile robots equipped with WiFi ...Cooperative Autonomous Robots for Reconnaissance Report Title ABSTRACT Collaborating mobile robots equipped with WiFi transceivers are configured as a mobile...equipped with WiFi transceivers are configured as a mobile ad-hoc network. Algorithms are developed to take advantage of the distributed processing
Boucher, Jean-David; Pattacini, Ugo; Lelong, Amelie; Bailly, Gerard; Elisei, Frederic; Fagel, Sascha; Dominey, Peter Ford; Ventre-Dominey, Jocelyne
2012-01-01
Human–human interaction in natural environments relies on a variety of perceptual cues. Humanoid robots are becoming increasingly refined in their sensorimotor capabilities, and thus should now be able to manipulate and exploit these social cues in cooperation with their human partners. Previous studies have demonstrated that people follow human and robot gaze, and that it can help them to cope with spatially ambiguous language. Our goal is to extend these findings into the domain of action, to determine how human and robot gaze can influence the speed and accuracy of human action. We report on results from a human–human cooperation experiment demonstrating that an agent’s vision of her/his partner’s gaze can significantly improve that agent’s performance in a cooperative task. We then implement a heuristic capability to generate such gaze cues by a humanoid robot that engages in the same cooperative interaction. The subsequent human–robot experiments demonstrate that a human agent can indeed exploit the predictive gaze of their robot partner in a cooperative task. This allows us to render the humanoid robot more human-like in its ability to communicate with humans. The long term objectives of the work are thus to identify social cooperation cues, and to validate their pertinence through implementation in a cooperative robot. The current research provides the robot with the capability to produce appropriate speech and gaze cues in the context of human–robot cooperation tasks. Gaze is manipulated in three conditions: Full gaze (coordinated eye and head), eyes hidden with sunglasses, and head fixed. We demonstrate the pertinence of these cues in terms of statistical measures of action times for humans in the context of a cooperative task, as gaze significantly facilitates cooperation as measured by human response times. PMID:22563315
NASA Astrophysics Data System (ADS)
Rahman, Md. Mozasser; Ikeura, Ryojun; Mizutani, Kazuki
In the near future many aspects of our lives will be encompassed by tasks performed in cooperation with robots. The application of robots in home automation, agricultural production and medical operations etc. will be indispensable. As a result robots need to be made human-friendly and to execute tasks in cooperation with humans. Control systems for such robots should be designed to work imitating human characteristics. In this study, we have tried to achieve these goals by means of controlling a simple one degree-of-freedom cooperative robot. Firstly, the impedance characteristic of the human arm in a cooperative task is investigated. Then, this characteristic is implemented to control a robot in order to perform cooperative task with humans. A human followed the motion of an object, which is moved through desired trajectories. The motion is actuated by the linear motor of the one degree-of-freedom robot system. Trajectories used in the experiments of this method were minimum jerk (the rate of change of acceleration) trajectory, which was found during human and human cooperative task and optimum for muscle movement. As the muscle is mechanically analogous to a spring-damper system, a simple second-order equation is used as models for the arm dynamics. In the model, we considered mass, stiffness and damping factor. Impedance parameter is calculated from the position and force data obtained from the experiments and based on the “Estimation of Parametric Model”. Investigated impedance characteristic of human arm is then implemented to control a robot, which performed cooperative task with human. It is observed that the proposed control methodology has given human like movements to the robot for cooperating with human.
An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective.
Faigl, Jan
2016-01-01
In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to "see" the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning.
An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective
Faigl, Jan
2016-01-01
In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to “see” the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning. PMID:27340395
2012-01-01
Background Functional training is becoming the state-of-the-art therapy approach for rehabilitation of individuals after stroke and spinal cord injury. Robot-aided treadmill training reduces personnel effort, especially when treating severely affected patients. Improving rehabilitation robots towards more patient-cooperative behavior may further increase the effects of robot-aided training. This pilot study aims at investigating the feasibility of applying patient-cooperative robot-aided gait rehabilitation to stroke and incomplete spinal cord injury during a therapy period of four weeks. Short-term effects within one training session as well as the effects of the training on walking function are evaluated. Methods Two individuals with chronic incomplete spinal cord injury and two with chronic stroke trained with the Lokomat gait rehabilitation robot which was operated in a new, patient-cooperative mode for a period of four weeks with four training sessions of 45 min per week. At baseline, after two and after four weeks, walking function was assessed with the ten meter walking test. Additionally, muscle activity of the major leg muscles, heart rate and the Borg scale were measured under different walking conditions including a non-cooperative position control mode to investigate the short-term effects of patient-cooperative versus non-cooperative robot-aided gait training. Results Patient-cooperative robot-aided gait training was tolerated well by all subjects and performed without difficulties. The subjects trained more actively and with more physiological muscle activity than in a non-cooperative position-control mode. One subject showed a significant and relevant increase of gait speed after the therapy, the three remaining subjects did not show significant changes. Conclusions Patient-cooperative robot-aided gait training is feasible in clinical practice and overcomes the main points of criticism against robot-aided gait training: It enables patients to train in an active, variable and more natural way. The limited number of subjects in this pilot trial does not permit valid conclusions on the effect of patient-cooperative robot-aided gait training on walking function. A large, possibly multi-center randomized controlled clinical trial is required to shed more light on this question. PMID:22650320
2010-01-01
Background Manual body weight supported treadmill training and robot-aided treadmill training are frequently used techniques for the gait rehabilitation of individuals after stroke and spinal cord injury. Current evidence suggests that robot-aided gait training may be improved by making robotic behavior more patient-cooperative. In this study, we have investigated the immediate effects of patient-cooperative versus non-cooperative robot-aided gait training on individuals with incomplete spinal cord injury (iSCI). Methods Eleven patients with iSCI participated in a single training session with the gait rehabilitation robot Lokomat. The patients were exposed to four different training modes in random order: During both non-cooperative position control and compliant impedance control, fixed timing of movements was provided. During two variants of the patient-cooperative path control approach, free timing of movements was enabled and the robot provided only spatial guidance. The two variants of the path control approach differed in the amount of additional support, which was either individually adjusted or exaggerated. Joint angles and torques of the robot as well as muscle activity and heart rate of the patients were recorded. Kinematic variability, interaction torques, heart rate and muscle activity were compared between the different conditions. Results Patients showed more spatial and temporal kinematic variability, reduced interaction torques, a higher increase of heart rate and more muscle activity in the patient-cooperative path control mode with individually adjusted support than in the non-cooperative position control mode. In the compliant impedance control mode, spatial kinematic variability was increased and interaction torques were reduced, but temporal kinematic variability, heart rate and muscle activity were not significantly higher than in the position control mode. Conclusions Patient-cooperative robot-aided gait training with free timing of movements made individuals with iSCI participate more actively and with larger kinematic variability than non-cooperative, position-controlled robot-aided gait training. PMID:20828422
Evolutionary Design and Simulation of a Tube Crawling Inspection Robot
NASA Technical Reports Server (NTRS)
Craft, Michael; Howsman, Tom; ONeil, Daniel; Howell, Joe T. (Technical Monitor)
2002-01-01
The Space Robotics Assembly Team Simulation (SpaceRATS) is an expansive concept that will hopefully lead to a space flight demonstration of a robotic team cooperatively assembling a system from its constitutive parts. A primary objective of the SpaceRATS project is to develop a generalized evolutionary design approach for multiple classes of robots. The portion of the overall SpaceRats program associated with the evolutionary design and simulation of an inspection robot's morphology is the subject of this paper. The vast majority of this effort has concentrated on the use and modification of Darwin2K, a robotic design and simulation software package, to analyze the design of a tube crawling robot. This robot is designed for carrying out inspection duties in relatively inaccessible locations within a liquid rocket engine similar to the SSME. A preliminary design of the tube crawler robot was completed, and the mechanical dynamics of the system were simulated. An evolutionary approach to optimizing a few parameters of the system was utilized, resulting in a more optimum design.
ERIC Educational Resources Information Center
Piotrowski, Mark; Kressly, Rich
2009-01-01
This article describes a cooperative classroom robotics challenge named "IED Cleanup". This classroom challenge was created to incorporate a humanitarian project with the use of a robotics design system in order to remove simulated IEDs (Improvised Explosive Devices) to a detonation zone within a specified amount of time. Throughout the activity,…
Cooperative mission execution and planning
NASA Astrophysics Data System (ADS)
Flann, Nicholas S.; Saunders, Kevin S.; Pells, Larry
1998-08-01
Utilizing multiple cooperating autonomous vehicles to perform tasks enhances robustness and efficiency over the use of a single vehicle. Furthermore, because autonomous vehicles can be controlled precisely and their status known accurately in real time, new types of cooperative behaviors are possible. This paper presents a working system called MEPS that plans and executes missions for multiple autonomous vehicles in large structured environments. Two generic spatial tasks are supported, to sweep an area and to visit a location while activating on-board equipment. Tasks can be entered both initially by the user and dynamically during mission execution by both users and vehicles. Sensor data and task achievement data is shared among the vehicles enabling them to cooperatively adapt to changing environmental, vehicle and tasks conditions. The system has been successfully applied to control ATV and micro-robotic vehicles in precision agriculture and waste-site characterization environments.
ALLIANCE: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, L.E.
1995-02-01
This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since suchmore » cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.« less
On the manipulability of dual cooperative robots
NASA Technical Reports Server (NTRS)
Chiacchio, P.; Chiaverini, S.; Sciavicco, L.; Siciliano, B.
1989-01-01
The definition of manipulability ellipsoids for dual robot systems is given. A suitable kineto-static formulation for dual cooperative robots is adopted which allows for a global task space description of external and internal forces, and relative velocities. The well known concepts of force and velocity manipulability ellipsoids for a single robot are formally extended and the contributions of the two single robots to the cooperative system ellipsoids are illustrated. Duality properties are discussed. A practical case study is developed.
To Cooperate or Not to Cooperate: Why Behavioural Mechanisms Matter
2016-01-01
Mutualistic cooperation often requires multiple individuals to behave in a coordinated fashion. Hence, while the evolutionary stability of mutualistic cooperation poses no particular theoretical difficulty, its evolutionary emergence faces a chicken and egg problem: an individual cannot benefit from cooperating unless other individuals already do so. Here, we use evolutionary robotic simulations to study the consequences of this problem for the evolution of cooperation. In contrast with standard game-theoretic results, we find that the transition from solitary to cooperative strategies is very unlikely, whether interacting individuals are genetically related (cooperation evolves in 20% of all simulations) or unrelated (only 3% of all simulations). We also observe that successful cooperation between individuals requires the evolution of a specific and rather complex behaviour. This behavioural complexity creates a large fitness valley between solitary and cooperative strategies, making the evolutionary transition difficult. These results reveal the need for research on biological mechanisms which may facilitate this transition. PMID:27148874
Cooperative crossing of traffic intersections in a distributed robot system
NASA Astrophysics Data System (ADS)
Rausch, Alexander; Oswald, Norbert; Levi, Paul
1995-09-01
In traffic scenarios a distributed robot system has to cope with problems like resource sharing, distributed planning, distributed job scheduling, etc. While travelling along a street segment can be done autonomously by each robot, crossing of an intersection as a shared resource forces the robot to coordinate its actions with those of other robots e.g. by means of negotiations. We discuss the issue of cooperation on the design of a robot control architecture. Task and sensor specific cooperation between robots requires the robots' architectures to be interlinked at different hierarchical levels. Inside each level control cycles are running in parallel and provide fast reaction on events. Internal cooperation may occur between cycles of the same level. Altogether the architecture is matrix-shaped and contains abstract control cycles with a certain degree of autonomy. Based upon the internal structure of a cycle we consider the horizontal and vertical interconnection of cycles to form an individual architecture. Thereafter we examine the linkage of several agents and its influence on an interacting architecture. A prototypical implementation of a scenario, which combines aspects of active vision and cooperation, illustrates our approach. Two vision-guided vehicles are faced with line following, intersection recognition and negotiation.
In vivo demonstration of surgical task assistance using miniature robots.
Hawks, Jeff A; Kunowski, Jacob; Platt, Stephen R
2012-10-01
Laparoscopy is beneficial to patients as measured by less painful recovery and an earlier return to functional health compared to conventional open surgery. However, laparoscopy requires the manipulation of long, slender tools from outside the patient's body. As a result, laparoscopy generally benefits only patients undergoing relatively simple procedures. An innovative approach to laparoscopy uses miniature in vivo robots that fit entirely inside the abdominal cavity. Our previous work demonstrated that a mobile, wireless robot platform can be successfully operated inside the abdominal cavity with different payloads (biopsy, camera, and physiological sensors). We hope that these robots are a step toward reducing the invasiveness of laparoscopy. The current study presents design details and results of laboratory and in vivo demonstrations of several new payload designs (clamping, cautery, and liquid delivery). Laboratory and in vivo cooperation demonstrations between multiple robots are also presented.
Modelling of cooperating robotized systems with the use of object-based approach
NASA Astrophysics Data System (ADS)
Foit, K.; Gwiazda, A.; Banas, W.; Sekala, A.; Hryniewicz, P.
2015-11-01
Today's robotized manufacturing systems are characterized by high efficiency. The emphasis is placed mainly on the simultaneous work of machines. It could manifest in many ways, where the most spectacular one is the cooperation of several robots, during work on the same detail. What's more, recently a dual-arm robots are used that could mimic the manipulative skills of human hands. As a result, it is often hard to deal with the situation, when it is necessary not only to maintain sufficient precision, but also the coordination and proper sequence of movements of individual robots’ arms. The successful completion of this task depends on the individual robot control systems and their respective programmed, but also on the well-functioning communication between robot controllers. A major problem in case of cooperating robots is the possibility of collision between particular links of robots’ kinematic chains. This is not a simple case, because the manufacturers of robotic systems do not disclose the details of the control algorithms, then it is hard to determine such situation. Another problem with cooperation of robots is how to inform the other units about start or completion of part of the task, so that other robots can take further actions. This paper focuses on communication between cooperating robotic units, assuming that every robot is represented by object-based model. This problem requires developing a form of communication protocol that the objects can use for collecting the information about its environment. The approach presented in the paper is not limited to the robots and could be used in a wider range, for example during modelling of the complete workcell or production line.
A Pneumatic Tactile Sensor for Co-Operative Robots
He, Rui; Yu, Jianjun; Zuo, Guoyu
2017-01-01
Tactile sensors of comprehensive functions are urgently needed for the advanced robot to co-exist and co-operate with human beings. Pneumatic tactile sensors based on air bladder possess some noticeable advantages for human-robot interaction application. In this paper, we construct a pneumatic tactile sensor and apply it on the fingertip of robot hand to realize the sensing of force, vibration and slippage via the change of the pressure of the air bladder, and we utilize the sensor to perceive the object’s features such as softness and roughness. The pneumatic tactile sensor has good linearity, repeatability and low hysteresis and both its size and sensing range can be customized by using different material as well as different thicknesses of the air bladder. It is also simple and cheap to fabricate. Therefore, the pneumatic tactile sensor is suitable for the application of co-operative robots and can be widely utilized to improve the performance of service robots. We can apply it to the fingertip of the robot to endow the robotic hand with the ability to co-operate with humans and handle the fragile objects because of the inherent compliance of the air bladder. PMID:29125565
De Momi, E; Ferrigno, G
2010-01-01
The robot and sensors integration for computer-assisted surgery and therapy (ROBOCAST) project (FP7-ICT-2007-215190) is co-funded by the European Union within the Seventh Framework Programme in the field of information and communication technologies. The ROBOCAST project focuses on robot- and artificial-intelligence-assisted keyhole neurosurgery (tumour biopsy and local drug delivery along straight or turning paths). The goal of this project is to assist surgeons with a robotic system controlled by an intelligent high-level controller (HLC) able to gather and integrate information from the surgeon, from diagnostic images, and from an array of on-field sensors. The HLC integrates pre-operative and intra-operative diagnostics data and measurements, intelligence augmentation, multiple-robot dexterity, and multiple sensory inputs in a closed-loop cooperating scheme including a smart interface for improved haptic immersion and integration. This paper, after the overall architecture description, focuses on the intelligent trajectory planner based on risk estimation and human criticism. The current status of development is reported, and first tests on the planner are shown by using a real image stack and risk descriptor phantom. The advantages of using a fuzzy risk description are given by the possibility of upgrading the knowledge on-field without the intervention of a knowledge engineer.
The effect of collision avoidance for autonomous robot team formation
NASA Astrophysics Data System (ADS)
Seidman, Mark H.; Yang, Shanchieh J.
2007-04-01
As technology and research advance to the era of cooperative robots, many autonomous robot team algorithms have emerged. Shape formation is a common and critical task in many cooperative robot applications. While theoretical studies of robot team formation have shown success, it is unclear whether such algorithms will perform well in a real-world environment. This work examines the effect of collision avoidance schemes on an ideal circle formation algorithm, but behaves similarly if robot-to-robot communications are in place. Our findings reveal that robots with basic collision avoidance capabilities are still able to form into a circle, under most conditions. Moreover, the robot sizes, sensing ranges, and other critical physical parameters are examined to determine their effects on algorithm's performance.
NASA Technical Reports Server (NTRS)
Colombano, Silvano P.; Kirchner, Frank; Spenneberg, Dirk; Starman, Jared; Hanratty, James; Kovsmeyer, David (Technical Monitor)
2003-01-01
NASA needs autonomous robotic exploration of difficult (rough and/or steep) scientifically interesting Martian terrains. Concepts involving distributed autonomy for cooperative robotic exploration are key to enabling new scientific objectives in robotic missions. We propose to utilize a legged robot as an adjunct scout to a rover for access to difficult - scientifically interesting - terrains (rocky areas, slopes, cliffs). Our final mission scenario involves the Ames rover platform "K9" and Scorpion acting together to explore a steep cliff, with the Scorpion robot rappelling down using the K9 as an anchor as well as mission planner and executive. Cooperation concepts, including wheeled rappelling robots have been proposed before. Now we propose to test the combined advantages of a wheeled vehicle with a legged scout as well as the advantages of merging of high level planning and execution with biologically inspired, behavior based robotics. We propose to use the 8-legged, multifunctional autonomous robot platform Scorpion that is currently capable of: Walking on different terrains (rocks, sand, grass, ...). Perceiving its environment and modifying its behavioral pattern accordingly. These capabilities would be extended to enable the Scorpion to: communicate and cooperate with a partner robot; climb over rocks, rubble piles, and objects with structural features. This will be done in the context of exploration of rough terrains in the neighborhood of the rover, but inaccessible to it, culminating in the added capability of rappelling down a steep cliff for both vertical and horizontal terrain observation.
NASA Astrophysics Data System (ADS)
Okada, Masato; Muranaka, Takayuki; Kameyama, Kentaro; Kitagawa, Hirokazu; Suzuki, Hidekazu
In this paper, a new subject based on PBL (Project Based Learning) and its educational effects are discussed. The feature in this subject is that problems are solved based on the division of labor. In this subject, students break into four-member groups, and develop a line trace robot together cooperatively. Then, they share their responsibility for mechanism, electric circuit and programming, and learn basic knowledge of assigned area from teachers. After that, they develop the robot based on discussions. This procedure is like that in companies and the main objective of this subject is to get this skill. Each robot is evaluated by competition held in a public space of campus. From the questionnaire, very active posture and high attendance degree of satisfaction was gotten.
Applying Biomimetic Algorithms for Extra-Terrestrial Habitat Generation
NASA Technical Reports Server (NTRS)
Birge, Brian
2012-01-01
The objective is to simulate and optimize distributed cooperation among a network of robots tasked with cooperative excavation on an extra-terrestrial surface. Additionally to examine the concept of directed Emergence among a group of limited artificially intelligent agents. Emergence is the concept of achieving complex results from very simple rules or interactions. For example, in a termite mound each individual termite does not carry a blueprint of how to make their home in a global sense, but their interactions based strictly on local desires create a complex superstructure. Leveraging this Emergence concept applied to a simulation of cooperative agents (robots) will allow an examination of the success of non-directed group strategy achieving specific results. Specifically the simulation will be a testbed to evaluate population based robotic exploration and cooperative strategies while leveraging the evolutionary teamwork approach in the face of uncertainty about the environment and partial loss of sensors. Checking against a cost function and 'social' constraints will optimize cooperation when excavating a simulated tunnel. Agents will act locally with non-local results. The rules by which the simulated robots interact will be optimized to the simplest possible for the desired result, leveraging Emergence. Sensor malfunction and line of sight issues will be incorporated into the simulation. This approach falls under Swarm Robotics, a subset of robot control concerned with finding ways to control large groups of robots. Swarm Robotics often contains biologically inspired approaches, research comes from social insect observation but also data from among groups of herding, schooling, and flocking animals. Biomimetic algorithms applied to manned space exploration is the method under consideration for further study.
SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots.
Li, Xin; Bilbao, Sonia; Martín-Wanton, Tamara; Bastos, Joaquim; Rodriguez, Jonathan
2017-03-11
In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning.
NASA Astrophysics Data System (ADS)
Rajay Vedaraj, I. S.; Jain, Ritika; Rao, B. V. A.
2014-07-01
After industrial robots came into existence during 1960, the technology of robotics with the design and analysis of robots in various forms in industries as well as in domestic applications were developed. Nowadays, along with the automotive sector the robots are producing a great impact in the form of quality and production rate to register their existence reliable in various other sectors also. Robotic technology has undergone various phase translations from being tortured as humanoids to the present day manipulators. Depending upon the various forms of its existence, robot manipulators are designed as serial manipulators and parallel manipulators. Individually both types can be proved effective though both have various drawbacks in design and the kinematic analysis. The versatility of robots can be increased by making them work in an environment where the same work volume is shared by more than one manipulator. This work volume can be identified as co-operative work volume of those manipulators. Here the interference of manipulators in the work volume of other manipulators is possible and is made obstacle free. The main advantage of co-operative manipulators is that when a number of independent manipulators are put together in a cooperative work envelope the efficiency and ability to perform tasks is greatly enhanced. The main disadvantage of the co-operative manipulators lies in the complication of its design even for a simple application, in almost all fields. In this paper, a cooperative design of robot manipulators to work in co-operative work environment is done and analysed for its efficacy. In the industrial applications when robotic manipulators are put together in more numbers, the trajectory planning becomes the tough task in the work cell. Proper design can remove the design defects of the cooperative manipulators and can be utilized in a more efficient way. In the proposed research paper an analysis is made on such a type of cooperative manipulator used for climbing stairs with three leg design and anlaysis were also done on the mechanism integrated to the system. Kinematics of the legs are analysed separately and the legs are designed to carry a maximum of 175kgs, which is sustained by the center leg and shared by the dual wing legs equally during the walking phase. In the proposed design, screwjack mechanism is used as the central leg to share the load and thus the analysis on the load sharing capability of the whole system is analysed and concluded in terms of failure modes.
Krishnan, Chandramouli; Kotsapouikis, Despina; Dhaher, Yasin Y; Rymer, William Z
2013-06-01
To test the feasibility of patient-cooperative robotic gait training for improving locomotor function of a chronic stroke survivor with severe lower-extremity motor impairments. Single-subject crossover design. Performed in a controlled laboratory setting. A 62-year-old man with right temporal lobe ischemic stroke was recruited for this study. The baseline lower-extremity Fugl-Meyer score of the subject was 10 on a scale of 34, which represented severe impairment in the paretic leg. However, the subject had a good ambulation level (community walker with the aid of a stick cane and ankle-foot orthosis) and showed no signs of sensory or cognitive impairments. The subject underwent 12 sessions (3 times per week for 4wk) of conventional robotic training with the Lokomat, where the robot provided full assistance to leg movements while walking, followed by 12 sessions (3 times per week for 4wk) of patient-cooperative robotic control training, where the robot provided minimal guidance to leg movements during walking. Clinical outcomes were evaluated before the start of the intervention, immediately after 4 weeks of conventional robotic training, and immediately after 4 weeks of cooperative control robotic training. These included: (1) self-selected and fast walking speed, (2) 6-minute walk test, (3) Timed Up & Go test, and (4) lower-extremity Fugl-Meyer score. Results showed that clinical outcomes changed minimally after full guidance robotic training, but improved considerably after 4 weeks of reduced guidance robotic training. The findings from this case study suggest that cooperative control robotic training is superior to conventional robotic training and is a feasible option to restoring locomotor function in ambulatory stroke survivors with severe motor impairments. A larger trial is needed to verify the efficacy of this advanced robotic control strategy in facilitating gait recovery after stroke. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Research on Multirobot Pursuit Task Allocation Algorithm Based on Emotional Cooperation Factor
Fang, Baofu; Chen, Lu; Wang, Hao; Dai, Shuanglu; Zhong, Qiubo
2014-01-01
Multirobot task allocation is a hot issue in the field of robot research. A new emotional model is used with the self-interested robot, which gives a new way to measure self-interested robots' individual cooperative willingness in the problem of multirobot task allocation. Emotional cooperation factor is introduced into self-interested robot; it is updated based on emotional attenuation and external stimuli. Then a multirobot pursuit task allocation algorithm is proposed, which is based on emotional cooperation factor. Combined with the two-step auction algorithm recruiting team leaders and team collaborators, set up pursuit teams, and finally use certain strategies to complete the pursuit task. In order to verify the effectiveness of this algorithm, some comparing experiments have been done with the instantaneous greedy optimal auction algorithm; the results of experiments show that the total pursuit time and total team revenue can be optimized by using this algorithm. PMID:25152925
Research on multirobot pursuit task allocation algorithm based on emotional cooperation factor.
Fang, Baofu; Chen, Lu; Wang, Hao; Dai, Shuanglu; Zhong, Qiubo
2014-01-01
Multirobot task allocation is a hot issue in the field of robot research. A new emotional model is used with the self-interested robot, which gives a new way to measure self-interested robots' individual cooperative willingness in the problem of multirobot task allocation. Emotional cooperation factor is introduced into self-interested robot; it is updated based on emotional attenuation and external stimuli. Then a multirobot pursuit task allocation algorithm is proposed, which is based on emotional cooperation factor. Combined with the two-step auction algorithm recruiting team leaders and team collaborators, set up pursuit teams, and finally use certain strategies to complete the pursuit task. In order to verify the effectiveness of this algorithm, some comparing experiments have been done with the instantaneous greedy optimal auction algorithm; the results of experiments show that the total pursuit time and total team revenue can be optimized by using this algorithm.
Behavior-based multi-robot collaboration for autonomous construction tasks
NASA Technical Reports Server (NTRS)
Stroupe, Ashley; Huntsberger, Terry; Okon, Avi; Aghazarian, Hrand; Robinson, Matthew
2005-01-01
The Robot Construction Crew (RCC) is a heterogeneous multi-robot system for autonomous construction of a structure through assembly of Long components. The two robot team demonstrates component placement into an existing structure in a realistic environment. The task requires component acquisition, cooperative transport, and cooperative precision manipulation. A behavior-based architecture provides adaptability. The RCC approach minimizes computation, power, communication, and sensing for applicability to space-related construction efforts, but the techniques are applicable to terrestrial construction tasks.
Exploring types of play in an adapted robotics program for children with disabilities.
Lindsay, Sally; Lam, Ashley
2018-04-01
Play is an important occupation in a child's development. Children with disabilities often have fewer opportunities to engage in meaningful play than typically developing children. The purpose of this study was to explore the types of play (i.e., solitary, parallel and co-operative) within an adapted robotics program for children with disabilities aged 6-8 years. This study draws on detailed observations of each of the six robotics workshops and interviews with 53 participants (21 children, 21 parents and 11 programme staff). Our findings showed that four children engaged in solitary play, where all but one showed signs of moving towards parallel play. Six children demonstrated parallel play during all workshops. The remainder of the children had mixed play types play (solitary, parallel and/or co-operative) throughout the robotics workshops. We observed more parallel and co-operative, and less solitary play as the programme progressed. Ten different children displayed co-operative behaviours throughout the workshops. The interviews highlighted how staff supported children's engagement in the programme. Meanwhile, parents reported on their child's development of play skills. An adapted LEGO ® robotics program has potential to develop the play skills of children with disabilities in moving from solitary towards more parallel and co-operative play. Implications for rehabilitation Educators and clinicians working with children who have disabilities should consider the potential of LEGO ® robotics programs for developing their play skills. Clinicians should consider how the extent of their involvement in prompting and facilitating children's engagement and play within a robotics program may influence their ability to interact with their peers. Educators and clinicians should incorporate both structured and unstructured free-play elements within a robotics program to facilitate children's social development.
Underwater Multi-Vehicle Trajectory Alignment and Mapping Using Acoustic and Optical Constraints
Campos, Ricard; Gracias, Nuno; Ridao, Pere
2016-01-01
Multi-robot formations are an important advance in recent robotic developments, as they allow a group of robots to merge their capacities and perform surveys in a more convenient way. With the aim of keeping the costs and acoustic communications to a minimum, cooperative navigation of multiple underwater vehicles is usually performed at the control level. In order to maintain the desired formation, individual robots just react to simple control directives extracted from range measurements or ultra-short baseline (USBL) systems. Thus, the robots are unaware of their global positioning, which presents a problem for the further processing of the collected data. The aim of this paper is two-fold. First, we present a global alignment method to correct the dead reckoning trajectories of multiple vehicles to resemble the paths followed during the mission using the acoustic messages passed between vehicles. Second, we focus on the optical mapping application of these types of formations and extend the optimization framework to allow for multi-vehicle geo-referenced optical 3D mapping using monocular cameras. The inclusion of optical constraints is not performed using the common bundle adjustment techniques, but in a form improving the computational efficiency of the resulting optimization problem and presenting a generic process to fuse optical reconstructions with navigation data. We show the performance of the proposed method on real datasets collected within the Morph EU-FP7 project. PMID:26999144
Telemanipulation of cooperative robots: a case of study
NASA Astrophysics Data System (ADS)
Pliego-Jiménez, Javier; Arteaga-Pérez, Marco
2018-06-01
This article addresses the problem of dexterous robotic grasping by means of a telemanipulation system composed of a single master and two slave robot manipulators. The slave robots are analysed as a cooperative system where it is assumed that the robots can push but not pull the object. In order to achieve a stable rigid grasp, a centralised adaptive position-force control algorithm for the slave robots is proposed. On the other hand, a linear velocity observer for the master robot is developed to avoid numerical differentiation. A set of experiments with different human operators were carried out to show the good performance and capabilities of the proposed control-observer algorithm. In addition, the dynamic model and closed-loop dynamics of the telemanipulation is presented.
A Biologically Inspired Cooperative Multi-Robot Control Architecture
NASA Technical Reports Server (NTRS)
Howsman, Tom; Craft, Mike; ONeil, Daniel; Howell, Joe T. (Technical Monitor)
2002-01-01
A prototype cooperative multi-robot control architecture suitable for the eventual construction of large space structures has been developed. In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. The prototype control architecture emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.
A Stigmergic Cooperative Multi-Robot Control Architecture
NASA Technical Reports Server (NTRS)
Howsman, Thomas G.; O'Neil, Daniel; Craft, Michael A.
2004-01-01
In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. A prototype cooperative multi-robot control architecture which may be suitable for the eventual construction of large space structures has been developed which emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically, i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.
Applying Multiagent Simulation to Planetary Surface Operations
NASA Technical Reports Server (NTRS)
Sierhuis, Maarten; Sims, Michael H.; Clancey, William J.; Lee, Pascal; Swanson, Keith (Technical Monitor)
2000-01-01
This paper describes a multiagent modeling and simulation approach for designing cooperative systems. Issues addressed include the use of multiagent modeling and simulation for the design of human and robotic operations, as a theory for human/robot cooperation on planetary surface missions. We describe a design process for cooperative systems centered around the Brahms modeling and simulation environment being developed at NASA Ames.
SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots
Li, Xin; Bilbao, Sonia; Martín-Wanton, Tamara; Bastos, Joaquim; Rodriguez, Jonathan
2017-01-01
In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning. PMID:28287468
Evolution of Signaling in a Multi-Robot System: Categorization and Communication
NASA Astrophysics Data System (ADS)
Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Dorigo, Marco
We use Evolutionary Robotics to design robot controllers in which decision-making mechanisms to switch from solitary to social behavior are integrated with the mechanisms that underpin the sensory-motor repertoire of the robots. In particular, we study the evolution of behavioral and communicative skills in a categorization task. The individual decision-making structures are based on the integration over time of sensory information. The mechanisms for switching from solitary to social behavior and the ways in which the robots can affect each other's behavior are not predetermined by the experimenter, but are aspects of our model designed by artificial evolution. Our results show that evolved robots manage to cooperate and collectively discriminate between different environments by developing a simple communication protocol based on sound signaling. Communication emerges in the absence of explicit selective pressure coded in the fitness function. The evolution of communication is neither trivial nor obvious; for a meaningful signaling system to evolve, evolution must produce both appropriate signals and appropriate reactions to signals. The use of communication proves to be adaptive for the group, even if, in principle, non-cooperating robots can be equally successful with cooperating robots.
Technology transfer: Imaging tracker to robotic controller
NASA Technical Reports Server (NTRS)
Otaguro, M. S.; Kesler, L. O.; Land, Ken; Erwin, Harry; Rhoades, Don
1988-01-01
The transformation of an imaging tracker to a robotic controller is described. A multimode tracker was developed for fire and forget missile systems. The tracker locks on to target images within an acquisition window using multiple image tracking algorithms to provide guidance commands to missile control systems. This basic tracker technology is used with the addition of a ranging algorithm based on sizing a cooperative target to perform autonomous guidance and control of a platform for an Advanced Development Project on automation and robotics. A ranging tracker is required to provide the positioning necessary for robotic control. A simple functional demonstration of the feasibility of this approach was performed and described. More realistic demonstrations are under way at NASA-JSC. In particular, this modified tracker, or robotic controller, will be used to autonomously guide the Man Maneuvering Unit (MMU) to targets such as disabled astronauts or tools as part of the EVA Retriever efforts. It will also be used to control the orbiter's Remote Manipulator Systems (RMS) in autonomous approach and positioning demonstrations. These efforts will also be discussed.
Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures.
Cruces, R A Castillo; Wahrburg, J
2007-12-01
This paper presents the ongoing results of an effort to achieve the integration of a navigated cooperative robotic arm into computer-assisted orthopaedic surgery. A seamless integration requires the system acting in direct cooperation with the surgeon instead of replacing him. Two technical issues are discussed to improve the haptic operating modes for interactive robot guidance. The concept of virtual fixtures is used to restrict the range of motion of the robot according to pre-operatively defined constraints, and methodologies to assure a robust and accurate motion through singular arm configurations are investigated. A new method for handling singularities is proposed, which is superior to the commonly used damped-least-squares method. It produces no deviations of the end-effector in relation to the virtually constrained path. A solution to assure a good performance of a hands-on robotic arm at singularity configurations is proposed. (c) 2007 John Wiley & Sons, Ltd.
Emergency response nurse scheduling with medical support robot by multi-agent and fuzzy technique.
Kono, Shinya; Kitamura, Akira
2015-08-01
In this paper, a new co-operative re-scheduling method corresponding the medical support tasks that the time of occurrence can not be predicted is described, assuming robot can co-operate medical activities with the nurse. Here, Multi-Agent-System (MAS) is used for the co-operative re-scheduling, in which Fuzzy-Contract-Net (FCN) is applied to the robots task assignment for the emergency tasks. As the simulation results, it is confirmed that the re-scheduling results by the proposed method can keep the patients satisfaction and decrease the work load of the nurse.
Autonomous Mobile Platform for Research in Cooperative Robotics
NASA Technical Reports Server (NTRS)
Daemi, Ali; Pena, Edward; Ferguson, Paul
1998-01-01
This paper describes the design and development of a platform for research in cooperative mobile robotics. The structure and mechanics of the vehicles are based on R/C cars. The vehicle is rendered mobile by a DC motor and servo motor. The perception of the robot's environment is achieved using IR sensors and a central vision system. A laptop computer processes images from a CCD camera located above the testing area to determine the position of objects in sight. This information is sent to each robot via RF modem. Each robot is operated by a Motorola 68HC11E micro-controller, and all actions of the robots are realized through the connections of IR sensors, modem, and motors. The intelligent behavior of each robot is based on a hierarchical fuzzy-rule based approach.
Controlling multiple manipulators using RIPS
NASA Technical Reports Server (NTRS)
Wang, Yulun; Jordan, Steve; Mangaser, Amante; Butner, Steve
1989-01-01
A prototype of the RIPS architecture (Robotic Instruction Processing System) was developed. A two arm robot control experiment is underway to characterize the architecture as well as research multi-arm control. This experiment uses two manipulators to cooperatively position an object. The location of the object is specified by the host computer's mouse. Consequently, real time kinematics and dynamics are necessary. The RIPS architecture is specialized so that it can satisfy these real time constraints. The two arm experimental set-up is discussed. A major part of this work is the continued development of a good programming environment for RIPS. The C++ language is employed and favorable results exist in the targeting of this language to the RIPS hardware.
Buttz, James H.; Shirey, David L.; Hayward, David R.
2003-01-01
A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.
Commercialization of JPL Virtual Reality calibration and redundant manipulator control technologies
NASA Technical Reports Server (NTRS)
Kim, Won S.; Seraji, Homayoun; Fiorini, Paolo; Brown, Robert; Christensen, Brian; Beale, Chris; Karlen, James; Eismann, Paul
1994-01-01
Within NASA's recent thrust for industrial collaboration, JPL (Jet Propulsion Laboratory) has recently established two technology cooperation agreements in the robotics area: one on virtual reality (VR) calibration with Deneb Robotics, Inc., and the other on redundant manipulator control with Robotics Research Corporation (RRC). These technology transfer cooperation tasks will enable both Deneb and RRC to commercialize enhanced versions of their products that will greatly benefit both space and terrestrial telerobotic applications.
Tandem robot control system and method for controlling mobile robots in tandem
Hayward, David R.; Buttz, James H.; Shirey, David L.
2002-01-01
A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.
Designing a Social Environment for Human-Robot Cooperation.
ERIC Educational Resources Information Center
Amram, Fred M.
Noting that work is partly a social activity, and that workers' psychological and emotional needs influence their productivity, this paper explores avenues for improving human-robot cooperation and for enhancing worker satisfaction in the environment of flexible automation. The first section of the paper offers a brief overview of the…
Robotic Cooperative Learning Promotes Student STEM Interest
ERIC Educational Resources Information Center
Mosley, Pauline; Ardito, Gerald; Scollins, Lauren
2016-01-01
The principal purpose of this investigation is to study the effect of robotic cooperative learning methodologies on middle school students' critical thinking, and STEM interest. The semi-experimental inquiry consisted of ninety four six-grade students (forty nine students in the experimental group, forty five students in the control group), chosen…
Exhaustive geographic search with mobile robots along space-filling curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spires, S.V.; Goldsmith, S.Y.
1998-03-01
Swarms of mobile robots can be tasked with searching a geographic region for targets of interest, such as buried land mines. The authors assume that the individual robots are equipped with sensors tuned to the targets of interest, that these sensors have limited range, and that the robots can communicate with one another to enable cooperation. How can a swarm of cooperating sensate robots efficiently search a given geographic region for targets in the absence of a priori information about the target`s locations? Many of the obvious approaches are inefficient or lack robustness. One efficient approach is to have themore » robots traverse a space-filling curve. For many geographic search applications, this method is energy-frugal, highly robust, and provides guaranteed coverage in a finite time that decreases as the reciprocal of the number of robots sharing the search task. Furthermore, it minimizes the amount of robot-to-robot communication needed for the robots to organize their movements. This report presents some preliminary results from applying the Hilbert space-filling curve to geographic search by mobile robots.« less
Behavior-Based Multi-Robot Collaboration for Autonomous Construction Tasks
NASA Technical Reports Server (NTRS)
Stroupe, Ashley; Huntsberger, Terry; Okon, Avi; Aghazarian, Hrand; Robinson, Matthew
2005-01-01
We present a heterogeneous multi-robot system for autonomous construction of a structure through assembly of long components. Placement of a component within an existing structure in a realistic environment is demonstrated on a two-robot team. The task requires component acquisition, cooperative transport, and cooperative precision manipulation. Far adaptability, the system is designed as a behavior-based architecture. Far applicability to space-related construction efforts, computation, power, communication, and sensing are minimized, though the techniques developed are also applicable to terrestrial construction tasks.
Fuzzy variable impedance control based on stiffness identification for human-robot cooperation
NASA Astrophysics Data System (ADS)
Mao, Dachao; Yang, Wenlong; Du, Zhijiang
2017-06-01
This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.
Control of free-flying space robot manipulator systems
NASA Technical Reports Server (NTRS)
Cannon, Robert H., Jr.
1988-01-01
The focus of the work is to develop and perform a set of research projects using laboratory models of satellite robots. These devices use air cushion technology to simulate in two dimensions the drag-free, zero-g conditions of space. Five research areas are examined: cooperative manipulation on a fixed base; cooperative manipulation on a free-floating base; global navigation and control of a free-floating robot; an alternative transport mode call Locomotion Enhancement via Arm Push-Off (LEAP), and adaptive control of LEAP.
NASA Technical Reports Server (NTRS)
Weaver, Johnathan M.
1993-01-01
A method was developed to plan feasible and obstacle-avoiding paths for two spatial robots working cooperatively in a known static environment. Cooperating spatial robots as referred to herein are robots which work in 6D task space while simultaneously grasping and manipulating a common, rigid payload. The approach is configuration space (c-space) based and performs selective rather than exhaustive c-space mapping. No expensive precomputations are required. A novel, divide-and-conquer type of heuristic is used to guide the selective mapping process. The heuristic does not involve any robot, environment, or task specific assumptions. A technique was also developed which enables solution of the cooperating redundant robot path planning problem without requiring the use of inverse kinematics for a redundant robot. The path planning strategy involves first attempting to traverse along the configuration space vector from the start point towards the goal point. If an unsafe region is encountered, an intermediate via point is identified by conducting a systematic search in the hyperplane orthogonal to and bisecting the unsafe region of the vector. This process is repeatedly applied until a solution to the global path planning problem is obtained. The basic concept behind this strategy is that better local decisions at the beginning of the trouble region may be made if a possible way around the 'center' of the trouble region is known. Thus, rather than attempting paths which look promising locally (at the beginning of a trouble region) but which may not yield overall results, the heuristic attempts local strategies that appear promising for circumventing the unsafe region.
Modelling cooperation of industrial robots as multi-agent systems
NASA Astrophysics Data System (ADS)
Hryniewicz, P.; Banas, W.; Foit, K.; Gwiazda, A.; Sekala, A.
2017-08-01
Nowadays, more and more often in a cell is more than one robot, there is also a dual arm robots, because of this cooperation of two robots in the same space becomes more and more important. Programming robotic cell consisting of two or more robots are currently performed separately for each element of the robot and the cell. It is performed only synchronization programs, but no robot movements. In such situations often placed industrial robots so they do not have common space so the robots are operated separately. When industrial robots are a common space this space can occupy only one robot the other one must be outside the common space. It is very difficult to find applications where two robots are in the same workspace. It was tested but one robot did not do of movement when moving the second and waited for permission to move from the second when it sent a permit - stop the move. Such programs are very difficult and require a lot of experience from the programmer and must be tested separately at the beginning and then very slowly under control. Ideally, the operator takes care of exactly one robot during the test and it is very important to take special care.
2013-04-03
cooperative control, LEGO robotic testbed, non-linear dynamics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...testbed The architecture of the LEGO robots (® LEGO is a trademark and/or copyright of the LEGO Group) used in tests were based off the quick-start
Chen, Gang; Song, Yongduan; Lewis, Frank L
2016-05-03
This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.
A Human-Robot Co-Manipulation Approach Based on Human Sensorimotor Information.
Peternel, Luka; Tsagarakis, Nikos; Ajoudani, Arash
2017-07-01
This paper aims to improve the interaction and coordination between the human and the robot in cooperative execution of complex, powerful, and dynamic tasks. We propose a novel approach that integrates online information about the human motor function and manipulability properties into the hybrid controller of the assistive robot. Through this human-in-the-loop framework, the robot can adapt to the human motor behavior and provide the appropriate assistive response in different phases of the cooperative task. We experimentally evaluate the proposed approach in two human-robot co-manipulation tasks that require specific complementary behavior from the two agents. Results suggest that the proposed technique, which relies on a minimum degree of task-level pre-programming, can achieve an enhanced physical human-robot interaction performance and deliver appropriate level of assistance to the human operator.
Emergent of Burden Sharing of Robots with Emotion Model
NASA Astrophysics Data System (ADS)
Kusano, Takuya; Nozawa, Akio; Ide, Hideto
Cooperated multi robots system has much dominance in comparison with single robot system. Multi robots system is able to adapt to various circumstances and has a flexibility for variation of tasks. Robots are necessary that build a cooperative relations and acts as an organization to attain a purpose in multi robots system. Then, group behavior of insects which doesn't have advanced ability is observed. For example, ants called a sociality insect emerge systematic activities by the interaction with using a very simple way. Though ants make a communication with chemical matter, a human plans a communication by words and gestures. In this paper, we paid attention to the interaction based on psychological viewpoint. And a human's emotion model was used for the parameter which became a base of the motion planning of robots. These robots were made to do both-way action in test field with obstacle. As a result, a burden sharing like guide or carrier was seen even though those had a simple setup.
Beyl, Tim; Nicolai, Philip; Comparetti, Mirko D; Raczkowsky, Jörg; De Momi, Elena; Wörn, Heinz
2016-07-01
Scene supervision is a major tool to make medical robots safer and more intuitive. The paper shows an approach to efficiently use 3D cameras within the surgical operating room to enable for safe human robot interaction and action perception. Additionally the presented approach aims to make 3D camera-based scene supervision more reliable and accurate. A camera system composed of multiple Kinect and time-of-flight cameras has been designed, implemented and calibrated. Calibration and object detection as well as people tracking methods have been designed and evaluated. The camera system shows a good registration accuracy of 0.05 m. The tracking of humans is reliable and accurate and has been evaluated in an experimental setup using operating clothing. The robot detection shows an error of around 0.04 m. The robustness and accuracy of the approach allow for an integration into modern operating room. The data output can be used directly for situation and workflow detection as well as collision avoidance.
Distributed Planning and Control for Teams of Cooperating Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, L.E.
2004-06-15
This CRADA project involved the cooperative research of investigators in ORNL's Center for Engineering Science Advanced Research (CESAR) with researchers at Caterpillar, Inc. The subject of the research was the development of cooperative control strategies for autonomous vehicles performing applications of interest to Caterpillar customers. The project involved three Phases of research, conducted over the time period of November 1998 through December 2001. This project led to the successful development of several technologies and demonstrations in realistic simulation that illustrated the effectiveness of the control approaches for distributed planning and cooperation in multi-robot teams.
What Role for Emotions in Cooperating Robots? - The Case of RH3-Y
NASA Astrophysics Data System (ADS)
Dessimoz, Jean-Daniel; Gauthey, Pierre-François
The paper reviews key aspects of emotions in the context of cooperating robots (mostly, robots cooperating with humans), and gives numerous concrete examples from RH-Y robots. Emotions have been first systematically studied in relation to human expressions, and then the shift has come towards a machine-based replication. Emotions appear to result from changes, from convergence or deviation between status and goals; they trigger appropriate activities, are commonly represented in 2D or 3D affect space, and can be made visible by facial expressions. While specific devices are sometimes created, emotive expressions seem to be conveniently rendered by a set of facial images or more simply by some icons; they can also possibly be parameterized in a few dimensions for continuous modulation. In fact however, internal forces for activities and changes may be expressed in many ways other than faces: screens, panels, and operational behaviors. Relying on emotions ensures useful aspects, such as experience reuse, legibility or communication. But it also includes limits such as due to the nature of robots, of interactive media, and even of the very domain of emotions. For our goal, the design of effective and efficient, cooperating robots, in domestic applications, communication and interaction play key roles; best practices become evident after experimental verification; and our experience gained so far, over 10 years and more, points at a variety of successful strategic attitudes and expression modes, much beyond classic human emotions and facial or iconic images.
Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.
Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell
2011-06-01
This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.
Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery
Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell
2013-01-01
This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information. PMID:24398557
Hybrid position/force control of multi-arm cooperating robots
NASA Technical Reports Server (NTRS)
Hayati, Samad
1986-01-01
This paper extends the theory of hybrid position/force control to the case of multi-arm cooperating robots. Cooperation between n robot arms is achieved by controlling each arm such that the burden of actuation is shared between the arms in a nonconflicting way as they control the position of and force on a designated point on an object. The object, which may or may not be in contact with a rigid environment, is assumed to be held rigidly by n robot end-effectors. Natural and artificial position and force constraints are defined for a point on the object and two selection matrices are obtained to control the arms. The position control loops are designed based on each manipulator's Cartesian space dynamic equations. In the position control subspace, a feature is provided which allows the robot arms to exert additional forces/torques to achieve compression, tension, or torsion in the object without affecting the execution of the motion trajectories. In the force control subspace, a method is introduced to minimize the total force/torque magnitude square while realizing the net desired force/torque on the environment.
A Fully Sensorized Cooperative Robotic System for Surgical Interventions
Tovar-Arriaga, Saúl; Vargas, José Emilio; Ramos, Juan M.; Aceves, Marco A.; Gorrostieta, Efren; Kalender, Willi A.
2012-01-01
In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements. PMID:23012551
Stanford Aerospace Research Laboratory research overview
NASA Technical Reports Server (NTRS)
Ballhaus, W. L.; Alder, L. J.; Chen, V. W.; Dickson, W. C.; Ullman, M. A.
1993-01-01
Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be, addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modelling and control of extremely flexible space structures. The ARL has designed and built several semi-autonomous free-flying robots that perform numerous tasks in a zero-gravity, drag-free, two-dimensional environment. It is envisioned that future generations of these robots will be part of a human-robot team, in which the robots will operate under the task-level commands of astronauts. To make this possible, the ARL has developed a graphical user interface (GUI) with an intuitive object-level motion-direction capability. Using this interface, the ARL has demonstrated autonomous navigation, intercept and capture of moving and spinning objects, object transport, multiple-robot cooperative manipulation, and simple assemblies from both free-flying and fixed bases. The ARL has also built a number of experimental test beds on which the modelling and control of flexible manipulators has been studied. Early ARL experiments in this arena demonstrated for the first time the capability to control the end-point position of both single-link and multi-link flexible manipulators using end-point sensing. Building on these accomplishments, the ARL has been able to control payloads with unknown dynamics at the end of a flexible manipulator, and to achieve high-performance control of a multi-link flexible manipulator.
Li, Zhijun; Su, Chun-Yi
2013-09-01
In this paper, adaptive neural network control is investigated for single-master-multiple-slaves teleoperation in consideration of time delays and input dead-zone uncertainties for multiple mobile manipulators carrying a common object in a cooperative manner. Firstly, concise dynamics of teleoperation systems consisting of a single master robot, multiple coordinated slave robots, and the object are developed in the task space. To handle asymmetric time-varying delays in communication channels and unknown asymmetric input dead zones, the nonlinear dynamics of the teleoperation system are transformed into two subsystems through feedback linearization: local master or slave dynamics including the unknown input dead zones and delayed dynamics for the purpose of synchronization. Then, a model reference neural network control strategy based on linear matrix inequalities (LMI) and adaptive techniques is proposed. The developed control approach ensures that the defined tracking errors converge to zero whereas the coordination internal force errors remain bounded and can be made arbitrarily small. Throughout this paper, stability analysis is performed via explicit Lyapunov techniques under specific LMI conditions. The proposed adaptive neural network control scheme is robust against motion disturbances, parametric uncertainties, time-varying delays, and input dead zones, which is validated by simulation studies.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-01
... Production Act of 1993--Robotics Technology Consortium, Inc. Notice is hereby given that, on February 5, 2013... seq. (``the Act''), Robotics Technology Consortium, Inc. (``RTC'') has filed written notifications... Institute LLC, Monticello, FL; Humanistic Robotics, Inc., Philadelphia, PA; Polaris Sales, Inc., Medina, MN...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-23
... Production Act of 1993--Robotics Technology Consortium, Inc. Notice is hereby given that, on July 27, 2011... seq. (``the Act''), the Robotics Technology Consortium (``RTC'') has filed written notifications... Machining, Longmont, CA; Carnegie Robotics LLC, Pittsburgh, PA; Embry-Riddle Aeronautical University...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
... Production Act of 1993--Robotics Technology Consortium, Inc. Notice is hereby given that, on April 30, 2012... seq. (``the Act''), Robotics Technology Consortium, Inc. (``RTC'') has filed written notifications... Inc., Huntsville, AL; John H. Northrop & Associates, Inc., Burke, VA; Lithos Robotics Corporation...
Embodied Computation: An Active-Learning Approach to Mobile Robotics Education
ERIC Educational Resources Information Center
Riek, L. D.
2013-01-01
This paper describes a newly designed upper-level undergraduate and graduate course, Autonomous Mobile Robots. The course employs active, cooperative, problem-based learning and is grounded in the fundamental computational problems in mobile robotics defined by Dudek and Jenkin. Students receive a broad survey of robotics through lectures, weekly…
Surface Support Systems for Co-Operative and Integrated Human/Robotic Lunar Exploration
NASA Technical Reports Server (NTRS)
Mueller, Robert P.
2006-01-01
Human and robotic partnerships to realize space goals can enhance space missions and provide increases in human productivity while decreasing the hazards that the humans are exposed to. For lunar exploration, the harsh environment of the moon and the repetitive nature of the tasks involved with lunar outpost construction, maintenance and operation as well as production tasks associated with in-situ resource utilization, make it highly desirable to use robotic systems in co-operation with human activity. A human lunar outpost is functionally examined and concepts for selected human/robotic tasks are discussed in the context of a lunar outpost which will enable the presence of humans on the moon for extended periods of time.
Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.
Wen, Rong; Tay, Wei-Liang; Nguyen, Binh P; Chng, Chin-Boon; Chui, Chee-Kong
2014-09-01
Radiofrequency (RF) ablation is a good alternative to hepatic resection for treatment of liver tumors. However, accurate needle insertion requires precise hand-eye coordination and is also affected by the difficulty of RF needle navigation. This paper proposes a cooperative surgical robot system, guided by hand gestures and supported by an augmented reality (AR)-based surgical field, for robot-assisted percutaneous treatment. It establishes a robot-assisted natural AR guidance mechanism that incorporates the advantages of the following three aspects: AR visual guidance information, surgeon's experiences and accuracy of robotic surgery. A projector-based AR environment is directly overlaid on a patient to display preoperative and intraoperative information, while a mobile surgical robot system implements specified RF needle insertion plans. Natural hand gestures are used as an intuitive and robust method to interact with both the AR system and surgical robot. The proposed system was evaluated on a mannequin model. Experimental results demonstrated that hand gesture guidance was able to effectively guide the surgical robot, and the robot-assisted implementation was found to improve the accuracy of needle insertion. This human-robot cooperative mechanism is a promising approach for precise transcutaneous ablation therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-09
...; Esys Integration Corporation, Auburn Hills, MI; JADI, Inc., Troy, MI; Mobile Robots Inc., Amherst, NH... Alto, CA; Robot Worx, Marion, OH; RPU Technology, Inc., Needham, MA; Scientific Systems Company, Inc...
Distributed optimization system and method
Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.
2003-06-10
A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.
Distributed Optimization System
Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.
2004-11-30
A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-21
... Production Act of 1993--Robotics Technology Consortium, Inc. Notice is hereby given that, on November 22....C. 4301 et seq. (``the Act''), Robotics Technology Consortium, Inc. (``RTC'') has filed written...., Arlington, VA; Jaybridge Robotics, Cambridge, MA; Klett Consulting Group, Inc., Virginia Beach, VA; and Next...
The Snackbot: Documenting the Design of a Robot for Long-term Human-Robot Interaction
2009-03-01
distributed robots. Proceedings of the Computer Supported Cooperative Work Conference’02. NY: ACM Press. [18] Kanda, T., Takayuki , H., Eaton, D., and...humanoid robots. Proceedings of HRI’06. New York, NY: ACM Press, 351-352. [23] Nabe, S., Kanda, T., Hiraki , K., Ishiguro, H., Kogure, K., and Hagita
Vision-based mapping with cooperative robots
NASA Astrophysics Data System (ADS)
Little, James J.; Jennings, Cullen; Murray, Don
1998-10-01
Two stereo-vision-based mobile robots navigate and autonomously explore their environment safely while building occupancy grid maps of the environment. The robots maintain position estimates within a global coordinate frame using landmark recognition. This allows them to build a common map by sharing position information and stereo data. Stereo vision processing and map updates are done at 3 Hz and the robots move at speeds of 200 cm/s. Cooperative mapping is achieved through autonomous exploration of unstructured and dynamic environments. The map is constructed conservatively, so as to be useful for collision-free path planning. Each robot maintains a separate copy of a shared map, and then posts updates to the common map when it returns to observe a landmark at home base. Issues include synchronization, mutual localization, navigation, exploration, registration of maps, merging repeated views (fusion), centralized vs decentralized maps.
A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots
Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im
2017-01-01
Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed. PMID:29186843
A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots.
Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im
2017-11-25
Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed.
Robot computer problem solving system
NASA Technical Reports Server (NTRS)
Becker, J. D.; Merriam, E. W.
1974-01-01
The conceptual, experimental, and practical phases of developing a robot computer problem solving system are outlined. Robot intelligence, conversion of the programming language SAIL to run under the THNEX monitor, and the use of the network to run several cooperating jobs at different sites are discussed.
A formation control strategy with coupling weights for the multi-robot system
NASA Astrophysics Data System (ADS)
Liang, Xudong; Wang, Siming; Li, Weijie
2017-12-01
The distributed formation problem of the multi-robot system with general linear dynamic characteristics and directed communication topology is discussed. In order to avoid that the multi-robot system can not maintain the desired formation in the complex communication environment, the distributed cooperative algorithm with coupling weights based on zipf distribution is designed. The asymptotic stability condition for the formation of the multi-robot system is given, and the theory of the graph and the Lyapunov theory are used to prove that the formation can converge to the desired geometry formation and the desired motion rules of the virtual leader under this condition. Nontrivial simulations are performed to validate the effectiveness of the distributed cooperative algorithm with coupling weights.
Motion and force control of multiple robotic manipulators
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz-Delgado, Kenneth
1992-01-01
This paper addresses the motion and force control problem of multiple robot arms manipulating a cooperatively held object. A general control paradigm is introduced which decouples the motion and force control problems. For motion control, different control strategies are constructed based on the variables used as the control input in the controller design. There are three natural choices; acceleration of a generalized coordinate, arm tip force vectors, and the joint torques. The first two choices require full model information but produce simple models for the control design problem. The last choice results in a class of relatively model independent control laws by exploiting the Hamiltonian structure of the open loop system. The motion control only determines the joint torque to within a manifold, due to the multiple-arm kinematic constraint. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, an optimization can be performed to best allocate the desired and effector control force to the joint actuators. The other possibility is to control the internal force about some set point. It is shown that effective force regulation can be achieved even if little model information is available.
Robots and Humans: Synergy in Planetary Exploration
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2003-01-01
How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.
Robots and Humans: Synergy in Planetary Exploration
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2002-01-01
How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.
The blackboard model - A framework for integrating multiple cooperating expert systems
NASA Technical Reports Server (NTRS)
Erickson, W. K.
1985-01-01
The use of an artificial intelligence (AI) architecture known as the blackboard model is examined as a framework for designing and building distributed systems requiring the integration of multiple cooperating expert systems (MCXS). Aerospace vehicles provide many examples of potential systems, ranging from commercial and military aircraft to spacecraft such as satellites, the Space Shuttle, and the Space Station. One such system, free-flying, spaceborne telerobots to be used in construction, servicing, inspection, and repair tasks around NASA's Space Station, is examined. The major difficulties found in designing and integrating the individual expert system components necessary to implement such a robot are outlined. The blackboard model, a general expert system architecture which seems to address many of the problems found in designing and building such a system, is discussed. A progress report on a prototype system under development called DBB (Distributed BlackBoard model) is given. The prototype will act as a testbed for investigating the feasibility, utility, and efficiency of MCXS-based designs developed under the blackboard model.
Man-Robot Symbiosis: A Framework For Cooperative Intelligence And Control
NASA Astrophysics Data System (ADS)
Parker, Lynne E.; Pin, Francois G.
1988-10-01
The man-robot symbiosis concept has the fundamental objective of bridging the gap between fully human-controlled and fully autonomous systems to achieve true man-robot cooperative control and intelligence. Such a system would allow improved speed, accuracy, and efficiency of task execution, while retaining the man in the loop for innovative reasoning and decision-making. The symbiont would have capabilities for supervised and unsupervised learning, allowing an increase of expertise in a wide task domain. This paper describes a robotic system architecture facilitating the symbiotic integration of teleoperative and automated modes of task execution. The architecture reflects a unique blend of many disciplines of artificial intelligence into a working system, including job or mission planning, dynamic task allocation, man-robot communication, automated monitoring, and machine learning. These disciplines are embodied in five major components of the symbiotic framework: the Job Planner, the Dynamic Task Allocator, the Presenter/Interpreter, the Automated Monitor, and the Learning System.
Tele-Manipulation with Two Asymmetric Slaves: Two Operators Perform Better Than One.
van Oosterhout, Jeroen; Heemskerk, Cock J M; de Baar, Marco R; van der Helm, Frans C T; Abbink, David A
2018-01-01
Certain tele-manipulation tasks require manipulation by two asymmetric slaves, for example, a crane for hoisting and a dexterous robotic arm for fine manipulation. It is unclear how to best design human-in-the-loop control over two asymmetric slaves. The goal of this paper is to quantitatively compare the standard approach of two co-operating operators that each control a single subtask, to a single operator performing bi-manual control over the two subtasks, and a uni-manual control approach. In a human factors experiment, participants performed a heavy load maneuvering and mounting task using a vertical crane and a robotic arm. We hypothesize that bi-manual control yields worse task performance and control activity compared to co-operation, because of conflicting spatial and temporal constraints. Literature suggests that uni-manual operators should perform better than co-operation, as co-operators critically depend on each other's actions. However, other literature provides evidence that individual operators have limited capabilities in controlling asymmetric axes of two dynamic systems. The results show that the two co-operators perform the maneuvering and mounting task faster than either bi- or uni-manual operators. Compared to co-operators, uni-manual operators required more control activity for the vertical crane and less for the robotic arm. In conclusion, this study suggests that when controlling two asymmetric slaves, a co-operating pair of operators performs better than a single operator.
Najafi, Mohammad; Adams, Kim; Tavakoli, Mahdi
2017-07-01
The number of people with physical disabilities and impaired motion control is increasing. Consequently, there is a growing demand for intelligent assistive robotic systems to cooperate with people with disability and help them carry out different tasks. To this end, our group has pioneered the use of robot learning from demonstration (RLfD) techniques, which eliminate the need for task-specific robot programming, in robotic rehabilitation and assistive technologies settings. First, in the demonstration phase, the therapist (or in general, a helper) provides an intervention (typically assistance) and cooperatively performs a task with a patient several times. The demonstrated motion is modelled by a statistical RLfD algorithm, which will later be used in the robot controllers to reproduce a similar intervention robotically. In this paper, by proposing a Tangential-Normal Varying-Impedance Controller (TNVIC), the robotic manipulator not only follows the therapist's demonstrated motion, but also mimics his/her interaction impedance during the therapeutic/assistive intervention. The feasibility and efficacy of the proposed framework are evaluated by conducting an experiment involving a healthy adult with cerebral palsy symptoms being induced using transcutaneous electrical nerve stimulation.
NASA Technical Reports Server (NTRS)
Schenker, Paul S. (Editor)
1992-01-01
Various papers on control paradigms and data structures in sensor fusion are presented. The general topics addressed include: decision models and computational methods, sensor modeling and data representation, active sensing strategies, geometric planning and visualization, task-driven sensing, motion analysis, models motivated biology and psychology, decentralized detection and distributed decision, data fusion architectures, robust estimation of shapes and features, application and implementation. Some of the individual subjects considered are: the Firefly experiment on neural networks for distributed sensor data fusion, manifold traversing as a model for learning control of autonomous robots, choice of coordinate systems for multiple sensor fusion, continuous motion using task-directed stereo vision, interactive and cooperative sensing and control for advanced teleoperation, knowledge-based imaging for terrain analysis, physical and digital simulations for IVA robotics.
Telerobotic management system: coordinating multiple human operators with multiple robots
NASA Astrophysics Data System (ADS)
King, Jamie W.; Pretty, Raymond; Brothers, Brendan; Gosine, Raymond G.
2003-09-01
This paper describes an application called the Tele-robotic management system (TMS) for coordinating multiple operators with multiple robots for applications such as underground mining. TMS utilizes several graphical interfaces to allow the user to define a partially ordered plan for multiple robots. This plan is then converted to a Petri net for execution and monitoring. TMS uses a distributed framework to allow robots and operators to easily integrate with the applications. This framework allows robots and operators to join the network and advertise their capabilities through services. TMS then decides whether tasks should be dispatched to a robot or a remote operator based on the services offered by the robots and operators.
Robots and humans: synergy in planetary exploration
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2004-01-01
How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments. Published by Elsevier Ltd.
Ao, Di; Song, Rong; Gao, JinWu
2017-08-01
Although the merits of electromyography (EMG)-based control of powered assistive systems have been certified, the factors that affect the performance of EMG-based human-robot cooperation, which are very important, have received little attention. This study investigates whether a more physiologically appropriate model could improve the performance of human-robot cooperation control for an ankle power-assist exoskeleton robot. To achieve the goal, an EMG-driven Hill-type neuromusculoskeletal model (HNM) and a linear proportional model (LPM) were developed and calibrated through maximum isometric voluntary dorsiflexion (MIVD). The two control models could estimate the real-time ankle joint torque, and HNM is more accurate and can account for the change of the joint angle and muscle dynamics. Then, eight healthy volunteers were recruited to wear the ankle exoskeleton robot and complete a series of sinusoidal tracking tasks in the vertical plane. With the various levels of assist based on the two calibrated models, the subjects were instructed to track the target displayed on the screen as accurately as possible by performing ankle dorsiflexion and plantarflexion. Two measurements, the root mean square error (RMSE) and root mean square jerk (RMSJ), were derived from the assistant torque and kinematic signals to characterize the movement performances, whereas the amplitudes of the recorded EMG signals from the tibialis anterior (TA) and the gastrocnemius (GAS) were obtained to reflect the muscular efforts. The results demonstrated that the muscular effort and smoothness of tracking movements decreased with an increase in the assistant ratio. Compared with LPM, subjects made lower physical efforts and generated smoother movements when using HNM, which implied that a more physiologically appropriate model could enable more natural and human-like human-robot cooperation and has potential value for improvement of human-exoskeleton interaction in future applications.
Educational Robotics: Open Questions and New Challenges
ERIC Educational Resources Information Center
Alimisis, Dimitris
2013-01-01
This paper investigates the current situation in the field of educational robotics and identifies new challenges and trends focusing on the use of robotic technologies as a tool that will support creativity and other 21st-century learning skills. Finally, conclusions and proposals are presented for promoting cooperation and networking of…
Baigzadehnoe, Barmak; Rahmani, Zahra; Khosravi, Alireza; Rezaie, Behrooz
2017-09-01
In this paper, the position and force tracking control problem of cooperative robot manipulator system handling a common rigid object with unknown dynamical models and unknown external disturbances is investigated. The universal approximation properties of fuzzy logic systems are employed to estimate the unknown system dynamics. On the other hand, by defining new state variables based on the integral and differential of position and orientation errors of the grasped object, the error system of coordinated robot manipulators is constructed. Subsequently by defining the appropriate change of coordinates and using the backstepping design strategy, an adaptive fuzzy backstepping position tracking control scheme is proposed for multi-robot manipulator systems. By utilizing the properties of internal forces, extra terms are also added to the control signals to consider the force tracking problem. Moreover, it is shown that the proposed adaptive fuzzy backstepping position/force control approach ensures all the signals of the closed loop system uniformly ultimately bounded and tracking errors of both positions and forces can converge to small desired values by proper selection of the design parameters. Finally, the theoretic achievements are tested on the two three-link planar robot manipulators cooperatively handling a common object to illustrate the effectiveness of the proposed approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Controlling Herds of Cooperative Robots
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.
2006-01-01
A document poses, and suggests a program of research for answering, questions of how to achieve autonomous operation of herds of cooperative robots to be used in exploration and/or colonization of remote planets. In a typical scenario, a flock of mobile sensory robots would be deployed in a previously unexplored region, one of the robots would be designated the leader, and the leader would issue commands to move the robots to different locations or aim sensors at different targets to maximize scientific return. It would be necessary to provide for this hierarchical, cooperative behavior even in the face of such unpredictable factors as terrain obstacles. A potential-fields approach is proposed as a theoretical basis for developing methods of autonomous command and guidance of a herd. A survival-of-the-fittest approach is suggested as a theoretical basis for selection, mutation, and adaptation of a description of (1) the body, joints, sensors, actuators, and control computer of each robot, and (2) the connectivity of each robot with the rest of the herd, such that the herd could be regarded as consisting of a set of artificial creatures that evolve to adapt to a previously unknown environment. A distributed simulation environment has been developed to test the proposed approaches in the Titan environment. One blimp guides three surface sondes via a potential field approach. The results of the simulation demonstrate that the method used for control is feasible, even if significant uncertainty exists in the dynamics and environmental models, and that the control architecture provides the autonomy needed to enable surface science data collection.
Autonomous mobile robot research using the HERMIES-III robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, F.G.; Beckerman, M.; Spelt, P.F.
1989-01-01
This paper reports on the status and future directions in the research, development and experimental validation of intelligent control techniques for autonomous mobile robots using the HERMIES-III robot at the Center for Engineering Systems Advanced research (CESAR) at Oak Ridge National Laboratory (ORNL). HERMIES-III is the fourth robot in a series of increasingly more sophisticated and capable experimental test beds developed at CESAR. HERMIES-III is comprised of a battery powered, onmi-directional wheeled platform with a seven degree-of-freedom manipulator arm, video cameras, sonar range sensors, laser imaging scanner and a dual computer system containing up to 128 NCUBE nodes in hypercubemore » configuration. All electronics, sensors, computers, and communication equipment required for autonomous operation of HERMIES-III are located on board along with sufficient battery power for three to four hours of operation. The paper first provides a more detailed description of the HERMIES-III characteristics, focussing on the new areas of research and demonstration now possible at CESAR with this new test-bed. The initial experimental program is then described with emphasis placed on autonomous performance of human-scale tasks (e.g., valve manipulation, use of tools), integration of a dexterous manipulator and platform motion in geometrically complex environments, and effective use of multiple cooperating robots (HERMIES-IIB and HERMIES- III). The paper concludes with a discussion of the integration problems and safety considerations necessarily arising from the set-up of an experimental program involving human-scale, multi-autonomous mobile robots performance. 10 refs., 3 figs.« less
Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M.L.; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio
2017-01-01
The term ‘synergy’ – from the Greek synergia – means ‘working together’. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project “The Hand Embodied” (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies. PMID:26923030
Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M L; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio
2016-07-01
The term 'synergy' - from the Greek synergia - means 'working together'. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project "The Hand Embodied" (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M. L.; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio
2016-07-01
The term 'synergy' - from the Greek synergia - means 'working together'. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project ;The Hand Embodied; (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies.
Intelligent vehicle control: Opportunities for terrestrial-space system integration
NASA Technical Reports Server (NTRS)
Shoemaker, Charles
1994-01-01
For 11 years the Department of Defense has cooperated with a diverse array of other Federal agencies including the National Institute of Standards and Technology, the Jet Propulsion Laboratory, and the Department of Energy, to develop robotics technology for unmanned ground systems. These activities have addressed control system architectures supporting sharing of tasks between the system operator and various automated subsystems, man-machine interfaces to intelligent vehicles systems, video compression supporting vehicle driving in low data rate digital communication environments, multiple simultaneous vehicle control by a single operator, path planning and retrace, and automated obstacle detection and avoidance subsystem. Performance metrics and test facilities for robotic vehicles were developed permitting objective performance assessment of a variety of operator-automated vehicle control regimes. Progress in these areas will be described in the context of robotic vehicle testbeds specifically developed for automated vehicle research. These initiatives, particularly as regards the data compression, task sharing, and automated mobility topics, also have relevance in the space environment. The intersection of technology development interests between these two communities will be discussed in this paper.
Anthropomorphism in Human–Robot Co-evolution
Damiano, Luisa; Dumouchel, Paul
2018-01-01
Social robotics entertains a particular relationship with anthropomorphism, which it neither sees as a cognitive error, nor as a sign of immaturity. Rather it considers that this common human tendency, which is hypothesized to have evolved because it favored cooperation among early humans, can be used today to facilitate social interactions between humans and a new type of cooperative and interactive agents – social robots. This approach leads social robotics to focus research on the engineering of robots that activate anthropomorphic projections in users. The objective is to give robots “social presence” and “social behaviors” that are sufficiently credible for human users to engage in comfortable and potentially long-lasting relations with these machines. This choice of ‘applied anthropomorphism’ as a research methodology exposes the artifacts produced by social robotics to ethical condemnation: social robots are judged to be a “cheating” technology, as they generate in users the illusion of reciprocal social and affective relations. This article takes position in this debate, not only developing a series of arguments relevant to philosophy of mind, cognitive sciences, and robotic AI, but also asking what social robotics can teach us about anthropomorphism. On this basis, we propose a theoretical perspective that characterizes anthropomorphism as a basic mechanism of interaction, and rebuts the ethical reflections that a priori condemns “anthropomorphism-based” social robots. To address the relevant ethical issues, we promote a critical experimentally based ethical approach to social robotics, “synthetic ethics,” which aims at allowing humans to use social robots for two main goals: self-knowledge and moral growth. PMID:29632507
Gácsi, Márta; Szakadát, Sára; Miklósi, Adám
2013-01-01
These studies are part of a project aiming to reveal relevant aspects of human-dog interactions, which could serve as a model to design successful human-robot interactions. Presently there are no successfully commercialized assistance robots, however, assistance dogs work efficiently as partners for persons with disabilities. In Study 1, we analyzed the cooperation of 32 assistance dog-owner dyads performing a carrying task. We revealed typical behavior sequences and also differences depending on the dyads' experiences and on whether the owner was a wheelchair user. In Study 2, we investigated dogs' responses to unforeseen difficulties during a retrieving task in two contexts. Dogs displayed specific communicative and displacement behaviors, and a strong commitment to execute the insoluble task. Questionnaire data from Study 3 confirmed that these behaviors could successfully attenuate owners' disappointment. Although owners anticipated the technical competence of future assistance robots to be moderate/high, they could not imagine robots as emotional companions, which negatively affected their acceptance ratings of future robotic assistants. We propose that assistance dogs' cooperative behaviors and problem solving strategies should inspire the development of the relevant functions and social behaviors of assistance robots with limited manual and verbal skills.
The problem with multiple robots
NASA Technical Reports Server (NTRS)
Huber, Marcus J.; Kenny, Patrick G.
1994-01-01
The issues that can arise in research associated with multiple, robotic agents are discussed. Two particular multi-robot projects are presented as examples. This paper was written in the hope that it might ease the transition from single to multiple robot research.
Update on Controlling Herds of Cooperative Robots
NASA Technical Reports Server (NTRS)
Quadrelli, Marco; Chang, Johnny
2007-01-01
A document presents further information on the subject matter of "Controlling Herds of Cooperative Robots". The document describes the results of the computational simulations of a one-blimp, three-surface-sonde herd in various operational scenarios, including sensitivity studies as a function of distributed communication and processing delays between the sondes and the blimp. From results of the simulations, it is concluded that the methodology is feasible, even if there are significant uncertainties in the dynamical models.
NASA Technical Reports Server (NTRS)
Pedersen, L.; Kortenkamp, D.; Wettergreen, D.; Nourbakhsh, I.; Korsmeyer, David (Technical Monitor)
2003-01-01
In this paper we summarize a survey conducted by NASA to determine the state-of-the-art in space robotics and to predict future robotic capabilities under either nominal and intensive development effort. The space robotics assessment study examined both in-space operations including assembly, inspection, and maintenance and planetary surface operations like mobility and exploration. Applications of robotic autonomy and human-robot cooperation were considered. The study group devised a decomposition of robotic capabilities and then suggested metrics to specify the technical challenges associated with each. The conclusion of this paper identifies possible areas in which investment in space robotics could lead to significant advances of important technologies.
Rafii-Tari, Hedyeh; Liu, Jindong; Payne, Christopher J; Bicknell, Colin; Yang, Guang-Zhong
2014-01-01
Despite increased use of remote-controlled steerable catheter navigation systems for endovascular intervention, most current designs are based on master configurations which tend to alter natural operator tool interactions. This introduces problems to both ergonomics and shared human-robot control. This paper proposes a novel cooperative robotic catheterization system based on learning-from-demonstration. By encoding the higher-level structure of a catheterization task as a sequence of primitive motions, we demonstrate how to achieve prospective learning for complex tasks whilst incorporating subject-specific variations. A hierarchical Hidden Markov Model is used to model each movement primitive as well as their sequential relationship. This model is applied to generation of motion sequences, recognition of operator input, and prediction of future movements for the robot. The framework is validated by comparing catheter tip motions against the manual approach, showing significant improvements in the quality of catheterization. The results motivate the design of collaborative robotic systems that are intuitive to use, while reducing the cognitive workload of the operator.
Intelligent robotics can boost America's economic growth
NASA Technical Reports Server (NTRS)
Erickson, Jon D.
1994-01-01
A case is made for strategic investment in intelligent robotics as a part of the solution to the problem of improved global competitiveness for U.S. manufacturing, a critical industrial sector. Similar cases are made for strategic investments in intelligent robotics for field applications, construction, and service industries such as health care. The scope of the country's problems and needs is beyond the capability of the private sector alone, government alone, or academia alone to solve independently of the others. National cooperative programs in intelligent robotics are needed with the private sector supplying leadership direction and aerospace and non-aerospace industries conducting the development. Some necessary elements of such programs are outlined. The National Aeronautics and Space Administration (NASA) and the Lyndon B. Johnson Space Center (JSC) can be key players in such national cooperative programs in intelligent robotics for several reasons: (1) human space exploration missions require supervised intelligent robotics as enabling tools and, hence must develop supervised intelligent robotic systems; (2) intelligent robotic technology is being developed for space applications at JSC (but has a strong crosscutting or generic flavor) that is advancing the state of the art and is producing both skilled personnel and adaptable developmental infrastructure such as integrated testbeds; and (3) a NASA JSC Technology Investment Program in Robotics has been proposed based on commercial partnerships and collaborations for precompetitive, dual-use developments.
Verification of NASA Emergent Systems
NASA Technical Reports Server (NTRS)
Rouff, Christopher; Vanderbilt, Amy K. C. S.; Truszkowski, Walt; Rash, James; Hinchey, Mike
2004-01-01
NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. This mission, the prospective ANTS (Autonomous Nano Technology Swarm) mission, will comprise of 1,000 autonomous robotic agents designed to cooperate in asteroid exploration. The emergent properties of swarm type missions make them powerful, but at the same time are more difficult to design and assure that the proper behaviors will emerge. We are currently investigating formal methods and techniques for verification and validation of future swarm-based missions. The advantage of using formal methods is their ability to mathematically assure the behavior of a swarm, emergent or otherwise. The ANT mission is being used as an example and case study for swarm-based missions for which to experiment and test current formal methods with intelligent swam. Using the ANTS mission, we have evaluated multiple formal methods to determine their effectiveness in modeling and assuring swarm behavior.
An Integrated Testbed for Cooperative Perception with Heterogeneous Mobile and Static Sensors
Jiménez-González, Adrián; Martínez-De Dios, José Ramiro; Ollero, Aníbal
2011-01-01
Cooperation among devices with different sensing, computing and communication capabilities provides interesting possibilities in a growing number of problems and applications including domotics (domestic robotics), environmental monitoring or intelligent cities, among others. Despite the increasing interest in academic and industrial communities, experimental tools for evaluation and comparison of cooperative algorithms for such heterogeneous technologies are still very scarce. This paper presents a remote testbed with mobile robots and Wireless Sensor Networks (WSN) equipped with a set of low-cost off-the-shelf sensors, commonly used in cooperative perception research and applications, that present high degree of heterogeneity in their technology, sensed magnitudes, features, output bandwidth, interfaces and power consumption, among others. Its open and modular architecture allows tight integration and interoperability between mobile robots and WSN through a bidirectional protocol that enables full interaction. Moreover, the integration of standard tools and interfaces increases usability, allowing an easy extension to new hardware and software components and the reuse of code. Different levels of decentralization are considered, supporting from totally distributed to centralized approaches. Developed for the EU-funded Cooperating Objects Network of Excellence (CONET) and currently available at the School of Engineering of Seville (Spain), the testbed provides full remote control through the Internet. Numerous experiments have been performed, some of which are described in the paper. PMID:22247679
An integrated testbed for cooperative perception with heterogeneous mobile and static sensors.
Jiménez-González, Adrián; Martínez-De Dios, José Ramiro; Ollero, Aníbal
2011-01-01
Cooperation among devices with different sensing, computing and communication capabilities provides interesting possibilities in a growing number of problems and applications including domotics (domestic robotics), environmental monitoring or intelligent cities, among others. Despite the increasing interest in academic and industrial communities, experimental tools for evaluation and comparison of cooperative algorithms for such heterogeneous technologies are still very scarce. This paper presents a remote testbed with mobile robots and Wireless Sensor Networks (WSN) equipped with a set of low-cost off-the-shelf sensors, commonly used in cooperative perception research and applications, that present high degree of heterogeneity in their technology, sensed magnitudes, features, output bandwidth, interfaces and power consumption, among others. Its open and modular architecture allows tight integration and interoperability between mobile robots and WSN through a bidirectional protocol that enables full interaction. Moreover, the integration of standard tools and interfaces increases usability, allowing an easy extension to new hardware and software components and the reuse of code. Different levels of decentralization are considered, supporting from totally distributed to centralized approaches. Developed for the EU-funded Cooperating Objects Network of Excellence (CONET) and currently available at the School of Engineering of Seville (Spain), the testbed provides full remote control through the Internet. Numerous experiments have been performed, some of which are described in the paper.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-06
..., Scottsdale, AZ; General Robotics, Sherman Oaks, CA; Global Technical Systems, Virginia Beach, VA; Hurley IR..., TX; Liquid Robotics, Sunnyvale, CA; Lockheed Martin Corporation, Gaithersburg, MD; Morpho Detection...
A robotic system for researching social integration in honeybees.
Griparić, Karlo; Haus, Tomislav; Miklić, Damjan; Polić, Marsela; Bogdan, Stjepan
2017-01-01
In this paper, we present a novel robotic system developed for researching collective social mechanisms in a biohybrid society of robots and honeybees. The potential for distributed coordination, as observed in nature in many different animal species, has caused an increased interest in collective behaviour research in recent years because of its applicability to a broad spectrum of technical systems requiring robust multi-agent control. One of the main problems is understanding the mechanisms driving the emergence of collective behaviour of social animals. With the aim of deepening the knowledge in this field, we have designed a multi-robot system capable of interacting with honeybees within an experimental arena. The final product, stationary autonomous robot units, designed by specificaly considering the physical, sensorimotor and behavioral characteristics of the honeybees (lat. Apis mallifera), are equipped with sensing, actuating, computation, and communication capabilities that enable the measurement of relevant environmental states, such as honeybee presence, and adequate response to the measurements by generating heat, vibration and airflow. The coordination among robots in the developed system is established using distributed controllers. The cooperation between the two different types of collective systems is realized by means of a consensus algorithm, enabling the honeybees and the robots to achieve a common objective. Presented results, obtained within ASSISIbf project, show successful cooperation indicating its potential for future applications.
Object impedance control for cooperative manipulation - Theory and experimental results
NASA Technical Reports Server (NTRS)
Schneider, Stanley A.; Cannon, Robert H., Jr.
1992-01-01
This paper presents the dynamic control module of the Dynamic and Strategic Control of Cooperating Manipulators (DASCCOM) project at Stanford University's Aerospace Robotics Laboratory. First, the cooperative manipulation problem is analyzed from a systems perspective, and the desirable features of a control system for cooperative manipulation are discussed. Next, a control policy is developed that enforces a controlled impedance not of the individual arm endpoints, but of the manipulated object itself. A parallel implementation for a multiprocessor system is presented. The controller fully compensates for the system dynamics and directly controls the object internal forces. Most importantly, it presents a simple, powerful, intuitive interface to higher level strategic control modules. Experimental results from a dual two-link-arm robotic system are used to compare the object impedance controller with other strategies, both for free-motion slews and environmental contact.
Multi-Robot, Multi-Target Particle Swarm Optimization Search in Noisy Wireless Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Derr; Milos Manic
Multiple small robots (swarms) can work together using Particle Swarm Optimization (PSO) to perform tasks that are difficult or impossible for a single robot to accomplish. The problem considered in this paper is exploration of an unknown environment with the goal of finding a target(s) at an unknown location(s) using multiple small mobile robots. This work demonstrates the use of a distributed PSO algorithm with a novel adaptive RSS weighting factor to guide robots for locating target(s) in high risk environments. The approach was developed and analyzed on multiple robot single and multiple target search. The approach was further enhancedmore » by the multi-robot-multi-target search in noisy environments. The experimental results demonstrated how the availability of radio frequency signal can significantly affect robot search time to reach a target.« less
Characteristics of Behavior of Robots with Emotion Model
NASA Astrophysics Data System (ADS)
Sato, Shigehiko; Nozawa, Akio; Ide, Hideto
Cooperated multi robots system has much dominance in comparison with single robot system. It is able to adapt to various circumstances and has a flexibility for variation of tasks. However it has still problems to control each robot, though methods for control multi robots system have been studied. Recently, the robots have been coming into real scene. And emotion and sensitivity of the robots have been widely studied. In this study, human emotion model based on psychological interaction was adapt to multi robots system to achieve methods for organization of multi robots. The characteristics of behavior of multi robots system achieved through computer simulation were analyzed. As a result, very complexed and interesting behavior was emerged even though it has rather simple configuration. And it has flexiblity in various circumstances. Additional experiment with actual robots will be conducted based on the emotion model.
Stability analysis of multiple-robot control systems
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz, Kenneth
1989-01-01
In a space telerobotic service scenario, cooperative motion and force control of multiple robot arms are of fundamental importance. Three paradigms to study this problem are proposed. They are distinguished by the set of variables used for control design. They are joint torques, arm tip force vectors, and an accelerated generalized coordinate set. Control issues related to each case are discussed. The latter two choices require complete model information, which presents practical modeling, computational, and robustness problems. Therefore, focus is on the joint torque control case to develop relatively model independent motion and internal force control laws. The rigid body assumption allows the motion and force control problems to be independently addressed. By using an energy motivated Lyapunov function, a simple proportional derivative plus gravity compensation type of motion control law is always shown to be stabilizing. The asymptotic convergence of the tracing error to zero requires the use of a generalized coordinate with the contact constraints taken into account. If a non-generalized coordinate is used, only convergence to a steady state manifold can be concluded. For the force control, both feedforward and feedback schemes are analyzed. The feedback control, if proper care has been taken, exhibits better robustness and transient performance.
Efficient Symbolic Task Planning for Multiple Mobile Robots
2016-12-13
Efficient Symbolic Task Planning for Multiple Mobile Robots Yuqian Jiang December 13, 2016 Abstract Symbolic task planning enables a robot to make...high-level deci- sions toward a complex goal by computing a sequence of actions with minimum expected costs. This thesis builds on a single- robot ...time complexity of optimal planning for multiple mobile robots . In this thesis we first investigate the performance of the state-of-the-art solvers of
Tele-assistance for semi-autonomous robots
NASA Technical Reports Server (NTRS)
Rogers, Erika; Murphy, Robin R.
1994-01-01
This paper describes a new approach in semi-autonomous mobile robots. In this approach the robot has sufficient computerized intelligence to function autonomously under a certain set of conditions, while the local system is a cooperative decision making unit that combines human and machine intelligence. Communication is then allowed to take place in a common mode and in a common language. A number of exception-handling scenarios that were constructed as a result of experiments with actual sensor data collected from two mobile robots were presented.
Robots and Humans in Planetary Exploration: Working Together?
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)
2002-01-01
Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure
Systems and Algorithms for Automated Collaborative Observation Using Networked Robotic Cameras
ERIC Educational Resources Information Center
Xu, Yiliang
2011-01-01
The development of telerobotic systems has evolved from Single Operator Single Robot (SOSR) systems to Multiple Operator Multiple Robot (MOMR) systems. The relationship between human operators and robots follows the master-slave control architecture and the requests for controlling robot actuation are completely generated by human operators. …
Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.
del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C
2014-03-04
Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking.Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia.Acronym list: 10 mWT: ten meters walking test; 6 MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical stimulation; HKAFO: hip-knee-ankle-foot orthosis; ILC: iterative error-based learning control; MFE: muscle fatigue estimator; NILC: Normalized stimulation output from ILC controller; PID: Proportional-Integral-derivative Control; PW: Stimulation pulse width; QUEST: Quebec User Evaluation of Satisfaction with assistive Technology; SCI: Spinal cord injury; TTI: torque-time integral; VAS: Visual Analog Scale.
Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton
2014-01-01
Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking. Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia. Acronym list: 10mWT: ten meters walking test; 6MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical stimulation; HKAFO: hip-knee-ankle-foot orthosis; ILC: iterative error-based learning control; MFE: muscle fatigue estimator; NILC: Normalized stimulation output from ILC controller; PID: Proportional-Integral-derivative Control; PW: Stimulation pulse width; QUEST: Quebec User Evaluation of Satisfaction with assistive Technology; SCI: Spinal cord injury; TTI: torque-time integral; VAS: Visual Analog Scale. PMID:24594302
Some Effects of Target Cooperation and Reciprocated Promises on Conflict Resolution.
ERIC Educational Resources Information Center
Bonoma, Thomas V.; And Others
Forty female subjects were given intermittent options to transmit noncontingent promises of intent to cooperate during the course of a mixed-motive laboratory game. In a 2 x 2 experimental design, a robot target either reciprocated subjects' promise statements or concealed her behavioral intentions, and was either always cooperative or always…
Precision Pointing Control to and Accurate Target Estimation of a Non-Cooperative Vehicle
NASA Technical Reports Server (NTRS)
VanEepoel, John; Thienel, Julie; Sanner, Robert M.
2006-01-01
In 2004, NASA began investigating a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates in order to achieve capture by the proposed Hubble Robotic Vehicle (HRV), but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST. To generalize the situation, HST is the target vehicle and HRV is the chaser. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a control scheme. Non-cooperative in this context relates to the target vehicle no longer having the ability to maintain attitude control or transmit attitude knowledge.
Robots, systems, and methods for hazard evaluation and visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.
A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximatemore » the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.« less
Parametric investigation of scalable tactile sensors
NASA Astrophysics Data System (ADS)
Saadatzi, Mohammad Nasser; Yang, Zhong; Baptist, Joshua R.; Sahasrabuddhe, Ritvij R.; Wijayasinghe, Indika B.; Popa, Dan O.
2017-05-01
In the near future, robots and humans will share the same environment and perform tasks cooperatively. For intuitive, safe, and reliable physical human-robot interaction (pHRI), sensorized robot skins for tactile measurements of contact are necessary. In a previous study, we presented skins consisting of strain gauge arrays encased in silicone encapsulants. Although these structures could measure normal forces applied directly onto the sensing elements, they also exhibited blind spots and response asymmetry to certain loading patterns. This study presents a parametric investigation of piezoresistive polymeric strain gauge that exhibits a symmetric omniaxial response thanks to its novel star-shaped structure. This strain gauge relies on the use of gold micro-patterned star-shaped structures with a thin layer of PEDOT:PSS which is a flexible polymer with piezoresistive properties. In this paper, the sensor is first modeled and comprehensively analyzed in the finite-element simulation environment COMSOL. Simulations include stress-strain loading for a variety of structure parameters such as gauge lengths, widths, and spacing, as well as multiple load locations relative to the gauge. Subsequently, sensors with optimized configurations obtained through simulations were fabricated using cleanroom photolithographic and spin-coating processes, and then experimentally tested. Results show a trend-wise agreement between experiments and simulations.
NASA Astrophysics Data System (ADS)
Colla, Valentina; Schroeder, Antonius; Buzzelli, Andrea; Abbà, Dario; Faes, Andrea; Romaniello, Lea
2018-05-01
The introduction of new technologies, which can support and empower human capabilities in a number of professional tasks while possibly reducing the need for cumbersome operations and the exposure to risk and professional diseases, is nowadays perceived as a must in any industrial field, process industry included. However, despite their relevant potentials, new technologies are not always easy to introduce in the professional environment. A design procedure which takes into account the workers' acceptance, needing and capabilities as well as a continuing education and training process of the personnel who must exploit the innovation, is as fundamental as the technical reliability for the successful introduction of any new technology in a professional environment. An exemplary case is provided by symbiotic human-robot-cooperation. In the steel sector, the difficulties for the implementation of symbiotic human-robot-cooperation is bigger with respect to the manufacturing sector, due to the environmental conditions, which in some cases are not favorable to robots. On the other hand, the opportunities and potential advantages are also greater, as robots could replace human operators in repetitive, heavy tasks, by improving workers' health and safety. The present paper provides an example of the potential and opportunities of human-robot interaction and discusses how this approach can be included in a social innovation paradigm. Moreover, an example will be provided of an ongoing project funded by the Research Fund for Coal and Steel, "ROBOHARSH", which aims at implementing such approach in the steel industry, in order to develop a very sensitive task, i.e. the replacement of the refractory components of the ladle sliding gate.
Mobile robotic sensors for perimeter detection and tracking.
Clark, Justin; Fierro, Rafael
2007-02-01
Mobile robot/sensor networks have emerged as tools for environmental monitoring, search and rescue, exploration and mapping, evaluation of civil infrastructure, and military operations. These networks consist of many sensors each equipped with embedded processors, wireless communication, and motion capabilities. This paper describes a cooperative mobile robot network capable of detecting and tracking a perimeter defined by a certain substance (e.g., a chemical spill) in the environment. Specifically, the contributions of this paper are twofold: (i) a library of simple reactive motion control algorithms and (ii) a coordination mechanism for effectively carrying out perimeter-sensing missions. The decentralized nature of the methodology implemented could potentially allow the network to scale to many sensors and to reconfigure when adding/deleting sensors. Extensive simulation results and experiments verify the validity of the proposed cooperative control scheme.
Dai, Yanyan; Kim, YoonGu; Wee, SungGil; Lee, DongHa; Lee, SukGyu
2016-01-01
In this paper, the problem of object caging and transporting is considered for multiple mobile robots. With the consideration of minimizing the number of robots and decreasing the rotation of the object, the proper points are calculated and assigned to the multiple mobile robots to allow them to form a symmetric caging formation. The caging formation guarantees that all of the Euclidean distances between any two adjacent robots are smaller than the minimal width of the polygonal object so that the object cannot escape. In order to avoid collision among robots, the parameter of the robots radius is utilized to design the caging formation, and the A⁎ algorithm is used so that mobile robots can move to the proper points. In order to avoid obstacles, the robots and the object are regarded as a rigid body to apply artificial potential field method. The fuzzy sliding mode control method is applied for tracking control of the nonholonomic mobile robots. Finally, the simulation and experimental results show that multiple mobile robots are able to cage and transport the polygonal object to the goal position, avoiding obstacles. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Decentralized sensor fusion for Ubiquitous Networking Robotics in Urban Areas.
Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T J
2010-01-01
In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted.
Human-Robot Cooperation with Commands Embedded in Actions
NASA Astrophysics Data System (ADS)
Kobayashi, Kazuki; Yamada, Seiji
In this paper, we first propose a novel interaction model, CEA (Commands Embedded in Actions). It can explain the way how some existing systems reduce the work-load of their user. We next extend the CEA and build ECEA (Extended CEA) model. The ECEA enables robots to achieve more complicated tasks. On this extension, we employ ACS (Action Coding System) which can describe segmented human acts and clarifies the relationship between user's actions and robot's actions in a task. The ACS utilizes the CEA's strong point which enables a user to send a command to a robot by his/her natural action for the task. The instance of the ECEA led by using the ACS is a temporal extension which has the user keep a final state of a previous his/her action. We apply the temporal extension of the ECEA for a sweeping task. The high-level task, a cooperative task between the user and the robot can be realized. The robot with simple reactive behavior can sweep the region of under an object when the user picks up the object. In addition, we measure user's cognitive loads on the ECEA and a traditional method, DCM (Direct Commanding Method) in the sweeping task, and compare between them. The results show that the ECEA has a lower cognitive load than the DCM significantly.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Joint Venture To Perform Project Entitled Robotic Rehabilitation of Aging Water... Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et sect. (``the Act''), Joint [[Page 14191...
Interactive robots in experimental biology.
Krause, Jens; Winfield, Alan F T; Deneubourg, Jean-Louis
2011-07-01
Interactive robots have the potential to revolutionise the study of social behaviour because they provide several methodological advances. In interactions with live animals, the behaviour of robots can be standardised, morphology and behaviour can be decoupled (so that different morphologies and behavioural strategies can be combined), behaviour can be manipulated in complex interaction sequences and models of behaviour can be embodied by the robot and thereby be tested. Furthermore, robots can be used as demonstrators in experiments on social learning. As we discuss here, the opportunities that robots create for new experimental approaches have far-reaching consequences for research in fields such as mate choice, cooperation, social learning, personality studies and collective behaviour. Copyright © 2011 Elsevier Ltd. All rights reserved.
TROTER's (Tiny Robotic Operation Team Experiment): A new concept of space robots
NASA Technical Reports Server (NTRS)
Su, Renjeng
1990-01-01
In view of the future need of automation and robotics in space and the existing approaches to the problem, we proposed a new concept of robots for space construction. The new concept is based on the basic idea of decentralization. Decentralization occurs, on the one hand, in using teams of many cooperative robots for construction tasks. Redundancy and modular design are explored to achieve high reliability for team robotic operations. Reliability requirement on individual robots is greatly reduced. Another area of decentralization is manifested by the proposed control hierarchy which eventually includes humans in the loop. The control strategy is constrained by various time delays and calls for different levels of abstraction of the task dynamics. Such technology is needed for remote control of robots in an uncertain environment. Thus, concerns of human safety around robots are relaxed. This presentation also introduces the required technologies behind the new robotic concept.
Fukuda, Hiroyuki; Morishita, Takashi; Ogata, Toshiyasu; Saita, Kazuya; Hyakutake, Koichi; Watanabe, Junko; Shiota, Etsuji; Inoue, Tooru
2016-01-01
This article investigated the feasibility of a tailor-made neurorehabilitation approach using multiple types of hybrid assistive limb (HAL) robots for acute stroke patients. We investigated the clinical outcomes of patients who underwent rehabilitation using the HAL robots. The Brunnstrom stage, Barthel index (BI), and functional independence measure (FIM) were evaluated at baseline and when patients were transferred to a rehabilitation facility. Scores were compared between the multiple-robot rehabilitation and single-robot rehabilitation groups. Nine hemiplegic acute stroke patients (five men and four women; mean age 59.4 ± 12.5 years; four hemorrhagic stroke and five ischemic stroke) underwent rehabilitation using multiple types of HAL robots for 19.4 ± 12.5 days, and 14 patients (six men and eight women; mean age 63.2 ± 13.9 years; nine hemorrhagic stroke and five ischemic stroke) underwent rehabilitation using a single type of HAL robot for 14.9 ± 8.9 days. The multiple-robot rehabilitation group showed significantly better outcomes in the Brunnstrom stage of the upper extremity, BI, and FIM scores. To the best of the authors' knowledge, this is the first pilot study demonstrating the feasibility of rehabilitation using multiple exoskeleton robots. The tailor-made rehabilitation approach may be useful for the treatment of acute stroke.
Heterogeneous Multi-Robot Cooperation
1994-02-01
1992a) Maja Mataric. Designing emergent behaviors: From local interac- tions to collective intelligence. In J. Meyer, H. Roitblat , and S. Wilson, editors...1992] Lynne E. Parker. Adaptive action selection for cooperative agent teams. In Jean-Arcady Meyer, Herbert Roitblat . and Stewart Wilson. editors
NASA Technical Reports Server (NTRS)
Stroupe, Ashley W.; Okon, Avi; Robinson, Matthew; Huntsberger, Terry; Aghazarian, Hrand; Baumgartner, Eric
2004-01-01
Robotic Construction Crew (RCC) is a heterogeneous multi-robot system for autonomous acquisition, transport, and precision mating of components in construction tasks. RCC minimizes resources constrained in a space environment such as computation, power, communication and, sensing. A behavior-based architecture provides adaptability and robustness despite low computational requirements. RCC successfully performs several construction related tasks in an emulated outdoor environment despite high levels of uncertainty in motions and sensing. Quantitative results are provided for formation keeping in component transport, precision instrument placement, and construction tasks.
Mesofluidic controlled robotic or prosthetic finger
Lind, Randall F; Jansen, John F; Love, Lonnie J
2013-11-19
A mesofluidic powered robotic and/or prosthetic finger joint includes a first finger section having at least one mesofluidic actuator in fluid communication with a first actuator, a second mesofluidic actuator in fluid communication with a second actuator and a second prosthetic finger section pivotally connected to the first finger section by a joint pivot, wherein the first actuator pivotally cooperates with the second finger to provide a first mechanical advantage relative to the joint point and wherein the second actuator pivotally cooperates with the second finger section to provide a second mechanical advantage relative to the joint point.
Nebot, Patricio; Torres-Sospedra, Joaquín; Martínez, Rafael J
2011-01-01
The control architecture is one of the most important part of agricultural robotics and other robotic systems. Furthermore its importance increases when the system involves a group of heterogeneous robots that should cooperate to achieve a global goal. A new control architecture is introduced in this paper for groups of robots in charge of doing maintenance tasks in agricultural environments. Some important features such as scalability, code reuse, hardware abstraction and data distribution have been considered in the design of the new architecture. Furthermore, coordination and cooperation among the different elements in the system is allowed in the proposed control system. By integrating a network oriented device server Player, Java Agent Development Framework (JADE) and High Level Architecture (HLA), the previous concepts have been considered in the new architecture presented in this paper. HLA can be considered the most important part because it not only allows the data distribution and implicit communication among the parts of the system but also allows to simultaneously operate with simulated and real entities, thus allowing the use of hybrid systems in the development of applications.
Robust Behavior-Based Control for Distributed Multi-Robot Collection Tasks
2000-01-01
Department, University of Southern California, Los Angeles, CA 90089-0781 USA (e-mail: mataric @usc.edu) For a given task environment and set of robots...Press: Cambridge, Mas- sachusetts. [17] Richard T. Vaughan, Kasper Sty, Gaurav S. Sukhatme, and Maja J Mataric, \\Whistling in the dark : Cooperative
Manipulation strategies for massive space payloads
NASA Technical Reports Server (NTRS)
Book, Wayne J.
1991-01-01
Motion planning and control for the joints of flexible manipulators are discussed. Specific topics covered include control of a flexible braced manipulator, control of a small working robot on a large flexible manipulator to suppress vibrations, control strategies for ensuring cooperation among disparate manipulators, and motion planning for robots in free-fall.
Robotic air vehicle. Blending artificial intelligence with conventional software
NASA Technical Reports Server (NTRS)
Mcnulty, Christa; Graham, Joyce; Roewer, Paul
1987-01-01
The Robotic Air Vehicle (RAV) system is described. The program's objectives were to design, implement, and demonstrate cooperating expert systems for piloting robotic air vehicles. The development of this system merges conventional programming used in passive navigation with Artificial Intelligence techniques such as voice recognition, spatial reasoning, and expert systems. The individual components of the RAV system are discussed as well as their interactions with each other and how they operate as a system.
ROVs in a Bucket: Contagious, Experiential Learning by Building Inexpensive, Underwater Robots
2007-01-01
R., “Toward an applied theory of experiential learning ,” in C. Cooper (ed.) Theories of Group Process, London: John Wiley. (1975) [8] C. Beard, JP...ROVs in a Bucket” Contagious, Experiential Learning by Building Inexpensive, Underwater Robots Douglas R. Levin Krista Trono Christine...Contagious, Experiential Learning by Building Inexpensive, Underwater Robots 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S
Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas
Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M.; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T.J.
2010-01-01
In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted. PMID:22294927
Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay
2014-01-01
Background Several strategies have been proposed to improve patient motivation and exercise intensity during robot-aided stroke rehabilitation. One relatively unexplored possibility is two-player gameplay, allowing subjects to compete or cooperate with each other to achieve a common goal. In order to explore the potential of such games, we designed a two-player game played using two ARMin arm rehabilitation robots. Methods The game was an air-hockey task displayed on a computer monitor and controlled using shoulder movements in the ARMin robot. Three game modes were tested: single-player (competing against computer), competitive (competing against human), and cooperative (cooperating with human against computer). All modes were played by 30 unimpaired subjects and 8 impaired chronic stroke subjects. The subjects filled out the Intrinsic Motivation Inventory questionnaire after each game mode, as well as a final questionnaire about game preferences and their personality. Results Nearly all unimpaired subjects preferred playing the two-player game modes to the single-player one, as they enjoyed talking and interacting with another person. However, there were two distinct player groups: one liked the competitive mode but not the cooperative mode while the other liked the cooperative but not the competitive mode. Unimpaired subjects who liked the competitive mode also put significantly more effort into it than into the other modes. Results from impaired subjects were similar, with even impaired subjects over 60 years old enjoying competitive gameplay. The subjects’ personalities roughly predicted which mode they would prefer, which was especially evident in a poorly-matched impaired pair that preferred the single-player mode. Conclusions Results indicate great potential for two-player rehabilitation games, in the form of greater enjoyment as well as potentially more intensive exercise compared to single-player games. However, the right game type needs to be chosen for each subject depending on skill and personality, along with selecting an appropriate co-player. Further studies with patients that are currently enrolled in rehabilitation programs are recommended, and the subjective measures used in our study should be augmented with objective measures such as electromyography. PMID:24739255
Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay.
Novak, Domen; Nagle, Aniket; Keller, Urs; Riener, Robert
2014-04-16
Several strategies have been proposed to improve patient motivation and exercise intensity during robot-aided stroke rehabilitation. One relatively unexplored possibility is two-player gameplay, allowing subjects to compete or cooperate with each other to achieve a common goal. In order to explore the potential of such games, we designed a two-player game played using two ARMin arm rehabilitation robots. The game was an air-hockey task displayed on a computer monitor and controlled using shoulder movements in the ARMin robot. Three game modes were tested: single-player (competing against computer), competitive (competing against human), and cooperative (cooperating with human against computer). All modes were played by 30 unimpaired subjects and 8 impaired chronic stroke subjects. The subjects filled out the Intrinsic Motivation Inventory questionnaire after each game mode, as well as a final questionnaire about game preferences and their personality. Nearly all unimpaired subjects preferred playing the two-player game modes to the single-player one, as they enjoyed talking and interacting with another person. However, there were two distinct player groups: one liked the competitive mode but not the cooperative mode while the other liked the cooperative but not the competitive mode. Unimpaired subjects who liked the competitive mode also put significantly more effort into it than into the other modes. Results from impaired subjects were similar, with even impaired subjects over 60 years old enjoying competitive gameplay. The subjects' personalities roughly predicted which mode they would prefer, which was especially evident in a poorly-matched impaired pair that preferred the single-player mode. Results indicate great potential for two-player rehabilitation games, in the form of greater enjoyment as well as potentially more intensive exercise compared to single-player games. However, the right game type needs to be chosen for each subject depending on skill and personality, along with selecting an appropriate co-player. Further studies with patients that are currently enrolled in rehabilitation programs are recommended, and the subjective measures used in our study should be augmented with objective measures such as electromyography.
Interaction dynamics of multiple autonomous mobile robots in bounded spatial domains
NASA Technical Reports Server (NTRS)
Wang, P. K. C.
1989-01-01
A general navigation strategy for multiple autonomous robots in a bounded domain is developed analytically. Each robot is modeled as a spherical particle (i.e., an effective spatial domain about the center of mass); its interactions with other robots or with obstacles and domain boundaries are described in terms of the classical many-body problem; and a collision-avoidance strategy is derived and combined with homing, robot-robot, and robot-obstacle collision-avoidance strategies. Results from homing simulations involving (1) a single robot in a circular domain, (2) two robots in a circular domain, and (3) one robot in a domain with an obstacle are presented in graphs and briefly characterized.
Robot-Beacon Distributed Range-Only SLAM for Resource-Constrained Operation
Torres-González, Arturo; Martínez-de Dios, Jose Ramiro; Ollero, Anibal
2017-01-01
This work deals with robot-sensor network cooperation where sensor nodes (beacons) are used as landmarks for Range-Only (RO) Simultaneous Localization and Mapping (SLAM). Most existing RO-SLAM techniques consider beacons as passive devices disregarding the sensing, computational and communication capabilities with which they are actually endowed. SLAM is a resource-demanding task. Besides the technological constraints of the robot and beacons, many applications impose further resource consumption limitations. This paper presents a scalable distributed RO-SLAM scheme for resource-constrained operation. It is capable of exploiting robot-beacon cooperation in order to improve SLAM accuracy while meeting a given resource consumption bound expressed as the maximum number of measurements that are integrated in SLAM per iteration. The proposed scheme combines a Sparse Extended Information Filter (SEIF) SLAM method, in which each beacon gathers and integrates robot-beacon and inter-beacon measurements, and a distributed information-driven measurement allocation tool that dynamically selects the measurements that are integrated in SLAM, balancing uncertainty improvement and resource consumption. The scheme adopts a robot-beacon distributed approach in which each beacon participates in the selection, gathering and integration in SLAM of robot-beacon and inter-beacon measurements, resulting in significant estimation accuracies, resource-consumption efficiency and scalability. It has been integrated in an octorotor Unmanned Aerial System (UAS) and evaluated in 3D SLAM outdoor experiments. The experimental results obtained show its performance and robustness and evidence its advantages over existing methods. PMID:28425946
Robot-Beacon Distributed Range-Only SLAM for Resource-Constrained Operation.
Torres-González, Arturo; Martínez-de Dios, Jose Ramiro; Ollero, Anibal
2017-04-20
This work deals with robot-sensor network cooperation where sensor nodes (beacons) are used as landmarks for Range-Only (RO) Simultaneous Localization and Mapping (SLAM). Most existing RO-SLAM techniques consider beacons as passive devices disregarding the sensing, computational and communication capabilities with which they are actually endowed. SLAM is a resource-demanding task. Besides the technological constraints of the robot and beacons, many applications impose further resource consumption limitations. This paper presents a scalable distributed RO-SLAM scheme for resource-constrained operation. It is capable of exploiting robot-beacon cooperation in order to improve SLAM accuracy while meeting a given resource consumption bound expressed as the maximum number of measurements that are integrated in SLAM per iteration. The proposed scheme combines a Sparse Extended Information Filter (SEIF) SLAM method, in which each beacon gathers and integrates robot-beacon and inter-beacon measurements, and a distributed information-driven measurement allocation tool that dynamically selects the measurements that are integrated in SLAM, balancing uncertainty improvement and resource consumption. The scheme adopts a robot-beacon distributed approach in which each beacon participates in the selection, gathering and integration in SLAM of robot-beacon and inter-beacon measurements, resulting in significant estimation accuracies, resource-consumption efficiency and scalability. It has been integrated in an octorotor Unmanned Aerial System (UAS) and evaluated in 3D SLAM outdoor experiments. The experimental results obtained show its performance and robustness and evidence its advantages over existing methods.
Adapting sensory data for multiple robots performing spill cleanup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storjohann, K.; Saltzen, E.
1990-09-01
This paper describes a possible method of converting a single performing robot algorithm into a multiple performing robot algorithm without the need to modify previously written codes. The algorithm to be converted involves spill detection and clean up by the HERMIES-III mobile robot. In order to achieve the goal of multiple performing robots with this algorithm, two steps are taken. First, the task is formally divided into two sub-tasks, spill detection and spill clean-up, the former of which is allocated to the added performing robot, HERMIES-IIB. Second, a inverse perspective mapping, is applied to the data acquired by the newmore » performing robot (HERMIES-IIB), allowing the data to be processed by the previously written algorithm without re-writing the code. 6 refs., 4 figs.« less
Controlling multiple security robots in a warehouse environment
NASA Technical Reports Server (NTRS)
Everett, H. R.; Gilbreath, G. A.; Heath-Pastore, T. A.; Laird, R. T.
1994-01-01
The Naval Command Control and Ocean Surveillance Center (NCCOSC) has developed an architecture to provide coordinated control of multiple autonomous vehicles from a single host console. The multiple robot host architecture (MRHA) is a distributed multiprocessing system that can be expanded to accommodate as many as 32 robots. The initial application will employ eight Cybermotion K2A Navmaster robots configured as remote security platforms in support of the Mobile Detection Assessment and Response System (MDARS) Program. This paper discusses developmental testing of the MRHA in an operational warehouse environment, with two actual and four simulated robotic platforms.
Microgravity, Mesh-Crawling Legged Robots
NASA Technical Reports Server (NTRS)
Behar, Alberto; Marzwell, Neville; Matthews, Jaret; Richardson, Krandalyn; Wall, Jonathan; Poole, Michael; Foor, David; Rodgers, Damian
2008-01-01
The design, fabrication, and microgravity flight-testing are part of a continuing development of palm-sized mobile robots that resemble spiders (except that they have six legs apiece, whereas a spider has eight legs). Denoted SpiderBots (see figure), they are prototypes of proposed product line of relatively inexpensive walking robots that could be deployed in large numbers to function cooperatively in construction, repair, exploration, search, and rescue activities in connection with exploration of outer space and remote planets.
Robot Control Based On Spatial-Operator Algebra
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan
1992-01-01
Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily.
NASA Technical Reports Server (NTRS)
Lew, Jae Young; Book, Wayne J.
1991-01-01
Remote handling in nuclear waste management requires a robotic system with precise motion as well as a large workspace. The concept of a small arm mounted on the end of a large arm may satisfy such needs. However, the performance of such a serial configuration lacks payload capacity which is a crucial factor for handling a massive object. Also, this configuration induces more flexibility on the structure. To overcome these problems, the topology of bracing the tip of the small arm (not the large arm) and having an end effector in the middle of the chain is proposed in this paper. Also, control of these cooperating disparate manipulators is accomplished in computer simulations. Thus, this robotic system can have the accuracy of the small arm, and at the same time, it can have the payload capacity and large workspace of the large arm.
Exploration of Planetary Terrains with a Legged Robot as a Scout Adjunct to a Rover
NASA Technical Reports Server (NTRS)
Colombano, Silvano; Kirchner, Frank; Spenneberg, Dirk; Hanratty, James
2004-01-01
The Scorpion robot is an innovative, biologically inspired 8-legged walking robot. It currently runs a novel approach to control which utilizes a central pattern generator (CPG) and local reflex action for each leg. From this starting point we are proposing to both extend the system's individual capabilities and its capacity to function as a "scout", cooperating with a larger wheeled rover. For this purpose we propose to develop a distributed system architecture that extends the system's capabilities both in the direction of high level planning and execution in collaboration with a rover, and in the direction of force-feedback based low level behaviors that will greatly enhance its ability to walk and climb in rough varied terrains. The final test of this improved ability will be a rappelling experiment where the Scorpion explores a steep cliff side in cooperation with a rover that serves as both anchor and planner/executive.
An integrated control scheme for space robot after capturing non-cooperative target
NASA Astrophysics Data System (ADS)
Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich
2018-06-01
How to identify the mass properties and eliminate the unknown angular momentum of space robotic system after capturing a non-cooperative target is of great challenge. This paper focuses on designing an integrated control framework which includes detumbling strategy, coordination control and parameter identification. Firstly, inverted and forward chain approaches are synthesized for space robot to obtain dynamic equation in operational space. Secondly, a detumbling strategy is introduced using elementary functions with normalized time, while the imposed end-effector constraints are considered. Next, a coordination control scheme for stabilizing both base and end-effector based on impedance control is implemented with the target's parameter uncertainty. With the measurements of the forces and torques exerted on the target, its mass properties are estimated during the detumbling process accordingly. Simulation results are presented using a 7 degree-of-freedom kinematically redundant space manipulator, which verifies the performance and effectiveness of the proposed method.
Rice-obot 1: An intelligent autonomous mobile robot
NASA Technical Reports Server (NTRS)
Defigueiredo, R.; Ciscon, L.; Berberian, D.
1989-01-01
The Rice-obot I is the first in a series of Intelligent Autonomous Mobile Robots (IAMRs) being developed at Rice University's Cooperative Intelligent Mobile Robots (CIMR) lab. The Rice-obot I is mainly designed to be a testbed for various robotic and AI techniques, and a platform for developing intelligent control systems for exploratory robots. Researchers present the need for a generalized environment capable of combining all of the control, sensory and knowledge systems of an IAMR. They introduce Lisp-Nodes as such a system, and develop the basic concepts of nodes, messages and classes. Furthermore, they show how the control system of the Rice-obot I is implemented as sub-systems in Lisp-Nodes.
Cooperative Three-Robot System for Traversing Steep Slopes
NASA Technical Reports Server (NTRS)
Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael
2009-01-01
Teamed Robots for Exploration and Science in Steep Areas (TRESSA) is a system of three autonomous mobile robots that cooperate with each other to enable scientific exploration of steep terrain (slope angles up to 90 ). Originally intended for use in exploring steep slopes on Mars that are not accessible to lone wheeled robots (Mars Exploration Rovers), TRESSA and systems like TRESSA could also be used on Earth for performing rescues on steep slopes and for exploring steep slopes that are too remote or too dangerous to be explored by humans. TRESSA is modeled on safe human climbing of steep slopes, two key features of which are teamwork and safety tethers. Two of the autonomous robots, denoted Anchorbots, remain at the top of a slope; the third robot, denoted the Cliffbot, traverses the slope. The Cliffbot drives over the cliff edge supported by tethers, which are payed out from the Anchorbots (see figure). The Anchorbots autonomously control the tension in the tethers to counter the gravitational force on the Cliffbot. The tethers are payed out and reeled in as needed, keeping the body of the Cliffbot oriented approximately parallel to the local terrain surface and preventing wheel slip by controlling the speed of descent or ascent, thereby enabling the Cliffbot to drive freely up, down, or across the slope. Due to the interactive nature of the three-robot system, the robots must be very tightly coupled. To provide for this tight coupling, the TRESSA software architecture is built on a combination of (1) the multi-robot layered behavior-coordination architecture reported in "An Architecture for Controlling Multiple Robots" (NPO-30345), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 65, and (2) the real-time control architecture reported in "Robot Electronics Architecture" (NPO-41784), NASA Tech Briefs, Vol. 32, No. 1 (January 2008), page 28. The combination architecture makes it possible to keep the three robots synchronized and coordinated, to use data from all three robots for decision- making at each step, and to control the physical connections among the robots. In addition, TRESSA (as in prior systems that have utilized this architecture) , incorporates a capability for deterministic response to unanticipated situations from yet another architecture reported in Control Architecture for Robotic Agent Command and Sensing (NPO-43635), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 40. Tether tension control is a major consideration in the design and operation of TRESSA. Tension is measured by force sensors connected to each tether at the Cliffbot. The direction of the tension (both azimuth and elevation) is also measured. The tension controller combines a controller to counter gravitational force and an optional velocity controller that anticipates the motion of the Cliffbot. The gravity controller estimates the slope angle from the inclination of the tethers. This angle and the weight of the Cliffbot determine the total tension needed to counteract the weight of the Cliffbot. The total needed tension is broken into components for each Anchorbot. The difference between this needed tension and the tension measured at the Cliffbot constitutes an error signal that is provided to the gravity controller. The velocity controller computes the tether speed needed to produce the desired motion of the Cliffbot. Another major consideration in the design and operation of TRESSA is detection of faults. Each robot in the TRESSA system monitors its own performance and the performance of its teammates in order to detect any system faults and prevent unsafe conditions. At startup, communication links are tested and if any robot is not communicating, the system refuses to execute any motion commands. Prior to motion, the Anchorbots attempt to set tensions in the tethers at optimal levels for counteracting the weight of the Cliffbot; if either Anchorbot fails to reach its optimal tension level within a specified time, it sends message to the other robots and the commanded motion is not executed. If any mechanical error (e.g., stalling of a motor) is detected, the affected robot sends a message triggering stoppage of the current motion. Lastly, messages are passed among the robots at each time step (10 Hz) to share sensor information during operations. If messages from any robot cease for more than an allowable time interval, the other robots detect the communication loss and initiate stoppage.
Portable control device for networked mobile robots
Feddema, John T.; Byrne, Raymond H.; Bryan, Jon R.; Harrington, John J.; Gladwell, T. Scott
2002-01-01
A handheld control device provides a way for controlling one or multiple mobile robotic vehicles by incorporating a handheld computer with a radio board. The device and software use a personal data organizer as the handheld computer with an additional microprocessor and communication device on a radio board for use in controlling one robot or multiple networked robots.
Towards Assessing the Human Trajectory Planning Horizon
Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk
2016-01-01
Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models. PMID:27936015
Towards Assessing the Human Trajectory Planning Horizon.
Carton, Daniel; Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk
2016-01-01
Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models.
Analyzing the multiple-target-multiple-agent scenario using optimal assignment algorithms
NASA Astrophysics Data System (ADS)
Kwok, Kwan S.; Driessen, Brian J.; Phillips, Cynthia A.; Tovey, Craig A.
1997-09-01
This work considers the problem of maximum utilization of a set of mobile robots with limited sensor-range capabilities and limited travel distances. The robots are initially in random positions. A set of robots properly guards or covers a region if every point within the region is within the effective sensor range of at least one vehicle. We wish to move the vehicles into surveillance positions so as to guard or cover a region, while minimizing the maximum distance traveled by any vehicle. This problem can be formulated as an assignment problem, in which we must optimally decide which robot to assign to which slot of a desired matrix of grid points. The cost function is the maximum distance traveled by any robot. Assignment problems can be solved very efficiently. Solution times for one hundred robots took only seconds on a silicon graphics crimson workstation. The initial positions of all the robots can be sampled by a central base station and their newly assigned positions communicated back to the robots. Alternatively, the robots can establish their own coordinate system with the origin fixed at one of the robots and orientation determined by the compass bearing of another robot relative to this robot. This paper presents example solutions to the multiple-target-multiple-agent scenario using a matching algorithm. Two separate cases with one hundred agents in each were analyzed using this method. We have found these mobile robot problems to be a very interesting application of network optimization methods, and we expect this to be a fruitful area for future research.
Gesteme-free context-aware adaptation of robot behavior in human-robot cooperation.
Nessi, Federico; Beretta, Elisa; Gatti, Cecilia; Ferrigno, Giancarlo; De Momi, Elena
2016-11-01
Cooperative robotics is receiving greater acceptance because the typical advantages provided by manipulators are combined with an intuitive usage. In particular, hands-on robotics may benefit from the adaptation of the assistant behavior with respect to the activity currently performed by the user. A fast and reliable classification of human activities is required, as well as strategies to smoothly modify the control of the manipulator. In this scenario, gesteme-based motion classification is inadequate because it needs the observation of a wide signal percentage and the definition of a rich vocabulary. In this work, a system able to recognize the user's current activity without a vocabulary of gestemes, and to accordingly adapt the manipulator's dynamic behavior is presented. An underlying stochastic model fits variations in the user's guidance forces and the resulting trajectories of the manipulator's end-effector with a set of Gaussian distribution. The high-level switching between these distributions is captured with hidden Markov models. The dynamic of the KUKA light-weight robot, a torque-controlled manipulator, is modified with respect to the classified activity using sigmoidal-shaped functions. The presented system is validated over a pool of 12 näive users in a scenario that addresses surgical targeting tasks on soft tissue. The robot's assistance is adapted in order to obtain a stiff behavior during activities that require critical accuracy constraint, and higher compliance during wide movements. Both the ability to provide the correct classification at each moment (sample accuracy) and the capability of correctly identify the correct sequence of activity (sequence accuracy) were evaluated. The proposed classifier is fast and accurate in all the experiments conducted (80% sample accuracy after the observation of ∼450ms of signal). Moreover, the ability of recognize the correct sequence of activities, without unwanted transitions is guaranteed (sequence accuracy ∼90% when computed far away from user desired transitions). Finally, the proposed activity-based adaptation of the robot's dynamic does not lead to a not smooth behavior (high smoothness, i.e. normalized jerk score <0.01). The provided system is able to dynamic assist the operator during cooperation in the presented scenario. Copyright © 2016 Elsevier B.V. All rights reserved.
Interaction dynamics of multiple mobile robots with simple navigation strategies
NASA Technical Reports Server (NTRS)
Wang, P. K. C.
1989-01-01
The global dynamic behavior of multiple interacting autonomous mobile robots with simple navigation strategies is studied. Here, the effective spatial domain of each robot is taken to be a closed ball about its mass center. It is assumed that each robot has a specified cone of visibility such that interaction with other robots takes place only when they enter its visibility cone. Based on a particle model for the robots, various simple homing and collision-avoidance navigation strategies are derived. Then, an analysis of the dynamical behavior of the interacting robots in unbounded spatial domains is made. The article concludes with the results of computer simulations studies of two or more interacting robots.
ERIC Educational Resources Information Center
Luzerne County Community Coll., Nanticoke, PA.
A project was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in cooperation with area vocational-technical schools, the first year of a competency-based curriculum in automated systems/robotics. Existing programs were reviewed by the task force and a list of sample competencies was developed and sent to area…
Decentralized Planning for Autonomous Agents Cooperating in Complex Missions
2010-09-01
Consensus - based decentralized auctions for robust task allocation ," IEEE Transactions on Robotics...Robotics, vol. 24, pp. 209-222, 2006. [44] H.-L. Choi, L. Brunet, and J. P. How, " Consensus - based decentralized auctions for robust task allocation ...2003. 123 [31] L. Brunet, " Consensus - Based Auctions for Decentralized Task Assignment," Master’s thesis, Dept.
Motion and force control for multiple cooperative manipulators
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz, Kenneth
1989-01-01
The motion and force control of multiple robot arms manipulating a commonly held object is addressed. A general control paradigm that decouples the motion and force control problems is introduced. For motion control, there are three natural choices: (1) joint torques, (2) arm-tip force vectors, and (3) the acceleration of a generalized coordinate. Choice (1) allows a class of relatively model-independent control laws by exploiting the Hamiltonian structure of the open-loop system; (2) and (3) require the full model information but produce simpler problems. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, the allocation of the desired end-effector control force to the joint actuators can be optimized; otherwise the internal force can be controlled about some set point. It is shown that effective force regulation can be achieved even if little model information is available.
Automated platform for designing multiple robot work cells
NASA Astrophysics Data System (ADS)
Osman, N. S.; Rahman, M. A. A.; Rahman, A. A. Abdul; Kamsani, S. H.; Bali Mohamad, B. M.; Mohamad, E.; Zaini, Z. A.; Rahman, M. F. Ab; Mohamad Hatta, M. N. H.
2017-06-01
Designing the multiple robot work cells is very knowledge-intensive, intricate, and time-consuming process. This paper elaborates the development process of a computer-aided design program for generating the multiple robot work cells which offer a user-friendly interface. The primary purpose of this work is to provide a fast and easy platform for less cost and human involvement with minimum trial and errors adjustments. The automated platform is constructed based on the variant-shaped configuration concept with its mathematical model. A robot work cell layout, system components, and construction procedure of the automated platform are discussed in this paper where integration of these items will be able to automatically provide the optimum robot work cell design according to the information set by the user. This system is implemented on top of CATIA V5 software and utilises its Part Design, Assembly Design, and Macro tool. The current outcomes of this work provide a basis for future investigation in developing a flexible configuration system for the multiple robot work cells.
Lunar Exploration and Science in ESA
NASA Astrophysics Data System (ADS)
Carpenter, James; Houdou, Bérengère; Fisackerly, Richard; De Rosa, Diego; Patti, Bernardo; Schiemann, Jens; Hufenbach, Bernhard; Foing, Bernard
2015-04-01
ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the Russian led science payload, focusing on developing an characterising the resource opportunities offered at the lunar surface. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. In the frame of a broader future international programme under discussion through the International Space Exploration Coordination Group (ISECG) future missions are under investigation that would provide access to the lunar surface through international cooperation and human-robotic partnerships.
Physics-based approach to chemical source localization using mobile robotic swarms
NASA Astrophysics Data System (ADS)
Zarzhitsky, Dimitri
2008-07-01
Recently, distributed computation has assumed a dominant role in the fields of artificial intelligence and robotics. To improve system performance, engineers are combining multiple cooperating robots into cohesive collectives called swarms. This thesis illustrates the application of basic principles of physicomimetics, or physics-based design, to swarm robotic systems. Such principles include decentralized control, short-range sensing and low power consumption. We show how the application of these principles to robotic swarms results in highly scalable, robust, and adaptive multi-robot systems. The emergence of these valuable properties can be predicted with the help of well-developed theoretical methods. In this research effort, we have designed and constructed a distributed physicomimetics system for locating sources of airborne chemical plumes. This task, called chemical plume tracing (CPT), is receiving a great deal of attention due to persistent homeland security threats. For this thesis, we have created a novel CPT algorithm called fluxotaxis that is based on theoretical principles of fluid dynamics. Analytically, we show that fluxotaxis combines the essence, as well as the strengths, of the two most popular biologically-inspired CPT methods-- chemotaxis and anemotaxis. The chemotaxis strategy consists of navigating in the direction of the chemical density gradient within the plume, while the anemotaxis approach is based on an upwind traversal of the chemical cloud. Rigorous and extensive experimental evaluations have been performed in simulated chemical plume environments. Using a suite of performance metrics that capture the salient aspects of swarm-specific behavior, we have been able to evaluate and compare the three CPT algorithms. We demonstrate the improved performance of our fluxotaxis approach over both chemotaxis and anemotaxis in these realistic simulation environments, which include obstacles. To test our understanding of CPT on actual hardware, we have implemented chemotaxis on three laboratory-scale robots. Chemotaxis requires only chemical sensors; eventually, when small-scale anemometers capable of reliably detecting low air velocities become available, we plan to implement anemotaxis and fluxotaxis on the robots as well. Our chemotaxis robots use the physicomimetics control algorithm to arrange the team of vehicles into a triangular formation, which then traces an ethanol vapor plume to its source emitter. In agreement with our theoretical predictions, the swarm implementation shows a consistent gain in CPT performance as compared to a single-robot solution.
Advanced wireless mobile collaborative sensing network for tactical and strategic missions
NASA Astrophysics Data System (ADS)
Xu, Hao
2017-05-01
In this paper, an advanced wireless mobile collaborative sensing network will be developed. Through properly combining wireless sensor network, emerging mobile robots and multi-antenna sensing/communication techniques, we could demonstrate superiority of developed sensing network. To be concrete, heterogeneous mobile robots including unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) are equipped with multi-model sensors and wireless transceiver antennas. Through real-time collaborative formation control, multiple mobile robots can team the best formation that can provide most accurate sensing results. Also, formatting multiple mobile robots can also construct a multiple-input multiple-output (MIMO) communication system that can provide a reliable and high performance communication network.
Integration of disabled people in an automated work process
NASA Astrophysics Data System (ADS)
Jalba, C. K.; Muminovic, A.; Epple, S.; Barz, C.; Nasui, V.
2017-05-01
Automation processes enter more and more into all areas of life and production. Especially people with disabilities can hardly keep step with this change. In sheltered workshops in Germany people with physical and mental disabilities get help with much dedication, to be integrated into the work processes. This work shows that cooperation between disabled people and industrial robots by means of industrial image processing can successfully result in the production of highly complex products. Here is described how high-pressure hydraulic pumps are assembled by people with disabilities in cooperation with industrial robots in a sheltered workshop. After the assembly process, the pumps are checked for leaks at very high pressures in a completely automated process.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
..., in the eighth line from the bottom of the page, ``Amstin, TX'' should read ``Austin, TX''. 4. On the... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and... full paragraph, in the second and third lines, ``activity of this group research additional written...
NASA Technical Reports Server (NTRS)
Bradley, Arthur; Dubowsky, Steven; Quinn, Roger; Marzwell, Neville
2005-01-01
Robots that operate independently of one another will not be adequate to accomplish the future exploration tasks of long-distance autonomous navigation, habitat construction, resource discovery, and material handling. Such activities will require that systems widely share information, plan and divide complex tasks, share common resources, and physically cooperate to manipulate objects. Recognizing the need for interoperable robots to accomplish the new exploration initiative, NASA s Office of Exploration Systems Research & Technology recently funded the development of the Joint Technical Architecture for Robotic Systems (JTARS). JTARS charter is to identify the interface standards necessary to achieve interoperability among space robots. A JTARS working group (JTARS-WG) has been established comprising recognized leaders in the field of space robotics including representatives from seven NASA centers along with academia and private industry. The working group s early accomplishments include addressing key issues required for interoperability, defining which systems are within the project s scope, and framing the JTARS manuals around classes of robotic systems.
Emken, Jeremy L; Benitez, Raul; Reinkensmeyer, David J
2007-03-28
A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. The assist-as-needed algorithm proposed here can limit error during the learning of a dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the ongoing progression of movement error. This type of algorithm is well suited for helping people learn dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful for robot-assisted movement training of walking or reaching following neurologic injury.
NASA Astrophysics Data System (ADS)
Ramazani, Saba; Jackson, Delvin L.; Selmic, Rastko R.
2013-05-01
In search and surveillance operations, deploying a team of mobile agents provides a robust solution that has multiple advantages over using a single agent in efficiency and minimizing exploration time. This paper addresses the challenge of identifying a target in a given environment when using a team of mobile agents by proposing a novel method of mapping and movement of agent teams in a cooperative manner. The approach consists of two parts. First, the region is partitioned into a hexagonal beehive structure in order to provide equidistant movements in every direction and to allow for more natural and flexible environment mapping. Additionally, in search environments that are partitioned into hexagons, mobile agents have an efficient travel path while performing searches due to this partitioning approach. Second, we use a team of mobile agents that move in a cooperative manner and utilize the Tabu Random algorithm to search for the target. Due to the ever-increasing use of robotics and Unmanned Aerial Vehicle (UAV) platforms, the field of cooperative multi-agent search has developed many applications recently that would benefit from the use of the approach presented in this work, including: search and rescue operations, surveillance, data collection, and border patrol. In this paper, the increased efficiency of the Tabu Random Search algorithm method in combination with hexagonal partitioning is simulated, analyzed, and advantages of this approach are presented and discussed.
Thubagere, Anupama J; Li, Wei; Johnson, Robert F; Chen, Zibo; Doroudi, Shayan; Lee, Yae Lim; Izatt, Gregory; Wittman, Sarah; Srinivas, Niranjan; Woods, Damien; Winfree, Erik; Qian, Lulu
2017-09-15
Two critical challenges in the design and synthesis of molecular robots are modularity and algorithm simplicity. We demonstrate three modular building blocks for a DNA robot that performs cargo sorting at the molecular level. A simple algorithm encoding recognition between cargos and their destinations allows for a simple robot design: a single-stranded DNA with one leg and two foot domains for walking, and one arm and one hand domain for picking up and dropping off cargos. The robot explores a two-dimensional testing ground on the surface of DNA origami, picks up multiple cargos of two types that are initially at unordered locations, and delivers them to specified destinations until all molecules are sorted into two distinct piles. The robot is designed to perform a random walk without any energy supply. Exploiting this feature, a single robot can repeatedly sort multiple cargos. Localization on DNA origami allows for distinct cargo-sorting tasks to take place simultaneously in one test tube or for multiple robots to collectively perform the same task. Copyright © 2017, American Association for the Advancement of Science.
Robot friendly probe and socket assembly
NASA Technical Reports Server (NTRS)
Nyberg, Karen L. (Inventor)
1994-01-01
A probe and socket assembly for serving as a mechanical interface between structures is presented. The assembly comprises a socket having a housing adapted for connection to a first supporting structure and a probe which is readily connectable to a second structure and is designed to be easily grappled and manipulated by a robotic device for insertion and coupling with the socket. Cooperable automatic locking means are provided on the probe shaft and socket housing for automatically locking the probe in the socket when the probe is inserted a predetermined distance. A second cooperable locking means on the probe shaft and housing are adapted for actuation after the probe has been inserted the predetermined distance. Actuation means mounted on the probe and responsive to the grip of the probe handle by a gripping device, such as a robot for conditioning the probe for insertion and are also responsive to release of the grip of the probe handle to actuate the second locking means to provide a hard lock of the probe in the socket.
Coordination of multiple robot arms
NASA Technical Reports Server (NTRS)
Barker, L. K.; Soloway, D.
1987-01-01
Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself.
Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search
Song, Kai; Liu, Qi; Wang, Qi
2011-01-01
Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE) and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN). Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability. PMID:22319401
Kwon, Ji-Wook; Kim, Jin Hyo; Seo, Jiwon
2015-01-01
This paper proposes a Multiple Leader Candidate (MLC) structure and a Competitive Position Allocation (CPA) algorithm which can be applicable for various applications including environmental sensing. Unlike previous formation structures such as virtual-leader and actual-leader structures with position allocation including a rigid allocation and an optimization based allocation, the formation employing the proposed MLC structure and CPA algorithm is robust against the fault (or disappearance) of the member robots and reduces the entire cost. In the MLC structure, a leader of the entire system is chosen among leader candidate robots. The CPA algorithm is the decentralized position allocation algorithm that assigns the robots to the vertex of the formation via the competition of the adjacent robots. The numerical simulations and experimental results are included to show the feasibility and the performance of the multiple robot system employing the proposed MLC structure and the CPA algorithm. PMID:25954956
Robotics and artificial intelligence across the Atlantic and Pacific
NASA Astrophysics Data System (ADS)
Schlussel, K.
1983-08-01
Attention is given to development efforts outside the U.S. in the fields of robotics and artificial intelligence, including international cooperative efforts, and Japanese, Western European, and Eastern European programs. It is noted that the Japan Industrial Robot Association, together with Japan's Ministry of International Trade and Industry, are promoting robotics developments through the exchange of specifications data among researchers and the arrangement of interest-free loans. Private research in Japan has concentrated on problems relating to applications, such as increased speed, miniaturization, digital control, weight reduction, and modularization. Western Europe has been comparatively slow in initiating research, but possesses an industry leader in a Swedish firm. The 25th Party Congress of the Communist Party of the Soviet Union committed itself to the mass production of industrial robots in 1976.
Velocity-curvature patterns limit human-robot physical interaction
Maurice, Pauline; Huber, Meghan E.; Hogan, Neville; Sternad, Dagmar
2018-01-01
Physical human-robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human-robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and non-biological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (two-thirds power law) or non-biological velocity profiles. Participants were instructed to minimize the force applied on the robot end-effector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a non-biological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human-robot physical collaboration. PMID:29744380
Velocity-curvature patterns limit human-robot physical interaction.
Maurice, Pauline; Huber, Meghan E; Hogan, Neville; Sternad, Dagmar
2018-01-01
Physical human-robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human-robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and non-biological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (two-thirds power law) or non-biological velocity profiles. Participants were instructed to minimize the force applied on the robot end-effector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a non-biological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human-robot physical collaboration.
Ahmad, Faisul Arif; Ramli, Abd Rahman; Samsudin, Khairulmizam; Hashim, Shaiful Jahari
2014-01-01
Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore and identify the power station for battery recharging. The mobile robots will share the location information of the power station with each other. The result showed that mobile robots consume less energy and less time when they are cooperating with each other for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work.
Ahmad, Faisul Arif; Ramli, Abd Rahman; Samsudin, Khairulmizam; Hashim, Shaiful Jahari
2014-01-01
Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore and identify the power station for battery recharging. The mobile robots will share the location information of the power station with each other. The result showed that mobile robots consume less energy and less time when they are cooperating with each other for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work. PMID:24949491
Investigating Models of Social Development Using a Humanoid Robot
1998-01-01
robot interaction and cooper- and neural models of spinal motor neurons (Williamson ation (Takanishi, Hirano & Sato 1998, Morita, Shibuya 1996...etiology and behavioral manifestations of pervasive de- Individuals with autism tend to have normal sensory velopmental disorders such as autism and...grasp the implications of this information. Wlile interested in joint attention both as an explanation the deficits of autism certainly cover many other
Making Robot Planes Useful for Scientific Investigation of Earth
NASA Technical Reports Server (NTRS)
Jennison, Chris
2006-01-01
This viewgraph slides presentation reviews the program to use unmanned aerial vehicles to gather information to study the Earth, the changes to the climate, and to protect the Earth. Several robot planes are shown, and cooperative programs with other agencies of the U.S. Government are highlighted. Including one with the United States Forest Service, that is planned to assist in locating fires
Standardization of Assistive Products with Robotic Technology - From a Perspective of ISO/TC173.
Inoue, Takenobu; Yamauchi, Shigeru; Westman, Karl-Erik
2017-01-01
ISO/TC173 is a technical committee, in charge of international standardization of assistive products (APs). Robotic technology (RT) is currently an important topic in this field. APs with RT will be included in future revisions of the scope of TC173. Cooperation between the AP and RT space is essential to reach suitable solutions of future standardization.
Moore, Susan M; Thomas, Maribeth; Woo, Savio L-Y; Gabriel, Mary T; Kilger, Robert; Debski, Richard E
2006-01-01
The objective of this study was to develop a novel method to more accurately reproduce previously recorded 6-DOF kinematics of the tibia with respect to the femur using robotic technology. Furthermore, the effect of performing only a single or multiple registrations and the effect of robot joint configuration were investigated. A single registration consisted of registering the tibia and femur with respect to the robot at full extension and reproducing all kinematics while multiple registrations consisted of registering the bones at each flexion angle and reproducing only the kinematics of the corresponding flexion angle. Kinematics of the knee in response to an anterior (134 N) and combined internal/external (+/-10 N m) and varus/valgus (+/-5 N m) loads were collected at 0 degrees , 15 degrees , 30 degrees , 60 degrees , and 90 degrees of flexion. A six axes, serial-articulated robotic manipulator (PUMA Model 762) was calibrated and the working volume was reduced to improve the robot's accuracy. The effect of the robot joint configuration was determined by performing single and multiple registrations for three selected configurations. For each robot joint configuration, the accuracy in position of the reproduced kinematics improved after multiple registrations (0.7+/-0.3, 1.2+/-0.5, and 0.9+/-0.2 mm, respectively) when compared to only a single registration (1.3+/-0.9, 2.0+/-1.0, and 1.5+/-0.7 mm, respectively) (p<0.05). The accuracy in position of each robot joint configuration was unique as significant differences were detected between each of the configurations. These data demonstrate that the number of registrations and the robot joint configuration both affect the accuracy of the reproduced kinematics. Therefore, when using robotic technology to reproduce previously recorded kinematics, it may be necessary to perform these analyses for each individual robotic system and for each diarthrodial joint, as different joints will require the robot to be placed in different robot joint configurations.
Multilateral Telecoordinated Control of Multiple Robots With Uncertain Kinematics.
Zhai, Di-Hua; Xia, Yuanqing
2017-06-06
This paper addresses the telecoordinated control of multiple robots in the simultaneous presence of asymmetric time-varying delays, nonpassive external forces, and uncertain kinematics/dynamics. To achieve the control objective, a neuroadaptive controller with utilizing prescribed performance control and switching control technique is developed, where the basic idea is to employ the concept of motion synchronization in each pair of master-slave robots and among all slave robots. By using the multiple Lyapunov-Krasovskii functionals method, the state-independent input-to-output practical stability of the closed-loop system is established. Compared with the previous approaches, the new design is straightforward and easier to implement and is applicable to a wider area. Simulation results on three pairs of three degrees-of-freedom robots confirm the theoretical findings.
Planning Paths Through Singularities in the Center of Mass Space
NASA Technical Reports Server (NTRS)
Doggett, William R.; Messner, William C.; Juang, Jer-Nan
1998-01-01
The center of mass space is a convenient space for planning motions that minimize reaction forces at the robot's base or optimize the stability of a mechanism. A unique problem associated with path planning in the center of mass space is the potential existence of multiple center of mass images for a single Cartesian obstacle, since a single center of mass location can correspond to multiple robot joint configurations. The existence of multiple images results in a need to either maintain multiple center of mass obstacle maps or to update obstacle locations when the robot passes through a singularity, such as when it moves from an elbow-up to an elbow-down configuration. To illustrate the concepts presented in this paper, a path is planned for an example task requiring motion through multiple center of mass space maps. The object of the path planning algorithm is to locate the bang- bang acceleration profile that minimizes the robot's base reactions in the presence of a single Cartesian obstacle. To simplify the presentation, only non-redundant robots are considered and joint non-linearities are neglected.
Intelligent robot trends for factory automation
NASA Astrophysics Data System (ADS)
Hall, Ernest L.
1997-09-01
An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The use of these machines in factory automation can improve productivity, increase product quality and improve competitiveness. This paper presents a discussion of recent economic and technical trends. The robotics industry now has a billion-dollar market in the U.S. and is growing. Feasibility studies are presented which also show unaudited healthy rates of return for a variety of robotic applications. Technically, the machines are faster, cheaper, more repeatable, more reliable and safer. The knowledge base of inverse kinematic and dynamic solutions and intelligent controls is increasing. More attention is being given by industry to robots, vision and motion controls. New areas of usage are emerging for service robots, remote manipulators and automated guided vehicles. However, the road from inspiration to successful application is still long and difficult, often taking decades to achieve a new product. More cooperation between government, industry and universities is needed to speed the development of intelligent robots that will benefit both industry and society.
Development and validation of a low-cost mobile robotics testbed
NASA Astrophysics Data System (ADS)
Johnson, Michael; Hayes, Martin J.
2012-03-01
This paper considers the design, construction and validation of a low-cost experimental robotic testbed, which allows for the localisation and tracking of multiple robotic agents in real time. The testbed system is suitable for research and education in a range of different mobile robotic applications, for validating theoretical as well as practical research work in the field of digital control, mobile robotics, graphical programming and video tracking systems. It provides a reconfigurable floor space for mobile robotic agents to operate within, while tracking the position of multiple agents in real-time using the overhead vision system. The overall system provides a highly cost-effective solution to the topical problem of providing students with practical robotics experience within severe budget constraints. Several problems encountered in the design and development of the mobile robotic testbed and associated tracking system, such as radial lens distortion and the selection of robot identifier templates are clearly addressed. The testbed performance is quantified and several experiments involving LEGO Mindstorm NXT and Merlin System MiaBot robots are discussed.
Human-tracking strategies for a six-legged rescue robot based on distance and view
NASA Astrophysics Data System (ADS)
Pan, Yang; Gao, Feng; Qi, Chenkun; Chai, Xun
2016-03-01
Human tracking is an important issue for intelligent robotic control and can be used in many scenarios, such as robotic services and human-robot cooperation. Most of current human-tracking methods are targeted for mobile/tracked robots, but few of them can be used for legged robots. Two novel human-tracking strategies, view priority strategy and distance priority strategy, are proposed specially for legged robots, which enable them to track humans in various complex terrains. View priority strategy focuses on keeping humans in its view angle arrange with priority, while its counterpart, distance priority strategy, focuses on keeping human at a reasonable distance with priority. To evaluate these strategies, two indexes(average and minimum tracking capability) are defined. With the help of these indexes, the view priority strategy shows advantages compared with distance priority strategy. The optimization is done in terms of these indexes, which let the robot has maximum tracking capability. The simulation results show that the robot can track humans with different curves like square, circular, sine and screw paths. Two novel control strategies are proposed which specially concerning legged robot characteristics to solve human tracking problems more efficiently in rescue circumstances.
Precision Manipulation with Cooperative Robots
NASA Technical Reports Server (NTRS)
Stroupe, Ashley; Huntsberger, Terry; Okon, Avi; Aghzarian, Hrand
2005-01-01
This work addresses several challenges of cooperative transportThis work addresses several challenges of cooperative transport and precision manipulation. Precision manipulation requires a rigid grasp, which places a hard constraint on the relative rover formation that must be accommodated, even though the rovers cannot directly observe their relative poses. Additionally, rovers must jointly select appropriate actions based on all available sensor information. Lastly, rovers cannot act on independent sensor information, but must fuse information to move jointly; the methods for fusing information must be determined.
An adaptive SVSF-SLAM algorithm to improve the success and solving the UGVs cooperation problem
NASA Astrophysics Data System (ADS)
Demim, Fethi; Nemra, Abdelkrim; Louadj, Kahina; Hamerlain, Mustapha; Bazoula, Abdelouahab
2018-05-01
This paper aims to present a Decentralised Cooperative Simultaneous Localization and Mapping (DCSLAM) solution based on 2D laser data using an Adaptive Covariance Intersection (ACI). The ACI-DCSLAM algorithm will be validated on a swarm of Unmanned Ground Vehicles (UGVs) receiving features to estimate the position and covariance of shared features before adding them to the global map. With the proposed solution, a group of (UGVs) will be able to construct a large reliable map and localise themselves within this map without any user intervention. The most popular solutions to this problem are the EKF-SLAM, Nonlinear H-infinity ? SLAM and the FAST-SLAM. The former suffers from two important problems which are the poor consistency caused by the linearization problem and the calculation of Jacobian. The second solution is the ? which is a very promising filter because it doesn't make any assumption about noise characteristics, while the latter is not suitable for real time implementation. Therefore, a new alternative solution based on the smooth variable structure filter (SVSF) is adopted. Cooperative adaptive SVSF-SLAM algorithm is proposed in this paper to solve the UGVs SLAM problem. Our main contribution consists in adapting the SVSF filter to solve the Decentralised Cooperative SLAM problem for multiple UGVs. The algorithms developed in this paper were implemented using two mobile robots Pioneer ?, equiped with 2D laser telemetry sensors. Good results are obtained by the Cooperative adaptive SVSF-SLAM algorithm compared to the Cooperative EKF/?-SLAM algorithms, especially when the noise is colored or affected by a variable bias. Simulation results confirm and show the efficiency of the proposed algorithm which is more robust, stable and adapted to real time applications.
A Practice of Rescue Robot Contest in Junior High Schools
NASA Astrophysics Data System (ADS)
Kawada, Kazuo; Nagamatsu, Masayasu; Yamamoto, Toru
The rescue robot contest for junior high school students was created to give students an opportunity to design a robot to rescue the victims under large scale disasters. The activity was not only intended as an humanitarian project but also aiming at students to : (1) take the role of victims and imagining the situation from his or her perspective, (2) enhance thinking skills, creativity through the problem solving processes and, (3) work cooperatively in groups. From results of questionnaire for the participated students, important factors for further implementation as curriculum of technology education are implied.
Ubiquitous Robotic Technology for Smart Manufacturing System.
Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin
2016-01-01
As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.
Ubiquitous Robotic Technology for Smart Manufacturing System
Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin
2016-01-01
As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206
Searching Dynamic Agents with a Team of Mobile Robots
Juliá, Miguel; Gil, Arturo; Reinoso, Oscar
2012-01-01
This paper presents a new algorithm that allows a team of robots to cooperatively search for a set of moving targets. An estimation of the areas of the environment that are more likely to hold a target agent is obtained using a grid-based Bayesian filter. The robot sensor readings and the maximum speed of the moving targets are used in order to update the grid. This representation is used in a search algorithm that commands the robots to those areas that are more likely to present target agents. This algorithm splits the environment in a tree of connected regions using dynamic programming. This tree is used in order to decide the destination for each robot in a coordinated manner. The algorithm has been successfully tested in known and unknown environments showing the validity of the approach. PMID:23012519
Searching dynamic agents with a team of mobile robots.
Juliá, Miguel; Gil, Arturo; Reinoso, Oscar
2012-01-01
This paper presents a new algorithm that allows a team of robots to cooperatively search for a set of moving targets. An estimation of the areas of the environment that are more likely to hold a target agent is obtained using a grid-based Bayesian filter. The robot sensor readings and the maximum speed of the moving targets are used in order to update the grid. This representation is used in a search algorithm that commands the robots to those areas that are more likely to present target agents. This algorithm splits the environment in a tree of connected regions using dynamic programming. This tree is used in order to decide the destination for each robot in a coordinated manner. The algorithm has been successfully tested in known and unknown environments showing the validity of the approach.
Computational Mobility: An Overview
NASA Technical Reports Server (NTRS)
Suri, Niranjan
2005-01-01
This viewgraph presentation describes a framework for the autonomous control of robot swarms, which negotiate with each other, delegate authority to their peers, and cooperate in teams to accomplish tasks.
Intelligent robot trends for 1998
NASA Astrophysics Data System (ADS)
Hall, Ernest L.
1998-10-01
An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The use of these machines in factory automation can improve productivity, increase product quality and improve competitiveness. This paper presents a discussion of recent technical and economic trends. Technically, the machines are faster, cheaper, more repeatable, more reliable and safer. The knowledge base of inverse kinematic and dynamic solutions and intelligent controls is increasing. More attention is being given by industry to robots, vision and motion controls. New areas of usage are emerging for service robots, remote manipulators and automated guided vehicles. Economically, the robotics industry now has a 1.1 billion-dollar market in the U.S. and is growing. Feasibility studies results are presented which also show decreasing costs for robots and unaudited healthy rates of return for a variety of robotic applications. However, the road from inspiration to successful application can be long and difficult, often taking decades to achieve a new product. A greater emphasis on mechatronics is needed in our universities. Certainly, more cooperation between government, industry and universities is needed to speed the development of intelligent robots that will benefit industry and society.
Real-time Cooperative Behavior for Tactical Mobile Robot Teams
2001-02-01
control of multirobot missions. In particu- lar he used videogame scenarios to develop these skills, which might account for the intuition that those...to develop the following innovative research results for tacti- cal mobile robot teams: 1. A suite of new fault-tolerant reactive behaviors, 2. A...depicts the overall system architecture developed for this effort. It contains 3 major subsystems: Executive, Premission, and Runtime. The executive
Evaluating the Dynamics of Agent-Environment Interaction
2001-05-01
a color sensor in the gripper, a radio transmitter/receiver for communication and data gathering, and an ultrasound /radio triangulation system for...Cooperative Mobile Robot Control’, Autonomous Robots 4(4), 387{403. Vaughan, R. T., Sty, K., Sukhatme, G. S. & Mataric, M. J. (2000), Whistling in the Dark...sensor in the gripper, a radio transmitter/receiver for communication and data gathering, and an ultrasound /radio triangu- lation system for
Guerrero, Carlos Rodriguez; Fraile Marinero, Juan Carlos; Turiel, Javier Perez; Muñoz, Victor
2013-11-01
Human motor performance, speed and variability are highly susceptible to emotional states. This paper reviews the impact of the emotions on the motor control performance, and studies the possibility of improving the perceived skill/challenge relation on a multimodal neural rehabilitation scenario, by means of a biocybernetic controller that modulates the assistance provided by a haptic controlled robot in reaction to undesirable physical and mental states. Results from psychophysiological, performance and self assessment data for closed loop experiments in contrast with their open loop counterparts, suggest that the proposed method had a positive impact on the overall challenge/skill relation leading to an enhanced physical human-robot interaction experience. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A Recipe for Soft Fluidic Elastomer Robots
Marchese, Andrew D.; Katzschmann, Robert K.
2015-01-01
Abstract This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes. PMID:27625913
A Recipe for Soft Fluidic Elastomer Robots.
Marchese, Andrew D; Katzschmann, Robert K; Rus, Daniela
2015-03-01
This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.
Emken, Jeremy L; Benitez, Raul; Reinkensmeyer, David J
2007-01-01
Background A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Methods Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. Results We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. Conclusion The assist-as-needed algorithm proposed here can limit error during the learning of a dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the ongoing progression of movement error. This type of algorithm is well suited for helping people learn dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful for robot-assisted movement training of walking or reaching following neurologic injury. PMID:17391527
A robotic orbital emulator with lidar-based SLAM and AMCL for multiple entity pose estimation
NASA Astrophysics Data System (ADS)
Shen, Dan; Xiang, Xingyu; Jia, Bin; Wang, Zhonghai; Chen, Genshe; Blasch, Erik; Pham, Khanh
2018-05-01
This paper revises and evaluates an orbital emulator (OE) for space situational awareness (SSA). The OE can produce 3D satellite movements using capabilities generated from omni-wheeled robot and robotic arm motions. The 3D motion of satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The 3D actions are emulated by omni-wheeled robot models while the up-down motions are performed by a stepped-motorcontrolled- ball along a rod (robotic arm), which is attached to the robot. Lidar only measurements are used to estimate the pose information of the multiple robots. SLAM (simultaneous localization and mapping) is running on one robot to generate the map and compute the pose for the robot. Based on the SLAM map maintained by the robot, the other robots run the adaptive Monte Carlo localization (AMCL) method to estimate their poses. The controller is designed to guide the robot to follow a given orbit. The controllability is analyzed by using a feedback linearization method. Experiments are conducted to show the convergence of AMCL and the orbit tracking performance.
Determining of a robot workspace using the integration of a CAD system with a virtual control system
NASA Astrophysics Data System (ADS)
Herbuś, K.; Ociepka, P.
2016-08-01
The paper presents a method for determining the workspace of an industrial robot using an approach consisting in integration a 3D model of an industrial robot with a virtual control system. The robot model with his work environment, prepared for motion simulation, was created in the “Motion Simulation” module of the Siemens PLM NX software. In the mentioned model components of the “link” type were created which map the geometrical form of particular elements of the robot and the components of “joint” type mapping way of cooperation of components of the “link” type. In the paper is proposed the solution in which the control process of a virtual robot is similar to the control process of a real robot using the manual control panel (teach pendant). For this purpose, the control application “JOINT” was created, which provides the manipulation of a virtual robot in accordance with its internal control system. The set of procedures stored in an .xlsx file is the element integrating the 3D robot model working in the CAD/CAE class system with the elaborated control application.
Ant-like task allocation and recruitment in cooperative robots
NASA Astrophysics Data System (ADS)
Krieger, Michael J. B.; Billeter, Jean-Bernard; Keller, Laurent
2000-08-01
One of the greatest challenges in robotics is to create machines that are able to interact with unpredictable environments in real time. A possible solution may be to use swarms of robots behaving in a self-organized manner, similar to workers in an ant colony. Efficient mechanisms of division of labour, in particular series-parallel operation and transfer of information among group members, are key components of the tremendous ecological success of ants. Here we show that the general principles regulating division of labour in ant colonies indeed allow the design of flexible, robust and effective robotic systems. Groups of robots using ant-inspired algorithms of decentralized control techniques foraged more efficiently and maintained higher levels of group energy than single robots. But the benefits of group living decreased in larger groups, most probably because of interference during foraging. Intriguingly, a similar relationship between group size and efficiency has been documented in social insects. Moreover, when food items were clustered, groups where robots could recruit other robots in an ant-like manner were more efficient than groups without information transfer, suggesting that group dynamics of swarms of robots may follow rules similar to those governing social insects.
Jiang, Yuhua; Liu, Keyun; Li, Youxiang
2018-01-01
To evaluate the feasibility and safety of the robot of endovascular treatment (RobEnt) in clinical practice, we carried out a cerebral angiography using this robot system. We evaluated the performance of application of the robot system to clinical practice through using this robotic system to perform the digital subtraction angiography for a patient who was suspected of suffering intracranial aneurysm. At the same time, through comparing the postoperative head nuclear magnetic and blood routine with the preoperative examination, we evaluated the safety of application of the robot system to clinical practice. We performed the robot system to complete the bilateral carotid artery and bilateral vertebral arteriography. The results indicate that there was no obvious abnormality in the patient's cerebral artery. No obvious abnormality was observed in the examination of patients' check-up, head nuclear magnetism, and blood routine after the digital subtraction angiography. From this clinical trial, it can be observed that the robot system can perform the operation of cerebral angiography. The robot system can basically complete the related observation indexes, and its accuracy, effectiveness, stability, and safety basically meet the requirements of clinical application in neurointerventional surgery.
The Role of Autobiographical Memory in the Development of a Robot Self
Pointeau, Gregoire; Dominey, Peter Ford
2017-01-01
This article briefly reviews research in cognitive development concerning the nature of the human self. It then reviews research in developmental robotics that has attempted to retrace parts of the developmental trajectory of the self. This should be of interest to developmental psychologists, and researchers in developmental robotics. As a point of departure, one of the most characteristic aspects of human social interaction is cooperation—the process of entering into a joint enterprise to achieve a common goal. Fundamental to this ability to cooperate is the underlying ability to enter into, and engage in, a self-other relation. This suggests that if we intend for robots to cooperate with humans, then to some extent robots must engage in these self-other relations, and hence they must have some aspect of a self. Decades of research in human cognitive development indicate that the self is not fully present from the outset, but rather that it is developed in a usage-based fashion, that is, through engaging with the world, including the physical world and the social world of animate intentional agents. In an effort to characterize the self, Ulric Neisser noted that self is not unitary, and he thus proposed five types of self-knowledge that correspond to five distinct components of self: ecological, interpersonal, conceptual, temporally extended, and private. He emphasized the ecological nature of each of these levels, how they are developed through the engagement of the developing child with the physical and interpersonal worlds. Crucially, development of the self has been shown to rely on the child's autobiographical memory. From the developmental robotics perspective, this suggests that in principal it would be possible to develop certain aspects of self in a robot cognitive system where the robot is engaged in the physical and social world, equipped with an autobiographical memory system. We review a series of developmental robotics studies that make progress in this enterprise. We conclude with a summary of the properties that are required for the development of these different levels of self, and we identify topics for future research. PMID:28676751
Embedded diagnostic, prognostic, and health management system and method for a humanoid robot
NASA Technical Reports Server (NTRS)
Barajas, Leandro G. (Inventor); Strawser, Philip A (Inventor); Sanders, Adam M (Inventor); Reiland, Matthew J (Inventor)
2013-01-01
A robotic system includes a humanoid robot with multiple compliant joints, each moveable using one or more of the actuators, and having sensors for measuring control and feedback data. A distributed controller controls the joints and other integrated system components over multiple high-speed communication networks. Diagnostic, prognostic, and health management (DPHM) modules are embedded within the robot at the various control levels. Each DPHM module measures, controls, and records DPHM data for the respective control level/connected device in a location that is accessible over the networks or via an external device. A method of controlling the robot includes embedding a plurality of the DPHM modules within multiple control levels of the distributed controller, using the DPHM modules to measure DPHM data within each of the control levels, and recording the DPHM data in a location that is accessible over at least one of the high-speed communication networks.
System For Research On Multiple-Arm Robots
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Hayati, Samad; Tso, Kam S.; Hayward, Vincent
1991-01-01
Kali system of computer programs and equipment provides environment for research on distributed programming and distributed control of coordinated-multiple-arm robots. Suitable for telerobotics research involving sensing and execution of low level tasks. Software and configuration of hardware designed flexible so system modified easily to test various concepts in control and programming of robots, including multiple-arm control, redundant-arm control, shared control, traded control, force control, force/position hybrid control, design and integration of sensors, teleoperation, task-space description and control, methods of adaptive control, control of flexible arms, and human factors.
Are You Talking to Me? Dialogue Systems Supporting Mixed Teams of Humans and Robots
NASA Technical Reports Server (NTRS)
Dowding, John; Clancey, William J.; Graham, Jeffrey
2006-01-01
This position paper describes an approach to building spoken dialogue systems for environments containing multiple human speakers and hearers, and multiple robotic speakers and hearers. We address the issue, for robotic hearers, of whether the speech they hear is intended for them, or more likely to be intended for some other hearer. We will describe data collected during a series of experiments involving teams of multiple human and robots (and other software participants), and some preliminary results for distinguishing robot-directed speech from human-directed speech. The domain of these experiments is Mars-analogue planetary exploration. These Mars-analogue field studies involve two subjects in simulated planetary space suits doing geological exploration with the help of 1-2 robots, supporting software agents, a habitat communicator and links to a remote science team. The two subjects are performing a task (geological exploration) which requires them to speak with each other while also speaking with their assistants. The technique used here is to use a probabilistic context-free grammar language model in the speech recognizer that is trained on prior robot-directed speech. Intuitively, the recognizer will give higher confidence to an utterance if it is similar to utterances that have been directed to the robot in the past.
Autonomous Shepherding Behaviors of Multiple Target Steering Robots.
Lee, Wonki; Kim, DaeEun
2017-11-25
This paper presents a distributed coordination methodology for multi-robot systems, based on nearest-neighbor interactions. Among many interesting tasks that may be performed using swarm robots, we propose a biologically-inspired control law for a shepherding task, whereby a group of external agents drives another group of agents to a desired location. First, we generated sheep-like robots that act like a flock. We assume that each agent is capable of measuring the relative location and velocity to each of its neighbors within a limited sensing area. Then, we designed a control strategy for shepherd-like robots that have information regarding where to go and a steering ability to control the flock, according to the robots' position relative to the flock. We define several independent behavior rules; each agent calculates to what extent it will move by summarizing each rule. The flocking sheep agents detect the steering agents and try to avoid them; this tendency leads to movement of the flock. Each steering agent only needs to focus on guiding the nearest flocking agent to the desired location. Without centralized coordination, multiple steering agents produce an arc formation to control the flock effectively. In addition, we propose a new rule for collecting behavior, whereby a scattered flock or multiple flocks are consolidated. From simulation results with multiple robots, we show that each robot performs actions for the shepherding behavior, and only a few steering agents are needed to control the whole flock. The results are displayed in maps that trace the paths of the flock and steering robots. Performance is evaluated via time cost and path accuracy to demonstrate the effectiveness of this approach.
A new neural net approach to robot 3D perception and visuo-motor coordination
NASA Technical Reports Server (NTRS)
Lee, Sukhan
1992-01-01
A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.
Mars Robotics in the Elementary School
NASA Astrophysics Data System (ADS)
Bonett, D.
2003-05-01
Kenneth E. Little Elementary is a public school grades Pre-K to 5th in Bacliff, Texas. It has an ethnically diverse population of one-thousand boys and girls. It is a Title 1 school with eighty-six percent of the students receiving free or reduced meals. K.E. Little has a large at-risk population with a thirty-three percent transition rate. The Young Astronauts @ K.E. Little is an on-going afterschool space science program in it's third year of operation. Thirty students,fourth and fifth grade, were involved in our spring robotics program. Each co-operative group was assigned a LEGO robotics kit to inventory,organize, and familiarize themselves with. Each team made decisions, by consensus, concerning the robots design and capabilities. Students used the Dell Computer Lab on campus to program their robots. Although time did not permit the construction of a simulated Martian landscape, future Young Astronauts will continue this project in January 2004.
Robot-based additive manufacturing for flexible die-modelling in incremental sheet forming
NASA Astrophysics Data System (ADS)
Rieger, Michael; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd
2017-10-01
The paper describes the application concept of additive manufactured dies to support the robot-based incremental sheet metal forming process (`Roboforming') for the production of sheet metal components in small batch sizes. Compared to the dieless kinematic-based generation of a shape by means of two cooperating industrial robots, the supporting robot models a die on the back of the metal sheet by using the robot-based fused layer manufacturing process (FLM). This tool chain is software-defined and preserves the high geometrical form flexibility of Roboforming while flexibly generating support structures adapted to the final part's geometry. Test series serve to confirm the feasibility of the concept by investigating the process challenges of the adhesion to the sheet surface and the general stability as well as the influence on the geometric accuracy compared to the well-known forming strategies.
ROBOSIM, a simulator for robotic systems
NASA Technical Reports Server (NTRS)
Hinman, Elaine M.; Fernandez, Ken; Cook, George E.
1991-01-01
ROBOSIM, a simulator for robotic systems, was developed by NASA to aid in the rapid prototyping of automation. ROBOSIM has allowed the development of improved robotic systems concepts for both earth-based and proposed on-orbit applications while significantly reducing development costs. In a cooperative effort with an area university, ROBOSIM was further developed for use in the classroom as a safe and cost-effective way of allowing students to study robotic systems. Students have used ROBOSIM to study existing robotic systems and systems which they have designed in the classroom. Since an advanced simulator/trainer of this type is beneficial not only to NASA projects and programs but industry and academia as well, NASA is in the process of developing this technology for wider public use. An update on the simulators's new application areas, the improvements made to the simulator's design, and current efforts to ensure the timely transfer of this technology are presented.
NASA Technical Reports Server (NTRS)
Rehnmark, Fredrik; Bluethmann, William; Rochlis, Jennifer; Huber, Eric; Ambrose, Robert
2003-01-01
NASA's Human Space Flight program depends heavily on spacewalks performed by human astronauts. These so-called extra-vehicular activities (EVAs) are risky, expensive and complex. Work is underway to develop a robotic astronaut's assistant that can help reduce human EVA time and workload by delivering human-like dexterous manipulation capabilities to any EVA worksite. An experiment is conducted to evaluate human-robot teaming strategies in the context of a simplified EVA assembly task in which Robonaut, a collaborative effort with the Defense Advanced Research Projects Agency (DARPA), an anthropomorphic robot works side-by-side with a human subject. Team performance is studied in an effort to identify the strengths and weaknesses of each teaming configuration and to recommend an appropriate division of labor. A shared control approach is developed to take advantage of the complementary strengths of the human teleoperator and robot, even in the presence of significant time delay.
Task automation in a successful industrial telerobot
NASA Technical Reports Server (NTRS)
Spelt, Philip F.; Jones, Sammy L.
1994-01-01
In this paper, we discuss cooperative work by Oak Ridge National Laboratory and Remotec, Inc., to automate components of the operator's workload using Remotec's Andros telerobot, thereby providing an enhanced user interface which can be retrofit to existing fielded units as well as being incorporated into new production units. Remotec's Andros robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as by the armed forces and numerous law enforcement agencies. The automation of task components, as well as the video graphics display of the robot's position in the environment, will enhance all tasks performed by these users, as well as enabling performance in terrain where the robots cannot presently perform due to lack of knowledge about, for instance, the degree of tilt of the robot. Enhanced performance of a successful industrial mobile robot leads to increased safety and efficiency of performance in hazardous environments. The addition of these capabilities will greatly enhance the utility of the robot, as well as its marketability.
A secure and easy-to-implement web-based communication framework for caregiving robot teams
NASA Astrophysics Data System (ADS)
Tuna, G.; Daş, R.; Tuna, A.; Örenbaş, H.; Baykara, M.; Gülez, K.
2016-03-01
In recent years, robots have started to become more commonplace in our lives, from factory floors to museums, festivals and shows. They have started to change how we work and play. With an increase in the population of the elderly, they have also been started to be used for caregiving services, and hence many countries have been investing in the robot development. The advancements in robotics and wireless communications has led to the emergence of autonomous caregiving robot teams which cooperate to accomplish a set of tasks assigned by human operators. Although wireless communications and devices are flexible and convenient, they are vulnerable to many risks compared to traditional wired networks. Since robots with wireless communication capability transmit all data types, including sensory, coordination, and control, through radio frequencies, they are open to intruders and attackers unless protected and their openness may lead to many security issues such as data theft, passive listening, and service interruption. In this paper, a secure web-based communication framework is proposed to address potential security threats due to wireless communication in robot-robot and human-robot interaction. The proposed framework is simple and practical, and can be used by caregiving robot teams in the exchange of sensory data as well as coordination and control data.
Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie
2014-12-01
Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.
A software toolbox for robotics
NASA Technical Reports Server (NTRS)
Sanwal, J. C.
1985-01-01
A method for programming cooperating manipulators, which is guided by a geometric description of the task to be performed, is given. For this a suitable language must be used and a method for describing the workplace and the objects in it in geometric terms. A task level command language and its implementation for concurrently driven multiple robot arm is described. The language is suitable for driving a cell in which manipulators, end effectors, and sensors are controlled by their own dedicated processors. These processors can communicate with each other through a communication network. A mechanism for keeping track of the history of the commands already executed allows the command language for the manipulators to be event driven. A frame based world modeling system is utilized to describe the objects in the work environment and any relationships that hold between these objects. This system provides a versatile tool for managing information about the world model. Default actions normally needed are invoked when the data base is updated or accessed. Most of the first level error recovery is also invoked by the database by utilizing the concepts of demons. The package can be utilized to generate task level commands in a problem solver or a planner.
Commitment, Cooperation and CAM Help Novices Score.
ERIC Educational Resources Information Center
Baltazar, William; Buncher, David; Millson, David
1999-01-01
Describes high school students' preparations for the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition at the Kennedy Space Center. Provides step-by-step guidelines for participation. (JOW)
Neural network-based multiple robot simultaneous localization and mapping.
Saeedi, Sajad; Paull, Liam; Trentini, Michael; Li, Howard
2011-12-01
In this paper, a decentralized platform for simultaneous localization and mapping (SLAM) with multiple robots is developed. Each robot performs single robot view-based SLAM using an extended Kalman filter to fuse data from two encoders and a laser ranger. To extend this approach to multiple robot SLAM, a novel occupancy grid map fusion algorithm is proposed. Map fusion is achieved through a multistep process that includes image preprocessing, map learning (clustering) using neural networks, relative orientation extraction using norm histogram cross correlation and a Radon transform, relative translation extraction using matching norm vectors, and then verification of the results. The proposed map learning method is a process based on the self-organizing map. In the learning phase, the obstacles of the map are learned by clustering the occupied cells of the map into clusters. The learning is an unsupervised process which can be done on the fly without any need to have output training patterns. The clusters represent the spatial form of the map and make further analyses of the map easier and faster. Also, clusters can be interpreted as features extracted from the occupancy grid map so the map fusion problem becomes a task of matching features. Results of the experiments from tests performed on a real environment with multiple robots prove the effectiveness of the proposed solution.
A hardware/software environment to support R D in intelligent machines and mobile robotic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.
1990-01-01
The Center for Engineering Systems Advanced Research (CESAR) serves as a focal point at the Oak Ridge National Laboratory (ORNL) for basic and applied research in intelligent machines. R D at CESAR addresses issues related to autonomous systems, unstructured (i.e. incompletely known) operational environments, and multiple performing agents. Two mobile robot prototypes (HERMIES-IIB and HERMIES-III) are being used to test new developments in several robot component technologies. This paper briefly introduces the computing environment at CESAR which includes three hypercube concurrent computers (two on-board the mobile robots), a graphics workstation, VAX, and multiple VME-based systems (several on-board the mobile robots).more » The current software environment at CESAR is intended to satisfy several goals, e.g.: code portability, re-usability in different experimental scenarios, modularity, concurrent computer hardware transparent to applications programmer, future support for multiple mobile robots, support human-machine interface modules, and support for integration of software from other, geographically disparate laboratories with different hardware set-ups. 6 refs., 1 fig.« less
NASA Astrophysics Data System (ADS)
Panfil, Wawrzyniec; Moczulski, Wojciech
2017-10-01
In the paper presented is a control system of a mobile robots group intended for carrying out inspection missions. The main research problem was to define such a control system in order to facilitate a cooperation of the robots resulting in realization of the committed inspection tasks. Many of the well-known control systems use auctions for tasks allocation, where a subject of an auction is a task to be allocated. It seems that in the case of missions characterized by much larger number of tasks than number of robots it will be better if robots (instead of tasks) are subjects of auctions. The second identified problem concerns the one-sided robot-to-task fitness evaluation. Simultaneous assessment of the robot-to-task fitness and task attractiveness for robot should affect positively for the overall effectiveness of the multi-robot system performance. The elaborated system allows to assign tasks to robots using various methods for evaluation of fitness between robots and tasks, and using some tasks allocation methods. There is proposed the method for multi-criteria analysis, which is composed of two assessments, i.e. robot's concurrency position for task among other robots and task's attractiveness for robot among other tasks. Furthermore, there are proposed methods for tasks allocation applying the mentioned multi-criteria analysis method. The verification of both the elaborated system and the proposed tasks' allocation methods was carried out with the help of simulated experiments. The object under test was a group of inspection mobile robots being a virtual counterpart of the real mobile-robot group.
Payne, Christopher J; Yang, Guang-Zhong
2014-08-01
Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.
Decentralised consensus-based formation tracking of multiple differential drive robots
NASA Astrophysics Data System (ADS)
Chu, Xing; Peng, Zhaoxia; Wen, Guoguang; Rahmani, Ahmed
2017-11-01
This article investigates the control problem for formation tracking of multiple nonholonomic robots under distributed manner which means each robot only needs local information exchange. A class of general state and input transform is introduced to convert the formation-tracking issue of multi-robot systems into the consensus-like problem with time-varying reference. The distributed observer-based protocol with nonlinear dynamics is developed for each robot to achieve the consensus tracking of the new system, which namely means a group of nonholonomic mobile robots can form the desired formation configuration with its centroid moving along the predefined reference trajectory. The finite-time stability of observer and control law is analysed rigorously by using the Lyapunov direct method, algebraic graph theory and matrix analysis. Numerical examples are finally provided to illustrate the effectiveness of the theory results proposed in this paper.
CESAR robotics and intelligent systems research for nuclear environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.
1992-07-01
The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less
CESAR robotics and intelligent systems research for nuclear environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.
1992-01-01
The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less
Laboratory systems integration: robotics and automation.
Felder, R A
1991-01-01
Robotic technology is going to have a profound impact on the clinical laboratory of the future. Faced with increased pressure to reduce health care spending yet increase services to patients, many laboratories are looking for alternatives to the inflexible or "fixed" automation found in many clinical analyzers. Robots are being examined by many clinical pathologists as an attractive technology which can adapt to the constant changes in laboratory testing. Already, laboratory designs are being altered to accommodate robotics and automated specimen processors. However, the use of robotics and computer intelligence in the clinical laboratory is still in its infancy. Successful examples of robotic automation exist in several laboratories. Investigators have used robots to automate endocrine testing, high performance liquid chromatography, and specimen transportation. Large commercial laboratories are investigating the use of specimen processors which combine the use of fixed automation and robotics. Robotics have also reduced the exposure of medical technologists to specimens infected with viral pathogens. The successful examples of clinical robotics applications were a result of the cooperation of clinical chemists, engineers, and medical technologists. At the University of Virginia we have designed and implemented a robotic critical care laboratory. Initial clinical experience suggests that robotic performance is reliable, however, staff acceptance and utilization requires continuing education. We are also developing a robotic cyclosporine which promises to greatly reduce the labor costs of this analysis. The future will bring lab wide automation that will fully integrate computer artificial intelligence and robotics. Specimens will be transported by mobile robots. Specimen processing, aliquotting, and scheduling will be automated.(ABSTRACT TRUNCATED AT 250 WORDS)
Intelligent robot trends and predictions for the first year of the new millennium
NASA Astrophysics Data System (ADS)
Hall, Ernest L.
2000-10-01
An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The current use of these machines in outer space, medicine, hazardous materials, defense applications and industry is being pursued with vigor. In factory automation, industrial robots can improve productivity, increase product quality and improve competitiveness. The computer and the robot have both been developed during recent times. The intelligent robot combines both technologies and requires a thorough understanding and knowledge of mechatronics. Today's robotic machines are faster, cheaper, more repeatable, more reliable and safer than ever. The knowledge base of inverse kinematic and dynamic solutions and intelligent controls is increasing. More attention is being given by industry to robots, vision and motion controls. New areas of usage are emerging for service robots, remote manipulators and automated guided vehicles. Economically, the robotics industry now has more than a billion-dollar market in the U.S. and is growing. Feasibility studies show decreasing costs for robots and unaudited healthy rates of return for a variety of robotic applications. However, the road from inspiration to successful application can be long and difficult, often taking decades to achieve a new product. A greater emphasis on mechatronics is needed in our universities. Certainly, more cooperation between government, industry and universities is needed to speed the development of intelligent robots that will benefit industry and society. The fearful robot stories may help us prevent future disaster. The inspirational robot ideas may inspire the scientists of tomorrow. However, the intelligent robot ideas, which can be reduced to practice, will change the world.
Market-Based Coordination and Auditing Mechanisms for Self-Interested Multi-Robot Systems
ERIC Educational Resources Information Center
Ham, MyungJoo
2009-01-01
We propose market-based coordinated task allocation mechanisms, which allocate complex tasks that require synchronized and collaborated services of multiple robot agents to robot agents, and an auditing mechanism, which ensures proper behaviors of robot agents by verifying inter-agent activities, for self-interested, fully-distributed, and…
Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong
2017-01-01
Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization. PMID:29311798
Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong
2017-01-01
Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization.
Zhang, Jun; Yang, Xi; Song, Guang-Ming; Chen, Tian-Yuan; Zhang, Yong
2015-01-01
This paper presents relative orientation and position detection methods for jumping sensor nodes (JSNs) recycling. The methods are based on motion captures of the JSNs by an RGB-D sensor mounted on a carrier robot and the dynamic cooperation between the carrier and the JSNs. A disc-like label with two different colored sides is mounted on the top of the JSNs. The RGB-D sensor can detect the motion of the label to calculate the orientations and positions of the JSNs and the carrier relative to each other. After the orientations and positions have been detected, the JSNs jump into a cabin mounted on the carrier in dynamic cooperation with the carrier for recycling. The performances of the proposed methods are tested with a prototype system. The results show that the carrier can detect a JSN from up to 2 m away and sense its relative orientation and position successfully. The errors of the JSN’s orientation and position detections relative to the carrier could be reduced to the values smaller than 1° and 1 cm, respectively, by using the dynamic cooperation strategies. The proposed methods in this paper could also be used for other kinds of mobile sensor nodes and multi-robot systems. PMID:26393589
Industrial Robots For Measurement And Inspection Purposes
NASA Astrophysics Data System (ADS)
Ahlers, R.-J.
1989-02-01
The use of industrial robots for measuring and testing is becoming increasingly significant as a component of flexible production. In the early stages of their development robots were used mainly for monotonous and repetitive tasks such as handling and spot welding. Thanks to improvements in the precision with which they work and also in control and regulation technologies, it is possible today to employ robots as flexible, sensor-assisted and even "intellligent" tools for measuring and testing. As a result, however, much higher accuracy is demanded of the robots used for such purposes. In addition, robot measurement and acceptance test requirements have become more exacting. The present paper is based on recommendations that have been developed by cooperative work of the Association of German-Engineers (VDI/GMA). The appropriate working group is entitled "Industrial Robots -Measurement and Inspection". The author is the chairman of this working group. Apart from the technical equipment involved, the use of industrial robots for measuring purposes also calls for the devi-sing and programming of appropriate measuring strategies. In this context the planning and implementation of measuring projects have to be discussed along with software reliability and on-line/off-line programming strategies. Four different utilizations of robots for measuring and testing are presented and illustrated by examples.
Multi-Robot Assembly Strategies and Metrics.
Marvel, Jeremy A; Bostelman, Roger; Falco, Joe
2018-02-01
We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.
Multi-Robot Assembly Strategies and Metrics
MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE
2018-01-01
We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234
Autonomous Shepherding Behaviors of Multiple Target Steering Robots
Lee, Wonki; Kim, DaeEun
2017-01-01
This paper presents a distributed coordination methodology for multi-robot systems, based on nearest-neighbor interactions. Among many interesting tasks that may be performed using swarm robots, we propose a biologically-inspired control law for a shepherding task, whereby a group of external agents drives another group of agents to a desired location. First, we generated sheep-like robots that act like a flock. We assume that each agent is capable of measuring the relative location and velocity to each of its neighbors within a limited sensing area. Then, we designed a control strategy for shepherd-like robots that have information regarding where to go and a steering ability to control the flock, according to the robots’ position relative to the flock. We define several independent behavior rules; each agent calculates to what extent it will move by summarizing each rule. The flocking sheep agents detect the steering agents and try to avoid them; this tendency leads to movement of the flock. Each steering agent only needs to focus on guiding the nearest flocking agent to the desired location. Without centralized coordination, multiple steering agents produce an arc formation to control the flock effectively. In addition, we propose a new rule for collecting behavior, whereby a scattered flock or multiple flocks are consolidated. From simulation results with multiple robots, we show that each robot performs actions for the shepherding behavior, and only a few steering agents are needed to control the whole flock. The results are displayed in maps that trace the paths of the flock and steering robots. Performance is evaluated via time cost and path accuracy to demonstrate the effectiveness of this approach. PMID:29186836
Symbiotic Navigation in Multi-Robot Systems with Remote Obstacle Knowledge Sharing
Ravankar, Abhijeet; Ravankar, Ankit A.; Kobayashi, Yukinori; Emaru, Takanori
2017-01-01
Large scale operational areas often require multiple service robots for coverage and task parallelism. In such scenarios, each robot keeps its individual map of the environment and serves specific areas of the map at different times. We propose a knowledge sharing mechanism for multiple robots in which one robot can inform other robots about the changes in map, like path blockage, or new static obstacles, encountered at specific areas of the map. This symbiotic information sharing allows the robots to update remote areas of the map without having to explicitly navigate those areas, and plan efficient paths. A node representation of paths is presented for seamless sharing of blocked path information. The transience of obstacles is modeled to track obstacles which might have been removed. A lazy information update scheme is presented in which only relevant information affecting the current task is updated for efficiency. The advantages of the proposed method for path planning are discussed against traditional method with experimental results in both simulation and real environments. PMID:28678193
Integration and testing of a multistack automated cone machine
DOT National Transportation Integrated Search
2004-06-01
The Advanced Highway Maintenance and Construction Technology (AHMCT) Research Center has been developing robotic equipment and machinery for highway maintenance and construction operations. It is a cooperative venture between the University of Califo...
Framework and Method for Controlling a Robotic System Using a Distributed Computer Network
NASA Technical Reports Server (NTRS)
Sanders, Adam M. (Inventor); Strawser, Philip A. (Inventor); Barajas, Leandro G. (Inventor); Permenter, Frank Noble (Inventor)
2015-01-01
A robotic system for performing an autonomous task includes a humanoid robot having a plurality of compliant robotic joints, actuators, and other integrated system devices that are controllable in response to control data from various control points, and having sensors for measuring feedback data at the control points. The system includes a multi-level distributed control framework (DCF) for controlling the integrated system components over multiple high-speed communication networks. The DCF has a plurality of first controllers each embedded in a respective one of the integrated system components, e.g., the robotic joints, a second controller coordinating the components via the first controllers, and a third controller for transmitting a signal commanding performance of the autonomous task to the second controller. The DCF virtually centralizes all of the control data and the feedback data in a single location to facilitate control of the robot across the multiple communication networks.
Self-Reconfiguration Planning of Robot Embodiment for Inherent Safe Performance
NASA Astrophysics Data System (ADS)
Uchida, Masafumi; Nozawa, Akio; Asano, Hirotoshi; Onogaki, Hitoshi; Mizuno, Tota; Park, Young-Il; Ide, Hideto; Yokoyama, Shuichi
In the situation in which a robot and a human work together by collaborating with each other, a robot and a human share one working environment, and each interferes in each other. In other ward, it is impossible to avoid the physical contact and the interaction of force between a robot and a human. The boundary of each complex dynamic occupation area changes in the connection movement which is the component of collaborative works at this time. The main restraint condition which relates to the robustness of that connection movement is each physical charactristics, that is, the embodiment. A robot body is variability though the embodiment of a human is almost fixed. Therefore, the safe and the robust connection movement is brought when a robot has the robot body which is well suitable for the embodiment of a human. A purpose for this research is that the colaboration works between the self-reconfiguration robot and a human is realized. To achieve this purpose, a self-reconfiguration algorithm based on some indexes to evaluate a robot body in the macroscopic point of view was examined on a modular robot system of the 2-D lattice structure. In this paper, it investigated effect specially that the object of learning of each individual was limited to the cooperative behavior between the adjoining modules toward the macroscopic evaluation index.
NASA Astrophysics Data System (ADS)
Störkle, Denis Daniel; Seim, Patrick; Thyssen, Lars; Kuhlenkötter, Bernd
2016-10-01
This article describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet metal forming (ISF) machines, this system offers high geometrical form flexibility without the need of any part-dependent tools. The industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors present the influence of the part orientation and the forming sequence on the geometric accuracy. Their influence is illustrated with the help of various experimental results shown and interpreted within this article.
Evolutionary Initial Poses of Reduced D.O.F’s Quadruped Robot
NASA Astrophysics Data System (ADS)
Iida, Ken-Ichi; Nakata, Yoshitaka; Hira, Toshio; Kamano, Takuya; Suzuki, Takayuki
In this paper, an application of genetic algorithm for generation of evolutionary initial poses of a quadrupedal robot which reduced degrees of freedom is described. To reduce degree of freedom, each leg of the robot has a slider-crank mechanism and is driven by an actuator. Furthermore we introduced the forward movement mode and the rotating mode because the omnidirection movement should be made possible. To generate the suitable initial pose, the initial angle of four legs are coded under gray code and tuned by an estimation function in each mode with the genetic algorithm. As a result of generation, the cooperation of the legs is realized to move toward the omnidirection. The experimental results demonstrate that the proposed scheme is effective for generation of the suitable initial poses and the robot can walk smoothly with the generated patterns.
Telerobotics test bed for space structure assembly
NASA Technical Reports Server (NTRS)
Kitami, M.; Ogimoto, K.; Yasumoto, F.; Katsuragawa, T.; Itoko, T.; Kurosaki, Y.; Hirai, S.; Machida, K.
1994-01-01
A cooperative research on super long distance space telerobotics is now in progress both in Japan and USA. In this program. several key features will be tested, which can be applicable to the control of space robots as well as to terrestrial robots. Local (control) and remote (work) sites will be shared between Electrotechnical Lab (ETL) of MITI in Japan and Jet Propulsion Lab (JPL) in USA. The details of a test bed for this international program are discussed in this report.
Creature co-op: Achieving robust remote operations with a community of low-cost robots
NASA Technical Reports Server (NTRS)
Bonasso, R. Peter
1990-01-01
The concept is advanced of carrying out space based remote missions using a cooperative of low cost robot specialists rather than monolithic, multipurpose systems. A simulation is described wherein a control architecture for such a system of specialists is being investigated. Early results show such co-ops to be robust in the face of unforeseen circumstances. Descriptions of the platforms and sensors modeled and the beacon and retriever creatures that make up the co-op are included.
Multiple cues produced by a robotic fish modulate aggressive behaviour in Siamese fighting fishes.
Romano, Donato; Benelli, Giovanni; Donati, Elisa; Remorini, Damiano; Canale, Angelo; Stefanini, Cesare
2017-07-05
The use of robotics to establish social interactions between animals and robots, represents an elegant and innovative method to investigate animal behaviour. However, robots are still underused to investigate high complex and flexible behaviours, such as aggression. Here, Betta splendens was tested as model system to shed light on the effect of a robotic fish eliciting aggression. We evaluated how multiple signal systems, including a light stimulus, affect aggressive responses in B. splendens. Furthermore, we conducted experiments to estimate if aggressive responses were triggered by the biomimetic shape of fish replica, or whether any intruder object was effective as well. Male fishes showed longer and higher aggressive displays as puzzled stimuli from the fish replica increased. When the fish replica emitted its full sequence of cues, the intensity of aggression exceeded even that produced by real fish opponents. Fish replica shape was necessary for conspecific opponent perception, evoking significant aggressive responses. Overall, this study highlights that the efficacy of an artificial opponent eliciting aggressive behaviour in fish can be boosted by exposure to multiple signals. Optimizing the cue combination delivered by the robotic fish replica may be helpful to predict escalating levels of aggression.
Zhong, Xungao; Zhong, Xunyu; Peng, Xiafu
2013-10-08
In this paper, a global-state-space visual servoing scheme is proposed for uncalibrated model-independent robotic manipulation. The scheme is based on robust Kalman filtering (KF), in conjunction with Elman neural network (ENN) learning techniques. The global map relationship between the vision space and the robotic workspace is learned using an ENN. This learned mapping is shown to be an approximate estimate of the Jacobian in global space. In the testing phase, the desired Jacobian is arrived at using a robust KF to improve the ENN learning result so as to achieve robotic precise convergence of the desired pose. Meanwhile, the ENN weights are updated (re-trained) using a new input-output data pair vector (obtained from the KF cycle) to ensure robot global stability manipulation. Thus, our method, without requiring either camera or model parameters, avoids the corrupted performances caused by camera calibration and modeling errors. To demonstrate the proposed scheme's performance, various simulation and experimental results have been presented using a six-degree-of-freedom robotic manipulator with eye-in-hand configurations.
Visual Detection and Tracking System for a Spherical Amphibious Robot
Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun
2017-01-01
With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation. PMID:28420134
Visual Detection and Tracking System for a Spherical Amphibious Robot.
Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun
2017-04-15
With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation.
Influence of facial feedback during a cooperative human-robot task in schizophrenia.
Cohen, Laura; Khoramshahi, Mahdi; Salesse, Robin N; Bortolon, Catherine; Słowiński, Piotr; Zhai, Chao; Tsaneva-Atanasova, Krasimira; Di Bernardo, Mario; Capdevielle, Delphine; Marin, Ludovic; Schmidt, Richard C; Bardy, Benoit G; Billard, Aude; Raffard, Stéphane
2017-11-03
Rapid progress in the area of humanoid robots offers tremendous possibilities for investigating and improving social competences in people with social deficits, but remains yet unexplored in schizophrenia. In this study, we examined the influence of social feedbacks elicited by a humanoid robot on motor coordination during a human-robot interaction. Twenty-two schizophrenia patients and twenty-two matched healthy controls underwent a collaborative motor synchrony task with the iCub humanoid robot. Results revealed that positive social feedback had a facilitatory effect on motor coordination in the control participants compared to non-social positive feedback. This facilitatory effect was not present in schizophrenia patients, whose social-motor coordination was similarly impaired in social and non-social feedback conditions. Furthermore, patients' cognitive flexibility impairment and antipsychotic dosing were negatively correlated with patients' ability to synchronize hand movements with iCub. Overall, our findings reveal that patients have marked difficulties to exploit facial social cues elicited by a humanoid robot to modulate their motor coordination during human-robot interaction, partly accounted for by cognitive deficits and medication. This study opens new perspectives for comprehension of social deficits in this mental disorder.
NASA Technical Reports Server (NTRS)
Batten, Adam; Edwards, Graeme; Gerasimov, Vadim; Hoschke, Nigel; Isaacs, Peter; Lewis, Chris; Moore, Richard; Oppolzer, Florien; Price, Don; Prokopenko, Mikhail;
2010-01-01
This report describes a significant advance in the capability of the CSIRO/NASA structural health monitoring Concept Demonstrator (CD). The main thrust of the work has been the development of a mobile robotic agent, and the hardware and software modifications and developments required to enable the demonstrator to operate as a single, self-organizing, multi-agent system. This single-robot system is seen as the forerunner of a system in which larger numbers of small robots perform inspection and repair tasks cooperatively, by self-organization. While the goal of demonstrating self-organized damage diagnosis was not fully achieved in the time available, much of the work required for the final element that enables the robot to point the video camera and transmit an image has been completed. A demonstration video of the CD and robotic systems operating will be made and forwarded to NASA.
Robot-assisted ultrasound imaging: overview and development of a parallel telerobotic system.
Monfaredi, Reza; Wilson, Emmanuel; Azizi Koutenaei, Bamshad; Labrecque, Brendan; Leroy, Kristen; Goldie, James; Louis, Eric; Swerdlow, Daniel; Cleary, Kevin
2015-02-01
Ultrasound imaging is frequently used in medicine. The quality of ultrasound images is often dependent on the skill of the sonographer. Several researchers have proposed robotic systems to aid in ultrasound image acquisition. In this paper we first provide a short overview of robot-assisted ultrasound imaging (US). We categorize robot-assisted US imaging systems into three approaches: autonomous US imaging, teleoperated US imaging, and human-robot cooperation. For each approach several systems are introduced and briefly discussed. We then describe a compact six degree of freedom parallel mechanism telerobotic system for ultrasound imaging developed by our research team. The long-term goal of this work is to enable remote ultrasound scanning through teleoperation. This parallel mechanism allows for both translation and rotation of an ultrasound probe mounted on the top plate along with force control. Our experimental results confirmed good mechanical system performance with a positioning error of < 1 mm. Phantom experiments by a radiologist showed promising results with good image quality.
Coordinated Multiple Cadaver Use for Minimally Invasive Surgical Training
Blaschko, Sarah D.; Brooks, H. Mark; Dhuy, S. Michael; Charest-Shell, Cynthia; Clayman, Ralph V.
2007-01-01
Background: The human cadaver remains the gold standard for anatomic training and is highly useful when incorporated into minimally invasive surgical training programs. However, this valuable resource is often not used to its full potential due to a lack of multidisciplinary cooperation. Herein, we propose the coordinated multiple use of individual cadavers to better utilize anatomical resources and potentiate the availability of cadaver training. Methods: Twenty-two postgraduate surgeons participated in a robot-assisted surgical training course that utilized shared cadavers. All participants completed a Likert 4-scale satisfaction questionnaire after their training session. Cadaveric tissue quality and the quality of the training session related to this material were assessed. Results: Nine participants rated the quality of the cadaveric tissue as excellent, 7 as good, 5 as unsatisfactory, and 1 as poor. Overall, 72% of participants who operated on a previously used cadaver were satisfied with their training experience and did not perceive the previous use deleterious to their training. Conclusion: The coordinated use of cadavers, which allows for multiple cadaver use for different teaching sessions, is an excellent training method that increases availability of human anatomical material for minimally invasive surgical training. PMID:18237501
Hierarchical Modelling Of Mobile, Seeing Robots
NASA Astrophysics Data System (ADS)
Luh, Cheng-Jye; Zeigler, Bernard P.
1990-03-01
This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.
Hierarchical modelling of mobile, seeing robots
NASA Technical Reports Server (NTRS)
Luh, Cheng-Jye; Zeigler, Bernard P.
1990-01-01
This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.
Development of vegetation cutting tool attachments for the automated roadway debris vacuums.
DOT National Transportation Integrated Search
2008-12-01
The Advanced Highway Maintenance and Construction Technology (AHMCT) Research Center has been : developing robotic equipment and machinery for highway maintenance and construction operations. It is a : cooperative venture between the University of Ca...
NASA Technical Reports Server (NTRS)
Hennessey, Michael P.; Huang, Paul C.; Bunnell, Charles T.
1989-01-01
An efficient approach to cartesian motion and force control of a 7 degree of freedom (DOF) manipulator is presented. It is based on extending the active stiffness controller to the 7 DOF case in general and use of an efficient version of the gradient projection technique for solving the inverse kinematics problem. Cooperative control is achieved through appropriate configuration of individual manipulator controllers. In addition, other aspects of trajectory generation using standard techniques are integrated into the controller. The method is then applied to a specific manipulator of interest (Robotics Research T-710). Simulation of the kinematics, dynamics, and control are provided in the context of several scenarios: one pertaining to a noncontact pick and place operation; one relating to contour following where contact is made between the manipulator and environment; and one pertaining to cooperative control.
Satellite Servicing's Autonomous Rendezvous and Docking Testbed on the International Space Station
NASA Technical Reports Server (NTRS)
Naasz, Bo J.; Strube, Matthew; Van Eepoel, John; Barbee, Brent W.; Getzandanner, Kenneth M.
2011-01-01
The Space Servicing Capabilities Project (SSCP) at NASA's Goddard Space Flight Center (GSFC) has been tasked with developing systems for servicing space assets. Starting in 2009, the SSCP completed a study documenting potential customers and the business case for servicing, as well as defining several notional missions and required technologies. In 2010, SSCP moved to the implementation stage by completing several ground demonstrations and commencing development of two International Space Station (ISS) payloads-the Robotic Refueling Mission (RRM) and the Dextre Pointing Package (DPP)--to mitigate new technology risks for a robotic mission to service existing assets in geosynchronous orbit. This paper introduces the DPP, scheduled to fly in July of 2012 on the third operational SpaceX Dragon mission, and its Autonomous Rendezvous and Docking (AR&D) instruments. The combination of sensors and advanced avionics provide valuable on-orbit demonstrations of essential technologies for servicing existing vehicles, both cooperative and non-cooperative.
Klancar, Gregor; Kristan, Matej; Kovacic, Stanislav; Orqueda, Omar
2004-07-01
In this paper a global vision scheme for estimation of positions and orientations of mobile robots is presented. It is applied to robot soccer application which is a fast dynamic game and therefore needs an efficient and robust vision system implemented. General applicability of the vision system can be found in other robot applications such as mobile transport robots in production, warehouses, attendant robots, fast vision tracking of targets of interest and entertainment robotics. Basic operation of the vision system is divided into two steps. In the first, the incoming image is scanned and pixels are classified into a finite number of classes. At the same time, a segmentation algorithm is used to find corresponding regions belonging to one of the classes. In the second step, all the regions are examined. Selection of the ones that are a part of the observed object is made by means of simple logic procedures. The novelty is focused on optimization of the processing time needed to finish the estimation of possible object positions. Better results of the vision system are achieved by implementing camera calibration and shading correction algorithm. The former corrects camera lens distortion, while the latter increases robustness to irregular illumination conditions.
People Detection by a Mobile Robot Using Stereo Vision in Dynamic Indoor Environments
NASA Astrophysics Data System (ADS)
Méndez-Polanco, José Alberto; Muñoz-Meléndez, Angélica; Morales, Eduardo F.
People detection and tracking is a key issue for social robot design and effective human robot interaction. This paper addresses the problem of detecting people with a mobile robot using a stereo camera. People detection using mobile robots is a difficult task because in real world scenarios it is common to find: unpredictable motion of people, dynamic environments, and different degrees of human body occlusion. Additionally, we cannot expect people to cooperate with the robot to perform its task. In our people detection method, first, an object segmentation method that uses the distance information provided by a stereo camera is used to separate people from the background. The segmentation method proposed in this work takes into account human body proportions to segment people and provides a first estimation of people location. After segmentation, an adaptive contour people model based on people distance to the robot is used to calculate a probability of detecting people. Finally, people are detected merging the probabilities of the contour people model and by evaluating evidence over time by applying a Bayesian scheme. We present experiments on detection of standing and sitting people, as well as people in frontal and side view with a mobile robot in real world scenarios.
Design Of Robots For Outer Space
NASA Technical Reports Server (NTRS)
Roston, Gerald P.
1990-01-01
Report discusses design of robots for use in zero gravity and vacuum, with attention to differences between requirements imposed on designs by outer space and by terrestrial applications. Terrestrial robots designed for multiple purposes and for minimal cost. Outer-space robots designed specialized to one task where cost has relatively low priority. Design optimal in one environment unlikely optimal in another.
New nonlinear control algorithms for multiple robot arms
NASA Technical Reports Server (NTRS)
Tarn, T. J.; Bejczy, A. K.; Yun, X.
1988-01-01
Multiple coordinated robot arms are modeled by considering the arms as closed kinematic chains and as a force-constrained mechanical system working on the same object simultaneously. In both formulations, a novel dynamic control method is discussed. It is based on feedback linearization and simultaneous output decoupling technique. By applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, it was found that by choosing a general output equation it became possible simultaneously to superimpose the position and velocity error feedback with the force-torque error feedback in the task space.
Human-Robot Teaming for Hydrologic Data Gathering at Multiple Scales
NASA Astrophysics Data System (ADS)
Peschel, J.; Young, S. N.
2017-12-01
The use of personal robot-assistive technology by researchers and practitioners for hydrologic data gathering has grown in recent years as barriers to platform capability, cost, and human-robot interaction have been overcome. One consequence to this growth is a broad availability of unmanned platforms that might or might not be suitable for a specific hydrologic investigation. Through multiple field studies, a set of recommendations has been developed to help guide novice through experienced users in choosing the appropriate unmanned platforms for a given application. This talk will present a series of hydrologic data sets gathered using a human-robot teaming approach that has leveraged unmanned aerial, ground, and surface vehicles over multiple scales. The field case studies discussed will be connected to the best practices, also provided in the presentation. This talk will be of interest to geoscience researchers and practitioners, in general, as well as those working in fields related to emerging technologies.
Current and Future Uses of Aluminum in the Automotive Industry
NASA Astrophysics Data System (ADS)
Long, R. S.; Boettcher, E.; Crawford, D.
2017-12-01
Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher-strength aluminum materials needed for strength-driven safety-critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225°C. A demonstration part has been developed that is representative of the forming challenges within a current hot-stamped door ring component. This part tooling has been built and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.
Current and Future Uses of Aluminum in the Automotive Industry
Long, R. S.; Boettcher, E.; Crawford, D.
2017-08-29
Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher strength aluminum materials needed for strength driven safety critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225° C. A demonstration part has been developed that is representative of the forming challenges within a current hot stamped door ring component. This part tooling has been builtmore » and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.« less
Current and Future Uses of Aluminum in the Automotive Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, R. S.; Boettcher, E.; Crawford, D.
Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher strength aluminum materials needed for strength driven safety critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225° C. A demonstration part has been developed that is representative of the forming challenges within a current hot stamped door ring component. This part tooling has been builtmore » and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.« less
Distance-Based Behaviors for Low-Complexity Control in Multiagent Robotics
NASA Astrophysics Data System (ADS)
Pierpaoli, Pietro
Several biological examples show that living organisms cooperate to collectively accomplish tasks impossible for single individuals. More importantly, this coordination is often achieved with a very limited set of information. Inspired by these observations, research on autonomous systems has focused on the development of distributed control techniques for control and guidance of groups of autonomous mobile agents, or robots. From an engineering perspective, when coordination and cooperation is sought in large ensembles of robotic vehicles, a reduction in hardware and algorithms' complexity becomes mandatory from the very early stages of the project design. The research for solutions capable of lowering power consumption, cost and increasing reliability are thus worth investigating. In this work, we studied low-complexity techniques to achieve cohesion and control on swarms of autonomous robots. Starting from an inspiring example with two-agents, we introduced effects of neighbors' relative positions on control of an autonomous agent. The extension of this intuition addressed the control of large ensembles of autonomous vehicles, and was applied in the form of a herding-like technique. To this end, a low-complexity distance-based aggregation protocol was defined. We first showed that our protocol produced a cohesion aggregation among the agent while avoiding inter-agent collisions. Then, a feedback leader-follower architecture was introduced for the control of the swarm. We also described how proximity measures and probability of collisions with neighbors can also be used as source of information in highly populated environments.
Flocking of multiple mobile robots based on backstepping.
Dong, Wenjie
2011-04-01
This paper considers the flocking of multiple nonholonomic wheeled mobile robots. Distributed controllers are proposed with the aid of backstepping techniques, results from graph theory, and singular perturbation theory. The proposed controllers can make the states of a group of robots converge to a desired geometric pattern whose centroid moves along a desired trajectory under the condition that the desired trajectory is available to a portion of the group of robots. Since communication delay is inevitable in distributed control, its effect on the performance of the closed-loop systems is analyzed. It is shown that the proposed controllers work well if communication delays are constant. To show effectiveness of the proposed controllers, simulation results are included.
Task allocation among multiple intelligent robots
NASA Technical Reports Server (NTRS)
Gasser, L.; Bekey, G.
1987-01-01
Researchers describe the design of a decentralized mechanism for allocating assembly tasks in a multiple robot assembly workstation. Currently, the approach focuses on distributed allocation to explore its feasibility and its potential for adaptability to changing circumstances, rather than for optimizing throughput. Individual greedy robots make their own local allocation decisions using both dynamic allocation policies which propagate through a network of allocation goals, and local static and dynamic constraints describing which robots are elibible for which assembly tasks. Global coherence is achieved by proper weighting of allocation pressures propagating through the assembly plan. Deadlock avoidance and synchronization is achieved using periodic reassessments of local allocation decisions, ageing of allocation goals, and short-term allocation locks on goals.
SEL2 servicing: increased science return via on-orbit propellant replenishment
NASA Astrophysics Data System (ADS)
Reed, Benjamin B.; DeWeese, Keith; Kienlen, Michael; Aranyos, Thomas; Pellegrino, Joseph; Bacon, Charles; Qureshi, Atif
2016-07-01
Spacecraft designers are driving observatories to the distant Sun-Earth Lagrange Point 2 (SEL2) to meet ever-increasing science requirements. The mass fraction dedicated to propellant for these observatories to reach and operate at SEL2 will be allocated with the upmost care, as it comes at the expense of optics and instrument masses. As such, these observatories could benefit from on-orbit refueling, allowing greater dry-to-wet mass ratio at launch and/or longer mission life. NASA is developing technologies, capabilities and integrated mission designs for multiple servicing applications in low Earth orbit (LEO), geosynchronous Earth orbit (GEO) and cisluner locations. Restore-L, a mission officially in formulation, will launch a free-flying robotic servicer to refuel a government-owned satellite in LEO by mid 2020. This paper will detail the results of a point design mission study to extend Restore-L servicing technologies from LEO to SEL2. This SEL2 mission would launch an autonomous, robotic servicer spacecraft equipped to extend the life of two space assets through refueling. Two space platforms were chosen to 1) drive the requirements for achieving SEL2 orbit and rendezvous with a spacecraft, and 2) to drive the requirements to translate within SEL2 to conduct a follow-on servicing mission. Two fuels, xenon and hydrazine, were selected to assess a multiple delivery system. This paper will address key mission drivers, such as servicer autonomy (necessitated due to communications latency at L2). Also discussed will be the value of adding cooperative servicing elements to the client observatories to reduce mission risk.
The telesupervised adaptive ocean sensor fleet
NASA Astrophysics Data System (ADS)
Elfes, Alberto; Podnar, Gregg W.; Dolan, John M.; Stancliff, Stephen; Lin, Ellie; Hosler, Jeffrey C.; Ames, Troy J.; Moisan, John; Moisan, Tiffany A.; Higinbotham, John; Kulczycki, Eric A.
2007-09-01
We are developing a multi-robot science exploration architecture and system called the Telesupervised Adaptive Ocean Sensor Fleet (TAOSF). TAOSF uses a group of robotic boats (the OASIS platforms) to enable in-situ study of ocean surface and sub-surface phenomena. The OASIS boats are extended-deployment autonomous ocean surface vehicles, whose development is funded separately by the National Oceanic and Atmospheric Administration (NOAA). The TAOSF architecture provides an integrated approach to multi-vehicle coordination and sliding human-vehicle autonomy. It allows multiple mobile sensing assets to function in a cooperative fashion, and the operating mode of the vessels to range from autonomous control to teleoperated control. In this manner, TAOSF increases data-gathering effectiveness and science return while reducing demands on scientists for tasking, control, and monitoring. It combines and extends prior related work done by the authors and their institutions. The TAOSF architecture is applicable to other areas where multiple sensing assets are needed, including ecological forecasting, water management, carbon management, disaster management, coastal management, homeland security, and planetary exploration. The first field application chosen for TAOSF is the characterization of Harmful Algal Blooms (HABs). Several components of the TAOSF system have been tested, including the OASIS boats, the communications and control interfaces between the various hardware and software subsystems, and an airborne sensor validation system. Field tests in support of future HAB characterization were performed under controlled conditions, using rhodamine dye as a HAB simulant that was dispersed in a pond. In this paper, we describe the overall TAOSF architecture and its components, discuss the initial tests conducted and outline the next steps.
Sandia National Laboratories: Cooperative Monitoring Center
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Cooperative Research and Development
; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Cooperative Robotics and the Search for Extraterrestrial Life
NASA Technical Reports Server (NTRS)
Lupisella, M. L.
2000-01-01
If we think tenuous abodes of life may be hiding in remote extraterrestrial environmental niches, and if we want to assess the biological status of a given locale or entire planet before sending humans (perhaps because of contamination concerns or other motivations) then we face the challenge of robotically exploring a large space efficiently and in enough detail to have confidence in our assessment of the biological status of the environment in question. On our present schedule of perhaps two or so missions per opportunity, we will likely need a different exploratory approach than singular stationary landers or singular rover missions or sample return, because there appear to be fundamental limitations in these mission profiles to obtain the many samples we will likely need if we want to have confidence in assessing the biological status of an environment in which life could be hiding in remote environmental niches. Singular rover missions can potentially accommodate sampling over a fairly large area, but are still limited by range and can be a single point of failure. More importantly, such mission profiles have limited payload capabilities which are unlikely to meet the demanding requirements of life-detection. Sample return has the advantage of allowing sophisticated analysis of the sample, but also has the severe limitations associated with only being able to bring back a few samples. This presentation will suggest two cooperative robotic approaches for exploration that have the potential to overcome these difficulties and facilitate efficient and thorough life-detecting exploration of a large space. Given the two premises stated above, it appears at least two fundamental challenges have to be met simultaneously: (1) coverage of a large space and (2) bringing to bear a sophisticated suite of detection and experimental payloads on any specific location in order to address a major challenge in looking for extraterrestrial life: namely, executing a wide variety of detection scenarios and in situ experiments in order to gather the required data for a confident assessment that life has been detected and to, more generally, cover a wide range of extraterrestrial life possibilities. Cooperative robotics lends itself to this kind of problem because cooperation among the combined capabilities of a variety of simple single function agents can give rise to fairly complex task execution such as the search for and detection of extraterrestrial life.
Cooperative Robotics and the Search for Extraterrestrial Life
NASA Technical Reports Server (NTRS)
Lupisella, Mark L.
2000-01-01
If we think tenuous abodes of life may be hiding in remote extraterrestrial environmental niches, and if we want to assess the biological status of a given locale or entire planet before sending humans (perhaps because of contamination concerns or other motivations) then we face the challenge of robotically exploring a large space efficiently and in enough detail to have confidence in our assessment of the biological status of the environment in question. On our present schedule of perhaps two or so missions per opportunity, we will likely need a different exploratory approach than singular stationary landers or singular rover missions or sample return, because there appear to be fundamental limitations in these mission profiles to-obtain the many samples we will likely need if we want to have confidence in assessing the biological status of an environment in which life could be hiding in remote environmental niches. Singular rover missions can potentially accommodate sampling over a fairly large area, but are still limited by range and can be a single point of failure. More importantly, such mission profiles have limited payload capabilities which are unlikely to meet the demanding requirements of life-detection. Sample return has the advantage of allowing sophisticated analysis of the sample, but also has the severe limitations associated with only being able to bring back a few samples. This presentation will suggest two cooperative robotic approaches for exploration that have the potential to overcome these difficulties and facilitate efficient and thorough life-detecting exploration of a large space. Given the two premises state above, it appears at least two fundamental challenges have to be met simultaneously: coverage of a large space and bringing to bear a sophisticated suite of detection and experimental payloads on any specific location in order to address a major challenge in looking for extraterrestrial life: namely, executing a wide variety of detection scenarios and in situ experiments in order to gather the required data for a confident assessment that life has been detected and to, more generally, cover a wide range of extraterrestrial life possibilities. Cooperative robotics ]ends itself to this kind of problem because cooperation among the combined capabilities of a variety of simple single function agents can give rise to fairly complex task execution such as the search for and detection of extraterrestrial life.
Robust performance of multiple tasks by a mobile robot
NASA Technical Reports Server (NTRS)
Beckerman, Martin; Barnett, Deanna L.; Dickens, Mike; Weisbin, Charles R.
1989-01-01
While there have been many successful mobile robot experiments, only a few papers have addressed issues pertaining to the range of applicability, or robustness, of robotic systems. The purpose of this paper is to report results of a series of benchmark experiments done to determine and quantify the robustness of an integrated hardware and software system of a mobile robot.
The Affordance Template ROS Package for Robot Task Programming
NASA Technical Reports Server (NTRS)
Hart, Stephen; Dinh, Paul; Hambuchen, Kimberly
2015-01-01
This paper introduces the Affordance Template ROS package for quickly programming, adjusting, and executing robot applications in the ROS RViz environment. This package extends the capabilities of RViz interactive markers by allowing an operator to specify multiple end-effector waypoint locations and grasp poses in object-centric coordinate frames and to adjust these waypoints in order to meet the run-time demands of the task (specifically, object scale and location). The Affordance Template package stores task specifications in a robot-agnostic XML description format such that it is trivial to apply a template to a new robot. As such, the Affordance Template package provides a robot-generic ROS tool appropriate for building semi-autonomous, manipulation-based applications. Affordance Templates were developed by the NASA-JSC DARPA Robotics Challenge (DRC) team and have since successfully been deployed on multiple platforms including the NASA Valkyrie and Robonaut 2 humanoids, the University of Texas Dreamer robot and the Willow Garage PR2. In this paper, the specification and implementation of the affordance template package is introduced and demonstrated through examples for wheel (valve) turning, pick-and-place, and drill grasping, evincing its utility and flexibility for a wide variety of robot applications.
Control strategies for robots in contact
NASA Astrophysics Data System (ADS)
Park, Jaeheung
In the field of robotics, there is a growing need to provide robots with the ability to interact with complex and unstructured environments. Operations in such environments pose significant challenges in terms of sensing, planning, and control. In particular, it is critical to design control algorithms that account for the dynamics of the robot and environment at multiple contacts. The work in this thesis focuses on the development of a control framework that addresses these issues. The approaches are based on the operational space control framework and estimation methods. By accounting for the dynamics of the robot and environment, modular and systematic methods are developed for robots interacting with the environment at multiple locations. The proposed force control approach demonstrates high performance in the presence of uncertainties. Building on this basic capability, new control algorithms have been developed for haptic teleoperation, multi-contact interaction with the environment, and whole body motion of non-fixed based robots. These control strategies have been experimentally validated through simulations and implementations on physical robots. The results demonstrate the effectiveness of the new control structure and its robustness to uncertainties. The contact control strategies presented in this thesis are expected to contribute to the needs in advanced controller design for humanoid and other complex robots interacting with their environments.
NASA Astrophysics Data System (ADS)
Yoo, Sung Jin
2016-11-01
This paper presents a theoretical design approach for output-feedback formation tracking of multiple mobile robots under wheel perturbations. It is assumed that these perturbations are unknown and the linear and angular velocities of the robots are unmeasurable. First, adaptive state observers for estimating unmeasurable velocities of the robots are developed under the robots' kinematics and dynamics including wheel perturbation effects. Then, we derive a virtual-structure-based formation tracker scheme according to the observer dynamic surface design procedure. The main difficulty of the output-feedback control design is to manage the coupling problems between unmeasurable velocities and unknown wheel perturbation effects. These problems are avoided by using the adaptive technique and the function approximation property based on fuzzy logic systems. From the Lyapunov stability analysis, it is shown that point tracking errors of each robot and synchronisation errors for the desired formation converge to an adjustable neighbourhood of the origin, while all signals in the controlled closed-loop system are semiglobally uniformly ultimately bounded.
Spline-Screw Multiple-Rotation Mechanism
NASA Technical Reports Server (NTRS)
Vranish, John M.
1994-01-01
Mechanism functions like combined robotic gripper and nut runner. Spline-screw multiple-rotation mechanism related to spline-screw payload-fastening system described in (GSC-13454). Incorporated as subsystem in alternative version of system. Mechanism functions like combination of robotic gripper and nut runner; provides both secure grip and rotary actuation of other parts of system. Used in system in which no need to make or break electrical connections to payload during robotic installation or removal of payload. More complicated version needed to make and break electrical connections. Mechanism mounted in payload.
Distributed data fusion across multiple hard and soft mobile sensor platforms
NASA Astrophysics Data System (ADS)
Sinsley, Gregory
One of the biggest challenges currently facing the robotics field is sensor data fusion. Unmanned robots carry many sophisticated sensors including visual and infrared cameras, radar, laser range finders, chemical sensors, accelerometers, gyros, and global positioning systems. By effectively fusing the data from these sensors, a robot would be able to form a coherent view of its world that could then be used to facilitate both autonomous and intelligent operation. Another distinct fusion problem is that of fusing data from teammates with data from onboard sensors. If an entire team of vehicles has the same worldview they will be able to cooperate much more effectively. Sharing worldviews is made even more difficult if the teammates have different sensor types. The final fusion challenge the robotics field faces is that of fusing data gathered by robots with data gathered by human teammates (soft sensors). Humans sense the world completely differently from robots, which makes this problem particularly difficult. The advantage of fusing data from humans is that it makes more information available to the entire team, thus helping each agent to make the best possible decisions. This thesis presents a system for fusing data from multiple unmanned aerial vehicles, unmanned ground vehicles, and human observers. The first issue this thesis addresses is that of centralized data fusion. This is a foundational data fusion issue, which has been very well studied. Important issues in centralized fusion include data association, classification, tracking, and robotics problems. Because these problems are so well studied, this thesis does not make any major contributions in this area, but does review it for completeness. The chapter on centralized fusion concludes with an example unmanned aerial vehicle surveillance problem that demonstrates many of the traditional fusion methods. The second problem this thesis addresses is that of distributed data fusion. Distributed data fusion is a younger field than centralized fusion. The main issues in distributed fusion that are addressed are distributed classification and distributed tracking. There are several well established methods for performing distributed fusion that are first reviewed. The chapter on distributed fusion concludes with a multiple unmanned vehicle collaborative test involving an unmanned aerial vehicle and an unmanned ground vehicle. The third issue this thesis addresses is that of soft sensor only data fusion. Soft-only fusion is a newer field than centralized or distributed hard sensor fusion. Because of the novelty of the field, the chapter on soft only fusion contains less background information and instead focuses on some new results in soft sensor data fusion. Specifically, it discusses a novel fuzzy logic based soft sensor data fusion method. This new method is tested using both simulations and field measurements. The biggest issue addressed in this thesis is that of combined hard and soft fusion. Fusion of hard and soft data is the newest area for research in the data fusion community; therefore, some of the largest theoretical contributions in this thesis are in the chapter on combined hard and soft fusion. This chapter presents a novel combined hard and soft data fusion method based on random set theory, which processes random set data using a particle filter. Furthermore, the particle filter is designed to be distributed across multiple robots and portable computers (used by human observers) so that there is no centralized failure point in the system. After laying out a theoretical groundwork for hard and soft sensor data fusion the thesis presents practical applications for hard and soft sensor data fusion in simulation. Through a series of three progressively more difficult simulations, some important hard and soft sensor data fusion capabilities are demonstrated. The first simulation demonstrates fusing data from a single soft sensor and a single hard sensor in order to track a car that could be driving normally or erratically. The second simulation adds the extra complication of classifying the type of target to the simulation. The third simulation uses multiple hard and soft sensors, with a limited field of view, to track a moving target and classify it as a friend, foe, or neutral. The final chapter builds on the work done in previous chapters by performing a field test of the algorithms for hard and soft sensor data fusion. The test utilizes an unmanned aerial vehicle, an unmanned ground vehicle, and a human observer with a laptop. The test is designed to mimic a collaborative human and robot search and rescue problem. This test makes some of the most important practical contributions of the thesis by showing that the algorithms that have been developed for hard and soft sensor data fusion are capable of running in real time on relatively simple hardware.
2013-03-30
Abstract: We study multi-robot routing problems (MR- LDR ) where a team of robots has to visit a set of given targets with linear decreasing rewards over...time, such as required for the delivery of goods to rescue sites after disasters. The objective of MR- LDR is to find an assignment of targets to...We develop a mixed integer program that solves MR- LDR optimally with a flow-type formulation and can be solved faster than the standard TSP-type
Control Of A Serpentine Robot For Inspection Tasks
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Colbaugh, Richard D.; Glass, Kristin L.
1996-01-01
Efficient, robust kinematic control scheme developed to control serpentine robot designed to inspect complex structure. Takes full advantage of multiple redundant degrees of freedom of robot to provide considerable dexterity for maneuvering through workspace cluttered with stationary obstacles at initially unknown positions. Control scheme produces slithering motion.
Integration of Haptics in Agricultural Robotics
NASA Astrophysics Data System (ADS)
Kannan Megalingam, Rajesh; Sreekanth, M. M.; Sivanantham, Vinu; Sai Kumar, K.; Ghanta, Sriharsha; Surya Teja, P.; Reddy, Rajesh G.
2017-08-01
Robots can differentiate with open loop system and closed loop system robots. We face many problems when we do not have a feedback from robots. In this research paper, we are discussing all possibilities to achieve complete closed loop system for Multiple-DOF Robotic Arm, which is used in a coconut tree climbing and cutting robot by introducing a Haptic device. We are working on various sensors like tactile, vibration, force and proximity sensors for getting feedback. For monitoring the robotic arm achieved by graphical user interference software which simulates the working of the robotic arm, send the feedback of all the real time analog values which are produced by various sensors and provide real-time graphs for estimate the efficiency of the Robot.
Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor
NASA Technical Reports Server (NTRS)
Prinz, F. B.
1991-01-01
Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm.
Cooperative terrain model acquisition by a team of two or three point-robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, N.S.V.; Protopopescu, V.; Manickam, N.
1996-04-01
We address the model acquisition problem for an unknown planar terrain by a team of two or three robots. The terrain is cluttered by a finite number of polygonal obstacles whose shapes and positions are unknown. The robots are point-sized and equipped with visual sensors which acquire all visible parts of the terrain by scan operations executed from their locations. The robots communicate with each other via wireless connection. The performance is measured by the number of the sensor (scan) operations which are assumed to be the most time-consuming of all the robot operations. We employ the restricted visibility graphmore » methods in a hierarchical setup. For terrains with convex obstacles and for teams of n(= 2, 3) robots, we prove that the sensing time is reduced by a factor of 1/n. For terrains with concave corners, the performance of the algorithm depends on the number of concave regions and their depths. A hierarchical decomposition of the restricted visibility graph into n-connected and (n - 1)-or-less connected components is considered. The performance for the n(= 2, 3) robot team is expressed in terms of the sizes of n-connected components, and the sizes and diameters of (n - 1)-or-less connected components.« less
Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles.
Liu, Quan; Liu, Aiming; Meng, Wei; Ai, Qingsong; Xie, Sheng Q
2017-01-01
Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs) is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance control method of a soft ankle rehabilitation robot that is driven by four PMAs configured in parallel to enable three degrees of freedom movement of the ankle joint. A new hierarchical compliance control structure, including a low-level compliance adjustment controller in joint space and a high-level admittance controller in task space, is designed. An adaptive compliance control paradigm is further developed by taking into account patient's active contribution and movement ability during a previous period of time, in order to provide robot assistance only when it is necessarily required. Experiments on healthy and impaired human subjects were conducted to verify the adaptive hierarchical compliance control scheme. The results show that the robot hierarchical compliance can be online adjusted according to the participant's assessment. The robot reduces its assistance output when participants contribute more and vice versa , thus providing a potentially feasible solution to the patient-in-loop cooperative training strategy.
Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles
Liu, Quan; Liu, Aiming; Meng, Wei; Ai, Qingsong; Xie, Sheng Q.
2017-01-01
Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs) is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance control method of a soft ankle rehabilitation robot that is driven by four PMAs configured in parallel to enable three degrees of freedom movement of the ankle joint. A new hierarchical compliance control structure, including a low-level compliance adjustment controller in joint space and a high-level admittance controller in task space, is designed. An adaptive compliance control paradigm is further developed by taking into account patient’s active contribution and movement ability during a previous period of time, in order to provide robot assistance only when it is necessarily required. Experiments on healthy and impaired human subjects were conducted to verify the adaptive hierarchical compliance control scheme. The results show that the robot hierarchical compliance can be online adjusted according to the participant’s assessment. The robot reduces its assistance output when participants contribute more and vice versa, thus providing a potentially feasible solution to the patient-in-loop cooperative training strategy. PMID:29255412
Bruemmer, David J [Idaho Falls, ID
2009-11-17
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.
SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots.
Zhao, Jing; Li, Wei; Mao, Xiaoqian; Li, Mengfan
2015-11-24
Brain-Robot Interaction (BRI), which provides an innovative communication pathway between human and a robotic device via brain signals, is prospective in helping the disabled in their daily lives. The overall goal of our method is to establish an SSVEP-based experimental procedure by integrating multiple software programs, such as OpenViBE, Choregraph, and Central software as well as user developed programs written in C++ and MATLAB, to enable the study of brain-robot interaction with humanoid robots. This is achieved by first placing EEG electrodes on a human subject to measure the brain responses through an EEG data acquisition system. A user interface is used to elicit SSVEP responses and to display video feedback in the closed-loop control experiments. The second step is to record the EEG signals of first-time subjects, to analyze their SSVEP features offline, and to train the classifier for each subject. Next, the Online Signal Processor and the Robot Controller are configured for the online control of a humanoid robot. As the final step, the subject completes three specific closed-loop control experiments within different environments to evaluate the brain-robot interaction performance. The advantage of this approach is its reliability and flexibility because it is developed by integrating multiple software programs. The results show that using this approach, the subject is capable of interacting with the humanoid robot via brain signals. This allows the mind-controlled humanoid robot to perform typical tasks that are popular in robotic research and are helpful in assisting the disabled.
SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots
Zhao, Jing; Li, Wei; Mao, Xiaoqian; Li, Mengfan
2015-01-01
Brain-Robot Interaction (BRI), which provides an innovative communication pathway between human and a robotic device via brain signals, is prospective in helping the disabled in their daily lives. The overall goal of our method is to establish an SSVEP-based experimental procedure by integrating multiple software programs, such as OpenViBE, Choregraph, and Central software as well as user developed programs written in C++ and MATLAB, to enable the study of brain-robot interaction with humanoid robots. This is achieved by first placing EEG electrodes on a human subject to measure the brain responses through an EEG data acquisition system. A user interface is used to elicit SSVEP responses and to display video feedback in the closed-loop control experiments. The second step is to record the EEG signals of first-time subjects, to analyze their SSVEP features offline, and to train the classifier for each subject. Next, the Online Signal Processor and the Robot Controller are configured for the online control of a humanoid robot. As the final step, the subject completes three specific closed-loop control experiments within different environments to evaluate the brain-robot interaction performance. The advantage of this approach is its reliability and flexibility because it is developed by integrating multiple software programs. The results show that using this approach, the subject is capable of interacting with the humanoid robot via brain signals. This allows the mind-controlled humanoid robot to perform typical tasks that are popular in robotic research and are helpful in assisting the disabled. PMID:26650051
LABRADOR: a learning autonomous behavior-based robot for adaptive detection and object retrieval
NASA Astrophysics Data System (ADS)
Yamauchi, Brian; Moseley, Mark; Brookshire, Jonathan
2013-01-01
As part of the TARDEC-funded CANINE (Cooperative Autonomous Navigation in a Networked Environment) Program, iRobot developed LABRADOR (Learning Autonomous Behavior-based Robot for Adaptive Detection and Object Retrieval). LABRADOR was based on the rugged, man-portable, iRobot PackBot unmanned ground vehicle (UGV) equipped with an explosives ordnance disposal (EOD) manipulator arm and a custom gripper. For LABRADOR, we developed a vision-based object learning and recognition system that combined a TLD (track-learn-detect) filter based on object shape features with a color-histogram-based object detector. Our vision system was able to learn in real-time to recognize objects presented to the robot. We also implemented a waypoint navigation system based on fused GPS, IMU (inertial measurement unit), and odometry data. We used this navigation capability to implement autonomous behaviors capable of searching a specified area using a variety of robust coverage strategies - including outward spiral, random bounce, random waypoint, and perimeter following behaviors. While the full system was not integrated in time to compete in the CANINE competition event, we developed useful perception, navigation, and behavior capabilities that may be applied to future autonomous robot systems.
NASA Technical Reports Server (NTRS)
Hwang, James; Campbell, Perry; Ross, Mike; Price, Charles R.; Barron, Don
1989-01-01
An integrated operating environment was designed to incorporate three general purpose robots, sensors, and end effectors, including Force/Torque Sensors, Tactile Array sensors, Tactile force sensors, and Force-sensing grippers. The design and implementation of: (1) the teleoperation of a general purpose PUMA robot; (2) an integrated sensor hardware/software system; (3) the force-sensing gripper control; (4) the host computer system for dual Robotic Research arms; and (5) the Ethernet integration are described.
NASA Astrophysics Data System (ADS)
Su, Qi; Li, Aming; Wang, Long
2017-02-01
Spatial reciprocity is generally regarded as a positive rule facilitating the evolution of cooperation. However, a few recent studies show that, in the snowdrift game, spatial structure still could be detrimental to cooperation. Here we propose a model of multiple interactive dynamics, where each individual can cooperate and defect simultaneously against different neighbors. We realize individuals' multiple interactions simply by endowing them with strategies relevant to probabilities, and every one decides to cooperate or defect with a probability. With multiple interactive dynamics, the cooperation level in square lattices is higher than that in the well-mixed case for a wide range of cost-to-benefit ratio r, implying that spatial structure favors cooperative behavior in the snowdrift game. Moreover, in square lattices, the most favorable strategy follows a simple relation of r, which confers theoretically the average evolutionary frequency of cooperative behavior. We further extend our study to various homogeneous and heterogeneous networks, which demonstrates the robustness of our results. Here multiple interactive dynamics stabilizes the positive role of spatial structure on the evolution of cooperation and individuals' distinct reactions to different neighbors can be a new line in understanding the emergence of cooperation.
Lai, Ying-Chih; Deng, Jianan; Liu, Ruiyuan; Hsiao, Yung-Chi; Zhang, Steven L; Peng, Wenbo; Wu, Hsing-Mei; Wang, Xingfu; Wang, Zhong Lin
2018-06-04
Robots that can move, feel, and respond like organisms will bring revolutionary impact to today's technologies. Soft robots with organism-like adaptive bodies have shown great potential in vast robot-human and robot-environment applications. Developing skin-like sensory devices allows them to naturally sense and interact with environment. Also, it would be better if the capabilities to feel can be active, like real skin. However, challenges in the complicated structures, incompatible moduli, poor stretchability and sensitivity, large driving voltage, and power dissipation hinder applicability of conventional technologies. Here, various actively perceivable and responsive soft robots are enabled by self-powered active triboelectric robotic skins (tribo-skins) that simultaneously possess excellent stretchability and excellent sensitivity in the low-pressure regime. The tribo-skins can actively sense proximity, contact, and pressure to external stimuli via self-generating electricity. The driving energy comes from a natural triboelectrification effect involving the cooperation of contact electrification and electrostatic induction. The perfect integration of the tribo-skins and soft actuators enables soft robots to perform various actively sensing and interactive tasks including actively perceiving their muscle motions, working states, textile's dampness, and even subtle human physiological signals. Moreover, the self-generating signals can drive optoelectronic devices for visual communication and be processed for diverse sophisticated uses. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Decision rules for spaceborne operations planning
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.
1992-01-01
Recent study of Space Station Freedom requirements for extravehicular activity (EVA) to perform external maintenance tasks emphasize an oversubscription of resources for performing on-orbit tasks. Extravehicular robotics (EVR) and cooperative EVA combined with EVR (using crew and robots synergistically to perform tasks) have been suggested as a part of the solution to reduce EVA. The question remains however, 'Under what conditions is it cost-effective to use the EVA and/or EVR resource.' The answer to such a question also has implications for the Space Station Freedom and its external maintenance as well as the Space Exploration Initiative (SEI) where the issue of work-system allocation is magnified by the long distances and scope of EVA work. This paper describes a simple technique of interest to operational planners and robot technology planners for determining in an economic context whether to use EVA alone, EVR alone, or Cooperative EVA. It is also shown that given: (1) the task times for these alternatives; and (2) the marginal costs of EVA, EVR, and IVA, the appropriate work system for performing the task can be identified. The paper illustrates how the work system choice is based on the ratio of costs. An example using Space Station Freedom data is presented to illustrate the trade-offs among alternative work-systems.
Capturing method for integral three-dimensional imaging using multiviewpoint robotic cameras
NASA Astrophysics Data System (ADS)
Ikeya, Kensuke; Arai, Jun; Mishina, Tomoyuki; Yamaguchi, Masahiro
2018-03-01
Integral three-dimensional (3-D) technology for next-generation 3-D television must be able to capture dynamic moving subjects with pan, tilt, and zoom camerawork as good as in current TV program production. We propose a capturing method for integral 3-D imaging using multiviewpoint robotic cameras. The cameras are controlled through a cooperative synchronous system composed of a master camera controlled by a camera operator and other reference cameras that are utilized for 3-D reconstruction. When the operator captures a subject using the master camera, the region reproduced by the integral 3-D display is regulated in real space according to the subject's position and view angle of the master camera. Using the cooperative control function, the reference cameras can capture images at the narrowest view angle that does not lose any part of the object region, thereby maximizing the resolution of the image. 3-D models are reconstructed by estimating the depth from complementary multiviewpoint images captured by robotic cameras arranged in a two-dimensional array. The model is converted into elemental images to generate the integral 3-D images. In experiments, we reconstructed integral 3-D images of karate players and confirmed that the proposed method satisfied the above requirements.
Liu, Shaoli; Xia, Zeyang; Liu, Jianhua; Xu, Jing; Ren, He; Lu, Tong; Yang, Xiangdong
2016-01-01
The “robotic-assisted liver tumor coagulation therapy” (RALTCT) system is a promising candidate for large liver tumor treatment in terms of accuracy and speed. A prerequisite for effective therapy is accurate surgical planning. However, it is difficult for the surgeon to perform surgical planning manually due to the difficulties associated with robot-assisted large liver tumor therapy. These main difficulties include the following aspects: (1) multiple needles are needed to destroy the entire tumor, (2) the insertion trajectories of the needles should avoid the ribs, blood vessels, and other tissues and organs in the abdominal cavity, (3) the placement of multiple needles should avoid interference with each other, (4) an inserted needle will cause some deformation of liver, which will result in changes in subsequently inserted needles’ operating environment, and (5) the multiple needle-insertion trajectories should be consistent with the needle-driven robot’s movement characteristics. Thus, an effective multiple-needle surgical planning procedure is needed. To overcome these problems, we present an automatic multiple-needle surgical planning of optimal insertion trajectories to the targets, based on a mathematical description of all relevant structure surfaces. The method determines the analytical expression of boundaries of every needle “collision-free reachable workspace” (CFRW), which are the feasible insertion zones based on several constraints. Then, the optimal needle insertion trajectory within the optimization criteria will be chosen in the needle CFRW automatically. Also, the results can be visualized with our navigation system. In the simulation experiment, three needle-insertion trajectories were obtained successfully. In the in vitro experiment, the robot successfully achieved insertion of multiple needles. The proposed automatic multiple-needle surgical planning can improve the efficiency and safety of robot-assisted large liver tumor therapy, significantly reduce the surgeon’s workload, and is especially helpful for an inexperienced surgeon. The methodology should be easy to adapt in other body parts. PMID:26982341
NASA Astrophysics Data System (ADS)
Narayan Ray, Dip; Majumder, Somajyoti
2014-07-01
Several attempts have been made by the researchers around the world to develop a number of autonomous exploration techniques for robots. But it has been always an important issue for developing the algorithm for unstructured and unknown environments. Human-like gradual Multi-agent Q-leaming (HuMAQ) is a technique developed for autonomous robotic exploration in unknown (and even unimaginable) environments. It has been successfully implemented in multi-agent single robotic system. HuMAQ uses the concept of Subsumption architecture, a well-known Behaviour-based architecture for prioritizing the agents of the multi-agent system and executes only the most common action out of all the different actions recommended by different agents. Instead of using new state-action table (Q-table) each time, HuMAQ uses the immediate past table for efficient and faster exploration. The proof of learning has also been established both theoretically and practically. HuMAQ has the potential to be used in different and difficult situations as well as applications. The same architecture has been modified to use for multi-robot exploration in an environment. Apart from all other existing agents used in the single robotic system, agents for inter-robot communication and coordination/ co-operation with the other similar robots have been introduced in the present research. Current work uses a series of indigenously developed identical autonomous robotic systems, communicating with each other through ZigBee protocol.
NASA Astrophysics Data System (ADS)
Zeng, Wenhui; Yi, Jin; Rao, Xiao; Zheng, Yun
2017-11-01
In this article, collision-avoidance path planning for multiple car-like robots with variable motion is formulated as a two-stage objective optimization problem minimizing both the total length of all paths and the task's completion time. Accordingly, a new approach based on Pythagorean Hodograph (PH) curves and Modified Harmony Search algorithm is proposed to solve the two-stage path-planning problem subject to kinematic constraints such as velocity, acceleration, and minimum turning radius. First, a method of path planning based on PH curves for a single robot is proposed. Second, a mathematical model of the two-stage path-planning problem for multiple car-like robots with variable motion subject to kinematic constraints is constructed that the first-stage minimizes the total length of all paths and the second-stage minimizes the task's completion time. Finally, a modified harmony search algorithm is applied to solve the two-stage optimization problem. A set of experiments demonstrate the effectiveness of the proposed approach.
Co-robotic ultrasound imaging: a cooperative force control approach
NASA Astrophysics Data System (ADS)
Finocchi, Rodolfo; Aalamifar, Fereshteh; Fang, Ting Yun; Taylor, Russell H.; Boctor, Emad M.
2017-03-01
Ultrasound (US) imaging remains one of the most commonly used imaging modalities in medical practice. However, due to the physical effort required to perform US imaging tasks, 63-91% of ultrasonographers develop musculoskeletal disorders throughout their careers. The goal of this work is to provide ultrasonographers with a system that facilitates and reduces strain in US image acquisition. To this end, we propose a system for admittance force robot control that uses the six-degree-of-freedom UR5 industrial robot. A six-axis force sensor is used to measure the forces and torques applied by the sonographer on the probe. As the sonographer pushes against the US probe, the robot complies with these forces, following the user's desired path. A one-axis load cell is used to measure contact forces between the patient and the probe in real time. When imaging, the robot augments the axial forces applied by the user, lessening the physical effort required. User studies showed an overall decrease in hand tremor while imaging at high forces, improvements in image stability, and a decrease in difficulty and strenuousness.
Research on the man in the loop control system of the robot arm based on gesture control
NASA Astrophysics Data System (ADS)
Xiao, Lifeng; Peng, Jinbao
2017-03-01
The Man in the loop control system of the robot arm based on gesture control research complex real-world environment, which requires the operator to continuously control and adjust the remote manipulator, as the background, completes the specific mission human in the loop entire system as the research object. This paper puts forward a kind of robot arm control system of Man in the loop based on gesture control, by robot arm control system based on gesture control and Virtual reality scene feedback to enhance immersion and integration of operator, to make operator really become a part of the whole control loop. This paper expounds how to construct a man in the loop control system of the robot arm based on gesture control. The system is a complex system of human computer cooperative control, but also people in the loop control problem areas. The new system solves the problems that the traditional method has no immersion feeling and the operation lever is unnatural, the adjustment time is long, and the data glove mode wears uncomfortable and the price is expensive.
Distributed cooperating processes in a mobile robot control system
NASA Technical Reports Server (NTRS)
Skillman, Thomas L., Jr.
1988-01-01
A mobile inspection robot has been proposed for the NASA Space Station. It will be a free flying autonomous vehicle that will leave a berthing unit to accomplish a variety of inspection tasks around the Space Station, and then return to its berth to recharge, refuel, and transfer information. The Flying Eye robot will receive voice communication to change its attitude, move at a constant velocity, and move to a predefined location along a self generated path. This mobile robot control system requires integration of traditional command and control techniques with a number of AI technologies. Speech recognition, natural language understanding, task and path planning, sensory abstraction and pattern recognition are all required for successful implementation. The interface between the traditional numeric control techniques and the symbolic processing to the AI technologies must be developed, and a distributed computing approach will be needed to meet the real time computing requirements. To study the integration of the elements of this project, a novel mobile robot control architecture and simulation based on the blackboard architecture was developed. The control system operation and structure is discussed.
Architectural setup for online monitoring and control of process parameters in robot-based ISF
NASA Astrophysics Data System (ADS)
Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd
2017-10-01
This article describes new developments in an incremental, robot-based sheet metal forming process (Roboforming) for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet forming (ISF) machines, this system offers high geometrical design flexibility without the need of any part-dependent tools. However, the industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors introduce a new architectural setup extending the current one by a superordinate process control. This sophisticated control consists of two modules, i.e. the compensation of the two industrial robots' low structural stiffness as well as a combined force/torque control. It is assumed that this contribution will lead to future research and development projects in which the authors will thoroughly investigate ISF process parameters influencing the geometric accuracy of the forming results.
Carpinella, Ilaria; Cattaneo, Davide; Bertoni, Rita; Ferrarin, Maurizio
2012-05-01
In this pilot study, we compared two protocols for robot-based rehabilitation of upper limb in multiple sclerosis (MS): a protocol involving reaching tasks (RT) requiring arm transport only and a protocol requiring both objects' reaching and manipulation (RMT). Twenty-two MS subjects were assigned to RT or RMT group. Both protocols consisted of eight sessions. During RT training, subjects moved the handle of a planar robotic manipulandum toward circular targets displayed on a screen. RMT protocol required patients to reach and manipulate real objects, by moving the robotic arm equipped with a handle which left the hand free for distal tasks. In both trainings, the robot generated resistive and perturbing forces. Subjects were evaluated with clinical and instrumental tests. The results confirmed that MS patients maintained the ability to adapt to the robot-generated forces and that the rate of motor learning increased across sessions. Robot-therapy significantly reduced arm tremor and improved arm kinematics and functional ability. Compared to RT, RMT protocol induced a significantly larger improvement in movements involving grasp (improvement in Grasp ARAT sub-score: RMT 77.4%, RT 29.5%, p=0.035) but not precision grip. Future studies are needed to evaluate if longer trainings and the use of robotic handles would significantly improve also fine manipulation.
Shahriari, Mohammadali; Biglarbegian, Mohammad
2018-01-01
This paper presents a new conflict resolution methodology for multiple mobile robots while ensuring their motion-liveness, especially for cluttered and dynamic environments. Our method constructs a mathematical formulation in a form of an optimization problem by minimizing the overall travel times of the robots subject to resolving all the conflicts in their motion. This optimization problem can be easily solved through coordinating only the robots' speeds. To overcome the computational cost in executing the algorithm for very cluttered environments, we develop an innovative method through clustering the environment into independent subproblems that can be solved using parallel programming techniques. We demonstrate the scalability of our approach through performing extensive simulations. Simulation results showed that our proposed method is capable of resolving the conflicts of 100 robots in less than 1.23 s in a cluttered environment that has 4357 intersections in the paths of the robots. We also developed an experimental testbed and demonstrated that our approach can be implemented in real time. We finally compared our approach with other existing methods in the literature both quantitatively and qualitatively. This comparison shows while our approach is mathematically sound, it is more computationally efficient, scalable for very large number of robots, and guarantees the live and smooth motion of robots.
An orbital emulator for pursuit-evasion game theoretic sensor management
NASA Astrophysics Data System (ADS)
Shen, Dan; Wang, Tao; Wang, Gang; Jia, Bin; Wang, Zhonghai; Chen, Genshe; Blasch, Erik; Pham, Khanh
2017-05-01
This paper develops and evaluates an orbital emulator (OE) for space situational awareness (SSA). The OE can produce 3D satellite movements using capabilities generated from omni-wheeled robot and robotic arm motion methods. The 3D motion of a satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The 3D actions are emulated by omni-wheeled robot models while the up-down motions are performed by a stepped-motor-controlled-ball along a rod (robotic arm), which is attached to the robot. For multiple satellites, a fast map-merging algorithm is integrated into the robot operating system (ROS) and simultaneous localization and mapping (SLAM) routines to locate the multiple robots in the scene. The OE is used to demonstrate a pursuit-evasion (PE) game theoretic sensor management algorithm, which models conflicts between a space-based-visible (SBV) satellite (as pursuer) and a geosynchronous (GEO) satellite (as evader). The cost function of the PE game is based on the informational entropy of the SBV-tracking-GEO scenario. GEO can maneuver using a continuous and low thruster. The hard-in-loop space emulator visually illustrates the SSA problem solution based PE game.
Learning classifier systems for single and multiple mobile robots in unstructured environments
NASA Astrophysics Data System (ADS)
Bay, John S.
1995-12-01
The learning classifier system (LCS) is a learning production system that generates behavioral rules via an underlying discovery mechanism. The LCS architecture operates similarly to a blackboard architecture; i.e., by posted-message communications. But in the LCS, the message board is wiped clean at every time interval, thereby requiring no persistent shared resource. In this paper, we adapt the LCS to the problem of mobile robot navigation in completely unstructured environments. We consider the model of the robot itself, including its sensor and actuator structures, to be part of this environment, in addition to the world-model that includes a goal and obstacles at unknown locations. This requires a robot to learn its own I/O characteristics in addition to solving its navigation problem, but results in a learning controller that is equally applicable, unaltered, in robots with a wide variety of kinematic structures and sensing capabilities. We show the effectiveness of this LCS-based controller through both simulation and experimental trials with a small robot. We then propose a new architecture, the Distributed Learning Classifier System (DLCS), which generalizes the message-passing behavior of the LCS from internal messages within a single agent to broadcast massages among multiple agents. This communications mode requires little bandwidth and is easily implemented with inexpensive, off-the-shelf hardware. The DLCS is shown to have potential application as a learning controller for multiple intelligent agents.
Enhanced control & sensing for the REMOTEC ANDROS Mk VI robot. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spelt, P.F.; Harvey, H.W.
1997-08-01
This Cooperative Research and Development Agreement (CRADA) between Lockheed Marietta Energy Systems, Inc., and REMOTEC, Inc., explored methods of providing operator feedback for various work actions of the ANDROS Mk VI teleoperated robot. In a hazardous environment, an extremely heavy workload seriously degrades the productivity of teleoperated robot operators. This CRADA involved the addition of computer power to the robot along with a variety of sensors and encoders to provide information about the robot`s performance in and relationship to its environment. Software was developed to integrate the sensor and encoder information and provide control input to the robot. ANDROS Mkmore » VI robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as in a variety of other hazardous environments. Further, this platform has potential for use in a number of environmental restoration tasks, such as site survey and detection of hazardous waste materials. The addition of sensors and encoders serves to make the robot easier to manage and permits tasks to be done more safely and inexpensively (due to time saved in the completion of complex remote tasks). Prior research on the automation of mobile platforms with manipulators at Oak Ridge National Laboratory`s Center for Engineering Systems Advanced Research (CESAR, B&R code KC0401030) Laboratory, a BES-supported facility, indicated that this type of enhancement is effective. This CRADA provided such enhancements to a successful working teleoperated robot for the first time. Performance of this CRADA used the CESAR laboratory facilities and expertise developed under BES funding.« less
Towards building a team of intelligent robots
NASA Technical Reports Server (NTRS)
Varanasi, Murali R.; Mehrotra, R.
1987-01-01
Topics addressed include: collision-free motion planning of multiple robot arms; two-dimensional object recognition; and pictorial databases (storage and sharing of the representations of three-dimensional objects).
Navigation strategies for multiple autonomous mobile robots moving in formation
NASA Technical Reports Server (NTRS)
Wang, P. K. C.
1991-01-01
The problem of deriving navigation strategies for a fleet of autonomous mobile robots moving in formation is considered. Here, each robot is represented by a particle with a spherical effective spatial domain and a specified cone of visibility. The global motion of each robot in the world space is described by the equations of motion of the robot's center of mass. First, methods for formation generation are discussed. Then, simple navigation strategies for robots moving in formation are derived. A sufficient condition for the stability of a desired formation pattern for a fleet of robots each equipped with the navigation strategy based on nearest neighbor tracking is developed. The dynamic behavior of robot fleets consisting of three or more robots moving in formation in a plane is studied by means of computer simulation.
Using conceptual spaces to fuse knowledge from heterogeneous robot platforms
NASA Astrophysics Data System (ADS)
Kira, Zsolt
2010-04-01
As robots become more common, it becomes increasingly useful for many applications to use them in teams that sense the world in a distributed manner. In such situations, the robots or a central control center must communicate and fuse information received from multiple sources. A key challenge for this problem is perceptual heterogeneity, where the sensors, perceptual representations, and training instances used by the robots differ dramatically. In this paper, we use Gärdenfors' conceptual spaces, a geometric representation with strong roots in cognitive science and psychology, in order to represent the appearance of objects and show how the problem of heterogeneity can be intuitively explored by looking at the situation where multiple robots differ in their conceptual spaces at different levels. To bridge low-level sensory differences, we abstract raw sensory data into properties (such as color or texture categories), represented as Gaussian Mixture Models, and demonstrate that this facilitates both individual learning and the fusion of concepts between robots. Concepts (e.g. objects) are represented as a fuzzy mixture of these properties. We then treat the problem where the conceptual spaces of two robots differ and they only share a subset of these properties. In this case, we use joint interaction and statistical metrics to determine which properties are shared. Finally, we show how conceptual spaces can handle the combination of such missing properties when fusing concepts received from different robots. We demonstrate the fusion of information in real-robot experiments with a Mobile Robots Amigobot and Pioneer 2DX with significantly different cameras and (on one robot) a SICK lidar.ÿÿÿÿ
Integrating robotic partial nephrectomy to an existing robotic surgery program.
Yuh, Bertram; Muldrew, Shantel; Menchaca, Anita; Yip, Wesley; Lau, Clayton; Wilson, Timothy; Josephson, David
2012-04-01
As more centers develop robotic proficiency, progressing to a successful robot-assisted partial nephrectomy (RAPN) program depends on a number of factors. We describe our technique, results, and analysis of program setup for RAPN. Between 2005 and 2011, 92 RAPNs were performed following maturation of a robotic prostatectomy program. Operating rooms and supply rooms were outfitted for efficient robotic throughput. Tilepro and intraoperative ultrasound were used for all cases. Training and experiential learning for surgeons, anesthesia and nursing staff was a high priority. An onsite robotic technician helped troubleshoot, prepare the room and staff prior to starting surgery, and provide assistance with different robotic models. Average operative time decreased over time from 235 min to 199 min (p = .03). Warm ischemia time decreased from 26 minutes to 23 minutes (p = .02) despite an increased complexity of tumors and operations on multiple tumors. Median estimated blood loss was 150 mL. Average length of hospital stay was 3 days (range 1-9). Average size of lesions was 2.7 cm (range 0.7-8.6). Final pathology demonstrated 71 (77%) malignant lesions and 21 (23%) benign lesions. The addition of a robot-assisted partial nephrectomy program to an institutional robotic program can be coordinated with several key steps. Outcomes from an operational, oncologic, and renal functional standpoint are acceptable. Despite increased complexity of tumors and treatment of multiple lesions, operative and warm ischemia times showed a decrease over time. An organizational model that involves the surgeons, anesthesia, nursing staff, and possibly a robotic technical specialist helps to overcome the learning curve.
Experiences applying Formal Approaches in the Development of Swarm-Based Space Exploration Systems
NASA Technical Reports Server (NTRS)
Rouff, Christopher A.; Hinchey, Michael G.; Truszkowski, Walter F.; Rash, James L.
2006-01-01
NASA is researching advanced technologies for future exploration missions using intelligent swarms of robotic vehicles. One of these missions is the Autonomous Nan0 Technology Swarm (ANTS) mission that will explore the asteroid belt using 1,000 cooperative autonomous spacecraft. The emergent properties of intelligent swarms make it a potentially powerful concept, but at the same time more difficult to design and ensure that the proper behaviors will emerge. NASA is investigating formal methods and techniques for verification of such missions. The advantage of using formal methods is the ability to mathematically verify the behavior of a swarm, emergent or otherwise. Using the ANTS mission as a case study, we have evaluated multiple formal methods to determine their effectiveness in modeling and ensuring desired swarm behavior. This paper discusses the results of this evaluation and proposes an integrated formal method for ensuring correct behavior of future NASA intelligent swarms.
Draper Laboratory small autonomous aerial vehicle
NASA Astrophysics Data System (ADS)
DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.
1997-06-01
The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.
Flexible Virtual Structure Consideration in Dynamic Modeling of Mobile Robots Formation
NASA Astrophysics Data System (ADS)
El Kamel, A. Essghaier; Beji, L.; Lerbet, J.; Abichou, A.
2009-03-01
In cooperative mobile robotics, we look for formation keeping and maintenance of a geometric configuration during movement. As a solution to these problems, the concept of a virtual structure is considered. Based on this idea, we have developed an efficient flexible virtual structure, describing the dynamic model of n vehicles in formation and where the whole formation is kept dependant. Notes that, for 2D and 3D space navigation, only a rigid virtual structure was proposed in the literature. Further, the problem was limited to a kinematic behavior of the structure. Hence, the flexible virtual structure in dynamic modeling of mobile robots formation presented in this paper, gives more capabilities to the formation to avoid obstacles in hostile environment while keeping formation and avoiding inter-agent collision.
Control strategy for cooperating disparate manipulators
NASA Technical Reports Server (NTRS)
Lew, Jae Young
1989-01-01
To manipulate large payloads typical of space construction, the concept of a small arm mounted on the end of a large arm is introduced. The main purposes of such a configuration are to increase the structural stiffness of the robot by bracing against or locking to a stationary frame, and to maintain a firm position constraint between the robot's base and workpieces by grasping them. Possible topologies for a combination of disparate large and small arms are discussed, and kinematics, dynamics, controls, and coordination of the two arms, especially when they brace at the tip of the small arm, are developed. The feasibility and improvement in performance are verified, not only with analytical work and simulation results but also with experiments on the existing arrangement Robotic Arm Large and Flexible and Small Articulated Manipulator.
Humanoids for lunar and planetary surface operations
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Keymeulen, Didier; Csaszar, Ambrus; Gan, Quan; Hidalgo, Timothy; Moore, Jeff; Newton, Jason; Sandoval, Steven; Xu, Jiajing
2005-01-01
This paper presents a vision of humanoid robots as human's key partners in future space exploration, in particular for construction, maintenance/repair and operation of lunar/planetary habitats, bases and settlements. It integrates this vision with the recent plans, for human and robotic exploration, aligning a set of milestones for operational capability of humanoids with the schedule for the next decades and development spirals in the Project Constellation. These milestones relate to a set of incremental challenges, for the solving of which new humanoid technologies are needed. A system of systems integrative approach that would lead to readiness of cooperating humanoid crews is sketched. Robot fostering, training/education techniques, and improved cognitive/sensory/motor development techniques are considered essential elements for achieving intelligent humanoids. A pilot project in this direction is outlined.
Method and apparatus for hybrid position/force control of multi-arm cooperating robots
NASA Technical Reports Server (NTRS)
Hayati, Samad A. (Inventor)
1989-01-01
Two or more robotic arms having end effectors rigidly attached to an object to be moved are disclosed. A hybrid position/force control system is provided for driving each of the robotic arms. The object to be moved is represented as having a total mass that consists of the actual mass of the object to be moved plus the mass of the moveable arms that are rigidly attached to the moveable object. The arms are driven in a positive way by the hybrid control system to assure that each arm shares in the position/force applied to the object. The burden of actuation is shared by each arm in a non-conflicting way as the arm independently control the position of, and force upon, a designated point on the object.
New Pathways into Robotics: Strategies for Broadening Participation
ERIC Educational Resources Information Center
Rusk, Natalie; Resnick, Mitchel; Berg, Robbie; Pezalla-Granlund, Margaret
2008-01-01
This paper suggests new strategies for introducing students to robotics technologies and concepts, and argues for the importance of providing multiple entry points into robotics. In particular, the paper describes four strategies that have been successful in engaging a broad range of learners: (1) focusing on themes, not just challenges; (2)…
Developing a multidisciplinary robotic surgery quality assessment program.
Gonsenhauser, Iahn; Abaza, Ronney; Mekhjian, Hagop; Moffatt-Bruce, Susan D
2012-01-01
The objective of this study was to test the feasibility of a novel quality-improvement (QI) program designed to incorporate multiple robotic surgical sub-specialties in one health care system. A robotic surgery quality assessment program was developed by The Ohio State University College of Medicine (OSUMC) in conjunction with The Ohio State University Medical Center Quality Improvement and Operations Department. A retrospective review of cases was performed using data interrogated from the OSUMC Information Warehouse from January 2007 through August 2009. Robotic surgery cases (n=2200) were assessed for operative times, length of stay (LOS), conversions, returns to surgery, readmissions and cancellations as potential quality indicators. An actionable and reproducible framework for the quality measurement and assessment of a multidisciplinary and interdepartmental robotic surgery program was successfully completed demonstrating areas for improvement opportunities. This report supports that standard quality indicators can be applied to multiple specialties within a health care system to develop a useful quality tracking and assessment tool in the highly specialized area of robotic surgery. © 2012 National Association for Healthcare Quality.
NASA Technical Reports Server (NTRS)
Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.
1987-01-01
An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.
Nurses' Needs for Care Robots in Integrated Nursing Care Services.
Lee, Jai-Yon; Song, Young Ae; Jung, Ji Young; Kim, Hyun Jeong; Kim, Bo Ram; Do, Hyun-Kyung; Lim, Jae-Young
2018-05-13
To determine the need for care robots among nurses and to suggest how robotic care should be prioritized in an integrated nursing care services. Korea is expected to be a super-aged society by 2030. To solve care issues with elderly inpatient caused by informal caregivers, the government introduced 'integrated nursing care services'; these are comprehensive care systems staffed by professionally trained nurses. To assist them, a care robot development project has been launched. The study applied a cross-sectional survey. In 2016, we conducted a multi-center survey involving 302 registered nurses in five hospitals including three tertiary and two secondary hospitals in Korea. The questionnaire consisted of general characteristics of nurses and their views on and extents of agreement about issues associated with robotic care. Trial center nurses and those with ≥10 years of experience reported positively on the prospects for robotic care. The top three desired primary roles for care robots were 'measuring/monitoring', 'mobility/activity' and 'safety care'. 'Reduction in workload', especially in terms of 'other nursing services' which were categorized as non-value-added nursing activities, was the most valued feature. The nurses approved of the aid by care robots but were concerned about device malfunction and interruption of rapport with patients. Care robots are expected to be effective in integrated nursing care services, particularly in 'measuring/monitoring'. Such robots should decrease nurses' workload and minimize non-value-added nursing activities efficiently. No matter how excellent care robots are, they must co-operate with and be controlled by nurses. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Road-Following Formation Control of Autonomous Ground Vehicles
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Droge, Greg; Grip, Havard; Toupet, Olivier; Scrapper, Chris; Rahmani, Amir
2015-01-01
This work presents a novel cooperative path planning for formation keeping robots traversing along a road with obstacles and possible narrow passages. A unique challenge in this problem is a requirement for spatial and temporal coordination between vehicles while ensuring collision and obstacle avoidance.
Shepherd, Robert F.; Ilievski, Filip; Choi, Wonjae; Morin, Stephen A.; Stokes, Adam A.; Mazzeo, Aaron D.; Chen, Xin; Wang, Michael; Whitesides, George M.
2011-01-01
This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion. PMID:22123978
Towards Extending Forward Kinematic Models on Hyper-Redundant Manipulator to Cooperative Bionic Arms
NASA Astrophysics Data System (ADS)
Singh, Inderjeet; Lakhal, Othman; Merzouki, Rochdi
2017-01-01
Forward Kinematics is a stepping stone towards finding an inverse solution and subsequently a dynamic model of a robot. Hence a study and comparison of various Forward Kinematic Models (FKMs) is necessary for robot design. This paper deals with comparison of three FKMs on the same hyper-redundant Compact Bionic Handling Assistant (CBHA) manipulator under same conditions. The aim of this study is to project on modeling cooperative bionic manipulators. Two of these methods are quantitative methods, Arc Geometry HTM (Homogeneous Transformation Matrix) Method and Dual Quaternion Method, while the other one is Hybrid Method which uses both quantitative as well as qualitative approach. The methods are compared theoretically and experimental results are discussed to add further insight to the comparison. HTM is the widely used and accepted technique, is taken as reference and trajectory deviation in other techniques are compared with respect to HTM. Which method allows obtaining an accurate kinematic behavior of the CBHA, controlled in the real-time.
The Practicality of Cooperative Education between an Industry and University
NASA Astrophysics Data System (ADS)
Oomichi, Takeo; Jianming, Yang; Matsubara, Takenori; Tatsuno, Kyoichi; Takahashi, Tomoichi
Some cooperative methods have been proposed and executed as the R&D (research and development) between universities and industries meld together to form a new hybeid business. This paper proposes the ides of “Fusion Education” for the advancement of education and for fostering new business. In fusion education, university students will begin by mainly verifying the application potential of a developed system such as modulated robotic software, for example, and improve specific areas when and if needed. Then, the university will rank the systems according to its reliability or safety record (based on the student) complete verification test which includes data on when the robot will be operated and under what varying conditions (such as performance in various private houses). The university essentially gives students the chance to find a solution to practical problems while the industry gets a reliable (fully authorized) system as result of this education process. The concept and feasibility of this “fusion education” will now be discussed.
Commercial involvement in the development of space-based plant growing technology
NASA Astrophysics Data System (ADS)
Bula, R. J.; Tibbitts, T. W.; Morrow, R. C.; Dinauer, W. R.
1992-07-01
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.
Commercial involvement in the development of space-based plant growing technology.
Bula, R J; Tibbitts, T W; Morrow, R C; Dinauer, W R
1992-01-01
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.
The Summer Robotic Autonomy Course
NASA Technical Reports Server (NTRS)
Nourbakhsh, Illah R.
2002-01-01
We offered a first Robotic Autonomy course this summer, located at NASA/Ames' new NASA Research Park, for approximately 30 high school students. In this 7-week course, students worked in ten teams to build then program advanced autonomous robots capable of visual processing and high-speed wireless communication. The course made use of challenge-based curricula, culminating each week with a Wednesday Challenge Day and a Friday Exhibition and Contest Day. Robotic Autonomy provided a comprehensive grounding in elementary robotics, including basic electronics, electronics evaluation, microprocessor programming, real-time control, and robot mechanics and kinematics. Our course then continued the educational process by introducing higher-level perception, action and autonomy topics, including teleoperation, visual servoing, intelligent scheduling and planning and cooperative problem-solving. We were able to deliver such a comprehensive, high-level education in robotic autonomy for two reasons. First, the content resulted from close collaboration between the CMU Robotics Institute and researchers in the Information Sciences and Technology Directorate and various education program/project managers at NASA/Ames. This collaboration produced not only educational content, but will also be focal to the conduct of formative and summative evaluations of the course for further refinement. Second, CMU rapid prototyping skills as well as the PI's low-overhead perception and locomotion research projects enabled design and delivery of affordable robot kits with unprecedented sensory- locomotory capability. Each Trikebot robot was capable of both indoor locomotion and high-speed outdoor motion and was equipped with a high-speed vision system coupled to a low-cost pan/tilt head. As planned, follow the completion of Robotic Autonomy, each student took home an autonomous, competent robot. This robot is the student's to keep, as she explores robotics with an extremely capable tool in the midst of a new community for roboticists. CMU provided undergraduate course credit for this official course, 16-162U, for 13 students, with all other students receiving course credit from National Hispanic University.
Computer-controlled wall servicing robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefkowitz, S.
1995-03-01
After four years of cooperative research, Pentek has unveiled a new robot with the capability to automatically deliver a variety of cleaning, painting, inspection, and surveillance devices to large vertical surfaces. The completely computer-controlled robot can position a working tool on a 50-foot tall by 50-foot wide vertical surface with a repeatability of 1/16 inch. The working end can literally {open_quotes}fly{close_quotes} across the face of a wall at speed of 60 per minute, and can handle working loads of 350 pounds. The robot was originally developed to decontaminate the walls of reactor fueling cavities at commercial nuclear power plants duringmore » fuel outages. If these cavities are left to dry after reactor refueling, contamination present in the residue could later become airborne and move throughout the containment building. Decontaminating the cavity during the refueling outage reduces the need for restrictive personal protective equipment during plant operations to limit the dose rates.« less
NASA Technical Reports Server (NTRS)
Smith, Jeffrey D.; Twombly, I. Alexander; Maese, A. Christopher; Cagle, Yvonne; Boyle, Richard
2003-01-01
The International Space Station demonstrates the greatest capabilities of human ingenuity, international cooperation and technology development. The complexity of this space structure is unprecedented; and training astronaut crews to maintain all its systems, as well as perform a multitude of research experiments, requires the most advanced training tools and techniques. Computer simulation and virtual environments are currently used by astronauts to train for robotic arm manipulations and extravehicular activities; but now, with the latest computer technologies and recent successes in areas of medical simulation, the capability exists to train astronauts for more hands-on research tasks using immersive virtual environments. We have developed a new technology, the Virtual Glovebox (VGX), for simulation of experimental tasks that astronauts will perform aboard the Space Station. The VGX may also be used by crew support teams for design of experiments, testing equipment integration capability and optimizing the procedures astronauts will use. This is done through the 3D, desk-top sized, reach-in virtual environment that can simulate the microgravity environment in space. Additional features of the VGX allow for networking multiple users over the internet and operation of tele-robotic devices through an intuitive user interface. Although the system was developed for astronaut training and assisting support crews, Earth-bound applications, many emphasizing homeland security, have also been identified. Examples include training experts to handle hazardous biological and/or chemical agents in a safe simulation, operation of tele-robotic systems for assessing and diffusing threats such as bombs, and providing remote medical assistance to field personnel through a collaborative virtual environment. Thus, the emerging VGX simulation technology, while developed for space- based applications, can serve a dual use facilitating homeland security here on Earth.
On the Evolution of Behaviors through Embodied Imitation.
Erbas, Mehmet D; Bull, Larry; Winfield, Alan F T
2015-01-01
This article describes research in which embodied imitation and behavioral adaptation are investigated in collective robotics. We model social learning in artificial agents with real robots. The robots are able to observe and learn each others' movement patterns using their on-board sensors only, so that imitation is embodied. We show that the variations that arise from embodiment allow certain behaviors that are better adapted to the process of imitation to emerge and evolve during multiple cycles of imitation. As these behaviors are more robust to uncertainties in the real robots' sensors and actuators, they can be learned by other members of the collective with higher fidelity. Three different types of learned-behavior memory have been experimentally tested to investigate the effect of memory capacity on the evolution of movement patterns, and results show that as the movement patterns evolve through multiple cycles of imitation, selection, and variation, the robots are able to, in a sense, agree on the structure of the behaviors that are imitated.
Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks
NASA Astrophysics Data System (ADS)
Meng, Jianjun; Zhang, Shuying; Bekyo, Angeliki; Olsoe, Jaron; Baxter, Bryan; He, Bin
2016-12-01
Brain-computer interface (BCI) technologies aim to provide a bridge between the human brain and external devices. Prior research using non-invasive BCI to control virtual objects, such as computer cursors and virtual helicopters, and real-world objects, such as wheelchairs and quadcopters, has demonstrated the promise of BCI technologies. However, controlling a robotic arm to complete reach-and-grasp tasks efficiently using non-invasive BCI has yet to be shown. In this study, we found that a group of 13 human subjects could willingly modulate brain activity to control a robotic arm with high accuracy for performing tasks requiring multiple degrees of freedom by combination of two sequential low dimensional controls. Subjects were able to effectively control reaching of the robotic arm through modulation of their brain rhythms within the span of only a few training sessions and maintained the ability to control the robotic arm over multiple months. Our results demonstrate the viability of human operation of prosthetic limbs using non-invasive BCI technology.
Building Robota, a Mini-Humanoid Robot for the Rehabilitation of Children with Autism
ERIC Educational Resources Information Center
Billard, Aude; Robins, Ben; Nadel, Jacqueline; Dautenhahn, Kerstin
2007-01-01
The Robota project constructs a series of multiple-degrees-of-freedom, doll-shaped humanoid robots, whose physical features resemble those of a human baby. The Robota robots have been applied as assistive technologies in behavioral studies with low-functioning children with autism. These studies investigate the potential of using an imitator robot…
SWARMS: Scalable sWarms of Autonomous Robots and Mobile Sensors
2013-03-18
Pasqualetti, Antonio Franchi , Francesco Bullo. On optimal cooperative patrolling, 2010 49th IEEE Conference on Decision and Control (CDC). 2010/12/15 00...exhibits “ global stability” Provided a complete convergence proof for the adaptive version of the range only station keeping problem. Graph Theoretic
Piezoresistive pressure sensor array for robotic skin
NASA Astrophysics Data System (ADS)
Mirza, Fahad; Sahasrabuddhe, Ritvij R.; Baptist, Joshua R.; Wijesundara, Muthu B. J.; Lee, Woo H.; Popa, Dan O.
2016-05-01
Robots are starting to transition from the confines of the manufacturing floor to homes, schools, hospitals, and highly dynamic environments. As, a result, it is impossible to foresee all the probable operational situations of robots, and preprogram the robot behavior in those situations. Among human-robot interaction technologies, haptic communication is an intuitive physical interaction method that can help define operational behaviors for robots cooperating with humans. Multimodal robotic skin with distributed sensors can help robots increase perception capabilities of their surrounding environments. Electro-Hydro-Dynamic (EHD) printing is a flexible multi-modal sensor fabrication method because of its direct printing capability of a wide range of materials onto substrates with non-uniform topographies. In past work we designed interdigitated comb electrodes as a sensing element and printed piezoresistive strain sensors using customized EHD printable PEDOT:PSS based inks. We formulated a PEDOT:PSS derivative ink, by mixing PEDOT:PSS and DMSO. Bending induced characterization tests of prototyped sensors showed high sensitivity and sufficient stability. In this paper, we describe SkinCells, robot skin sensor arrays integrated with electronic modules. 4x4 EHD-printed arrays of strain sensors was packaged onto Kapton sheets and silicone encapsulant and interconnected to a custom electronic module that consists of a microcontroller, Wheatstone bridge with adjustable digital potentiometer, multiplexer, and serial communication unit. Thus, SkinCell's electronics can be used for signal acquisition, conditioning, and networking between sensor modules. Several SkinCells were loaded with controlled pressure, temperature and humidity testing apparatuses, and testing results are reported in this paper.
Design, fabrication and control of origami robots
NASA Astrophysics Data System (ADS)
Rus, Daniela; Tolley, Michael T.
2018-06-01
Origami robots are created using folding processes, which provide a simple approach to fabricating a wide range of robot morphologies. Inspired by biological systems, engineers have started to explore origami folding in combination with smart material actuators to enable intrinsic actuation as a means to decouple design from fabrication complexity. The built-in crease structure of origami bodies has the potential to yield compliance and exhibit many soft body properties. Conventional fabrication of robots is generally a bottom-up assembly process with multiple low-level steps for creating subsystems that include manual operations and often multiple iterations. By contrast, natural systems achieve elegant designs and complex functionalities using top-down parallel transformation approaches such as folding. Folding in nature creates a wide spectrum of complex morpho-functional structures such as proteins and intestines and enables the development of structures such as flowers, leaves and insect wings. Inspired by nature, engineers have started to explore folding powered by embedded smart material actuators to create origami robots. The design and fabrication of origami robots exploits top-down, parallel transformation approaches to achieve elegant designs and complex functionalities. In this Review, we first introduce the concept of origami robotics and then highlight advances in design principles, fabrication methods, actuation, smart materials and control algorithms. Applications of origami robots for a variety of devices are investigated, and future directions of the field are discussed, examining both challenges and opportunities.
Taniguchi, Akira; Taniguchi, Tadahiro; Cangelosi, Angelo
2017-01-01
In this paper, we propose a Bayesian generative model that can form multiple categories based on each sensory-channel and can associate words with any of the four sensory-channels (action, position, object, and color). This paper focuses on cross-situational learning using the co-occurrence between words and information of sensory-channels in complex situations rather than conventional situations of cross-situational learning. We conducted a learning scenario using a simulator and a real humanoid iCub robot. In the scenario, a human tutor provided a sentence that describes an object of visual attention and an accompanying action to the robot. The scenario was set as follows: the number of words per sensory-channel was three or four, and the number of trials for learning was 20 and 40 for the simulator and 25 and 40 for the real robot. The experimental results showed that the proposed method was able to estimate the multiple categorizations and to learn the relationships between multiple sensory-channels and words accurately. In addition, we conducted an action generation task and an action description task based on word meanings learned in the cross-situational learning scenario. The experimental results showed that the robot could successfully use the word meanings learned by using the proposed method. PMID:29311888
Sen, Hasan Tutkun; Bell, Muyinatu A Lediju; Zhang, Yin; Ding, Kai; Boctor, Emad; Wong, John; Iordachita, Iulian; Kazanzides, Peter
2017-07-01
We are developing a cooperatively controlled robot system for image-guided radiation therapy (IGRT) in which a clinician and robot share control of a 3-D ultrasound (US) probe. IGRT involves two main steps: 1) planning/simulation and 2) treatment delivery. The goals of the system are to provide guidance for patient setup and real-time target monitoring during fractionated radiotherapy of soft tissue targets, especially in the upper abdomen. To compensate for soft tissue deformations created by the probe, we present a novel workflow where the robot holds the US probe on the patient during acquisition of the planning computerized tomography image, thereby ensuring that planning is performed on the deformed tissue. The robot system introduces constraints (virtual fixtures) to help to produce consistent soft tissue deformation between simulation and treatment days, based on the robot position, contact force, and reference US image recorded during simulation. This paper presents the system integration and the proposed clinical workflow, validated by an in vivo canine study. The results show that the virtual fixtures enable the clinician to deviate from the recorded position to better reproduce the reference US image, which correlates with more consistent soft tissue deformation and the possibility for more accurate patient setup and radiation delivery.
Distributed multirobot sensing and tracking: a behavior-based approach
NASA Astrophysics Data System (ADS)
Parker, Lynne E.
1995-09-01
An important issue that arises in the automation of many large-scale surveillance and reconnaissance tasks is that of tracking the movements of (or maintaining passive contact with) objects navigating in a bounded area of interest. Oftentimes in these problems, the area to be monitored will move over time or will not permit fixed sensors, thus requiring a team of mobile sensors--or robots--to monitor the area collectively. In these situations, the robots must not only have mechanisms for determining how to track objects and how to fuse information from neighboring robots, but they must also have distributed control strategies for ensuring that the entire area of interest is continually covered to the greatest extent possible. This paper focuses on the distributed control issue by describing a proposed decentralized control mechanism that allows a team of robots to collectively track and monitor objects in an uncluttered area of interest. The approach is based upon an extension to the ALLIANCE behavior-based architecture that generalizes from the domain of loosely-coupled, independent applications to the domain of strongly cooperative applications, in which the action selection of a robot is dependent upon the actions selected by its teammates. We conclude the paper be describing our ongoing implementation of the proposed approach on a team of four mobile robots.
Dual-Arm Generalized Compliant Motion With Shared Control
NASA Technical Reports Server (NTRS)
Backes, Paul G.
1994-01-01
Dual-Arm Generalized Compliant Motion (DAGCM) primitive computer program implementing improved unified control scheme for two manipulator arms cooperating in task in which both grasp same object. Provides capabilities for autonomous, teleoperation, and shared control of two robot arms. Unifies cooperative dual-arm control with multi-sensor-based task control and makes complete task-control capability available to higher-level task-planning computer system via large set of input parameters used to describe desired force and position trajectories followed by manipulator arms. Some concepts discussed in "A Generalized-Compliant-Motion Primitive" (NPO-18134).
Enhanced control and sensing for the REMOTEC ANDROS Mk VI robot. CRADA final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spelt, P.F.; Harvey, H.W.
1998-08-01
This Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc., and REMOTEC, Inc., explored methods of providing operator feedback for various work actions of the ANDROS Mk VI teleoperated robot. In a hazardous environment, an extremely heavy workload seriously degrades the productivity of teleoperated robot operators. This CRADA involved the addition of computer power to the robot along with a variety of sensors and encoders to provide information about the robot`s performance in and relationship to its environment. Software was developed to integrate the sensor and encoder information and provide control input to the robot. ANDROS Mkmore » VI robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as in a variety of other hazardous environments. Further, this platform has potential for use in a number of environmental restoration tasks, such as site survey and detection of hazardous waste materials. The addition of sensors and encoders serves to make the robot easier to manage and permits tasks to be done more safely and inexpensively (due to time saved in the completion of complex remote tasks). Prior research on the automation of mobile platforms with manipulators at Oak Ridge National Laboratory`s Center for Engineering Systems Advanced Research (CESAR, B&R code KC0401030) Laboratory, a BES-supported facility, indicated that this type of enhancement is effective. This CRADA provided such enhancements to a successful working teleoperated robot for the first time. Performance of this CRADA used the CESAR laboratory facilities and expertise developed under BES funding.« less
Adaptive walking of a quadrupedal robot based on layered biological reflexes
NASA Astrophysics Data System (ADS)
Zhang, Xiuli; Mingcheng, E.; Zeng, Xiangyu; Zheng, Haojun
2012-07-01
A multiple-legged robot is traditionally controlled by using its dynamic model. But the dynamic-model-based approach fails to acquire satisfactory performances when the robot faces rough terrains and unknown environments. Referring animals' neural control mechanisms, a control model is built for a quadruped robot walking adaptively. The basic rhythmic motion of the robot is controlled by a well-designed rhythmic motion controller(RMC) comprising a central pattern generator(CPG) for hip joints and a rhythmic coupler (RC) for knee joints. CPG and RC have relationships of motion-mapping and rhythmic couple. Multiple sensory-motor models, abstracted from the neural reflexes of a cat, are employed. These reflex models are organized and thus interact with the CPG in three layers, to meet different requirements of complexity and response time to the tasks. On the basis of the RMC and layered biological reflexes, a quadruped robot is constructed, which can clear obstacles and walk uphill and downhill autonomously, and make a turn voluntarily in uncertain environments, interacting with the environment in a way similar to that of an animal. The paper provides a biologically inspired architecture, with which a robot can walk adaptively in uncertain environments in a simple and effective way, and achieve better performances.
Sensor fusion V; Proceedings of the Meeting, Boston, MA, Nov. 15-17, 1992
NASA Technical Reports Server (NTRS)
Schenker, Paul S. (Editor)
1992-01-01
Topics addressed include 3D object perception, human-machine interface in multisensor systems, sensor fusion architecture, fusion of multiple and distributed sensors, interface and decision models for sensor fusion, computational networks, simple sensing for complex action, multisensor-based control, and metrology and calibration of multisensor systems. Particular attention is given to controlling 3D objects by sketching 2D views, the graphical simulation and animation environment for flexible structure robots, designing robotic systems from sensorimotor modules, cylindrical object reconstruction from a sequence of images, an accurate estimation of surface properties by integrating information using Bayesian networks, an adaptive fusion model for a distributed detection system, multiple concurrent object descriptions in support of autonomous navigation, robot control with multiple sensors and heuristic knowledge, and optical array detectors for image sensors calibration. (No individual items are abstracted in this volume)
Humanoids in Support of Lunar and Planetary Surface Operations
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Keymeulen, Didier
2006-01-01
This paper presents a vision of humanoid robots as human's key partners in future space exploration, in particular for construction, maintenance/repair and operation of lunar/planetary habitats, bases and settlements. It integrates this vision with the recent plans for human and robotic exploration, aligning a set of milestones for operational capability of humanoids with the schedule for the next decades and development spirals in the Project Constellation. These milestones relate to a set of incremental challenges, for the solving of which new humanoid technologies are needed. A system of systems integrative approach that would lead to readiness of cooperating humanoid crews is sketched. Robot fostering, training/education techniques, and improved cognitive/sensory/motor development techniques are considered essential elements for achieving intelligent humanoids. A pilot project using small-scale Fujitsu HOAP-2 humanoid is outlined.
Field studies of safety security rescue technologies through training and response activities
NASA Astrophysics Data System (ADS)
Murphy, Robin R.; Stover, Sam
2006-05-01
This paper describes the field-oriented philosophy of the Institute for Safety Security Rescue Technology (iSSRT) and summarizes the activities and lessons learned during calendar year 2005 of its two centers: the Center for Robot-Assisted Search and Rescue and the NSF Safety Security Rescue industry/university cooperative research center. In 2005, iSSRT participated in four responses (La Conchita, CA, Mudslides, Hurricane Dennis, Hurricane Katrina, Hurricane Wilma) and conducted three field experiments (NJTF-1, Camp Hurricane, Richmond, MO). The lessons learned covered mobility, operator control units, wireless communications, and general reliability. The work has collectively identified six emerging issues for future work. Based on these studies, a 10-hour, 1 continuing education unit credit course on rescue robotics has been created and is available. Rescue robots and sensors are available for loan upon request.
On the hitchhiker Robot Operated Materials Processing System: Experiment data system
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Jenstrom, Del
1995-01-01
The Space Shuttle Discovery STS-64 mission carried the first American autonomous robot into space, the Robot Operated Materials Processing System (ROMPS). On this mission ROMPS was the only Hitchhiker experiment and had a unique opportunity to utilize all Hitchhiker space carrier capabilities. ROMPS conducted rapid thermal processing of the one hundred semiconductor material samples to study how micro gravity affects the resulting material properties. The experiment was designed, built and operated by a small GSFC team in cooperation with industry and university based principal investigators who provided the material samples and data interpretation. ROMPS' success presents some valuable lessons in such cooperation, as well as in the utilization of the Hitchhiker carrier for complex applications. The motivation of this paper is to share these lessons with the scientific community interested in attached payload experiments. ROMPS has a versatile and intelligent material processing control data system. This paper uses the ROMPS data system as the guiding thread to present the ROMPS mission experience. It presents an overview of the ROMPS experiment followed by considerations of the flight and ground data subsystems and their architecture, data products generation during mission operations, and post mission data utilization. It then presents the lessons learned from the development and operation of the ROMPS data system as well as those learned during post-flight data processing.
Small, Lightweight Inspection Robot With 12 Degrees Of Freedom
NASA Technical Reports Server (NTRS)
Lee, Thomas S.; Ohm, Timothy R.; Hayati, Samad
1996-01-01
Small serpentine robot weighs only 6 lbs. and has link diameter of 1.5 in. Designed to perform inspections. Multiple degrees of freedom enables it to reach around obstacles and through small openings into simple or complexly shaped confined spaces to positions where difficult or impossible to perform inspections by other means. Fiber-optic borescope incorporated into robot arm, with inspection tip of borescope located at tip of arm. Borescope both conveys light along robot arm to illuminate scene inspected at tip and conveys image of scene back along robot arm to external imaging equipment.
ERIC Educational Resources Information Center
Howard, A. M.; Park, Chung Hyuk; Remy, S.
2012-01-01
The robotics field represents the integration of multiple facets of computer science and engineering. Robotics-based activities have been shown to encourage K-12 students to consider careers in computing and have even been adopted as part of core computer-science curriculum at a number of universities. Unfortunately, for students with visual…
A concept for ubiquitous robotics in industrial environment
NASA Astrophysics Data System (ADS)
Sallinen, Mikko; Heilala, Juhani; Kivikunnas, Sauli
2007-09-01
In this paper a concept for industrial ubiquitous robotics is presented. The concept combines two different approaches to manage agile, adaptable production: firstly the human operator is strongly in the production loop and secondly, the robot workcell will be more autonomous and smarter to manage production. This kind of autonomous robot cell can be called production island. Communication to the human operator working in this kind of smart industrial environment can be divided into two levels: body area communication and operator-infrastructure communication including devices, machines and infra. Body area communication can be supportive in two directions: data is recorded by means of measuring physical actions, such as hand movements, body gestures or supportive when it will provide information to user such as guides or manuals for operation. Body area communication can be carried out using short range communication technologies such as NFC (Near Field communication) which is RFID type of communication. In the operator-infrastructure communication, WLAN or Bluetooth -communication can be used. Beyond the current Human Machine interaction HMI systems, the presented system concept is designed to fulfill the requirements for hybrid, knowledge intensive manufacturing in the future, where humans and robots operate in close co-operation.
Human Assisted Robotic Vehicle Studies - A conceptual end-to-end mission architecture
NASA Astrophysics Data System (ADS)
Lehner, B. A. E.; Mazzotta, D. G.; Teeney, L.; Spina, F.; Filosa, A.; Pou, A. Canals; Schlechten, J.; Campbell, S.; Soriano, P. López
2017-11-01
With current space exploration roadmaps indicating the Moon as a proving ground on the way to human exploration of Mars, it is clear that human-robotic partnerships will play a key role for successful future human space missions. This paper details a conceptual end-to-end architecture for an exploration mission in cis-lunar space with a focus on human-robot interactions, called Human Assisted Robotic Vehicle Studies (HARVeSt). HARVeSt will build on knowledge of plant growth in space gained from experiments on-board the ISS and test the first growth of plants on the Moon. A planned deep space habitat will be utilised as the base of operations for human-robotic elements of the mission. The mission will serve as a technology demonstrator not only for autonomous tele-operations in cis-lunar space but also for key enabling technologies for future human surface missions. The successful approach of the ISS will be built on in this mission with international cooperation. Mission assets such as a modular rover will allow for an extendable mission and to scout and prepare the area for the start of an international Moon Village.
Interactive multi-objective path planning through a palette-based user interface
NASA Astrophysics Data System (ADS)
Shaikh, Meher T.; Goodrich, Michael A.; Yi, Daqing; Hoehne, Joseph
2016-05-01
n a problem where a human uses supervisory control to manage robot path-planning, there are times when human does the path planning, and if satisfied commits those paths to be executed by the robot, and the robot executes that plan. In planning a path, the robot often uses an optimization algorithm that maximizes or minimizes an objective. When a human is assigned the task of path planning for robot, the human may care about multiple objectives. This work proposes a graphical user interface (GUI) designed for interactive robot path-planning when an operator may prefer one objective over others or care about how multiple objectives are traded off. The GUI represents multiple objectives using the metaphor of an artist's palette. A distinct color is used to represent each objective, and tradeoffs among objectives are balanced in a manner that an artist mixes colors to get the desired shade of color. Thus, human intent is analogous to the artist's shade of color. We call the GUI an "Adverb Palette" where the word "Adverb" represents a specific type of objective for the path, such as the adverbs "quickly" and "safely" in the commands: "travel the path quickly", "make the journey safely". The novel interactive interface provides the user an opportunity to evaluate various alternatives (that tradeoff between different objectives) by allowing her to visualize the instantaneous outcomes that result from her actions on the interface. In addition to assisting analysis of various solutions given by an optimization algorithm, the palette has additional feature of allowing the user to define and visualize her own paths, by means of waypoints (guiding locations) thereby spanning variety for planning. The goal of the Adverb Palette is thus to provide a way for the user and robot to find an acceptable solution even though they use very different representations of the problem. Subjective evaluations suggest that even non-experts in robotics can carry out the planning tasks with a great deal of flexibility using the adverb palette.
Real-time multiple human perception with color-depth cameras on a mobile robot.
Zhang, Hao; Reardon, Christopher; Parker, Lynne E
2013-10-01
The ability to perceive humans is an essential requirement for safe and efficient human-robot interaction. In real-world applications, the need for a robot to interact in real time with multiple humans in a dynamic, 3-D environment presents a significant challenge. The recent availability of commercial color-depth cameras allow for the creation of a system that makes use of the depth dimension, thus enabling a robot to observe its environment and perceive in the 3-D space. Here we present a system for 3-D multiple human perception in real time from a moving robot equipped with a color-depth camera and a consumer-grade computer. Our approach reduces computation time to achieve real-time performance through a unique combination of new ideas and established techniques. We remove the ground and ceiling planes from the 3-D point cloud input to separate candidate point clusters. We introduce the novel information concept, depth of interest, which we use to identify candidates for detection, and that avoids the computationally expensive scanning-window methods of other approaches. We utilize a cascade of detectors to distinguish humans from objects, in which we make intelligent reuse of intermediary features in successive detectors to improve computation. Because of the high computational cost of some methods, we represent our candidate tracking algorithm with a decision directed acyclic graph, which allows us to use the most computationally intense techniques only where necessary. We detail the successful implementation of our novel approach on a mobile robot and examine its performance in scenarios with real-world challenges, including occlusion, robot motion, nonupright humans, humans leaving and reentering the field of view (i.e., the reidentification challenge), human-object and human-human interaction. We conclude with the observation that the incorporation of the depth information, together with the use of modern techniques in new ways, we are able to create an accurate system for real-time 3-D perception of humans by a mobile robot.
In-hospital mortality and morbidity after robotic coronary artery surgery.
Cavallaro, Paul; Rhee, Amanda J; Chiang, Yuting; Itagaki, Shinobu; Seigerman, Matthew; Chikwe, Joanna
2015-02-01
The objective of this study was to assess the impact of robotic approaches on outcomes of coronary bypass surgery. Retrospective national database analysis. United States hospitals. A weighted sample of 484,128 patients undergoing isolated coronary artery surgery identified from the Nationwide Inpatient Sample from 2008 through 2010. Robotically assisted coronary artery bypass surgery versus conventional bypass surgery. Robotic approaches were used in 2,582 patients (0.4%). Patients undergoing robotic surgery were less likely to be female (odds ratio [OR] 0.71, 95% confidence interval [CI] 0.57-0.87), present with acute myocardial infarction (OR 0.53, 95% CI 0.38-0.73), or have cerebrovascular disease (OR 0.41, 95% CI 0.23-0.71) compared to patients undergoing conventional surgery. In 59% of robotic cases, a single bypass was performed, and 2 bypasses were performed in 25% of cases. After adjusting for comorbidity, reduced postoperative stroke (0.0% v 1.5%, p = 0.045) and transfusion (13.5% v 24.4%, p = 0.001) rates were observed in patients who underwent robotic single-bypass surgery compared to conventional surgery. In patients undergoing multiple bypass grafts, higher mortality (1.1% v 0.5%), and cardiovascular complications (12.2% v 10.6%) were observed when robotic assistance was used, but the differences were not statistically significant (p = 0.5). The mean number of robotic cases carried out annually at institutions sampled was 6. Robotic assistance is associated with lower rates of postoperative complications in highly selected patients undergoing single coronary artery bypass surgery, but the benefits of this approach are reduced in patients who require multiple coronary artery bypass grafts. Copyright © 2014 Elsevier Inc. All rights reserved.
Mentoring console improves collaboration and teaching in surgical robotics.
Hanly, Eric J; Miller, Brian E; Kumar, Rajesh; Hasser, Christopher J; Coste-Maniere, Eve; Talamini, Mark A; Aurora, Alexander A; Schenkman, Noah S; Marohn, Michael R
2006-10-01
One of the most significant limitations of surgical robots has been their inability to allow multiple surgeons and surgeons-in-training to engage in collaborative control of robotic surgical instruments. We report the initial experience with a novel two-headed da Vinci surgical robot that has two collaborative modes: the "swap" mode allows two surgeons to simultaneously operate and actively swap control of the robot's four arms, and the "nudge" mode allows them to share control of two of the robot's arms. The utility of the mentoring console operating in its two collaborative modes was evaluated through a combination of dry laboratory exercises and animal laboratory surgery. The results from surgeon-resident collaborative performance of complex three-handed surgical tasks were compared to results from single-surgeon and single-resident performance. Statistical significance was determined using Student's t-test. Collaborative surgeon-resident swap control reduced the time to completion of complex three-handed surgical tasks by 25% compared to single-surgeon operation of a four-armed da Vinci (P < 0.01) and by 34% compared to single-resident operation (P < 0.001). While swap mode was found to be most helpful during parts of surgical procedures that require multiple hands (such as isolation and division of vessels), nudge mode was particularly useful for guiding a resident's hands during crucially precise steps of an operation (such as proper placement of stitches). The da Vinci mentoring console greatly facilitates surgeon collaboration during robotic surgery and improves the performance of complex surgical tasks. The mentoring console has the potential to improve resident participation in surgical robotics cases, enhance resident education in surgical training programs engaged in surgical robotics, and improve patient safety during robotic surgery.
Building Robota, a mini-humanoid robot for the rehabilitation of children with autism.
Billard, Aude; Robins, Ben; Nadel, Jacqueline; Dautenhahn, Kerstin
2007-01-01
The Robota project constructs a series of multiple-degrees-of-freedom, doll-shaped humanoid robots, whose physical features resemble those of a human baby. The Robota robots have been applied as assistive technologies in behavioral studies with low-functioning children with autism. These studies investigate the potential of using an imitator robot to assess children's imitation ability and to teach children simple coordinated behaviors. In this article, the authors review the recent technological developments that have made the Robota robots suitable for use with children with autism. They critically appraise the main outcomes of two sets of behavioral studies conducted with Robota and discuss how these results inform future development of the Robota robots and robots in general for the rehabilitation of children with complex developmental disabilities.
Computer coordination of limb motion for locomotion of a multiple-armed robot for space assembly
NASA Technical Reports Server (NTRS)
Klein, C. A.; Patterson, M. R.
1982-01-01
Consideration is given to a possible robotic system for the construction of large space structures, which may be described as a multiple general purpose arm manipulator vehicle that can walk over the structure under construction to a given site for further work. A description is presented of the locomotion of such a vehicle, modeling its arms in terms of a currently available industrial manipulator. It is noted that for whatever maximum speed of operation is chosen, rapid changes in robot velocity create situations in which already-selected handholds are no longer practical. A step is added to the 'free gait' walking algorithm in order to solve this problem.
Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.
van Dijk, W; van der Kooij, H; Koopman, B; van Asseldonk, E H F; van der Kooij, H
2013-06-01
To promote active participation of neurological patients during robotic gait training, controllers, such as "assist as needed" or "cooperative control", are suggested. Apart from providing support, these controllers also require that the robot should be capable of resembling natural, unsupported, walking. This means that they should have a transparent mode, where the interaction forces between the human and the robot are minimal. Traditional feedback-control algorithms do not exploit the cyclic nature of walking to improve the transparency of the robot. The purpose of this study was to improve the transparent mode of robotic devices, by developing two controllers that use the rhythmic behavior of gait. Both controllers use adaptive frequency oscillators and kernel-based non-linear filters. Kernelbased non-linear filters can be used to estimate signals and their time derivatives, as a function of the gait phase. The first controller learns the motor angle, associated with a certain joint angle pattern, and acts as a feed-forward controller to improve the torque tracking (including the zero-torque mode). The second controller learns the state of the mechanical system and compensates for the dynamical effects (e.g. the acceleration of robot masses). Both controllers have been tested separately and in combination on a small subject population. Using the feedforward controller resulted in an improved torque tracking of at least 52 percent at the hip joint, and 61 percent at the knee joint. When both controllers were active simultaneously, the interaction power between the robot and the human leg was reduced by at least 40 percent at the thigh, and 43 percent at the shank. These results indicate that: if a robotic task is cyclic, the torque tracking and transparency can be improved by exploiting the predictions of adaptive frequency oscillator and kernel-based nonlinear filters.
Robotic partial nephrectomy for complex renal tumors: surgical technique.
Rogers, Craig G; Singh, Amar; Blatt, Adam M; Linehan, W Marston; Pinto, Peter A
2008-03-01
Laparoscopic partial nephrectomy requires advanced training to accomplish tumor resection and renal reconstruction while minimizing warm ischemia times. Complex renal tumors add an additional challenge to a minimally invasive approach to nephron-sparing surgery. We describe our technique, illustrated with video, of robotic partial nephrectomy for complex renal tumors, including hilar, endophytic, and multiple tumors. Robotic assistance was used to resect 14 tumors in eight patients (mean age: 50.3 yr; range: 30-68 yr). Three patients had hereditary kidney cancer. All patients had complex tumor features, including hilar tumors (n=5), endophytic tumors (n=4), and/or multiple tumors (n=3). Robotic partial nephrectomy procedures were performed successfully without complications. Hilar clamping was used with a mean warm ischemia time of 31 min (range: 24-45 min). Mean blood loss was 230 ml (range: 100-450 ml). Histopathology confirmed clear-cell renal cell carcinoma (n=3), hybrid oncocytic tumor (n=2), chromophobe renal cell carcinoma (n=2), and oncocytoma (n=1). All patients had negative surgical margins. Mean index tumor size was 3.6 cm (range: 2.6-6.4 cm). Mean hospital stay was 2.6 d. At 3-mo follow-up, no patients experienced a statistically significant change in serum creatinine or estimated glomerular filtration rate and there was no evidence of tumor recurrence. Robotic partial nephrectomy is safe and feasible for select patients with complex renal tumors, including hilar, endophytic, and multiple tumors. Robotic assistance may facilitate a minimally invasive, nephron-sparing approach for select patients with complex renal tumors who might otherwise require open surgery or total nephrectomy.
NASA Technical Reports Server (NTRS)
Purves, Lloyd R. (Inventor)
1992-01-01
A robot serviced space facility includes multiple modules which are identical in physical structure, but selectively differing in function. and purpose. Each module includes multiple like attachment points which are identically placed on each module so as to permit interconnection with immediately adjacent modules. Connection is made through like outwardly extending flange assemblies having identical male and female configurations for interconnecting to and locking to a complementary side of another flange. Multiple rows of interconnected modules permit force, fluid, data and power transfer to be accomplished by redundant circuit paths. Redundant modules of critical subsystems are included. Redundancy of modules and of interconnections results in a space complex with any module being removable upon demand, either for module replacement or facility reconfiguration. without eliminating any vital functions of the complex. Module replacement and facility assembly or reconfiguration are accomplished by a computer controlled articulated walker type robotic manipulator arm assembly having two identical end-effectors in the form of male configurations which are identical to those on module flanges and which interconnect to female configurations on other flanges. The robotic arm assembly moves along a connected set or modules by successively disconnecting, moving and reconnecting alternate ends of itself to a succession of flanges in a walking type maneuver. To transport a module, the robot keeps the transported module attached to one of its end-effectors and uses another flange male configuration of the attached module as a substitute end-effector during walking.
Wang, Kundong; Chen, Bing; Lu, Qingsheng; Li, Hongbing; Liu, Manhua; Shen, Yu; Xu, Zhuoyan
2018-05-15
Endovascular interventional surgery (EIS) is performed under a high radiation environment at the sacrifice of surgeons' health. This paper introduces a novel endovascular interventional surgical robot that aims to reduce radiation to surgeons and physical stress imposed by lead aprons during fluoroscopic X-ray guided catheter intervention. The unique mechanical structure allowed the surgeon to manipulate the axial and radial motion of the catheter and guide wire. Four catheter manipulators (to manipulate the catheter and guide wire), and a control console which consists of four joysticks, several buttons and two twist switches (to control the catheter manipulators) were presented. The entire robotic system was established on a master-slave control structure through CAN (Controller Area Network) bus communication, meanwhile, the slave side of this robotic system showed highly accurate control over velocity and displacement with PID controlling method. The robotic system was tested and passed in vitro and animal experiments. Through functionality evaluation, the manipulators were able to complete interventional surgical motion both independently and cooperatively. The robotic surgery was performed successfully in an adult female pig and demonstrated the feasibility of superior mesenteric and common iliac artery stent implantation. The entire robotic system met the clinical requirements of EIS. The results show that the system has the ability to imitate the movements of surgeons and to accomplish the axial and radial motions with consistency and high-accuracy. Copyright © 2018 John Wiley & Sons, Ltd.
[Surgical robotics, short state of the art and prospects].
Gravez, P
2003-11-01
State-of-the-art robotized systems developed for surgery are either remotely controlled manipulators that duplicate gestures made by the surgeon (endoscopic surgery applications), or automated robots that execute trajectories defined relatively to pre-operative medical imaging (neurosurgery and orthopaedic surgery). This generation of systems primarily applies existing robotics technologies (the remote handling systems and the so-called "industrial robots") to current surgical practices. It has contributed to validate the huge potential of surgical robotics, but it suffers from several drawbacks, mainly high costs, excessive dimensions and some lack of user-friendliness. Nevertheless, technological progress let us anticipate the appearance in the near future of miniaturised surgical robots able to assist the gesture of the surgeon and to enhance his perception of the operation at hand. Due to many in-the-body articulated links, these systems will have the capability to perform complex minimally invasive gestures without obstructing the operating theatre. They will also combine the facility of manual piloting with the accuracy and increased safety of computer control, guiding the gestures of the human without offending to his freedom of action. Lastly, they will allow the surgeon to feel the mechanical properties of the tissues he is operating through a genuine "remote palpation" function. Most probably, such technological evolutions will lead the way to redesigned surgical procedures taking place inside new operating rooms featuring a better integration of all equipments and favouring cooperative work from multidisciplinary and sometimes geographically distributed medical staff.
Design and control of an embedded vision guided robotic fish with multiple control surfaces.
Yu, Junzhi; Wang, Kai; Tan, Min; Zhang, Jianwei
2014-01-01
This paper focuses on the development and control issues of a self-propelled robotic fish with multiple artificial control surfaces and an embedded vision system. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme including a caudal fin, a pair of pectoral fins, and a pelvic fin is proposed. To achieve flexible yet stable motions in aquatic environments, a central pattern generator- (CPG-) based control method is employed. Meanwhile, a monocular underwater vision serves as sensory feedback that modifies the control parameters. The integration of the CPG-based motion control and the visual processing in an embedded microcontroller allows the robotic fish to navigate online. Aquatic tests demonstrate the efficacy of the proposed mechatronic design and swimming control methods. Particularly, a pelvic fin actuated sideward swimming gait was first implemented. It is also found that the speeds and maneuverability of the robotic fish with coordinated control surfaces were largely superior to that of the swimming robot propelled by a single control surface.
The KALI multi-arm robot programming and control environment
NASA Technical Reports Server (NTRS)
Backes, Paul; Hayati, Samad; Hayward, Vincent; Tso, Kam
1989-01-01
The KALI distributed robot programming and control environment is described within the context of its use in the Jet Propulsion Laboratory (JPL) telerobot project. The purpose of KALI is to provide a flexible robot programming and control environment for coordinated multi-arm robots. Flexibility, both in hardware configuration and software, is desired so that it can be easily modified to test various concepts in robot programming and control, e.g., multi-arm control, force control, sensor integration, teleoperation, and shared control. In the programming environment, user programs written in the C programming language describe trajectories for multiple coordinated manipulators with the aid of KALI function libraries. A system of multiple coordinated manipulators is considered within the programming environment as one motion system. The user plans the trajectory of one controlled Cartesian frame associated with a motion system and describes the positions of the manipulators with respect to that frame. Smooth Cartesian trajectories are achieved through a blending of successive path segments. The manipulator and load dynamics are considered during trajectory generation so that given interface force limits are not exceeded.
2013-01-01
Stroke is a major cause of disability in the world. The activities of upper limb segments are often compromised following a stroke, impairing most daily tasks. Robotic training is now considered amongst the rehabilitation methods applied to promote functional recovery. However, the implementation of robotic devices remains a major challenge for the bioengineering and clinical community. Latest exoskeletons with multiple degrees of freedom (DOF) may become particularly attractive, because of their low apparent inertia, the multiple actuators generating large torques, and the fact that patients can move the arm in the normal wide workspace. A recent study published in JNER by Milot and colleagues underlines that training with a 6-DOF exoskeleton impacts positively on motor function in patients being in stable phase of recovery after a stroke. Also, multi-joint robotic training was not found to be superior to single-joint robotic training. Although it is often considered that rehabilitation should start from simple movements to complex functional movements as the recovery evolves, this study challenges this widespread notion whose scientific basis has remained uncertain. PMID:24354518
Design and Control of an Embedded Vision Guided Robotic Fish with Multiple Control Surfaces
Wang, Kai; Tan, Min; Zhang, Jianwei
2014-01-01
This paper focuses on the development and control issues of a self-propelled robotic fish with multiple artificial control surfaces and an embedded vision system. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme including a caudal fin, a pair of pectoral fins, and a pelvic fin is proposed. To achieve flexible yet stable motions in aquatic environments, a central pattern generator- (CPG-) based control method is employed. Meanwhile, a monocular underwater vision serves as sensory feedback that modifies the control parameters. The integration of the CPG-based motion control and the visual processing in an embedded microcontroller allows the robotic fish to navigate online. Aquatic tests demonstrate the efficacy of the proposed mechatronic design and swimming control methods. Particularly, a pelvic fin actuated sideward swimming gait was first implemented. It is also found that the speeds and maneuverability of the robotic fish with coordinated control surfaces were largely superior to that of the swimming robot propelled by a single control surface. PMID:24688413
Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications.
Patino, T; Mestre, R; Sánchez, S
2016-10-07
Soft robotics is an emerging discipline that employs soft flexible materials such as fluids, gels and elastomers in order to enhance the use of robotics in healthcare applications. Compared to their rigid counterparts, soft robotic systems have flexible and rheological properties that are closely related to biological systems, thus allowing the development of adaptive and flexible interactions with complex dynamic environments. With new technologies arising in bioengineering, the integration of living cells into soft robotic systems offers the possibility of accomplishing multiple complex functions such as sensing and actuating upon external stimuli. These emerging bio-hybrid systems are showing promising outcomes and opening up new avenues in the field of soft robotics for applications in healthcare and other fields.
NASA Astrophysics Data System (ADS)
Ding, Wan; Wu, Jianxu; Yao, Yan'an
2015-07-01
Lattice modular robots possess diversity actuation methods, such as electric telescopic rod, gear rack, magnet, robot arm, etc. The researches on lattice modular robots mainly focus on their hardware descriptions and reconfiguration algorithms. Meanwhile, their design architectures and actuation methods perform slow telescopic and moving speeds, relative low actuation force verse weight ratio, and without internal space to carry objects. To improve the mechanical performance and reveal the locomotion and reconfiguration binary essences of the lattice modular robots, a novel cube-shaped, frame-like, pneumatic-based reconfigurable robot module called pneumatic expandable cube(PE-Cube) is proposed. The three-dimensional(3D) expanding construction and omni-directional rolling analysis of the constructed robots are the main focuses. The PE-Cube with three degrees of freedom(DoFs) is assembled by replacing the twelve edges of a cube with pneumatic cylinders. The proposed symmetric construction condition makes the constructed robots possess the same properties in each supporting state, and a binary control strategy cooperated with binary actuator(pneumatic cylinder) is directly adopted to control the PE-Cube. Taking an eight PE-Cube modules' construction as example, its dynamic rolling simulation, static rolling condition, and turning gait are illustrated and discussed. To testify telescopic synchronization, respond speed, locomotion feasibility, and repeatability and reliability of hardware system, an experimental pneumatic-based robotic system is built and the rolling and turning experiments of the eight PE-Cube modules' construction are carried out. As an extension, the locomotion feasibility of a thirty-two PE-Cube modules' construction is analyzed and proved, including dynamic rolling simulation, static rolling condition, and dynamic analysis in free tipping process. The proposed PE-Cube module, construction method, and locomotion analysis enrich the family of the lattice modular robot and provide the instruction to design the lattice modular robot.
Towards multi-platform software architecture for Collaborative Teleoperation
NASA Astrophysics Data System (ADS)
Domingues, Christophe; Otmane, Samir; Davesne, Frederic; Mallem, Malik
2009-03-01
Augmented Reality (AR) can provide to a Human Operator (HO) a real help in achieving complex tasks, such as remote control of robots and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robot simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on the use of different Virtual Reality platforms and different Mobile platforms to control one or many robots.
An Informationally Structured Room for Robotic Assistance †
Tsuji, Tokuo; Mozos, Oscar Martinez; Chae, Hyunuk; Pyo, Yoonseok; Kusaka, Kazuya; Hasegawa, Tsutomu; Morooka, Ken'ichi; Kurazume, Ryo
2015-01-01
The application of assistive technologies for elderly people is one of the most promising and interesting scenarios for intelligent technologies in the present and near future. Moreover, the improvement of the quality of life for the elderly is one of the first priorities in modern countries and societies. In this work, we present an informationally structured room that is aimed at supporting the daily life activities of elderly people. This room integrates different sensor modalities in a natural and non-invasive way inside the environment. The information gathered by the sensors is processed and sent to a centralized management system, which makes it available to a service robot assisting the people. One important restriction of our intelligent room is reducing as much as possible any interference with daily activities. Finally, this paper presents several experiments and situations using our intelligent environment in cooperation with our service robot. PMID:25912347
Micro-Electronics, Robotics and Jobs. Information Computer Communication Policy Series No. 7.
ERIC Educational Resources Information Center
Organisation for Economic Cooperation and Development, Paris (France).
This monograph contains selected papers presented at the Second Special Session on Information Technologies, Productivity and Labour Market Implications, which took place at the Organisation for Economic Cooperation and Development on October 19-21, 1981. An introductory note summarizes significant points from the meeting. Part 1 contains a report…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
... Motion, Inc., Boulder, CO; Hitachi Cable Manchester, Inc., Manchester, NH; and Global Engineering..., Applied Robotics, Inc., Glenville, NY; WIT, St.-Laurent-Du- Var, FRANCE; Caron Engineering, Inc., Wells... Act on May 2, 2011 (76 FR 24523). Patricia A. Brink, Director of Civil Enforcement, Antitrust Division...
Modified Cooper Harper Scales for Assessing Unmanned Vehicle Displays
2008-12-01
Majesty accident in 1995. After about 35 hours in transit from Bermuda to Boston, the ship grounded on the Nantucket shoals (NTSB, 1995). Shortly after...see another robot – Which one is it? 28 18 Male Student 4 It was pretty simple to use but some symbols like the triangles seem unnecessary. It
A Cognitive Neuroscience Perspective on Embodied Language for Human-Robot Cooperation
ERIC Educational Resources Information Center
Madden, Carol; Hoen, Michel; Dominey, Peter Ford
2010-01-01
This article addresses issues in embodied sentence processing from a "cognitive neural systems" approach that combines analysis of the behavior in question, analysis of the known neurophysiological bases of this behavior, and the synthesis of a neuro-computational model of embodied sentence processing that can be applied to and tested in the…
ERIC Educational Resources Information Center
Vallance, Michael; Martin, Stewart; Wiz, Charles; van Schaik, Paul
2010-01-01
Science education is concerned with the meaningful pursuit of comprehension, knowledge and understanding of scientific concepts and processes. In Vygotskian social constructivist learning, personal interpretation, decision-making and community cooperation fosters long-term understanding and transference of learned concepts. The construction of…
Cooperative Control of UAVs for Localization of Intermittently Emitting Mobile Targets
2009-08-01
as lawn - mower serpentine patterns [21]. Second, due to the limited energy supplies intrinsic to UAV applications, it is also important that the search...Robotic Embedded Systems Laboratory, Univ. Southern Calif., Los Angeles, CA, 2002. Tech. Rep. [21] J. Ousingsawat and M. G. Earl, “Modified lawn - mower search
Optimization and Control of Cyber-Physical Vehicle Systems
Bradley, Justin M.; Atkins, Ella M.
2015-01-01
A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined. PMID:26378541
Optimization and Control of Cyber-Physical Vehicle Systems.
Bradley, Justin M; Atkins, Ella M
2015-09-11
A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.
NASA Astrophysics Data System (ADS)
Patkin, M. L.; Rogachev, G. N.
2018-02-01
A method for constructing a multi-agent control system for mobile robots based on training with reinforcement using deep neural networks is considered. Synthesis of the management system is proposed to be carried out with reinforcement training and the modified Actor-Critic method, in which the Actor module is divided into Action Actor and Communication Actor in order to simultaneously manage mobile robots and communicate with partners. Communication is carried out by sending partners at each step a vector of real numbers that are added to the observation vector and affect the behaviour. Functions of Actors and Critic are approximated by deep neural networks. The Critics value function is trained by using the TD-error method and the Actor’s function by using DDPG. The Communication Actor’s neural network is trained through gradients received from partner agents. An environment in which a cooperative multi-agent interaction is present was developed, computer simulation of the application of this method in the control problem of two robots pursuing two goals was carried out.
Torres-González, Arturo; Martinez-de Dios, Jose Ramiro; Ollero, Anibal
2014-01-01
This work is motivated by robot-sensor network cooperation techniques where sensor nodes (beacons) are used as landmarks for range-only (RO) simultaneous localization and mapping (SLAM). This paper presents a RO-SLAM scheme that actuates over the measurement gathering process using mechanisms that dynamically modify the rate and variety of measurements that are integrated in the SLAM filter. It includes a measurement gathering module that can be configured to collect direct robot-beacon and inter-beacon measurements with different inter-beacon depth levels and at different rates. It also includes a supervision module that monitors the SLAM performance and dynamically selects the measurement gathering configuration balancing SLAM accuracy and resource consumption. The proposed scheme has been applied to an extended Kalman filter SLAM with auxiliary particle filters for beacon initialization (PF-EKF SLAM) and validated with experiments performed in the CONET Integrated Testbed. It achieved lower map and robot errors (34% and 14%, respectively) than traditional methods with a lower computational burden (16%) and similar beacon energy consumption. PMID:24776938
Torres-González, Arturo; Martinez-de Dios, Jose Ramiro; Ollero, Anibal
2014-04-25
This work is motivated by robot-sensor network cooperation techniques where sensor nodes (beacons) are used as landmarks for range-only (RO) simultaneous localization and mapping (SLAM). This paper presents a RO-SLAM scheme that actuates over the measurement gathering process using mechanisms that dynamically modify the rate and variety of measurements that are integrated in the SLAM filter. It includes a measurement gathering module that can be configured to collect direct robot-beacon and inter-beacon measurements with different inter-beacon depth levels and at different rates. It also includes a supervision module that monitors the SLAM performance and dynamically selects the measurement gathering configuration balancing SLAM accuracy and resource consumption. The proposed scheme has been applied to an extended Kalman filter SLAM with auxiliary particle filters for beacon initialization (PF-EKF SLAM) and validated with experiments performed in the CONET Integrated Testbed. It achieved lower map and robot errors (34% and 14%, respectively) than traditional methods with a lower computational burden (16%) and similar beacon energy consumption.
An immune-inspired swarm aggregation algorithm for self-healing swarm robotic systems.
Timmis, J; Ismail, A R; Bjerknes, J D; Winfield, A F T
2016-08-01
Swarm robotics is concerned with the decentralised coordination of multiple robots having only limited communication and interaction abilities. Although fault tolerance and robustness to individual robot failures have often been used to justify the use of swarm robotic systems, recent studies have shown that swarm robotic systems are susceptible to certain types of failure. In this paper we propose an approach to self-healing swarm robotic systems and take inspiration from the process of granuloma formation, a process of containment and repair found in the immune system. We use a case study of a swarm performing team work where previous works have demonstrated that partially failed robots have the most detrimental effect on overall swarm behaviour. We have developed an immune inspired approach that permits the recovery from certain failure modes during operation of the swarm, overcoming issues that effect swarm behaviour associated with partially failed robots. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A global approach to kinematic path planning to robots with holonomic and nonholonomic constraints
NASA Technical Reports Server (NTRS)
Divelbiss, Adam; Seereeram, Sanjeev; Wen, John T.
1993-01-01
Robots in applications may be subject to holonomic or nonholonomic constraints. Examples of holonomic constraints include a manipulator constrained through the contact with the environment, e.g., inserting a part, turning a crank, etc., and multiple manipulators constrained through a common payload. Examples of nonholonomic constraints include no-slip constraints on mobile robot wheels, local normal rotation constraints for soft finger and rolling contacts in grasping, and conservation of angular momentum of in-orbit space robots. The above examples all involve equality constraints; in applications, there are usually additional inequality constraints such as robot joint limits, self collision and environment collision avoidance constraints, steering angle constraints in mobile robots, etc. The problem of finding a kinematically feasible path that satisfies a given set of holonomic and nonholonomic constraints, of both equality and inequality types is addressed. The path planning problem is first posed as a finite time nonlinear control problem. This problem is subsequently transformed to a static root finding problem in an augmented space which can then be iteratively solved. The algorithm has shown promising results in planning feasible paths for redundant arms satisfying Cartesian path following and goal endpoint specifications, and mobile vehicles with multiple trailers. In contrast to local approaches, this algorithm is less prone to problems such as singularities and local minima.
An under-actuated origami gripper with adjustable stiffness joints for multiple grasp modes
NASA Astrophysics Data System (ADS)
Firouzeh, Amir; Paik, Jamie
2017-05-01
Under-actuated robots offer multiple degrees of freedom without much added complexity to the actuation and control. Utilizing adjustable stiffness joints in these robots allows us to control their stable configurations and their mode of interaction with the environment. In this paper, we present the design of tendon-driven robotic origami (robogami) joints with adjustable stiffness. The proposed designs allow us to place joints along any direction in the plane of the robot and in the normal direction to the plane. The layer-by-layer manufacturing of robogamis facilitates the design and manufacturing of robots with different arrangement of joints for different applications. We use thermally activated shape memory polymer to control the joint stiffness. The manufacturing of the polymer layer is compatible with the layer-by-layer manufacturing process of the robogamis which results in scalable and customizable robots. To demonstrate, we prototyped an under-actuated gripper with three fingers and only one input actuation. The grasp mode of the gripper is set by adjusting the configuration of the locked joints and modulating the stiffness of the active joints. We present a model to estimate the configuration and the contact forces of the gripper at different settings that will assist us in design and control of future generation of under-actuated robogamis.
An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger
Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico
2016-01-01
In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human’s ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can successfully be used, not only to control the motion of a supernumerary robotic finger but also to regulate its compliance. The proposed approach can be exploited also for the control of different wearable devices that has to actively cooperate with the human limbs. PMID:27891088
Robotics and the spine: a review of current and ongoing applications.
Shweikeh, Faris; Amadio, Jordan P; Arnell, Monica; Barnard, Zachary R; Kim, Terrence T; Johnson, J Patrick; Drazin, Doniel
2014-03-01
Robotics in the operating room has shown great use and versatility in multiple surgical fields. Robot-assisted spine surgery has gained significant favor over its relatively short existence, due to its intuitive promise of higher surgical accuracy and better outcomes with fewer complications. Here, the authors analyze the existing literature on this growing technology in the era of minimally invasive spine surgery. In an attempt to provide the most recent, up-to-date review of the current literature on robotic spine surgery, a search of the existing literature was conducted to obtain all relevant studies on robotics as it relates to its application in spine surgery and other interventions. In all, 45 articles were included in the analysis. The authors discuss the current status of this technology and its potential in multiple arenas of spinal interventions, mainly spine surgery and spine biomechanics testing. There are numerous potential advantages and limitations to robotic spine surgery, as suggested in published case reports and in retrospective and prospective studies. Randomized controlled trials are few in number and show conflicting results regarding accuracy. The present limitations may be surmountable with future technological improvements, greater surgeon experience, reduced cost, improved operating room dynamics, and more training of surgical team members. Given the promise of robotics for improvements in spine surgery and spine biomechanics testing, more studies are needed to further explore the applicability of this technology in the spinal operating room. Due to the significant cost of the robotic equipment, studies are needed to substantiate that the increased equipment costs will result in significant benefits that will justify the expense.
A satellite orbital testbed for SATCOM using mobile robots
NASA Astrophysics Data System (ADS)
Shen, Dan; Lu, Wenjie; Wang, Zhonghai; Jia, Bin; Wang, Gang; Wang, Tao; Chen, Genshe; Blasch, Erik; Pham, Khanh
2016-05-01
This paper develops and evaluates a satellite orbital testbed (SOT) for satellite communications (SATCOM). SOT can emulate the 3D satellite orbit using the omni-wheeled robots and a robotic arm. The 3D motion of satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The former actions are emulated by omni-wheeled robots while the up-down motions are performed by a stepped-motor-controlled-ball along a rod (robotic arm), which is attached to the robot. The emulated satellite positions will go to the measure model, whose results will be used to perform multiple space object tracking. Then the tracking results will go to the maneuver detection and collision alert. The satellite maneuver commands will be translated to robots commands and robotic arm commands. In SATCOM, the effects of jamming depend on the range and angles of the positions of satellite transponder relative to the jamming satellite. We extend the SOT to include USRP transceivers. In the extended SOT, the relative ranges and angles are implemented using omni-wheeled robots and robotic arms.
Saadatzi, Mohammad Nasser; Pennington, Robert C; Welch, Karla C; Graham, James H
2018-06-20
The authors combined virtual reality technology and social robotics to develop a tutoring system that resembled a small-group arrangement. This tutoring system featured a virtual teacher instructing sight words, and included a humanoid robot emulating a peer. The authors used a multiple-probe design across word sets to evaluate the effects of the instructional package on the explicit acquisition and vicarious learning of sight words instructed to three children with autism spectrum disorder (ASD) and the robot peer. Results indicated that participants acquired, maintained, and generalized 100% of the words explicitly instructed to them, made fewer errors while learning the words common between them and the robot peer, and vicariously learned 94% of the words solely instructed to the robot.
Event-Based Control Strategy for Mobile Robots in Wireless Environments.
Socas, Rafael; Dormido, Sebastián; Dormido, Raquel; Fabregas, Ernesto
2015-12-02
In this paper, a new event-based control strategy for mobile robots is presented. It has been designed to work in wireless environments where a centralized controller has to interchange information with the robots over an RF (radio frequency) interface. The event-based architectures have been developed for differential wheeled robots, although they can be applied to other kinds of robots in a simple way. The solution has been checked over classical navigation algorithms, like wall following and obstacle avoidance, using scenarios with a unique or multiple robots. A comparison between the proposed architectures and the classical discrete-time strategy is also carried out. The experimental results shows that the proposed solution has a higher efficiency in communication resource usage than the classical discrete-time strategy with the same accuracy.
Efficient Control Law Simulation for Multiple Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driessen, B.J.; Feddema, J.T.; Kotulski, J.D.
1998-10-06
In this paper we consider the problem of simulating simple control laws involving large numbers of mobile robots. Such simulation can be computationally prohibitive if the number of robots is large enough, say 1 million, due to the 0(N2 ) cost of each time step. This work therefore uses hierarchical tree-based methods for calculating the control law. These tree-based approaches have O(NlogN) cost per time step, thus allowing for efficient simulation involving a large number of robots. For concreteness, a decentralized control law which involves only the distance and bearing to the closest neighbor robot will be considered. The timemore » to calculate the control law for each robot at each time step is demonstrated to be O(logN).« less
Event-Based Control Strategy for Mobile Robots in Wireless Environments
Socas, Rafael; Dormido, Sebastián; Dormido, Raquel; Fabregas, Ernesto
2015-01-01
In this paper, a new event-based control strategy for mobile robots is presented. It has been designed to work in wireless environments where a centralized controller has to interchange information with the robots over an RF (radio frequency) interface. The event-based architectures have been developed for differential wheeled robots, although they can be applied to other kinds of robots in a simple way. The solution has been checked over classical navigation algorithms, like wall following and obstacle avoidance, using scenarios with a unique or multiple robots. A comparison between the proposed architectures and the classical discrete-time strategy is also carried out. The experimental results shows that the proposed solution has a higher efficiency in communication resource usage than the classical discrete-time strategy with the same accuracy. PMID:26633412
A Behavior-Based Strategy for Single and Multi-Robot Autonomous Exploration
Cepeda, Jesus S.; Chaimowicz, Luiz; Soto, Rogelio; Gordillo, José L.; Alanís-Reyes, Edén A.; Carrillo-Arce, Luis C.
2012-01-01
In this paper, we consider the problem of autonomous exploration of unknown environments with single and multiple robots. This is a challenging task, with several potential applications. We propose a simple yet effective approach that combines a behavior-based navigation with an efficient data structure to store previously visited regions. This allows robots to safely navigate, disperse and efficiently explore the environment. A series of experiments performed using a realistic robotic simulator and a real testbed scenario demonstrate that our technique effectively distributes the robots over the environment and allows them to quickly accomplish their mission in large open spaces, narrow cluttered environments, dead-end corridors, as well as rooms with minimum exits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harber, K.S.; Pin, F.G.
1990-03-01
The US DOE Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) and the Commissariat a l'Energie Atomique's (CEA) Office de Robotique et Productique within the Directorat a la Valorization are working toward a long-term cooperative agreement and relationship in the area of Intelligent Systems Research (ISR). This report presents the proceedings of the first CESAR/CEA Workshop on Autonomous Mobile Robots which took place at ORNL on May 30, 31 and June 1, 1989. The purpose of the workshop was to present and discuss methodologies and algorithms under development at the two facilities in themore » area of perception and navigation for autonomous mobile robots in unstructured environments. Experimental demonstration of the algorithms and comparison of some of their features were proposed to take place within the framework of a previously mutually agreed-upon demonstration scenario or base-case.'' The base-case scenario described in detail in Appendix A, involved autonomous navigation by the robot in an a priori unknown environment with dynamic obstacles, in order to reach a predetermined goal. From the intermediate goal location, the robot had to search for and locate a control panel, move toward it, and dock in front of the panel face. The CESAR demonstration was successfully accomplished using the HERMIES-IIB robot while subsets of the CEA demonstration performed using the ARES robot simulation and animation system were presented. The first session of the workshop focused on these experimental demonstrations and on the needs and considerations for establishing benchmarks'' for testing autonomous robot control algorithms.« less
Application of robotics in gastrointestinal endoscopy: A review
Yeung, Baldwin Po Man; Chiu, Philip Wai Yan
2016-01-01
Multiple robotic flexible endoscope platforms have been developed based on cross specialty collaboration between engineers and medical doctors. However, significant number of these platforms have been developed for the natural orifice transluminal endoscopic surgery paradigm. Increasing amount of evidence suggest the focus of development should be placed on advanced endolumenal procedures such as endoscopic submucosal dissection instead. A thorough literature analysis was performed to assess the current status of robotic flexible endoscopic platforms designed for advanced endolumenal procedures. Current efforts are mainly focused on robotic locomotion and robotic instrument control. In the future, advances in actuation and servoing technology, optical analysis, augmented reality and wireless power transmission technology will no doubt further advance the field of robotic endoscopy. Globally, health systems have become increasingly budget conscious; widespread acceptance of robotic endoscopy will depend on careful design to ensure its delivery of a cost effective service. PMID:26855540
Robotic surgical systems in maxillofacial surgery: a review
Liu, Hang-Hang; Li, Long-Jiang; Shi, Bin; Xu, Chun-Wei; Luo, En
2017-01-01
Throughout the twenty-first century, robotic surgery has been used in multiple oral surgical procedures for the treatment of head and neck tumors and non-malignant diseases. With the assistance of robotic surgical systems, maxillofacial surgery is performed with less blood loss, fewer complications, shorter hospitalization and better cosmetic results than standard open surgery. However, the application of robotic surgery techniques to the treatment of head and neck diseases remains in an experimental stage, and the long-lasting effects on surgical morbidity, oncologic control and quality of life are yet to be established. More well-designed studies are needed before this approach can be recommended as a standard treatment paradigm. Nonetheless, robotic surgical systems will inevitably be extended to maxillofacial surgery. This article reviews the current clinical applications of robotic surgery in the head and neck region and highlights the benefits and limitations of current robotic surgical systems. PMID:28660906
High-throughput mouse genotyping using robotics automation.
Linask, Kaari L; Lo, Cecilia W
2005-02-01
The use of mouse models is rapidly expanding in biomedical research. This has dictated the need for the rapid genotyping of mutant mouse colonies for more efficient utilization of animal holding space. We have established a high-throughput protocol for mouse genotyping using two robotics workstations: a liquid-handling robot to assemble PCR and a microfluidics electrophoresis robot for PCR product analysis. This dual-robotics setup incurs lower start-up costs than a fully automated system while still minimizing human intervention. Essential to this automation scheme is the construction of a database containing customized scripts for programming the robotics workstations. Using these scripts and the robotics systems, multiple combinations of genotyping reactions can be assembled simultaneously, allowing even complex genotyping data to be generated rapidly with consistency and accuracy. A detailed protocol, database, scripts, and additional background information are available at http://dir.nhlbi.nih.gov/labs/ldb-chd/autogene/.
Lunar Exploration and Science in ESA
NASA Astrophysics Data System (ADS)
Carpenter, J.; Houdou, B.; Fisackerly, R.; De Rosa, D.; Patti, B.; Schiemann, J.; Hufenbach, B.; Foing, B.
2014-04-01
ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensible partner in the exploration missions of the future. We report on the current status of the European elements in this cooperative scenario, with an emphasis on the investigations to be performed at the lunar surface. These investigations should generate knowledge that can be enabling for exploration in the future, and should also have a significant fundamental scientific return.
Lunar Exploration and Science Opportunities in ESA
NASA Astrophysics Data System (ADS)
Carpenter, J.; Houdou, B.; Fisackerly, R.; De Rosa, D.; Schiemann, J.; Patti, B.; Foing, B.
2014-04-01
ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavour. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensible partner in the exploration missions of the future. We report on the current status of the European elements in this cooperative scenario, with an emphasis on the investigations to be performed at the lunar surface. These investigations should generate knowledge that can be enabling for exploration in the future, and should also have a significant fundamental scientific return.
Convergent method of and apparatus for distributed control of robotic systems using fuzzy logic
Feddema, John T.; Driessen, Brian J.; Kwok, Kwan S.
2002-01-01
A decentralized fuzzy logic control system for one vehicle or for multiple robotic vehicles provides a way to control each vehicle to converge on a goal without collisions between vehicles or collisions with other obstacles, in the presence of noisy input measurements and a limited amount of compute-power and memory on board each robotic vehicle. The fuzzy controller demonstrates improved robustness to noise relative to an exact controller.
An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks
Nasim, Mehwish; Qaisar, Saad; Lee, Sungyoung
2012-01-01
In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO) communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO) clustering scheme and traditional multihop Single-Input-Single-Output (SISO) routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes. PMID:22368459
Two-port robotic hysterectomy: a novel approach.
Moawad, Gaby N; Tyan, Paul; Khalil, Elias D Abi
2018-03-24
The objective of the study was to demonstrate a novel technique for two-port robotic hysterectomy with a particular focus on the challenging portions of the procedure. The study is designed as a technical video, showing step-by-step a two-port robotic hysterectomy approach (Canadian Task Force classification level III). IRB approval was not required for this study. The benefits of minimally invasive surgery for gynecological pathology have been clearly documented in multiple studies. Patients had fewer medical and surgical complications postoperatively, better cosmesis and quality of life. Most gynecological surgeons require 3-5 ports for the standard gynecological procedure. Even though the minimally invasive multiport system provides an excellent safety profile, multiple incisions are associated with a greater risk for morbidity including infection, pain, and hernia. In the past decade, various new methods have emerged to minimize the number of ports used in gynecological surgery. The interventions employed were a two-port robotic hysterectomy, using a camera port plus one robotic arm, with a focus on salpingectomy and cuff closure. We describe a transvaginal and a transabdominal approach for salpingectomy and a novel method for cuff closure. The transvaginal and transabdominal techniques for salpingectomy for two-port robotic-assisted hysterectomy provide excellent tension and exposure for a safe procedure without the need for an extra port. We also describe a transvaginal technique to place the vaginal cuff on tension during closure. With the necessary set of skills on a carefully chosen patient, two-port robotic-assisted total laparoscopic hysterectomy is a feasible procedure.
Intelligent systems technology infrastructure for integrated systems
NASA Technical Reports Server (NTRS)
Lum, Henry
1991-01-01
A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.
NASA Technical Reports Server (NTRS)
Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Abdallah, Muhammad E. (Inventor)
2013-01-01
A robotic system includes a robot having manipulators for grasping an object using one of a plurality of grasp types during a primary task, and a controller. The controller controls the manipulators during the primary task using a multiple-task control hierarchy, and automatically parameterizes the internal forces of the system for each grasp type in response to an input signal. The primary task is defined at an object-level of control, e.g., using a closed-chain transformation, such that only select degrees of freedom are commanded for the object. A control system for the robotic system has a host machine and algorithm for controlling the manipulators using the above hierarchy. A method for controlling the system includes receiving and processing the input signal using the host machine, including defining the primary task at the object-level of control, e.g., using a closed-chain definition, and parameterizing the internal forces for each of grasp type.
Imagine...Opportunities and Resources for Academically Talented Youth, 2001-2002.
ERIC Educational Resources Information Center
Hartman, Melissa, Ed.
2002-01-01
This collection of 5 issues of Imagine cover the time period from November/December 2001 through May/June 2002. Designed for gifted youth, the issues focus on dramatic arts, physics and astronomy, communications, law and politics, and robotics, and contain the following featured articles: (1) The Story of a Play (Gemma Cooper-Novack); (2)…
TRICCS: A proposed teleoperator/robot integrated command and control system for space applications
NASA Technical Reports Server (NTRS)
Will, R. W.
1985-01-01
Robotic systems will play an increasingly important role in space operations. An integrated command and control system based on the requirements of space-related applications and incorporating features necessary for the evolution of advanced goal-directed robotic systems is described. These features include: interaction with a world model or domain knowledge base, sensor feedback, multiple-arm capability and concurrent operations. The system makes maximum use of manual interaction at all levels for debug, monitoring, and operational reliability. It is shown that the robotic command and control system may most advantageously be implemented as packages and tasks in Ada.
Architecture for Multiple Interacting Robot Intelligences
NASA Technical Reports Server (NTRS)
Peters, Richard Alan, II (Inventor)
2008-01-01
An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a database associative memory (DBAM) that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.
A design strategy for autonomous systems
NASA Technical Reports Server (NTRS)
Forster, Pete
1989-01-01
Some solutions to crucial issues regarding the competent performance of an autonomously operating robot are identified; namely, that of handling multiple and variable data sources containing overlapping information and maintaining coherent operation while responding adequately to changes in the environment. Support for the ideas developed for the construction of such behavior are extracted from speculations in the study of cognitive psychology, an understanding of the behavior of controlled mechanisms, and the development of behavior-based robots in a few robot research laboratories. The validity of these ideas is supported by some simple simulation experiments in the field of mobile robot navigation and guidance.
Robotic vehicle with multiple tracked mobility platforms
Salton, Jonathan R [Albuquerque, NM; Buttz, James H [Albuquerque, NM; Garretson, Justin [Albuquerque, NM; Hayward, David R [Wetmore, CO; Hobart, Clinton G [Albuquerque, NM; Deuel, Jr., Jamieson K.
2012-07-24
A robotic vehicle having two or more tracked mobility platforms that are mechanically linked together with a two-dimensional coupling, thereby forming a composite vehicle of increased mobility. The robotic vehicle is operative in hazardous environments and can be capable of semi-submersible operation. The robotic vehicle is capable of remote controlled operation via radio frequency and/or fiber optic communication link to a remote operator control unit. The tracks have a plurality of track-edge scallop cut-outs that allow the tracks to easily grab onto and roll across railroad tracks, especially when crossing the railroad tracks at an oblique angle.
Intelligent robot trends and predictions for the .net future
NASA Astrophysics Data System (ADS)
Hall, Ernest L.
2001-10-01
An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The use of these machines in factory automation can improve productivity, increase product quality and improve competitiveness. This paper presents a discussion of recent and future technical and economic trends. During the past twenty years the use of industrial robots that are equipped not only with precise motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. Intelligent robot products have been developed in many cases for factory automation and for some hospital and home applications. To reach an even higher degree of applications, the addition of learning may be required. Recently, learning theories such as the adaptive critic have been proposed. In this type of learning, a critic provides a grade to the controller of an action module such as a robot. The adaptive critic is a good model for human learning. In general, the critic may be considered to be the human with the teach pendant, plant manager, line supervisor, quality inspector or the consumer. If the ultimate critic is the consumer, then the quality inspector must model the consumer's decision-making process and use this model in the design and manufacturing operations. Can the adaptive critic be used to advance intelligent robots? Intelligent robots have historically taken decades to be developed and reduced to practice. Methods for speeding this development include technology such as rapid prototyping and product development and government, industry and university cooperation.
Introduction to Space Resource Mining
NASA Technical Reports Server (NTRS)
Mueller, Robert P.
2013-01-01
There are vast amounts of resources in the solar system that will be useful to humans in space and possibly on Earth. None of these resources can be exploited without the first necessary step of extra-terrestrial mining. The necessary technologies for tele-robotic and autonomous mining have not matured sufficiently yet. The current state of technology was assessed for terrestrial and extraterrestrial mining and a taxonomy of robotic space mining mechanisms was presented which was based on current existing prototypes. Terrestrial and extra-terrestrial mining methods and technologies are on the cusp of massive changes towards automation and autonomy for economic and safety reasons. It is highly likely that these industries will benefit from mutual cooperation and technology transfer.
Benefits and problems of health-care robots in aged care settings: A comparison trial.
Broadbent, Elizabeth; Kerse, Ngaire; Peri, Kathryn; Robinson, Hayley; Jayawardena, Chandimal; Kuo, Tony; Datta, Chandan; Stafford, Rebecca; Butler, Haley; Jawalkar, Pratyusha; Amor, Maddy; Robins, Ben; MacDonald, Bruce
2016-03-01
This study investigated whether multiple health-care robots could have any benefits or cause any problems in an aged care facility. Fifty-three residents and 53 staff participated in a non-randomised controlled trial over 12 weeks. Six robots provided entertainment, communication and health-monitoring functions in staff rooms and activity lounges. These settings were compared to control settings without robots. There were no significant differences between groups in resident or staff outcomes, except a significant increase in job satisfaction in the control group only. The intervention group perceived the robots had more agency and experience than the control group did. Perceived agency of the robots decreased over time in both groups. Overall, we received very mixed responses with positive, neutral and negative comments. The robots had no major benefits or problems. Future research could give robots stronger operational roles, use more specific outcome measures, and perform cost-benefit analyses. © 2015 AJA Inc.
The ISECG* Global Exploration Roadmap as Context for Robotic and Human Exploration Operations
NASA Technical Reports Server (NTRS)
Lupisella, Mark
2015-01-01
The International Space Exploration Coordination Group (ISECG) Global Exploration Roadmap (GER) provides a broad international context for understanding how robotic missions and robotic assets can enable future human exploration of multiple destinations. This presentation will provide a brief high-level review of the GER with a focus on key robotic missions and robotic assets that can provide enabling technology advancements and that also raise interesting operational challenges in both the near-term and long-term. The GER presently features a variety of robotic missions and robotic assets that can provide important technology advancements as well as operational challenges and improvements, in areas ranging from: (a) leveraging the International Space Station, (b) planetary science robotic missions to potential human destinations, (c) micro-g body proximity operations (e.g. asteroids), (d) autonomous operations, (e) high and low-latency telerobotics, (f) human assisted sample return, and (g) contamination control. This presentation will highlight operational and technology challenges in these areas that have feed forward implications for human exploration.
Straudi, S; Benedetti, M G; Venturini, E; Manca, M; Foti, C; Basaglia, N
2013-01-01
Gait disorders are common in multiple sclerosis (MS) and lead to a progressive reduction of function and quality of life. Test the effects of robot-assisted gait rehabilitation in MS subjects through a pilot randomized-controlled study. We enrolled MS subjects with Expanded Disability Status Scale scores within 4.5-6.5. The experimental group received 12 robot-assisted gait training sessions over 6 weeks. The control group received the same amount of conventional physiotherapy. Outcomes measures were both biomechanical assessment of gait, including kinematics and spatio-temporal parameters, and clinical test of walking endurance (six-minute walk test) and mobility (Up and Go Test). 16 subjects (n = 8 experimental group, n = 8 control group) were included in the final analysis. At baseline the two groups were similar in all variables, except for step length. Data showed walking endurance, as well as spatio-temporal gait parameters improvements after robot-assisted gait training. Pelvic antiversion and reduced hip extension during terminal stance ameliorated after aforementioned intervention. Robot-assisted gait training seems to be effective in increasing walking competency in MS subjects. Moreover, it could be helpful in restoring the kinematic of the hip and pelvis.
Adapting an Ant Colony Metaphor for Multi-Robot Chemical Plume Tracing
Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Li, Fei; Zeng, Ming
2012-01-01
We consider chemical plume tracing (CPT) in time-varying airflow environments using multiple mobile robots. The purpose of CPT is to approach a gas source with a previously unknown location in a given area. Therefore, the CPT could be considered as a dynamic optimization problem in continuous domains. The traditional ant colony optimization (ACO) algorithm has been successfully used for combinatorial optimization problems in discrete domains. To adapt the ant colony metaphor to the multi-robot CPT problem, the two-dimension continuous search area is discretized into grids and the virtual pheromone is updated according to both the gas concentration and wind information. To prevent the adapted ACO algorithm from being prematurely trapped in a local optimum, the upwind surge behavior is adopted by the robots with relatively higher gas concentration in order to explore more areas. The spiral surge (SS) algorithm is also examined for comparison. Experimental results using multiple real robots in two indoor natural ventilated airflow environments show that the proposed CPT method performs better than the SS algorithm. The simulation results for large-scale advection-diffusion plume environments show that the proposed method could also work in outdoor meandering plume environments. PMID:22666056
Adapting an ant colony metaphor for multi-robot chemical plume tracing.
Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Li, Fei; Zeng, Ming
2012-01-01
We consider chemical plume tracing (CPT) in time-varying airflow environments using multiple mobile robots. The purpose of CPT is to approach a gas source with a previously unknown location in a given area. Therefore, the CPT could be considered as a dynamic optimization problem in continuous domains. The traditional ant colony optimization (ACO) algorithm has been successfully used for combinatorial optimization problems in discrete domains. To adapt the ant colony metaphor to the multi-robot CPT problem, the two-dimension continuous search area is discretized into grids and the virtual pheromone is updated according to both the gas concentration and wind information. To prevent the adapted ACO algorithm from being prematurely trapped in a local optimum, the upwind surge behavior is adopted by the robots with relatively higher gas concentration in order to explore more areas. The spiral surge (SS) algorithm is also examined for comparison. Experimental results using multiple real robots in two indoor natural ventilated airflow environments show that the proposed CPT method performs better than the SS algorithm. The simulation results for large-scale advection-diffusion plume environments show that the proposed method could also work in outdoor meandering plume environments.
Douglas, Sarah M.; Chubiz, Lon M.; Harcombe, William R.; ...
2017-05-11
Microbes often engage in cooperation through releasing biosynthetic compounds required by other species to grow. Given that production of costly biosynthetic metabolites is generally subjected to multiple layers of negative feedback, single mutations may frequently be insufficient to generate cooperative phenotypes. Synergistic epistatic interactions between multiple coordinated changes may thus often underlie the evolution of cooperation through overproduction of metabolites. To test the importance of synergistic mutations in cooperation we used an engineered bacterial consortium of an Escherichia coli methionine auxotroph and Salmonella enterica. S. enterica relies on carbon by-products from E. coli if lactose is the only carbon source.more » Directly selecting wild-type S. enterica in an environment that favored cooperation through secretion of methionine only once led to a methionine producer, and this producer both took a long time to emerge and was not very effective at cooperating. On the other hand, when an initial selection for resistance of S. enterica to a toxic methionine analog, ethionine, was used, subsequent selection for cooperation with E. coli was rapid, and the resulting double mutants were much more effective at cooperation. We found that potentiating mutations in metJ increase expression of metA, which encodes the first step of methionine biosynthesis. This increase in expression is required for the previously identified actualizing mutations in metA to generate cooperation. This work highlights that where biosynthesis of metabolites involves multiple layers of regulation, significant secretion of those metabolites may require multiple mutations, thereby constraining the evolution of cooperation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas, Sarah M.; Chubiz, Lon M.; Harcombe, William R.
Microbes often engage in cooperation through releasing biosynthetic compounds required by other species to grow. Given that production of costly biosynthetic metabolites is generally subjected to multiple layers of negative feedback, single mutations may frequently be insufficient to generate cooperative phenotypes. Synergistic epistatic interactions between multiple coordinated changes may thus often underlie the evolution of cooperation through overproduction of metabolites. To test the importance of synergistic mutations in cooperation we used an engineered bacterial consortium of an Escherichia coli methionine auxotroph and Salmonella enterica. S. enterica relies on carbon by-products from E. coli if lactose is the only carbon source.more » Directly selecting wild-type S. enterica in an environment that favored cooperation through secretion of methionine only once led to a methionine producer, and this producer both took a long time to emerge and was not very effective at cooperating. On the other hand, when an initial selection for resistance of S. enterica to a toxic methionine analog, ethionine, was used, subsequent selection for cooperation with E. coli was rapid, and the resulting double mutants were much more effective at cooperation. We found that potentiating mutations in metJ increase expression of metA, which encodes the first step of methionine biosynthesis. This increase in expression is required for the previously identified actualizing mutations in metA to generate cooperation. This work highlights that where biosynthesis of metabolites involves multiple layers of regulation, significant secretion of those metabolites may require multiple mutations, thereby constraining the evolution of cooperation.« less
Adaptive and bounded investment returns promote cooperation in spatial public goods games.
Chen, Xiaojie; Liu, Yongkui; Zhou, Yonghui; Wang, Long; Perc, Matjaž
2012-01-01
The public goods game is one of the most famous models for studying the evolution of cooperation in sizable groups. The multiplication factor in this game can characterize the investment return from the public good, which may be variable depending on the interactive environment in realistic situations. Instead of using the same universal value, here we consider that the multiplication factor in each group is updated based on the differences between the local and global interactive environments in the spatial public goods game, but meanwhile limited to within a certain range. We find that the adaptive and bounded investment returns can significantly promote cooperation. In particular, full cooperation can be achieved for high feedback strength when appropriate limitation is set for the investment return. Also, we show that the fraction of cooperators in the whole population can become larger if the lower and upper limits of the multiplication factor are increased. Furthermore, in comparison to the traditionally spatial public goods game where the multiplication factor in each group is identical and fixed, we find that cooperation can be better promoted if the multiplication factor is constrained to adjust between one and the group size in our model. Our results highlight the importance of the locally adaptive and bounded investment returns for the emergence and dominance of cooperative behavior in structured populations.
Adaptive and Bounded Investment Returns Promote Cooperation in Spatial Public Goods Games
Chen, Xiaojie; Liu, Yongkui; Zhou, Yonghui; Wang, Long; Perc, Matjaž
2012-01-01
The public goods game is one of the most famous models for studying the evolution of cooperation in sizable groups. The multiplication factor in this game can characterize the investment return from the public good, which may be variable depending on the interactive environment in realistic situations. Instead of using the same universal value, here we consider that the multiplication factor in each group is updated based on the differences between the local and global interactive environments in the spatial public goods game, but meanwhile limited to within a certain range. We find that the adaptive and bounded investment returns can significantly promote cooperation. In particular, full cooperation can be achieved for high feedback strength when appropriate limitation is set for the investment return. Also, we show that the fraction of cooperators in the whole population can become larger if the lower and upper limits of the multiplication factor are increased. Furthermore, in comparison to the traditionally spatial public goods game where the multiplication factor in each group is identical and fixed, we find that cooperation can be better promoted if the multiplication factor is constrained to adjust between one and the group size in our model. Our results highlight the importance of the locally adaptive and bounded investment returns for the emergence and dominance of cooperative behavior in structured populations. PMID:22615836
Children’s Imaginaries of Human-Robot Interaction in Healthcare
2018-01-01
This paper analyzes children’s imaginaries of Human-Robots Interaction (HRI) in the context of social robots in healthcare, and it explores ethical and social issues when designing a social robot for a children’s hospital. Based on approaches that emphasize the reciprocal relationship between society and technology, the analytical force of imaginaries lies in their capacity to be embedded in practices and interactions as well as to affect the construction and applications of surrounding technologies. The study is based on a participatory process carried out with six-year-old children for the design of a robot. Imaginaries of HRI are analyzed from a care-centered approach focusing on children’s values and practices as related to their representation of care. The conceptualization of HRI as an assemblage of interactions, the prospective bidirectional care relationships with robots, and the engagement with the robot as an entity of multiple potential robots are the major findings of this study. The study shows the potential of studying imaginaries of HRI, and it concludes that their integration in the final design of robots is a way of including ethical values in it. PMID:29757221
Children's Imaginaries of Human-Robot Interaction in Healthcare.
Vallès-Peris, Núria; Angulo, Cecilio; Domènech, Miquel
2018-05-12
This paper analyzes children’s imaginaries of Human-Robots Interaction (HRI) in the context of social robots in healthcare, and it explores ethical and social issues when designing a social robot for a children’s hospital. Based on approaches that emphasize the reciprocal relationship between society and technology, the analytical force of imaginaries lies in their capacity to be embedded in practices and interactions as well as to affect the construction and applications of surrounding technologies. The study is based on a participatory process carried out with six-year-old children for the design of a robot. Imaginaries of HRI are analyzed from a care-centered approach focusing on children’s values and practices as related to their representation of care. The conceptualization of HRI as an assemblage of interactions, the prospective bidirectional care relationships with robots, and the engagement with the robot as an entity of multiple potential robots are the major findings of this study. The study shows the potential of studying imaginaries of HRI, and it concludes that their integration in the final design of robots is a way of including ethical values in it.
Robotics, motor learning, and neurologic recovery.
Reinkensmeyer, David J; Emken, Jeremy L; Cramer, Steven C
2004-01-01
Robotic devices are helping shed light on human motor control in health and injury. By using robots to apply novel force fields to the arm, investigators are gaining insight into how the nervous system models its external dynamic environment. The nervous system builds internal models gradually by experience and uses them in combination with impedance and feedback control strategies. Internal models are robust to environmental and neural noise, generalized across space, implemented in multiple brain regions, and developed in childhood. Robots are also being used to assist in repetitive movement practice following neurologic injury, providing insight into movement recovery. Robots can haptically assess sensorimotor performance, administer training, quantify amount of training, and improve motor recovery. In addition to providing insight into motor control, robotic paradigms may eventually enhance motor learning and rehabilitation beyond the levels possible with conventional training techniques.
Yoo, Sung Jin; Park, Bong Seok
2017-09-06
This paper addresses a distributed connectivity-preserving synchronized tracking problem of multiple uncertain nonholonomic mobile robots with limited communication ranges. The information of the time-varying leader robot is assumed to be accessible to only a small fraction of follower robots. The main contribution of this paper is to introduce a new distributed nonlinear error surface for dealing with both the synchronized tracking and the preservation of the initial connectivity patterns among nonholonomic robots. Based on this nonlinear error surface, the recursive design methodology is presented to construct the approximation-based local adaptive tracking scheme at the robot dynamic level. Furthermore, a technical lemma is established to analyze the stability and the connectivity preservation of the total closed-loop control system in the Lyapunov sense. An example is provided to illustrate the effectiveness of the proposed methodology.
Integrated multi-sensor package (IMSP) for unmanned vehicle operations
NASA Astrophysics Data System (ADS)
Crow, Eddie C.; Reichard, Karl; Rogan, Chris; Callen, Jeff; Seifert, Elwood
2007-10-01
This paper describes recent efforts to develop integrated multi-sensor payloads for small robotic platforms for improved operator situational awareness and ultimately for greater robot autonomy. The focus is on enhancements to perception through integration of electro-optic, acoustic, and other sensors for navigation and inspection. The goals are to provide easier control and operation of the robot through fusion of multiple sensor outputs, to improve interoperability of the sensor payload package across multiple platforms through the use of open standards and architectures, and to reduce integration costs by embedded sensor data processing and fusion within the sensor payload package. The solutions investigated in this project to be discussed include: improved capture, processing and display of sensor data from multiple, non-commensurate sensors; an extensible architecture to support plug and play of integrated sensor packages; built-in health, power and system status monitoring using embedded diagnostics/prognostics; sensor payload integration into standard product forms for optimized size, weight and power; and the use of the open Joint Architecture for Unmanned Systems (JAUS)/ Society of Automotive Engineers (SAE) AS-4 interoperability standard. This project is in its first of three years. This paper will discuss the applicability of each of the solutions in terms of its projected impact to reducing operational time for the robot and teleoperator.
NASA Astrophysics Data System (ADS)
Luy, N. T.
2018-04-01
The design of distributed cooperative H∞ optimal controllers for multi-agent systems is a major challenge when the agents' models are uncertain multi-input and multi-output nonlinear systems in strict-feedback form in the presence of external disturbances. In this paper, first, the distributed cooperative H∞ optimal tracking problem is transformed into controlling the cooperative tracking error dynamics in affine form. Second, control schemes and online algorithms are proposed via adaptive dynamic programming (ADP) and the theory of zero-sum differential graphical games. The schemes use only one neural network (NN) for each agent instead of three from ADP to reduce computational complexity as well as avoid choosing initial NN weights for stabilising controllers. It is shown that despite not using knowledge of cooperative internal dynamics, the proposed algorithms not only approximate values to Nash equilibrium but also guarantee all signals, such as the NN weight approximation errors and the cooperative tracking errors in the closed-loop system, to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is shown by simulation results of an application to wheeled mobile multi-robot systems.
NASA Astrophysics Data System (ADS)
Allegra Mascaro, Anna Letizia; Conti, Emilia; Lai, Stefano; Spalletti, Cristina; Di Giovanna, Antonino Paolo; Alia, Claudia; Panarese, Alessandro; Sacconi, Leonardo; Micera, Silvestro; Caleo, Matteo; Pavone, Francesco S.
2017-02-01
Neurorehabilitation protocols based on the use of robotic devices provide a highly repeatable therapy and have recently shown promising clinical results. Little is known about how rehabilitation molds the brain to promote motor recovery of the affected limb. We used a custom-made robotic platform that provides quantitative assessment of forelimb function in a retraction test. Complementary imaging techniques allowed us to access to the multiple facets of robotic rehabilitation-induced cortical plasticity after unilateral photothrombotic stroke in mice Primary Motor Cortex (Caudal Forelimb Area - CFA). First, we analyzed structural features of vasculature and dendritic reshaping in the peri-infarct area with two-photon fluorescence microscopy. Longitudinal analysis of dendritic branches and spines of pyramidal neurons suggests that robotic rehabilitation promotes the stabilization of peri-infarct cortical excitatory circuits, which is not accompanied by consistent vascular reorganization towards pre-stroke conditions. To investigate if this structural stabilization was linked to functional remapping, we performed mesoscale wide-field imaging on GCaMP6 mice while performing the motor task on the robotic platform. We revealed temporal and spatial features of the motor-triggered cortical activation, shining new light on rehabilitation-induced functional remapping of the ipsilesional cortex. Finally, by using an all-optical approach that combines optogenetic activation of the contralesional hemisphere and wide-field functional imaging of peri-infarct area, we dissected the effect of robotic rehabilitation on inter-hemispheric cortico-cortical connectivity.
Considering Multiples: Competition & Cooperation. A Collection of Articles from MOTC's "Notebook."
ERIC Educational Resources Information Center
National Organization of Mothers of Twins Clubs.
One of the most common parenting issues faced by families with multiple birth children is that of the dynamics involved in sibling cooperation and competition. This document compiles stories from the Mothers of Twins Club "Notebook" examining the issue of cooperation versus competition. The first story discusses the impact of the twin…
Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio
2014-12-15
In animal studies, robots have been recently used as a valid tool for testing a wide spectrum of hypotheses. These robots often exploit visual or auditory cues to modulate animal behavior. The propensity of zebrafish, a model organism in biological studies, toward fish with similar color patterns and shape has been leveraged to design biologically inspired robots that successfully attract zebrafish in preference tests. With an aim of extending the application of such robots to field studies, here, we investigate the response of zebrafish to multiple robotic fish swimming at different speeds and in varying arrangements. A soft real-time multi-target tracking and control system remotely steers the robots in circular trajectories during the experimental trials. Our findings indicate a complex behavioral response of zebrafish to biologically inspired robots. More robots produce a significant change in salient measures of stress, with a fast robot swimming alone causing more freezing and erratic activity than two robots swimming slowly together. In addition, fish spend more time in the proximity of a robot when they swim far apart than when the robots swim close to each other. Increase in the number of robots also significantly alters the degree of alignment of fish motion with a robot. Results from this study are expected to advance our understanding of robot perception by live animals and aid in hypothesis-driven studies in unconstrained free-swimming environments. Copyright © 2014 Elsevier B.V. All rights reserved.
Social embeddedness and economic opportunism: a game situation.
Sakalaki, Maria; Fousiani, Kyriaki
2012-06-01
According to Evolutionary Game Theory, multiple exchanges with partners are necessary to foster cooperation. Multiple exchanges with partners tend to enhance the good experience of the partners and the predictability of their behaviour and should therefore increase cooperativeness. This study explored whether social embeddedness, or the preference for close and stable social relationships, a variable which tends to increase multiple exchanges, is associated with more cooperative attitudes; and whether social embeddedness increases cooperative behavior towards unknown partners in a game situation. The first study, with 169 undergraduates, indicated that social embeddedness (preference for close and durable social relations) was negatively associated with opportunistic attitudes. The second study had a sample of 60 undergraduates playing a Trust Game with unknown partners and showed that self-reported social embeddedness was positively correlated with scores for cooperative economic behavior towards the partners. These results highlight the relationships of social embeddedness with cooperative attitudes and behaviour.
Microrobotics surveillance: discrete and continuous starbot
NASA Astrophysics Data System (ADS)
Mayyas, M.; Lee, W. H.; Stephanou, Harry
2011-05-01
This paper focuses on robotic technologies and operational capabilities of multiscale robots that demonstrate a unique class of Microsystems with the ability to navigate diverse terrains and environments. We introduce two classes of robots which combine multiple locomotion modalities including centimeter scale Discrete and Continuous robots which are referred here by D-Starbot and C-Starbot, respectively. The first generation of the robots were obtained to allow rapid shape reconfiguration and flipping recovery to accomplish tasks such as lowering and raising to dexterously go over and under obstacles, deform to roll over hostile location as well as squeezing through opening smaller than its sizes. The D-Starbot is based on novel mechanisms that allow shape reconfiguration to accomplish tasks such as lowering and raising to go over and under obstacles as well as squeezing through small voids. The CStarbot is a new class of foldable robots that is generally designed to provide a high degree of manufacturability. It consists of flexible structures that are built out of composite laminates with embedded microsystems. The design concept of C-Starbot are suitable for robots that could emulate and combine multiple locomotion modalities such as walking, running, crawling, gliding, clinging, climbing, flipping and jumping. The first generation of C-Starbot has centimeter scale structure consisting of flexible flaps, each being coupled with muscle-like mechanism. Untethered D-Starbot designs are prototyped and tested for multifunctional locomotion capabilities in indoor and outdoor environments. We present foldable mechanism and initial prototypes of C-Starbot capable of hopping and squeezing at different environments. The kinematic performance of flexible robots is thoroughly presented using the large elastic deflection of a single arm which is actuated by pulling force acting at variable angles and under payload and friction forces.
The maintenance of cooperation in multiplex networks with limited and partible resources of agents
NASA Astrophysics Data System (ADS)
Li, Zhaofeng; Shen, Bi; Jiang, Yichuan
2017-02-01
In this paper, we try to explain the maintenance of cooperation in multiplex networks with limited and partible resources of agents: defection brings larger short-term benefit and cooperative agents may become defective because of the unaffordable costs of cooperative behaviors that are performed in multiple layers simultaneously. Recent studies have identified the positive effects of multiple layers on evolutionary cooperation but generally overlook the maximum costs of agents in these synchronous games. By utilizing network effects and designing evolutionary mechanisms, cooperative behaviors become prevailing in public goods games, and agents can allocate personal resources across multiple layers. First, we generalize degree diversity into multiplex networks to improve the prospect for cooperation. Second, to prevent agents allocating all the resources into one layer, a greedy-first mechanism is proposed, in which agents prefer to add additional investments in the higher-payoff layer. It is found that greedy-first agents can perform cooperative behaviors in multiplex networks when one layer is scale-free network and degree differences between conjoint nodes increase. Our work may help to explain the emergence of cooperation in the absence of individual reputation and punishment mechanisms.
Tight Analysis of a Collisionless Robot Gathering Algorithm
2015-09-28
local-multiplicity detection. In SSS , pages 384– 398, Berlin, Heidelberg, 2009. Springer-Verlag. [20] T. Izumi, Y. Katayama, N. Inuzuka, and K. Wada...T. Izumi, M. G. Potop-Butucaru, and S. Tixeuil. Connectivity- preserving scattering of mobile robots with limited visibility. In SSS , pages 319–331
Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots.
Duarte, Miguel; Costa, Vasco; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando; Oliveira, Sancho Moura; Christensen, Anders Lyhne
2016-01-01
Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.
Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots
Duarte, Miguel; Costa, Vasco; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando; Oliveira, Sancho Moura; Christensen, Anders Lyhne
2016-01-01
Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers. PMID:26999614
An integrated design and fabrication strategy for entirely soft, autonomous robots.
Wehner, Michael; Truby, Ryan L; Fitzgerald, Daniel J; Mosadegh, Bobak; Whitesides, George M; Lewis, Jennifer A; Wood, Robert J
2016-08-25
Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.
Zhang, Dongwen; Zhu, Qingsong; Xiong, Jing; Wang, Lei
2014-04-27
In a deforming anatomic environment, the motion of an instrument suffers from complex geometrical and dynamic constraints, robot assisted minimally invasive surgery therefore requires more sophisticated skills for surgeons. This paper proposes a novel dynamic virtual fixture (DVF) to enhance the surgical operation accuracy of admittance-type medical robotics in the deforming environment. A framework for DVF on the Euclidean Group SE(3) is presented, which unites rotation and translation in a compact form. First, we constructed the holonomic/non-holonomic constraints, and then searched for the corresponded reference to make a distinction between preferred and non-preferred directions. Second, different control strategies are employed to deal with the tasks along the distinguished directions. The desired spatial compliance matrix is synthesized from an allowable motion screw set to filter out the task unrelated components from manual input, the operator has complete control over the preferred directions; while the relative motion between the surgical instrument and the anatomy structures is actively tracked and cancelled, the deviation relative to the reference is compensated jointly by the operator and DVF controllers. The operator, haptic device, admittance-type proxy and virtual deforming environment are involved in a hardware-in-the-loop experiment, human-robot cooperation with the assistance of DVF controller is carried out on a deforming sphere to simulate beating heart surgery, performance of the proposed DVF on admittance-type proxy is evaluated, and both human factors and control parameters are analyzed. The DVF can improve the dynamic properties of human-robot cooperation in a low-frequency (0 ~ 40 rad/sec) deforming environment, and maintain synergy of orientation and translation during the operation. Statistical analysis reveals that the operator has intuitive control over the preferred directions, human and the DVF controller jointly control the motion along the non-preferred directions, the target deformation is tracked actively. The proposed DVF for an admittance-type manipulator is capable of assisting the operator to deal with skilled operations in a deforming environment.
NASA Astrophysics Data System (ADS)
Zarafshan, P.; Moosavian, S. Ali A.
2013-10-01
Dynamics modelling and control of multi-body space robotic systems composed of rigid and flexible elements is elaborated here. Control of such systems is highly complicated due to severe under-actuated condition caused by flexible elements, and an inherent uneven nonlinear dynamics. Therefore, developing a compact dynamics model with the requirement of limited computations is extremely useful for controller design, also to develop simulation studies in support of design improvement, and finally for practical implementations. In this paper, the Rigid-Flexible Interactive dynamics Modelling (RFIM) approach is introduced as a combination of Lagrange and Newton-Euler methods, in which the motion equations of rigid and flexible members are separately developed in an explicit closed form. These equations are then assembled and solved simultaneously at each time step by considering the mutual interaction and constraint forces. The proposed approach yields a compact model rather than common accumulation approach that leads to a massive set of equations in which the dynamics of flexible elements is united with the dynamics equations of rigid members. To reveal such merits of this new approach, a Hybrid Suppression Control (HSC) for a cooperative object manipulation task will be proposed, and applied to usual space systems. A Wheeled Mobile Robotic (WMR) system with flexible appendages as a typical space rover is considered which contains a rigid main body equipped with two manipulating arms and two flexible solar panels, and next a Space Free Flying Robotic system (SFFR) with flexible members is studied. Modelling verification of these complicated systems is vigorously performed using ANSYS and ADAMS programs, while the limited computations of RFIM approach provides an efficient tool for the proposed controller design. Furthermore, it will be shown that the vibrations of the flexible solar panels results in disturbing forces on the base which may produce undesirable errors and perturb the object manipulation task. So, it is shown that these effects can be significantly eliminated by the proposed Hybrid Suppression Control algorithm.
A novel passive/active hybrid robot for orthopaedic trauma surgery.
Kuang, Shaolong; Leung, Kwok-sui; Wang, Tianmiao; Hu, Lei; Chui, Elvis; Liu, Wenyong; Wang, Yu
2012-12-01
Image guided navigation systems (IGNS) have been implemented successfully in orthopaedic trauma surgery procedures because of their ability to help surgeons position and orient hand-held drills at optimal entry points. However, current IGNS cannot prevent drilling tools or instruments from slipping or deviating from the planned trajectory during the drilling process. A method is therefore needed to overcome such problems. A novel passive/active hybrid robot (the HybriDot) for positioning and supporting surgical tools and instruments while drilling and/or cutting in orthopaedic trauma surgery is presented in this paper. This new robot, consisting of a circular prismatic joint and five passive/active back-drivable joints, is designed to fulfill clinical needs. In this paper, a system configuration and three operational modes are introduced and analyzed. Workspace and layout in the operating theatre (OT) are also analyzed in order to validate the structure design. Finally, experiments to evaluate the feasibility of the robot system are described. Analysis, simulation, and experimental results show that the novel structure of the robot can provide an appropriate workspace without risk of collision within OT environments during operation. The back-drivable joint mechanism can provide surgeons with more safety and flexibility in operational modes. The mean square value of the positional accuracy of this robot is 0.811 mm, with a standard deviation (SD) of 0.361 mm; the orientation is accurate to within 2.186º, with a SD of 0.932º. Trials on actual patients undergoing surgery for distal locking of intramedullary nails were successfully conducted in one pass using the robot. This robot has the advantages of having an appropriate workspace, being well designed for human-robot cooperation, and having high accuracy, sufficient rigidity, and easy deployability within the OT for use in common orthopaedic trauma surgery tasks such as screw fixation and drilling assistance. Copyright © 2012 John Wiley & Sons, Ltd.
A Hierarchical Auction-Based Mechanism for Real-Time Resource Allocation in Cloud Robotic Systems.
Wang, Lujia; Liu, Ming; Meng, Max Q-H
2017-02-01
Cloud computing enables users to share computing resources on-demand. The cloud computing framework cannot be directly mapped to cloud robotic systems with ad hoc networks since cloud robotic systems have additional constraints such as limited bandwidth and dynamic structure. However, most multirobotic applications with cooperative control adopt this decentralized approach to avoid a single point of failure. Robots need to continuously update intensive data to execute tasks in a coordinated manner, which implies real-time requirements. Thus, a resource allocation strategy is required, especially in such resource-constrained environments. This paper proposes a hierarchical auction-based mechanism, namely link quality matrix (LQM) auction, which is suitable for ad hoc networks by introducing a link quality indicator. The proposed algorithm produces a fast and robust method that is accurate and scalable. It reduces both global communication and unnecessary repeated computation. The proposed method is designed for firm real-time resource retrieval for physical multirobot systems. A joint surveillance scenario empirically validates the proposed mechanism by assessing several practical metrics. The results show that the proposed LQM auction outperforms state-of-the-art algorithms for resource allocation.
Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Queen, Steven Z.; VanEepoel, John M.; Sanner, Robert M.
2005-01-01
In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a non-linear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.
Gonenc, Berk; Tran, Nhat; Gehlbach, Peter; Taylor, Russell H.; Iordachita, Iulian
2018-01-01
Retinal vein cannulation is a demanding procedure where therapeutic agents are injected into occluded retina veins. The feasibility of this treatment is limited due to challenges in identifying the moment of venous puncture, achieving cannulation and maintaining it throughout the drug delivery period. In this study, we integrate a force-sensing microneedle with two distinct robotic systems: the handheld micromanipulator Micron, and the cooperatively controlled Steady-Hand Eye Robot (SHER). The sensed tool-to-tissue interaction forces are used to detect venous puncture and extend the robots’ standard control schemes with a new position holding mode (PHM) that assists the operator hold the needle position fixed and maintain cannulation for a longer time with less trauma on the vasculature. We evaluate the resulting systems comparatively in a dry phantom, stretched vinyl membranes. Results have shown that modulating the admittance control gain of SHER alone is not a very effective solution for preventing the undesired tool motion after puncture. However, after using puncture detection and PHM the deviation from the puncture point is significantly reduced, by 65% with Micron, and by 95% with SHER representing a potential advantage over freehand for both. PMID:28269417
Ren, Yupeng; Kang, Sang Hoon; Park, Hyung-Soon; Wu, Yi-Ning; Zhang, Li-Qun
2013-05-01
Arm impairments in patients post stroke involve the shoulder, elbow and wrist simultaneously. It is not very clear how patients develop spasticity and reduced range of motion (ROM) at the multiple joints and the abnormal couplings among the multiple joints and the multiple degrees-of-freedom (DOF) during passive movement. It is also not clear how they lose independent control of individual joints/DOFs and coordination among the joints/DOFs during voluntary movement. An upper limb exoskeleton robot, the IntelliArm, which can control the shoulder, elbow, and wrist, was developed, aiming to support clinicians and patients with the following integrated capabilities: 1) quantitative, objective, and comprehensive multi-joint neuromechanical pre-evaluation capabilities aiding multi-joint/DOF diagnosis for individual patients; 2) strenuous and safe passive stretching of hypertonic/deformed arm for loosening up muscles/joints based on the robot-aided diagnosis; 3) (assistive/resistive) active reaching training after passive stretching for regaining/improving motor control ability; and 4) quantitative, objective, and comprehensive neuromechanical outcome evaluation at the level of individual joints/DOFs, multiple joints, and whole arm. Feasibility of the integrated capabilities was demonstrated through experiments with stroke survivors and healthy subjects.
Swarmie User Manual: A Rover Used for Multi-agent Swarm Research
NASA Technical Reports Server (NTRS)
Montague, Gilbert
2014-01-01
The ability to create multiple functional yet cost effective robots is crucial for conducting swarming robotics research. The Center Innovation Fund (CIF) swarming robotics project is a collaboration among the KSC Granular Mechanics and Regolith Operations (GMRO) group, the University of New Mexico Biological Computation Lab, and the NASA Ames Intelligent Robotics Group (IRG) that uses rovers, dubbed "Swarmies", as test platforms for genetic search algorithms. This fall, I assisted in the development of the software modules used on the Swarmies and created this guide to provide thorough instructions on how to configure your workspace to operate a Swarmie both in simulation and out in the field.
Human-Robot Site Survey and Sampling for Space Exploration
NASA Technical Reports Server (NTRS)
Fong, Terrence; Bualat, Maria; Edwards, Laurence; Flueckiger, Lorenzo; Kunz, Clayton; Lee, Susan Y.; Park, Eric; To, Vinh; Utz, Hans; Ackner, Nir
2006-01-01
NASA is planning to send humans and robots back to the Moon before 2020. In order for extended missions to be productive, high quality maps of lunar terrain and resources are required. Although orbital images can provide much information, many features (local topography, resources, etc) will have to be characterized directly on the surface. To address this need, we are developing a system to perform site survey and sampling. The system includes multiple robots and humans operating in a variety of team configurations, coordinated via peer-to-peer human-robot interaction. In this paper, we present our system design and describe planned field tests.
Anesthetic Considerations in Robotic-Assisted Gynecologic Surgery
Kaye, Alan D.; Vadivelu, Nalini; Ahuja, Nitin; Mitra, Sukanya; Silasi, Dan; Urman, Richard D.
2013-01-01
Background Robotic-assisted surgery has evolved over the past 2 decades with constantly improving technology that assists surgeons in multiple subspecialty disciplines. The surgical requirements of lithotomy and steep Trendelenburg positions, along with the creation of a pneumoperitoneum and lack of direct access to the patient all present management challenges in gynecologic surgery. Patient positioning requirements can have significant physiologic effects and can result in many complications. Methods This review focuses on the anesthetic and surgical implications of robot-assisted technology in gynecologic surgery. Conclusion Good communication among team members and knowledge of the nuances of robotic surgery have the potential to improve patient outcomes, increase efficiency, and reduce complications. PMID:24358000
2003-08-18
KENNEDY SPACE CENTER, FLA. - Researchers conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
Bedaf, Sandra; Gelderblom, Gert Jan; De Witte, Luc
2015-01-01
Over the past decades, many robots for the elderly have been developed, supporting different activities of elderly people. A systematic review in four scientific literature databases and a search in article references and European projects was performed in order to create an overview of robots supporting independent living of elderly people. The robots found were categorized based on their development stage, the activity domains they claim to support, and the type of support provided (i.e., physical, non-physical, and/or non-specified). In total, 107 robots for the elderly were identified. Six robots were still in a concept phase, 95 in a development phase, and six of these robots were commercially available. These robots claimed to provide support related to four activity domains: mobility, self-care, interpersonal interaction & relationships, and other activities. Of the many robots developed, only a small percentage is commercially available. Technical ambitions seem to be guiding robot development. To prolong independent living, the step towards physical support is inevitable and needs to be taken. However, it will be a long time before a robot will be capable of supporting multiple activities in a physical manner in the home of an elderly person in order to enhance their independent living.
Use of spring-roll EAP actuator applied as end-effector of a hyper-redundant robot
NASA Astrophysics Data System (ADS)
Errico, Gianmarco; Fava, Victor; Resta, Ferruccio; Ripamonti, Francesco
2015-04-01
This paper presents a hyper-redundant continuous robot used to perform work in places which humans can not reach. This type of robot is generally a bio-inspired solution, it is composed by a lot of flexible segments driven by multiple actuators and its dynamics is described by a lot degrees of freedom. In this paper a model composed of some rigid links connected to each other by revolution joint is presented. In each link a torsional spring is added in order to simulate the resistant torque between the links and the interactions among the cables and the robot during the relative rotation. Moreover a type of EAP actuator, called spring roll, is used as the end-effector of the robot. Through a suitable sensor, such as a camera, the spring roll allows to track a target and it closes the control loop on the robot to follow it.
3D printing for soft robotics – a review
Gul, Jahan Zeb; Sajid, Memoon; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Shah, Imran; Kim, Kyung-Hwan; Lee, Jae-Wook; Choi, Kyung Hyun
2018-01-01
Abstract Soft robots have received an increasing attention due to their advantages of high flexibility and safety for human operators but the fabrication is a challenge. Recently, 3D printing has been used as a key technology to fabricate soft robots because of high quality and printing multiple materials at the same time. Functional soft materials are particularly well suited for soft robotics due to a wide range of stimulants and sensitive demonstration of large deformations, high motion complexities and varied multi-functionalities. This review comprises a detailed survey of 3D printing in soft robotics. The development of key 3D printing technologies and new materials along with composites for soft robotic applications is investigated. A brief summary of 3D-printed soft devices suitable for medical to industrial applications is also included. The growing research on both 3D printing and soft robotics needs a summary of the major reported studies and the authors believe that this review article serves the purpose. PMID:29707065
3D printing for soft robotics - a review.
Gul, Jahan Zeb; Sajid, Memoon; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Shah, Imran; Kim, Kyung-Hwan; Lee, Jae-Wook; Choi, Kyung Hyun
2018-01-01
Soft robots have received an increasing attention due to their advantages of high flexibility and safety for human operators but the fabrication is a challenge. Recently, 3D printing has been used as a key technology to fabricate soft robots because of high quality and printing multiple materials at the same time. Functional soft materials are particularly well suited for soft robotics due to a wide range of stimulants and sensitive demonstration of large deformations, high motion complexities and varied multi-functionalities. This review comprises a detailed survey of 3D printing in soft robotics. The development of key 3D printing technologies and new materials along with composites for soft robotic applications is investigated. A brief summary of 3D-printed soft devices suitable for medical to industrial applications is also included. The growing research on both 3D printing and soft robotics needs a summary of the major reported studies and the authors believe that this review article serves the purpose.