Science.gov

Sample records for multiple cytokine biomarkers

  1. Multiple Serum Cytokine Profiling to Identify Combinational Diagnostic Biomarkers in Attacks of Familial Mediterranean Fever.

    PubMed

    Koga, Tomohiro; Migita, Kiyoshi; Sato, Shuntaro; Umeda, Masataka; Nonaka, Fumiaki; Kawashiri, Shin-Ya; Iwamoto, Naoki; Ichinose, Kunihiro; Tamai, Mami; Nakamura, Hideki; Origuchi, Tomoki; Ueki, Yukitaka; Masumoto, Junya; Agematsu, Kazunaga; Yachie, Akihiro; Yoshiura, Koh-Ichiro; Eguchi, Katsumi; Kawakami, Atsushi

    2016-04-01

    The precise cytokine networks in the serum of individuals with familial Mediterranean fever (FMF) that are associated with its pathogenesis have been unknown. Here, we attempted to identify specific biomarkers to diagnose or assess disease activity in FMF patients. We measured serum levels of 45 cytokines in 75 FMF patients and 40 age-matched controls by multisuspension cytokine array. FMF in "attack" or "remission" was classified by Japan College of Rheumatology-certified rheumatologists according to the Tel Hashomer criteria. Cytokines were ranked by their importance by a multivariate classification algorithm. We performed a logistic regression analysis to determine specific biomarkers for discriminating FMF patients in attack. To identify specific molecular networks, we performed a cluster analysis of each cytokine. Twenty-nine of the 45 cytokines were available for further analyses. Eight cytokines' serum levels were significantly elevated in the FMF attack versus healthy control group. Nine cytokines were increased in FMF attack compared to FMF remission. Multivariate classification algorithms followed by a logistic regression analysis revealed that the combined measurement of IL-6, IL-18, and IL-17 distinguished FMF patients in attack from the controls with the highest accuracy (sensitivity 89.2%, specificity 100%, and accuracy 95.5%). Among the FMF patients, the combined measurement of IL-6, G-CSF, IL-10, and IL-12p40 discriminated febrile attack periods from remission periods with the highest accuracy (sensitivity 75.0%, specificity 87.9%, and accuracy 84.0%). Our data identified combinational diagnostic biomarkers in FMF patients based on the measurement of multiple cytokines. These findings help to improve the diagnostic performance of FMF in daily practice and extend our understanding of the activation of the inflammasome leading to enhanced cytokine networks. PMID:27100444

  2. Circulating Cytokines as Biomarkers of Alcohol Abuse and Alcoholism

    PubMed Central

    Achur, Rajeshwara N.; Freeman, Willard M.; Vrana, Kent E.

    2010-01-01

    There are currently no consistent objective biochemical markers of alcohol abuse and alcoholism. Development of reliable diagnostic biomarkers that permit accurate assessment of alcohol intake and patterns of drinking is of prime importance to treatment and research fields. Diagnostic biomarker development in other diseases has demonstrated the utility of both open, systems biology, screening for biomarkers and more rational focused efforts on specific biomolecules or families of biomolecules. Long term alcohol consumption leads to altered inflammatory cell and adaptive immune responses with associated pathologies and increased incidence of infections. This has led researchers to focus attention on identifying cytokine biomarkers in models of alcohol abuse. Alcohol is known to alter cytokine levels in plasma and a variety of tissues including lung, liver, and very importantly brain. A number of cytokine biomarker candidates have been identified, including: TNF alpha, IL1-alpha, IL1-beta, IL6, IL8, IL12 and MCP-1. This is an emerging and potentially exciting avenue of research in that circulating cytokines may contribute to diagnostic biomarker panels and a combination of multiple biomarkers may significantly increase the sensitivity and specificity of the biochemical tests aiding reliable and accurate detection of excessive alcohol intake. PMID:20020329

  3. Cytokine levels as biomarkers for leptospirosis patients.

    PubMed

    Chirathaworn, C; Supputtamongkol, Y; Lertmaharit, S; Poovorawan, Y

    2016-09-01

    Inflammatory mediators were suggested to be biomarkers for prediction of disease severity. In this study, we investigated the levels of IL-6, IL-8, IL-10 and TNF-α in leptospirosis patients with mild or severe illnesses. Sera samples were divided into two groups. The OI group and NOI groups included sera from patients with and without organ involvement, respectively. Each group consisted of 20 pairs of sera. Twenty-five sera from healthy individuals were included as controls. Cytokine levels were compared. Although IL-6, IL-8 and IL-10 levels in acute sera from the OI group were significantly higher than NOI group, only IL-8 level was significantly higher in the OI group when cytokine levels in convalescent sera were compared. TNF-α, an inflammatory cytokine widely studied in leptospirosis was not significantly different between two groups of patients. Our data suggested that IL-6, IL-8 and IL-10 were involved in disease severity. However, time of specimen collection could affect the significant levels of cytokines especially as biomarkers for monitoring disease severity. PMID:27295614

  4. Cytokines as biomarkers of nanoparticle immunotoxicity

    PubMed Central

    Elsabahy, Mahmoud; Wooley, Karen L.

    2013-01-01

    Nanoscale objects, whether of biologic origin or synthetically created, are being developed into devices for a variety of bionanotechnology diagnostic and pharmaceutical applications. However, the potential immunotoxicity of these nanomaterials and mechanisms by which they may induce adverse reactions have not received sufficient attention. Nanomaterials, depending on their characteristics and compositions, can interact with the immune system in several ways and either enhance or suppress immune system function. Cytokines perform pleiotropic functions to mediate and regulate the immune response and are generally recognized as biomarkers of immunotoxicity. While the specificity and validity of certain cytokines as markers of adverse immune response has been established for chemicals, small and macromolecular drugs, research on their applicability for predicting and monitoring the immunotoxicity of engineered nanomaterials is still ongoing. The goal of this review is to provide guidelines as to important cytokines that can be utilized for evaluating the immunotoxicity of nanomaterials and to highlight the role of those cytokines in mediating adverse reactions, which is of particular importance for the clinical development of nanopharmaceuticals and other nanotechnology-based products. Importantly, the rational design of nanomaterials of low immunotoxicity will be discussed, focusing on synthetic nanodevices, with emphasis on both the nanoparticle-forming materials and the embedded cargoes. PMID:23549679

  5. Forecasting Cytokine Storms with New Predictive Biomarkers.

    PubMed

    Rouce, Rayne H; Heslop, Helen E

    2016-06-01

    T cells genetically modified with CD19 chimeric antigen receptors have produced impressive clinical responses in patients with refractory B-cell malignancies, but therapeutic responses are often accompanied by cytokine release syndrome (CRS), which can cause significant morbidity and mortality. Teachey and colleagues have identified predictive biomarkers for this complication that may allow testing of earlier intervention with agents such as the IL6 receptor blocker tocilizumab to evaluate whether CRS can be ameliorated without jeopardizing clinical responses. Cancer Discov; 6(6); 579-80. ©2016 AACR.See related article by Teachey et al., p. 664. PMID:27261481

  6. Multiple Circulating Cytokines Are Coelevated in Chronic Obstructive Pulmonary Disease.

    PubMed

    Selvarajah, Senthooran; Todd, Ian; Tighe, Patrick J; John, Michelle; Bolton, Charlotte E; Harrison, Timothy; Fairclough, Lucy C

    2016-01-01

    Inflammatory biomarkers, including cytokines, are associated with COPD, but the association of particular circulating cytokines with systemic pathology remains equivocal. To investigate this, we developed a protein microarray system to detect multiple cytokines in small volumes of serum. Fourteen cytokines were measured in serum from never-smokers, ex-smokers, current smokers, and COPD patients (GOLD stages 1-3). Certain individual circulating cytokines (particularly TNFα and IL-1β) were significantly elevated in concentration in the serum of particular COPD patients (and some current/ex-smokers without COPD) and may serve as markers of particularly significant systemic inflammation. However, numerous circulating cytokines were raised such that their combined, but not individual, elevation was significantly associated with severity of disease, and these may be further indicators of, and contributors to, the systemic inflammatory manifestations of COPD. The coelevation of numerous circulating cytokines in COPD is consistent with the insidious development, chronic nature, and systemic comorbidities of the disease. PMID:27524865

  7. Multiple Circulating Cytokines Are Coelevated in Chronic Obstructive Pulmonary Disease.

    PubMed

    Selvarajah, Senthooran; Todd, Ian; Tighe, Patrick J; John, Michelle; Bolton, Charlotte E; Harrison, Timothy; Fairclough, Lucy C

    2016-01-01

    Inflammatory biomarkers, including cytokines, are associated with COPD, but the association of particular circulating cytokines with systemic pathology remains equivocal. To investigate this, we developed a protein microarray system to detect multiple cytokines in small volumes of serum. Fourteen cytokines were measured in serum from never-smokers, ex-smokers, current smokers, and COPD patients (GOLD stages 1-3). Certain individual circulating cytokines (particularly TNFα and IL-1β) were significantly elevated in concentration in the serum of particular COPD patients (and some current/ex-smokers without COPD) and may serve as markers of particularly significant systemic inflammation. However, numerous circulating cytokines were raised such that their combined, but not individual, elevation was significantly associated with severity of disease, and these may be further indicators of, and contributors to, the systemic inflammatory manifestations of COPD. The coelevation of numerous circulating cytokines in COPD is consistent with the insidious development, chronic nature, and systemic comorbidities of the disease.

  8. Multiple Circulating Cytokines Are Coelevated in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Todd, Ian; John, Michelle; Bolton, Charlotte E.; Harrison, Timothy

    2016-01-01

    Inflammatory biomarkers, including cytokines, are associated with COPD, but the association of particular circulating cytokines with systemic pathology remains equivocal. To investigate this, we developed a protein microarray system to detect multiple cytokines in small volumes of serum. Fourteen cytokines were measured in serum from never-smokers, ex-smokers, current smokers, and COPD patients (GOLD stages 1–3). Certain individual circulating cytokines (particularly TNFα and IL-1β) were significantly elevated in concentration in the serum of particular COPD patients (and some current/ex-smokers without COPD) and may serve as markers of particularly significant systemic inflammation. However, numerous circulating cytokines were raised such that their combined, but not individual, elevation was significantly associated with severity of disease, and these may be further indicators of, and contributors to, the systemic inflammatory manifestations of COPD. The coelevation of numerous circulating cytokines in COPD is consistent with the insidious development, chronic nature, and systemic comorbidities of the disease. PMID:27524865

  9. Cytokines as potential biomarkers for Parkinson's disease: a multiplex approach.

    PubMed

    Litteljohn, Darcy; Hayley, Shawn

    2012-01-01

    Cytokines, which are immunological messengers facilitating both intra- and inter-system communication, are considered central players in the neuroinflammatory cascades associated with the neurodegenerative process in Parkinson's disease (PD) and other neurological disorders. They have also been implicated in depression and other cognitive (e.g., memory impairment, dementia) and affective disturbances (e.g., anxiety) that show high co-morbidity with neurodegenerative diseases. As such, cytokines may hold great promise as serological biomarkers in PD, with potential applications ranging from early diagnosis and disease staging, to prognosis, drug discovery, and tracking the response to treatment. Subclassification or risk stratification in PD could be based (among other things) on reliably determined cytokine panel profiles or "signatures" of particular co-morbid disease states or at-risk groups (e.g., PD alone, PD with depression and/or dementia). Researchers and clinicians seeking to describe cytokine variations in health vs. disease will benefit greatly from technologies that allow a high degree of multiplexing and thus permit the simultaneous determination of a large roster of cytokines in single small-volume samples. The need for such highly paralleled assays is underscored by the fact that cytokines do not act in isolation but rather against a backdrop of complementary and antagonistic cytokine effects; ascribing valence to the actions of any one cytokine thus requires specific knowledge about the larger cytokine milieu. This chapter provides a technological overview of the major cytokine multiplex assay platforms before discussing the implications of such tools for biomarker discovery and related applications in PD and its depressive and cognitive co-morbidities.

  10. Cytokines as Biomarkers of Pancreatic Ductal Adenocarcinoma: A Systematic Review

    PubMed Central

    Yako, Yandiswa Yolanda; Kruger, Deirdré; Smith, Martin; Brand, Martin

    2016-01-01

    Objectives A systematic review of the role of cytokines in clinical medicine as diagnostic, prognostic, or predictive biomarkers in pancreatic ductal adenocarcinoma was undertaken. Materials and Methods A systematic review was conducted according to the 2009 PRISMA guidelines. PubMed database was searched for all original articles on the topic of interest published until June 2015, and this was supplemented with references cited in relevant articles. Studies were evaluated for risk of bias using the Quality in Prognosis Studies tools. Results Forty one cytokines were investigated with relation to pancreatic ductal adenocarcinoma (PDAC) in 65 studies, ten of which were analyzed by more than three studies. Six cytokines (interleukin[IL]-1β, -6, -8, -10, vascular endothelial growth factor, and transforming growth factor) were consistently reported to be increased in PDAC by more than four studies; irrespective of sample type; method of measurement; or statistical analysis model used. When evaluated as part of distinct panels that included CA19-9, IL-1β, -6 and -8 improved the performance of CA19-9 alone in differentiating PDAC from healthy controls. For example, a panel comprising IL-1β, IL-8, and CA 19–9 had a sensitivity of 94.1% vs 85.9%, specificity of 100% vs 96.3%, and area under the curve of 0.984 vs 0.925. The above-mentioned cytokines were associated with the severity of PDAC. IL-2, -6, -10, VEGF, and TGF levels were reported to be altered after patients received therapy or surgery. However, studies did not show any evidence of their ability to predict treatment response. Conclusion Our review demonstrates that there is insufficient evidence to support the role of individual cytokines as diagnostic, predictive or prognostic biomarkers for PDAC. However, emerging evidence indicates that a panel of cytokines may be a better tool for discriminating PDAC from other non-malignant pancreatic diseases or healthy individuals. PMID:27170998

  11. Cytokines as biomarkers of Crimean-Congo hemorrhagic fever.

    PubMed

    Papa, Anna; Tsergouli, Katerina; Çağlayık, Dilek Yağcı; Bino, Silvia; Como, Najada; Uyar, Yavuz; Korukluoglu, Gulay

    2016-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is a potentially severe disease caused by CCHF virus. As in other viral hemorrhagic fevers, it is considered that the course and outcome of the disease depend on the viral load and the balance among the immune response mediators, and that a fatal outcome is the result of a "cytokine storm." The level of 27 cytokines was measured in serum samples taken from 29 patients during the acute phase of the disease. Two cases were fatal. Among survivors, significant differences between severe and non-severe cases were observed in the levels of IP-10, and MCP-1, while the levels of IL-1b, IL-5, IL-6, IL-8, IL-9, IL-10, IL-15, IP-10, MCP-1, TNF-α, and RANTES differed significantly between fatal and non-fatal cases (P < 0.05). RANTES was negatively correlated with the outcome of the disease. A striking similarity with the cytokine patterns seen in Ebola virus disease was observed. A weak Th1 immune response was seen. The viral load was positively correlated with IL-10, IP-10, and MCP-1 levels, and negatively correlated with the ratio IL-12/IL-10. Especially IP-10 and MCP-1 were significantly associated with the viral load, the severity and outcome of the disease, and they could act as biomarkers and, probably, as potential targets for treatment strategies design. PMID:26118413

  12. Translational implications of inflammatory biomarkers and cytokine networks in psychoneuroimmunology.

    PubMed

    Yan, Qing

    2012-01-01

    Developments in psychoneuroimmunology (PNI) need to be translated into personalized medicine to achieve better clinical outcomes. One of the most critical steps in this translational process is to identify systemic biomarkers for better diagnosis and treatment. Applications of systems biology approaches in PNI would enable the insights into the correlations among various systems and different levels for the identification of the basic elements of the psychophysiological framework. Among the potential PNI biomarkers, inflammatory markers deserve special attention as they play a pivotal role linking various health conditions and disorders. The elucidation of inflammatory markers, cytokine networks, and immune-brain-behavior interactions may help establish PNI profiles for the identification of potential targets for personalized interventions in at risk populations. The understanding of the general systemic pathways among different disorders may contribute to the transition from the disease-centered medicine to patient-centered medicine. Integrative strategies targeting these factors and pathways would be useful for the prevention and treatment of a spectrum of diseases that share the common links. Examples of the translational implications of potential PNI biomarkers and networks in diseases including depression, Alzheimer's disease, obesity, cardiovascular disease, stroke, and HIV are discussed in details.

  13. Altered cytokine and chemokine profiles in multiple myeloma and precursor disease

    PubMed Central

    Zingone, Adriana; Wang, Weixin; Corrigan-Cummins, Meghan; Wu, Shengyang P.; Plyler, Ryan; Korde, Neha; Kwok, Mary; Manasanch, Elisabet E.; Tageja, Nishant; Bhutani, Manisha; Mulquin, Marcia; Zuchlinski, Diamond; Yancey, Mary Ann; Roschewski, Mark; Zhang, Yong; Roccaro, Aldo M.; Ghobrial, Irene M.; Calvo, Katherine R.; Landgren, Ola

    2014-01-01

    Currently, no reliable biomarkers are available to predict transformation from smoldering myeloma (SMM) to multiple myeloma (MM). Using an ultrasensitive enzyme-linked immunosorbent assay (ELISA) we assessed the levels of a broad range of cytokines and chemokines in the peripheral blood (PB) and bone marrow (BM) supernatant collected from 14 SMM and 38 MM patients and compared to healthy donors. We found significantly increased levels of key cytokines, in particular CXCL8 (IL-8), associated with progressive disease state (controls→SMM→MM). Cytokine profiles were found similar in PB and BM. Five of fourteen SMM patients (36%) progressed to MM. Our findings, although based on a limited number of patients, suggest that serum-based cytokines may have a future role as biomarkers for disease progression and could potentially be assessed as novel targets for treatment. PMID:25043675

  14. Detecting multiple cell-secreted cytokines from the same aptamer-functionalized electrode.

    PubMed

    Liu, Ying; Liu, Ying; Matharu, Zimple; Rahimian, Ali; Revzin, Alexander

    2015-02-15

    Inflammatory cytokines are secreted by immune cells in response to infection or injury. Quantification of multiple cytokines in parallel may help with disease diagnosis by illuminating inflammatory pathways related to disease onset and progression. This paper describes development of an electrochemical aptasensor for simultaneous detection of two important inflammatory cytokines, interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). To enable multiplexing, IFN-γ and TNF-α aptamers were labeled with anthraquinone (AQ) and methylene blue (MB) redox reporters respectively. Random immobilization of two aptamer on gold exhibited redox peaks at -0.37 V (AQ) and -0.15 V (MB) vs. Ag/AgCl reference. When challenged with either IFN-γ or TNF-α, redox signal of the appropriate reporter changed in concentration dependent manner. To demonstrate one possible application of this sensing approach, electrodes were integrated into microfluidic devices and used to dynamically monitor cytokine release from immune cells. Two cell types, primary human CD4 T-cells and U937 monocytic cells, were used to compare differences in cytokine secretions upon stimulation. These cells were infused into the microfluidic devices and stimulated to commence cytokine production. Release of IFN-γ and TNF-α was monitored concurrently from the same small group of cells over the course of 2h. The strategy of encoding specific aptamer types with unique redox reporters allows sensitive and specific detection of multiple protein biomarkers from the same electrode. PMID:25189099

  15. Tear Cytokines as Biomarkers for Chronic Graft-versus-Host Disease.

    PubMed

    Jung, Ji Won; Han, Soo Jung; Song, Mi Kyung; Kim, Tae-im; Kim, Eung Kweon; Min, Yoo Hong; Cheong, June-Won; Seo, Kyoung Yul

    2015-12-01

    We investigated the tear cytokine profiles in patients who underwent stem cell transplantation (SCT) and attempted to evaluate whether tear cytokines are associated with the presence of systemic chronic graft-versus-host disease (GVHD), regardless of ocular GVHD status. We also tested tear cytokines as biomarkers for chronic ocular GVHD severity. Forty-four patients who underwent SCT were enrolled and their diagnosis of chronic GVHD was confirmed. Ocular surface parameters and tear cytokine profiles were evaluated and the correlations between concentrations of cytokines and ocular surface parameters or several chronic ocular GVHD severity scales were evaluated. Tear interleukin (IL)-2, IL-10, IL-17α, interferon (IFN)-γ, IL-6, and tumor necrosis factor (TNF)-α were elevated in patients with chronic systemic GVHD compared with patients without chronic systemic GVHD. Receiver-operating characteristic curve analysis revealed that area under the curve (AUC) values for tear IL-10 (AUC = .795), IL-17α (AUC = .821), IL-6 (AUC = .912), and TNF-α (AUC = .910) were significantly correlated with the presence of chronic GVHD (all P < .001). Tear IL-10, IL-6, and TNF-α showed a stronger correlation with ocular surface parameters than other cytokines and these cytokines also correlated with several chronic ocular GVHD severity scales (all P < .05). Our data suggest the tear cytokines are useful biomarkers for the diagnosis of chronic GVHD after SCT and chronic ocular GVHD severity.

  16. Multiple system atrophy: pathogenic mechanisms and biomarkers.

    PubMed

    Jellinger, Kurt A; Wenning, Gregor K

    2016-06-01

    Multiple system atrophy (MSA) is a unique proteinopathy that differs from other α-synucleinopathies since the pathological process resulting from accumulation of aberrant α-synuclein (αSyn) involves the oligodendroglia rather than neurons, although both pathologies affect multiple parts of the brain, spinal cord, autonomic and peripheral nervous system. Both the etiology and pathogenesis of MSA are unknown, although animal models have provided insight into the basic molecular changes of this disorder. Accumulation of aberrant αSyn in oligodendroglial cells and preceded by relocation of p25α protein from myelin to oligodendroglia results in the formation of insoluble glial cytoplasmic inclusions that cause cell dysfunction and demise. These changes are associated with proteasomal, mitochondrial and lipid transport dysfunction, oxidative stress, reduced trophic transport, neuroinflammation and other noxious factors. Their complex interaction induces dysfunction of the oligodendroglial-myelin-axon-neuron complex, resulting in the system-specific pattern of neurodegeneration characterizing MSA as a synucleinopathy with oligodendroglio-neuronopathy. Propagation of modified toxic αSyn species from neurons to oligodendroglia by "prion-like" transfer and its spreading associated with neuronal pathways result in a multi-system involvement. No reliable biomarkers are currently available for the clinical diagnosis and prognosis of MSA. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable diagnostic biomarkers and to deliver targets for effective treatment of this hitherto incurable disorder is urgently needed.

  17. Cytokine Responses in Gills of Capoeta umbla as Biomarkers of Environmental Pollution.

    PubMed

    Danabas, Durali; Yildirim, Nuran Cikcikoglu; Yildirim, Numan; Onal, Ayten Oztufekci; Uslu, Gulsad; Unlu, Erhan; Danabas, Seval; Ergin, Cemil; Tayhan, Nilgun

    2016-03-01

    Immunological biomarkers reflect the effects of exposure to environmental contaminants. In this study, the suitability and sensitivity of cytokine responses, interleukin1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) in gill tissues of Capoeta umbla (Heckel, 1843), collected from different regions, as early warning indices of environmental pollution and ecosystem health was evaluated. Fish and water samples were taken from ten stations in March and September 2011 and 2012. Tumor necrosis factor-α, IL-1β and IL-6 levels were determined in samples of the gill tissues by using an ELISA kit. Significant variations of TNF-α, IL-1β and IL-6 levels observed between stations and seasons. The results of this study show that seasonal variations of cytokine responses in gills of Capoeta umbla are sensitive to the contaminants present in Uzuncayir Dam Lake (Tunceli, Turkey) water and are valuable biomarkers for environmental pollution and ecosystem health.

  18. Cytokine Responses in Gills of Capoeta umbla as Biomarkers of Environmental Pollution.

    PubMed

    Danabas, Durali; Yildirim, Nuran Cikcikoglu; Yildirim, Numan; Onal, Ayten Oztufekci; Uslu, Gulsad; Unlu, Erhan; Danabas, Seval; Ergin, Cemil; Tayhan, Nilgun

    2016-03-01

    Immunological biomarkers reflect the effects of exposure to environmental contaminants. In this study, the suitability and sensitivity of cytokine responses, interleukin1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) in gill tissues of Capoeta umbla (Heckel, 1843), collected from different regions, as early warning indices of environmental pollution and ecosystem health was evaluated. Fish and water samples were taken from ten stations in March and September 2011 and 2012. Tumor necrosis factor-α, IL-1β and IL-6 levels were determined in samples of the gill tissues by using an ELISA kit. Significant variations of TNF-α, IL-1β and IL-6 levels observed between stations and seasons. The results of this study show that seasonal variations of cytokine responses in gills of Capoeta umbla are sensitive to the contaminants present in Uzuncayir Dam Lake (Tunceli, Turkey) water and are valuable biomarkers for environmental pollution and ecosystem health. PMID:26931532

  19. Cytokines as potential biomarkers of liver toxicity induced by Dioscorea bulbifera L.

    PubMed

    Sheng, Yuchen; Ma, Yibo; Deng, Zhongping; Wang, Zhengtao; Ji, Lili

    2014-02-01

    The present study is designed to search for the serum cytokine biomarker for liver injury induced by Dioscorea bulbifera L., which is a traditionally used herbal medicine in China. Mice were orally given various doses of ethyl acetate extract (EF) isolated from D. bulbifera for 12 days. The activity of serum alanine/aspartate transaminases (ALT/AST) was increased in EF (400 mg/kg)-treated mice. Histological assessment further confirmed EF (400 mg/kg)-induced liver injury. Results of a cytokine-antibody array demonstrated that there were 10 cytokines up-regulated and 1 cytokine down-regulated in EF (400 mg/kg)-treated mice. Enzyme-linked immunosorbent assay (ELISA) further confirmed the increased level of CD30 ligand (CD30L) and decreased level of interlukin-3 (IL-3) in EF-treated mice. In conclusion, our results demonstrate that the altered expression of CD30L and IL-3 may be potential biomarkers for hepatotoxicity induced by D. bulbifera.

  20. B-Lymphocyte stimulator: a new biomarker for multiple myeloma.

    PubMed

    Jiang, Pu; Yueguo, Wang; Huiming, Huang; Hongxiang, Yuan; Mei, Wang; Ju, Shaoqing

    2009-04-01

    Multiple myeloma (MM) is a common malignant tumor, characterized by unlimited proliferation of abnormal plasmocytes in bone marrow. Considering the biological function of B-Lymphocyte stimulator (BLyS) and its receptors in B cell, we examined BLyS and its receptors expression in MM cells. Our studies confirmed that BLyS and its receptors are expressed in MM cells, including KM3, CZ-1, and primary MM cells, playing an important role in the survival and proliferation of MM cells. Additionally, we provide evidence that BLyS protein is located in the MM cell plasma membrane. We also found that IFN-gamma and IL-6 can induce BLyS expression on MM cells, while after the treatment of BAY11-7082, an IkB-alpha phosphorylation inhibitor, IFN-gamma induced up regulation of BLyS was completely inhibited, suggesting that nuclear factor kappaB (NF-kappaB) might be involved in the mechanism of the regulation of BLyS levels in response to cytokines. Finally, linear correlation analysis of the Lactate Dehydrogenase concentration and beta 2-microglobulin level with BLyS, and expressions of BLyS mRNA in MM patients revealed a significant correlation between them (P < 0.01 in all case), showing that BLyS could be a biomarker for the diagnosis and treatment of MM.

  1. Paleo-reconstruction: Using multiple biomarker parameters

    NASA Astrophysics Data System (ADS)

    Chen, Zhengzheng

    Advanced technologies have played essential roles in the development of molecular organic geochemistry. In this thesis, we have developed several new techniques and explored their applications, alone and with previous techniques, to paleo-reconstruction. First, we developed a protocol to separate biomarker fractions for accurate measurement of compound-specific isotope analysis. This protocol involves combination of zeolite adduction and HPLC separation. Second, an integrated study of traditional biomarker parameters, diamondoids and compound-specific biomarker isotopes, differentiated oil groups from Saudi Arabia. Specifically, Cretaceous reservoired oils were divided into three groups and the Jurassic reservoired oils were divided into two groups. Third, biomarker acids provide an alternative way to characterize biodegradation. Oils from San Joaquin Valley, U.S.A. and oils from Mediterranean display drastically different acid profiles. These differences in biomarker acids probably reflect different processes of biodegradation. Fourth, by analyzing biomarker distributions in the organic-rich rocks recording the onset of Late Ordovician extinction, we propose that changes in salinity associated with eustatic sea-level fall, contributed at least locally to the extinction of graptolite species.

  2. Cytokines and MicroRNAs as Candidate Biomarkers for Systemic Lupus Erythematosus

    PubMed Central

    Stypińska, Barbara; Paradowska-Gorycka, Agnieszka

    2015-01-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, with varied course and symptoms. Its etiology is very complex and not clearly understood. There is growing evidence of the important role of cytokines in SLE pathogenesis, as well as their utility as biomarkers and targets in new therapies. Other potential new SLE biomarkers are microRNAs. Recently, over one hundred different microRNAs have been demonstrated to have a significant impact on the immune system. Various alterations in these microRNAs, associated with disease pathogenesis, have been described. They influence the signaling pathways and functions of immune response cells. Here, we aim to review the emerging new data on SLE etiology and pathogenesis. PMID:26473848

  3. Fluid biomarkers in multiple system atrophy: A review of the MSA Biomarker Initiative.

    PubMed

    Laurens, Brice; Constantinescu, Radu; Freeman, Roy; Gerhard, Alexander; Jellinger, Kurt; Jeromin, Andreas; Krismer, Florian; Mollenhauer, Brit; Schlossmacher, Michael G; Shaw, Leslie M; Verbeek, Marcel M; Wenning, Gregor K; Winge, Kristian; Zhang, Jing; Meissner, Wassilios G

    2015-08-01

    Despite growing research efforts, no reliable biomarker currently exists for the diagnosis and prognosis of multiple system atrophy (MSA). Such biomarkers are urgently needed to improve diagnostic accuracy, prognostic guidance and also to serve as efficacy measures or surrogates of target engagement for future clinical trials. We here review candidate fluid biomarkers for MSA and provide considerations for further developments and harmonization of standard operating procedures. A PubMed search was performed until April 24, 2015 to review the literature with regard to candidate blood and cerebrospinal fluid (CSF) biomarkers for MSA. Abstracts of 1760 studies were retrieved and screened for eligibility. The final list included 60 studies assessing fluid biomarkers in patients with MSA. Most studies have focused on alpha-synuclein, markers of axonal degeneration or catecholamines. Their results suggest that combining several CSF fluid biomarkers may be more successful than using single markers, at least for the diagnosis. Currently, the clinically most useful markers may comprise a combination of the light chain of neurofilament (which is consistently elevated in MSA compared to controls and Parkinson's disease), metabolites of the catecholamine pathway and proteins such as α-synuclein, DJ-1 and total-tau. Beyond future efforts in biomarker discovery, the harmonization of standard operating procedures will be crucial for future success.

  4. Putative Role of Serum Amyloid-A and Proinflammatory Cytokines as Biomarkers for Behcet's Disease

    PubMed Central

    Lopalco, Giuseppe; Lucherini, Orso Maria; Vitale, Antonio; Talarico, Rosaria; Lopalco, Antonio; Galeazzi, Mauro; Lapadula, Giovanni; Cantarini, Luca; Iannone, Florenzo

    2015-01-01

    Abstract Behcet's disease (BD) is a multisystemic disorder of unknown etiology characterized by relapsing oral–genital ulcers, uveitis, and involvement of vascular, gastrointestinal, neurological, and musculoskeletal system. Although disease pathogenesis is still unclear, both innate and adaptive immunity have shown to play a pivotal role, and multiple proinflammatory cytokines seem to be involved in different pathogenic pathways that eventually lead to tissue damage. The aims of our study were to evaluate serum cytokines levels of IL-8, IL-18, IFN-α2a, IL-6, IFN-γ, CXCL10, CXCL11, CXCL9, and SAA levels in patients with BD, in comparison to healthy controls (HC), and to correlate their levels to disease activity. We included 78 serum samples obtained from 58 BD patients and analyzed a set of proinflammatory cytokines including IL-8, IL-18, IFN-α2a, IL-6, IFN-γ, CXCL10, CXCL11, and CXCL9 by multiplex bead analysis as well as SAA by enzyme-linked immunosorbent assay. Compared to HC, BD patients showed elevated cytokine levels of IL-8, IL-18, IFN-α2a, and IL-6, and low levels of CXCL11. BD patients with SAA serum levels >20 mg/L showed higher levels of proinflammatory markers than HC or group with SAA ≤20 mg/L. IL-18, IFN-α2a, and IL-6 were higher in BD group with SAA >20 mg/L than HC, while IL-8 and CXCL9 levels were higher than in patients with SAA ≤20 mg/L and HC. Active BD patients with SAA >20 mg/L exhibited elevated levels of inflammatory mediators, suggesting that may exist a relationship between SAA and proinflammatory cytokines in the intricate scenario of BD pathogenesis. PMID:26496336

  5. New prognostic biomarkers in multiple myeloma.

    PubMed

    Szudy-Szczyrek, Aneta; Szczyrek, Michał; Soroka-Wojtaszko, Maria; Hus, Marek

    2016-01-01

    Multiple myeloma is a malignant neoplastic disease, characterized by uncontrolled proliferation and accumulation of plasma cells in the bone marrow, which is usually connected with production of a monoclonal protein. It is the second most common hematologic malignancy. It constitutes approximately 1% of all cancers and 10% of hematological malignancies. Despite the huge progress that has been made in the treatment of multiple myeloma in the past 30 years including the introduction of new immunomodulatory drugs and proteasome inhibitors, it is still an incurable disease. According to current data, the five-year survival rate is 45%. Multiple myeloma is a very heterogeneous disease with a very diverse clinical course, which is expressed by differences in effectiveness of therapeutic strategies and ability to develop chemoresistance. This diversity implies the need to define risk stratification factors that would help to create personalized and optimized therapy and thereby improve treatment outcomes. Prognostic markers that aim to objectively evaluate the risk of a poor outcome, relapse and the patient's overall outcome are useful for this purpose. The existing, widely used prognostic classifications, such as the Salmon-Durie classification or ISS, do not allow for individualization of treatment. As a result of the development of diagnostic techniques, especially cytogenetics and molecular biology, we were able to discover a lot of new, more sensitive and specific prognostic factors. The paper presents recent reports on the role of molecular, cytogenetic and biochemical alterations in pathogenesis and prognosis of the disease. PMID:27463592

  6. COPD Exacerbation Biomarkers Validated Using Multiple Reaction Monitoring Mass Spectrometry

    PubMed Central

    Leung, Janice M.; Chen, Virginia; Hollander, Zsuzsanna; Dai, Darlene; Tebbutt, Scott J.; Aaron, Shawn D.; Vandemheen, Kathy L.; Rennard, Stephen I.; FitzGerald, J. Mark; Woodruff, Prescott G.; Lazarus, Stephen C.; Connett, John E.; Coxson, Harvey O.; Miller, Bruce; Borchers, Christoph; McManus, Bruce M.; Ng, Raymond T.; Sin, Don D.

    2016-01-01

    Background Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) result in considerable morbidity and mortality. However, there are no objective biomarkers to diagnose AECOPD. Methods We used multiple reaction monitoring mass spectrometry to quantify 129 distinct proteins in plasma samples from patients with COPD. This analytical approach was first performed in a biomarker cohort of patients hospitalized with AECOPD (Cohort A, n = 72). Proteins differentially expressed between AECOPD and convalescent states were chosen using a false discovery rate <0.01 and fold change >1.2. Protein selection and classifier building were performed using an elastic net logistic regression model. The performance of the biomarker panel was then tested in two independent AECOPD cohorts (Cohort B, n = 37, and Cohort C, n = 109) using leave-pair-out cross-validation methods. Results Five proteins were identified distinguishing AECOPD and convalescent states in Cohort A. Biomarker scores derived from this model were significantly higher during AECOPD than in the convalescent state in the discovery cohort (p<0.001). The receiver operating characteristic cross-validation area under the curve (CV-AUC) statistic was 0.73 in Cohort A, while in the replication cohorts the CV-AUC was 0.77 for Cohort B and 0.79 for Cohort C. Conclusions A panel of five biomarkers shows promise in distinguishing AECOPD from convalescence and may provide the basis for a clinical blood test to diagnose AECOPD. Further validation in larger cohorts is necessary for future clinical translation. PMID:27525416

  7. Serum Cytokines as Biomarkers of Early Trypanosoma cruzi infection by Congenital Exposure.

    PubMed

    Volta, Bibiana J; Bustos, Patricia L; Cardoni, Rita L; De Rissio, Ana M; Laucella, Susana A; Bua, Jacqueline

    2016-06-01

    Trypanosoma cruzi, the causing agent of Chagas disease, leads to an activation of the immune system in congenitally infected infants. In this study, we measured a set of cytokines/chemokines and the levels of parasitemia by quantitative PCR in the circulation of neonates born to T. cruzi-infected mothers to evaluate the predictive value of these mediators as biomarkers of congenital transmission. We conducted a retrospective cohort study of 35 infants with congenital T. cruzi infection, of which 15 and 10 infants had been diagnosed by detection of parasites by microscopy in the first and sixth month after delivery, respectively, and the remaining 10 had been diagnosed by the presence of T. cruzi-specific Abs at 10-12 mo old. Uninfected infants born to either T. cruzi-infected or uninfected mothers were also evaluated as controls. The plasma levels of IL-17A, MCP-1, and monokine induced by IFN-γ were increased in infants congenitally infected with T. cruzi, even before they developed detectable parasitemia or seroconversion. Infants diagnosed between 6 and 12 mo old also showed increased levels of IL-6 and IL-17F at 1 mo of age. Conversely, infants who did not develop congenital T. cruzi infection had higher levels of IFN-γ than infected infants born to uninfected mothers. Monokine induced by IFN-γ, MCP-1, and IFN-γ production induced in T. cruzi-infected infants correlated with parasitemia, whereas the plasma levels of IL-17A, IL-17F, and IL-6 were less parasite load dependent. These findings support the existence of a distinct profile of cytokines and chemokines in the circulation of infants born to T. cruzi-infected mothers, which might predict congenital infection. PMID:27183607

  8. Serum Cytokines as Biomarkers of Early Trypanosoma cruzi infection by Congenital Exposure.

    PubMed

    Volta, Bibiana J; Bustos, Patricia L; Cardoni, Rita L; De Rissio, Ana M; Laucella, Susana A; Bua, Jacqueline

    2016-06-01

    Trypanosoma cruzi, the causing agent of Chagas disease, leads to an activation of the immune system in congenitally infected infants. In this study, we measured a set of cytokines/chemokines and the levels of parasitemia by quantitative PCR in the circulation of neonates born to T. cruzi-infected mothers to evaluate the predictive value of these mediators as biomarkers of congenital transmission. We conducted a retrospective cohort study of 35 infants with congenital T. cruzi infection, of which 15 and 10 infants had been diagnosed by detection of parasites by microscopy in the first and sixth month after delivery, respectively, and the remaining 10 had been diagnosed by the presence of T. cruzi-specific Abs at 10-12 mo old. Uninfected infants born to either T. cruzi-infected or uninfected mothers were also evaluated as controls. The plasma levels of IL-17A, MCP-1, and monokine induced by IFN-γ were increased in infants congenitally infected with T. cruzi, even before they developed detectable parasitemia or seroconversion. Infants diagnosed between 6 and 12 mo old also showed increased levels of IL-6 and IL-17F at 1 mo of age. Conversely, infants who did not develop congenital T. cruzi infection had higher levels of IFN-γ than infected infants born to uninfected mothers. Monokine induced by IFN-γ, MCP-1, and IFN-γ production induced in T. cruzi-infected infants correlated with parasitemia, whereas the plasma levels of IL-17A, IL-17F, and IL-6 were less parasite load dependent. These findings support the existence of a distinct profile of cytokines and chemokines in the circulation of infants born to T. cruzi-infected mothers, which might predict congenital infection.

  9. Suppressor of cytokine signaling 1 gene mutation status as a prognostic biomarker in classical Hodgkin lymphoma

    PubMed Central

    Bubolz, Anna-Maria; Lessel, Davor; Welke, Claudia; Rüther, Nele; Viardot, Andreas; Möller, Peter

    2015-01-01

    Suppressor of cytokine signaling 1 (SOCS1) mutations are among the most frequent somatic mutations in classical Hodgkin lymphoma (cHL), yet their prognostic relevance in cHL is unexplored. Here, we performed laser-capture microdissection of Hodgkin/Reed-Sternberg (HRS) cells from tumor samples in a cohort of 105 cHL patients. Full-length SOCS1 gene sequencing showed mutations in 61% of all cases (n = 64/105). Affected DNA-motifs and mutation pattern suggest that many of these SOCS1 mutations are the result of aberrant somatic hypermutation and we confirmed expression of mutant alleles at the RNA level. Contingency analysis showed no significant differences of patient-characteristics with HRS-cells containing mutant vs. wild-type SOCS1. By predicted mutational consequence, mutations can be separated into those with non-truncating point mutations (‘minor’ n = 49/64 = 77%) and those with length alteration (‘major’; n = 15/64 = 23%). Subgroups did not differ in clinicopathological characteristics; however, patients with HRS-cells that contained SOCS1 major mutations suffered from early relapse and significantly shorter overall survival (P = 0.03). The SOCS1 major status retained prognostic significance in uni-(P = 0.016) and multivariate analyses (P = 0.005). Together, our data indicate that the SOCS1 mutation type qualifies as a single-gene prognostic biomarker in cHL. PMID:26336985

  10. Investigation of cytokines, oxidative stress, metabolic, and inflammatory biomarkers after orange juice consumption by normal and overweight subjects

    PubMed Central

    Dourado, Grace K. Z. S.; Cesar, Thais B.

    2015-01-01

    Background Abdominal adiposity has been linked to metabolic abnormalities, including dyslipidemia, oxidative stress, and low-grade inflammation. Objective To test the hypothesis that consumption of 100% orange juice (OJ) would improve metabolic, oxidative, and inflammatory biomarkers and cytokine levels in normal and overweight subjects with increased waist circumference. Design Subjects were divided into two groups in accordance with their body mass index: normal and overweight. Both groups of individuals consumed 750 mL of OJ daily for 8 weeks. Body composition (weight, height, percentage of fat mass, and waist circumference); metabolic biomarkers (total cholesterol, low-density lipoprotein-cholesterol [LDL-C], high-density lipoprotein-cholesterol [HDL-C], triglycerides, glucose, insulin, HOMA-IR, and glycated hemoglobin); oxidative biomarkers (malondialdehyde and DPPH•); inflammatory biomarkers (high-sensitivity C-reactive protein [hsCRP]); cytokines (IL-4, IL-10, IL-12, TNF-α, and IFN-γ); and diet were evaluated before and after consumption of OJ for 8 weeks. Results The major findings of this study were: 1) no alteration in body composition in either group; 2) improvement of the lipid profile, evidenced by a reduction in total cholesterol and LDL-C; 3) a potential stimulation of the immune response due to increase in IL-12; 4) anti-inflammatory effect as a result of a marked reduction in hsCRP; and 5) antioxidant action by the enhancement of total antioxidant capacity and the reduction of lipid peroxidation, in both normal and overweight subjects. Conclusions OJ consumption has a positive effect on important biomarkers of health status in normal and overweight subjects, thereby supporting evidence that OJ acts as functional food and could be consumed as part of a healthy diet to prevent metabolic and chronic diseases. PMID:26490535

  11. Biomarkers in multiple sclerosis: an update for 2014.

    PubMed

    Fernandez, Oscar; Martin, Roland; Rovira, Alex; Llufriu, Sara; Vidal-Jordana, Angela; Fernandez-Sanchez, Victoria E; Alvarez-Cermeno, José C; Izquierdo, Guillermo; Arroyo-Gonzalez, Rafael; Rodriguez-Antiguedad, Alfredo; Casanova-Estruch, Bonaventura; Montalban, Xavier

    2014-06-16

    Multiple sclerosis is a chronic, demyelinating and inflammatory disease of the central nervous system that mainly affects young adults. It is characterised by processes involving inflammation, demyelination and axonal destruction, and as a result the pathogenic aspects and response to treatment of the disease vary widely. It is therefore difficult to establish a prognosis for these patients or to determine the effectiveness of the different drugs that are employed. Current clinical research into the development of new biomarkers has advanced a great deal in recent years, especially in the early stages of the disease. Yet, it is essential to further our knowledge about novel markers of the disease, and not only in the more advanced stages, so as to be able to stop disability from progressing and to establish new therapy regimens in these patients. This review presents an update on the information available about the biomarkers that are currently validated and used in multiple sclerosis, together with the possible candidates for utilisation in routine clinical practice.

  12. Genomic analysis, cytokine expression, and microRNA profiling reveal biomarkers of human dietary zinc depletion and homeostasis

    PubMed Central

    Ryu, Moon-Suhn; Langkamp-Henken, Bobbi; Chang, Shou-Mei; Shankar, Meena N.; Cousins, Robert J.

    2011-01-01

    Implementation of zinc interventions for subjects suspected of being zinc-deficient is a global need, but is limited due to the absence of reliable biomarkers. To discover molecular signatures of human zinc deficiency, a combination of transcriptome, cytokine, and microRNA analyses was applied to a dietary zinc depletion/repletion protocol with young male human subjects. Concomitant with a decrease in serum zinc concentration, changes in buccal and blood gene transcripts related to zinc homeostasis occurred with zinc depletion. Microarray analyses of whole blood RNA revealed zinc-responsive genes, particularly, those associated with cell cycle regulation and immunity. Responses of potential signature genes of dietary zinc depletion were further assessed by quantitative real-time PCR. The diagnostic properties of specific serum microRNAs for dietary zinc deficiency were identified by acute responses to zinc depletion, which were reversible by subsequent zinc repletion. Depression of immune-stimulated TNFα secretion by blood cells was observed after low zinc consumption and may serve as a functional biomarker. Our findings introduce numerous novel candidate biomarkers for dietary zinc status assessment using a variety of contemporary technologies and which identify changes that occur prior to or with greater sensitivity than the serum zinc concentration which represents the current zinc status assessment marker. In addition, the results of gene network analysis reveal potential clinical outcomes attributable to suboptimal zinc intake including immune function defects and predisposition to cancer. These demonstrate through a controlled depletion/repletion dietary protocol that the illusive zinc biomarker(s) can be identified and applied to assessment and intervention strategies. PMID:22171008

  13. Genomic analysis, cytokine expression, and microRNA profiling reveal biomarkers of human dietary zinc depletion and homeostasis.

    PubMed

    Ryu, Moon-Suhn; Langkamp-Henken, Bobbi; Chang, Shou-Mei; Shankar, Meena N; Cousins, Robert J

    2011-12-27

    Implementation of zinc interventions for subjects suspected of being zinc-deficient is a global need, but is limited due to the absence of reliable biomarkers. To discover molecular signatures of human zinc deficiency, a combination of transcriptome, cytokine, and microRNA analyses was applied to a dietary zinc depletion/repletion protocol with young male human subjects. Concomitant with a decrease in serum zinc concentration, changes in buccal and blood gene transcripts related to zinc homeostasis occurred with zinc depletion. Microarray analyses of whole blood RNA revealed zinc-responsive genes, particularly, those associated with cell cycle regulation and immunity. Responses of potential signature genes of dietary zinc depletion were further assessed by quantitative real-time PCR. The diagnostic properties of specific serum microRNAs for dietary zinc deficiency were identified by acute responses to zinc depletion, which were reversible by subsequent zinc repletion. Depression of immune-stimulated TNFα secretion by blood cells was observed after low zinc consumption and may serve as a functional biomarker. Our findings introduce numerous novel candidate biomarkers for dietary zinc status assessment using a variety of contemporary technologies and which identify changes that occur prior to or with greater sensitivity than the serum zinc concentration which represents the current zinc status assessment marker. In addition, the results of gene network analysis reveal potential clinical outcomes attributable to suboptimal zinc intake including immune function defects and predisposition to cancer. These demonstrate through a controlled depletion/repletion dietary protocol that the illusive zinc biomarker(s) can be identified and applied to assessment and intervention strategies.

  14. Comparing clinical responses and the biomarkers of BDNF and cytokines between subthreshold bipolar disorder and bipolar II disorder.

    PubMed

    Wang, Tzu-Yun; Lee, Sheng-Yu; Chen, Shiou-Lan; Chang, Yun-Hsuan; Wang, Liang-Jen; Chen, Po See; Chen, Shih-Heng; Chu, Chun-Hsien; Huang, San-Yuan; Tzeng, Nian-Sheng; Li, Chia-Ling; Chung, Yi-Lun; Hsieh, Tsai-Hsin; Lee, I Hui; Chen, Kao Chin; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2016-01-01

    Patients with subthreshold hypomania (SBP; subthreshold bipolar disorder) were indistinguishable from those with bipolar disorder (BP)-II on clinical bipolar validators, but their analyses lacked biological and pharmacological treatment data. Because inflammation and neuroprogression underlies BP, we hypothesized that cytokines and brain-derived neurotrophic factor (BDNF) are biomarkers for BP. We enrolled 41 drug-naïve patients with SBP and 48 with BP-II undergoing 12 weeks of pharmacological treatment (valproic acid, fluoxetine, risperidone, lorazepam). The Hamilton Depression Rating Scale (HDRS) and Young Mania Rating Scale (YMRS) were used to evaluate clinical responses at baseline and at weeks 0, 1, 2, 4, 8, and 12. Inflammatory cytokines (tumour necrosis factor [TNF]-α, transforming growth factor [TGF]-β1, interleukin [IL]-6, IL-8 and IL-1β) and BDNF levels were also measured. Mixed models repeated measurement was used to examine the therapeutic effect and changes in BDNF and cytokine levels between the groups. HDRS and YMRS scores significantly (P < 0.001) declined in both groups, the SBP group had significantly lower levels of BDNF (P = 0.005) and TGF-β1 (P = 0.02). Patients with SBP and BP-II respond similarly to treatment, but SBP patients may have different neuroinflammation marker expression. PMID:27270858

  15. Comparing clinical responses and the biomarkers of BDNF and cytokines between subthreshold bipolar disorder and bipolar II disorder

    PubMed Central

    Wang, Tzu-Yun; Lee, Sheng-Yu; Chen, Shiou-Lan; Chang, Yun-Hsuan; Wang, Liang-Jen; Chen, Po See; Chen, Shih-Heng; Chu, Chun-Hsien; Huang, San-Yuan; Tzeng, Nian-Sheng; Li, Chia-Ling; Chung, Yi-Lun; Hsieh, Tsai-Hsin; Lee, I Hui; Chen, Kao Chin; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2016-01-01

    Patients with subthreshold hypomania (SBP; subthreshold bipolar disorder) were indistinguishable from those with bipolar disorder (BP)-II on clinical bipolar validators, but their analyses lacked biological and pharmacological treatment data. Because inflammation and neuroprogression underlies BP, we hypothesized that cytokines and brain-derived neurotrophic factor (BDNF) are biomarkers for BP. We enrolled 41 drug-naïve patients with SBP and 48 with BP-II undergoing 12 weeks of pharmacological treatment (valproic acid, fluoxetine, risperidone, lorazepam). The Hamilton Depression Rating Scale (HDRS) and Young Mania Rating Scale (YMRS) were used to evaluate clinical responses at baseline and at weeks 0, 1, 2, 4, 8, and 12. Inflammatory cytokines (tumour necrosis factor [TNF]-α, transforming growth factor [TGF]-β1, interleukin [IL]-6, IL-8 and IL-1β) and BDNF levels were also measured. Mixed models repeated measurement was used to examine the therapeutic effect and changes in BDNF and cytokine levels between the groups. HDRS and YMRS scores significantly (P < 0.001) declined in both groups, the SBP group had significantly lower levels of BDNF (P = 0.005) and TGF-β1 (P = 0.02). Patients with SBP and BP-II respond similarly to treatment, but SBP patients may have different neuroinflammation marker expression. PMID:27270858

  16. DNA Repair and Cytokines: TGF-β, IL-6, and Thrombopoietin as Different Biomarkers of Radioresistance

    PubMed Central

    Centurione, Lucia; Aiello, Francesca B.

    2016-01-01

    Double strand breaks (DSBs) induced by radiotherapy are highly cytotoxic lesions, leading to chromosomal aberrations and cell death. Ataxia-telangiectasia-mutated (ATM)-dependent DNA-damage response, non-homologous end joining, and homologous recombination pathways coordinately contribute to repairing DSBs in higher eukaryotes. It is known that the expression of DSB repair genes is increased in tumors, which is one of the main reasons for radioresistance. The inhibition of DSB repair pathways may be useful to increase tumor cell radiosensitivity and may target stem cell-like cancer cells, known to be the most radioresistant tumor components. Commonly overexpressed in neoplastic cells, cytokines confer radioresistance by promoting proliferation, survival, invasion, and angiogenesis. Unfortunately, tumor irradiation increases the expression of various cytokines displaying these effects, including transforming growth factor-beta and interleukin-6. Recently, the capabilities of these cytokines to support DNA repair pathways and the ATM-dependent DNA response have been demonstrated. Thrombopoietin, essential for megakaryopoiesis and very important for hematopoietic stem cell (HSC) homeostasis, has also been found to promote DNA repair in a highly selective manner. These findings reveal a novel mechanism underlying cytokine-related radioresistance, which may be clinically relevant. Therapies targeting specific cytokines may be used to improve radiosensitivity. Specific inhibitors may be chosen in consideration of different tumor microenvironments. Thrombopoietin may be useful in fending off irradiation-induced loss of HSCs. PMID:27500125

  17. DNA Repair and Cytokines: TGF-β, IL-6, and Thrombopoietin as Different Biomarkers of Radioresistance.

    PubMed

    Centurione, Lucia; Aiello, Francesca B

    2016-01-01

    Double strand breaks (DSBs) induced by radiotherapy are highly cytotoxic lesions, leading to chromosomal aberrations and cell death. Ataxia-telangiectasia-mutated (ATM)-dependent DNA-damage response, non-homologous end joining, and homologous recombination pathways coordinately contribute to repairing DSBs in higher eukaryotes. It is known that the expression of DSB repair genes is increased in tumors, which is one of the main reasons for radioresistance. The inhibition of DSB repair pathways may be useful to increase tumor cell radiosensitivity and may target stem cell-like cancer cells, known to be the most radioresistant tumor components. Commonly overexpressed in neoplastic cells, cytokines confer radioresistance by promoting proliferation, survival, invasion, and angiogenesis. Unfortunately, tumor irradiation increases the expression of various cytokines displaying these effects, including transforming growth factor-beta and interleukin-6. Recently, the capabilities of these cytokines to support DNA repair pathways and the ATM-dependent DNA response have been demonstrated. Thrombopoietin, essential for megakaryopoiesis and very important for hematopoietic stem cell (HSC) homeostasis, has also been found to promote DNA repair in a highly selective manner. These findings reveal a novel mechanism underlying cytokine-related radioresistance, which may be clinically relevant. Therapies targeting specific cytokines may be used to improve radiosensitivity. Specific inhibitors may be chosen in consideration of different tumor microenvironments. Thrombopoietin may be useful in fending off irradiation-induced loss of HSCs. PMID:27500125

  18. Interrelationship of Multiple Endothelial Dysfunction Biomarkers with Chronic Kidney Disease

    PubMed Central

    Chen, Jing; Hamm, L. Lee; Mohler, Emile R.; Hudaihed, Alhakam; Arora, Robin; Chen, Chung-Shiuan; Liu, Yanxi; Browne, Grace; Mills, Katherine T.; Kleinpeter, Myra A.; Simon, Eric E.; Rifai, Nader; Klag, Michael J.; He, Jiang

    2015-01-01

    The interrelationship of multiple endothelial biomarkers and chronic kidney disease (CKD) has not been well studied. We measured asymmetric dimethylarginine (ADMA), L-arginine, soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin), von Willebrand factor (vWF), flow-mediated dilation (FMD), and nitroglycerin-induced dilation (NID) in 201 patients with CKD and 201 community-based controls without CKD. Multivariable analyses were used to examine the interrelationship of endothelial biomarkers with CKD. The multivariable-adjusted medians (interquartile ranges) were 0.54 (0.40, 0.75) in patients with CKD vs. 0.25 (0.22, 0.27) μmol /L in controls without CKD (p<0.0001 for group difference) for ADMA; 67.0 (49.6, 86.7) vs. 31.0 (27.7, 34.2) μmol/L (p<0.0001) for L-arginine; 230.0 (171.6, 278.6) vs. 223.9 (178.0, 270.6) ng/mL (p=0.55) for sICAM-1; 981.7 (782.6, 1216.8) vs. 633.2 (507.8, 764.3) ng/mL (p<0.0001) for sVCAM-1; 47.9 (35.0, 62.5) vs. 37.0 (28.9, 48.0) ng/mL (p=0.01) for sE-selectin; 1320 (1044, 1664) vs. 1083 (756, 1359) mU/mL (p=0.008) for vWF; 5.74 (3.29, 8.72) vs. 8.80 (6.50, 11.39)% (p=0.01) for FMD; and 15.2 (13.5, 16.9) vs. 19.1 (17.2, 21.0)% (p=0.0002) for NID, respectively. In addition, the severity of CKD was positively associated with ADMA, L-arginine, sVCAM-1, sE-selectin, and vWF and inversely associated with FMD and NID. Furthermore, FMD and NID were significantly and inversely correlated with ADMA, L-arginine, sVCAM-1, sE-selectin, and vWF. In conclusion, these data indicate that multiple dysfunctions of the endothelium were present among patients with CKD. Interventional studies are warranted to test the effects of treatment of endothelial dysfunction on CKD. PMID:26132137

  19. Interrelationship of Multiple Endothelial Dysfunction Biomarkers with Chronic Kidney Disease.

    PubMed

    Chen, Jing; Hamm, L Lee; Mohler, Emile R; Hudaihed, Alhakam; Arora, Robin; Chen, Chung-Shiuan; Liu, Yanxi; Browne, Grace; Mills, Katherine T; Kleinpeter, Myra A; Simon, Eric E; Rifai, Nader; Klag, Michael J; He, Jiang

    2015-01-01

    The interrelationship of multiple endothelial biomarkers and chronic kidney disease (CKD) has not been well studied. We measured asymmetric dimethylarginine (ADMA), L-arginine, soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin), von Willebrand factor (vWF), flow-mediated dilation (FMD), and nitroglycerin-induced dilation (NID) in 201 patients with CKD and 201 community-based controls without CKD. Multivariable analyses were used to examine the interrelationship of endothelial biomarkers with CKD. The multivariable-adjusted medians (interquartile ranges) were 0.54 (0.40, 0.75) in patients with CKD vs. 0.25 (0.22, 0.27) μmol /L in controls without CKD (p<0.0001 for group difference) for ADMA; 67.0 (49.6, 86.7) vs. 31.0 (27.7, 34.2) μmol/L (p<0.0001) for L-arginine; 230.0 (171.6, 278.6) vs. 223.9 (178.0, 270.6) ng/mL (p=0.55) for sICAM-1; 981.7 (782.6, 1216.8) vs. 633.2 (507.8, 764.3) ng/mL (p<0.0001) for sVCAM-1; 47.9 (35.0, 62.5) vs. 37.0 (28.9, 48.0) ng/mL (p=0.01) for sE-selectin; 1320 (1044, 1664) vs. 1083 (756, 1359) mU/mL (p=0.008) for vWF; 5.74 (3.29, 8.72) vs. 8.80 (6.50, 11.39)% (p=0.01) for FMD; and 15.2 (13.5, 16.9) vs. 19.1 (17.2, 21.0)% (p=0.0002) for NID, respectively. In addition, the severity of CKD was positively associated with ADMA, L-arginine, sVCAM-1, sE-selectin, and vWF and inversely associated with FMD and NID. Furthermore, FMD and NID were significantly and inversely correlated with ADMA, L-arginine, sVCAM-1, sE-selectin, and vWF. In conclusion, these data indicate that multiple dysfunctions of the endothelium were present among patients with CKD. Interventional studies are warranted to test the effects of treatment of endothelial dysfunction on CKD. PMID:26132137

  20. Chemokine biomarkers in central nervous system tissue and cerebrospinal fluid in the Theiler's virus model mirror those in multiple sclerosis.

    PubMed

    Pachner, Andrew R; Li, Libin; Gilli, Francesca

    2015-12-01

    Chemokines have increasingly been implicated in inflammatory and infectious disease of the central nervous system, both as biomarkers and as molecules important in pathogenesis. Multiple sclerosis is a disabling disease of unknown etiology, and recently chemokines have been identified as being upregulated molecules in the disease. We were interested in how the chemokine expression patterns in the central nervous system of a viral model of multiple sclerosis, Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), compared to that in humans with multiple sclerosis. Cerebrospinal fluid and spinal cord tissue were analyzed for expression of a range of cytokines and chemokines. Three chemokines, CXCL10, CXCL9, and CCL5 were strongly and specifically upregulated in both the cerebrospinal fluid and spinal cord in chronic disease, a pattern identical to that in multiple sclerosis. These data, the first study of cytokines in central nervous system tissue and cerebrospinal fluid in TMEV-IDD, support the hypothesis that multiple sclerosis is caused by chronic infection with an as-yet unidentified pathogen, possibly a picornavirus.

  1. Simultaneous detection of multiple biomarkers with over three orders of concentration difference using phase change nanoparticles.

    PubMed

    Wang, Chaoming; Sun, Zhaoyong; Ma, Liyuan; Su, Ming

    2011-03-15

    A big challenge for multiplexed detection of cancer biomarkers is that biomarker concentrations in body fluid differs several orders of magnitude. Existing techniques are not suitable to detect low- and high-concentration biomarkers (protein and DNA) at the same time, and liquid chromatography or electrophoresis is used to separate or purify target biomarkers before analysis. This paper describes a new broad-range biomarker assay using solid to liquid phase change nanoparticles, where a panel of metallic nanoparticles (i.e., metals and eutectic alloys) are modified with a panel of ligands to establish a one-to-one correspondence and attached onto ligand-modified substrates by forming sandwiched complexes. The melting peak and fusion enthalpy of phase change nanoparticles during thermal analysis reflect the type and concentration of biomarkers, respectively. The thermal readout condition can be adjusted in such a way that multiple biomarkers with concentration difference over 3 orders of magnitude have been simultaneously detected under the same condition.

  2. Cytokine Control of Inflammation and Repair in the Pathology of Multiple Sclerosis

    PubMed Central

    Rodgers, Jane M.; Miller, Stephen D.

    2012-01-01

    Cytokines are secreted signaling proteins that play an essential role in propagating and regulating immune responses during experimental autoimmune encephalomyelitis (EAE), the mouse model of the neurodegenerative, autoimmune disease multiple sclerosis (MS). EAE pathology is driven by a myelin-specific T cell response that is activated in the periphery and mediates the destruction of myelin upon T cell infiltration into the central nervous system (CNS). Cytokines provide cell signals both in the immune and CNS compartment, but interestingly, some have detrimental effects in the immune compartment while having beneficial effects in the CNS compartment. The complex nature of these signals will be reviewed. PMID:23239947

  3. Effect of Black Tea Consumption on Intracellular Cytokines, Regulatory T Cells and Metabolic Biomarkers in Type 2 Diabetes Patients.

    PubMed

    Mahmoud, Fadia; Haines, David; Al-Ozairi, Ebaa; Dashti, Ali

    2016-03-01

    The present study was undertaken to evaluate the effects of black tea intake on inflammatory cytokines and metabolic biomarkers in Type 2 diabetes mellitus (T2DM). Thirty patients with T2DM were randomly assigned either to a High Intake (HI) group, consuming three cups (600 mL) of black tea per day; and a Low Intake (LI) group, administered 1 cup (200 mL) per day, each during a 12-week period. Intracellular cytokine expression, regulatory T cells (Treg), glycemic and lipid profiles were measured at baseline and following the tea intake period. Tea consumption correlated with major effects measured in peripheral blood of subjects that included significantly reduced glycated hemoglobin (HbA1c) levels, along with increased regulatory T cells CD3+ CD4+ CD25+ FOXP3, CD3+ CD4+ IL-10+ cells (an immunosuppressive phenotype), reduced (pro-inflammatory) CD3+ CD4+ IL-17+ cells and reduced Th1-associated CD3+ CD4+ IFN-Υ+ cells. Tea consumption was also observed to abolish the significance of an inverse correlation between total serum cholesterol and representation of CD4+ IL-4+ T cells, which may reflect protection against atopy-related oxidative stress. Outcomes of this study describe both advantages and limitations to consumption of black tea as an aid to sustained health maintenance by persons at-risk for TD2M and related obesity-associated metabolic syndromes.

  4. Multiple Biomarkers for the Prediction of First Major Cardiovascular Events and Death

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few investigations have evaluated the incremental usefulness of multiple biomarkers from distinct biologic pathways for predicting the risk of cardiovascular events. We measured 10 biomarkers in 3209 participants attending a routine examination cycle of the Framingham Heart Study: the levels of C-r...

  5. A cytokine gene screen uncovers SOCS1 as genetic risk factor for multiple sclerosis.

    PubMed

    Vandenbroeck, K; Alvarez, J; Swaminathan, B; Alloza, I; Matesanz, F; Urcelay, E; Comabella, M; Alcina, A; Fedetz, M; Ortiz, M A; Izquierdo, G; Fernandez, O; Rodriguez-Ezpeleta, N; Matute, C; Caillier, S; Arroyo, R; Montalban, X; Oksenberg, J R; Antigüedad, A; Aransay, A

    2012-01-01

    Cytokine and cytokine receptor genes, including IL2RA, IL7R and IL12A, are known risk factors for multiple sclerosis (MS). Excitotoxic oligodendroglial death mediated by glutamate receptors contributes to demyelinating reactions. In the present study, we screened 368 single-nucleotide polymorphisms (SNPs) in 55 genes or gene clusters coding for cytokines, cytokine receptors, suppressors of cytokine signaling (SOCS), complement factors and glutamate receptors for association with MS in a Spanish-Basque resident population. Top-scoring SNPs were found within or nearby the genes coding for SOCS-1 (P=0.0005), interleukin-28 receptor, alpha chain (P=0.0008), oncostatin M receptor (P=0.002) and interleukin-22 receptor, alpha 2 (IL22RA2; P=0.003). The SOCS1 rs243324 variant was validated as risk factor for MS in a separate cohort of 3919 MS patients and 4003 controls (combined Cochran-Mantel-Haenszel P=0.00006; odds ratio (OR)=1.13; 95% confidence interval (CI)=1.07-1.20). In addition, the T allele of rs243324 was consistently increased in relapsing-remitting/secondary progressive versus primary-progressive MS patients, in each of the six data sets used in this study (P(CMH)=0.0096; OR=1.24; 95% CI 1.05-1.46). The association with SOCS1 appears independent from the chr16MS risk locus CLEC16A.

  6. A vaccine strategy with multiple prostatic acid phosphatase-fused cytokines for prostate cancer treatment

    PubMed Central

    FUJIO, KEI; WATANABE, MASAMI; UEKI, HIDEO; LI, SHUN-AI; KINOSHITA, RIE; OCHIAI, KAZUHIKO; FUTAMI, JUNICHIRO; WATANABE, TOYOHIKO; NASU, YASUTOMO; KUMON, HIROMI

    2015-01-01

    Immunotherapy is one of the attractive treatment strategies for advanced prostate cancer. The US Food and Drug Administration (FDA) previously approved the therapeutic vaccine, sipuleucel-T, which is composed of autologous antigen-presenting cells cultured with a fusion protein [prostatic acid phosphatase (PAP) and granulocyte-macrophage colony-stimulating factor (GMCSF)]. Although sipuleucel-T has been shown to prolong the median survival of patients for 4.1 months, more robust therapeutic effects may be expected by modifying the vaccination protocol. In the present study, we aimed to develop and validate a novel vaccination strategy using multiple PAP-fused cytokines for prostate cancer treatment. Using a super gene expression (SGE) system that we previously established to amplify the production of a recombinant protein, significant amounts of PAP-fused cytokines [human GMCSF, interleukin-2 (IL2), IL4, IL7 and mouse GMCSF and IL4] were obtained. We examined the activity of the fusion proteins in vitro to validate their cytokine functions. A significant upregulation of dendritic cell differentiation from monocytes was achieved by PAP-GMCSF when used with the other PAP-fused cytokines. The PAP-fused human IL2 significantly increased the proliferation of lymphocytes, as determined by flow cytometry. We also investigated the in vivo therapeutic effects of multiple PAP-fused cytokines in a mouse prostate cancer model bearing prostate-specific antigen (PSA)- and PAP-expressing tumors. The simultaneous intraperitoneal administration of PAP-GMCSF, -IL2, -IL4 and -IL7 significantly prevented tumor induction and inhibited the tumor growth in the PAP-expressing tumors, yet not in the PSA-expressing tumors. The in vivo therapeutic effects with the multiple PAP-fused cytokines were superior to the effects of PAP-GMCSF alone. We thus demonstrated the advantages of the combined use of multiple PAP-fused cytokines including PAP-GMCSF, and propose a promising prostatic antigen

  7. Network-Based Identification of Biomarkers Coexpressed with Multiple Pathways

    PubMed Central

    Guo, Nancy Lan; Wan, Ying-Wooi

    2014-01-01

    Unraveling complex molecular interactions and networks and incorporating clinical information in modeling will present a paradigm shift in molecular medicine. Embedding biological relevance via modeling molecular networks and pathways has become increasingly important for biomarker identification in cancer susceptibility and metastasis studies. Here, we give a comprehensive overview of computational methods used for biomarker identification, and provide a performance comparison of several network models used in studies of cancer susceptibility, disease progression, and prognostication. Specifically, we evaluated implication networks, Boolean networks, Bayesian networks, and Pearson’s correlation networks in constructing gene coexpression networks for identifying lung cancer diagnostic and prognostic biomarkers. The results show that implication networks, implemented in Genet package, identified sets of biomarkers that generated an accurate prediction of lung cancer risk and metastases; meanwhile, implication networks revealed more biologically relevant molecular interactions than Boolean networks, Bayesian networks, and Pearson’s correlation networks when evaluated with MSigDB database. PMID:25392692

  8. Body fluid biomarkers for multiple sclerosis--the long road to clinical application.

    PubMed

    Teunissen, Charlotte E; Malekzadeh, Arjan; Leurs, Cyra; Bridel, Claire; Killestein, Joep

    2015-10-01

    There is a strong unmet clinical need for objective body fluid biomarkers to assist early diagnosis and estimate long-term prognosis, monitor treatment response and predict potential adverse effects in multiple sclerosis (MS). Here, we review recent studies (focusing on 2012 to early 2015) on body fluid markers in MS from the perspective of their clinical utility. Because the first step towards clinical implementation of a newly discovered biomarker is independent replication, we focus on biomarkers that have been validated in at least two independent cohorts. We also discuss recent data challenging earlier findings, and biomarkers for which new clinical uses are suggested. For early MS diagnosis and prediction of conversion from clinically isolated syndrome to MS, several new B-cell-associated candidate blood biomarkers have emerged. For prognosis, several novel axonal damage markers should be adopted to biomarker panels. The number of disease-modifying treatments for MS has increased sharply, but biomarkers for treatment response monitoring and adverse effect prediction are scarce, and markers for subtyping and staging of MS are still lacking. In view of the availability and implementation of several standardized protocols to optimize biomarker studies, we expect biomarker development for MS to be improved and accelerated, with clinical implementation in the near future. PMID:26392381

  9. Cognitive impairment effects of early life stress in adolescents can be predicted with early biomarkers: Impacts of sex, experience, and cytokines.

    PubMed

    Grassi-Oliveira, Rodrigo; Honeycutt, Jennifer A; Holland, Freedom H; Ganguly, Prabarna; Brenhouse, Heather C

    2016-09-01

    Childhood adversity increases vulnerability to psychiatric disorders that emerge in adolescence, in a sex-dependent manner. Early adversity modeled in rodents with maternal separation (MS) affects cognition and medial prefrontal cortex (mPFC) circuitry. Humans and animals exposed to early life adversity also display heightened circulating inflammatory cytokines, however the predictive relationship of these early measures with later behavioral deficits is unknown. Here, male and female rats were exposed to MS or control rearing during the postnatal period (P2-21). Blood samples were taken at distinct developmental time points for analysis of the pro-inflammatory cytokine IL-1β and the anti-inflammatory cytokines IL-4, and IL-10, followed by win-shift cognitive testing and analysis of mPFC parvalbumin (PVB) immunofluorescent interneurons in adolescence. Regression analyses were conducted to explore the relationship between early cytokines and adolescent behavioral measures. We observed sex- and age-dependent effects of MS on circulating cytokines. MS also yielded adolescent decreases in mPFC PVB and cognitive deficits, which were predicted by early cytokine expression in a sex- and experience-dependent manner. Taken together, the present data reveals that circulating cytokines and PVB levels are predictive of adolescent cognitive deficits, and therefore provide compelling evidence for a putative role of early biomarkers in mediating MS-induced behavioral dysfunction. Importantly, predictive relationships often depended on sex and on MS history, suggesting that early life experiences may yield individualistic mechanisms of vulnerability compared to the general population.

  10. Cognitive impairment effects of early life stress in adolescents can be predicted with early biomarkers: Impacts of sex, experience, and cytokines.

    PubMed

    Grassi-Oliveira, Rodrigo; Honeycutt, Jennifer A; Holland, Freedom H; Ganguly, Prabarna; Brenhouse, Heather C

    2016-09-01

    Childhood adversity increases vulnerability to psychiatric disorders that emerge in adolescence, in a sex-dependent manner. Early adversity modeled in rodents with maternal separation (MS) affects cognition and medial prefrontal cortex (mPFC) circuitry. Humans and animals exposed to early life adversity also display heightened circulating inflammatory cytokines, however the predictive relationship of these early measures with later behavioral deficits is unknown. Here, male and female rats were exposed to MS or control rearing during the postnatal period (P2-21). Blood samples were taken at distinct developmental time points for analysis of the pro-inflammatory cytokine IL-1β and the anti-inflammatory cytokines IL-4, and IL-10, followed by win-shift cognitive testing and analysis of mPFC parvalbumin (PVB) immunofluorescent interneurons in adolescence. Regression analyses were conducted to explore the relationship between early cytokines and adolescent behavioral measures. We observed sex- and age-dependent effects of MS on circulating cytokines. MS also yielded adolescent decreases in mPFC PVB and cognitive deficits, which were predicted by early cytokine expression in a sex- and experience-dependent manner. Taken together, the present data reveals that circulating cytokines and PVB levels are predictive of adolescent cognitive deficits, and therefore provide compelling evidence for a putative role of early biomarkers in mediating MS-induced behavioral dysfunction. Importantly, predictive relationships often depended on sex and on MS history, suggesting that early life experiences may yield individualistic mechanisms of vulnerability compared to the general population. PMID:27235636

  11. Cytokine-Defined B Cell Responses as Therapeutic Targets in Multiple Sclerosis

    PubMed Central

    Li, Rui; Rezk, Ayman; Healy, Luke M.; Muirhead, Gillian; Prat, Alexandre; Gommerman, Jennifer L.; Bar-Or, Amit

    2016-01-01

    Important antibody-independent pathogenic roles of B cells are emerging in autoimmune diseases, including multiple sclerosis (MS). The contrasting results of different treatments targeting B cells in patients (in spite of predictions of therapeutic benefits from animal models) call for a better understanding of the multiple roles that distinct human B cell responses likely play in MS. In recent years, both murine and human B cells have been identified with distinct functional properties related to their expression of particular cytokines. These have included regulatory (Breg) B cells (secreting interleukin (IL)-10 or IL-35) and pro-inflammatory B cells (secreting tumor necrosis factor α, LTα, IL-6, and granulocyte macrophage colony-stimulating factor). Better understanding of human cytokine-defined B cell responses is necessary in both health and diseases, such as MS. Investigation of their surface phenotype, distinct functions, and the mechanisms of regulation (both cell intrinsic and cell extrinsic) may help develop effective treatments that are more selective and safe. In this review, we focus on mechanisms by which cytokine-defined B cells contribute to the peripheral immune cascades that are thought to underlie MS relapses, and the impact of B cell-directed therapies on these mechanisms. PMID:26779181

  12. Improving membrane based multiplex immunoassays for semi-quantitative detection of multiple cytokines in a single sample

    PubMed Central

    2014-01-01

    Background Inflammatory mediators can serve as biomarkers for the monitoring of the disease progression or prognosis in many conditions. In the present study we introduce an adaptation of a membrane-based technique in which the level of up to 40 cytokines and chemokines can be determined in both human and rodent blood in a semi-quantitative way. The planar assay was modified using the LI-COR (R) detection system (fluorescence based) rather than chemiluminescence and semi-quantitative outcomes were achieved by normalizing the outcomes using the automated exposure settings of the Odyssey readout device. The results were compared to the gold standard assay, namely ELISA. Results The improved planar assay allowed the detection of a considerably higher number of analytes (n = 30 and n = 5 for fluorescent and chemiluminescent detection, respectively). The improved planar method showed high sensitivity up to 17 pg/ml and a linear correlation of the normalized fluorescence intensity with the results from the ELISA (r = 0.91). Conclusions The results show that the membrane-based technique is a semi-quantitative assay that correlates satisfactorily to the gold standard when enhanced by the use of fluorescence and subsequent semi-quantitative analysis. This promising technique can be used to investigate inflammatory profiles in multiple conditions, particularly in studies with constraints in sample sizes and/or budget. PMID:25022797

  13. Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis.

    PubMed

    Teunissen, Charlotte; Menge, Til; Altintas, Ayse; Álvarez-Cermeño, José C; Bertolotto, Antonio; Berven, Frode S; Brundin, Lou; Comabella, Manuel; Degn, Matilde; Deisenhammer, Florian; Fazekas, Franz; Franciotta, Diego; Frederiksen, Jette L; Galimberti, Daniela; Gnanapavan, Sharmilee; Hegen, Harald; Hemmer, Bernhard; Hintzen, Rogier; Hughes, Steve; Iacobaeus, Ellen; Kroksveen, Ann C; Kuhle, Jens; Richert, John; Tumani, Hayrettin; Villar, Luisa M; Drulovic, Jelena; Dujmovic, Irena; Khalil, Michael; Bartos, Ales

    2013-11-01

    The choice of appropriate control group(s) is critical in cerebrospinal fluid (CSF) biomarker research in multiple sclerosis (MS). There is a lack of definitions and nomenclature of different control groups and a rationalized application of different control groups. We here propose consensus definitions and nomenclature for the following groups: healthy controls (HCs), spinal anesthesia subjects (SASs), inflammatory neurological disease controls (INDCs), peripheral inflammatory neurological disease controls (PINDCs), non-inflammatory neurological controls (NINDCs), symptomatic controls (SCs). Furthermore, we discuss the application of these control groups in specific study designs, such as for diagnostic biomarker studies, prognostic biomarker studies and therapeutic response studies. Application of these uniform definitions will lead to better comparability of biomarker studies and optimal use of available resources. This will lead to improved quality of CSF biomarker research in MS and related disorders.

  14. Multiple Biomarkers and Atrial Fibrillation in the General Population

    PubMed Central

    Schnabel, Renate B.; Wild, Philipp S.; Wilde, Sandra; Ojeda, Francisco M.; Schulz, Andreas; Zeller, Tanja; Sinning, Christoph R.; Kunde, Jan; Lackner, Karl J.

    2014-01-01

    Background Different biological pathways have been related to atrial fibrillation (AF). Novel biomarkers capturing inflammation, oxidative stress, and neurohumoral activation have not been investigated comprehensively in AF. Methods and Results In the population-based Gutenberg Health Study (n = 5000), mean age 56±11 years, 51% males, we measured ten biomarkers representing inflammation (C-reactive protein, fibrinogen), cardiac and vascular function (midregional pro adrenomedullin [MR-proADM], midregional pro atrial natriuretic peptide [MR-proANP], N-terminal pro-B-type natriuretic peptide [Nt-proBNP], sensitive troponin I ultra [TnI ultra], copeptin, and C-terminal pro endothelin-1), and oxidative stress (glutathioneperoxidase-1, myeloperoxidase) in relation to manifest AF (n = 161 cases). Individuals with AF were older, mean age 64.9±8.3, and more often males, 71.4%. In Bonferroni-adjusted multivariable regression analyses strongest associations per standard deviation increase in biomarker concentrations were observed for the natriuretic peptides Nt-proBNP (odds ratio [OR] 2.89, 99.5% confidence interval [CI] 2.14–3.90; P<0.0001), MR-proANP (OR 2.45, 99.5% CI 1.91–3.14; P<0.0001), the vascular function marker MR-proADM (OR 1.54, 99.5% CI 1.20–1.99; P<0.0001), TnI ultra (OR 1.50, 99.5% CI 1.19–1.90; P<0.0001) and. fibrinogen (OR 1.44, 99.5% CI 1.19–1.75; P<0.0001). Based on a model comprising known clinical risk factors for AF, all biomarkers combined resulted in a net reclassification improvement of 0.665 (99.3% CI 0.441–0.888) and an integrated discrimination improvement of >13%. Conclusions In conclusion, in our large, population-based study, we identified novel biomarkers reflecting vascular function, MR-proADM, inflammation, and myocardial damage, TnI ultra, as related to AF; the strong association of natriuretic peptides was confirmed. Prospective studies need to examine whether risk prediction of AF can be enhanced beyond clinical risk

  15. Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines

    SciTech Connect

    Mameli, Giuseppe . E-mail: viross@uniss.it; Astone, Vito; Khalili, Kamel; Serra, Caterina; Sawaya, Bassel E.; Dolei, Antonina

    2007-05-25

    Syncytin-1 has a physiological role during early pregnancy, as mediator of trophoblast fusion into the syncytiotrophoblast layer, hence allowing embryo implantation. In addition, its expression in nerve tissue has been proposed to contribute to the pathogenesis of multiple sclerosis (MS). Syncytin-1 is the env glycoprotein of the ERVWE1 component of the W family of human endogenous retroviruses (HERV), located on chromosome 7q21-22, in a candidate region for genetic susceptibility to MS. The mechanisms of ERVWE1 regulation in nerve tissue remain to be identified. Since there are correlations between some cytokines and MS outcome, we examined the regulation of the syncytin-1 promoter by MS-related cytokines in human U-87MG astrocytic cells. Using transient transfection assays, we observed that the MS-detrimental cytokines TNF{alpha}, interferon-{gamma}, interleukin-6, and interleukin-1 activate the ERVWE1 promoter, while the MS-protective interferon-{beta} is inhibitory. The effects of cytokines are reduced by the deletion of the cellular enhancer domain of the promoter that contains binding sites for several transcription factors. In particular, we found that TNF{alpha} had the ability to activate the ERVWE1 promoter through an NF-{kappa}B-responsive element located within the enhancer domain of the promoter. Electrophoretic mobility shift and ChIP assays showed that TNF{alpha} enhances the binding of the p65 subunit of NF-{kappa}B, to its cognate site within the promoter. The effect of TNF{alpha} is abolished by siRNA directed against p65. Taken together, these results illustrate a role for p65 in regulating the ERVWE1 promoter and in TNF{alpha}-mediated induction of syncytin-1 in multiple sclerosis.

  16. Defective cytokine production early after multiple traumas: Modulation in severe sepsis.

    PubMed

    Paraschos, Michael D; Patrani, Maria; Pistiki, Aikaterini; Katsenos, Chrysostomos; Tsaganos, Thomas; Netea, Mihai G; Giamarellos-Bourboulis, Evangelos J; Mandragos, Konstantinos

    2015-12-01

    The exact time frame of multiple trauma-induced immunosuppression and the immune mechanisms mediating transition to severe sepsis are largely unknown. Peripheral blood mononuclear cells were isolated from 69 patients with multiple injuries within the first 24h from injury and from 36 healthy volunteers and stimulated for cytokine production. Circulating endotoxins were measured by the kinetic LAL assay. Measurements were repeated the first 24h of sepsis onset. Patients had defective responses for tumour necrosis factor-alpha (TNFα), interleukin (IL)-10, IL-17 and interferon-gamma (IFNγ) using a broad-panel of bacterial stimuli. Production of IFNγ was pronounced for patients with trauma-related multiple organ failure (MOF). Thirty-six patients developed severe sepsis. At that time, production of TNFα was increased compared to baseline. The increase was greater among non-survivors than among survivors. Enhanced TNFα production on sepsis onset was a main finding of patients without endotoxemia. Immunosuppression of both innate and adaptive cytokine responses appears as early as the first 24h from injury. Transition into severe sepsis due to bacterial superinfection is accompanied by enhanced production of TNFα and this is linked with unfavorable outcome.

  17. Oxidative stress impairs multiple regulatory events to drive persistent cytokine-stimulated STAT3 phosphorylation.

    PubMed

    Ng, Ivan H W; Yeap, Yvonne Y C; Ong, Lynette S R; Jans, David A; Bogoyevitch, Marie A

    2014-03-01

    Although cytokine-driven STAT3 phosphorylation and activation are often transient, persistent activation of STAT3 is a hallmark of a range of pathologies and underpins altered transcriptional responses. As triggers in disease frequently include combined increases in inflammatory cytokine and reactive oxygen species levels, we report here how oxidative stress impacts on cytokine-driven STAT3 signal transduction events. In the model system of murine embryonic fibroblasts (MEFs), combined treatment with the interleukin-6 family cytokine Leukemia Inhibitory Factor (LIF) and hydrogen peroxide (H2O2) drove persistent STAT3 phosphorylation whereas STAT3 phosphorylation increased only transiently in response to LIF alone and was not increased by H2O2 alone. Surprisingly, increases in transcript levels of the direct STAT3 gene target SOCS3 were delayed during the combined LIF + H2O2 treatment, leading us to probe the impact of oxidative stress on STAT3 regulatory events. Indeed, LIF + H2O2 prolonged JAK activation, delayed STAT3 nuclear localisation, and caused relocalisation of nuclear STAT3 phosphatase TC-PTP (TC45) to the cytoplasm. In exploring the nuclear import/ export pathways, we observed disruption of nuclear/cytoplasmic distributions of Ran and importin-alpha3 in cells exposed to H2O2 and the resultant reduced nuclear trafficking of Classical importin-alpha/3-dependent protein cargoes. CRM1-mediated nuclear export persisted despite the oxidative stress insult, with sustained STAT3 Y705 phosphorylation enhancing STAT3 nuclear residency. Our studies thus reveal for the first time the striking impact of oxidative stress to sustain STAT3 phosphorylation and nuclear retention following disruption of multiple regulatory events, with significant implications for STAT3 function.

  18. Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer's disease.

    PubMed

    Darreh-Shori, Taher; Vijayaraghavan, Swetha; Aeinehband, Shahin; Piehl, Fredrik; Lindblom, Rickard P F; Nilsson, Bo; Ekdahl, Kristina N; Långström, Bengt; Almkvist, Ove; Nordberg, Agneta

    2013-11-01

    Butyrylcholinesterase (BuChE) activity is associated with activated astrocytes in Alzheimer's disease brain. The BuChE-K variant exhibits 30%-60% reduced acetylcholine (ACh) hydrolyzing capacity. Considering the increasing evidence of an immune-regulatory role of ACh, we investigated if genetic heterogeneity in BuChE affects cerebrospinal fluid (CSF) biomarkers of inflammation and cholinoceptive glial function. Alzheimer's disease patients (n = 179) were BCHE-K-genotyped. Proteomic and enzymatic analyses were performed on CSF and/or plasma. BuChE genotype was linked with differential CSF levels of glial fibrillary acidic protein, S100B, interleukin-1β, and tumor necrosis factor (TNF)-α. BCHE-K noncarriers displayed 100%-150% higher glial fibrillary acidic protein and 64%-110% higher S100B than BCHE-K carriers, who, in contrast, had 40%-80% higher interleukin-1β and 21%-27% higher TNF-α compared with noncarriers. A high level of CSF BuChE enzymatic phenotype also significantly correlated with higher CSF levels of astroglial markers and several factors of the innate complement system, but lower levels of proinflammatory cytokines. These individuals also displayed beneficial paraclinical and clinical findings, such as high cerebral glucose utilization, low β-amyloid load, and less severe progression of clinical symptoms. In vitro analysis on human astrocytes confirmed the involvement of a regulated BuChE status in the astroglial responses to TNF-α and ACh. Histochemical analysis in a rat model of nerve injury-induced neuroinflammation, showed focal assembly of astroglial cells in proximity of BuChE-immunolabeled sites. In conclusion, these results suggest that BuChE enzymatic activity plays an important role in regulating intrinsic inflammation and activity of cholinoceptive glial cells and that this might be of clinical relevance. The dissociation between astroglial markers and inflammatory cytokines indicates that a proper activation and maintenance of

  19. The role of multiple negative social relationships in inflammatory cytokine responses to a laboratory stressor

    PubMed Central

    Song, Sunmi; Graham-Engeland, Jennifer E.; Corwin, Elizabeth J.; Ceballos, Rachel M.; Taylor, Shelley E.; Seeman, Teresa

    2015-01-01

    The present study examined the unique impact of perceived negativity in multiple social relationships on endocrine and inflammatory responses to a laboratory stressor. Via hierarchical cluster analysis, those who reported negative social exchanges across relationships with a romantic partner, family, and their closest friend had higher mean IL-6 across time and a greater increase in TNF-α from 15 min to 75 min post stress. Those who reported negative social exchanges across relationships with roommates, family, and their closest friend showed greater IL-6 responses to stress. Differences in mean IL-6 were accounted for by either depressed mood or hostility, whereas differences in the cytokine stress responses remained significant after controlling for those factors. Overall, this research provides preliminary evidence to suggest that having multiple negative relationships may exacerbate acute inflammatory responses to a laboratory stressor independent of hostility and depressed mood. PMID:26056615

  20. Proinflammatory cytokines promote glial heme oxygenase-1 expression and mitochondrial iron deposition: implications for multiple sclerosis.

    PubMed

    Mehindate, K; Sahlas, D J; Frankel, D; Mawal, Y; Liberman, A; Corcos, J; Dion, S; Schipper, H M

    2001-06-01

    Proinflammatory cytokines, pathological iron deposition, and oxidative stress have been implicated in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). HO-1 mRNA levels and mitochondrial uptake of [(55)Fe]Cl(3)-derived iron were measured in rat astroglial cultures exposed to interleukin-1beta (IL-1beta) or tumor necrosis factor-alpha (TNF-alpha) alone or in combination with the heme oxygenase-1 (HO-1) inhibitors, tin mesoporphyrin (SnMP) or dexamthasone (DEX), or interferon beta1b (INF-beta). HO-1 expression in astrocytes was evaluated by immunohistochemical staining of spinal cord tissue derived from MS and control subjects. IL-1beta or TNF-alpha promoted sequestration of non-transferrin-derived (55)Fe by astroglial mitochondria. HO-1 inhibitors, mitochondrial permeability transition pore (MTP) blockers and antioxidants significantly attenuated cytokine-related mitochondrial iron sequestration in these cells. IFN-beta decreased HO-1 expression and mitochondrial iron sequestration in IL-1beta- and TNF-alpha-challenged astroglia. The percentage of astrocytes coexpressing HO-1 in affected spinal cord from MS patients (57.3% +/- 12.8%) was significantly greater (p < 0.05) than in normal spinal cord derived from controls subjects (15.4% +/- 8.4%). HO-1 is over-expressed in MS spinal cord astroglia and may promote mitochondrial iron deposition in MS plaques. In MS, IFN-beta may attenuate glial HO-1 gene induction and aberrant mitochondrial iron deposition accruing from exposure to proinflammatory cytokines.

  1. CCL27: Novel Cytokine with Potential Role in Pathogenesis of Multiple Sclerosis.

    PubMed

    Khaiboullina, Svetlana F; Gumerova, Aigul R; Khafizova, Irina F; Martynova, Ekaterina V; Lombardi, Vincent C; Bellusci, Saverio; Rizvanov, Albert A

    2015-01-01

    Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease of unknown etiology. Leukocyte infiltration of brain tissue and the subsequent inflammation, demyelination, axonal damage, and formation of sclerotic plaques is a hallmark of MS. Upregulation of proinflammatory cytokines has been suggested to play an essential role in regulating lymphocyte migration in MS. Here we present data on serum cytokine expression in MS cases. Increased serum levels of IL-17 and IL-23 were observed, suggesting activation of the Th17 population of immune effector cells. Additionally, increased levels of IL-22 were observed in the serum of those with acute phase MS. Unexpectedly, we observed an upregulation of the serum chemokine CCL27 in newly diagnosed and acute MS cases. CCL27 is an inflammatory chemokine associated with homing of memory T cells to sites of inflammation. Therefore, its upregulation in association with MS suggests a potential role in disease pathogenesis. Our data supports previous reports showing IL-17 and -23 upregulation in association with MS and potentially identify a previously unknown involvement for CCL27. PMID:26295034

  2. Macrophage Inhibitory Cytokine-1 as a Novel Diagnostic and Prognostic Biomarker in Stage I and II Nonsmall Cell Lung Cancer

    PubMed Central

    Liu, Yu-Ning; Wang, Xiao-Bing; Wang, Teng; Zhang, Chao; Zhang, Kun-Peng; Zhi, Xiu-Yi; Zhang, Wei; Sun, Ke-Lin

    2016-01-01

    Background: Increased level of serum macrophage inhibitory cytokine-1 (MIC-1), a member of transforming growth factor-β superfamily, was found in patients with epithelial tumors. This study aimed to evaluate whether serum level of MIC-1 can be a candidate diagnostic and prognostic indicator for early-stage nonsmall cell lung cancer (NSCLC). Methods: A prospective study enrolled 152 patients with Stage I–II NSCLC, who were followed up after surgical resection. Forty-eight patients with benign pulmonary disease (BPD) and 105 healthy controls were also included in the study. Serum MIC-1 levels were measured using an enzyme-linked immunosorbent assay, and the association with clinical and prognostic features was analyzed. Results: In patients with NSCLC, serum protein levels of MIC-1 were significantly increased compared with healthy controls and BPD patients (all P < 0.001). A threshold of 1000 pg/ml of MIC-1 was found in patients with early-stage (Stage I and II) NSCLC, with sensitivity and specificity of 70.4% and 99.0%, respectively. The serum levels of MIC-1 were associated with age (P = 0.001), gender (P = 0.030), and T stage (P = 0.022). Serum MIC-1 threshold of 1465 pg/ml was found in patients with poor early outcome, with sensitivity and specificity of 72.2% and 66.1%, respectively. The overall 3-year survival rate of NSCLC patients with high serum levels of MIC-1 (≥1465 pg/ml) was lower than that of NSCLC patients with low serum MIC-1 levels (77.6% vs. 94.8%). Multivariate Cox regression survival analysis showed that a high serum level of MIC-1 was an independent risk factor for reduced overall survival (hazard ratio = 3.37, 95% confidential interval: 1.09–10.42, P = 0.035). Conclusion: The present study suggested that serum MIC-1 may be a potential diagnostic and prognostic biomarker for patients with early-stage NSCLC. PMID:27569226

  3. Archival bone marrow samples: suitable for multiple biomarker analysis.

    PubMed

    Lund, Bendik; Najmi, Laeya A; Wesolowska-Andersen, Agata; Landsem, Veslemøy M; Rasmussen, Kirsten K; Borst, Louise; Gupta, Ramneek; Schmiegelow, Kjeld; Klungland, Helge

    2015-01-01

    AB Archival samples represent a significant potential for genetic studies, particularly in severe diseases with risk of lethal outcome, such as in cancer. In this pilot study, we aimed to evaluate the usability of archival bone marrow smears and biopsies for DNA extraction and purification, whole genome amplification (WGA), multiple marker analysis including 10 short tandem repeats, and finally a comprehensive genotyping of 33,683 single nucleotide polymorphisms (SNPs) with multiplexed targeted next-generation sequencing. A total of 73 samples from 21 bone marrow smears and 13 bone marrow biopsies from 18 Danish and Norwegian childhood acute lymphoblastic leukemia patients were included and compared with corresponding blood samples. Samples were grouped according to the age of sample and whether WGA was performed or not. We found that measurements of DNA concentration after DNA extraction was dependent on detection method and that spectrophotometry overestimated DNA amount compared with fluorometry. In the short tandem repeat analysis, detection rate dropped slightly with longer fragments. After WGA, this drop was more pronounced. Samples stored for 0 to 3 years showed better results compared with samples stored for 4 to 10 years. Acceptable call rates for SNPs were detected for 7 of 42 archival samples. In conclusion, archival bone marrow samples are suitable for DNA extraction and multiple marker analysis, but WGA was less successful, especially when longer fragments were analyzed. Multiple SNP analysis seems feasible, but the method has to be further optimized.

  4. Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines.

    PubMed

    Zhang, Y Y; Vik, T A; Ryder, J W; Srour, E F; Jacks, T; Shannon, K; Clapp, D W

    1998-06-01

    Neurofibromin, the protein encoded by the NF1 tumor-suppressor gene, negatively regulates the output of p21(ras) (Ras) proteins by accelerating the hydrolysis of active Ras-guanosine triphosphate to inactive Ras-guanosine diphosphate. Children with neurofibromatosis type 1 (NF1) are predisposed to juvenile chronic myelogenous leukemia (JCML) and other malignant myeloid disorders, and heterozygous Nf1 knockout mice spontaneously develop a myeloid disorder that resembles JCML. Both human and murine leukemias show loss of the normal allele. JCML cells and Nf1-/- hematopoietic cells isolated from fetal livers selectively form abnormally high numbers of colonies derived from granulocyte-macrophage progenitors in cultures supplemented with low concentrations of granulocyte-macrophage colony stimulating factor (GM-CSF). Taken together, these data suggest that neurofibromin is required to downregulate Ras activation in myeloid cells exposed to GM-CSF. We have investigated the growth and proliferation of purified populations of hematopoietic progenitor cells isolated from Nf1 knockout mice in response to the cytokines interleukin (IL)-3 and stem cell factor (SCF), as well as to GM-CSF. We found abnormal proliferation of both immature and lineage-restricted progenitor populations, and we observed increased synergy between SCF and either IL-3 or GM-CSF in Nf1-/- progenitors. Nf1-/- fetal livers also showed an absolute increase in the numbers of immature progenitors. We further demonstrate constitutive activation of the Ras-Raf-MAP (mitogen-activated protein) kinase signaling pathway in primary c-kit+ Nf1-/- progenitors and hyperactivation of MAP kinase after growth factor stimulation. The results of these experiments in primary hematopoietic cells implicate Nf1 as playing a central role in regulating the proliferation and survival of primitive and lineage-restricted myeloid progenitors in response to multiple cytokines by modulating Ras output.

  5. Cytokine Biomarkers and Chronic Pain: Association of Genes, Transcription, and Circulating Proteins with Temporomandibular Disorders and Widespread Palpation Tenderness

    PubMed Central

    Slade, Gary D; Conrad, Mathew; Diatchenko, Luda; Rashid, Naim; Zhong, Sheng; Smith, Shad; Rhodes, Jesse; Medvedev, Alex; Makarov, Sergei; Maixner, William; Nackley, Andrea G

    2011-01-01

    For reasons unknown, temporomandibular disorder (TMD) can manifest as localized pain or in conjunction with widespread pain. We evaluated relationships between cytokines and TMD without or with widespread palpation tenderness (TMD−WPT or TMD+WPT, respectively), at protein, transcription factory activity, and gene levels. Additionally, we evaluated the relationship between cytokines and intermediate phenotypes characteristic of TMD and WPT. In a case-control study of 344 females, blood samples were analyzed for levels of 22 cytokines and activity of 48 transcription factors. Intermediate phenotypes were measured by quantitative sensory testing and questionnaires asking about pain, health, and psychological status. Single nucleotide polymorphisms (SNPs) coding cytokines and transcription factors were genotyped. TMD−WPT cases had elevated protein levels of pro-inflammatory cytokine MCP-1 and anti-inflammatory cytokine IL-1ra, whereas TMD+WPT cases had elevated levels of pro-inflammatory cytokine IL-8. MCP-1, IL-1ra, and IL-8 were differentially associated with experimental pain, self-rated pain, self-rated health, and psychological phenotypes. TMD−WPT and TMD+WPT cases had inhibited transcription activity of the anti-inflammatory cytokine TGFβ1. Interactions were observed between TGFβ1 and IL-8 SNPs: an additional copy of the TGFβ1 rs2241719 minor T allele was associated with twice the odds of TMD+WPT among individuals homozygous for the IL-8 rs4073 major A allele and half the odds of TMD+WPT among individuals heterozygous for rs4073. These results demonstrate how pro- and anti-inflammatory cytokines contribute to the pathophysiology of TMD and WPT in genetically-susceptible people. Furthermore, they identify MCP-1, IL-1ra, IL-8, and TGFβ1 as potential diagnostic markers and therapeutic targets for pain in patients with TMD. PMID:22000099

  6. A Multiplexed Device Based on Tunable Nanoshearing for Specific Detection of Multiple Protein Biomarkers in Serum

    PubMed Central

    Vaidyanathan, Ramanathan; van Leeuwen, Lara Michelle; Rauf, Sakandar; Shiddiky, Muhammad J. A.; Trau, Matt

    2015-01-01

    Microfluidic flow based multiplexed devices have gained significant promise in detecting biomarkers in complex biological samples. However, to fully exploit their use in bioanalysis, issues such as (i) low sensitivity and (ii) high levels of nonspecific adsorption of non-target species have to be overcome. Herein, we describe a new multiplexed device for the sensitive detection of multiple protein biomarkers in serum by using an alternating current (ac) electrohydrodynamics (ac-EHD) induced surface shear forces based phenomenon referred to as nanoshearing. The tunable nature (via manipulation of ac field) of these nanoshearing forces can alter the capture performance of the device (e.g., improved fluid transport enhances number of sensor-target collisions). This can also selectively displace weakly (nonspecifically) bound molecules from the electrode surface (i.e., fluid shear forces can be tuned to shear away nonspecific species present in biological samples). Using this approach, we achieved sensitive (100 fg mL−1) naked eye detection of multiple protein targets spiked in human serum and a 1000-fold enhancement in comparison to hydrodynamic flow based devices for biomarker detection. We believe that this approach could potentially represent a clinical diagnostic tool that can be integrated into resource-limited settings for sensitive detection of target biomarkers using naked eye. PMID:25978807

  7. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers.

    PubMed

    Saito, Mak A; McIlvin, Matthew R; Moran, Dawn M; Goepfert, Tyler J; DiTullio, Giacomo R; Post, Anton F; Lamborg, Carl H

    2014-09-01

    Marine primary productivity is strongly influenced by the scarcity of required nutrients, yet our understanding of these nutrient limitations is informed by experimental observations with sparse geographical coverage and methodological limitations. We developed a quantitative proteomic method to directly assess nutrient stress in high-light ecotypes of the abundant cyanobacterium Prochlorococcus across a meridional transect in the central Pacific Ocean. Multiple peptide biomarkers detected widespread and overlapping regions of nutritional stress for nitrogen and phosphorus in the North Pacific Subtropical Gyre and iron in the equatorial Pacific. Quantitative protein analyses demonstrated simultaneous stress for these nutrients at biome interfaces. This application of proteomic biomarkers to diagnose ocean metabolism demonstrated Prochlorococcus actively and simultaneously deploying multiple biochemical strategies for low-nutrient conditions in the oceans. PMID:25190794

  8. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers.

    PubMed

    Saito, Mak A; McIlvin, Matthew R; Moran, Dawn M; Goepfert, Tyler J; DiTullio, Giacomo R; Post, Anton F; Lamborg, Carl H

    2014-09-01

    Marine primary productivity is strongly influenced by the scarcity of required nutrients, yet our understanding of these nutrient limitations is informed by experimental observations with sparse geographical coverage and methodological limitations. We developed a quantitative proteomic method to directly assess nutrient stress in high-light ecotypes of the abundant cyanobacterium Prochlorococcus across a meridional transect in the central Pacific Ocean. Multiple peptide biomarkers detected widespread and overlapping regions of nutritional stress for nitrogen and phosphorus in the North Pacific Subtropical Gyre and iron in the equatorial Pacific. Quantitative protein analyses demonstrated simultaneous stress for these nutrients at biome interfaces. This application of proteomic biomarkers to diagnose ocean metabolism demonstrated Prochlorococcus actively and simultaneously deploying multiple biochemical strategies for low-nutrient conditions in the oceans.

  9. Alterations in the cholinesterase and adenosine deaminase activities and inflammation biomarker levels in patients with multiple sclerosis.

    PubMed

    Polachini, C R N; Spanevello, R M; Casali, E A; Zanini, D; Pereira, L B; Martins, C C; Baldissareli, J; Cardoso, A M; Duarte, M F; da Costa, P; Prado, A L C; Schetinger, M R C; Morsch, V M

    2014-04-25

    Multiple sclerosis (MS) is one of the main chronic inflammatory diseases of the CNS that cause functional disability in young adults. It has unknown etiology characterized by the infiltration of lymphocytes and macrophages into the brain. The aim of this study was to evaluate the acetylcholinesterase (AChE) activity in lymphocytes and whole blood, as well as butyrylcholinesterase (BChE) and adenosine deaminase (ADA) activities in serum. We also checked the levels of nucleotides, nucleosides, biomarkers of inflammation such as cytokines (interleukin (IL)-1, IL-6, interferon (IFN)-γ, tumor necrosis factor-alpha (TNF-α) and IL-10) and C-reactive protein (CRP) in serum from 29 patients with the relapsing-remitting form of MS (RRMS) and 29 healthy subjects as the control group. Results showed that AChE in lymphocytes and whole blood as well as BChE, and ADA activities in serum were significantly increased in RRMS patients when compared to the control group (P<0.05). In addition, we observed a decrease in ATP levels and a significant increase in the levels of ADP, AMP, adenosine and inosine in serum from RRMS patients in relation to the healthy subjects (P<0.05). Results also demonstrated an increase in the IFN-γ, TNF-α, IL-1, IL-6 and CRP (P<0.05) and a significant decrease in the IL-10 (P<0.0001) in RRMS patients when compared to control. Our results suggest that alterations in the biomarkers of inflammation and hydrolysis of nucleotides and nucleosides may contribute to the understanding of the neurological dysfunction of RRMS patients.

  10. Highly sensitive microscale in vivo sensor enabled by electrophoretic assembly of nanoparticles for multiple biomarker detection.

    PubMed

    Malima, Asanterabi; Siavoshi, Salome; Musacchio, Tiziana; Upponi, Jaydev; Yilmaz, Cihan; Somu, Sivasubramanian; Hartner, William; Torchilin, Vladimir; Busnaina, Ahmed

    2012-11-21

    This paper describes a microscale in vivo sensor platform device for the simultaneous detection of multiple biomarkers. We designed the polymer-based biosensors incorporating multiple active isolated areas, as small as 70 μm × 70 μm, for antigen detection. The fabrication approach involved conventional micro- and nano-fabrication processes followed by site-specific electrophoretic directed assembly of antibody-functionalized nanoparticles. To ensure precise and large-scale manufacturing of these biosensors, we developed a semi-automated system for the attachment of the 250-μm biosensor to a 300-μm catheter probe. Our fabrication and post-processing procedures should enable large-scale production of such biosensor devices at lower manufacturing cost. The principle of detection with these biosensors involved a simple fluorescence-based enzyme-linked immunosorbent assay. These biosensors exhibit high selectivity (ability to selectively detect multiple biomarkers of different diseases), specificity (ability to target generic to specific disease biomarkers), rapid antigen uptake, and low detection limits (for carcinoembryonic antigen, 31.25 pg mL(-1); for nucleosomes, 62.5 pg mL(-1)), laying the foundation for potential early detection of various diseases. PMID:22983480

  11. Post-Traumatic Hypoxia Is Associated with Prolonged Cerebral Cytokine Production, Higher Serum Biomarker Levels, and Poor Outcome in Patients with Severe Traumatic Brain Injury

    PubMed Central

    Yan, Edwin B.; Satgunaseelan, Laveniya; Paul, Eldho; Bye, Nicole; Nguyen, Phuong; Agyapomaa, Doreen; Kossmann, Thomas; Rosenfeld, Jeffrey V.

    2014-01-01

    Abstract Secondary hypoxia is a known contributor to adverse outcomes in patients with traumatic brain injury (TBI). Based on the evidence that hypoxia and TBI in isolation induce neuroinflammation, we investigated whether TBI combined with hypoxia enhances cerebral cytokine production. We also explored whether increased concentrations of injury biomarkers discriminate between hypoxic (Hx) and normoxic (Nx) patients, correlate to worse outcome, and depend on blood–brain barrier (BBB) dysfunction. Forty-two TBI patients with Glasgow Coma Scale ≤8 were recruited. Cerebrospinal fluid (CSF) and serum were collected over 6 days. Patients were divided into Hx (n=22) and Nx (n=20) groups. Eight cytokines were measured in the CSF; albumin, S100, myelin basic protein (MBP) and neuronal specific enolase (NSE) were quantified in serum. CSF/serum albumin quotient was calculated for BBB function. Glasgow Outcome Scale Extended (GOSE) was assessed at 6 months post-TBI. Production of granulocye macrophage-colony stimulating factor (GM-CSF) was higher, and profiles of GM-CSF, interferon (IFN)-γ and, to a lesser extent, tumor necrosis factor (TNF), were prolonged in the CSF of Hx but not Nx patients at 4–5 days post-TBI. Interleukin (IL)-2, IL-4, IL-6, and IL-10 increased similarly in both Hx and Nx groups. S100, MBP, and NSE were significantly higher in Hx patients with unfavorable outcome. Among these three biomarkers, S100 showed the strongest correlations to GOSE after TBI-Hx. Elevated CSF/serum albumin quotients lasted for 5 days post-TBI and displayed similar profiles in Hx and Nx patients. We demonstrate for the first time that post-TBI hypoxia is associated with prolonged neuroinflammation, amplified extravasation of biomarkers, and poor outcome. S100 and MBP could be implemented to track the occurrence of post-TBI hypoxia, and prompt adequate treatment. PMID:24279428

  12. Vaccination induced changes in pro-inflammatory cytokine levels as an early putative biomarker for cognitive improvement in a transgenic mouse model for Alzheimer disease.

    PubMed

    Lin, Xiaoyang; Bai, Ge; Lin, Linda; Wu, Hengyi; Cai, Jianfeng; Ugen, Kenneth E; Cao, Chuanhai

    2014-01-01

    Several pieces of experimental evidence suggest that administration of anti-β amyloid (Aβ) vaccines, passive anti-Aβ antibodies or anti-inflammatory drugs can reduce Aβ deposition as well as associated cognitive/behavioral deficits in an Alzheimer disease (AD) transgenic (Tg) mouse model and, as such, may have some efficacy in human AD patients as well. In the investigation reported here an Aβ 1-42 peptide vaccine was administered to 16-month old APP+PS1 transgenic (Tg) mice in which Aβ deposition, cognitive memory deficits as well as levels of several pro-inflammatory cytokines were measured in response to the vaccination regimen. After vaccination, the anti-Aβ 1-42 antibody-producing mice demonstrated a significant reduction in the sera levels of 4 pro-inflammatory cytokines (TNF-α, IL-6, IL-1 α, and IL-12). Importantly, reductions in the cytokine levels of TNF-α and IL-6 were correlated with cognitive/behavioral improvement in the Tg mice. However, no differences in cerebral Aβ deposition in these mice were noted among the different control and experimental groups, i.e., Aβ 1-42 peptide vaccinated, control peptide vaccinated, or non-vaccinated mice. However, decreased levels of pro-inflammatory cytokines as well as improved cognitive performance were noted in mice vaccinated with the control peptide as well as those immunized with the Aβ 1-42 peptide. These findings suggest that reduction in pro-inflammatory cytokine levels in these mice may be utilized as an early biomarker for vaccination/treatment induced amelioration of cognitive deficits and are independent of Aβ deposition and, interestingly, antigen specific Aβ 1-42 vaccination. Since cytokine changes are typically related to T cell activation, the results imply that T cell regulation may have an important role in vaccination or other immunotherapeutic strategies in an AD mouse model and potentially in AD patients. Overall, these cytokine changes may serve as a predictive marker for AD

  13. Simultaneous detection of multiple biomarkers by means of SERS on polymer nanopillar gold arrays

    NASA Astrophysics Data System (ADS)

    Morasso, Carlo; Picciolini, Silvia; Mehn, Dora; Pellacani, Paola; Frangolho, Ana; Marchesini, Gerardo; Vanna, Renzo; Gualerzi, Alice; Bedoni, Marzia; Marabelli, Franco; Gramatica, Furio

    2016-03-01

    The detection of biomarkers by means of Surface Enhanced Raman Spectroscopy (SERS) is foreseen to became a very important tool in the clinical practice because of its excellent sensitivity and potential for the simultaneous detection of multiple biomarkers. In the present paper we describe how it was possible to build a sensor for the detection of genetic biomarkers involved in acute myeloid leukemia. The assay is based on the use of a specifically designed SERS substrate made of a 2D crystal structure of polymeric pillars embedded in a gold layer. This substrate is characterized by good enhancing properties coupled with an excellent homogeneity. The SERS substrate was conjugated with DNA probes complementary to a target sequence and used in a sandwich assay with gold nanoparticles labeled with a second DNA probe and a Raman reporter. The so developed assay allowed the detection of a leukemia biomarker (WT1 gene) and an housekeeping gene with low picomolar sensitivity. At last, we optimized the assay in order to tackle one of the main limitations of SERS based assay: the loss of signal that is observed when the Raman spectra are collected in liquid. Combining a preferential functionalization on the polymeric pillars with a different height of the polymer pillars from the gold layer the assay demonstrated its effectiveness even when measured in buffer.

  14. Bone marrow megakaryocytes, soluble P-selectin and thrombopoietic cytokines in multiple myeloma patients.

    PubMed

    Lemancewicz, Dorota; Bolkun, Lukasz; Mantur, Maria; Semeniuk, Janusz; Kloczko, Janusz; Dzieciol, Janusz

    2014-01-01

    The expression of adhesion molecules and other cell-surface molecules is substantial in the communication between plasma cells and bone marrow microenvironment, and may lead to increased proliferation of myeloma cells. Many of the cytokines involved in multiple myeloma (MM) pathogenesis, e.g. thrombopoietin (TPO) and interleukin-6 (IL-6), play a pivotal role in different developmental stages of megakaryocytopoiesis and thrombopoiesis. The principal aim of our study was to explore the relationship between thrombopoietic cytokines, megakaryocytes (MKs) and soluble P-selectin (sP-selectin) levels in MM patients before and after anti-angiogenic treatment. Forty-four patients (20 female and 24 male) with a newly diagnosed MM were examined in three groups, following a division based on the International Staging System, ISS. Plasma levels of TPO, IL-6 and soluble P-selectin (human sP-selectin) were measured by means of ELISA. Bone marrow specimens were studied to determine the number of MKs and the so-called "naked nuclei" (NN), as well as the expression of platelet-derived growth factor (PDGF). The comparison revealed a significantly higher concentration of cytokines and sP-selectin in newly diagnosed MM patients compared to healthy volunteers: for TPO, p=0.01, IL-6, p=0.0005 and sP-selectin, p=0.00008, respectively. Marked differences were observed in the concentration of sP-selectin, expression of PDGF and MKs counts between patients with MM stage I and MM stage III. Statistically meaningful correspondences were also found between MKs versus TPO, NN versus TPO, as well as MKs versus MPV, p=0.009, p=0.004 and p=0.0005, respectively. Furthermore, the analysis exhibited some statistically meaningful divergences between initial concentrations of sP-selectin in subgroups with different response after chemotherapy. The initial concentration of sP-selectin in the group of MM patients with complete or partial remission stood at 31.86 ± 6.13 ng/ml. In the remaining patients

  15. Buccal Cell Cytokeratin 14 Correlates with Multiple Blood Biomarkers of Alzheimer's Disease Risk.

    PubMed

    Leifert, Wayne R; Nguyen, Tori; Rembach, Alan; Martins, Ralph; Rainey-Smith, Stephanie; Masters, Colin L; Ames, David; Rowe, Christopher C; Macaulay, S Lance; François, Maxime; Fenech, Michael F

    2015-01-01

    Mild cognitive impairment (MCI) may reflect early stages of neurodegenerative disorders such as Alzheimer's disease (AD). Our hypothesis was that cytokeratin 14 (CK14) expression could be used with blood-based biomarkers such as homocysteine, vitamin B12, and folate to identify individuals with MCI or AD from the Australian Imaging, Biomarkers and Lifestyle (AIBL) flagship study of aging. Buccal cells from 54 individuals were analyzed by a newly developed method that is rapid, automated, and quantitative for buccal cell CK14 expression levels. CK14 was negatively correlated with plasma Mg²⁺ and LDL, while positively correlated with vitamin B12, red cell hematocrit/volume, and basophils in the MCI group and positively correlated with insulin and vitamin B12 in the AD group. The combined biomarker panel (CK14 expression, plasma vitamin B12, and homocysteine) was significantly lower in the MCI (p = 0.003) and AD (p = 0.0001) groups compared with controls. Receiver-operating characteristic curves yielded area under the curve (AUC) values of 0.829 for the MCI (p = 0.002) group and 0.856 for the AD (p = 0.0003) group. These complex associations of multiple related parameters highlight the differences between the MCI and AD cohorts and possibly an underlying metabolic pathology associated with the development of early memory impairment. The changes in buccal cell CK14 expression observed in this pilot study supports previous results suggesting the peripheral biomarkers and metabolic changes are not restricted to brain pathology alone in MCI and AD and could prove useful as a potential biomarker in identifying individuals with an increased risk of developing MCI and eventually AD. PMID:26402008

  16. Search for Specific Biomarkers of IFNβ Bioactivity in Patients with Multiple Sclerosis

    PubMed Central

    Malhotra, Sunny; Bustamante, Marta F.; Pérez-Miralles, Francisco; Rio, Jordi; Ruiz de Villa, Mari Carmen; Vegas, Esteban; Nonell, Lara; Deisenhammer, Florian; Fissolo, Nicolás; Nurtdinov, Ramil N.; Montalban, Xavier; Comabella, Manuel

    2011-01-01

    Myxovirus A (MxA), a protein encoded by the MX1 gene with antiviral activity, has proven to be a sensitive measure of IFNβ bioactivity in multiple sclerosis (MS). However, the use of MxA as a biomarker of IFNβ bioactivity has been criticized for the lack of evidence of its role on disease pathogenesis and the clinical response to IFNβ. Here, we aimed to identify specific biomarkers of IFNβ bioactivity in order to compare their gene expression induction by type I IFNs with the MxA, and to investigate their potential role in MS pathogenesis. Gene expression microarrays were performed in PBMC from MS patients who developed neutralizing antibodies (NAB) to IFNβ at 12 and/or 24 months of treatment and patients who remained NAB negative. Nine genes followed patterns in gene expression over time similar to the MX1, which was considered the gold standard gene, and were selected for further experiments: IFI6, IFI27, IFI44L, IFIT1, HERC5, LY6E, RSAD2, SIGLEC1, and USP18. In vitro experiments in PBMC from healthy controls revealed specific induction of selected biomarkers by IFNβ but not IFNγ, and several markers, in particular USP18 and HERC5, were shown to be significantly induced at lower IFNβ concentrations and more selective than the MX1 as biomarkers of IFNβ bioactivity. In addition, USP18 expression was deficient in MS patients compared with healthy controls (p = 0.0004). We propose specific biomarkers that may be considered in addition to the MxA to evaluate IFNβ bioactivity, and to further explore their implication in MS pathogenesis. PMID:21886806

  17. Identification of potential biomarkers from microarray experiments using multiple criteria optimization.

    PubMed

    Sánchez-Peña, Matilde L; Isaza, Clara E; Pérez-Morales, Jaileene; Rodríguez-Padilla, Cristina; Castro, José M; Cabrera-Ríos, Mauricio

    2013-04-01

    Microarray experiments are capable of determining the relative expression of tens of thousands of genes simultaneously, thus resulting in very large databases. The analysis of these databases and the extraction of biologically relevant knowledge from them are challenging tasks. The identification of potential cancer biomarker genes is one of the most important aims for microarray analysis and, as such, has been widely targeted in the literature. However, identifying a set of these genes consistently across different experiments, researches, microarray platforms, or cancer types is still an elusive endeavor. Besides the inherent difficulty of the large and nonconstant variability in these experiments and the incommensurability between different microarray technologies, there is the issue of the users having to adjust a series of parameters that significantly affect the outcome of the analyses and that do not have a biological or medical meaning. In this study, the identification of potential cancer biomarkers from microarray data is casted as a multiple criteria optimization (MCO) problem. The efficient solutions to this problem, found here through data envelopment analysis (DEA), are associated to genes that are proposed as potential cancer biomarkers. The method does not require any parameter adjustment by the user, and thus fosters repeatability. The approach also allows the analysis of different microarray experiments, microarray platforms, and cancer types simultaneously. The results include the analysis of three publicly available microarray databases related to cervix cancer. This study points to the feasibility of modeling the selection of potential cancer biomarkers from microarray data as an MCO problem and solve it using DEA. Using MCO entails a new optic to the identification of potential cancer biomarkers as it does not require the definition of a threshold value to establish significance for a particular gene and the selection of a normalization

  18. Buccal Cell Cytokeratin 14 Correlates with Multiple Blood Biomarkers of Alzheimer's Disease Risk.

    PubMed

    Leifert, Wayne R; Nguyen, Tori; Rembach, Alan; Martins, Ralph; Rainey-Smith, Stephanie; Masters, Colin L; Ames, David; Rowe, Christopher C; Macaulay, S Lance; François, Maxime; Fenech, Michael F

    2015-01-01

    Mild cognitive impairment (MCI) may reflect early stages of neurodegenerative disorders such as Alzheimer's disease (AD). Our hypothesis was that cytokeratin 14 (CK14) expression could be used with blood-based biomarkers such as homocysteine, vitamin B12, and folate to identify individuals with MCI or AD from the Australian Imaging, Biomarkers and Lifestyle (AIBL) flagship study of aging. Buccal cells from 54 individuals were analyzed by a newly developed method that is rapid, automated, and quantitative for buccal cell CK14 expression levels. CK14 was negatively correlated with plasma Mg²⁺ and LDL, while positively correlated with vitamin B12, red cell hematocrit/volume, and basophils in the MCI group and positively correlated with insulin and vitamin B12 in the AD group. The combined biomarker panel (CK14 expression, plasma vitamin B12, and homocysteine) was significantly lower in the MCI (p = 0.003) and AD (p = 0.0001) groups compared with controls. Receiver-operating characteristic curves yielded area under the curve (AUC) values of 0.829 for the MCI (p = 0.002) group and 0.856 for the AD (p = 0.0003) group. These complex associations of multiple related parameters highlight the differences between the MCI and AD cohorts and possibly an underlying metabolic pathology associated with the development of early memory impairment. The changes in buccal cell CK14 expression observed in this pilot study supports previous results suggesting the peripheral biomarkers and metabolic changes are not restricted to brain pathology alone in MCI and AD and could prove useful as a potential biomarker in identifying individuals with an increased risk of developing MCI and eventually AD.

  19. A Novel Electrochemical Microfluidic Chip Combined with Multiple Biomarkers for Early Diagnosis of Gastric Cancer

    NASA Astrophysics Data System (ADS)

    Xie, Yao; Zhi, Xiao; Su, Haichuan; Wang, Kan; Yan, Zhen; He, Nongyue; Zhang, Jingpu; Chen, Di; Cui, Daxiang

    2015-12-01

    Early diagnosis is very important to improve the survival rate of patients with gastric cancer and to understand the biology of cancer. In order to meet the clinical demands for early diagnosis of gastric cancer, we developed a disposable easy-to-use electrochemical microfluidic chip combined with multiple antibodies against six kinds of biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), Helicobacter pylori CagA protein (H.P.), P53oncoprotein (P53), pepsinogen I (PG I), and PG-II). The six kinds of biomarkers related to gastric cancer can be detected sensitively and synchronously in a short time. The specially designed three electrodes system enables cross-contamination to be avoided effectively. The linear ranges of detection of the electrochemical microfluidic chip were as follows: 0.37-90 ng mL-1 for CEA, 10.75-172 U mL-1 for CA19-9, 10-160 U L-1 for H.P., 35-560 ng mL-1 for P53, 37.5-600 ng mL-1 for PG I, and 2.5-80 ng mL-1for PG II. This method owns better sensitivity compared with enzyme-linked immunosorbent assay (ELISA) results of 394 specimens of gastric cancer sera. Furthermore, we established a multi-index prediction model based on the six kinds of biomarkers for predicting risk of gastric cancer. In conclusion, the electrochemical microfluidic chip for detecting multiple biomarkers has great potential in applications such as early screening of gastric cancer patients, and therapeutic evaluation, and real-time dynamic monitoring the progress of gastric cancer in near future.

  20. Correlation between TH1 response standard cytokines as biomarkers in patients with the delta virus in the western Brazilian Amazon

    PubMed Central

    Nicolete, Larissa Deadame de Figueiredo; Borzacov, Lourdes Maria Pinheiro; Vieira, Deusilene Souza; Nicolete, Roberto; Salcedo, Juan Miguel Villalobos

    2016-01-01

    Hepatitis D virus (HDV) is endemic in the Amazon Region and its pathophysiology is the most severe among viral hepatitis. Treatment is performed with pegylated interferon and the immune response appears to be important for infection control. HDV patients were studied: untreated and polymerase chain reaction (PCR) positive (n = 9), anti-HDV positive and PCR negative (n = 8), and responders to treatment (n = 12). The cytokines, interleukin (IL)-2 (p = 0.0008) and IL-12 (p = 0.02) were differentially expressed among the groups and were also correlated (p = 0.0143). Future studies will be conducted with patients at different stages of treatment, associating the viral load with serum cytokines produced, thereby attempting to establish a prognostic indicator of the infection. PMID:27074258

  1. Nanomechanical sandwich assay for multiple cancer biomarkers in breast cancer cell-derived exosomes.

    PubMed

    Etayash, H; McGee, A R; Kaur, K; Thundat, T

    2016-08-18

    The use of exosomes as cancer diagnostic biomarkers is technically limited by their size, heterogeneity and the need for extensive purification and labelling. We report the use of cantilever arrays for simultaneous detection of multiple exosomal surface-antigens with high sensitivity and selectivity. Exosomes from breast cancer were selectively identified by detecting over-expressed membrane-proteins CD24, CD63, and EGFR. Excellent selectivity however, was achieved when targeting the cell-surface proteoglycan, Glypican-1 at extraordinary limits (∼200 exosomes per mL, ∼0.1 pg mL(-1)). PMID:27492928

  2. Inflammatory Cytokines Interleukin-1β and Tumour Necrosis Factor-α - Novel Biomarkers for the Detection of Periodontal Diseases: a Literature Review

    PubMed Central

    Gomes, Francisco Isaac Fernandes; Aragão, Maria Gerusa Brito; Barbosa, Francisco Cesar Barroso; Bezerra, Mirna Marques; de Paulo Teixeira Pinto, Vicente

    2016-01-01

    ABSTRACT Objectives The article aims to discuss the IL-1β and TNF-α potential use as salivary biomarkers of periodontal diseases pathogenesis and progression. Material and Methods This literature review has been registered in PROSPERO database with following number: CRD42016035729. Data investigation was performed on PubMed database as the main source of studies. The following search terms were used: “salivary biomarkers”, “periodontal diseases”, “TNF-alpha”, “Interleukin-1 beta”. Clinical trials and animal experimental models of periodontal disease were included in the discussion. In regards to inclusive dates, published studies from January 2006 to December 2015 were considered in this review along with the mentioned inclusion criteria. Results IL-1β and TNF-α salivary levels increased in diseased groups, they were associated with onset and disease severity, and their levels reduced in response to periodontal therapy. IL-1β and TNF-α could be promising biomarkers in the detection of periodontal diseases. Conclusions The use of a salivary cytokine-based diagnosis appears to be a screening method capable of diagnosing periodontal diseases in an early fashion, establishing an era of individualized clinical decisions. PMID:27489606

  3. Circulating levels of osteoclast activating cytokines, interleukin-11 and transforming growth factor-beta2, as valuable biomarkers for the assessment of bone turnover in postmenopausal osteoporosis.

    PubMed

    Shaarawy, Mohamed; Zaki, Sameh; Sheiba, Mamdouh; El-Minawi, Ahmad M

    2003-01-01

    The objective of this study was to evaluate the role of osteoclast activating cytokines, interleukin-11 (IL-11) and transforming growth factor-beta2 (TGF-beta2) in the assessment of bone turnover in postmenopausal osteoporosis (PO). Eighty postmenopausal osteoporotic women with lumbar spine bone mineral densities (BMD) as measured by DEXA that were more than 2.5 SD below the normal mean of healthy women (controls), participated in this study. Various therapeutic modalities (hormone replacement therapy, HRT, alendronate, calcitonin and 1alpha-hydroxyvitamin D (alfacalcidol) were administered for 12 months to 4 groups of postmenopausal osteoporotic patients. Fasting blood samples and two hour urine samples were collected from control subjects and from patients before and after treatment. Serum samples were assayed for IL-11, TGF-beta2, osteocalcin (OC) and bone alkaline phosphatase (B-ALP), whereas urine samples were assayed for N-telopeptide for type I collagen (NTX) and deoxypyridinoline (DPyr). The results demonstrated a significant increase of both IL-11 and TGF-beta2 in postmenopausal osteoporosis. Positive correlations exist between TGF-beta2 or IL-11 and markers of bone resorption (NTX and DPyr). Moreover, there was a significant positive correlation between TGF-beta2 and IL-11. Therapeutic modalities enhancing bone formation and/or with antiresorptive effect revealed a significant decrease in markers of bone resorption, formation and osteoclast activating cytokines, indicating a decrease in bone turnover. The decrease of IL-11 and TGF-beta2 may be attributed to a drug inhibitory effect of these cytokines on enhancing osteoblast mediated osteoid degradation. In conclusion, both serum IL-11 and TGF-beta2 determinations may be considered as biomarkers for the assessment of bone turnover and for monitoring antiresorptive therapy in postmenopausal osteoporosis.

  4. Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis

    PubMed Central

    Bergman, Petra; Piket, Eliane; Khademi, Mohsen; James, Tojo; Brundin, Lou; Olsson, Tomas; Piehl, Fredrik

    2016-01-01

    Objective: To explore circulating microRNAs (miRNAs) in cell-free CSF as novel biomarkers for multiple sclerosis (MS). Methods: Profiling of miRNAs in CSF of pooled patients with clinically isolated syndrome (CIS), patients with relapsing-remitting MS, and inflammatory and noninflammatory neurologic disease controls was performed using TaqMan miRNA arrays. Two independent patient cohorts (n = 142 and n = 430) were used for validation with real-time PCR. Results: We reliably detected 88 CSF miRNAs in the exploratory cohort. Subsequent validation in 2 cohorts demonstrated significantly higher levels of miR-150 in patients with MS. Higher miR-150 levels were also observed in patients with CIS who converted to MS compared to nonconverters, and in patients initiating natalizumab treatment. Levels of miR-150 correlated with immunologic parameters including CSF cell count, immunoglobulin G index, and presence of oligoclonal bands, and with candidate protein biomarkers C-X-C motif chemokine 13, matrix metallopeptidase 9, and osteopontin. Correlation with neurofilament light chain (NFL) was observed only when NFL was adjusted for age using a method that requires further validation. Additionally, miR-150 discriminated MS from controls and CIS converters from nonconverters equally well as the most informative protein biomarkers. Following treatment with natalizumab, but not fingolimod, CSF levels of miR-150 decreased, while plasma levels increased with natalizumab and decreased with fingolimod, suggesting immune cells as a source of miR-150. Conclusions: Our findings demonstrate miR-150 as a putative novel biomarker of inflammatory active disease with the potential to be used for early diagnosis of MS. Classification of evidence: This study provides Class II evidence that CSF miR-150 distinguishes patients with MS from patients with other neurologic conditions. PMID:27144214

  5. Utilization of Translational Bioinformatics to Identify Novel Biomarkers of Bortezomib Resistance in Multiple Myeloma

    PubMed Central

    Fall, Deanna J.; Stessman, Holly; Patel, Sagar S.; Sachs, Zohar; Van Ness, Brian G.; Baughn, Linda B.; Linden, Michael A.

    2014-01-01

    Multiple myeloma (MM) is an incurable malignant neoplasm hallmarked by a clonal expansion of plasma cells, the presence of a monoclonal protein in the serum and/or urine (M-spike), lytic bone lesions, and end organ damage. Clinical outcomes for patients with MM have improved greatly over the last decade as a result of the re-purposing of compounds such as thalidomide derivatives, as well as the development of novel chemotherapeutic agents including first and second generation proteasome inhibitors, bortezomib (Bz) and carfilzomib. Unfortunately, despite these improvements, the majority of patients relapse following treatment. While Bz, one of the most commonly used proteasome inhibitors, has been successfully incorporated into clinical practice, some MM patients have de novo resistance to Bz, and the majority of the remainder subsequently develop drug resistance following treatment. A significant gap in clinical care is the lack of a reliable clinical test that would predict which MM patients have or will subsequently develop Bz resistance. Thus, as Bz resistance remains a significant challenge, research efforts are needed to identify novel biomarkers of early Bz resistance, particularly when an early therapeutic intervention can be initiated. Recent advances in MM research indicate that genomic data can be extracted to identify novel biomarkers that can be utilized to select more effective, personalized treatment protocols for individual patients. Computationally integrating large patient databases with data from whole transcriptome profiling and laboratory-based models can potentially revolutionize our understanding of MM disease mechanisms. This systems-wide approach can provide rational therapeutic targets and novel biomarkers of risk and treatment response. In this review, we discuss the use of high-content datasets (predominantly gene expression profiling) to identify novel biomarkers of treatment response and resistance to Bz in MM. PMID:25368671

  6. Increased serum levels of MIP-1alpha correlate with bone disease and angiogenic cytokines in patients with multiple myeloma.

    PubMed

    Tsirakis, George; Roussou, Parascevi; Pappa, Constantina A; Kolovou, Anna; Vasilokonstantaki, Chrysoula; Miminas, Ioannis; Kyriakaki, Stavroula; Alegakis, Athanasios; Alexandrakis, Michael G

    2014-01-01

    Many cytokines possess variable roles in the pathogenesis of multiple myeloma. Macrophage inflammatory protein-1alpha (MIP-1alpha) is an osteoclast-activating factor with a major role in myeloma bone disease. The aim of the study was to examine its participation in the angiogenic process of the disease. We measured, by enzyme-linked immunosorbent assays, its serum levels in 56 newly diagnosed myeloma patients, in several skeletal grades and stages of the disease and in 25 healthy controls. Concurrently, we measured serum levels of the angiogenic cytokines basic-fibroblast growth factor, hepatocyte growth factor and interleukin-18. All the above cytokines were higher in myeloma patients (p < 0.001 for all cases) and were increasing in parallel with disease stage (p < 0.001 for all cases) and skeletal grade (p < 0.04 for MIP-1alpha and p < 0.001 for the other cases). Moreover, positive correlations between MIP-1alpha and all the angiogenic cytokines were noted (p < 0.001 for all cases). MIP-1alpha seems to be a predominant factor responsible for the enhancement of bone resorption and increased angiogenesis. The positive correlation between MIP-1alpha and the angiogenic chemoattractants supports the involvement of these factors in the biology of myeloma cell growth. Moreover, they could be used as possible therapeutic targets as well as markers of disease activity.

  7. The KISS1 Receptor as an In Vivo Microenvironment Imaging Biomarker of Multiple Myeloma Bone Disease

    PubMed Central

    Brandl, Andreas; Müller, Marc; Hofbauer, Lorenz C.; Beilhack, Andreas; Ebert, Regina; Glüer, Claus C.; Tiwari, Sanjay; Schütze, Norbert; Jakob, Franz

    2016-01-01

    Multiple myeloma is one of the most common hematological diseases and is characterized by an aberrant proliferation of plasma cells within the bone marrow. As a result of crosstalk between cancer cells and the bone microenvironment, bone homeostasis is disrupted leading to osteolytic lesions and poor prognosis. Current diagnostic strategies for myeloma typically rely on detection of excess monoclonal immunoglobulins or light chains in the urine or serum. However, these strategies fail to localize the sites of malignancies. In this study we sought to identify novel biomarkers of myeloma bone disease which could target the malignant cells and/or the surrounding cells of the tumor microenvironment. From these studies, the KISS1 receptor (KISS1R), a G-protein-coupled receptor known to play a role in the regulation of endocrine functions, was identified as a target gene that was upregulated on mesenchymal stem cells (MSCs) and osteoprogenitor cells (OPCs) when co-cultured with myeloma cells. To determine the potential of this receptor as a biomarker, in vitro and in vivo studies were performed with the KISS1R ligand, kisspeptin, conjugated with a fluorescent dye. In vitro microscopy showed binding of fluorescently-labeled kisspeptin to both myeloma cells as well as MSCs under direct co-culture conditions. Next, conjugated kisspeptin was injected into immune-competent mice containing myeloma bone lesions. Tumor-burdened limbs showed increased peak fluorescence compared to contralateral controls. These data suggest the utility of the KISS1R as a novel biomarker for multiple myeloma, capable of targeting both tumor cells and host cells of the tumor microenvironment. PMID:27158817

  8. A Meta-Regression Method for Studying Etiological Heterogeneity Across Disease Subtypes Classified by Multiple Biomarkers.

    PubMed

    Wang, Molin; Kuchiba, Aya; Ogino, Shuji

    2015-08-01

    In interdisciplinary biomedical, epidemiologic, and population research, it is increasingly necessary to consider pathogenesis and inherent heterogeneity of any given health condition and outcome. As the unique disease principle implies, no single biomarker can perfectly define disease subtypes. The complex nature of molecular pathology and biology necessitates biostatistical methodologies to simultaneously analyze multiple biomarkers and subtypes. To analyze and test for heterogeneity hypotheses across subtypes defined by multiple categorical and/or ordinal markers, we developed a meta-regression method that can utilize existing statistical software for mixed-model analysis. This method can be used to assess whether the exposure-subtype associations are different across subtypes defined by 1 marker while controlling for other markers and to evaluate whether the difference in exposure-subtype association across subtypes defined by 1 marker depends on any other markers. To illustrate this method in molecular pathological epidemiology research, we examined the associations between smoking status and colorectal cancer subtypes defined by 3 correlated tumor molecular characteristics (CpG island methylator phenotype, microsatellite instability, and the B-Raf protooncogene, serine/threonine kinase (BRAF), mutation) in the Nurses' Health Study (1980-2010) and the Health Professionals Follow-up Study (1986-2010). This method can be widely useful as molecular diagnostics and genomic technologies become routine in clinical medicine and public health.

  9. Plasmatic microRNA as Potential Biomarkers of Multiple Sclerosis: Literature Review.

    PubMed

    Kacperska, Magdalena J; Walenczak, Jakub; Tomasik, Bartłomiej

    2016-01-01

    There is ongoing research with the goal of finding precise and sensitive biomarkers of multiple sclerosis (MS). Recently, researchers have paid particular attention to small, non-encoding, single stranded endogenous microRNA molecules (miR, miRNA). At first these molecules were thought to be found only within the cell. Today it is known, however, that they can also be found in the extracellular spaces (plasma, serum, saliva, urine, tears, sweat, milk, sperm and amniotic fluid, among others). It has been established that extracellular miRNA perform a wide spectrum of functions, such as transmitting signals between cells, modulating processes involved in angiogenesis, neurogenesis, proliferation or apoptosis. Given the high stability of these small molecules in the extracellular compartment (plasma), their tissue specificity and strong ties with pathological processes underlying multiple sclerosis, miRNA seem to be a good target for researchers trying to discover diseases' new markers. Determining an accurate miRNA expression profile in MS and correlating it with the gene profile may lead to the discovery of new pathophysiological processes. Demonstrating that changes in the composition and concentration of extracellular miRNA may in some cases correlate with certain aspects of the underlying disease (such as its severity) could lead to their use as biomarkers of MS. Further research is needed. PMID:27629854

  10. Selected Cytokines Serve as Potential Biomarkers for Predicting Liver Inflammation and Fibrosis in Chronic Hepatitis B Patients With Normal to Mildly Elevated Aminotransferases

    PubMed Central

    Deng, Yong-Qiong; Zhao, Hong; Ma, An-Lin; Zhou, Ji-Yuan; Xie, Shi-Bin; Zhang, Xu-Qing; Zhang, Da-Zhi; Xie, Qing; Zhang, Guo; Shang, Jia; Cheng, Jun; Zhao, Wei-Feng; Zou, Zhi-Qiang; Zhang, Ming-Xiang; Wang, Gui-Qiang

    2015-01-01

    Abstract Previous studies of small cohorts have implicated several circulating cytokines with progression of chronic hepatitis B (CHB). However, to date there have been no reliable biomarkers for assessing histological liver damage in CHB patients with normal or mildly elevated alanine aminotransferase (ALT). The aim of the present study was to investigate the association between circulating cytokines and histological liver damage in a large cohort. Also, this study was designed to assess the utility of circulating cytokines in diagnosing liver inflammation and fibrosis in CHB patients with ALT less than 2 times the upper limit of normal range (ULN). A total of 227 CHB patients were prospectively enrolled. All patients underwent liver biopsy and staging by Ishak system. Patients with at least moderate inflammation showed significantly higher levels of CXCL-11, CXCL-10, and interleukin (IL)-2 receptor (R) than patients with less than moderate inflammation (P < 0.001). Patients with significant fibrosis had higher levels of IL-8 (P = 0.027), transforming growth factor alpha (TGF-α) (P = 0.011), IL-2R (P = 0.002), and CXCL-11 (P = 0.032) than the group without significant fibrosis. In addition, 31.8% and 29.1% of 151 patients with ALT < 2 × ULN had at least moderate inflammation and significant fibrosis, respectively. Multivariate analysis demonstrated that CXCL-11 was independently associated with at least moderate inflammation, and TGF-α and IL-2R independently correlated with significant fibrosis in patients with ALT < 2 × ULN. Based on certain cytokines and clinical parameters, an inflammation-index and fib-index were developed, which showed areas under the receiver operating characteristics curve (AUROC) of 0.75 (95% CI 0.66–0.84) for at least moderate inflammation and 0.82 (95% CI 0.75–0.90) for significant fibrosis, correspondingly. Compared to existing scores, fib-index was significantly superior to aspartate

  11. Selected Cytokines Serve as Potential Biomarkers for Predicting Liver Inflammation and Fibrosis in Chronic Hepatitis B Patients With Normal to Mildly Elevated Aminotransferases.

    PubMed

    Deng, Yong-Qiong; Zhao, Hong; Ma, An-Lin; Zhou, Ji-Yuan; Xie, Shi-Bin; Zhang, Xu-Qing; Zhang, Da-Zhi; Xie, Qing; Zhang, Guo; Shang, Jia; Cheng, Jun; Zhao, Wei-Feng; Zou, Zhi-Qiang; Zhang, Ming-Xiang; Wang, Gui-Qiang

    2015-11-01

    Previous studies of small cohorts have implicated several circulating cytokines with progression of chronic hepatitis B (CHB). However, to date there have been no reliable biomarkers for assessing histological liver damage in CHB patients with normal or mildly elevated alanine aminotransferase (ALT). The aim of the present study was to investigate the association between circulating cytokines and histological liver damage in a large cohort. Also, this study was designed to assess the utility of circulating cytokines in diagnosing liver inflammation and fibrosis in CHB patients with ALT less than 2 times the upper limit of normal range (ULN). A total of 227 CHB patients were prospectively enrolled. All patients underwent liver biopsy and staging by Ishak system. Patients with at least moderate inflammation showed significantly higher levels of CXCL-11, CXCL-10, and interleukin (IL)-2 receptor (R) than patients with less than moderate inflammation (P < 0.001). Patients with significant fibrosis had higher levels of IL-8 (P = 0.027), transforming growth factor alpha (TGF-α) (P = 0.011), IL-2R (P = 0.002), and CXCL-11 (P = 0.032) than the group without significant fibrosis. In addition, 31.8% and 29.1% of 151 patients with ALT < 2 × ULN had at least moderate inflammation and significant fibrosis, respectively. Multivariate analysis demonstrated that CXCL-11 was independently associated with at least moderate inflammation, and TGF-α and IL-2R independently correlated with significant fibrosis in patients with ALT < 2 × ULN. Based on certain cytokines and clinical parameters, an inflammation-index and fib-index were developed, which showed areas under the receiver operating characteristics curve (AUROC) of 0.75 (95% CI 0.66-0.84) for at least moderate inflammation and 0.82 (95% CI 0.75-0.90) for significant fibrosis, correspondingly. Compared to existing scores, fib-index was significantly superior to aspartate aminotransferase

  12. The prognostic factors and multiple biomarkers in young patients with colorectal cancer

    PubMed Central

    Wang, Mo-Jin; Ping, Jie; Li, Yuan; Adell, Gunnar; Arbman, Gunnar; Nodin, Bjorn; Meng, Wen-Jian; Zhang, Hong; Yu, Yong-Yang; Wang, Cun; Yang, Lie; Zhou, Zong-Guang; Sun, Xiao-Feng

    2015-01-01

    The incidence of colorectal cancer (CRC) in young patients (≤50 years of age) appears to be increasing. However, their clinicopathological characteristics and survival are controversial. Likewise, the biomarkers are unclear. We used the West China (2008-2013, China), Surveillance, Epidemiology, and End Results program (1973-2011, United States) and Linköping Cancer (1972-2009, Sweden) databases to analyse clinicopathological characteristics, survival and multiple biomarkers of young CRC patients. A total of 509,934 CRC patients were included from the three databases. The young CRC patients tended to have more distal location tumours, fewer tumour numbers, later stage, more mucinous carcinoma and poorer differentiation. The cancer-specific survival (CSS) of young patients was significantly better. The PRL (HR = 12.341, 95% CI = 1.615-94.276, P = 0.010), RBM3 (HR = 0.093, 95% CI = 0.012-0.712, P = 0.018), Wrap53 (HR = 1.952, 95% CI = 0.452-6.342, P = 0.031), p53 (HR = 5.549, 95% CI = 1.176-26.178, P = 0.045) and DNA status (HR = 17.602, 95% CI = 2.551-121.448, P = 0.001) were associated with CSS of the young patients. In conclusion, this study suggests that young CRC patients present advanced tumours and more malignant pathological features, while they have a better prognosis. The PRL, RBM3, Wrap53, p53 and DNA status are potential prognostic biomarkers for the young CRC patients. PMID:26013439

  13. Systemic complement profiling in multiple sclerosis as a biomarker of disease state

    PubMed Central

    Ingram, G; Hakobyan, S; Hirst, CL; Harris, CL; Loveless, S; Mitchell, JP; Pickersgill, TP; Robertson, NP

    2012-01-01

    Background: There is increasing evidence of significant and dynamic systemic activation and upregulation of complement in multiple sclerosis (MS), which may contribute to disease pathogenesis. Objective: We aimed to investigate the pathological role of complement in MS and the potential role for complement profiling as a biomarker of MS disease state. Methods: Key components of the classical, alternative and terminal pathways of complement were measured in plasma and cerebrospinal fluid (CSF) of patients with MS in different clinical phases of disease and in matched controls. Results: Increased plasma levels of C3 (p<0.003), C4 (p<0.001), C4a (p<0.001), C1 inhibitor (p<0.001), and factor H (p<0.001), and reduced levels of C9 (p<0.001) were observed in MS patients compared with controls. Combined profiling of these analytes produced a statistical model with a predictive value of 97% for MS and 73% for clinical relapse when combined with selected demographic data. CSF-plasma correlations suggested that source of synthesis of these components was both systemic and central. Conclusion: These data provide further evidence of alterations in both local and systemic expression and activation of complement in MS and suggest that complement profiling may be informative as a biomarker of MS disease, although further work is needed to determine its use in distinguishing MS from its differential. PMID:22354735

  14. The search for reliable biomarkers of disease in multiple chemical sensitivity and other environmental intolerances.

    PubMed

    De Luca, Chiara; Raskovic, Desanka; Pacifico, Valeria; Thai, Jeffrey Chung Sheun; Korkina, Liudmila

    2011-07-01

    Whilst facing a worldwide fast increase of food and environmental allergies, the medical community is also confronted with another inhomogeneous group of environment-associated disabling conditions, including multiple chemical sensitivity (MCS), fibromyalgia, chronic fatigue syndrome, electric hypersensitivity, amalgam disease and others. These share the features of poly-symptomatic multi-organ cutaneous and systemic manifestations, with postulated inherited/acquired impaired metabolism of chemical/physical/nutritional xenobiotics, triggering adverse reactions at exposure levels far below toxicologically-relevant values, often in the absence of clear-cut allergologic and/or immunologic involvement. Due to the lack of proven pathogenic mechanisms generating measurable disease biomarkers, these environmental hypersensitivities are generally ignored by sanitary and social systems, as psychogenic or "medically unexplained symptoms". The uncontrolled application of diagnostic and treatment protocols not corresponding to acceptable levels of validation, safety, and clinical efficacy, to a steadily increasing number of patients demanding assistance, occurs in many countries in the absence of evidence-based guidelines. Here we revise available information supporting the organic nature of these clinical conditions. Following intense research on gene polymorphisms of phase I/II detoxification enzyme genes, so far statistically inconclusive, epigenetic and metabolic factors are under investigation, in particular free radical/antioxidant homeostasis disturbances. The finding of relevant alterations of catalase, glutathione-transferase and peroxidase detoxifying activities significantly correlating with clinical manifestations of MCS, has recently registered some progress towards the identification of reliable biomarkers of disease onset, progression, and treatment outcomes.

  15. The Search for Reliable Biomarkers of Disease in Multiple Chemical Sensitivity and Other Environmental Intolerances

    PubMed Central

    De Luca, Chiara; Raskovic, Desanka; Pacifico, Valeria; Thai, Jeffrey Chung Sheun; Korkina, Liudmila

    2011-01-01

    Whilst facing a worldwide fast increase of food and environmental allergies, the medical community is also confronted with another inhomogeneous group of environment-associated disabling conditions, including multiple chemical sensitivity (MCS), fibromyalgia, chronic fatigue syndrome, electric hypersensitivity, amalgam disease and others. These share the features of poly-symptomatic multi-organ cutaneous and systemic manifestations, with postulated inherited/acquired impaired metabolism of chemical/physical/nutritional xenobiotics, triggering adverse reactions at exposure levels far below toxicologically-relevant values, often in the absence of clear-cut allergologic and/or immunologic involvement. Due to the lack of proven pathogenic mechanisms generating measurable disease biomarkers, these environmental hypersensitivities are generally ignored by sanitary and social systems, as psychogenic or “medically unexplained symptoms”. The uncontrolled application of diagnostic and treatment protocols not corresponding to acceptable levels of validation, safety, and clinical efficacy, to a steadily increasing number of patients demanding assistance, occurs in many countries in the absence of evidence-based guidelines. Here we revise available information supporting the organic nature of these clinical conditions. Following intense research on gene polymorphisms of phase I/II detoxification enzyme genes, so far statistically inconclusive, epigenetic and metabolic factors are under investigation, in particular free radical/antioxidant homeostasis disturbances. The finding of relevant alterations of catalase, glutathione-transferase and peroxidase detoxifying activities significantly correlating with clinical manifestations of MCS, has recently registered some progress towards the identification of reliable biomarkers of disease onset, progression, and treatment outcomes. PMID:21845158

  16. Serum microRNA181a: Correlates with the intracellular cytokine levels and a potential biomarker for acute graft-versus-host disease.

    PubMed

    Xie, Linna; Zhou, Fang; Liu, Ximin; Fang, Yuan; Yu, Zhe; Song, Ningxia; Kong, Fansheng

    2016-09-01

    The aim of this study was to investigate the clinical relevance of lymphocyte-related serum miRNAs to the pathogenesis of acute graft-versus-host disease (aGVHD) and evaluate the predictive and prognosis value of miRNAs. Consecutive patients who received allogeneic peripheral blood stem cell transplantation (allo-PBSCT) in General Hospital of Jinan Military District were enrolled. aGVHD patients were diagnosed and graded clinically, and divided into the training set and the testing set. Blood samples were collected, total RNA was isolated, and RT-PCR was performed for miRNA expression (miR-181a-3p, miR-214-3p and miR-326). Intracellular cytokines levels were assayed by flow cytometry, and the disease specificity assay of miRNAs for aGVHD was detected. A total of 120 patients were admitted. Serum level of miR-181a in aGVHD patients was highly increased and associated with the severity of aGVHD, but not miR-214 and miR-326. Levels of cytokines including IL-2, IL-22, and IL-17a were positively correlated with miR-181a level, while serum IL-13 level was negatively correlated with miR-181a level in aGVHD patients. Moreover, increased miR-181a level was not detected in patients with acute rejection after kidney transplantation or sepsis patients. MiR-181a level was sensitively and specifically increased, especially in severe aGVHD patients. MiR-181a may be a potential biomarker for the identification, diagnosis, and prognosis of aGVHD patients. PMID:27288630

  17. Evaluation of insulin-like growth factor acid-labile subunit as a potential biomarker of effect for deoxynivalenol-induced proinflammatory cytokine expression.

    PubMed

    Flannery, Brenna M; Amuzie, Chidozie J; Pestka, James J

    2013-02-01

    Consumption of the trichothecene deoxynivalenol (DON) suppresses growth in experimental animals - an adverse effect that was used to establish the tolerable daily intake for this toxin. DON ingestion has been recently found to suppress plasma insulin-like growth factor acid-labile subunit (IGFALS), a protein essential for growth. Studies were conducted to explore the feasibility of using plasma IGFALS as a biomarker of effect for DON. In the first study, weanling mice were fed 0, 1, 2.5, 5 and 10 ppm DON and weight and plasma IGFALS determined at intervals over 9 wk. Reduced body weight gains were detectable beginning at wk 5 in the 10 ppm dose and wk 7 at the 5 ppm dose. Plasma IGFALS was significantly depressed at wk 5 in the 5 and 10 ppm groups at wk 9 in the 10 ppm group. Depressed IGFALS significantly correlated with reduced body weight at wk 5 and 9. Benchmark dose modeling revealed the BMDL and BMD for plasma IGFALS reduction were 1.1 and 3.0 ppm DON and for weight reduction were 2.1 and 4.5 ppm DON. In the second study, it was demonstrated that mice fed 15 ppm DON diet had significantly less plasma IGFALS than mice fed identical amounts of control diet. Thus DON's influence on IGFALS likely reflects the combined effects of reduced food intake as well as its physiological action involving suppressors of cytokine signaling. Taken together, these findings suggest that plasma IGFALS might be a useful biomarker for DON's adverse effects on growth.

  18. Evaluation of Insulin-Like Growth Factor Acid-Labile Subunit as a Potential Biomarker of Effect for Deoxynivalenol-Induced Proinflammatory Cytokine Expression

    PubMed Central

    Flannery, Brenna M.; Amuzie, Chidozie J.; Pestka, James J.

    2013-01-01

    Consumption of the trichothecene deoxynivalenol (DON) suppresses growth in experimental animals - an adverse effect that was used to establish the tolerable daily intake for this toxin. DON ingestion has been recently found to suppress plasma insulin-like growth factor acid-labile subunit (IGFALS), a protein essential for growth. Studies were conducted to explore the feasibility of using plasma IGFALS as a biomarker of effect for DON. In the first study, weanling mice were fed 0, 1, 2.5, 5 and 10 ppm DON and weight and plasma IGFALS determined at intervals over 9 wk. Reduced body weight gains were detectable beginning at wk 5 in the 10 ppm dose and wk 7 at the 5 ppm dose. Plasma IGFALS was significantly depressed at wk 5 in the 5 and 10 ppm groups at wk 9 in the 10 ppm group. Depressed IGFALS significantly correlated with reduced body weight at wk 5 and 9. Benchmark dose modeling revealed the BMDL and BMD for plasma IGFALS reduction were 1.1 and 3.0 ppm DON and for weight reduction were 2.1 and 4.5 ppm DON. In the second study, it was demonstrated that mice fed 15 ppm DON diet had significantly less plasma IGFALS than mice fed identical amounts of control diet. Thus DON’s influence on IGFALS likely reflects the combined effects of reduced food intake as well as its physiological action involving suppressors of cytokine signaling. Taken together, these findings suggest that plasma IGFALS might be a useful biomarker for DON’s adverse effects on growth. PMID:23298694

  19. Effect of Angiogenesis-Related Cytokines on Rotator Cuff Disease: The Search for Sensitive Biomarkers of Early Tendon Degeneration

    PubMed Central

    Savitskaya, Yulia A.; Izaguirre, Aldo; Sierra, Luis; Perez, Francisco; Cruz, Francisco; Villalobos, Enrique; Almazan, Arturo; Ibarra, Clemente

    2011-01-01

    Background: Hallmarks of the pathogenesis of rotator cuff disease (RCD) include an abnormal immune response, angiogenesis, and altered variables of vascularity. Degenerative changes enhance production of pro-inflammatory, anti-inflammatory, and vascular angiogenesis-related cytokines (ARC) that play a pivotal role in the immune response to arthroscopic surgery and participate in the pathogenesis of RCD. The purpose of this study was to evaluate the ARC profile, ie, interleukin (IL): IL-1β, IL-6, IL-8, IL-10, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and angiogenin (ANG), in human peripheral blood serum and correlate this with early degenerative changes in patients with RCD. Methods: Blood specimens were obtained from 200 patients with RCD and 200 patients seen in the orthopedic clinic for nonrotator cuff disorders. Angiogenesis imaging assays was performed using power Doppler ultrasound to evaluate variables of vascularity in the rotator cuff tendons. Expression of ARC was measured by commercial Bio-Plex Precision Pro Human Cytokine Assays. Results: Baseline concentrations of IL-1β, IL-8, and VEGF was significantly higher in RCD patients than in controls. Significantly higher serum VEGF levels were found in 85% of patients with RCD, and correlated with advanced stage of disease (r = 0.75; P < 0.0005), average microvascular density (r = 0.68, P < 0.005), and visual analog score (r = 0.75, P < 0.0002) in RCD patients. ANG and IL-10 levels were significantly lower in RCD patients versus controls. IL-1β and ANG levels were significantly correlated with degenerative tendon grade in RCD patients. No difference in IL-6 and bFGF levels was observed between RCD patients and controls. Patients with degenerative changes had markedly lower ANG levels compared with controls. Power Doppler ultrasound showed high blood vessel density in patients with tendon rupture. Conclusion: The pathogenesis of RCD is associated with an imbalance

  20. Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers

    PubMed Central

    Xu, Sai; Dong, Biao; Zhou, Donglei; Yin, Ze; Cui, Shaobo; Xu, Wen; Chen, Baojiu; Song, Hongwei

    2016-01-01

    A paper-based upconversion fluorescence resonance energy transfer assay device is proposed for sensitive detection of CEA. The device is fabricated on a normal filter paper with simple nano-printing method. Upconversion nanoparticles tagged with specific antibodies are printed to the test zones on the test paper, followed by the introduction of assay antigen. Upconversion fluorescence measurements are directly conducted on the test zones after the antigen-to-antibody reactions. Furthermore, a multi-channel test paper for simultaneous detection of multiple cancer biomarkers was established by the same method and obtained positive results. The device showed high anti-interfere, stability, reproducible and low detection limit (0.89 ng/mL), moreover it is very easy to fabricate and operate, which is a promising prospect for a clinical point-of-care test. PMID:27001460

  1. Multiple Functions of the New Cytokine-Based Antimicrobial Peptide Thymic Stromal Lymphopoietin (TSLP).

    PubMed

    Bjerkan, Louise; Sonesson, Andreas; Schenck, Karl

    2016-01-01

    Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, hitherto mostly known to be involved in inflammatory responses and immunoregulation. The human tslp gene gives rise to two transcription and translation variants: a long form (lfTSLP) that is induced by inflammation, and a short, constitutively-expressed form (sfTSLP), that appears to be downregulated by inflammation. The TSLP forms can be produced by a number of cell types, including epithelial and dendritic cells (DCs). lfTSLP can activate mast cells, DCs, and T cells through binding to the lfTSLP receptor (TSLPR) and has a pro-inflammatory function. In contrast, sfTSLP inhibits cytokine secretion of DCs, but the receptor mediating this effect is unknown. Our recent studies have demonstrated that both forms of TSLP display potent antimicrobial activity, exceeding that of many other known antimicrobial peptides (AMPs), with sfTSLP having the strongest effect. The AMP activity is primarily mediated by the C-terminal region of the protein and is localized within a 34-mer peptide (MKK34) that spans the C-terminal α-helical region in TSLP. Fluorescent studies of peptide-treated bacteria, electron microscopy, and liposome leakage models showed that MKK34 exerted membrane-disrupting effects comparable to those of LL-37. Expression of TSLP in skin, oral mucosa, salivary glands, and intestine is part of the defense barrier that aids in the control of both commensal and pathogenic microbes. PMID:27399723

  2. Multiple Functions of the New Cytokine-Based Antimicrobial Peptide Thymic Stromal Lymphopoietin (TSLP)

    PubMed Central

    Bjerkan, Louise; Sonesson, Andreas; Schenck, Karl

    2016-01-01

    Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, hitherto mostly known to be involved in inflammatory responses and immunoregulation. The human tslp gene gives rise to two transcription and translation variants: a long form (lfTSLP) that is induced by inflammation, and a short, constitutively-expressed form (sfTSLP), that appears to be downregulated by inflammation. The TSLP forms can be produced by a number of cell types, including epithelial and dendritic cells (DCs). lfTSLP can activate mast cells, DCs, and T cells through binding to the lfTSLP receptor (TSLPR) and has a pro-inflammatory function. In contrast, sfTSLP inhibits cytokine secretion of DCs, but the receptor mediating this effect is unknown. Our recent studies have demonstrated that both forms of TSLP display potent antimicrobial activity, exceeding that of many other known antimicrobial peptides (AMPs), with sfTSLP having the strongest effect. The AMP activity is primarily mediated by the C-terminal region of the protein and is localized within a 34-mer peptide (MKK34) that spans the C-terminal α-helical region in TSLP. Fluorescent studies of peptide-treated bacteria, electron microscopy, and liposome leakage models showed that MKK34 exerted membrane-disrupting effects comparable to those of LL-37. Expression of TSLP in skin, oral mucosa, salivary glands, and intestine is part of the defense barrier that aids in the control of both commensal and pathogenic microbes. PMID:27399723

  3. The proinflammatory cytokine interleukin-18 alters multiple signaling pathways to inhibit natural killer cell death

    USGS Publications Warehouse

    Hodge, D.L.; Subleski, J.J.; Reynolds, D.A.; Buschman, M.D.; Schill, W.B.; Burkett, M.W.; Malyguine, A.M.; Young, H.A.

    2006-01-01

    The proinflammatory cytokine, interleukin-18 (IL-18), is a natural killer (NK) cell activator that induces NK cell cytotoxicity and interferon-?? (IFN-??) expression. In this report, we define a novel role for IL-18 as an NK cell protective agent. Specifically, IL-18 prevents NK cell death initiated by different and distinct stress mechanisms. IL-18 reduces NK cell self-destruction during NK-targeted cell killing, and in the presence of staurosporin, a potent apoptotic inducer, IL-18 reduces caspase-3 activity. The critical regulatory step in this process is downstream of the mitochondrion and involves reduced cleavage and activation of caspase-9 and caspase-3. The ability of IL-18 to regulate cell survival is not limited to a caspase death pathway in that IL-18 augments tumor necrosis factor (TNF) signaling, resulting in increased and prolonged mRNA expression of c-apoptosis inhibitor 2 (cIAP2), a prosurvival factor and caspase-3 inhibitor, and TNF receptor-associated factor 1 (TRAF1), a prosurvival protein. The cumulative effects of IL-18 define a novel role for this cytokine as a molecular survival switch that functions to both decrease cell death through inhibition of the mitochondrial apoptotic pathway and enhance TNF induction of prosurvival factors. ?? Mary Ann Liebert, Inc.

  4. Multiple effects of TRAIL in human carcinoma cells: Induction of apoptosis, senescence, proliferation, and cytokine production

    SciTech Connect

    Levina, Vera; Marrangoni, Adele M.; DeMarco, Richard; Gorelik, Elieser; Lokshin, Anna E.

    2008-04-15

    TRAIL is a death ligand that induces apoptosis in malignant but not normal cells. Recently the ability of TRAIL to induce proliferation in apoptosis-resistant normal and malignant cells was reported. In this study, we analyzed TRAIL effects in apoptosis sensitive MCF7, OVCAR3 and H460 human tumor cell lines. TRAIL at low concentrations preferentially induced cell proliferation. At 100 ng/ml, apoptotic death was readily observed, however surviving cells acquired higher proliferative capacity. TRAIL-stimulated production of several cytokines, IL-8, RANTES, MCP-1 and bFGF, and activation of caspases 1 and 8 was essential for this effect. Antibodies to IL-8, RANTES, and bFGF blocked TRAIL-induced cell proliferation and further stimulated apoptosis. For the first time, we report that high TRAIL concentrations induced cell senescence as determined by the altered morphology and expression of several senescence markers: SA-{beta}-gal, p21{sup Waf1/Cip1}, p16{sup INK4a}, and HMGA. Caspase 9 inhibition protected TRAIL-treated cells from senescence, whereas inhibition of caspases 1 and 8 increased the yield of SLP cells. In conclusion, in cultured human carcinoma cells, TRAIL therapy results in three functional outcomes, apoptosis, proliferation and senescence. TRAIL-induced proapoptotic and prosurvival responses correlate with the strength of signaling. TRAIL-induced cytokine production is responsible for its proliferative and prosurvival effects.

  5. Predicting the outcomes for out-of-hospital cardiac arrest patients using multiple biomarkers and suspension microarray assays

    PubMed Central

    Huang, Chien-Hua; Tsai, Min-Shan; Chien, Kuo-Liong; Chang, Wei-Tien; Wang, Tzung-Dau; Chen, Shyr-Chyr; Ma, Matthew Huei-Ming; Hsu, Hsin-Yun; Chen, Wen-Jone

    2016-01-01

    Predicting the prognosis for cardiac arrest is still challenging. Combining biomarkers from diverse pathophysiological pathways may provide reliable indicators for the severity of injury and predictors of long-term outcomes. We investigated the feasibility of using a multimarker strategy with key independent biomarkers to improve the prediction of outcomes in cardiac arrest. Adult out-of-hospital cardiac arrest patients with sustained return of spontaneous circulation were prospectively enrolled in this study. Blood samples were taken at 2 and 24 hours after cardiac arrest. Suspension microarray assays were used to test 21 different biomarkers. A total of 99 patients were enrolled, 45 of whom survived to hospital discharge. We identified 11 biomarkers that, when combined with clinical variables and factors of APACHE II score and history of arrhythmia, were independent determinants for outcome of in-hospital mortality (concordance = 0.9249, standard error = 0.0779). Three biomarkers combined with APACHE II and age were independent determinants for favorable neurological outcome at hospital discharge (area under the receiver-operator characteristic curve, 0.938; 95% confidence interval, 0.854 ~ 1.0). In conclusion, a systemic multiple biomarker approach using suspension microarray assays can identify independent predictors and model the outcomes of cardiac arrest patients during the post-cardiac arrest period. PMID:27256246

  6. Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former Transkei, South Africa.

    PubMed

    Shephard, Gordon S; Burger, Hester-Mari; Gambacorta, Lucia; Gong, Yun Yun; Krska, Rudolf; Rheeder, John P; Solfrizzo, Michele; Srey, Chou; Sulyok, Michael; Visconti, Angelo; Warth, Benedikt; van der Westhuizen, Liana

    2013-12-01

    Subsistence farmers are exposed to a range of mycotoxins. This study applied novel urinary multi-mycotoxin LC-MS/MS methods to determine multiple exposure biomarkers in the high oesophageal cancer region, Transkei, South Africa. Fifty-three female participants donated part of their maize-based evening meal and first void morning urine, which was analysed both with sample clean-up (single and multi-biomarker) and by a 'dilute-and-shoot' multi-biomarker method. Results were corrected for recovery with LOD for not detected. A single biomarker method detected fumonisin B1 (FB1) (87% incidence; mean±standard deviation 0.342±0.466 ng/mg creatinine) and deoxynivalenol (100%; mean 20.4±49.4 ng/mg creatinine) after hydrolysis with β-glucuronidase. The multi-biomarker 'dilute-and-shoot' method indicated deoxynivalenol-15-glucuronide was predominantly present. A multi-biomarker method with β-glucuronidase and immunoaffinity clean-up determined zearalenone (100%; 0.529±1.60 ng/mg creatinine), FB1 (96%; 1.52±2.17 ng/mg creatinine), α-zearalenol (92%; 0.614±1.91 ng/mg creatinine), deoxynivalenol (87%; 11.3±27.1 ng/mg creatinine), β-zearalenol (75%; 0.702±2.95 ng/mg creatinine) and ochratoxin A (98%; 0.041±0.086 ng/mg creatinine). These demonstrate the value of multi-biomarker methods in measuring exposures in populations exposed to multiple mycotoxins. This is the first finding of urinary deoxynivalenol, zearalenone, their conjugates, ochratoxin A and zearalenols in Transkei. PMID:23985452

  7. An N-glucosylated peptide detecting disease-specific autoantibodies, biomarkers of multiple sclerosis

    PubMed Central

    Lolli, Francesco; Mulinacci, Barbara; Carotenuto, Alfonso; Bonetti, Bruno; Sabatino, Giuseppina; Mazzanti, Benedetta; D'Ursi, Anna Maria; Novellino, Ettore; Pazzagli, Marta; Lovato, Laura; Alcaro, Maria C.; Peroni, Elisa; Pozo-Carrero, Maria C.; Nuti, Francesca; Battistini, Luca; Borsellino, Giovanna; Chelli, Mario; Rovero, Paolo; Papini, Anna Maria

    2005-01-01

    Multiple sclerosis (MS) is a complex disease that seems to depend on several pathophysiological processes. Because of its varied clinical presentation, natural history, and response to therapeutic interventions, MS can be considered to be a group of diseases that have not been yet characterized, thus resulting in difficult evaluation of prognosis. In the last few years, the role of autoAbs in MS has been reevaluated, and, therefore, their identification as specific biomarkers became a relevant target. In this paper, we demonstrate that an aberrant N-glucosylation is a fundamental determinant of autoAb recognition in MS. Thus, we developed CSF114(Glc), an antigenic probe accurately measuring IgM autoAbs in the sera of a patient population, as disease biomarker. The relevance of CSF114(Glc) is demonstrated by its clinical application and correlation with disease activity and prognosis. In fact, CSF114(Glc), a structure-based designed glycopeptide, is able to recognize, by ELISA, the presence of specific IgM autoAbs in the sera of a MS patient population but not in blood donors and other autoimmune conditions. AutoAbs specific for CSF114(Glc) isolated from MS patients recognized myelin and oligodendrocyte antigens by immunohistochemistry but not other nonrelevant tissues. We demonstrate that CSF114(Glc) is a reliable, specific probe in a longitudinal study of untreated MS patients. Development of IgG/IgM anti-CSF114(Glc) Abs paralleled clinical activity and brain lesions positive to MRI. Therefore, a CSF114(Glc)-based immunoassay on sera may have important prognostic value in monitoring MS disease progression guiding optimal therapeutic treatment. PMID:16014416

  8. Comprehensive evaluation of serum microRNAs as biomarkers in multiple sclerosis

    PubMed Central

    Regev, Keren; Paul, Anu; Healy, Brian; von Glenn, Felipe; Diaz-Cruz, Camilo; Gholipour, Taha; Mazzola, Maria Antonietta; Raheja, Radhika; Nejad, Parham; Glanz, Bonnie I.; Kivisakk, Pia; Chitnis, Tanuja; Weiner, Howard L.

    2016-01-01

    Objective: To identify circulating microRNAs (miRNAs) linked to disease stage and disability in multiple sclerosis (MS). Methods: Sera from 296 participants including patients with MS, other neurologic diseases (Alzheimer disease and amyotrophic lateral sclerosis), and inflammatory diseases (rheumatoid arthritis and asthma) and healthy controls (HCs) were tested. miRNA profiles were determined using LNA (locked nucleic acid)-based quantitative PCR. Patients with MS were categorized according to disease stage and disability. In the discovery phase, 652 miRNAs were measured in sera from 26 patients with MS and 20 HCs. Following this, significant miRNAs (p < 0.05) from the discovery set were validated using quantitative PCR in 58 patients with MS, 30 HCs, and in 74 samples from other disease controls (Alzheimer disease, amyotrophic lateral sclerosis, asthma, and rheumatoid arthritis). Results: We validated 7 miRNAs that differentiate patients with MS from HCs (p < 0.05 in both the discovery and validation phase); miR-320a upregulation was the most significantly changing serum miRNA in patients with MS. We also identified 2 miRNAs linked to disease progression, with miR-27a-3p being the most significant. Ten miRNAs correlated with the Expanded Disability Status Scale of which miR.199a.5p had the strongest correlation with disability. Of the 15 unique miRNAs we identified in the different group comparisons, 12 have previously been reported to be associated with MS but not in serum. Conclusions: Our findings identify circulating serum miRNAs as potential biomarkers to diagnose and monitor disease status in MS. Classification of evidence: This study provides Class III evidence that circulating serum miRNAs can be used as biomarker for MS. PMID:27606352

  9. Comprehensive evaluation of serum microRNAs as biomarkers in multiple sclerosis

    PubMed Central

    Regev, Keren; Paul, Anu; Healy, Brian; von Glenn, Felipe; Diaz-Cruz, Camilo; Gholipour, Taha; Mazzola, Maria Antonietta; Raheja, Radhika; Nejad, Parham; Glanz, Bonnie I.; Kivisakk, Pia; Chitnis, Tanuja; Weiner, Howard L.

    2016-01-01

    Objective: To identify circulating microRNAs (miRNAs) linked to disease stage and disability in multiple sclerosis (MS). Methods: Sera from 296 participants including patients with MS, other neurologic diseases (Alzheimer disease and amyotrophic lateral sclerosis), and inflammatory diseases (rheumatoid arthritis and asthma) and healthy controls (HCs) were tested. miRNA profiles were determined using LNA (locked nucleic acid)-based quantitative PCR. Patients with MS were categorized according to disease stage and disability. In the discovery phase, 652 miRNAs were measured in sera from 26 patients with MS and 20 HCs. Following this, significant miRNAs (p < 0.05) from the discovery set were validated using quantitative PCR in 58 patients with MS, 30 HCs, and in 74 samples from other disease controls (Alzheimer disease, amyotrophic lateral sclerosis, asthma, and rheumatoid arthritis). Results: We validated 7 miRNAs that differentiate patients with MS from HCs (p < 0.05 in both the discovery and validation phase); miR-320a upregulation was the most significantly changing serum miRNA in patients with MS. We also identified 2 miRNAs linked to disease progression, with miR-27a-3p being the most significant. Ten miRNAs correlated with the Expanded Disability Status Scale of which miR.199a.5p had the strongest correlation with disability. Of the 15 unique miRNAs we identified in the different group comparisons, 12 have previously been reported to be associated with MS but not in serum. Conclusions: Our findings identify circulating serum miRNAs as potential biomarkers to diagnose and monitor disease status in MS. Classification of evidence: This study provides Class III evidence that circulating serum miRNAs can be used as biomarker for MS.

  10. Current and future biomarkers in allergic asthma.

    PubMed

    Zissler, U M; Esser-von Bieren, J; Jakwerth, C A; Chaker, A M; Schmidt-Weber, C B

    2016-04-01

    Diagnosis early in life, sensitization, asthma endotypes, monitoring of disease and treatment progression are key motivations for the exploration of biomarkers for allergic rhinitis and allergic asthma. The number of genes related to allergic rhinitis and allergic asthma increases steadily; however, prognostic genes have not yet entered clinical application. We hypothesize that the combination of multiple genes may generate biomarkers with prognostic potential. The current review attempts to group more than 161 different potential biomarkers involved in respiratory inflammation to pave the way for future classifiers. The potential biomarkers are categorized into either epithelial or infiltrate-derived or mixed origin, epithelial biomarkers. Furthermore, surface markers were grouped into cell-type-specific categories. The current literature provides multiple biomarkers for potential asthma endotypes that are related to T-cell phenotypes such as Th1, Th2, Th9, Th17, Th22 and Tregs and their lead cytokines. Eosinophilic and neutrophilic asthma endotypes are also classified by epithelium-derived CCL-26 and osteopontin, respectively. There are currently about 20 epithelium-derived biomarkers exclusively derived from epithelium, which are likely to innovate biomarker panels as they are easy to sample. This article systematically reviews and categorizes genes and collects current evidence that may promote these biomarkers to become part of allergic rhinitis or allergic asthma classifiers with high prognostic value. PMID:26706728

  11. PD-L1 expression as a predictive biomarker for cytokine-induced killer cell immunotherapy in patients with hepatocellular carcinoma.

    PubMed

    Chen, Chang-Long; Pan, Qiu-Zhong; Zhao, Jing-Jing; Wang, Ying; Li, Yong-Qiang; Wang, Qi-Jing; Pan, Ke; Weng, De-Sheng; Jiang, Shan-Shan; Tang, Yan; Zhang, Xiao-Fei; Zhang, Hong-Xia; Zhou, Zi-Qi; Zeng, Yi-Xin; Xia, Jian-Chuan

    2016-07-01

    Cytokine-induced killer (CIK) cell immunotherapy represents an effective treatment strategy for treating hepatocellular carcinoma (HCC). However, the therapeutic benefits of CIK cell treatment can be influenced by differences in complex immune microenvironment between patients. Herein, we investigated the relationship between PD-L1 expression and survival benefits of CIK cell immunotherapy in HCC patients. This retrospective study included 448 HCC patients: 217 cases underwent hepatectomy alone; 231 cases received hepatectomy and post-operative CIK cell transfusion. Immunohistochemistry was used to measure PD-L1 expression in tumor tissue sections from all patients. Meanwhile, flow cytometry was performed to explore the relationship between PD-L1 expression and localized inflammatory response in HCC microenvironment. We found a significantly improved prognosis in CIK treatment group compared with surgery alone group. In the CIK treatment group, higher PD-L1 expression was observed in patients who exhibited long-term survival benefit. Survival analysis showed patients with ≥5% PD-L1 expression had better overall survival (OS) and recurrence-free survival (RFS) than patients with 1-5% or <1% PD-L1 expression, particularly in the subgroup with high hepatitis B viral load. By contrast, PD-L1 expression did not show direct impact on the survival of patients in surgery alone group. Additionally, PD-L1 expression was found to be highly associated with hepatitis B viral load and the proportion of tumor-infiltrating lymphocytes in HCC patients. In conclusions, our study indicates that PD-L1 expression may reflect the presence of endogenous host immune response to tumor and serve as a biomarker for predicting survival benefits from adjuvant CIK cell immunotherapy in HCC patients. PMID:27622026

  12. Quantitative analysis of the suppressors of cytokine signaling 1 and 3 in peripheral blood leukocytes of patients with multiple sclerosis.

    PubMed

    Sedeño-Monge, Virginia; Arcega-Revilla, Raúl; Rojas-Morales, Emmanuel; Santos-López, Gerardo; Perez-García, Juan Carlos; Sosa-Jurado, Francisca; Vallejo-Ruiz, Verónica; Solis-Morales, Casandra Lucrecia; Aguilar-Rosas, Salvador; Reyes-Leyva, Julio

    2014-08-15

    Multiple sclerosis (MS) is an autoimmune disease characterized by a triad of inflammation, demyelination and gliosis. Because the suppressors of cytokine signaling (Socs) regulate the immune response, we quantified SOCS1 and SOCS3 transcription in peripheral blood leukocytes of patients with MS. SOCS1 transcription decreased significantly in MS patients compared with neurologically healthy persons (0.08±0.02 vs. 1.02±0.23; p=0.0001); while SOCS3 transcription increased in MS patients compared with controls (2.76±0.66 vs. 1.03±0.27; p=0.0008). Our results showed an imbalance of SOCS1 and SOCS3 transcription in MS patients, and a moderated negative correlation between them (Spearman's r=-0.57; p=0.0003).

  13. Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis.

    PubMed

    Madeddu, Roberto; Farace, Cristiano; Tolu, Paola; Solinas, Giuliana; Asara, Yolande; Sotgiu, Maria Alessandra; Delogu, Lucia Gemma; Prados, Jose Carlos; Sotgiu, Stefano; Montella, Andrea

    2013-02-01

    The axonal cytoskeleton is a finely organized system, essential for maintaining the integrity of the axon. Axonal degeneration is implicated in the pathogenesis of unremitting disability of multiple sclerosis (MS). Purpose of this study is to evaluate levels of cytoskeletal proteins such as neurofilament light protein (NFL), glial fibrillary acidic protein (GFAP), and β-tubulin (β-Tub) isoforms II and III in the cerebrospinal fluid (CSF) of MS patients and their correlation with MS clinical indices. CSF levels of cytoskeletal proteins were determined in 51 patients: 33 with MS and 18 with other neurological diseases (OND). NFL, GFAP and β-Tub II proteins were significantly higher (p < 0.0001) in MS than in OND group; no significant difference (p > 0.05) was found between MS and OND with regard to β-Tub III. Interestingly, levels of β-Tub III and NFL were higher in progressive than in remitting MS forms; on the contrary, higher levels of β-Tub II and GFAP were found in remitting MS forms. However, with the exception of β-Tub III, all proteins tend to decrease their CSF levels concomitantly with the increasing disability (EDSS) score. Overall, our results might indicate β-Tub II as a potential candidate for diagnostic and β-Tub III as a possible prognostic biomarker of MS. Therefore, further analyses are legitimated and desirable. PMID:22362332

  14. Multiple biomarkers and risk of clinical and subclinical vascular brain injury: the framingham offspring study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several biomarkers have been individually associated with vascular brain injury, but no prior study has explored the simultaneous association of a biologically plausible panel of biomarkers with the incidence of stroke/transient ischemic attack and the prevalence of subclinical brain injury. In 3127...

  15. Angiogenic cytokines profile in smoldering multiple myeloma: No difference compared to MGUS but altered compared to symptomatic myeloma

    PubMed Central

    Gkotzamanidou, Maria; Christoulas, Dimitrios; Souliotis, Vassilis L.; Papatheodorou, Athanasios; Dimopoulos, Meletios A.; Terpos, Evangelos

    2013-01-01

    Background Symptomatic multiple myeloma (MM) evolves from an asymptomatic precursor state termed monoclonal gammopathy of undetermined significance (MGUS) and smoldering myeloma (SMM). Angiogenesis plays a key role in the pathogenesis of MM but there are very limited data for angiogenesis in SMM. Material/Methods We measured the circulating levels of angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), and angiogenin in 54 patients with SMM. The results were compared with those of 27 MGUS patients, 55 MM patients, and 22 healthy controls. The expression of VEGF-A gene was also evaluated in 10 patients with SMM, 10 with symptomatic MM, and 10 with MGUS. Results The ratio of circulating Ang-1/Ang-2 was reduced in MM patients with symptomatic disease due to a dramatic increase of Ang-2 (p<0.001), but not in patients with SMM or MGUS, in whom it did not differ compared to controls. VEGF and angiogenin were increased in all patients compared to controls. However, circulating VEGF was higher in symptomatic MM compared to SMM and MGUS, while angiogenin was reduced. There were no differences in the expression of VEGF-A among the 3 patients categories. Conclusions SMM has a circulating angiogenic cytokine profile similar to that of MGUS, but has altered profile compared to symptomatic MM. Thus, in the progression of MGUS to SMM, circulating angiogenic cytokines seem to be the same. On the contrary, in symptomatic myeloma, the alterations of angiopoietins along with VEGF contribute to myeloma cell growth, supporting the target of these molecules for the development of novel anti-myeloma agents. PMID:24355943

  16. Multiparameter Analysis-Based Electrochemiluminescent Assay for Simultaneous Detection of Multiple Biomarker Proteins on a Single Interface.

    PubMed

    Liang, Wenbin; Fan, Chenchen; Zhuo, Ying; Zheng, Yingning; Xiong, Chengyi; Chai, Yaqin; Yuan, Ruo

    2016-05-01

    Electrochemiluminescent (ECL) assay with high sensitivity has been considered as one of the potential strategies to simultaneously detect multiple biomarker proteins. However, it was essential, but full of challenges, to overcome the limitation caused by cross reactions among different ECL indicators. Herein, the multiparameter analysis of ECL-potential signals demonstrated by multivariate linear algebraic equations was first employed in the simultaneous ECL assay to realize multiple detection of biomarker proteins on a single interface. Additionally, owing to the exponential amplification of self-synthesized nucleotide dendrimer by hybridization chain reaction (HCR) and rolling circle amplification (RCA), the developed simultaneous ECL assay showed improved sensitivity and satisfactory accuracy for the detection of N-terminal of the prohormone brain natriuretic peptide (BNPT) and cardiac troponin I (cTnI). Furthermore, a self-designed magnetic beads-based flow system was also employed to improve the feasibility and analysis speed of the simultaneous ECL assay. Importantly, the proposed strategy enabled simultaneous detection of multiple biomarker proteins simply, which could be readily expanded for the multiplexed estimation of various kinds of proteins and nucleotide sequence also, revealing a new avenue for early disease diagnosis with higher efficiency. PMID:27064937

  17. Holocene climatic variations documented by multiple biomarker proxies from Lake Gahai on the Northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    He, Y.; Liu, Z.; Zheng, Z.; Zhao, C.; Sun, Y.

    2012-12-01

    The Northeastern Tibetan Plateau is a high elevation region sensitive to large-scale climate change, thus allows us better understanding the Holocene climate interactions between the mid-latitude westerly and subtropical Asia monsoon circulations. This region is now and in the late Holocene out of the influence of Asian monsoon systems and inconsistency hydrological variations from monsoon controlled region is suggested. However, the boundary and the interactions between the westerly and the Asian monsoon circulations during the whole Holocene have not been well documented. Here we present multiple biomarker alkane and alkenone based records from Lake Gahai in the Qaidam Basin on the northeastern Tibetan Plateau to study the lake level and climate variability over the past 12,000 years. Characterized by marked alkane-based average chain length (ACL) and carbon preference index (CPI) values, our records provide unambiguous evidence of a generally dry climate from 9 to 2 ka (1 ka = 1,000 cal yr BP), and a relatively wet climate after 2 ka and before 9 ka. The occurrence of alkenones during the period of low ACL and CPI values also supports this result. Good match between our records and other earlier paleoclimatic records derived from the same basin was found, suggesting the paleoenvironment record obtained at Lake Gahai is a regional record rather than a local signal, at least in the Qaidam Basin. This generally dry climate between 9 and 2 ka was almost synchronous with the weakening of East Asian and Indian monsoon intensities. However, our data suggest an opposite moisture relation from our region and westerly controlled region. This phenomenon may lie on the interaction between westerly and monsoon systems, probably contributed to the topographic subsidence associated with stronger atmospheric convergence and rising motion on the plateau. Also this discrepancy was likely due to the enhanced evaporation than to the increased monsoon precipitation in the

  18. Imaging biomarkers in multiple Sclerosis: From image analysis to population imaging.

    PubMed

    Barillot, Christian; Edan, Gilles; Commowick, Olivier

    2016-10-01

    The production of imaging data in medicine increases more rapidly than the capacity of computing models to extract information from it. The grand challenges of better understanding the brain, offering better care for neurological disorders, and stimulating new drug design will not be achieved without significant advances in computational neuroscience. The road to success is to develop a new, generic, computational methodology and to confront and validate this methodology on relevant diseases with adapted computational infrastructures. This new concept sustains the need to build new research paradigms to better understand the natural history of the pathology at the early phase; to better aggregate data that will provide the most complete representation of the pathology in order to better correlate imaging with other relevant features such as clinical, biological or genetic data. In this context, one of the major challenges of neuroimaging in clinical neurosciences is to detect quantitative signs of pathological evolution as early as possible to prevent disease progression, evaluate therapeutic protocols or even better understand and model the natural history of a given neurological pathology. Many diseases encompass brain alterations often not visible on conventional MRI sequences, especially in normal appearing brain tissues (NABT). MRI has often a low specificity for differentiating between possible pathological changes which could help in discriminating between the different pathological stages or grades. The objective of medical image analysis procedures is to define new quantitative neuroimaging biomarkers to track the evolution of the pathology at different levels. This paper illustrates this issue in one acute neuro-inflammatory pathology: Multiple Sclerosis (MS). It exhibits the current medical image analysis approaches and explains how this field of research will evolve in the next decade to integrate larger scale of information at the temporal, cellular

  19. Activation of Diverse Signaling Pathways by Ex-Vivo Delivery of Multiple Cytokines for Myocardial Repair

    PubMed Central

    Konoplyannikov, Mikhail; Haider, Khawaja Husnain; Lai, Vien Khach; Ahmed, Rafeeq P.H.; Jiang, Shujia

    2013-01-01

    We tested the hypothesis that simultaneous transgenic overexpression of a select quartet of growth factors activates diverse signaling pathways for mobilization and participation of various stem/progenitor cells for cardiogenesis in the infarcted heart. Human insulin growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), stromal cell–derived factor-1 (SDF-1a), and hepatocyte growth factor (HGF) plasmids were synthesized and transfected into skeletal myoblasts (SM) from young male wild-type or transgenic rats expressing green fluorescent protein (GFP). Overexpression of growth factors in transfected SM (TransSM) was confirmed by reverse transcription polymerase chain reaction, western blotting, and fluorescence immunostaining. Using our custom-made growth factor array and western blotting, multiple angiogenic and prosurvival factors were detected in TransSM, including secreted frizzled related protein-1,2,4,5, matrix metalloproteinases-3 and 9, connexin-43, netrin-1, Nos-2, Wnt-3, Akt, MAPK42/44, Stat3, nuclear factor kappa B (NFκB), hypoxia-inducible factor 1 (HIF-1α), and protein kinase C (PKC). The conditioned medium (CM) from TransSM was cytoprotective for cardiomyocytes following H2O2 treatment [P<0.01 vs. CM from native SM (NatSM)], promoted a higher transwell migration of human umbilical cord vein endothelial cells (223.3±1.8, P<0.01) and in vitro tube formation (47.8±1.9, P<0.01). Intramyocardial transplantation of 1.5×106 TransSM (group-3) in a rat model of acute myocardial infarction induced extensive mobilization of cMet+, ckit+, ckit+/GATA4+, CXCR4+, CD44+, CD31+, and CD59+ cells into the infarcted heart on day 7 and improved integration of TransSM in the heart compared to NatSM (group 2) (P<0.05). Extensive neomyogenesis and angiogenesis in group-3 (P<0.01 vs. group-2), with resultant attenuation of infarct size (P<0.01 vs. group-2) and improvement in global heart function (P<0.01 vs. group-2) was observed at 8 weeks. In conclusion

  20. Endocrine and cytokine responses to standardized physical stress in multiple sclerosis.

    PubMed

    Heesen, Christoph; Gold, Stefan M; Hartmann, Sten; Mladek, Mila; Reer, Rüdiger; Braumann, Klaus-Michael; Wiedemann, Klaus; Schulz, Karl-Heinz

    2003-12-01

    Since the earliest descriptions psychological and physical stress has been considered a controversial but potentially important factor in the onset and course of multiple sclerosis (MS). During recent years it has become clear that MS patients benefit from physical exercise as performed in aerobic training. As acute exercise has profound effects on immune and endocrine parameters we studied endocrine and immune response to standardized physical stress in MS within a study of aerobic training. Fifteen MS patients completed an eight-week aerobic training program, 13 patients were part of a wait-control group. Twenty healthy controls were recruited as well. A step-by-step bicycle ergometry was performed to determine individual exertion levels. For the endurance test patients exercised at 60% VO2 max for 30 min. Blood samples were drawn before, directly after and 30 min after completion of the exercise. Heart rate and lactate increased in all groups (p<.0001). We furthermore saw significant increases in endocrine parameters (epinephrine, norepinephrine, ACTH, and beta-endorphin; all p<.0001) in healthy individuals and in MS patients but without a differential effect. Whole-blood stimulated production of IFN-gamma (IFNgamma) was induced similarly in all groups (p<.01). TNF-alpha (TNFalpha) and IL-10 were less inducible in MS patients (trend). From these data we could not demonstrate a proinflammatory immune deviation in response to physical stress in MS. The observed trend of hyporesponsive TNFalpha and IL-10 responses in MS warrants further investigation. PMID:14583239

  1. A lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform for identification of multiple liver cancer biomarkers in human plasma.

    PubMed

    Ahn, Yeong Hee; Shin, Park Min; Oh, Na Ree; Park, Gun Wook; Kim, Hoguen; Yoo, Jong Shin

    2012-09-18

    Aberrantly glycosylated proteins related to liver cancer progression were captured with specific lectin and identified from human plasma by multiple reaction monitoring (MRM) mass spectrometry as multiple biomarkers for hepatocellular carcinoma (HCC). The lectin fractionation for fucosylated protein glycoforms in human plasma was conducted with a fucose-specific aleuria aurantia lectin (AAL). Following tryptic digestion of the lectin-captured fraction, plasma samples from 30 control cases (including 10 healthy, 10 hepatitis B virus [HBV], and 10 cirrhosis cases) and 10 HCC cases were quantitatively analyzed by MRM to identify which glycoproteins are viable HCC biomarkers. A1AG1, AACT, A1AT, and CERU were found to be potent biomarkers to differentiate HCC plasma from control plasmas. The AUROC generated independently from these four biomarker candidates ranged from 0.73 to 0.92. However, the lectin-coupled MRM assay with multiple combinations of biomarker candidates is superior statistically to those generated from the individual candidates with AUROC more than 0.95, which can be an alternative to the immunoassay inevitably requiring tedious development of multiple antibodies against biomarker candidates to be verified. Eventually the lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform was found to be efficient to identify multiple biomarkers from human plasma according to cancer progression.

  2. STAT2 Is a Pervasive Cytokine Regulator due to Its Inhibition of STAT1 in Multiple Signaling Pathways

    PubMed Central

    Ho, Johnathan; Pelzel, Christin; Begitt, Andreas; Mee, Maureen; Elsheikha, Hany M.; Scott, David J.; Vinkemeier, Uwe

    2016-01-01

    STAT2 is the quintessential transcription factor for type 1 interferons (IFNs), where it functions as a heterodimer with STAT1. However, the human and murine STAT2-deficient phenotypes suggest important additional and currently unidentified type 1 IFN-independent activities. Here, we show that STAT2 constitutively bound to STAT1, but not STAT3, via a conserved interface. While this interaction was irrelevant for type 1 interferon signaling and STAT1 activation, it precluded the nuclear translocation specifically of STAT1 in response to IFN-γ, interleukin-6 (IL-6), and IL-27. This is explained by the dimerization between activated STAT1 and unphosphorylated STAT2, whereby the semiphosphorylated dimers adopted a conformation incapable of importin-α binding. This, in turn, substantially attenuated cardinal IFN-γ responses, including MHC expression, senescence, and antiparasitic immunity, and shifted the transcriptional output of IL-27 from STAT1 to STAT3. Our results uncover STAT2 as a pervasive cytokine regulator due to its inhibition of STAT1 in multiple signaling pathways and provide an understanding of the type 1 interferon-independent activities of this protein. PMID:27780205

  3. An evaluation of logic regression-based biomarker discovery across multiple intergenic regions for predicting host specificity in Escherichia coli.

    PubMed

    Zhi, Shuai; Li, Qiaozhi; Yasui, Yutaka; Banting, Graham; Edge, Thomas A; Topp, Edward; McAllister, Tim A; Neumann, Norman F

    2016-10-01

    Several studies have demonstrated that E. coli appears to display some level of host adaptation and specificity. Recent studies in our laboratory support these findings as determined by logic regression modeling of single nucleotide polymorphisms (SNP) in intergenic regions (ITGRs). We sought to determine the degree of host-specific information encoded in various ITGRs across a library of animal E. coli isolates using both whole genome analysis and a targeted ITGR sequencing approach. Our findings demonstrated that ITGRs across the genome encode various degrees of host-specific information. Incorporating multiple ITGRs (i.e., concatenation) into logic regression model building resulted in greater host-specificity and sensitivity outcomes in biomarkers, but the overall level of polymorphism in an ITGR did not correlate with the degree of host-specificity encoded in the ITGR. This suggests that distinct SNPs in ITGRs may be more important in defining host-specificity than overall sequence variation, explaining why traditional unsupervised learning phylogenetic approaches may be less informative in terms of revealing host-specific information encoded in DNA sequence. In silico analysis of 80 candidate ITGRs from publically available E. coli genomes was performed as a tool for discovering highly host-specific ITGRs. In one ITGR (ydeR-yedS) we identified a SNP biomarker that was 98% specific for cattle and for which 92% of all E. coli isolates originating from cattle carried this unique biomarker. In the case of humans, a host-specific biomarker (98% specificity) was identified in the concatenated ITGR sequences of rcsD-ompC, ydeR-yedS, and rclR-ykgE, and for which 78% of E. coli originating from humans carried this biomarker. Interestingly, human-specific biomarkers were dominant in ITGRs regulating antibiotic resistance, whereas in cattle host-specific biomarkers were found in ITGRs involved in stress regulation. These data suggest that evolution towards host

  4. An evaluation of logic regression-based biomarker discovery across multiple intergenic regions for predicting host specificity in Escherichia coli.

    PubMed

    Zhi, Shuai; Li, Qiaozhi; Yasui, Yutaka; Banting, Graham; Edge, Thomas A; Topp, Edward; McAllister, Tim A; Neumann, Norman F

    2016-10-01

    Several studies have demonstrated that E. coli appears to display some level of host adaptation and specificity. Recent studies in our laboratory support these findings as determined by logic regression modeling of single nucleotide polymorphisms (SNP) in intergenic regions (ITGRs). We sought to determine the degree of host-specific information encoded in various ITGRs across a library of animal E. coli isolates using both whole genome analysis and a targeted ITGR sequencing approach. Our findings demonstrated that ITGRs across the genome encode various degrees of host-specific information. Incorporating multiple ITGRs (i.e., concatenation) into logic regression model building resulted in greater host-specificity and sensitivity outcomes in biomarkers, but the overall level of polymorphism in an ITGR did not correlate with the degree of host-specificity encoded in the ITGR. This suggests that distinct SNPs in ITGRs may be more important in defining host-specificity than overall sequence variation, explaining why traditional unsupervised learning phylogenetic approaches may be less informative in terms of revealing host-specific information encoded in DNA sequence. In silico analysis of 80 candidate ITGRs from publically available E. coli genomes was performed as a tool for discovering highly host-specific ITGRs. In one ITGR (ydeR-yedS) we identified a SNP biomarker that was 98% specific for cattle and for which 92% of all E. coli isolates originating from cattle carried this unique biomarker. In the case of humans, a host-specific biomarker (98% specificity) was identified in the concatenated ITGR sequences of rcsD-ompC, ydeR-yedS, and rclR-ykgE, and for which 78% of E. coli originating from humans carried this biomarker. Interestingly, human-specific biomarkers were dominant in ITGRs regulating antibiotic resistance, whereas in cattle host-specific biomarkers were found in ITGRs involved in stress regulation. These data suggest that evolution towards host

  5. Multiple biomarkers of pollution effects in caged mussels on the Greek coastline.

    PubMed

    Tsangaris, C; Kormas, K; Strogyloudi, E; Hatzianestis, I; Neofitou, C; Andral, B; Galgani, F

    2010-04-01

    A suite of biomarkers was measured in caged mussels at areas impacted by different anthropogenic activities along the Greek coastline to assess biological effects of environmental pollution. Mussels were caged at coastal sites in the vicinity of major cities, in areas influenced by major industries, agricultural practices and in islands away from known sources of pollution. Biomarkers indicative of neurotoxicity (acetylcholinesterase, AchE), oxidative stress (catalase, CAT), phase II biotransformation of xenobiotics (glutathione S-transferase, GST), metal exposure (metallothioneins, MTs) and protein synthesis (RNA:DNA ratio) were measured to assess effects of various types of pollutants. AchE activity proved to be the most responsive biomarker with decreased values at sites influenced by agricultural, urban and industrial activities. Decreased CAT and GST activities and increased MTs levels were recorded at a number of anthropogenic-impacted sites. RNA:DNA ratio showed a biphasic response as both high and low values were found at impacted sites. Principal component analysis clearly distinguished sites receiving pollution inputs from non-polluted sites. The combination of the selected biomarkers used in caged mussels resulted useful in the assessment of the effects of environmental pollution.

  6. Effect of temperature in multiple biomarkers of oxidative stress in coastal shrimp.

    PubMed

    Vinagre, Catarina; Madeira, Diana; Mendonça, Vanessa; Dias, Marta; Roma, Joma; Diniz, Mário S

    2014-04-01

    Various studies in captivity and in the wild have pointed to the effect of season, and temperature in particular, in the levels of the oxidative stress biomarkers currently used for environmental quality assessment. However, knowledge on how temperature affects the oxidative stress response is unavailable for most species. This study investigated the effect of increasing temperature on lipid peroxidation, catalase activity, superoxide dismutase and glutathione-S-transferase in the shrimps, Palaemon elegans and Palaemon serratus. It was concluded that increasing temperatures significantly affect all the biomarkers tested in both species, with the exception of superoxide dismutase in P. serratus which was not affected by temperature. The oxidative stress response was more intense in P. elegans, than in P. serratus, producing higher peaks of all biomarkers at temperatures between 22°C and 26°C, followed by low levels at higher temperatures. It was concluded that monitoring of ecosystems using oxidative stress biomarkers should take into account the species and thermal history of the organisms. Sampling should be avoided during heat waves and immediately after heat waves. PMID:24679970

  7. Multiple biomarkers of pollution effects in Solea solea fish on the Tunisia coastline.

    PubMed

    Jebali, Jamel; Sabbagh, Marwa; Banni, Mohamed; Kamel, Naouel; Ben-Khedher, Sana; M'hamdi, Naceur; Boussetta, Hamadi

    2013-06-01

    This field study investigates the morphological indices (condition index, hepatosomatic index) and biochemical (catalase (CAT), glutathione S-transferase (GST), acetylcholinesterase (AChE), metallothionein (MT), lipid peroxidation) parameters in liver, gills and kidney of common sole (Solea solea) originating from different sites of the Tunisian coast area impacted by different anthropogenic activities. Differences among sites and tissues for AChE, GST, CAT, MT and TBARS were found and possibly related to known sources of domestic and industrial discharges in the studied sites. Liver, gills and kidney CAT, liver and kidney MT and brain AChE were key biomarkers to discriminate fish of different sites. So, we suggest using these biomarkers in future biomonitoring.

  8. Multiple Biomarker Responses in Corbicula fluminea Exposed to Copper in Laboratory Toxicity Tests.

    PubMed

    Bonnail, Estefanía; Buruaem, Lucas M; Araujo, Giuliana S; Abessa, Denis M S; DelValls, T Ángel

    2016-08-01

    This study evaluated the alteration of the enzymatic system of the freshwater Asian clam exposed to different copper concentrations. Individuals of Corbicula fluminea were exposed to different concentrations of dissolved Cu (0.5, 1, and 2 mg L(-1)) for 7 days, then, biomarkers of oxidative stress (GST, GPx, GR), exposure (MTs), effect (AChE), and damage (LPO, DNA strand breaks) were quantified. Results showed positive correlations between dissolved metal concentrations and GPx, MTs, and DNA damage, and negative correlation with GST and AChE. In contrast, no clear trend was found for GR and LPO. In general, the established mechanisms of protection might have a beneficial effect on the decreasing ROS attack on membrane and the activation of the metallothioneins. Integrated biomarker analysis revealed that the measured alterations are well correlated with the levels of increasing dissolved copper concentrations in water, demonstrating the effectiveness of this organism for biomonitoring approach purposes. PMID:27090524

  9. Development of a diagnostic test based on multiple continuous biomarkers with an imperfect reference test.

    PubMed

    García Barrado, Leandro; Coart, Els; Burzykowski, Tomasz

    2016-02-20

    Ignoring the fact that the reference test used to establish the discriminative properties of a combination of diagnostic biomarkers is imperfect can lead to a biased estimate of the diagnostic accuracy of the combination. In this paper, we propose a Bayesian latent-class mixture model to select a combination of biomarkers that maximizes the area under the ROC curve (AUC), while taking into account the imperfect nature of the reference test. In particular, a method for specification of the prior for the mixture component parameters is developed that allows controlling the amount of prior information provided for the AUC. The properties of the model are evaluated by using a simulation study and an application to real data from Alzheimer's disease research. In the simulation study, 100 data sets are simulated for sample sizes ranging from 100 to 600 observations, with a varying correlation between biomarkers. The inclusion of an informative as well as a flat prior for the diagnostic accuracy of the reference test is investigated. In the real-data application, the proposed model was compared with the generally used logistic-regression model that ignores the imperfectness of the reference test. Conditional on the selected sample size and prior distributions, the simulation study results indicate satisfactory performance of the model-based estimates. In particular, the obtained average estimates for all parameters are close to the true values. For the real-data application, AUC estimates for the proposed model are substantially higher than those from the 'traditional' logistic-regression model.

  10. Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method

    NASA Astrophysics Data System (ADS)

    Rolfe, S. M.; Patel, M. R.; Gilmour, I.; Olsson-Francis, K.; Ringrose, T. J.

    2016-06-01

    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examined l-alanine, l-aspartic acid, l-cysteine, l-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for l-alanine (strongest intensity band: 832 cm-1), l-aspartic acid (938 cm-1), l-cysteine (679 cm-1), l-glutamine (1090 cm-1) and glycine (875 cm-1), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made.

  11. Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method.

    PubMed

    Rolfe, S M; Patel, M R; Gilmour, I; Olsson-Francis, K; Ringrose, T J

    2016-06-01

    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examined L-alanine, L-aspartic acid, L-cysteine, L-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for L-alanine (strongest intensity band: 832 cm(-1)), L-aspartic acid (938 cm(-1)), L-cysteine (679 cm(-1)), L-glutamine (1090 cm(-1)) and glycine (875 cm(-1)), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made. PMID:26744263

  12. Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method.

    PubMed

    Rolfe, S M; Patel, M R; Gilmour, I; Olsson-Francis, K; Ringrose, T J

    2016-06-01

    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examined L-alanine, L-aspartic acid, L-cysteine, L-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for L-alanine (strongest intensity band: 832 cm(-1)), L-aspartic acid (938 cm(-1)), L-cysteine (679 cm(-1)), L-glutamine (1090 cm(-1)) and glycine (875 cm(-1)), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made.

  13. Data of multiple regressions analysis between selected biomarkers related to glutamate excitotoxicity and oxidative stress in Saudi autistic patients

    PubMed Central

    El-Ansary, Afaf

    2016-01-01

    This work demonstrates data of multiple regression analysis between nine biomarkers related to glutamate excitotoxicity and impaired detoxification as two mechanisms recently recorded as autism phenotypes. The presented data was obtained by measuring a panel of markers in 20 autistic patients aged 3–15 years and 20 age and gender matching healthy controls. Levels of GSH, glutathione status (GSH/GSSG), glutathione reductase (GR), glutathione-s-transferase (GST), thioredoxin (Trx), thioredoxin reductase (TrxR) and peroxidoxins (Prxs I and III), glutamate, glutamine, glutamate/glutamine ratio glutamate dehydrogenase (GDH) in plasma and mercury (Hg) in red blood cells were determined in both groups. In Multiple regression analysis, R2 values which describe the proportion or percentage of variance in the dependent variable attributed to the variance in the independent variables together were calculated. Moreover, β coefficients values which show the direction either positive or negative and the contribution of the independent variable relative to the other independent variables in explaining the variation of the dependent variable were determined. A panel of inter-related markers was recorded. This paper contains data related to and supporting research articles currently published entitled “Mechanism of nitrogen metabolism-related parameters and enzyme activities in the pathophysiology of autism” [1], “Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia [2], and “A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders” [3]. PMID:26933667

  14. Data of multiple regressions analysis between selected biomarkers related to glutamate excitotoxicity and oxidative stress in Saudi autistic patients.

    PubMed

    El-Ansary, Afaf

    2016-06-01

    This work demonstrates data of multiple regression analysis between nine biomarkers related to glutamate excitotoxicity and impaired detoxification as two mechanisms recently recorded as autism phenotypes. The presented data was obtained by measuring a panel of markers in 20 autistic patients aged 3-15 years and 20 age and gender matching healthy controls. Levels of GSH, glutathione status (GSH/GSSG), glutathione reductase (GR), glutathione-s-transferase (GST), thioredoxin (Trx), thioredoxin reductase (TrxR) and peroxidoxins (Prxs I and III), glutamate, glutamine, glutamate/glutamine ratio glutamate dehydrogenase (GDH) in plasma and mercury (Hg) in red blood cells were determined in both groups. In Multiple regression analysis, R (2) values which describe the proportion or percentage of variance in the dependent variable attributed to the variance in the independent variables together were calculated. Moreover, β coefficients values which show the direction either positive or negative and the contribution of the independent variable relative to the other independent variables in explaining the variation of the dependent variable were determined. A panel of inter-related markers was recorded. This paper contains data related to and supporting research articles currently published entitled "Mechanism of nitrogen metabolism-related parameters and enzyme activities in the pathophysiology of autism" [1], "Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia [2], and "A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders" [3]. PMID:26933667

  15. Combined exercise training reduces fatigue and modulates the cytokine profile of T-cells from multiple sclerosis patients in response to neuromediators.

    PubMed

    Alvarenga-Filho, Helcio; Sacramento, Priscila M; Ferreira, Thais B; Hygino, Joana; Abreu, Jorge Eduardo Canto; Carvalho, Sonia Regina; Wing, Ana Cristina; Alvarenga, Regina Maria Papais; Bento, Cleonice A M

    2016-04-15

    Fatigue is a common and disabling symptom of multiple sclerosis (MS), a classical Th1- and Th17-mediated autoimmune disease. There is no effective pharmacological treatment for fatigue, but some reports point towards beneficial effects of physical activity on management of the fatigue in MS patients. As both MS and fatigue have been associated with dysregulated cytokine network production, the objective of the present study was to evaluate the impact of a physical activity program consisting of a 12-week series of combining Pilates and aerobic exercises on fatigue severity, determined by FSS, and cytokine production, quantified by ELISA, by T cells from MS patients (n=08) with low disability (EDSS≤2). The results showed decrease in FSSs in all patients at the end of physical activity intervention. Regarding the cytokines, a significant reduction of IL-22 release was observed in polyclonally-activated T cells form MS patients post-training follow-up. Interestingly, while the physical activity attenuated the ability of dopamine in up-regulating Th17-related cytokines, it enhanced the anti-inflammatory effects of serotonin, evidenced by high IL-10 production. In summary, all results suggest that programmed physical activity has beneficial effects on management of fatigue in MS patients, and it could be related, at least in part, to its ability in regulating neuroimmune parameters into T cell compartment. PMID:27049568

  16. Development of a diagnostic test based on multiple continuous biomarkers with an imperfect reference test.

    PubMed

    García Barrado, Leandro; Coart, Els; Burzykowski, Tomasz

    2016-02-20

    Ignoring the fact that the reference test used to establish the discriminative properties of a combination of diagnostic biomarkers is imperfect can lead to a biased estimate of the diagnostic accuracy of the combination. In this paper, we propose a Bayesian latent-class mixture model to select a combination of biomarkers that maximizes the area under the ROC curve (AUC), while taking into account the imperfect nature of the reference test. In particular, a method for specification of the prior for the mixture component parameters is developed that allows controlling the amount of prior information provided for the AUC. The properties of the model are evaluated by using a simulation study and an application to real data from Alzheimer's disease research. In the simulation study, 100 data sets are simulated for sample sizes ranging from 100 to 600 observations, with a varying correlation between biomarkers. The inclusion of an informative as well as a flat prior for the diagnostic accuracy of the reference test is investigated. In the real-data application, the proposed model was compared with the generally used logistic-regression model that ignores the imperfectness of the reference test. Conditional on the selected sample size and prior distributions, the simulation study results indicate satisfactory performance of the model-based estimates. In particular, the obtained average estimates for all parameters are close to the true values. For the real-data application, AUC estimates for the proposed model are substantially higher than those from the 'traditional' logistic-regression model. PMID:26388206

  17. Identification of Candidate Serum Biomarkers for Schistosoma mansoni Infected Mice Using Multiple Proteomic Platforms

    PubMed Central

    Kardoush, Manal I.

    2016-01-01

    Background Schistosomiasis is an important helminth infection of humans. There are few reliable diagnostic biomarkers for early infection, for recurrent infection or to document successful treatment. In this study, we compared serum protein profiles in uninfected and infected mice to identify disease stage-specific biomarkers. Methods Serum collected from CD1 mice infected with 50–200 Schistosoma mansoni cercariae were analyzed before infection and at 3, 6 and 12 weeks post-infection using three mass spectrometric (MS) platforms. Results Using SELDI-TOF MS, 66 discriminating m/z peaks were detected between S. mansoni infected mice and healthy controls. Used in various combinations, these peaks could 1) reliably diagnose early-stage disease, 2) distinguish between acute and chronic infection and 3) diagnose S. mansoni infection regardless the parasite burden. The most important contributors to these diagnostic algorithms were peaks at 3.7, 13 and 46 kDa. Employing sample fractionation and differential gel electrophoresis, we analyzed gel slices either by MALDI-TOF MS or Velos Orbitrap MS. The former yielded eight differentially-expressed host proteins in the serum at different disease stages including transferrin and alpha 1- antitrypsin. The latter suggested the presence of a surprising number of parasite-origin proteins in the serum during both the acute (n = 200) and chronic (n = 105) stages. The Orbitrap platform also identified many differentially-expressed host-origin serum proteins during the acute and chronic stages (296 and 220 respectively). The presence of one of the schistosome proteins, glutathione S transferase (GST: 25 KDa), was confirmed by Western Blot. This study provides proof-of-principle for an approach that can yield a large number of novel candidate biomarkers for Schistosoma infection. PMID:27138990

  18. A Magnetic Bead-Based Sensor for the Quantification of Multiple Prostate Cancer Biomarkers

    PubMed Central

    Jokerst, Jesse V.; Chen, Zuxiong; Xu, Lingyun; Nolley, Rosalie; Chang, Edwin; Mitchell, Breeana; Brooks, James D.; Gambhir, Sanjiv S.

    2015-01-01

    Novel biomarker assays and upgraded analytical tools are urgently needed to accurately discriminate benign prostatic hypertrophy (BPH) from prostate cancer (CaP). To address this unmet clinical need, we report a piezeoelectric/magnetic bead-based assay to quantitate prostate specific antigen (PSA; free and total), prostatic acid phosphatase, carbonic anhydrase 1 (CA1), osteonectin, IL-6 soluble receptor (IL-6sr), and spondin-2. We used the sensor to measure these seven proteins in serum samples from 120 benign prostate hypertrophy patients and 100 Gleason score 6 and 7 CaP using serum samples previously collected and banked. The results were analyzed with receiver operator characteristic curve analysis. There were significant differences between BPH and CaP patients in the PSA, CA1, and spondin-2 assays. The highest AUC discrimination was achieved with a spondin-2 OR free/total PSA operation—the area under the curve was 0.84 with a p value below 10−6. Some of these data seem to contradict previous reports and highlight the importance of sample selection and proper assay building in the development of biomarker measurement schemes. This bead-based system offers important advantages in assay building including low cost, high throughput, and rapid identification of an optimal matched antibody pair. PMID:26421725

  19. SERS-based multiple biomarker detection using a gold-patterned microarray chip

    NASA Astrophysics Data System (ADS)

    Kim, Insup; Junejo, Inam-ur-Rehman; Lee, Moonkwon; Lee, Sangyeop; Lee, Eun Kyu; Chang, Soo-Ik; Choo, Jaebum

    2012-09-01

    We report a highly sensitive surface-enhanced Raman scattering (SERS)-based immunoassay platform for the multiplex detection of biomarkers. For this purpose, a gold-patterned microarray chip has been fabricated and used as a SERS detection template. Here, a typical sandwich immunocomplex protocol was adopted. Monoclonal antibodies were immobilized on gold patterned substrates, and then antigen solutions and polyclonal antibody-conjugated hollow gold nanospheres (HGNs) were sequentially added for the formation of sandwich immunocomplexes. Antigen biomarkers can be quantitatively assayed by monitoring the intensity change of a characteristic SERS peak of a reporter molecule adsorbed on the surfaces of HGNs. Under optimized assay conditions, the limits of detections (LODs) were determined to be 10 fg/mL for human IgG and 10-100 fg/mL for rabbit IgG. In addition, the SERS-based immunoassay technique can be applied in a wider dynamic concentration range with a good sensitivity compared to ELISA. The proposed method fulfills the current needs of high sensitivity and selectivity which are essential for the clinical diagnosis of a disease.

  20. Vitamin D Binding Protein Isoforms and Apolipoprotein E in Cerebrospinal Fluid as Prognostic Biomarkers of Multiple Sclerosis

    PubMed Central

    Lis, Katarzyna; Minari, Nicoletta; Falvo, Sara; Marnetto, Fabiana; Caldano, Marzia; Reviglione, Raffaella; Berchialla, Paola; Capobianco, Marco A.; Malentacchi, Maria; Corpillo, Davide; Bertolotto, Antonio

    2015-01-01

    Background Multiple sclerosis (MS) is a multifactorial autoimmune disease of the central nervous system with a heterogeneous and unpredictable course. To date there are no prognostic biomarkers even if they would be extremely useful for early patient intervention with personalized therapies. In this context, the analysis of inter-individual differences in cerebrospinal fluid (CSF) proteome may lead to the discovery of biological markers that are able to distinguish the various clinical forms at diagnosis. Methods To this aim, a two dimensional electrophoresis (2-DE) study was carried out on individual CSF samples from 24 untreated women who underwent lumbar puncture (LP) for suspected MS. The patients were clinically monitored for 5 years and then classified according to the degree of disease aggressiveness and the disease-modifying therapies prescribed during follow up. Results The hierarchical cluster analysis of 2-DE dataset revealed three protein spots which were identified by means of mass spectrometry as Apolipoprotein E (ApoE) and two isoforms of vitamin D binding protein (DBP). These three protein spots enabled us to subdivide the patients into subgroups correlated with clinical classification (MS aggressive forms identification: 80%). In particular, we observed an opposite trend of values for the two protein spots corresponding to different DBP isoforms suggesting a role of a post-translational modification rather than the total protein content in patient categorization. Conclusions These findings proved to be very interesting and innovative and may be developed as new candidate prognostic biomarkers of MS aggressiveness, if confirmed. PMID:26046356

  1. DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model

    PubMed Central

    Vargas-Sanchez, Karina; Vekris, Antonios; Petry, Klaus G.

    2016-01-01

    To streamline in vivo biomarker discovery, we developed a suppression subtractive DNA hybridization technique adapted for phage-displayed combinatorial libraries of 12 amino acid peptides (PhiSSH). Physical DNA subtraction is performed in a one-tube-all-reactions format by sequential addition of reagents, producing the enrichment of specific clones of one repertoire. High-complexity phage repertoires produced by in vivo selections in the multiple sclerosis rat model (experimental autoimmune encephalomyelitis, EAE) and matched healthy control rats were used to evaluate the technique. The healthy repertoire served as a physical DNA subtractor from the EAE repertoire to produce the subtraction repertoire. Full next-generation sequencing (NGS) of the three repertoires was performed to evaluate the efficiency of the subtraction technique. More than 96% of the clones common to the EAE and healthy repertoires were absent from the subtraction repertoire, increasing the probability of randomly selecting various specific peptides for EAE pathology to about 70%. Histopathology experiments were performed to confirm the quality of the subtraction repertoire clones, producing distinct labeling of the blood–brain barrier (BBB) affected by inflammation among healthy nervous tissue or the preferential binding to IL1-challenged vs. resting human BBB model. Combining PhiSSH with NGS will be useful for controlled in vivo screening of small peptide combinatorial libraries to discover biomarkers of specific molecular alterations interspersed within healthy tissues. PMID:26917946

  2. A comparison of multiple esterases as biomarkers of organophosphate exposure and effect in two earthworm species.

    PubMed

    Henson-Ramsey, Heather; Schneider, Ashley; Stoskopf, Michael K

    2011-04-01

    Two different earthworm species, Eisenia fetida and Lumbricus terrestris, were exposed to 5 μg/cm(2) of malathion to evaluate their usefulness as sentinels of organophosphate exposure and to assess three different esterases, as biomarkers of malathion exposure and effect. Tissue xenobiotic burdens and esterase activity were determined for each species and each esterase in order to assess variability. E. fetida exhibited 4-fold less variability in tissue burdens than did L. terrestris and had less variable basal esterase activities. An attempt was made to correlate malathion and malaoxon tissue burdens with esterase activity post-exposure. There was no malaoxon present in the earthworm tissues. No significant correlations were determined by comparing acetylcholinesterase, butyrylcholinesterase, nor carboxylesterase activities with malathion burdens. PMID:21404045

  3. Circulating interferon-α2 levels are increased in the majority of patients with systemic lupus erythematosus and are associated with disease activity and multiple cytokine activation.

    PubMed

    Becker-Merok, A; Østli-Eilersten, G; Lester, S; Nossent, Jc

    2013-02-01

    Mutations in interferon (IFN) regulatory factor genes and the biological activity of type I IFN on expression of specific genes that are induced by IFN have been associated with various aspects of systemic lupus erythematosus (SLE). Circulating levels of IFN-α in SLE has not been extensively studied because of limited sensitivity of available ELISA assays. We performed a cross-sectional case-control study where circulating levels of IFN-α2 were measured by a highly sensitive, solution phase multiplex magnetized bead assay and investigated the relation of IFN-α2 with autoantibody profiles, clinical disease activity and levels of inflammatory cytokines in SLE patients (n = 87). Cytokine levels were determined on stored sera aliquots with cut-off levels determined by the geometric mean + 2SD in healthy controls (n = 27). IFN-α2 levels were increased in 64% of SLE patients, who displayed more renal disease and higher disease activity (p = 0.06) and had a significantly higher sum of activated cytokines (median 4.5, range 7) compared to patients with normal IFN-α2 (median one, range 3; p < 0.001). Solution phase micro-bead assay thus identified increased IFN-α2 levels in two-thirds of SLE patients with longstanding disease. The association with clinical disease and activation of multiple inflammatory cytokines supports a role for IFN-α2 in disease perpetuation in a large subset of SLE patients.

  4. Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities.

    PubMed

    Macrez, Richard; Stys, Peter K; Vivien, Denis; Lipton, Stuart A; Docagne, Fabian

    2016-09-01

    Research advances support the idea that excessive activation of the glutamatergic pathway plays an important part in the pathophysiology of multiple sclerosis. Beyond the well established direct toxic effects on neurons, additional sites of glutamate-induced cell damage have been described, including effects in oligodendrocytes, astrocytes, endothelial cells, and immune cells. Such toxic effects could provide a link between various pathological aspects of multiple sclerosis, such as axonal damage, oligodendrocyte cell death, demyelination, autoimmunity, and blood-brain barrier dysfunction. Understanding of the mechanisms underlying glutamate toxicity in multiple sclerosis could help in the development of new approaches for diagnosis, treatment, and follow-up in patients with this debilitating disease. While several clinical trials of glutamatergic modulators have had disappointing results, our growing understanding suggests that there is reason to remain optimistic about the therapeutic potential of these drugs. PMID:27571160

  5. Mercury exposure and neurochemical biomarkers in multiple brain regions of Wisconsin river otters (Lontra canadensis).

    PubMed

    Dornbos, Peter; Strom, Sean; Basu, Niladri

    2013-04-01

    River otters are fish-eating wildlife that bioaccumulate high levels of mercury (Hg). Mercury is a proven neurotoxicant to mammalian wildlife, but little is known about the underlying, sub-clinical effects. Here, the overall goal was to increase understanding of Hg's neurological risk to otters. First, Hg values across several brain regions and tissues were characterized. Second, in three brain regions with known sensitivity to Hg (brainstem, cerebellum, and occipital cortex), potential associations among Hg levels and neurochemical biomarkers [N-methyl-D-aspartic acid (NMDA) and gamma-aminobutyric acid (GABAA) receptor] were explored. There were no significant differences in Hg levels across eight brain regions (rank order, highest to lowest: frontal cortex, cerebellum, temporal cortex, occipital cortex, parietal cortex, basal ganglia, brainstem, and thalamus), with mean values ranging from 0.7 to 1.3 ug/g dry weight. These brain levels were significantly lower than mean values in the muscle (2.1 ± 1.4 ug/g), liver (4.7 ± 4.3 ug/g), and fur (8.8 ± 4.8 ug/g). While a significant association was found between Hg and NMDA receptor levels in the brain stem (P = 0.028, rp = -0.293), no relationships were found in the cerebellum and occipital cortex. For the GABA receptor, no relationships were found. The lack of consistent Hg-associated neurochemical changes is likely due to low brain Hg levels in these river otters, which are amongst the lowest reported.

  6. Increased plasma-immune cytokines throughout the high-dose melphalan-induced lymphodepletion in patients with multiple myeloma: a window for adoptive immunotherapy.

    PubMed

    Condomines, Maud; Veyrune, Jean-Luc; Larroque, Marion; Quittet, Philippe; Latry, Pascal; Lugagne, Cécile; Hertogh, Catherine; Kanouni, Tarik; Rossi, Jean-François; Klein, Bernard

    2010-01-15

    High-dose melphalan (HDM) followed by autologous stem cell transplantation (ASCT) is a standard treatment for patients with multiple myeloma. However, lymphocyte reconstitution is impaired after HDM. Recent work has suggested that the lymphopenia period occurring after various immunosuppressive or chemotherapy treatments may provide an interesting opportunity for adoptive antitumor immunotherapy. The objective of this study was to determine an immunotherapy window after HDM and ASCT, evaluating T cell lymphopenia, and measuring circulating immune cytokine concentrations in patients with multiple myeloma. The counts of T cell subpopulations reached a nadir at day 8 post-ASCT (day 10 post-HDM) and recovered by day 30. IL-6, IL-7, and IL-15 plasma levels increased on a median day 8 post-ASCT, respectively, 35-fold, 8-fold, and 10-fold compared with pre-HDM levels (p < or = 0.05). The increases in IL-7 and IL-15 levels were inversely correlated to the absolute lymphocyte count, unlike monocyte or myeloid counts. Furthermore, we have shown that CD3 T cells present in the ASC graft are activated, die rapidly when they are cultured without cytokine in vitro, and that addition of IL-7 or IL-15 could induce their survival and proliferation. In conclusion, the early lymphodepletion period, occurring 4-11 d post-HDM and ASCT, is associated with an increase of circulating immune cytokines and could be an optimal window to enhance the survival and proliferation of polyclonal T cells present in the ASC autograft and also of specific antimyeloma T cells previously expanded in vitro.

  7. Analysis of tumor template from multiple compartments in a blood sample provides complementary access to peripheral tumor biomarkers

    PubMed Central

    Strauss, William M.; Carter, Chris; Simmons, Jill; Klem, Erich; Goodman, Nathan; Vahidi, Behrad; Romero, Juan; Masterman-Smith, Michael; O'Regan, Ruth; Gogineni, Keerthi; Schwartzberg, Lee; Austin, Laura K.; Dempsey, Paul W.; Cristofanilli, Massimo

    2016-01-01

    Targeted cancer therapeutics are promised to have a major impact on cancer treatment and survival. Successful application of these novel treatments requires a molecular definition of a patient's disease typically achieved through the use of tissue biopsies. Alternatively, allowing longitudinal monitoring, biomarkers derived from blood, isolated either from circulating tumor cell derived DNA (ctcDNA) or circulating cell-free tumor DNA (ccfDNA) may be evaluated. In order to use blood derived templates for mutational profiling in clinical decisions, it is essential to understand the different template qualities and how they compare to biopsy derived template DNA as both blood-based templates are rare and distinct from the gold-standard. Using a next generation re-sequencing strategy, concordance of the mutational spectrum was evaluated in 32 patient-matched ctcDNA and ccfDNA templates with comparison to tissue biopsy derived DNA template. Different CTC antibody capture systems for DNA isolation from patient blood samples were also compared. Significant overlap was observed between ctcDNA, ccfDNA and tissue derived templates. Interestingly, if the results of ctcDNA and ccfDNA template sequencing were combined, productive samples showed similar detection frequency (56% vs 58%), were temporally flexible, and were complementary both to each other and the gold standard. These observations justify the use of a multiple template approach to the liquid biopsy, where germline, ctcDNA, and ccfDNA templates are employed for clinical diagnostic purposes and open a path to comprehensive blood derived biomarker access. PMID:27049831

  8. CD28 ligation in the absence of TCR stimulation up-regulates IL-17A and pro-inflammatory cytokines in relapsing-remitting multiple sclerosis T lymphocytes.

    PubMed

    Camperio, Cristina; Muscolini, Michela; Volpe, Elisabetta; Di Mitri, Diletta; Mechelli, Rosella; Buscarinu, Maria C; Ruggieri, Serena; Piccolella, Enza; Salvetti, Marco; Gasperini, Claudio; Battistini, Luca; Tuosto, Loretta

    2014-01-01

    CD28 is a crucial costimulatory receptor necessary full T cell activation. The role of CD28 in multiple sclerosis (MS) has been evaluated as the source of costimulatory signals integrating those delivered by TCR. However, CD28 is also able to act as a unique signaling receptor and to deliver TCR-independent autonomous signals, which regulate the expression and production of pro-inflammatory cytokines and chemokines. By comparing the cytokine/chemokine profiles of CD4(+) T cells from relapsing-remitting multiple sclerosis (RRMS) patients and healthy donors (HD), we found that CD28 engagement without TCR strongly up-regulates IL-8 and IL-6 expression in RRMS compared to HD. More interestingly, in RRMS but not in HD, CD28 stimulation selectively induces the expression of IL-17A by cooperating with IL-6-mediated signals. By using specific inhibitory drugs, we also identify the phosphatidylinositol 3 kinase (PI3K) as the critical regulator of CD28 proinflammatory functions in MS.

  9. An in vitro model for dengue virus infection that exhibits human monocyte infection, multiple cytokine production and dexamethasone immunomodulation.

    PubMed

    Reis, Sônia Regina Nogueira Ignácio; Sampaio, André Luiz Franco; Henriques, Maria das Graças Muller; Gandini, Mariana; Azeredo, Elzinandes Leal; Kubelka, Claire Fernandes

    2007-12-01

    An important cytokine role in dengue fever pathogenesis has been described. These molecules can be associated with haemorrhagic manifestations, coagulation disorders, hypotension and shock, all symptoms implicated in vascular permeability and disease worsening conditions. Several immunological diseases have been treated by cytokine modulation and dexamethasone is utilized clinically to treat pathologies with inflammatory and autoimmune etiologies. We established an in vitro model with human monocytes infected by dengue virus-2 for evaluating immunomodulatory and antiviral activities of potential pharmaceutical products. Flow cytometry analysis demonstrated significant dengue antigen detection in target cells two days after infection. TNF-alpha, IFN-alpha, IL-6 and IL-10 are produced by in vitro infected monocytes and are significantly detected in cell culture supernatants by multiplex microbead immunoassay. Dexamethasone action was tested for the first time for its modulation in dengue infection, presenting optimistic results in both decreasing cell infection rates and inhibiting TNF-alpha, IFN-alpha and IL-10 production. This model is proposed for novel drug trials yet to be applied for dengue fever.

  10. Body fluid biomarkers in multiple sclerosis: how far we have come and how they could affect the clinic now and in the future

    PubMed Central

    Raphael, Itay; Webb, Johanna; Stuve, Olaf; Haskins, William E.; Forsthuber, Thomas G.

    2015-01-01

    Multiple Sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS) which affects over 2.5 million people worldwide. Although MS has been extensively studied, many challenges still remain in regards to treatment, diagnosis, and prognosis. Typically, prognosis and individual responses to treatment are evaluated by clinical tests such the expanded disability status scale (EDSS), magnetic resonance imaging (MRI), and presence of oligoclonal bands (OCB) in the cerebrospinal fluid (CSF). However, none of these measures correlate strongly with treatment efficacy or disease progression across heterogeneous patient populations and subtypes of MS. Numerous studies over the past decades have attempted to identify sensitive and specific biomarkers for diagnosis, prognosis, and treatment efficacy of MS. The objective of this article is to review and discuss the current literature on body fluid biomarkers in MS, including research on potential biomarker candidates in the areas of microRNA, messenger RNA, lipids, and proteins. PMID:25523168

  11. Reverse Phase Protein Arrays—Quantitative Assessment of Multiple Biomarkers in Biopsies for Clinical Use

    PubMed Central

    Boellner, Stefanie; Becker, Karl-Friedrich

    2015-01-01

    Reverse Phase Protein Arrays (RPPA) represent a very promising sensitive and precise high-throughput technology for the quantitative measurement of hundreds of signaling proteins in biological and clinical samples. This array format allows quantification of one protein or phosphoprotein in multiple samples under the same experimental conditions at the same time. Moreover, it is suited for signal transduction profiling of small numbers of cultured cells or cells isolated from human biopsies, including formalin fixed and paraffin embedded (FFPE) tissues. Owing to the much easier sample preparation, as compared to mass spectrometry based technologies, and the extraordinary sensitivity for the detection of low-abundance signaling proteins over a large linear range, RPPA have the potential for characterization of deregulated interconnecting protein pathways and networks in limited amounts of sample material in clinical routine settings. Current aspects of RPPA technology, including dilution curves, spotting, controls, signal detection, antibody validation, and calculation of protein levels are addressed. PMID:27600215

  12. Reverse Phase Protein Arrays—Quantitative Assessment of Multiple Biomarkers in Biopsies for Clinical Use

    PubMed Central

    Boellner, Stefanie; Becker, Karl-Friedrich

    2015-01-01

    Reverse Phase Protein Arrays (RPPA) represent a very promising sensitive and precise high-throughput technology for the quantitative measurement of hundreds of signaling proteins in biological and clinical samples. This array format allows quantification of one protein or phosphoprotein in multiple samples under the same experimental conditions at the same time. Moreover, it is suited for signal transduction profiling of small numbers of cultured cells or cells isolated from human biopsies, including formalin fixed and paraffin embedded (FFPE) tissues. Owing to the much easier sample preparation, as compared to mass spectrometry based technologies, and the extraordinary sensitivity for the detection of low-abundance signaling proteins over a large linear range, RPPA have the potential for characterization of deregulated interconnecting protein pathways and networks in limited amounts of sample material in clinical routine settings. Current aspects of RPPA technology, including dilution curves, spotting, controls, signal detection, antibody validation, and calculation of protein levels are addressed.

  13. Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes

    SciTech Connect

    De Luca, Chiara; Scordo, Maria G.; Cesareo, Eleonora; Pastore, Saveria; Mariani, Serena; Maiani, Gianluca; Stancato, Andrea; Loreti, Beatrice; Valacchi, Giuseppe; Lubrano, Carla; Raskovic, Desanka; De Padova, Luigia; Genovesi, Giuseppe; Korkina, Liudmila G.

    2010-11-01

    Background: Multiple chemical sensitivity (MCS) is a poorly clinically and biologically defined environment-associated syndrome. Although dysfunctions of phase I/phase II metabolizing enzymes and redox imbalance have been hypothesized, corresponding genetic and metabolic parameters in MCS have not been systematically examined. Objectives: We sought for genetic, immunological, and metabolic markers in MCS. Methods: We genotyped patients with diagnosis of MCS, suspected MCS and Italian healthy controls for allelic variants of cytochrome P450 isoforms (CYP2C9, CYP2C19, CYP2D6, and CYP3A5), UDP-glucuronosyl transferase (UGT1A1), and glutathione S-transferases (GSTP1, GSTM1, and GSTT1). Erythrocyte membrane fatty acids, antioxidant (catalase, superoxide dismutase (SOD)) and glutathione metabolizing (GST, glutathione peroxidase (Gpx)) enzymes, whole blood chemiluminescence, total antioxidant capacity, levels of nitrites/nitrates, glutathione, HNE-protein adducts, and a wide spectrum of cytokines in the plasma were determined. Results: Allele and genotype frequencies of CYPs, UGT, GSTM, GSTT, and GSTP were similar in the Italian MCS patients and in the control populations. The activities of erythrocyte catalase and GST were lower, whereas Gpx was higher than normal. Both reduced and oxidised glutathione were decreased, whereas nitrites/nitrates were increased in the MCS groups. The MCS fatty acid profile was shifted to saturated compartment and IFNgamma, IL-8, IL-10, MCP-1, PDGFbb, and VEGF were increased. Conclusions: Altered redox and cytokine patterns suggest inhibition of expression/activity of metabolizing and antioxidant enzymes in MCS. Metabolic parameters indicating accelerated lipid oxidation, increased nitric oxide production and glutathione depletion in combination with increased plasma inflammatory cytokines should be considered in biological definition and diagnosis of MCS.

  14. The Critical Role of Antigen-Presentation-Induced Cytokine Crosstalk in the Central Nervous System in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Sosa, Rebecca A.

    2011-01-01

    Multiple sclerosis (MS) is a debilitating disease of the central nervous system (CNS) that has been extensively studied using the animal model experimental autoimmune encephalomyelitis (EAE). It is believed that CD4+ T lymphocytes play an important role in the pathogenesis of this disease by mediating the demyelination of neuronal axons via secretion of proinflammatory cytokines resulting in the clinical manifestations. Although a great deal of information has been gained in the last several decades about the cells involved in the inflammatory and disease mediating process, important questions have remained unanswered. It has long been held that initial neuroantigen presentation and T cell activation events occur in the immune periphery and then translocate to the CNS. However, an increasing body of evidence suggests that antigen (Ag) presentation might initiate within the CNS itself. Importantly, it has remained unresolved which antigen presenting cells (APCs) in the CNS are the first to acquire and present neuroantigens during EAE/MS to T cells, and what the conditions are under which this takes place, ie, whether this occurs in the healthy CNS or only during inflammatory conditions and what the related cytokine microenvironment is comprised of. In particular, the central role of interferon-γ as a primary mediator of CNS pathology during EAE has been challenged by the emergence of Th17 cells producing interleukin-17. This review describes our current understanding of potential APCs in the CNS and the contribution of these and other CNS-resident cells to disease pathology. Additionally, we discuss the question of where Ag presentation is initiated and under what conditions neuroantigens are made available to APCs with special emphasis on which cytokines may be important in this process. PMID:21919736

  15. Interplay between pro-inflammatory cytokines and brain oxidative stress biomarkers: evidence of parallels between butyl paraben intoxication and the valproic acid brain physiopathology in autism rat model.

    PubMed

    Hegazy, Hoda G; Ali, Elham H A; Elgoly, Amany H Mahmoud

    2015-02-01

    Butyl paraben is a preservative used in food, drugs and cosmetics. Neurotoxic effect was reported recently beside the potential estrogenic activity of parabens. There is controversy as to the potential harmful effects of butyl parabens, which are suspected to contribute to autism and learning disabilities. The purpose of this study was to examine the similarities between paraben intoxication signs in the rat brain and brain markers in an autistic like rat model. This study provides evidence of many parallels between the two, including (1) oxidative stress, (2) decreased reduced glutathione levels and elevated oxidised glutathione, (3) mitochondrial dysfunction, and (4) neuroinflammation and increased pro-inflammatory cytokine levels in the brain (tumour necrosis factor-alpha, interleukin-1-beta, and interleukin-6). (5) Increased protein oxidation reported by a significant increase in 3-nitrotyrosine (3-NT)/tyrosine ratio. (6) A marked disturbance was found in the production of energy carriers (AMP, ATP and AMP/ATP ratio) in comparison with the control. The evidence suggests that paraben may, to some extent, either cause or contribute to the brain physiopathology in ASDs or pathogens that produce the brain pathology observed in the diagnosed rat model of ASD.

  16. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers.

    PubMed

    Sanjay, Sharma T; Dou, Maowei; Sun, Jianjun; Li, XiuJun

    2016-01-01

    Enzyme linked immunosorbent assay (ELISA) is one of the most widely used laboratory disease diagnosis methods. However, performing ELISA in low-resource settings is limited by long incubation time, large volumes of precious reagents, and well-equipped laboratories. Herein, we developed a simple, miniaturized paper/PMMA (poly(methyl methacrylate)) hybrid microfluidic microplate for low-cost, high throughput, and point-of-care (POC) infectious disease diagnosis. The novel use of porous paper in flow-through microwells facilitates rapid antibody/antigen immobilization and efficient washing, avoiding complicated surface modifications. The top reagent delivery channels can simply transfer reagents to multiple microwells thus avoiding repeated manual pipetting and costly robots. Results of colorimetric ELISA can be observed within an hour by the naked eye. Quantitative analysis was achieved by calculating the brightness of images scanned by an office scanner. Immunoglobulin G (IgG) and Hepatitis B surface Antigen (HBsAg) were quantitatively analyzed with good reliability in human serum samples. Without using any specialized equipment, the limits of detection of 1.6 ng/mL for IgG and 1.3 ng/mL for HBsAg were achieved, which were comparable to commercial ELISA kits using specialized equipment. We envisage that this simple POC hybrid microplate can have broad applications in various bioassays, especially in resource-limited settings. PMID:27456979

  17. Multiple biomarkers of the cytotoxicity induced by BDE-47 in human embryonic kidney cells.

    PubMed

    Wu, Huifeng; Cao, Lulu; Li, Fei; Lian, Peiwen; Zhao, Jianmin

    2015-05-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame-retardants in a variety of industrial products. Among these PBDEs, 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47) is one of the most predominant congeners inducing multiple toxicities, including hepatotoxicity, neurotoxicity, cytotoxicity, genotoxicity, carcinogenecity and immunotoxicity in human body. In this study, the cytotoxicity of BDE-47 in human embryonic kidney cells (HEK293) was investigated by a set of bioassays, including cell proliferation, apoptosis, oxidative stress and metabolic responses as well as gene expressions related to apoptosis. Results showed that BDE-47 induced an inverted U-shaped curve of cell proliferation in HEK293 cells from 10(-6) to 10(-4) M. Cell apoptosis and ROS overproduction were detected at 10(-5) M of BDE-47 (p<0.05). In addition, the expressions of Bcl-2 family-encoding genes (Bad, Hrk and Bcl-2) increased significantly in 10(-4)M group (p<0.05). Metabolic responses indicated that BDE-47 mainly caused disturbance in energy metabolism marked by differentially altered ethanol, glutathione, creatine, aspartate, UDP-glucose and NAD(+). The increased lactate/alanine ratios indicated the higher reductive state induced by BDE-47 in all exposures confirmed by the overproduction of ROS. PMID:25697951

  18. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers

    PubMed Central

    Sanjay, Sharma T.; Dou, Maowei; Sun, Jianjun; Li, XiuJun

    2016-01-01

    Enzyme linked immunosorbent assay (ELISA) is one of the most widely used laboratory disease diagnosis methods. However, performing ELISA in low-resource settings is limited by long incubation time, large volumes of precious reagents, and well-equipped laboratories. Herein, we developed a simple, miniaturized paper/PMMA (poly(methyl methacrylate)) hybrid microfluidic microplate for low-cost, high throughput, and point-of-care (POC) infectious disease diagnosis. The novel use of porous paper in flow-through microwells facilitates rapid antibody/antigen immobilization and efficient washing, avoiding complicated surface modifications. The top reagent delivery channels can simply transfer reagents to multiple microwells thus avoiding repeated manual pipetting and costly robots. Results of colorimetric ELISA can be observed within an hour by the naked eye. Quantitative analysis was achieved by calculating the brightness of images scanned by an office scanner. Immunoglobulin G (IgG) and Hepatitis B surface Antigen (HBsAg) were quantitatively analyzed with good reliability in human serum samples. Without using any specialized equipment, the limits of detection of 1.6 ng/mL for IgG and 1.3 ng/mL for HBsAg were achieved, which were comparable to commercial ELISA kits using specialized equipment. We envisage that this simple POC hybrid microplate can have broad applications in various bioassays, especially in resource-limited settings. PMID:27456979

  19. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers

    NASA Astrophysics Data System (ADS)

    Sanjay, Sharma T.; Dou, Maowei; Sun, Jianjun; Li, Xiujun

    2016-07-01

    Enzyme linked immunosorbent assay (ELISA) is one of the most widely used laboratory disease diagnosis methods. However, performing ELISA in low-resource settings is limited by long incubation time, large volumes of precious reagents, and well-equipped laboratories. Herein, we developed a simple, miniaturized paper/PMMA (poly(methyl methacrylate)) hybrid microfluidic microplate for low-cost, high throughput, and point-of-care (POC) infectious disease diagnosis. The novel use of porous paper in flow-through microwells facilitates rapid antibody/antigen immobilization and efficient washing, avoiding complicated surface modifications. The top reagent delivery channels can simply transfer reagents to multiple microwells thus avoiding repeated manual pipetting and costly robots. Results of colorimetric ELISA can be observed within an hour by the naked eye. Quantitative analysis was achieved by calculating the brightness of images scanned by an office scanner. Immunoglobulin G (IgG) and Hepatitis B surface Antigen (HBsAg) were quantitatively analyzed with good reliability in human serum samples. Without using any specialized equipment, the limits of detection of 1.6 ng/mL for IgG and 1.3 ng/mL for HBsAg were achieved, which were comparable to commercial ELISA kits using specialized equipment. We envisage that this simple POC hybrid microplate can have broad applications in various bioassays, especially in resource-limited settings.

  20. Biomarkers in overactive bladder.

    PubMed

    Bhide, Alka A; Cartwright, Rufus; Khullar, Vik; Digesu, G Alessandro

    2013-07-01

    A biomarker is an indicator of a particular disease. It is generally used to define the presence (diagnostic biomarker), severity, progression (prognostic biomarker) of a condition and/or its response to a specific treatment (predictive biomarker). Biomarkers can be specific cells, enzymes, hormones, genes or gene products, which can be detected and measured in parts of the body such as blood, urine or tissue. Therefore, biomarkers have been suggested to play an important role in both the clinical assessment and the management of patients, as well as in the research setting. Recently, interest has gathered in urinary biomarkers as a tool to assess overactive bladder (OAB), potentially playing a role in the diagnosis, disease progression and monitoring response to treatment. Urinary biomarkers identified so far include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), prostaglandins, cytokines and C-reactive protein. The aim of this review was to review the published literature on biomarkers in OAB. A literature review using Pub Med, clinicaltrials.gov and the controlled trials online registries was performed from 1970 up to June 2012. The search keywords were: the International Continence Society (ICS) definition of "OAB", "nerve growth fac- tor" (NGF), "brain derived growth factor" (BDNF), "prostaglandins," "cytokines," "genetic biomarkers" and "C reactive protein".The results were limited for fully published English-language articles. The search was then subsequently expanded to include urinary biomarkers in interstitial cystitis and bladder pain where relevant. Each of the studies/articles was reviewed, interpreted and discussed to consider the role of urinary biomarkers in OAB. Using the search criteria, a total of 20 studies (animal and human) that investigated the role of urinary biomarkers in OAB were identified. Full text versions of these articles were obtained and reviewed. Studies on NGF suggested that urinary levels were higher in OAB

  1. [MicroRNAs and their neuroimmunoregulator mechanisms in multiple sclerosis. Development of biomarkers for diagnosis].

    PubMed

    Sánchez-Chaparro, M Marisela; Rodríguez-Sánchez, Iram P; Barrera-Saldaña, Hugo A; Martínez-Villarreal, Laura E; Resendez-Pérez, Diana; Gámez-Escobedo, Idalia A

    2015-06-16

    Introduccion. Los microARN (miARN) son moleculas que han generado gran atencion como reguladores de procesos de silenciamiento genico en diferentes organismos. La desregulacion de los mecanismos efectuados por estas moleculas se vincula al desarrollo y progresion de los trastornos relacionados con el sistema inmune. Diferentes estudios exponen que los miARN desempeñan un papel fundamental en procesos neuronales e inmunes, y se relacionan con los mecanismos de las enfermedades que afectan ambos sistemas. La esclerosis multiple (EM) es una enfermedad neurodegenerativa debida a la desmielinizacion axonal causada por procesos autoinmunes. Objetivo. Mostrar la estrecha relacion de las funciones regulatorias de los miARN en vias de señalizacion neuroinmunologicas en el desarrollo de la EM, asi como su estudio como biomarcadores diagnosticos para su uso en pacientes. Desarrollo. En la literatura cientifica se ha estudiado y establecido el papel de los miARN como moduladores de los procesos celulares. Sin embargo, poco se ha abordado sobre su funcionalidad en las celulas gliales dentro de los procesos de plasticidad neuronal, regulacion de la desmielinizacion y reconstitucion axonal, por lo que su revision constituye el proposito de este escrito. Ademas, algunos miARN previamente evaluados se describen para su enfoque diagnostico para la deteccion, curso y tratamiento de la EM, y se encuentran en investigacion o implementacion. Conclusiones. Existe una fuerte evidencia del papel que realizan los miARN en los mecanismos homeostaticos axonales durante la evolucion de la EM. Esto representa un area de estudio para explorar el uso de estas moleculas para la comprension de esta enfermedad, su diagnostico oportuno y la evolucion en los pacientes.

  2. Evolving changes in disease biomarkers and risk of early progression in smoldering multiple myeloma.

    PubMed

    Ravi, P; Kumar, S; Larsen, J T; Gonsalves, W; Buadi, F; Lacy, M Q; Go, R; Dispenzieri, A; Kapoor, P; Lust, J A; Dingli, D; Lin, Y; Russell, S J; Leung, N; Gertz, M A; Kyle, R A; Bergsagel, P L; Rajkumar, S V

    2016-01-01

    We studied 190 patients with smoldering multiple myeloma (SMM) at our institution between 1973 and 2014. Evolving change in monoclonal protein level (eMP) was defined as ⩾10% increase in serum monoclonal protein (M) and/or immunoglobulin (Ig) (M/Ig) within the first 6 months of diagnosis (only if M-protein ⩾3 g/dl) and/or ⩾25% increase in M/Ig within the first 12 months, with a minimum required increase of 0.5 g/dl in M-protein and/or 500 mg/dl in Ig. Evolving change in hemoglobin (eHb) was defined as ⩾0.5 g/dl decrease within 12 months of diagnosis. A total of 134 patients (70.5%) progressed to MM over a median follow-up of 10.4 years. On multivariable analysis adjusting for factors known to predict for progression to MM, bone marrow plasma cells ⩾20% (odds ratio (OR)=3.37 (1.30-8.77), P=0.013), eMP (OR=8.20 (3.19-21.05), P<0.001) and eHb (OR=5.86 (2.12-16.21), P=0.001) were independent predictors of progression within 2 years of SMM diagnosis. A risk model comprising these variables was constructed, with median time to progression of 12.3, 5.1, 2.0 and 1.0 years among patients with 0-3 risk factors respectively. The 2-year progression risk was 81.5% in individuals who demonstrated both eMP and eHb, and 90.5% in those with all three risk factors. PMID:27471870

  3. Evolving changes in disease biomarkers and risk of early progression in smoldering multiple myeloma

    PubMed Central

    Ravi, P; Kumar, S; Larsen, J T; Gonsalves, W; Buadi, F; Lacy, M Q; Go, R; Dispenzieri, A; Kapoor, P; Lust, J A; Dingli, D; Lin, Y; Russell, S J; Leung, N; Gertz, M A; Kyle, R A; Bergsagel, P L; Rajkumar, S V

    2016-01-01

    We studied 190 patients with smoldering multiple myeloma (SMM) at our institution between 1973 and 2014. Evolving change in monoclonal protein level (eMP) was defined as ⩾10% increase in serum monoclonal protein (M) and/or immunoglobulin (Ig) (M/Ig) within the first 6 months of diagnosis (only if M-protein ⩾3 g/dl) and/or ⩾25% increase in M/Ig within the first 12 months, with a minimum required increase of 0.5 g/dl in M-protein and/or 500 mg/dl in Ig. Evolving change in hemoglobin (eHb) was defined as ⩾0.5 g/dl decrease within 12 months of diagnosis. A total of 134 patients (70.5%) progressed to MM over a median follow-up of 10.4 years. On multivariable analysis adjusting for factors known to predict for progression to MM, bone marrow plasma cells ⩾20% (odds ratio (OR)=3.37 (1.30–8.77), P=0.013), eMP (OR=8.20 (3.19–21.05), P<0.001) and eHb (OR=5.86 (2.12–16.21), P=0.001) were independent predictors of progression within 2 years of SMM diagnosis. A risk model comprising these variables was constructed, with median time to progression of 12.3, 5.1, 2.0 and 1.0 years among patients with 0–3 risk factors respectively. The 2-year progression risk was 81.5% in individuals who demonstrated both eMP and eHb, and 90.5% in those with all three risk factors. PMID:27471870

  4. Multiple Biomarkers to Assess the Pathophysiological State in Critically Ill Patients with Sepsis.

    PubMed

    Ashok Kumar, Prashanth; Anand, Usha

    2016-07-01

    Sepsis is associated with various metabolic derangements as a consequence of inflammatory response, ischemia and oxidative stress. Four parameters of relevance are procalcitonin (PCT), ischemia modified albumin (IMA) pH and lactate. The study was carried out to highlight the concomitant occurrence of sepsis, ischemia and lactic acidosis, all of which could have deleterious effects on organ function. 26 critically ill patients with a provisional diagnosis of sepsis were the test subjects. The control group had 25 apparently healthy volunteers. PCT, lactate and IMA were assayed. PCT was estimated on an automated analyser using electro-chemiluminescence. Lactate and pH were estimated on a blood gas analyzer. Serum IMA was estimated spectrophotometrically by Albumin Cobalt Binding Test. Statistical tools like students 't' test and Venn diagram were employed to depict the outcome of the study. All critically ill patients had significantly higher IMA levels (0.96746 ± 0.73407) as compared to the control group (0.00728 ± 0.00895) with a p value of <0.0001. The Venn diagram was used to depict the finding that all 26 test subjects had elevated levels of IMA, of which PCT was elevated in 22 and lactate in 20. Both PCT and lactate were abnormal in 17 patients. The most significant observation was that all critically ill patients, irrespective of the presence of sepsis or lactic acidosis had elevated levels of IMA which is clearly indicative of the ubiquitous presence of oxidative stress. The Venn diagram is an elegant representation of the concurrent multiple pathophysiological processes which occur in critically ill patients. PMID:27382202

  5. [Immunostimulating drugs and cytokines].

    PubMed

    Lehners, Nicola; Goldschmidt, Hartmut; Raab, Marc S

    2011-11-01

    Cytokines are essential regulators of hematopoesis and the immune system. Genetic engineering of recombinant cytokines has facilitated their implementation in many clinical areas. In the field of oncology the granulopoetic human growth factors G-CSF and GM-CSF are of particular importance. They can be applied to prevent chemotherapy induced neutropenia. Furthermore, they allow for mobilization of hematopoetic stem cells in order to obtain peripheral blood stem cell transplants. Another class of cytokines, the interferons, possess immunomodulating, antiproliferative, and antiviral properties. While the significance of interferon alfa as an antitumor agent is dwindling, it still plays a very important role in the therapy of chronic hepatitis b and c. Interferon beta is successfully used to treat multiple sclerosis. Among the heterogenous group of interleukines in particular interleukin 2 has reached clinical practice as an immunostimulating agent in the therapy of metastatic renal cell carcinoma. Many other cytokines have yet to undergo clinical trials.

  6. Cytokines and acute pancreatitis.

    PubMed

    Brady, M; Christmas, S; Sutton, R; Neoptolemos, J; Slavin, J

    1999-07-01

    Cytokines have been shown to play a pivotal role in multiple organ dysfunction, a major cause of death in severe acute pancreatitis. Moreover, the two-hit hypothesis of the cytokine-induced systemic inflammatory response syndrome explains the variable individual response to severe acute pancreatitis and the impact of secondary events such as sepsis or therapeutic intervention. Many experimental anti-cytokine therapies have been administered following induction of experimental pancreatitis, and have proved to be therapeutic. Patients with severe pancreatitis present early because of pain. Clearly then a window for therapeutic intervention is available between onset of symptoms and peak pro-inflammatory cytokine expression. It is this fundamental observation that convinces many in the field that the treatment of AP will be one of the first clinical successes for novel drugs or therapy that seek to modulate the inflammatory response.

  7. Sarcomatoid variant of ALK- anaplastic large cell lymphoma involving multiple lymph nodes and both lungs with production of proinflammatory cytokines: report of a case and review of literature

    PubMed Central

    Yu, Lu; Yan, Lin Li; Yang, Shou Jing

    2014-01-01

    Sarcomatoid variant of anaplastic large cell lymphoma (ALCL) is one of the rarest histologic variants of ALCL that consists of large, bizarre, often spindle-shaped, neoplastic cells resembling a soft tissue sarcoma. We report here such a case of ALCL with both pulmonary and multiple nodal involvement in a 47-year-old woman who initially presented with fever, cough, sputum, itching skin, and weight loss. The initial transbronchial lung biopsy showed discohesive pleomorphic malignant cells in a strong inflammatory milieu reminiscent of inflammatory malignant fibrous histiocytoma (MFH). Subsequent cervical lymph node biopsy revealed a spindle cell sarcoma predominantly composed of plump spindle and oval neoplastic cells in interweaving fascicles, with sparse inflammatory infiltrates, resembling pleomorphic-storiform type of MFH. However, these tumor cells in the lung and node lesions revealed essentially similar immunohistochemical features that were positive for CD30, EMA, TIA-1, granzyme B, and fascin, but negative for anaplastic lymphoma kinase (ALK), and T- or B-lineage-specific marker. The spindled cells stains diffuse strong positive for smooth muscle actin (SMA), along with vimentin. Further studies showed that the tumor produced large quantities of the proinflammatory cytokines interleukin-2 (IL-2), IL-6, and IL-8, which we believe may contribute to the pathogenesis of sarcomatoid transformation of this tumor, and was associated with the patient’s inflammatory symptoms. To the best of our knowledge, this is the first reported case of sarcomatoid variant of ALK-negative ALCL with null cell phenotype and in situ production of proinflammatory cytokines presenting as multiple nodes and pulmonary involvement. PMID:25197351

  8. Cytokine and chemokine profiles in multiple myeloma; significance of stromal interaction and correlation of IL-8 production with disease progression.

    PubMed

    Kline, Michael; Donovan, Kathleen; Wellik, Linda; Lust, Christopher; Jin, Wendy; Moon-Tasson, Laurie; Xiong, Yuning; Witzig, Thomas E; Kumar, Shaji; Rajkumar, S Vincent; Lust, John A

    2007-05-01

    Multiple myeloma (MM) is a product of interactions between tumor plasma cells and multiple cell types native to the bone marrow (BM). We have used antibody array technology to examine the proteins produced by BM stromal cells in response to stimulation by BM taken from patients diagnosed with monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and MM. We observed increased production of the chemokine IL-8 by stromal cells co-cultured with supernatants from bone marrow cells of patients with active myeloma. IL-8 production is correlated with active disease and is dependent upon IL-1beta and NF-kappaB signaling. Consistent with the pro-angiogenic activity of IL-8, increased BM microvessel density (MVD) correlated with stimulation of stromal cell IL-8 production. In addition, the majority of MM cell lines and MM patient plasma cells were found to express IL-8 receptors CXCR1 and CXCR2. We conclude that stromal cell IL-8 production parallels MM disease activity, is IL-1beta induced, and correlates with bone marrow angiogenesis. PMID:16879867

  9. The Glycan Role in the Glycopeptide Immunogenicity Revealed by Atomistic Simulations and Spectroscopic Experiments on the Multiple Sclerosis Biomarker CSF114(Glc)

    NASA Astrophysics Data System (ADS)

    Bruno, Agostino; Scrima, Mario; Novellino, Ettore; D'Errico, Gerardino; D'Ursi, Anna Maria; Limongelli, Vittorio

    2015-03-01

    Glycoproteins are often recognized as not-self molecules by antibodies triggering the onset of severe autoimmune diseases such as Multiple Sclerosis (MS). Thus, the development of antigen-mimicking biomarkers represents an attractive strategy for an early diagnosis of the disease. An example is the synthetic glycopeptide CSF114(Glc), which was designed and tested as MS biomarker and whose clinical application was limited by its reduced ability to detect autoantibodies in MS patients. In the attempt to improve the efficacy of CSF114(Glc), we have characterized all the events leading to the final binding of the biomarker to the autoantibody using atomistic simulations, ESR and NMR experiments. The glycosydic moiety plays a primary role in the whole process. In particular, in an environment mimicking that used in the clinical tests the glycopeptide assumes a α-helix structure that is functional for the interaction with the antibody. In this conformation CSF114(Glc) binds the monoclonal antibody mAb8-18C5 similarly to the myelin oligodendrocyte glycoprotein MOG, which is a known MS auto-antigen, thus explaining its diagnostic activity. Our study offers new molecular bases to design more effective biomarkers and provides a most valid protocol to investigate other systems where the environment effect is determinant for the biological activity.

  10. A multiplex cytokine score for the prediction of disease severity in pediatric hematology/oncology patients with septic shock.

    PubMed

    Xu, Xiao-Jun; Tang, Yong-Min; Song, Hua; Yang, Shi-Long; Xu, Wei-Qun; Shi, Shu-Wen; Zhao, Ning; Liao, Chan

    2013-11-01

    Although many inflammatory cytokines are prognostic in sepsis, the utility of cytokines in evaluating disease severity in pediatric hematology/oncology patients with septic shock was rarely studied. On the other hand, a single particular cytokine is far from ideal in guiding therapeutic intervention, but combination of multiple biomarkers improves the accuracy. In this prospective observational study, 111 episodes of septic shock in pediatric hematology/oncology patients were enrolled from 2006 through 2012. Blood samples were taken for inflammatory cytokine measurement by cytometric bead array (CBA) technology at the initial onset of septic shock. Interleukin (IL)-6 and IL-10 were significantly elevated in majority of patients, while tumor necrosis factor (TNF)-α and interferon (IFN)-γ were markedly increased in patients with high pediatric index of mortality 2 (PIM2) score and non-survivors. All the four cytokines paralleled the PIM2 score and differentially correlated with hemodynamic disorder and fatal outcomes. The pediatric multiplex cytokine score (PMCS), which integrated the four cytokines into one score system, was related to hemodynamic disorder and mortality as well, but showed more powerful prediction ability than each of the four cytokines. PMCS was an independent predictive factor for fatal outcome, presenting similar discriminative power with PIM2, with accuracy of 0.83 (95% CI, 0.71-0.94). In conclusion, this study develops a cytokine scoring system based on CBA technique, which performs well in disease severity and fatality prediction in pediatric hematology/oncology patients with septic shock. PMID:24051223

  11. Molecular pathogenesis of multiple myeloma: chromosomal aberrations, changes in gene expression, cytokine networks, and the bone marrow microenvironment.

    PubMed

    Klein, Bernard; Seckinger, Anja; Moehler, Thomas; Hose, Dirk

    2011-01-01

    This chapter focuses on two aspects of myeloma pathogenesis: (1) chromosomal aberrations and resulting changes in gene and protein expression with a special focus on growth and survival factors of malignant (and normal) plasma cells and (2) the remodeling of the bone marrow microenvironment induced by accumulating myeloma cells. We begin this chapter with a discussion of normal plasma cell generation, their survival, and a novel class of inhibitory factors. This is crucial for the understanding of multiple myeloma, as several abilities attributed to malignant plasma cells are already present in their normal counterpart, especially the production of survival factors and interaction with the bone marrow microenvironment (niche). The chapter closes with a new model of pathogenesis of myeloma.

  12. CENTRAL AUDTIORY DEVELOPMENT IN CHILDREN WITH HEARING LOSS: CLINICAL RELEVANCE OF THE P1 CAEP BIOMARKER IN HEARING-IMPAIRED CHILDREN WITH MULTIPLE DISABILITIES*

    PubMed Central

    Sharma, Anu; Glick, Hannah; Campbell, Julia; Biever, Allison

    2013-01-01

    Objective First, we review the development and plasticity of the central auditory pathways in infants and children with hearing loss who are fitted with cochlear implants (CIs). Second, we describe case studies demonstrating the clinical utility of the P1 central auditory evoked potential (CAEP) for evaluating cortical auditory maturation in the rapidly increasing number of cochlear-implanted children who have multiple disabilities. Study Design Children who receive CIs provide a platform to examine the trajectories of deprivation-induced and experience-dependent plasticity in the central auditory system. We review the evidence for, and time limits of sensitive periods for cortical auditory maturation framing an optimal period for cochlear implantation. Finally, we evaluate the use of the P1 biomarker as an objective assessment tool in the special case of children with multiple disabilities. Results The P1 response was useful in assessing central auditory maturation in patients with CHARGE association, ANSD, and Pallister-Killian Syndrome concomitant with hearing loss. Conclusion The presence of co-existing disabilities in addition to hearing loss poses unique challenges regarding both pre-intervention evaluation and post-intervention rehabilitation for children with multiple disabilities. When combined with a standard audiological test battery, the P1 CAEP biomarker has a useful role in objectively evaluating the maturation of central auditory pathways to determine the effectiveness of various intervention strategies in hearing-impaired children with multiple disabilities. PMID:24273704

  13. Reliable disease biomarkers characterizing and identifying electrohypersensitivity and multiple chemical sensitivity as two etiopathogenic aspects of a unique pathological disorder.

    PubMed

    Belpomme, Dominique; Campagnac, Christine; Irigaray, Philippe

    2015-01-01

    Much of the controversy over the causes of electro-hypersensitivity (EHS) and multiple chemical sensitivity (MCS) lies in the absence of both recognized clinical criteria and objective biomarkers for widely accepted diagnosis. Since 2009, we have prospectively investigated, clinically and biologically, 1216 consecutive EHS and/or MCS-self reporting cases, in an attempt to answer both questions. We report here our preliminary data, based on 727 evaluable of 839 enrolled cases: 521 (71.6%) were diagnosed with EHS, 52 (7.2%) with MCS, and 154 (21.2%) with both EHS and MCS. Two out of three patients with EHS and/or MCS were female; mean age (years) was 47. As inflammation appears to be a key process resulting from electromagnetic field (EMF) and/or chemical effects on tissues, and histamine release is potentially a major mediator of inflammation, we systematically measured histamine in the blood of patients. Near 40% had a increase in histaminemia (especially when both conditions were present), indicating a chronic inflammatory response can be detected in these patients. Oxidative stress is part of inflammation and is a key contributor to damage and response. Nitrotyrosin, a marker of both peroxynitrite (ONOO°-) production and opening of the blood-brain barrier (BBB), was increased in 28% the cases. Protein S100B, another marker of BBB opening was increased in 15%. Circulating autoantibodies against O-myelin were detected in 23%, indicating EHS and MCS may be associated with autoimmune response. Confirming animal experiments showing the increase of Hsp27 and/or Hsp70 chaperone proteins under the influence of EMF, we found increased Hsp27 and/or Hsp70 in 33% of the patients. As most patients reported chronic insomnia and fatigue, we determined the 24 h urine 6-hydroxymelatonin sulfate (6-OHMS)/creatinin ratio and found it was decreased (<0.8) in all investigated cases. Finally, considering the self-reported symptoms of EHS and MCS, we serially measured the brain blood

  14. New serological biomarkers of inflammatory bowel disease.

    PubMed

    Li, Xuhang; Conklin, Laurie; Alex, Philip

    2008-09-01

    Serological biomarkers in inflammatory bowel disease (IBD) are a rapidly expanding list of non-invasive tests for objective assessments of disease activity, early diagnosis, prognosis evaluation and surveillance. This review summarizes both old and new biomarkers in IBD, but focuses on the development and characterization of new serological biomarkers (identified since 2007). These include five new anti-glycan antibodies, anti-chitobioside IgA (ACCA), anti-laminaribioside IgG (ALCA), anti-manobioside IgG (AMCA), and antibodies against chemically synthesized (Sigma) two major oligomannose epitopes, Man alpha-1,3 Man alpha-1,2 Man (SigmaMan3) and Man alpha-1,3 Man alpha-1,2 Man alpha-1,2 Man (SigmaMan4). These new biomarkers serve as valuable complementary tools to existing biomarkers not only in differentiating Crohn's disease (CD), ulcerative colitis (UC), normal and other non-IBD gut diseases, but also in predicting disease involvement (ileum vs colon), IBD risk (as subclinical biomarkers), and disease course (risk of complication and surgery). Interestingly, the prevalence of the antiglycan antibodies, including anti-Saccharomyces cerevisiae antibodies (ASCA), ALCA and AMCA, was found to be associated with single nucleotide polymorphisms (SNPs) of IBD susceptible genes such as NOD2/CARD15, NOD1/CARD4, toll-like receptors (TLR) 2 and 4, and beta-defensin-1. Furthermore, a gene dosage effect was observed: anti-glycan positivity became more frequent as the number of NOD2/CARD15 SNPS increased. Other new serum/plasma IBD biomarkers reviewed include ubiquitination factor E4A (UBE4A), CXCL16 (a chemokine), resistin, and apolipoprotein A-IV. This review also discusses the most recent studies in IBD biomarker discovery by the application of new technologies such as proteomics, fourier transform near-infrared spectroscopy, and multiplex enzyme-linked immunosorbent assay (ELISA)'s (with an emphasis on cytokine/chemokine profiling). Finally, the prospects of developing more

  15. New serological biomarkers of inflammatory bowel disease.

    PubMed

    Li, Xuhang; Conklin, Laurie; Alex, Philip

    2008-09-01

    Serological biomarkers in inflammatory bowel disease (IBD) are a rapidly expanding list of non-invasive tests for objective assessments of disease activity, early diagnosis, prognosis evaluation and surveillance. This review summarizes both old and new biomarkers in IBD, but focuses on the development and characterization of new serological biomarkers (identified since 2007). These include five new anti-glycan antibodies, anti-chitobioside IgA (ACCA), anti-laminaribioside IgG (ALCA), anti-manobioside IgG (AMCA), and antibodies against chemically synthesized (Sigma) two major oligomannose epitopes, Man alpha-1,3 Man alpha-1,2 Man (SigmaMan3) and Man alpha-1,3 Man alpha-1,2 Man alpha-1,2 Man (SigmaMan4). These new biomarkers serve as valuable complementary tools to existing biomarkers not only in differentiating Crohn's disease (CD), ulcerative colitis (UC), normal and other non-IBD gut diseases, but also in predicting disease involvement (ileum vs colon), IBD risk (as subclinical biomarkers), and disease course (risk of complication and surgery). Interestingly, the prevalence of the antiglycan antibodies, including anti-Saccharomyces cerevisiae antibodies (ASCA), ALCA and AMCA, was found to be associated with single nucleotide polymorphisms (SNPs) of IBD susceptible genes such as NOD2/CARD15, NOD1/CARD4, toll-like receptors (TLR) 2 and 4, and beta-defensin-1. Furthermore, a gene dosage effect was observed: anti-glycan positivity became more frequent as the number of NOD2/CARD15 SNPS increased. Other new serum/plasma IBD biomarkers reviewed include ubiquitination factor E4A (UBE4A), CXCL16 (a chemokine), resistin, and apolipoprotein A-IV. This review also discusses the most recent studies in IBD biomarker discovery by the application of new technologies such as proteomics, fourier transform near-infrared spectroscopy, and multiplex enzyme-linked immunosorbent assay (ELISA)'s (with an emphasis on cytokine/chemokine profiling). Finally, the prospects of developing more

  16. Bioanalytical Chemistry of Cytokines-A Review

    PubMed Central

    Stenken, Julie A.; Poschenrieder, Andreas J.

    2014-01-01

    Cytokines are bioactive proteins produced by many different cells of the immune system. Due to their role in different inflammatory disease states and maintaining homeostasis, there is enormous clinical interest in the quantitation of cytokines. The typical standard methods for quantitation of cytokines are immunoassay-based techniques including enzyme-linked immusorbent assays (ELISA) and bead-based immunoassays read by either standard or modified flow cytometers. A review of recent developments in analytical methods for measurements of cytokine proteins is provided. This review briefly covers cytokine biology and the analysis challenges associated with measurement of these biomarker proteins for understanding both health and disease. New techniques applied to immunoassay-based assays are presented along with the uses of aptamers, electrochemistry, mass spectrometry, optical resonator-based methods. Methods used for elucidating the release of cytokines from single cells as well as in vivo collection methods are described. PMID:25467452

  17. Dose-Response for Multiple Biomarkers of Exposure and Genotoxic Effect Following Repeated Treatment of Rats with the Alkylating Agents, MMS and MNU.

    PubMed

    Ji, Zhiying; LeBaron, Matthew J; Schisler, Melissa R; Zhang, Fagen; Bartels, Michael J; Gollapudi, B Bhaskar; Pottenger, Lynn H

    2016-05-01

    The nature of the dose-response relationship for various in vivo endpoints of exposure and effect were investigated using the alkylating agents, methyl methanesulfonate (MMS) and methylnitrosourea (MNU). Six male F344 rats/group were dosed orally with 0, 0.5, 1, 5, 25 or 50mg/kg bw/day (mkd) of MMS, or 0, 0.01, 0.1, 1, 5, 10, 25 or 50 mkd of MNU, for 4 consecutive days and sacrificed 24h after the last dose. The dose-responses for multiple biomarkers of exposure and genotoxic effect were investigated. In MMS-treated rats, the hemoglobin adduct level, a systemic exposure biomarker, increased linearly with dose (r (2) = 0.9990, P < 0.05), indicating the systemic availability of MMS; however, the N7MeG DNA adduct, a target exposure biomarker, exhibited a non-linear dose-response in blood and liver tissues. Blood reticulocyte micronuclei (MN), a genotoxic effect biomarker, exhibited a clear no-observed-genotoxic-effect-level (NOGEL) of 5 mkd as a point of departure (PoD) for MMS. Two separate dose-response models, the Lutz and Lutz model and the stepwise approach using PROC REG both supported a bilinear/threshold dose-response for MN induction. Liver gene expression, a mechanistic endpoint, also exhibited a bilinear dose-response. Similarly, in MNU-treated rats, hepatic DNA adducts, gene expression changes and MN all exhibited clear PoDs, with a NOGEL of 1 mkd for MN induction, although dose-response modeling of the MNU-induced MN data showed a better statistical fit for a linear dose-response. In summary, these results provide in vivo data that support the existence of clear non-linear dose-responses for a number of biologically significant events along the pathway for genotoxicity induced by DNA-reactive agents.

  18. A common gene signature across multiple studies relate biomarkers and functional regulation in tolerance to renal allograft

    PubMed Central

    Baron, Daniel; Ramstein, Gérard; Chesneau, Mélanie; Echasseriau, Yann; Pallier, Annaick; Paul, Chloé; Degauque, Nicolas; Hernandez-Fuentes, Maria P; Sanchez-Fueyo, Alberto; Newell, Kenneth A; Giral, Magali; Soulillou, Jean-Paul; Houlgatte, Rémi; Brouard, Sophie

    2015-01-01

    Patients tolerant to a kidney graft display a specific blood cell transcriptional pattern but results from five different studies were inconsistent, raising the question of relevance for future clinical application. To resolve this, we sought to identify a common gene signature, specific functional and cellular components, and discriminating biomarkers for tolerance following kidney transplantation. A meta-analysis of studies identified a robust gene signature involving proliferation of B and CD4 T cells, and inhibition of CD14 monocyte related functions among 96 tolerant samples. This signature was further supported through a cross-validation approach, yielding 92.5% accuracy independent of the study of origin. Experimental validation, performed on new tolerant samples and using a selection of the top-20 biomarkers, returned 91.7% of good classification. Beyond the confirmation of B-cell involvement, our data also indicated participation of other cell subsets in tolerance. Thus, the use of the top 20 biomarkers, mostly centered on B cells, may provide a common and standardized tool towards personalized medicine for the monitoring of tolerant or low-risk patients among kidney allotransplant recipients. These data point to a global preservation of genes favoring the maintenance of a homeostatic and ‘healthy' environment in tolerant patients and may contribute to a better understanding of tolerance maintenance mechanisms. PMID:25629549

  19. Machine learning applied to chemical analysis: sensing multiple biomarkers in simulated breath using a temperature-pulsed electronic-nose.

    PubMed

    Rogers, Phillip H; Benkstein, Kurt D; Semancik, Steve

    2012-11-20

    Monitoring of chemical species in breath offers an approach for the detection of disease and other conditions that cause homeostatic imbalance. Here, we demonstrate the use of microsensor-based devices for detecting select biomarkers in simulated exhaled breath as a step toward enabling fast and inexpensive breath-screening technology. Microhotplate elements functionalized with three chemiresistive metal-oxide films (SnO(2), In(2)O(3), and CuO) were used to acquire data in simulated breath containing single targets [(5 to 20) μmol/mol ammonia, methanol, and acetone], as well as mixtures of those species. All devices were operated with programmed thermal cycles featuring rapid temperature excursions, during which film resistances were measured. Material-specific temperature programs were optimized to achieve temperature-dependent metal-oxide sensing film conductance levels and target selectivity. A supervised hierarchical machine-learning algorithm using linear discriminant analysis for dimensional reduction of sensing data and discrimination was developed. This algorithm was employed in the classification and quantification of biomarkers. This approach to microsensor data collection and processing was successful in classifying and quantifying the model biomarkers in validation-set mixtures.

  20. Methylation and mRNA expression levels of P15, death-associated protein kinase, and suppressor of cytokine signaling-1 genes in multiple myeloma

    PubMed Central

    Liu, Lin; Tan, Lin; He, Zhenxin

    2016-01-01

    Objective(s): The aim of this study was to investigate the methylation status and mRNA expression levels of P15, death-associated protein kinase (DAPK), and suppressor of cytokine signaling-1 (SOCS1) genes in multiple myeloma (MM). Materials and Methods: The bone marrow samples of 54 MM patients were collected and the methylation status of the P15, DAPK, and SOCS1 gene promoter regions was determined by methylation-specific polymerase chain reaction. Automated sequencing technology was used to sequence the amplified products in order to analyze the base methylation sites. mRNA expression levels were determined using real-time fluorescent quantitative polymerase chain reaction. Results: Among the 54 MM patients, the positive methylation rates of the P15, DAPK, and SOCS1 genes were 27.78%, 18.52%, and 16.67%, respectively. The methylation results were confirmed by sequencing. The positive methylation rates of the P15, DAPK, and SOCS1 genes showed no correlation with patient gender, age, typing, staging, and grouping (P>0.05). There was no significant difference in the mRNA expression levels of the P15, DAPK, and SOCS1 genes between the MM patient group and the control group (P>0.05). Conclusions: Aberrant methylation of the P15, DAPK, and SOCS1 genes exists in MM, and these genes may play certain roles in pathogenesis of MM. There was no significant difference in mRNA expression levels between the methylated group and the non-methylated group, suggesting that these genes are regulated by other mechanisms during their transcription. PMID:27635200

  1. Human CD4+ T-cell response to hepatitis delta virus: identification of multiple epitopes and characterization of T-helper cytokine profiles.

    PubMed Central

    Nisini, R; Paroli, M; Accapezzato, D; Bonino, F; Rosina, F; Santantonio, T; Sallusto, F; Amoroso, A; Houghton, M; Barnaba, V

    1997-01-01

    The T-cell-mediated immune response plays a crucial role in defense against hepatotropic viruses as well as in the pathogenesis of viral chronic hepatitides. However, very little is known about the role of specific T cells during hepatitis delta virus (HDV) infection in humans. In this study, the T-cell response to HDV in chronic hepatitis B virus (HBV) carriers with HDV superinfection was investigated at different levels. Analysis of peripheral blood mononuclear cell (PBMC) proliferation in response to a recombinant form of large hepatitis delta antigen (HDAg) revealed that 8 of 30 patients studied (27%) specifically responded to HDAg. By employing synthetic peptides spanning the entire HDAg sequence, we found that T-cell recognition was directed against different antigenic determinants, with patient-to-patient variation in the pattern of response to peptides. Interestingly, all responders had signs of inactive HDV-induced disease, while none of the patients with active disease and none of the control subjects showed any significant proliferation. More accurate information about the specific T-cell response was obtained at the clonal level. A panel of HDAg-specific CD4+ T-cell clones from three HDV-infected individuals and fine-specificity analysis revealed that the clones tested individually recognized four epitopes corresponding to amino acids (aa) 26 to 41, 50 to 65, 66 to 81, or 106 to 121 of HDAg sequence. The study of human leukocyte antigen (HLA) restriction revealed that peptides 50 to 65 and 106 to 121 were presented to specific T cells in association with multiple class II molecules. In addition, peptide 26 to 41 was efficiently generated after processing of HDAg through the endogenous processing pathway. Cytokine secretion analysis showed that all the CD4+ T-cell clones assayed were able to produce high levels of gamma interferon (IFN-gamma), belonging either to T helper-1 (Th1) or Th0 subsets and that some of them were cytotoxic in a specific assay

  2. Z-Scan Analysis: a New Method to Determine the Oxidative State of Low-Density Lipoprotein and Its Association with Multiple Cardiometabolic Biomarkers

    NASA Astrophysics Data System (ADS)

    de Freitas, Maria Camila Pruper; Figueiredo Neto, Antonio Martins; Giampaoli, Viviane; da Conceição Quintaneiro Aubin, Elisete; de Araújo Lima Barbosa, Milena Maria; Damasceno, Nágila Raquel Teixeira

    2016-04-01

    The great atherogenic potential of oxidized low-density lipoprotein has been widely described in the literature. The objective of this study was to investigate whether the state of oxidized low-density lipoprotein in human plasma measured by the Z-scan technique has an association with different cardiometabolic biomarkers. Total cholesterol, high-density lipoprotein cholesterol, triacylglycerols, apolipoprotein A-I and apolipoprotein B, paraoxonase-1, and glucose were analyzed using standard commercial kits, and low-density lipoprotein cholesterol was estimated using the Friedewald equation. A sandwich enzyme-linked immunosorbent assay was used to detect electronegative low-density lipoprotein. Low-density lipoprotein and high-density lipoprotein sizes were determined by Lipoprint® system. The Z-scan technique was used to measure the non-linear optical response of low-density lipoprotein solution. Principal component analysis and correlations were used respectively to resize the data from the sample and test association between the θ parameter, measured with the Z-scan technique, and the principal component. A total of 63 individuals, from both sexes, with mean age 52 years (±11), being overweight and having high levels of total cholesterol and low levels of high-density lipoprotein cholesterol, were enrolled in this study. A positive correlation between the θ parameter and more anti-atherogenic pattern for cardiometabolic biomarkers together with a negative correlation for an atherogenic pattern was found. Regarding the parameters related with an atherogenic low-density lipoprotein profile, the θ parameter was negatively correlated with a more atherogenic pattern. By using Z-scan measurements, we were able to find an association between oxidized low-density lipoprotein state and multiple cardiometabolic biomarkers in samples from individuals with different cardiovascular risk factors.

  3. Short-term sequential analysis of sex hormones and helper T cells type 1 (Th1) and helper T cells type 2 (Th2) cytokines during and after multiple sclerosis relapse.

    PubMed

    de Andrés, Clara; Rodríguez-Sáinz, M Carmen; Muñoz-Fernández, M Angeles; López-Lazareno, Nieves; Rodríguez-Mahou, Margarita; Vicente, Angeles; Fernández-Cruz, Eduardo; Sánchez-Ramón, Silvia

    2004-01-01

    Multiple sclerosis (MS) is an immune-mediated disease with a clear sex-bias that may be attributed to sex hormones, sex' linked genes or both. Here we sought to determine the evolution pattern of cortisol and sex hormones at MS relapse and 2-months later in 7 male patients with relapsing remitting MS, and whether there was a correlation with a specific Th1 and Th2 cytokine pattern. Our findings indicate the activation of the hypothalamic-pituitary-adrenal axis and the concomitant upregulation of pro- and anti-inflammatory cytokines during relapse. The further increase of sex hormones, in particular estradiol in our male MS patients suggest their possible implication in the physiopathology of the illness and a putative anti-inflammatory and neuroreparatory effect.

  4. The Association of Multiple Biomarkers of Iron Metabolism and Type 2 Diabetes - the EPIC-InterAct Study

    PubMed Central

    Podmore, Clara; Meidtner, Karina; Schulze, Matthias B; Scott, Robert A; Ramond, Anna; Butterworth, Adam S; Di Angelantonio, Emanuele; Danesh, John; Arriola, Larraitz; Barricarte, Aurelio; Boeing, Heiner; Clavel-Chapelon, Françoise; Cross, Amanda J; Dahm, Christina C; Fagherazzi, Guy; Franks, Paul W; Gavrila, Diana; Grioni, Sara; Gunter, Marc J; Gusto, Gaelle; Jakszyn, Paula; Katzke, Verena; Key, Timothy J; Kühn, Tilman; Mattiello, Amalia; Nilsson, Peter M; Olsen, Anja; Overvad, Kim; Palli, Domenico; Quirós, J. Ramón; Rolandsson, Olov; Sacerdote, Carlotta; Sánchez-Cantalejo, Emilio; Slimani, Nadia; Sluijs, Ivonne; Spijkerman, Annemieke MW; Tjonneland, Anne; Tumino, Rosario; van der A, Daphne L; van der Schouw, Yvonne T; Feskens, Edith JM; Forouhi, Nita G; Sharp, Stephen J; Riboli, Elio; Langenberg, Claudia; Wareham, Nicholas J

    2016-01-01

    Objective Observational studies show an association between ferritin and type 2 diabetes (T2D), suggesting a role of high iron stores for T2D development. However, ferritin is influenced by factors other than iron stores, which is less the case for other biomarkers of iron metabolism. We investigate associations of ferritin, transferrin saturation (TSAT), serum iron and transferrin with T2D incidence, to clarify the role of iron in the pathogenesis of T2D. Research and Design Methods The EPIC-InterAct study includes 12,403 incident T2D cases and a representative sub-cohort of 16,154 individuals from a European cohort with 3.99 million person-years of follow-up. We studied the prospective association of ferritin, TSAT, serum iron and transferrin with incident T2D in 11,052 cases and a random sub-cohort of 15,182 individuals and assessed whether these associations differed by subgroups of the population. Results Higher levels of ferritin and transferrin were associated with a higher risk of T2D [HR in men and women, respectively: 1.07 (95% CI: 1.01; 1.12) and 1.12 (1.05; 1.19) per 100 μg/L higher ferritin level; 1.11 (1.00; 1.24) and 1.22 (1.12; 1.33) per 0.5 g/L higher transferrin level] after adjustment for age, centre, BMI, physical activity, smoking status, education, hsCRP, ALT and GGT. Elevated TSAT (≥45% versus <45%) was associated with a lower risk of T2D in women [0.68 (0.54; 0.86)] but was not statistically significantly associated in men [0.90 (0.75; 1.08)]. Serum iron was not associated with T2D. The association of ferritin with T2D was stronger among leaner individuals (pinteraction<0.01). Conclusions The pattern of association of TSAT and transferrin with T2D suggests that the underlying relationship between iron stores and T2D is more complex than the simple link suggested by the association of ferritin with T2D. PMID:26861925

  5. Assessment of intracellular cytokines and regulatory cells in patients with autoimmune diseases and primary immunodeficiencies - novel tool for diagnostics and patient follow-up.

    PubMed

    Osnes, Liv T; Nakken, Britt; Bodolay, Edit; Szodoray, Peter

    2013-08-01

    Serum and intracytoplasmic cytokines are mandatory in host defense against microbes, but also play a pivotal role in the pathogenesis of autoimmune diseases by initiating and perpetuating various cellular and humoral autoimmune processes. The intricate interplay and fine balance of pro- and anti-inflammatory processes drive, whether inflammation and eventually organ damage will occur, or the inflammatory cascade quenches. In the early and late, as well as inactive and active stages of autoimmune diseases, different cellular and molecular patterns can dominate in these patients. However, the simultaneous assessment of pro- and anti-inflammatory biomarkers aids to define the immunological state of a patient. A group of the most useful inflammatory biomarkers are cytokines, and with increasing knowledge during the last decade their role have been well-defined in patients with autoimmune diseases and immunodeficiencies. Multiple pathological processes drive the development of autoimmunity and immunodeficiencies, most of which involve quantitative and qualitative disturbances in regulatory cells, cytokine synthesis and signaling pathways. The assessment of these biomarkers does not aid only in the mechanistic description of autoimmune diseases and immunodeficiencies, but further helps to subcategorize diseases and to evaluate therapy responses. Here, we provide an overview, how monitoring of cytokines and regulatory cells aid in the diagnosis and follow-up of patients with autoimmune diseases and immunodeficiencies furthermore, we pinpoint novel cellular and molecular diagnostic possibilities in these diseases.

  6. High-Resolution Diffusion Tensor Spinal Cord MRI Measures as Biomarkers of Disability Progression in a Rodent Model of Progressive Multiple Sclerosis

    PubMed Central

    Gilli, Francesca; Chen, Xi; Pachner, Andrew R.; Gimi, Barjor

    2016-01-01

    Disease in the spinal cord is a major component of disability in multiple sclerosis, yet current techniques of imaging spinal cord injury are insensitive and nonspecific. This study seeks to remove this major impediment to research in multiple sclerosis and other spinal cord diseases by identifying reliable biomarkers of disability progression using diffusion tensor imaging (DTI), a magnetic resonance imaging technique, to evaluate the spinal cord in a model of multiple sclerosis, i.e. the Theiler’s Murine Encephalitis Virus-Induced Demyelinating Disease (TMEV-IDD). Mice with TMEV-IDD with varying levels of clinical disease were imaged using a 9.4T small animal MRI scanner. Axial diffusivity, radial diffusivity, and fractional anisotropy were calculated. Disability was assessed periodically using Rotarod assay and data were expressed as a neurological function index. Correlation was performed between DTI measurements and disability scores. TMEV-IDD mice displayed significant increased neurological deficits over time when compared with controls (p<0.0001). Concurrently, the values of fractional anisotropy and axial diffusivity were both decreased compared to controls (both p<0.0001), while radial diffusivity was increased (p<0.0001). Overall, fractional anisotropy changes were larger in white matter than in grey matter and differences were more pronounced in the ventral region. Lower disability scores were associated with decreased fractional anisotropy values measured in the ventral (r = 0.68; p<0.0001) and ventral-lateral (r = 0.70; p<0.0001) regions of the white matter. These data demonstrate that DTI measures of the spinal cord contribute to strengthening the association between neuroradiological markers and clinical disability, and support the use of DTI measures in spinal cord imaging in MS patients. PMID:27467829

  7. Plasma Biomarker Profiles Differ Depending on Breast Cancer Subtype but RANTES is Consistently Increased

    SciTech Connect

    Gonzales, Rachel M.; Daly, Don S.; Tan, Ruimin; Marks, Jeffrey R.; Zangar, Richard C.

    2011-07-01

    Background: Current biomarkers for breast cancer have little potential for detection. We determined if breast cancer subtypes influence circulating protein biomarkers. Methods: A sandwich-ELISA microarray platform was used to evaluate 23 candidate biomarkers in plasma samples that were obtained from subjects with either benign breast disease or invasive breast cancer. All plasma samples were collected at the time of biopsy, after a referral due to a suspicious screen (e.g., mammography). Cancer samples were evaluated based on breast cancer subtypes, as defined by the HER2 and estrogen receptor statuses. Results: Ten proteins were statistically altered in at least one breast cancer subtype, including four epidermal growth factor receptor ligands, two matrix metalloproteases, two cytokines, and two angiogenic factors. Only one cytokine, RANTES, was significantly increased (P<0.01 for each analysis) in all four subtypes, with areas under receiver operating characteristic curves (AUC) that ranged from 0.76 to 0.82, depending on cancer subtype. The best AUC values were observed for analyses that combined data from multiple biomarkers, with values ranging from 0.70 to 0.99, depending on the cancer subtype. Although the results for RANTES are consistent with previous publications, the multi-assay results need to be validated in independent sample sets. Conclusions: Different breast cancer subtypes produce distinct biomarker profiles, and circulating protein biomarkers have potential to differentiate between true and false positive screens for breast cancer. Impact: Subtype-specific biomarker panels may be useful for detecting breast cancer or as an adjunct assay to improve the accuracy of current screening methods.

  8. Biomarkers in Tumor Angiogenesis and Anti-Angiogenic Therapy

    PubMed Central

    Pircher, Andreas; Hilbe, Wolfgang; Heidegger, Isabel; Drevs, Joachim; Tichelli, André; Medinger, Michael

    2011-01-01

    Tumor angiogenesis has been identified to play a critical role in tumor growth and tumor progression, and is regulated by a balance of angiogenic and anti-angiogenic cytokines. Among them VEGF (vascular endothelial growth factor) and its signaling through its receptors are of crucial relevance. Inhibition of VEGF signaling by monoclonal antibodies or small molecules (kinase inhibitors) has already been successfully established for the treatment of different cancer entities and multiple new drugs are being tested in clinical trials. However not all patients are likely to respond to these therapies, but to date there are no reliable biomarkers available to predict therapy response. Many studies integrated biomarker programs in their study protocols, thus several potential biomarkers have been identified which are currently under clinical investigation in prospective randomized studies. This review intends to give an overview of the described potential biomarkers as well as different imaging techniques such as ultrasound and magnetic resonance imaging that can indicate benefit, resistance and toxicity to anti-angiogenic therapies. PMID:22072937

  9. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  10. Multiple effects of Escherichia coli Nissle 1917 on growth, biofilm formation, and inflammation cytokines profile of Clostridium perfringens type A strain CP4.

    PubMed

    Jiang, Yanlong; Kong, Qingke; Roland, Kenneth L; Wolf, Amanda; Curtiss, Roy

    2014-04-01

    Clostridium perfringens is an important Gram-positive pathogen responsible for food poisoning, necrotic enteritis, gas gangrene, and even death. Escherichia coli Nissle 1917 (EcN) is a well-characterized probiotic strain with demonstrated benefits. In this study, we evaluated the effects of EcN on growth, toxin production, biofilm formation, and inflammatory cytokine responses of C. perfringens. In vitro co-culture experiments demonstrated that EcN inhibited growth, gas production, and toxin production (α-toxin and NetB) of C. perfringens in a dose-dependent manner. The growth inhibition effect was not observed when C. perfringens was incubated with EcN cell-free supernatants (CFSE), suggesting that growth inhibition was caused by nutrition competition during co-incubation. In vitro studies demonstrated that pre-incubation with EcN did not inhibit C. perfringens attachment to Caco-2 cells, but did reduce C. perfringens total number, toxin production, and cytotoxicity after 24 h. The similar growth inhibition results were also observed during the formation of C. perfringens biofilm. Finally, pre-incubation of EcN with RAW264.7 cells significantly decreased the production of inflammatory cytokines caused by the introduction of C. perfringens. Our results indicate that EcN can inhibit many of the pathological effects of C. perfringens in vitro conditions. PMID:24532573

  11. Iterative Decomposition of Water and Fat with Echo Asymmetry and Least-Squares Estimation (IDEAL) Magnetic Resonance Imaging as a Biomarker for Symptomatic Multiple Myeloma

    PubMed Central

    Takasu, Miyuki; Kaichi, Yoko; Tani, Chihiro; Date, Shuji; Akiyama, Yuji; Kuroda, Yoshiaki; Sakai, Akira; Awai, Kazuo

    2015-01-01

    Introduction To evaluate the effectiveness of iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) magnetic resonance imaging (MRI) to discriminate between symptomatic and asymptomatic myeloma in lumbar bone marrow without visible focal lesions. Materials and Methods The lumbar spine was examined with 3-T MRI in 11 patients with asymptomatic myeloma and 24 patients with symptomatic myeloma. The fat-signal fraction was calculated from the ratio of the signal intensity in the fat image divided by the signal intensity of the corresponding ROI in the in-phase IDEAL image. The t test was used to compare the asymptomatic and symptomatic groups. ROC curves were constructed to determine the ability of variables to discriminate between symptomatic and asymptomatic myeloma. Results Univariate analysis showed that β2-microglobulin and bone marrow plasma cell percent (BMPC%) were significantly higher and fat-signal fraction was significantly lower with symptomatic myeloma than with asymptomatic myeloma. Areas under the curve were 0.847 for β2;-microglobulin, 0.834 for fat-signal fraction, and 0.759 for BMPC%. Conclusion The fat-signal fraction as a biomarker for multiple myeloma enables discrimination of symptomatic myeloma from asymptomatic myeloma. The fat-signal fraction offers superior sensitivity and specificity to BMPC% of biopsy specimens. PMID:25706753

  12. Serum cytokine profiling and enrichment analysis reveal the involvement of immunological and inflammatory pathways in stable patients with chronic obstructive pulmonary disease.

    PubMed

    Bade, Geetanjali; Khan, Meraj Alam; Srivastava, Akhilesh Kumar; Khare, Parul; Solaiappan, Krishna Kumar; Guleria, Randeep; Palaniyar, Nades; Talwar, Anjana

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a major global health problem. It results from chronic inflammation and causes irreversible airway damage. Levels of different serum cytokines could be surrogate biomarkers for inflammation and lung function in COPD. We aimed to determine the serum levels of different biomarkers in COPD patients, the association between cytokine levels and various prognostic parameters, and the key pathways/networks involved in stable COPD. In this study, serum levels of 48 cytokines were examined by multiplex assays in 30 subjects (control, n=9; COPD, n=21). Relationships between serum biomarkers and forced expiratory volume in 1 second, peak oxygen uptake, body mass index, dyspnea score, and smoking were assessed. Enrichment pathways and network analyses were implemented, using a list of cytokines showing differential expression between healthy controls and patients with COPD by Cytoscape and GeneGo Metacore™ software (Thomson-Reuters Corporation, New York, NY, USA). Concentrations of cutaneous T-cell attracting chemokine, eotaxin, hepatocyte growth factor, interleukin 6 (IL-6), IL-16, and stem cell factor are significantly higher in COPD patients compared with in control patients. Notably, this study identifies stem cell factor as a biomarker for COPD. Multiple regression analysis predicts that cutaneous T-cell-attracting chemokine, eotaxin, IL-6, and stem cell factor are inversely associated with forced expiratory volume in 1 second and peak oxygen uptake change, whereas smoking is related to eotaxin and hepatocyte growth factor changes. Enrichment pathways and network analyses reveal the potential involvement of specific inflammatory and immune process pathways in COPD. Identified network interaction and regulation of different cytokines would pave the way for deeper insight into mechanisms of the disease process.

  13. Dopaminergic receptors and adrenoceptors in circulating lymphocytes as putative biomarkers for the early onset and progression of multiple sclerosis.

    PubMed

    Cosentino, Marco; Zaffaroni, Mauro; Legnaro, Massimiliano; Bombelli, Raffaella; Schembri, Laura; Baroncini, Damiano; Bianchi, Anna; Clerici, Raffaella; Guidotti, Mario; Banfi, Paola; Bono, Giorgio; Marino, Franca

    2016-09-15

    Clinically isolated syndrome (CIS) is a first, usually recovering, episode of neurological disturbance(s) suggestive of multiple sclerosis (MS). CIS subjects might benefit from early disease-modifying drugs, provided that those at high risk of developing MS can be identified. Gene expression for dopaminergic receptors (DR) and adrenoceptors (AR) is dysregulated in lymphocytes of MS patients and is affected by treatment with interferon (IFN)-β. In particular, lymphocyte DR D5 mRNA might be a marker of IFN-β response in MS patients. No information exists so far in CIS subjects. We investigated DR and AR gene expression in peripheral blood mononuclear cells (PBMC) and in CD4+ T effector (Teff) and regulatory (Treg) cells from CIS subjects, and assessed their relationship with MS progression after 12months. Expression of several DR and AR are upregulated in PBMC, Teff and Treg from CIS subjects. DR D3 and α2A-AR mRNA in PBMC, and DR D5 mRNA in Treg correlate with the risk of MS at 12months. Results show the involvement of dopaminergic and adrenergic pathways in CIS as well as in MS pathogenesis, supporting the evaluation of dopaminergic and adrenergic agents in MS. PMID:27609280

  14. Identification of Novel Inflammatory Cytokines and Contribution of Keratinocyte-Derived Chemokine to Inflammation in Response to Vibrio vulnificus Infection in Mice.

    PubMed

    Liu, Xiao-Fei; Wu, Jing; Wang, Ming-Yi; Chen, Ying-Jian; Cao, Yuan; Hu, Cheng-Jin

    2015-10-01

    Currently, only tumor necrosis factor alpha (TNF-α) and interleukin family cytokines have been found to be elicited in Vibrio vulnificus (V. vulnificus)-infected animal models and humans. However, multiple other cytokines are also involved in the immune and inflammatory responses to foreign microorganism infection. Antibody array technology, unlike traditional enzyme-linked immunosorbent assay (ELISA), is able to detect multiple cytokines at one time. Therefore, in this study, we examined the proinflammatory cytokine profile in the serum and liver homogenate samples of bacterial-infected mice using antibody array technology. We identified nine novel cytokines in response to V. vulnificus infection in mice. We found that keratinocyte-derived chemokine (KC) was the most elevated cytokine and demonstrated that KC played a very important role in the V. vulnificus infection-elicited inflammatory response in mice, as evidenced by the fact that the blocking of KC by anti-KC antibody reduced hepatic injury in vivo and that KC induced by V. vulnificus infection in AML-12 cells chemoattracted neutrophils. Our findings implicate that KC may serve as a novel diagnostic biomarker and a possible therapeutic target for V. vulnificus infection.

  15. Direct Write Protein Patterns for Multiplexed Cytokine Detection from Live Cells Using Electron Beam Lithography.

    PubMed

    Lau, Uland Y; Saxer, Sina S; Lee, Juneyoung; Bat, Erhan; Maynard, Heather D

    2016-01-26

    Simultaneous detection of multiple biomarkers, such as extracellular signaling molecules, is a critical aspect in disease profiling and diagnostics. Precise positioning of antibodies on surfaces, especially at the micro- and nanoscale, is important for the improvement of assays, biosensors, and diagnostics on the molecular level, and therefore, the pursuit of device miniaturization for parallel, fast, low-volume assays is a continuing challenge. Here, we describe a multiplexed cytokine immunoassay utilizing electron beam lithography and a trehalose glycopolymer as a resist for the direct writing of antibodies on silicon substrates, allowing for micro- and nanoscale precision of protein immobilization. Specifically, anti-interleukin 6 (IL-6) and antitumor necrosis factor alpha (TNFα) antibodies were directly patterned. Retention of the specific binding properties of the patterned antibodies was shown by the capture of secreted cytokines from stimulated RAW 264.7 macrophages. A sandwich immunoassay was employed using gold nanoparticles and enhancement with silver for the detection and visualization of bound cytokines to the patterns by localized surface plasmon resonance detected with dark-field microscopy. Multiplexing with both IL-6 and TNFα on a single chip was also successfully demonstrated with high specificity and in relevant cell culture conditions and at different times after cell stimulation. The direct fabrication of capture antibody patterns for cytokine detection described here could be useful for biosensing applications.

  16. Cytokine Reduction in the Treatment of Joint Conditions

    PubMed Central

    Martel-Pelletier, J.; Otterness, I. G.; Pelletier, J.-P.

    1994-01-01

    The destruction of joints caused by rheumatoid arthritis and osteoarthritis is characterized by an imbalance of enzyme catalysed cartilage breakdown and regeneration. A complex cytokine network perpetuates joint conditions by direct regulation of metalloproteases, by indirect recruitment of cells that secrete degradative enzymes, and by inhibition of reparative processes. The destructive action of cytokines such as interleukin-1, interleukin-6 and tumour necrosis factor-α can be modulated at multiple points associated either with cytokine production or with cytokine action. Potential agents for cytokine reduction include selective anti-cytokine antibodies, anticytokine receptor antibodies, cytokine receptor antagonist proteins, and soluble and chimeric cytokine receptor molecules. Pharmacologic regulation of IL-1 and TNFα remain primary targets for treatment of arthritis, and results of early clinical trials are promising. However, the results of long-term clinical trials will be required to support the value of anti-cytokine therapy in treatment of arthritis. PMID:18472950

  17. Current status and challenges of cytokine pharmacology

    PubMed Central

    Zídek, Z; Anzenbacher, P; Kmoníčková, E

    2009-01-01

    The major concern of pharmacology about cytokines has originated from plentiful data showing association between gross changes in their production and pathophysiological processes. Despite the enigmatic role of cytokines in diseases, a number of them have become a subject of cytokine and anti-cytokine immunotherapies. Production of cytokines can be influenced by many endogenous and exogenous stimuli including drugs. Cells of the immune system, such as macrophages and lymphocytes, are richly endowed with receptors for the mediators of physiological functions, such as biogenic amines, adenosine, prostanoids, steroids, etc. Drugs, agonists or antagonists of these receptors can directly or indirectly up- and down-regulate secretion of cytokines and expression of cytokine receptors. Vice versa, cytokines interfere with drug pharmacokinetics and pharmacodynamics through the interactions with cytochrome P450 and multiple drug resistance proteins. The aim of the review is to encourage more intensive studies in these fields of cytokine pharmacology. It also outlines major areas of searching promising candidates for immunotherapeutic interventions. PMID:19371342

  18. Polyamine Metabolites Profiling for Characterization of Lung and Liver Cancer Using an LC-Tandem MS Method with Multiple Statistical Data Mining Strategies: Discovering Potential Cancer Biomarkers in Human Plasma and Urine.

    PubMed

    Xu, Huarong; Liu, Ran; He, Bosai; Bi, Cathy Wenchuan; Bi, Kaishun; Li, Qing

    2016-01-01

    Polyamines, one of the most important kind of biomarkers in cancer research, were investigated in order to characterize different cancer types. An integrative approach which combined ultra-high performance liquid chromatography-tandem mass spectrometry detection and multiple statistical data processing strategies including outlier elimination, binary logistic regression analysis and cluster analysis had been developed to discover the characteristic biomarkers of lung and liver cancer. The concentrations of 14 polyamine metabolites in biosamples from lung (n = 50) and liver cancer patients (n = 50) were detected by a validated UHPLC-MS/MS method. Then the concentrations were converted into independent variables to characterize patients of lung and liver cancer by binary logic regression analysis. Significant independent variables were regarded as the potential biomarkers. Cluster analysis was engaged for further verifying. As a result, two values was discovered to identify lung and liver cancer, which were the product of the plasma concentration of putrescine and spermidine; and the ratio of the urine concentration of S-adenosyl-l-methionine and N-acetylspermidine. Results indicated that the established advanced method could be successfully applied to characterize lung and liver cancer, and may also enable a new way of discovering cancer biomarkers and characterizing other types of cancer. PMID:27517900

  19. Polyamine Metabolites Profiling for Characterization of Lung and Liver Cancer Using an LC-Tandem MS Method with Multiple Statistical Data Mining Strategies: Discovering Potential Cancer Biomarkers in Human Plasma and Urine.

    PubMed

    Xu, Huarong; Liu, Ran; He, Bosai; Bi, Cathy Wenchuan; Bi, Kaishun; Li, Qing

    2016-08-10

    Polyamines, one of the most important kind of biomarkers in cancer research, were investigated in order to characterize different cancer types. An integrative approach which combined ultra-high performance liquid chromatography-tandem mass spectrometry detection and multiple statistical data processing strategies including outlier elimination, binary logistic regression analysis and cluster analysis had been developed to discover the characteristic biomarkers of lung and liver cancer. The concentrations of 14 polyamine metabolites in biosamples from lung (n = 50) and liver cancer patients (n = 50) were detected by a validated UHPLC-MS/MS method. Then the concentrations were converted into independent variables to characterize patients of lung and liver cancer by binary logic regression analysis. Significant independent variables were regarded as the potential biomarkers. Cluster analysis was engaged for further verifying. As a result, two values was discovered to identify lung and liver cancer, which were the product of the plasma concentration of putrescine and spermidine; and the ratio of the urine concentration of S-adenosyl-l-methionine and N-acetylspermidine. Results indicated that the established advanced method could be successfully applied to characterize lung and liver cancer, and may also enable a new way of discovering cancer biomarkers and characterizing other types of cancer.

  20. Intracellular Cytokine Staining and Flow Cytometry: Considerations for Application in Clinical Trials of Novel Tuberculosis Vaccines.

    PubMed

    Smith, Steven G; Smits, Kaatje; Joosten, Simone A; van Meijgaarden, Krista E; Satti, Iman; Fletcher, Helen A; Caccamo, Nadia; Dieli, Francesco; Mascart, Francoise; McShane, Helen; Dockrell, Hazel M; Ottenhoff, Tom H M

    2015-01-01

    Intracellular cytokine staining combined with flow cytometry is one of a number of assays designed to assess T-cell immune responses. It has the specific advantage of enabling the simultaneous assessment of multiple phenotypic, differentiation and functional parameters pertaining to responding T-cells, most notably, the expression of multiple effector cytokines. These attributes make the technique particularly suitable for the assessment of T-cell immune responses induced by novel tuberculosis vaccines in clinical trials. However, depending upon the particular nature of a given vaccine and trial setting, there are approaches that may be taken at different stages of the assay that are more suitable than other alternatives. In this paper, the Tuberculosis Vaccine Initiative (TBVI) TB Biomarker Working group reports on efforts to assess the conditions that will determine when particular assay approaches should be employed. We have found that choices relating to the use of fresh whole blood or peripheral blood mononuclear cells (PBMC) and frozen PBMC; use of serum-containing or serum-free medium; length of stimulation period and use of co-stimulatory antibodies can all affect the sensitivity of intracellular cytokine assays. In the case of sample material, frozen PBMC, despite some loss of sensitivity, may be more advantageous for batch analysis. We also recommend that for multi-site studies, common antibody panels, gating strategies and analysis approaches should be employed for better comparability.

  1. The Current State of Clinical Application of Serum Biomarkers for Canine Lymphoma

    PubMed Central

    Bryan, Jeffrey N.

    2016-01-01

    Serum biomarkers of canine lymphoma activity for diagnosis, prognosis, and therapy monitoring have been of clinical interest for more than a decade. Tumor products, biochemical enzymes, cytokines, metabolic profiling, leakage enzymes, as well as serum proteins have been studied as biomarkers for lymphoma. Multiple biomarkers combined have been shown to be most sensitive and specific. C-reactive protein, thymidine kinase 1, and haptoglobin have been most extensively studied and commercialized in diagnostic tests, the TK Canine Cancer Panel and the Canine Lymphoma Blood Test. These tests have been evaluated either in cohorts of diseased and healthy dogs or in prospective studies of ill dogs, respectively, for application to clinical decision-making. Some evidence exists for application of these tests, but large-scale studies are lacking in a broad range of lymphoma forms. These biomarkers are commonly elevated at diagnosis and at relapse. Further study is necessary to determine if early intervention guided by biomarker elevation will improve quantity or quality of life for dogs with lymphoma. PMID:27747218

  2. [Diagnosis of acute heart failure and relevance of biomarkers in elderly patients].

    PubMed

    Ruiz Ortega, Raúl Antonio; Manzano, Luis; Montero-Pérez-Barquero, Manuel

    2014-03-01

    Diagnosis of acute heart failure (HF) is difficult in elderly patients with multiple comorbidities. Risk scales and classification criteria based exclusively on clinical manifestations, such as the Framingham scales, lack sufficient specificity. In addition to clinical manifestations, diagnosis should be based on two key factors: natriuretic peptides and echocardiographic study. When there is clinical suspicion of acute HF, a normal natriuretic peptide level will rule out this process. When a consistent clinical suspicion is present, an echocardiographic study should also be performed. Diagnosis of HF with preserved ejection fraction (HF/pEF) requires detection of an enlarged left atrium or the presence of parameters of diastolic dysfunction. Elevation of cardiac biomarkers seems to be due to myocardial injury and the compensatory mechanisms of the body against this injury (hormone and inflammatory response and repair mechanisms). Elevation of markers of cardiac damage (troponins and natriuretic peptides) have been shown to be useful both in the diagnosis of acute HF and in prediction of outcome. MMP-2 could be useful in the diagnosis of HF/pEF. In addition to biomarkers with diagnostic value, other biomarkers are helpful in prognosis in the acute phase of HF, such as biomarkers of renal failure (eGFR, cystatin and urea), inflammation (cytokines and CRP), and the cell regeneration marker, galectin-3. A promising idea that is under investigation is the use of panels of biomarkers, which could allow more accurate diagnosis and prognosis of acute HF.

  3. Multiple conformational states of a new hematopoietic cytokine (megakaryocyte growth and development factor): pH- and urea-induced denaturation.

    PubMed

    Hamburger, J B; Chen, E; Narhi, L O; Wu, G M; Brems, D N

    1998-09-01

    The effect of pH and urea on the conformation of recombinant human megakaryocyte growth and development factor (rHuMGDF) was determined by circular dichroism, intrinsic fluorescence spectroscopy, and equilibrium ultracentrifugation. The conformation of rHuMGDF was dependent on pH and urea concentration. Multiple folding forms were evidenced by multiple pH-induced transitions and urea-induced equilibrium transitions that deviated from a simple two-state process. In neutral to alkaline pH, rHuMGDF exists as a monomer, but an acid-induced conformational state self-associates to form a soluble aggregate. A folding intermediate(s) was observed with a more stable secondary structure than tertiary structure and was dependent on the pH of the urea-induced denaturation. The differences in the stabilities of the folding states were most distinct in the pH range of 4.5 to 6.5. The presence of intermediates in the folding pathway of rHuMGDF are similar to findings of previous studies of related growth factors that share a common three-dimensional structure.

  4. Collection of Aerosolized Human Cytokines Using Teflon® Filters

    PubMed Central

    McKenzie, Jennifer H.; McDevitt, James J.; Fabian, M. Patricia; Hwang, Grace M.; Milton, Donald K.

    2012-01-01

    Background Collection of exhaled breath samples for the analysis of inflammatory biomarkers is an important area of research aimed at improving our ability to diagnose, treat and understand the mechanisms of chronic pulmonary disease. Current collection methods based on condensation of water vapor from exhaled breath yield biomarker levels at or near the detection limits of immunoassays contributing to problems with reproducibility and validity of biomarker measurements. In this study, we compare the collection efficiency of two aerosol-to-liquid sampling devices to a filter-based collection method for recovery of dilute laboratory generated aerosols of human cytokines so as to identify potential alternatives to exhaled breath condensate collection. Methodology/Principal Findings Two aerosol-to-liquid sampling devices, the SKC® Biosampler and Omni 3000™, as well as Teflon® filters were used to collect aerosols of human cytokines generated using a HEART nebulizer and single-pass aerosol chamber setup in order to compare the collection efficiencies of these sampling methods. Additionally, methods for the use of Teflon® filters to collect and measure cytokines recovered from aerosols were developed and evaluated through use of a high-sensitivity multiplex immunoassay. Our results show successful collection of cytokines from pg/m3 aerosol concentrations using Teflon® filters and measurement of cytokine levels in the sub-picogram/mL concentration range using a multiplex immunoassay with sampling times less than 30 minutes. Significant degradation of cytokines was observed due to storage of cytokines in concentrated filter extract solutions as compared to storage of dry filters. Conclusions Use of filter collection methods resulted in significantly higher efficiency of collection than the two aerosol-to-liquid samplers evaluated in our study. The results of this study provide the foundation for a potential new technique to evaluate biomarkers of inflammation in

  5. Cytokines in psoriasis

    PubMed Central

    Baliwag, Jaymie; Barnes, Drew H.; Johnston, Andrew

    2015-01-01

    Psoriasis is a common inflammatory skin disease with an incompletely understood etiology. The disease is characterized by red, scaly and well-demarcated skin lesions formed by the hyperproliferation of epidermal keratinocytes. This hyperproliferation is driven by cytokines secreted by activated resident immune cells, an infiltrate of T cells, dendritic cells and cells of the innate immune system, as well as the keratinocytes themselves. Psoriasis has a strong hereditary character and has a complex genetic background. Genome-wide association studies have identified polymorphisms within or near a number of genes encoding cytokines, cytokine receptors or elements of their signal transduction pathways, further implicating these cytokines in the psoriasis pathomechanism. A considerable number of inflammatory cytokines have been shown to be elevated in lesional psoriasis skin, and the serum concentrations of a subset of these also correlate with psoriasis disease severity. The combined effects of the cytokines found in psoriasis lesions likely explain most of the clinical features of psoriasis, such as the hyperproliferation of keratinocytes, increased neovascularization and skin inflammation. Thus, understanding which cytokines play a pivotal role in the disease process can suggest potential therapeutic targets. A number of cytokines have been therapeutically targeted with success, revolutionizing treatment of this disease. Here we review a number of key cytokines implicated in the pathogenesis of psoriasis. PMID:25585875

  6. Capparis ovata treatment suppresses inflammatory cytokine expression and ameliorates experimental allergic encephalomyelitis model of multiple sclerosis in C57BL/6 mice.

    PubMed

    Ozgun-Acar, Ozden; Celik-Turgut, Gurbet; Gazioglu, Isil; Kolak, Ufuk; Ozbal, Seda; Ergur, Bekir U; Arslan, Sevki; Sen, Alaattin; Topcu, Gulacti

    2016-09-15

    Since ancient times, Capparis species have been widely used in traditional medicine to treat various diseases. Our recent investigations have suggested Capparis ovata's potential anti-neuroinflammatory application for the treatment of multiple sclerosis (MS). The present study was designed to precisely determine the underlying mechanism of its anti-neuroinflammatory effect in a mouse model of MS. C. ovata water extract (COWE) was prepared using the plant's fruit, buds, and flower parts (Turkish Patent Institute, PT 2012/04,093). We immunized female C57BL/6J mice with MOG35-55/CFA. COWE was administered at a daily dose of 500mg/kg by oral gavage either from the day of immunization (T1) or at disease onset (T2) for 21days. Gene expression analysis was performed using a Mouse Multiple Sclerosis RT² Profiler PCR Array, and further determinations and validations of the identified genes were performed using qPCR. Whole-genome transcriptome profiling was analyzed using Agilent SurePrint G3 Mouse GE 8X60K microarrays. Immunohistochemical staining was applied to brain sections of the control and treated mice to examine the degree of degeneration. COWE was further fractionated and analyzed phytochemically using the Zivak Tandem Gold Triple Quadrupole LC/MS-MS system. COWE remarkably suppressed the development of EAE in T1, and the disease activity was completely inhibited. In the T2 group, the maximal score was significantly reduced compared with that of the parallel EAE group. The COWE suppression of EAE was associated with a significantly decreased expression of genes that are important in inflammatory signaling, such as TNFα, IL6, NF-κB, CCL5, CXCL9, and CXCK10. On the other hand, the expression of genes involved in myelination/remyelination was significantly increased. Immunohistochemical analysis further supported these effects, showing that the number of infiltrating immune cells was decreased in the brains of COWE-treated animals. In addition, differential

  7. Capparis ovata treatment suppresses inflammatory cytokine expression and ameliorates experimental allergic encephalomyelitis model of multiple sclerosis in C57BL/6 mice.

    PubMed

    Ozgun-Acar, Ozden; Celik-Turgut, Gurbet; Gazioglu, Isil; Kolak, Ufuk; Ozbal, Seda; Ergur, Bekir U; Arslan, Sevki; Sen, Alaattin; Topcu, Gulacti

    2016-09-15

    Since ancient times, Capparis species have been widely used in traditional medicine to treat various diseases. Our recent investigations have suggested Capparis ovata's potential anti-neuroinflammatory application for the treatment of multiple sclerosis (MS). The present study was designed to precisely determine the underlying mechanism of its anti-neuroinflammatory effect in a mouse model of MS. C. ovata water extract (COWE) was prepared using the plant's fruit, buds, and flower parts (Turkish Patent Institute, PT 2012/04,093). We immunized female C57BL/6J mice with MOG35-55/CFA. COWE was administered at a daily dose of 500mg/kg by oral gavage either from the day of immunization (T1) or at disease onset (T2) for 21days. Gene expression analysis was performed using a Mouse Multiple Sclerosis RT² Profiler PCR Array, and further determinations and validations of the identified genes were performed using qPCR. Whole-genome transcriptome profiling was analyzed using Agilent SurePrint G3 Mouse GE 8X60K microarrays. Immunohistochemical staining was applied to brain sections of the control and treated mice to examine the degree of degeneration. COWE was further fractionated and analyzed phytochemically using the Zivak Tandem Gold Triple Quadrupole LC/MS-MS system. COWE remarkably suppressed the development of EAE in T1, and the disease activity was completely inhibited. In the T2 group, the maximal score was significantly reduced compared with that of the parallel EAE group. The COWE suppression of EAE was associated with a significantly decreased expression of genes that are important in inflammatory signaling, such as TNFα, IL6, NF-κB, CCL5, CXCL9, and CXCK10. On the other hand, the expression of genes involved in myelination/remyelination was significantly increased. Immunohistochemical analysis further supported these effects, showing that the number of infiltrating immune cells was decreased in the brains of COWE-treated animals. In addition, differential

  8. Elevated specific peripheral cytokines found in major depressive disorder patients with childhood trauma exposure: a cytokine antibody array analysis.

    PubMed

    Lu, Shaojia; Peng, Hongjun; Wang, Lifeng; Vasish, Seewoobudul; Zhang, Yan; Gao, Weijia; Wu, Weiwei; Liao, Mei; Wang, Mi; Tang, Hao; Li, Wenping; Li, Weihui; Li, Zexuan; Zhou, Jiansong; Zhang, Zhijun; Li, Lingjiang

    2013-10-01

    Taking into consideration the previous evidence of revealing the relationship of early life adversity, major depressive disorder (MDD), and stress-linked immunological changes, we recruited 22 MDD patients with childhood trauma exposures (CTE), 21 MDD patients without CTE, and 22 healthy controls without CTE, and then utilized a novel cytokine antibody array methodology to detect potential biomarkers underlying MDD in 120 peripheral cytokines and to evaluate the effect of CTE on cytokine changes in MDD patients. Although 13 cytokines were identified with highly significant differences in expressions between MDD patients and normal controls, this relationship was significantly attenuated and no longer significant after consideration of the effect of CTE in MDD patients. Depressed individuals with CTE (TD patients) were more likely to have higher peripheral levels of those cytokines. Severity of depression was associated with plasma levels of certain increased cytokines; meanwhile, the increased cytokines led to a proper separation of TD patients from normal controls during clustering analyses. Our research outcomes add great strength to the relationship between depression and cytokine changes and suggest that childhood trauma may play a vital role in the co-appearance of cytokine changes and depression.

  9. Elevated specific peripheral cytokines found in major depressive disorder patients with childhood trauma exposure: a cytokine antibody array analysis.

    PubMed

    Lu, Shaojia; Peng, Hongjun; Wang, Lifeng; Vasish, Seewoobudul; Zhang, Yan; Gao, Weijia; Wu, Weiwei; Liao, Mei; Wang, Mi; Tang, Hao; Li, Wenping; Li, Weihui; Li, Zexuan; Zhou, Jiansong; Zhang, Zhijun; Li, Lingjiang

    2013-10-01

    Taking into consideration the previous evidence of revealing the relationship of early life adversity, major depressive disorder (MDD), and stress-linked immunological changes, we recruited 22 MDD patients with childhood trauma exposures (CTE), 21 MDD patients without CTE, and 22 healthy controls without CTE, and then utilized a novel cytokine antibody array methodology to detect potential biomarkers underlying MDD in 120 peripheral cytokines and to evaluate the effect of CTE on cytokine changes in MDD patients. Although 13 cytokines were identified with highly significant differences in expressions between MDD patients and normal controls, this relationship was significantly attenuated and no longer significant after consideration of the effect of CTE in MDD patients. Depressed individuals with CTE (TD patients) were more likely to have higher peripheral levels of those cytokines. Severity of depression was associated with plasma levels of certain increased cytokines; meanwhile, the increased cytokines led to a proper separation of TD patients from normal controls during clustering analyses. Our research outcomes add great strength to the relationship between depression and cytokine changes and suggest that childhood trauma may play a vital role in the co-appearance of cytokine changes and depression. PMID:23639406

  10. [Cytokines and allergic response].

    PubMed

    Guenounou, M

    1998-01-01

    Allergic reactions are under the control of several events that occur sequentially following allergen exposure, recognition by the immune system, IgE production and their interaction with effector cells bearing Fc epsilon receptors. The lymphocyte activation in response to allergens determines the intensity and the nature of the immune response. Cytokines produced by T (and non-T) cells are involved in the polarized development of the specific immune response. In particular, type 1 and type 2 cytokines are responsible for the control of the different steps during allergic reactions. Th2 cytokines and particularly IL4 are responsible for switching the immunoglobulin synthesis by B cells to IgE production. They also play a key role in the activation of effector cells that occurs following allergen interaction with fixed specific IgE and participate to the local inflammatory reaction. Cytokine profile determination appears to represent a helpful laboratory parameter in the understanding of the mechanisms underlying allergic diseases. The development of new technological tools may allow the use of cell activation parameters, and cytokine profiles determination in clinical biology. This review aims to analyze the involvement of the cytokine network in the mechanisms leading to IgE production and the involvement of cytokines in effector mechanisms of allergic reactions. It also analyses the potential use of cytokine profile determination for diagnosis purpose and survey of immune desensitization of allergic diseases.

  11. Meeting Report--NASA Radiation Biomarker Workshop

    SciTech Connect

    Straume, Tore; Amundson, Sally A,; Blakely, William F.; Burns, Frederic J.; Chen, Allen; Dainiak, Nicholas; Franklin, Stephen; Leary, Julie A.; Loftus, David J.; Morgan, William F.; Pellmar, Terry C.; Stolc, Viktor; Turteltaub, Kenneth W.; Vaughan, Andrew T.; Vijayakumar, Srinivasan; Wyrobek, Andrew J.

    2008-05-01

    A summary is provided of presentations and discussions from the NASA Radiation Biomarker Workshop held September 27-28, 2007, at NASA Ames Research Center in Mountain View, California. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including for long-duration space travel. Topics discussed include the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage following large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass-spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. Summary conclusions are provided at the end of the report.

  12. Cytokines and chemokines in neuromyelitis optica: pathogenetic and therapeutic implications.

    PubMed

    Uzawa, Akiyuki; Mori, Masahiro; Masahiro, Mori; Kuwabara, Satoshi

    2014-01-01

    Neuromyelitis optica (NMO) is characterized by severe optic neuritis and longitudinally extensive transverse myelitis. The discovery of an NMO-specific autoantibody to the aquaporin-4 (AQP4) water channel has improved knowledge of NMO pathogenesis. Many studies have focused on inflammatory and pathological biomarkers of NMO, including cytokines and chemokines. Increased concentrations of T helper (Th)17- and Th2-related cytokines and chemokines may be essential factors for developing NMO inflammatory lesions. For example, interleukin-6 could play important roles in NMO pathogenesis, as it is involved in the survival of plasmablasts that produce anti-AQP4 antibody in peripheral circulation and in the enhancement of inflammation in the central nervous system. Therefore, assessment of these useful biomarkers may become a supportive criterion for diagnosing NMO. Significant advances in the understanding of NMO pathogenesis will lead to the development of novel treatment strategies. This review focuses on the current advances in NMO immunological research, particularly that of cytokines and chemokines.

  13. Cluster analysis of host cytokine responses to biodefense pathogens in a whole blood ex vivo exposure model (WEEM)

    PubMed Central

    2012-01-01

    Background Rapid detection and therapeutic intervention for infectious and emerging diseases is a major scientific goal in biodefense and public health. Toward this end, cytokine profiles in human blood were investigated using a human whole blood ex vivo exposure model, called WEEM. Results Samples of whole blood from healthy volunteers were incubated with seven pathogens including Yersinia pseudotuberculosis, Yersinia enterocolitica, Bacillus anthracis, and multiple strains of Yersinia pestis, and multiplexed protein expression profiling was conducted on supernatants of these cultures with an antibody array to detect 30 cytokines simultaneously. Levels of 8 cytokines, IL-1α, IL-1β, IL-6, IL-8, IL-10, IP-10, MCP-1 and TNFα, were significantly up-regulated in plasma after bacterial exposures of 4 hours. Statistical clustering was applied to group the pathogens based on the host response protein expression profiles. The nearest phylogenetic neighbors clustered more closely than the more distant pathogens, and all seven pathogens were clearly differentiated from the unexposed control. In addition, the Y. pestis and Yersinia near neighbors were differentiated from the B. anthracis strains. Conclusions Cluster analysis, based on host response cytokine profiles, indicates that distinct patterns of immunomodulatory proteins are induced by the different pathogen exposures and these patterns may enable further development into biomarkers for diagnosing pathogen exposure. PMID:22607329

  14. Integrating multiple fish biomarkers and risk assessment as indicators of metal pollution along the Red Sea coast of Hodeida, Yemen Republic.

    PubMed

    Omar, Wael A; Saleh, Yousef S; Marie, Mohamed-Assem S

    2014-12-01

    The marine environment of the Red Sea coast of Yemen Republic is subjected to increasing anthropogenic activities. The present field study assesses the impacts of metal pollutants on two common marine fish species; Pomadasys hasta and Lutjanus russellii collected from a reference site in comparison to two polluted sites along the Red Sea coast of Hodeida, Yemen Republic. Concentrations of heavy metals (Fe, Cu, Zn, Cd and Pb) in fish vital organs, metal pollution index (MPI), indicative biochemical parameters of liver functions (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) and kidney functions (urea and creatinine) as well as histopathological changes in gills, liver and kidney of both fish species are integrated as biomarkers of metal pollution. These biomarkers showed species-specific and/or site-specific response. The hazard index (HI) was used as an indicator of human health risks associated with fish consumption. The detected low HI values in most cases doesn't neglect the fact that the cumulative risk effects for metals together give an alarming sign and that the health of fish consumers is endangered around polluted sites. The levels of ALT, AST and urea in plasma of both fish species collected from the polluted sites showed significant increase in comparison to those of reference site. Histopathological alterations and evident damage were observed in tissues of fish collected from the polluted sites. The investigated set of biomarkers proved to be efficient and reliable in biomonitoring the pollution status along different pollution gradients.

  15. Circulating tumors cells as biomarkers: progress toward biomarker qualification.

    PubMed

    Danila, Daniel C; Pantel, Klaus; Fleisher, Martin; Scher, Howard I

    2011-01-01

    Personalized cancer medicine requires the development of tumor-specific biomarkers to optimize selection of targeted therapies and to better assess response to therapy. Current efforts in several tumor types have shown that patients in whom circulating tumor cells (CTCs) are detected have an inferior prognosis relative to those in whom CTCs are not detected and that the elimination or decrease of CTCs following treatment is associated with improved clinical outcomes. Technological advances in the detection, isolation, capture, and characterization of CTCs from phlebotomy samples obtained in a routine clinical practice setting have enabled the evaluation of different CTC biomarkers. Unmet needs in cancer diagnosis and treatment where CTC biomarkers have been studied include determining prognosis, assessing the effects of treatment, and as a source of tumor for the biologic identification and characterization of determinants to predict sensitivity to one form of treatment versus another and to understand mechanisms of treatment resistance.At present, there is no single definition of a CTC and no single CTC "biomarker." Rather, multiple assays (tests) are in development for CTC biomarkers. However, before the role of any biomarker in medical decision making can be determined, it is essential that the assays used to measure the biomarker are analytically validated in a sequence of trials to generate the evidence to support the biomarker's use in the given context of use. It is against this background that this review focuses on the process of developing CTC biomarker assays, with the objective of outlining the necessary steps to qualify specific CTC tests for medical decision making in clinical practice or drug development. The potential for point-of-care tests is clear.

  16. Pathogen specific cytokine release reveals an effect of TLR2 Arg753Gln during Candida sepsis in humans.

    PubMed

    Woehrle, Tobias; Du, Weidong; Goetz, Achim; Hsu, Hsin-Yun; Joos, Thomas O; Weiss, Manfred; Bauer, Ute; Brueckner, Uwe B; Marion Schneider, E

    2008-03-01

    Toll-like receptors (TLRs) are crucial pattern-recognition receptors (PRRs) for activation of innate and adapted immunity. TLR2 heterodimerizes with TLR1 or TLR6 to recognize multiple pathogen-associated molecular patterns (PAMPs) of fungi, Gram-positive pathogens, and mycobacteria. Receptor activation culminates in monocyte, T-helper (Th)1, and Th2 cytokine release. Single nucleotide polymorphisms (SNPs) Arg753Gln and Arg677Trp affect TLR2 responsiveness and may contribute to the course of sepsis, which is associated with substantial morbidity and mortality during intensive care treatment. We genotyped 325 critically ill patients with septic shock, and performed a detailed clinical follow-up with 47 of these patients. Here, we investigated whether distinct sepsis episodes result in defined plasma cytokine patterns, and whether cytokine profiles may be linked to the TLR2 polymorphisms. Blood sampling was done daily and microbiological testing was performed on a routine basis. DNA was extracted from whole blood and TLR2 SNPs were typed by pyrosequencing. Cytokines were measured by multiplexed array technologies and the leukocyte phenotype was determined by flow cytometry. Among the 325 ICU patients, 17 individuals (5.2%) were heterozygous for Arg753Gln. The SNP Arg677Trp was not found in any patient. Episodes of Gram-negative, Gram-positive, and Candida sepsis were recorded. During Gram-positive sepsis, the cytokine pattern did not differ between Arg753Gln heterozygous patients and wild type patients. By contrast, during Candida sepsis, the Arg753Gln heterozygous patients showed biomarker patterns that differed from wild type patients with elevated TNF-alpha plasma concentrations, but reduced IFN-gamma and IL-8 levels. In conclusion, TLR2 SNP Arg753Gln results in altered cytokine release in response to Candida but not to Gram-positive sepsis.

  17. [Rheumatoid arthritis and cytokines].

    PubMed

    Kaneko, Shunta; Kondo, Yuya; Yokosawa, Masahiro; Sumida, Takayuki

    2016-06-01

    The cytokines are an important substance involved in the immune reaction and maintenance of homeostasis. An imbalance in the cytokine network may lead to inflammation and autoimmune diseases such as rheumatoid arthritis (RA). RA is an autoimmune and systemic inflammatory disorder characterized by synovial inflammation, destruction of cartilage and bone and systemic manifestations. The pro-inflammatory cytokines such as tumor necrosis factor α (TNFα), interleukin-1 (IL-1), IL-6 and IL-17 induce the inflammation of the joints and destruction of bone and cartilage via activation of macrophages, fibroblast like synoviocytes (FLS), helper T (Th) cells and osteoclasts. Recently, the available therapeutic agents that target these cytokines have excellent clinical effects in RA patients.

  18. HMGB1 as biomarker and drug target.

    PubMed

    Venereau, Emilie; De Leo, Federica; Mezzapelle, Rosanna; Careccia, Giorgia; Musco, Giovanna; Bianchi, Marco E

    2016-09-01

    High Mobility Group Box 1 protein was discovered as a nuclear protein, but it has a "second life" outside the cell where it acts as a damage-associated molecular pattern. HMGB1 is passively released or actively secreted in a number of diseases, including trauma, chronic inflammatory disorders, autoimmune diseases and cancer. Extracellular HMGB1 triggers and sustains the inflammatory response by inducing cytokine release and by recruiting leucocytes. These characteristics make extracellular HMGB1 a key molecular target in multiple diseases. A number of strategies have been used to prevent HMGB1 release or to inhibit its activities. Current pharmacological strategies include antibodies, peptides, decoy receptors and small molecules. Noteworthy, salicylic acid, a metabolite of aspirin, has been recently found to inhibit HMGB1. HMGB1 undergoes extensive post-translational modifications, in particular acetylation and oxidation, which modulate its functions. Notably, high levels of serum HMGB1, in particular of the hyper-acetylated and disulfide isoforms, are sensitive disease biomarkers and are associated with different disease stages. In the future, the development of isoform-specific HMGB1 inhibitors may potentiate and fine-tune the pharmacological control of inflammation. We review here the current therapeutic strategies targeting HMGB1, in particular the emerging and relatively unexplored small molecules-based approach. PMID:27378565

  19. Robust Selection Algorithm (RSA) for Multi-Omic Biomarker Discovery; Integration with Functional Network Analysis to Identify miRNA Regulated Pathways in Multiple Cancers.

    PubMed

    Sehgal, Vasudha; Seviour, Elena G; Moss, Tyler J; Mills, Gordon B; Azencott, Robert; Ram, Prahlad T

    2015-01-01

    MicroRNAs (miRNAs) play a crucial role in the maintenance of cellular homeostasis by regulating the expression of their target genes. As such, the dysregulation of miRNA expression has been frequently linked to cancer. With rapidly accumulating molecular data linked to patient outcome, the need for identification of robust multi-omic molecular markers is critical in order to provide clinical impact. While previous bioinformatic tools have been developed to identify potential biomarkers in cancer, these methods do not allow for rapid classification of oncogenes versus tumor suppressors taking into account robust differential expression, cutoffs, p-values and non-normality of the data. Here, we propose a methodology, Robust Selection Algorithm (RSA) that addresses these important problems in big data omics analysis. The robustness of the survival analysis is ensured by identification of optimal cutoff values of omics expression, strengthened by p-value computed through intensive random resampling taking into account any non-normality in the data and integration into multi-omic functional networks. Here we have analyzed pan-cancer miRNA patient data to identify functional pathways involved in cancer progression that are associated with selected miRNA identified by RSA. Our approach demonstrates the way in which existing survival analysis techniques can be integrated with a functional network analysis framework to efficiently identify promising biomarkers and novel therapeutic candidates across diseases.

  20. Sepsis biomarkers.

    PubMed

    Prucha, Miroslav; Bellingan, Geoff; Zazula, Roman

    2015-02-01

    Sepsis is the most frequent cause of death in non-coronary intensive care units (ICUs). In the past 10 years, progress has been made in the early identification of septic patients and in their treatment and these improvements in support and therapy mean that the mortality is gradually decreasing but it still remains unacceptably high. Leaving clinical diagnosis aside, the laboratory diagnostics represent a complex range of investigations that can place significant demands on the system given the speed of response required. There are hundreds of biomarkers which could be potentially used for diagnosis and prognosis in septic patients. The main attributes of successful markers would be high sensitivity, specificity, possibility of bed-side monitoring, and financial accessibility. Only a fraction is used in routine clinical practice because many lack sufficient sensitivity or specificity. The following review gives a short overview of the current epidemiology of sepsis, its pathogenesis and state-of-the-art knowledge on the use of specific biochemical, hematological and immunological parameters in its diagnostics. Prospective approaches towards discovery of new diagnostic biomarkers have been shortly mentioned.

  1. Jerusalem of cytokines.

    PubMed

    Levi, B Z; Sica, A; Müller-Newen, G; Takahashi, N; Vandenbeele, P; Fish, E

    1999-06-01

    The Second Joint Meeting of the International Cytokine Society and the International Society for Interferon and Cytokine Research was held on October 25-30, 1998 in Jerusalem, Israel. The nature of this Joint Meeting dictated that it was intensive and covered topics that included receptor-ligand interactions, signal transduction, transcriptional regulation, antiviral action and apoptotic pathways induced by cytokines such as interferons, interleukines and chemokines. Their roles in infectious diseases and cancers were considered. This overview is by no mean comprehensive and covers only part of the many topics and subjects that were presented in the many plenary talks, symposia and poster sessions. The meeting was held in an excellent scientific atmosphere, that was probably affected by the "divine presence" in Jerusalem, and special thanks for the excellent organization are owed to Drs. Kaempfer, Revel, Wallach and Witz.

  2. The effects of age and gender on plasma levels of 63 cytokines.

    PubMed

    Larsson, Anders; Carlsson, Lena; Gordh, Torsten; Lind, Anne-Li; Thulin, Måns; Kamali-Moghaddam, Masood

    2015-10-01

    Cytokines play important roles as regulators of cell functions, and over the last decades a number of cytokine assays have been developed. The aim of the present study was to investigate the effects of age and gender on a large number of cytokines. Plasma samples were collected from 33 healthy blood donors. The samples were analyzed using a multiplex proximity extension assay (PEA) allowing simultaneous measurement of 92 cytokines and four technical controls. Biomarkers with less than 80% quantitative results were excluded leaving 63 cytokines that were analyzed for the effects of gender and age. The plasma level of three of the investigated biomarkers (DNER, MCP-4 and MMP-10) were found to be significantly different for the two genders (adjusted p-value<0.05), and 15 of the biomarkers (CCL11, CCL25, CDCP1, CSF-1, CXCL11, CXCL9, FGF-23, Flt3L, HGF, IL-10RB, MCP-3, MCP-4, MMP-10, OPG, VEGF-A) were significantly associated with age. This study reveals the effects of age and gender on a large number of cytokine assays. CXCL5 and TNFB were significantly higher in females, while the other markers with significant gender-dependent differences were higher in males. For the markers that were significantly associated with age, only CXCL6 was found to decrease with age, while the other biomarkers increased with age.

  3. Utility of CSF Cytokine/Chemokines as Markers of Active Intrathecal Inflammation: Comparison of Demyelinating, Anti-NMDAR and Enteroviral Encephalitis

    PubMed Central

    Kothur, Kavitha; Wienholt, Louise; Mohammad, Shekeeb S.; Tantsis, Esther M.; Pillai, Sekhar; Britton, Philip N.; Jones, Cheryl A.; Angiti, Rajeshwar R.; Barnes, Elizabeth H.; Schlub, Timothy; Bandodkar, Sushil; Brilot, Fabienne; Dale, Russell C.

    2016-01-01

    Background Despite the discovery of CSF and serum diagnostic autoantibodies in autoimmune encephalitis, there are still very limited CSF biomarkers for diagnostic and monitoring purposes in children with inflammatory or autoimmune brain disease. The cause of encephalitis is unknown in up to a third of encephalitis cohorts, and it is important to differentiate infective from autoimmune encephalitis given the therapeutic implications. Aim To study CSF cytokines and chemokines as diagnostic biomarkers of active neuroinflammation, and assess their role in differentiating demyelinating, autoimmune, and viral encephalitis. Methods We measured and compared 32 cytokine/chemokines using multiplex immunoassay and APRIL and BAFF using ELISA in CSF collected prior to commencing treatment from paediatric patients with confirmed acute disseminated encephalomyelitis (ADEM, n = 16), anti-NMDAR encephalitis (anti-NMDAR E, n = 11), and enteroviral encephalitis (EVE, n = 16). We generated normative data using CSF from 20 non-inflammatory neurological controls. The sensitivity of CSF cytokine/chemokines to diagnose encephalitis cases was calculated using 95th centile of control values as cut off. We correlated CSF cytokine/chemokines with disease severity and follow up outcome based on modified Rankin scale. One-way hierarchical correlational cluster analysis of molecules was performed in different encephalitis and outcome groups. Results In descending order, CSF TNF-α, IL-10, IFN-α, IL-6, CXCL13 and CXCL10 had the best sensitivity (>79.1%) when all encephalitis patients were included. The combination of IL-6 and IFN-α was most predictive of inflammation on multiple logistic regression with area under the ROC curve 0.99 (CI 0.97–1.00). There were no differences in CSF cytokine concentrations between EVE and anti-NMDAR E, whereas ADEM showed more pronounced elevation of Th17 related (IL-17, IL-21) and Th2 (IL-4, CCL17) related cytokine/chemokines. Unlike EVE, heat map analysis

  4. Multiplexed Detection of Cytokines Based on Dual Bar-Code Strategy and Single-Molecule Counting.

    PubMed

    Li, Wei; Jiang, Wei; Dai, Shuang; Wang, Lei

    2016-02-01

    Cytokines play important roles in the immune system and have been regarded as biomarkers. While single cytokine is not specific and accurate enough to meet the strict diagnosis in practice, in this work, we constructed a multiplexed detection method for cytokines based on dual bar-code strategy and single-molecule counting. Taking interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as model analytes, first, the magnetic nanobead was functionalized with the second antibody and primary bar-code strands, forming a magnetic nanoprobe. Then, through the specific reaction of the second antibody and the antigen that fixed by the primary antibody, sandwich-type immunocomplex was formed on the substrate. Next, the primary bar-code strands as amplification units triggered multibranched hybridization chain reaction (mHCR), producing nicked double-stranded polymers with multiple branched arms, which were served as secondary bar-code strands. Finally, the secondary bar-code strands hybridized with the multimolecule labeled fluorescence probes, generating enhanced fluorescence signals. The numbers of fluorescence dots were counted one by one for quantification with epi-fluorescence microscope. By integrating the primary and secondary bar-code-based amplification strategy and the multimolecule labeled fluorescence probes, this method displayed an excellent sensitivity with the detection limits were both 5 fM. Unlike the typical bar-code assay that the bar-code strands should be released and identified on a microarray, this method is more direct. Moreover, because of the selective immune reaction and the dual bar-code mechanism, the resulting method could detect the two targets simultaneously. Multiple analysis in human serum was also performed, suggesting that our strategy was reliable and had a great potential application in early clinical diagnosis. PMID:26721199

  5. Pulmonary Biomarkers of Bronchopulmonary Dysplasia

    PubMed Central

    Thompson, Alecia; Bhandari, Vineet

    2008-01-01

    Bronchopulmonary dysplasia, or BPD, is a chronic pulmonary disorder of premature infants, commonly defined as having an oxygen requirement at 36 weeks postmenstrual age. It is an important source of morbidity and mortality in premature neonates. Its’ etiology appears to be multifactorial with the most common associations being prematurity, need for mechanical ventilation, and oxygen exposure. Implied in the pathogenesis of BPD is the role of cytokines which are immune mediators produced by most cell types. This is evidenced by studies in which there exist alterations in the levels of “pro-inflammatory” and “anti-inflammatory” cytokines. The imbalance of these cytokines have either heralded the onset or predicted the presence of BPD, or indicated a decreased propensity to developing this chronic respiratory disorder of preterm infants. Many other pulmonary markers have been shown to be altered in patients with BPD. These include markers indicative of altered lung repair processes, decreased endothelial integrity, oxidative damage and abnormal fibrinolytic activity, all of which are thought to be mechanisms contributing to the development of BPD. In this review, we will discuss the physiologic role of specific biomarkers in the pulmonary tract of the human premature neonate, the perturbations that enable them to be deranged, and their proposed association with BPD. PMID:19430584

  6. Avian cytokines - the natural approach to therapeutics.

    PubMed

    Lowenthal, J W; Lambrecht, B; van den Berg, T P; Andrew, M E; Strom, A D; Bean, A G

    2000-01-01

    While the effective use of antibiotics for the control of human disease has saved countless lives and has increased life expectancy over the past few decades, there are concerns arising from their usage in livestock. The use of antibiotic feed additives in food production animals has been linked to the emergence in the food chain of multiple drug-resistant bacteria that appear impervious to even the most powerful antimicrobial agents. Furthermore, the use of chemical antimicrobials has led to concerns involving environmental contamination and unwanted residues in food products. The imminent banning of antibiotic usage in livestock feed has intensified the search for environmentally-friendly alternative methods to control disease. Cytokines, as natural mediators and regulators of the immune response, offer exciting new alternatives to conventional chemical-based therapeutics. The utilisation of cytokines is becoming more feasible, particularly in poultry, with the recent cloning of a number of avian cytokine genes. Chickens offer an attractive small animal model system with which to study the effectiveness of cytokine therapy in the control of disease in intensive livestock. In this report we will review the status of avian cytokines and focus on our recent studies involving the therapeutic potential of chicken interferon gamma (ChIFN-gamma) as a vaccine adjuvant and a growth promoter. PMID:10717298

  7. Cytokines in Neuropathic Pain and Associated Depression.

    PubMed

    Lees, Justin G; Fivelman, Brett; Duffy, Samuel S; Makker, Preet G S; Perera, Chamini J; Moalem-Taylor, Gila

    2015-01-01

    Neuropathic pain occurs as a result of lesion or disease affecting the somatosensory nervous system and is present in a diverse set of peripheral and central pathologies such as nerve trauma, diabetic neuropathy, post-herpetic neuralgia, chemotherapy-induced peripheral neuropathy, spinal cord injury and multiple sclerosis. Debilitating symptoms including allodynia, hyperalgesia and spontaneous pain have a substantial negative impact on patients' quality of life. The currently available therapeutic treatments are generally ineffective and characterised by poor response rates. Accumulating evidence suggests that neuroinflammation and cytokine signalling play a critical role in neuropathic pain. Numerous experimental studies have demonstrated that certain pro-inflammatory cytokines are elevated in neuropathic pain conditions, and administration of these cytokines can elicit pain hypersensitivity in the absence of injury or disease. This phenomenon is also apparent in the 'sickness response', which encompasses a broad inflammatory response to disease and injury and involves a series of physiological and behavioural changes including pain hypersensitivity. Interestingly, the 'sickness response' is also similar in nature to some of the defining characteristics of the depressed state of affective disorder. In this review, we explore links that may relate the co-existence of depression in neuropathic pain patients with the activity of cytokines and discuss the role of several key pro-inflammatory and anti-inflammatory cytokines in neuropathic pain. PMID:26437375

  8. Prostate cancer biomarkers: an update.

    PubMed

    Romero Otero, Javier; Garcia Gomez, Borja; Campos Juanatey, Felix; Touijer, Karim A

    2014-04-01

    Many aspects of prostate cancer diagnosis and treatment could be greatly advanced with new, effective biomarkers. Prostate-specific antigen (PSA) has multiple weaknesses as a biomarker, such as not distinguishing well between cancer and benign prostatic hyperplasia or between indolent and aggressive cancers, thus leading to overtreatment, especially unnecessary biopsies. PSA also often fails to indicate accurately which patients are responding to a given treatment. Yet PSA is the only prostate cancer biomarker routinely used by urologists. Here, we provide updated information on the most relevant of the other biomarkers currently in use or in development for prostate cancer. Recent research shows improvement over using PSA alone by comparing total PSA (tPSA) or free PSA (fPSA) with new, related markers, such as prostate cancer antigen (PCA) 3, the individual molecular forms of PSA (proPSA, benign PSA, and intact PSA), and kallikreins other than PSA. Promising results have also been seen with the use of the fusion gene TMPRSS2:ERG and with various forms of the urokinase plasminogen activation receptor. Initially, there were high hopes for early PCA, but those data were not reproducible and thus research on early PCA has been abandoned. Much work remains to be done before any of these biomarkers are fully validated and accepted. Currently, the only markers discussed in this paper with Food and Drug Administration-approved tests are PCA 3 and an isoform of proPSA, [-2]proPSA. Assays are in development for most of the other biomarkers described in this paper. While the biomarker validation process can be long and filled with obstacles, the rewards will be great-in terms of both patient care and costs to the health care system.

  9. Biomarkers for sporadic Creutzfeldt-Jakob disease.

    PubMed

    Soomro, Sanam; Mohan, Chandra

    2016-06-01

    Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare but fatal type of spongiform encephalopathy with unknown cause. Unfortunately, definitive diagnosis of this disease can only be done by examination of postmortem brain tissue. Presumptive diagnosis is done through a combination of clinical manifestations, radiology results, and cerebrospinal fluid (CSF) testing for CSF 14-3-3. Even with these guidelines, premortem diagnosis of sCJD can be unreliable with high rates of misdiagnosis. This calls for more reliable biomarkers of the disease, allowing for better diagnosis as well as understanding the pathogenesis of sCJD. This review compiles potential genetic, protein, biomolecular, and imaging biomarker studies for sCJD since 2010, highlighting the promise of proteins, cytokines, and composite biomarkers for improving the diagnosis as well as understanding the pathogenesis of this mysterious ailment. PMID:27547775

  10. Prediagnostic serum levels of inflammatory biomarkers are correlated with future development of lung and esophageal cancer.

    PubMed

    Keeley, Brieze R; Islami, Farhad; Pourshams, Akram; Poustchi, Hossein; Pak, Jamie S; Brennan, Paul; Khademi, Hooman; Genden, Eric M; Abnet, Christian C; Dawsey, Sanford M; Boffetta, Paolo; Malekzadeh, Reza; Sikora, Andrew G

    2014-09-01

    This study tests the hypothesis that prediagnostic serum levels of 20 cancer-associated inflammatory biomarkers correlate directly with future development of head and neck, esophageal, and lung cancers in a high-risk prospective cohort. This is a nested case-control pilot study of subjects enrolled in the Golestan Cohort Study, an ongoing epidemiologic project assessing cancer trends in Golestan, Iran. We measured a panel of 20 21 cytokines, chemokines, and inflammatory molecules using Luminex technology in serum samples collected 2 or more years before cancer diagnosis in 78 aerodigestive cancer cases and 81 controls. Data was analyzed using Wilcoxon rank sum test, odds ratios, receiver operating characteristic areas of discrimination, and multivariate analysis. Biomarkers were profoundly and globally elevated in future esophageal and lung cancer patients compared to controls. Odds ratios were significant for association between several biomarkers and future development of esophageal cancer, including interleukin-1Rα (IL-1Ra; 35.9), interferon α2 (IFN-a2; 34.0), fibroblast growth factor-2 (FGF-2; 17.4), and granulocyte/macrophage colony-stimulating factor (GM-CSF; 17.4). The same pattern was observed among future lung cancer cases for G-CSF (27.7), GM-CSF (13.3), and tumor necrosis factor-α (TNF-a; 8.6). By contrast, the majority of biomarkers studied showed no significant correlation with future head and neck cancer development. This study provides the first direct evidence that multiple inflammatory biomarkers are coordinately elevated in future lung and esophageal cancer patients 2 or more years before cancer diagnosis. PMID:25040886

  11. Prediagnostic serum levels of inflammatory biomarkers are correlated with future development of lung and esophageal cancer

    PubMed Central

    Keeley, Brieze R; Islami, Farhad; Pourshams, Akram; Poustchi, Hossein; Pak, Jamie S; Brennan, Paul; Khademi, Hooman; Genden, Eric M; Abnet, Christian C; Dawsey, Sanford M; Boffetta, Paolo; Malekzadeh, Reza; Sikora, Andrew G

    2014-01-01

    This study tests the hypothesis that prediagnostic serum levels of 20 cancer-associated inflammatory biomarkers correlate directly with future development of head and neck, esophageal, and lung cancers in a high-risk prospective cohort. This is a nested case–control pilot study of subjects enrolled in the Golestan Cohort Study, an ongoing epidemiologic project assessing cancer trends in Golestan, Iran. We measured a panel of 20 21cytokines, chemokines, and inflammatory molecules using Luminex technology in serum samples collected 2 or more years before cancer diagnosis in 78 aerodigestive cancer cases and 81 controls. Data was analyzed using Wilcoxon rank sum test, odds ratios, receiver operating characteristic areas of discrimination, and multivariate analysis. Biomarkers were profoundly and globally elevated in future esophageal and lung cancer patients compared to controls. Odds ratios were significant for association between several biomarkers and future development of esophageal cancer, including interleukin-1Rα (IL-1Ra; 35.9), interferon α2 (IFN-a2; 34.0), fibroblast growth factor-2 (FGF-2; 17.4), and granulocyte/macrophage colony-stimulating factor (GM-CSF; 17.4). The same pattern was observed among future lung cancer cases for G-CSF (27.7), GM-CSF (13.3), and tumor necrosis factor-α (TNF-a; 8.6). By contrast, the majority of biomarkers studied showed no significant correlation with future head and neck cancer development. This study provides the first direct evidence that multiple inflammatory biomarkers are coordinately elevated in future lung and esophageal cancer patients 2 or more years before cancer diagnosis. PMID:25040886

  12. The in vitro effects of Xancor, a synthetic astaxanthine derivative, on hemostatic biomarkers in aspirin-naïve and aspirin-treated subjects with multiple risk factors for vascular disease.

    PubMed

    Serebruany, Victor; Malinin, Alex; Goodin, Thomas; Pashkow, Fredric

    2010-01-01

    Astaxanthine is a polar carotenoid metabolite derived from a proprietary prodrug, Xancor, which aligns parallel with the membrane phospholipids exhibiting potent antioxidant, anti-inflammatory, and cell protective properties, although the precise mechanism of action is unknown. This prodrug is currently under development for hepatic, neurologic, and vascular disease indications. Considering established links between heart disease and stroke with platelets, coagulation cascade, and fibrinolysis, the aim of the study was to assess the effect of asthaxantine on human biomarkers of hemostasis. The rationale was to test a hypothesis that the drug may diminish activation of hemostasis, making it a potentially attractive addition to treat patients with vascular disease. In vitro effects of whole blood preincubation with escalating concentrations of asthaxantine (0.3 microM, 1 microM, 3 microM, 10 microM, 30 microM, and 100 microM) were assessed from 12 aspirin-naïve and eight aspirin-treated volunteers with multiple risk factors for vascular disease. A total of 25 biomarkers were measured, of which 12 were related to platelet function, 10 to coagulation, and three to fibrinolysis. Platelet aggregation induced by ADP, collagen, and arachidonic acid and expression of CD31, CD41, GP IIb/IIIa, CD51/61, P-selectin, CD63, CD107a, CD151+CD14, and CD154 were not affected. Coagulation indices such as aPTT, prothrombin time, thrombin time, fibrinogen, antithrombin III (antigen and activity), Protein C, Protein S (free and activity), and von Willebrand factor remained unchanged after incubation with astaxanthine. Fibrinolytic activity biomarkers such as plasminogen, D-dimer, and FDP were also not affected after in vitro pretreatment of blood samples with astaxanthine. In the projected subclinical (less than 1 microM), therapeutic (3 microM to 30 microM), and supratherapeutic concentration (100 microM), astaxanthine in vitro does not affect platelet, coagulation, or fibrinolytic

  13. Lipopolysaccharide-Induced CXCL10 mRNA Level and Six Stimulant-mRNA Combinations in Whole Blood: Novel Biomarkers for Bortezomib Responses Obtained from a Prospective Multicenter Trial for Patients with Multiple Myeloma.

    PubMed

    Watanabe, Takashi; Mitsuhashi, Masato; Sagawa, Morihiko; Ri, Masaki; Suzuki, Kenshi; Abe, Masahiro; Ohmachi, Ken; Nakagawa, Yasunori; Nakamura, Shingen; Chosa, Mizuki; Iida, Shinsuke; Kizaki, Masahiro

    2015-01-01

    To identify predictive biomarkers for clinical responses to bortezomib treatment, 0.06 mL of each whole blood without any cell separation procedures was stimulated ex vivo using five agents, and eight mRNAs were quantified. In six centers, heparinized peripheral blood was prospectively obtained from 80 previously treated or untreated, symptomatic multiple myeloma (MM) patients with measurable levels of M-proteins. The blood sample was procured prior to treatment as well as 2-3 days and 1-3 weeks after the first dose of bortezomib, which was intravenously administered biweekly or weekly, during the first cycle. Six stimulant-mRNA combinations; that is, lipopolysaccharide (LPS)-granulocyte-macrophage colony-stimulating factor (GM-CSF), LPS-CXCL chemokine 10 (CXCL10), LPS-CCL chemokine 4 (CCL4), phytohemagglutinin-CCL4, zymosan A (ZA)-GMCSF and ZA-CCL4 showed significantly higher induction in the complete and very good partial response group than in the stable and progressive disease group, as determined by both parametric (t-test) and non-parametric (unpaired Mann-Whitney test) tests. Moreover, LPS-induced CXCL10 mRNA expression was significantly suppressed 2-3 days after the first dose of bortezomib in all patients, as determined by both parametric (t-test) and non-parametric (paired Wilcoxon test) tests, whereas the complete and very good partial response group showed sustained suppression 1-3 weeks after the first dose. Thus, pretreatment LPS-CXCL10 mRNA and/or the six combinations may serve as potential biomarkers for the response to bortezomib treatment in MM patients.

  14. Autophagy and cytokines.

    PubMed

    Harris, James

    2011-11-01

    Autophagy is a highly conserved homoeostatic mechanism for the lysosomal degradation of cytosolic constituents, including long-lived macromolecules, organelles and intracellular pathogens. Autophagosomes are formed in response to a number of environmental stimuli, including amino acid deprivation, but also by both host- and pathogen-derived molecules, including toll-like receptor ligands and cytokines. In particular, IFN-γ, TNF-α, IL-1, IL-2, IL-6 and TGF-β have been shown to induce autophagy, while IL-4, IL-10 and IL-13 are inhibitory. Moreover, autophagy can itself regulate the production and secretion of cytokines, including IL-1, IL-18, TNF-α, and Type I IFN. This review discusses the potentially pivotal roles of autophagy in the regulation of inflammation and the coordination of innate and adaptive immune responses.

  15. Abnormal Growth Factor/Cytokine Network in Gastric Cancer

    PubMed Central

    2008-01-01

    Gastric cancer cells express a broad spectrum of the growth factor/cytokine receptor systems that organize the complex interaction between cancer cells and stromal cells in tumor microenvironment, which confers cell growth, apoptosis, morphogenesis, angiogenesis, progression and metastasis. However, these abnormal growth factor/cytokine networks differ in the two histological types of gastric cancer. Importantly, activation of nuclear factor-kB pathway by Helicobacter pylori infection may act as a key player for induction of growth factor/cytokine networks in gastritis and pathogenesis of gastric cancer. Better understanding of these events will no doubt provide new approaches for biomarkers of diagnosis and effective therapeutic targeting of gastric cancer. PMID:19308687

  16. Coordinate cytokine regulatory sequences

    DOEpatents

    Frazer, Kelly A.; Rubin, Edward M.; Loots, Gabriela G.

    2005-05-10

    The present invention provides CNS sequences that regulate the cytokine gene expression, expression cassettes and vectors comprising or lacking the CNS sequences, host cells and non-human transgenic animals comprising the CNS sequences or lacking the CNS sequences. The present invention also provides methods for identifying compounds that modulate the functions of CNS sequences as well as methods for diagnosing defects in the CNS sequences of patients.

  17. [Cytokines and the liver].

    PubMed

    Kershenobich, D; Borovoy, J; Guevara, L; Male, R; Alcocer, J

    1990-07-01

    The cytokines are proteins synthetized by lymphoid and monocyte/macrophage system cells in response to a wide variety of infectious stimulus, featuring bacterial endotoxins. These proteins have immunoregulatory effects and have been implicated in inflammation and fibrosis. In this review we refer to the interleukin-1, interleukin-6 and tumor necrosis factor because of their elevated basal levels in acute and chronic hepatopaties and in response to lipopolisacharide mainly in alcoholic liver disease. PMID:19256129

  18. A review of the application of inflammatory biomarkers in epidemiologic cancer research

    PubMed Central

    Brenner, Darren R.; Scherer, Dominique; Muir, Kenneth; Schildkraut, Joellen; Boffetta, Paolo; Spitz, Margaret R.; LeMarchand, Loic; Chan, Andrew T.; Goode, Ellen L.; Ulrich, Cornelia M.; Hung, Rayjean J.

    2014-01-01

    Inflammation is a facilitating process for multiple cancer types. It is believed to affect cancer development and progression through several etiologic pathways including increased levels of DNA adduct formation, increased angiogenesis and altered anti-apoptotic signaling. This review highlights the application of inflammatory biomarkers in epidemiologic studies and discusses the various cellular mediators of inflammation characterizing the innate immune system response to infection and chronic insult from environmental factors. Included is a review of six classes of inflammation-related biomarkers: cytokines/chemokines, immune-related effectors, acute phase proteins, reactive oxygen and nitrogen species, prostaglandins and cyclooxygenase-related factors, and mediators such as transcription factors and growth factors. For each of these biomarkers we provide a brief overview of the etiologic role in the inflammation response and how they have been related to cancer etiology and progression within the literature. We provide a discussion of the common techniques available for quantification of each marker including strengths, weaknesses and potential pitfalls. Subsequently, we highlight a few under-studied measures to characterize the inflammatory response and their potential utility in epidemiologic studies of cancer. Finally, we suggest integrative methods for future studies to apply multi-faceted approaches to examine the relationship between inflammatory markers and their roles in cancer development. PMID:24962838

  19. Baseline immune biomarkers as predictors of MBSR(BC) treatment success in off-treatment breast cancer patients.

    PubMed

    Reich, Richard R; Lengacher, Cecile A; Kip, Kevin E; Shivers, Steven C; Schell, Michael J; Shelton, Melissa M; Widen, Raymond H; Newton, Catherine; Barta, Michelle K; Paterson, Carly L; Farias, Jerrica R; Cox, Charles E; Klein, Thomas W

    2014-10-01

    Researchers focused on patient-centered medicine are increasingly trying to identify baseline factors that predict treatment success. Because the quantity and function of lymphocyte subsets change during stress, we hypothesized that these subsets would serve as stress markers and therefore predict which breast cancer patients would benefit most from mindfulness-based stress reduction (MBSR)-facilitated stress relief. The purpose of this study was to assess whether baseline biomarker levels predicted symptom improvement following an MBSR intervention for breast cancer survivors (MBSR[BC]). This randomized controlled trial involved 41 patients assigned to either an MBSR(BC) intervention group or a no-treatment control group. Biomarkers were assessed at baseline, and symptom change was assessed 6 weeks later. Biomarkers included common lymphocyte subsets in the peripheral blood as well as the ability of T cells to become activated and secrete cytokines in response to stimulation with mitogens. Spearman correlations were used to identify univariate relationships between baseline biomarkers and 6-week improvement of symptoms. Next, backward elimination regression models were used to identify the strongest predictors from the univariate analyses. Multiple baseline biomarkers were significantly positively related to 6-week symptom improvement. The regression models identified B-lymphocytes and interferon-γ as the strongest predictors of gastrointestinal improvement (p < .01), +CD4+CD8 as the strongest predictor of cognitive/psychological (CP) improvement (p = .02), and lymphocytes and interleukin (IL)-4 as the strongest predictors of fatigue improvement (p < .01). These results provide preliminary evidence of the potential to use baseline biomarkers as predictors to identify the patients likely to benefit from this intervention. PMID:24477514

  20. Serum Levels of Proinflammatory Cytokines in Painful Knee Osteoarthritis and Sensitization

    PubMed Central

    Imamura, Marta; Ezquerro, Fernando; Marcon Alfieri, Fábio; Vilas Boas, Lucy; Tozetto-Mendoza, Tania Regina; Chen, Janini; Özçakar, Levent; Arendt-Nielsen, Lars

    2015-01-01

    Osteoarthritis (OA) is the most common joint disorder in the world. Among the mechanisms involved in osteoarthritis, biomarkers (cytokines profile) may be related to pain and pain intensity, functional capacity, and pressure pain thresholds (PPT). Thus, the study of these relationships may offer useful information about pathophysiology and associated mechanisms involved in osteoarthritis. Therefore, the objective of this study was to investigate the seric concentration of pro (IL-6, IL-8, and TNF-α) and anti-inflammatory (IL-10) cytokines in patients with painful knee osteoarthritis and to correlate the levels of these biomarkers with the patients' functional capacity and pressure pain threshold (PPT) values. PMID:25821631

  1. Biomarkers in melanoma.

    PubMed

    Griewank, Klaus G

    2016-01-01

    Malignant melanoma remains the skin cancer with the highest number of mortalities worldwide. While early diagnosis and complete surgical excision remain the best possibility for curing disease, prognosis at the stage of metastasis is still poor. Recent years have brought about considerable advances in terms of understanding the pathogenesis of melanoma and treating advanced disease. The discovery of activating BRAF mutations in around 50% of tumors has led to the introduction of targeted therapies downregulating BRAF signaling output. These have been further refined as combination therapies, which by targeting multiple targets have further improved the clinical outcome. A comparable, potentially even superior therapeutic alternative has been the introduction of immunotherapeutic approaches, including PD-1 and CTLA-4 checkpoint blockade therapies. Despite all genetic knowledge acquired in recent years, a clearly applicable prognostic signature of clinical value has not been established. General prognostic assessment of cutaneous melanoma remains based on clinical and pathological criteria (most importantly tumor thickness). The main challenges lying ahead are to establish a reliable prognostic test effectively determining which tumors will metastasize. Additionally establishing biomarkers which will allow patients to be stratified according to the most promising systemic therapy (immunotherapies and/or BRAF inhibitor therapies) is of utmost importance for patients with metastasized disease. Identifying serum biomarkers enabling disease to be monitored as well as determining tumor properties (i.e. resistance) would also be of great value. While initial results have proven promising, there remains much work to be done. PMID:27467728

  2. Proteomic-Based Approaches for the Study of Cytokines in Lung Cancer

    PubMed Central

    Marrugal, Ángela; Ojeda, Laura; Paz-Ares, Luis

    2016-01-01

    Proteomic techniques are currently used to understand the biology of different human diseases, including studies of the cell signaling pathways implicated in cancer progression, which is important in knowing the roles of different proteins in tumor development. Due to its poor prognosis, proteomic approaches are focused on the identification of new biomarkers for the early diagnosis, prognosis, and targeted treatment of lung cancer. Cytokines are proteins involved in inflammatory processes and have been proposed as lung cancer biomarkers and therapeutic targets because it has been reported that some cytokines play important roles in tumor development, invasion, and metastasis. In this review, we aim to summarize the different proteomic techniques used to discover new lung cancer biomarkers and therapeutic targets. Several cytokines have been identified as important players in lung cancer using these techniques. We underline the most important cytokines that are useful as biomarkers and therapeutic targets. We also summarize some of the therapeutic strategies targeted for these cytokines in lung cancer. PMID:27445423

  3. Cytokine Therapies in Neurological Disease.

    PubMed

    Azodi, Shila; Jacobson, Steven

    2016-07-01

    Cytokines are a heterogeneous group of glycoproteins that coordinate physiological functions. Cytokine deregulation is observed in many neurological diseases. This article reviews current research focused on human clinical trials of cytokine and anticytokine therapies in the treatment of several neurological disease including stroke, neuromuscular diseases, neuroinfectious diseases, demyelinating diseases, and neurobehavioral diseases. This research suggests that cytokine therapy applications may play an important role in offering new strategies for disease modulation and treatment. Further, this research provides insights into the causal link between cytokine deregulation and neurological diseases. PMID:27388288

  4. Interleukin-6 as a Prognostic Biomarker in Ruptured Intracranial Aneurysms

    PubMed Central

    Kao, Hung-Wen; Kuo, Chen-Ling; Huang, Ching-Shan; Tseng, Wan-Min; Lin, Ching-Po

    2015-01-01

    Background Interleukin-6 (IL-6), a proinflammatory cytokine, was found to surge in the cerebral spinal fluid after aneurysmal subarachnoid hemorrhage (SAH). We hypothesized that the plasma level of IL-6 could be an independent biomarker in predicting clinical outcome of patients with ruptured intracranial aneurysm. Methods We prospectively included 53 consecutive patients treated with platinum coil embolization of the ruptured intracranial aneurysm. Plasma IL-6 levels were measured in the blood samples at the orifices of the aneurysms and from peripheral veins. The outcome measure was the modified Rankin Scale one month after SAH. Multiple logistic regression analyses were used to evaluate the associations between the plasma IL-6 levels and the neurological outcome. Results Significant risk factors for the poor outcome were old age, low Glasgow Coma Scale (GCS) on day 0, high Fisher grades, and high aneurysmal and venous IL-6 levels in univariate analyses. Aneurysmal IL-6 levels showed modest to moderate correlations with GCS on day 0, vasospasm grade and Fisher grade. A strong correlation was found between the aneurysmal and the corresponding venous IL-6 levels (ρ = 0.721; P<0.001). In the multiple logistic regression models, the poor 30-day mRS was significantly associated with high aneurysmal IL-6 level (OR, 17.97; 95% CI, 1.51–214.33; P = 0.022) and marginally associated with high venous IL-6 level (OR, 12.71; 95% CI, 0.90–180.35; P = 0.022) after adjusting for dichotomized age, GCS on day 0, and vasospasm and Fisher grades. Conclusions The plasma level of IL-6 is an independent prognostic biomarker that could be used to aid in the identification of patients at high-risk of poor neurological outcome after rupture of the intracranial aneurysm. PMID:26176774

  5. Biomarkers for wound healing and their evaluation.

    PubMed

    Patel, S; Maheshwari, A; Chandra, A

    2016-01-01

    A biological marker (biomarker) is a substance used as an indicator of biological state. Advances in genomics, proteomics and molecular pathology have generated many candidate biomarkers with potential clinical value. Research has identified several cellular events and mediators associated with wound healing that can serve as biomarkers. Macrophages, neutrophils, fibroblasts and platelets release cytokines molecules including TNF-α, interleukins (ILs) and growth factors, of which platelet-derived growth factor (PDGF) holds the greatest importance. As a result, various white cells and connective tissue cells release both matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). Studies have demonstrated that IL-1, IL-6, and MMPs, levels above normal, and an abnormally high MMP/TIMP ratio are often present in non-healing wounds. Clinical examination of wounds for these mediators could predict which wounds will heal and which will not, suggesting use of these chemicals as biomarkers of wound healing. There is also evidence that the application of growth factors like PDGF will alleviate the recuperating process of chronic, non-healing wounds. Finding a specific biomarker for wound healing status would be a breakthrough in this field and helping treat impaired wound healing.

  6. Human Bladder Uroepithelial Cells Synergize with Monocytes to Promote IL-10 Synthesis and Other Cytokine Responses to Uropathogenic Escherichia coli

    PubMed Central

    Duell, Benjamin L.; Carey, Alison J.; Dando, Samantha J.; Schembri, Mark A.; Ulett, Glen C.

    2013-01-01

    Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC) being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10) in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions. PMID:24155979

  7. Human bladder uroepithelial cells synergize with monocytes to promote IL-10 synthesis and other cytokine responses to uropathogenic Escherichia coli.

    PubMed

    Duell, Benjamin L; Carey, Alison J; Dando, Samantha J; Schembri, Mark A; Ulett, Glen C

    2013-01-01

    Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC) being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10) in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions.

  8. BIOMARKERS OF REPRODUCTIVE TOXICITY

    EPA Science Inventory

    Identification and verification of anatomical, endocrine, cellular and molecular biomarkers is crucial for successful clinical diagnosis and treatment of toxicity and disease, as well as basic toxicological, epidemiological and other research. Various in situ biomarkers of repro...

  9. Biomarkers in Computational Toxicology

    EPA Science Inventory

    Biomarkers are a means to evaluate chemical exposure and/or the subsequent impacts on toxicity pathways that lead to adverse health outcomes. Computational toxicology can integrate biomarker data with knowledge of exposure, chemistry, biology, pharmacokinetics, toxicology, and e...

  10. [Cytokines in bone diseases. Cytokine and postmenopausal osteoporosis].

    PubMed

    Inada, Masaki; Miyaura, Chisato

    2010-10-01

    Bone resorption is regulated by various cytokines. In postmenopausal osteoporosis, bone loss due to estrogen deficiency is closely related to the production of bone-resorbing cytokine. Especially, the increased production of IL-1, IL-6 and TNF-α could induce the expression of RANKL in bone tissues to enhance osteoclastogenesis. Relationship between estrogen deficiency and various cytokines is important to clarify the pathogenesis of postmenopausal osteoporosis.

  11. Consumption of soy isoflavone enriched bread in men with prostate cancer is associated with reduced proinflammatory cytokines and immunosuppressive cells.

    PubMed

    Lesinski, Gregory B; Reville, Patrick K; Mace, Thomas A; Young, Gregory S; Ahn-Jarvis, Jennifer; Thomas-Ahner, Jennifer; Vodovotz, Yael; Ameen, Zeenath; Grainger, Elizabeth; Riedl, Kenneth; Schwartz, Steven; Clinton, Steven K

    2015-11-01

    We hypothesized that soy phytochemicals may have immunomodulatory properties that may affect prostate carcinogenesis and progression. A randomized, phase II trial was conducted in 32 patients with prostate cancer with asymptomatic biochemical recurrence but no measurable disease on standard staging studies. Patients were randomized to two slices of soy bread (34 mg isoflavones/slice) or soy bread containing almond powder daily as a source of β-glucosidase. Flow cytometry and bioplex assays were used to measure cytokines or immune cell phenotype in blood at baseline (day 0) and following intervention (day 56). Adequate blood samples were available at enrollment and day 56 and evaluated. Multiple plasma cytokines and chemokines were significantly decreased on day 56 versus baseline. Subgroup analysis indicated reduced TH1 (P = 0.028) and myeloid-derived suppressor cell (MDSC)-associated cytokines (P = 0.035). TH2 and TH17 cytokines were not significantly altered. Phenotypic analysis revealed no change in CD8(+) or CD4(+) T cells but showed increased CD56(+) natural killer (NK) cells (P = 0.038). The percentage of cells with a T regulatory cell phenotype (CD4(+)CD25(+)FoxP3(+)) was significantly decreased after 56 days of soy bread (P = 0.0136). Significantly decreased monocytic (CD33(+)HLADR(neg)CD14(+)) MDSC were observed in patients consuming soy bread (P = 0.0056). These data suggest that soy bread modulates systemic soluble and cellular biomarkers consistent with limiting inflammation and suppression of MDSCs. Additional studies to elucidate impact on the carcinogenic process or as a complement to immune-based therapy are required.

  12. Relationships between biomarkers of exposure and toxicokinetics in Fischer 344 rats and B6C3F{sub 1} mice administered single doses of acrylamide and glycidamide and multiple doses of acrylamide

    SciTech Connect

    Tareke, Eden; Twaddle, Nathan C.; McDaniel, L. Patrice; Churchwell, Mona I.; Young, John F.; Doerge, Daniel R. . E-mail: daniel.doerge@fda.hhs.gov

    2006-11-15

    Acrylamide (AA) is a widely studied industrial chemical that is neurotoxic, mutagenic to somatic and germ cells and carcinogenic in rodents. AA is also formed in many commonly consumed starchy foods during cooking. Our previous toxicokinetic investigations of AA and its important genotoxic metabolite, glycidamide (GA), in rodents showed that AA is highly bioavailable from oral routes of administration, is widely distributed to tissues and that the dietary route, in particular, favors metabolism to GA. Measurements of DNA adducts in many tissues supported the hypothesis that AA is carcinogenic in rodent bioassays through metabolism to GA. The current investigation describes the development and validation of methodology for measuring hemoglobin (Hb) adducts with AA and GA in the same rodents previously used for toxicokinetic and DNA adduct measurements. The goal was to investigate possible relationships between these circulating biomarkers of exposure and serum toxicokinetic parameters for AA and GA and tissue GA-DNA adducts in rodents from both single and repeated dosing with AA. Significant correlations were observed between GA-Hb and liver GA-DNA adducts for either single or multiple dosing regimens with AA. Using available GA-Hb adduct data, empirical and allometric relationships permitted estimation of liver DNA adducts in humans in the range of 0.06-0.3 adducts/10{sup 8} nucleotides. This approach may prove useful in extrapolating human cancer risks from findings in rodent bioassays.

  13. Interaction Study of Phospholipid Membranes with an N-Glucosylated β-Turn Peptide Structure Detecting Autoantibodies Biomarkers of Multiple Sclerosis.

    PubMed

    Becucci, Lucia; Benci, Stefano; Nuti, Francesca; Real-Fernandez, Feliciana; Vaezi, Zahra; Stella, Lorenzo; Venanzi, Mariano; Rovero, Paolo; Papini, Anna Maria

    2015-01-01

    The interaction of lipid environments with the type I' β-turn peptide structure called CSF114 and its N-glucosylated form CSF114(Glc), previously developed as a synthetic antigenic probe recognizing specific autoantibodies in a subpopulation of multiple sclerosis patients' serum, was investigated by fluorescence spectroscopy and electrochemical experiments using large unilamellar vesicles, mercury supported lipid self-assembled monolayers (SAMs) and tethered bilayer lipid membranes (tBLMs). The synthetic antigenic probe N-glucosylated peptide CSF114(Glc) and its unglucosylated form interact with the polar heads of lipid SAMs of dioleoylphosphatidylcholine at nonzero transmembrane potentials, probably establishing a dual electrostatic interaction of the trimethylammonium  and phosphate groups of the phosphatidylcholine polar head with the Glu⁵ and His⁸ residues on the opposite ends of the CSF114(Glc) β-turn encompassing residues 6-9. His⁸ protonation at pH 7 eliminates this dual interaction. CSF114(Glc) is adsorbed on top of SAMs of mixtures of dioleoylphosphatidylcholine with sphingomyelin, an important component of myelin, whose proteins are hypothesized to undergo an aberrant N-glucosylation triggering the autoimmune response. Incorporation of the type I' β-turn peptide structure CSF114 into lipid SAMs by potential scans of electrochemical impedance spectroscopy induces defects causing a slight permeabilization toward cadmium ions. The N-glucopeptide CSF114(Glc) does not affect  tBLMs to a detectable extent. PMID:26437433

  14. Interaction Study of Phospholipid Membranes with an N-Glucosylated β-Turn Peptide Structure Detecting Autoantibodies Biomarkers of Multiple Sclerosis

    PubMed Central

    Becucci, Lucia; Benci, Stefano; Nuti, Francesca; Real-Fernandez, Feliciana; Vaezi, Zahra; Stella, Lorenzo; Venanzi, Mariano; Rovero, Paolo; Papini, Anna Maria

    2015-01-01

    The interaction of lipid environments with the type I’ β-turn peptide structure called CSF114 and its N-glucosylated form CSF114(Glc), previously developed as a synthetic antigenic probe recognizing specific autoantibodies in a subpopulation of multiple sclerosis patients’ serum, was investigated by fluorescence spectroscopy and electrochemical experiments using large unilamellar vesicles, mercury supported lipid self-assembled monolayers (SAMs) and tethered bilayer lipid membranes (tBLMs). The synthetic antigenic probe N-glucosylated peptide CSF114(Glc) and its unglucosylated form interact with the polar heads of lipid SAMs of dioleoylphosphatidylcholine at nonzero transmembrane potentials, probably establishing a dual electrostatic interaction of the trimethylammonium  and phosphate groups of the phosphatidylcholine polar head with the Glu5 and His9 residues on the opposite ends of the CSF114(Glc) β-turn encompassing residues 6-9. His9 protonation at pH 7 eliminates this dual interaction. CSF114(Glc) is adsorbed on top of SAMs of mixtures of dioleoylphosphatidylcholine with sphingomyelin, an important component of myelin, whose proteins are hypothesized to undergo an aberrant N-glucosylation triggering the autoimmune response. Incorporation of the type I’ β-turn peptide structure CSF114 into lipid SAMs by potential scans of electrochemical impedance spectroscopy induces defects causing a slight permeabilization toward cadmium ions. The N-glucopeptide CSF114(Glc) does not affect  tBLMs to a detectable extent. PMID:26437433

  15. Interaction Study of Phospholipid Membranes with an N-Glucosylated β-Turn Peptide Structure Detecting Autoantibodies Biomarkers of Multiple Sclerosis.

    PubMed

    Becucci, Lucia; Benci, Stefano; Nuti, Francesca; Real-Fernandez, Feliciana; Vaezi, Zahra; Stella, Lorenzo; Venanzi, Mariano; Rovero, Paolo; Papini, Anna Maria

    2015-09-30

    The interaction of lipid environments with the type I' β-turn peptide structure called CSF114 and its N-glucosylated form CSF114(Glc), previously developed as a synthetic antigenic probe recognizing specific autoantibodies in a subpopulation of multiple sclerosis patients' serum, was investigated by fluorescence spectroscopy and electrochemical experiments using large unilamellar vesicles, mercury supported lipid self-assembled monolayers (SAMs) and tethered bilayer lipid membranes (tBLMs). The synthetic antigenic probe N-glucosylated peptide CSF114(Glc) and its unglucosylated form interact with the polar heads of lipid SAMs of dioleoylphosphatidylcholine at nonzero transmembrane potentials, probably establishing a dual electrostatic interaction of the trimethylammonium  and phosphate groups of the phosphatidylcholine polar head with the Glu⁵ and His⁸ residues on the opposite ends of the CSF114(Glc) β-turn encompassing residues 6-9. His⁸ protonation at pH 7 eliminates this dual interaction. CSF114(Glc) is adsorbed on top of SAMs of mixtures of dioleoylphosphatidylcholine with sphingomyelin, an important component of myelin, whose proteins are hypothesized to undergo an aberrant N-glucosylation triggering the autoimmune response. Incorporation of the type I' β-turn peptide structure CSF114 into lipid SAMs by potential scans of electrochemical impedance spectroscopy induces defects causing a slight permeabilization toward cadmium ions. The N-glucopeptide CSF114(Glc) does not affect  tBLMs to a detectable extent.

  16. NASA Radiation Biomarker Workshop, September 27-28, 2007.

    PubMed

    Straume, Tore; Amundson, Sally A; Blakely, William F; Burns, Fredric J; Chen, Allen; Dainiak, Nicholas; Franklin, Stephen; Leary, Julie A; Loftus, David J; Morgan, William F; Pellmar, Terry C; Stolc, Viktor; Turteltaub, Kenneth W; Vaughan, Andrew T; Vijayakumar, Srinivasan; Wyrobek, Andrew J

    2008-09-01

    A summary is provided of presentations and discussions at the NASA Radiation Biomarker Workshop held September 27-28, 2007 at NASA Ames Research Center in Mountain View, CA. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including those exposed during long-duration space travel. Topics discussed included the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage after large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. A summary of conclusions is provided at the end of the report.

  17. An in vivo platform for tumor biomarker assessment.

    PubMed

    Servais, Elliot L; Suzuki, Kei; Colovos, Christos; Rodriguez, Luis; Sima, Camelia; Fleisher, Martin; Rusch, Valerie W; Sadelain, Michel; Adusumilli, Prasad S

    2011-01-01

    Tumor biomarkers provide a quantitative tool for following tumor progression and response to therapy. However, investigations of clinically useful tumor biomarkers are time-consuming, costly, and limited by patient and tumor heterogeneity. In addition, assessment of biomarkers as indicators of therapy response is confounded by the concomitant use of multiple therapeutic interventions. Herein we report our use of a clinically relevant orthotopic animal model of malignant pleural mesothelioma for investigating tumor biomarkers. Utilizing multi-modality imaging with correlative histopathology, we demonstrate the utility and accuracy of the mouse model in investigating tumor biomarkers--serum soluble mesothelin-related peptide (SMRP) and osteopontin (OPN). This model revealed percentage change in SMRP level to be an accurate biomarker of tumor progression and therapeutic response--a finding consistent with recent clinical studies. This in vivo platform demonstrates the advantages of a validated mouse model for the timely and cost-effective acceleration of human biomarker translational research. PMID:22046338

  18. Novel associations between contaminant body burdens and biomarkers of reproductive condition in male Common Carp along multiple gradients of contaminant exposure in Lake Mead National Recreation Area, USA

    USGS Publications Warehouse

    Patino, Reynaldo; VanLandeghem, Matthew M.; Goodbred, Steven L.; Orsak, Erik; Jenkins, Jill A.; Echols, Kathy R.; Rosen, Michael R.; Torres, Leticia

    2015-01-01

    reported by studies where exposure concentrations were relatively high. Lastly, this study highlighted advantages of multivariate/multiple regression approaches for exploring associations between complex contaminant mixtures and gradients and reproductive condition in wild fishes.

  19. TRAIL and TRAIL receptors splice variants during long-term interferon β treatment of patients with multiple sclerosis: evaluation as biomarkers for therapeutic response

    PubMed Central

    López-Gómez, Carlos; Oliver-Martos, Begoña; Pinto-Medel, María-Jesús; Suardiaz, Margarita; Reyes-Garrido, Virginia; Urbaneja, Patricia; Fernández, Óscar; Leyva, Laura

    2016-01-01

    Objective We aimed to assess the effects of interferon β (IFNβ) treatment on the expression of the splice variants of the Tumour necrosis factor-Related Apoptosis Inducing Ligand (TRAIL) and its receptors in different cell subpopulations (CD14+, CD4+ and CD8+) from patients with multiple sclerosis (MS), and to determine whether this expression discriminated responders from non-responders to IFNβ therapy. Methods We examined mRNA expression of the TRAIL and TRAIL receptors variants in patients with MS, at baseline and after one year of IFNβ therapy, according to responsiveness to this drug. Results Long-term therapy with IFNβ increased the expression of TRAIL-α in T cell subsets exclusively from responders and decreased the expression of the isoform 2 of TRAILR-2 in monocytes from responders as well as non-responders. Lower expression of TRAIL-α, and higher expression of TRAIL-β in monocytes and T cells, was found before the onset of IFNβ therapy in patients who will subsequently become responders. Baseline expression of TRAILR-1 was also significantly higher in monocytes and CD4+ T cells from responders. Conclusions The present study shows that long-term IFNβ treatment has a direct influence on TRAIL-α and TRAILR-2 isoform 2 expression. Besides, receiver operating characteristic analysis revealed that the baseline expression of TRAIL-α in monocytes and T cells, and that of TRAILR-1 in monocytes and CD4+ T cells, showed a predictive value of the clinical response to IFNβ therapy, pointing to a role of TRAIL system in the mechanism of action of IFNβ in MS that will need further investigation. PMID:25736057

  20. Novel associations between contaminant body burdens and biomarkers of reproductive condition in male Common Carp along multiple gradients of contaminant exposure in Lake Mead National Recreation Area, USA.

    PubMed

    Patiño, Reynaldo; VanLandeghem, Matthew M; Goodbred, Steven L; Orsak, Erik; Jenkins, Jill A; Echols, Kathy; Rosen, Michael R; Torres, Leticia

    2015-08-01

    reported by studies where exposure concentrations were relatively high. Lastly, this study highlighted advantages of multivariate/multiple regression approaches for exploring associations between complex contaminant mixtures and gradients and reproductive condition in wild fishes.

  1. The Differential Levels of Inflammatory Cytokines and BDNF among Bipolar Spectrum Disorders

    PubMed Central

    Wang, Tzu-Yun; Lee, Sheng-Yu; Chen, Shiou-Lan; Chung, Yi-Lun; Li, Chia-Ling; Chang, Yun-Hsuan; Wang, Liang-Jen; Chen, Po See; Chen, Shih-Heng; Chu, Chun-Hsien; Huang, San-Yuan; Tzeng, Nian-Sheng; Hsieh, Tsai-Hsin; Chiu, Yen-Chu; Lee, I Hui; Chen, Kao-Chin; Yang, Yen Kuang; Hong, Jau-Shyong

    2016-01-01

    Objective: Emerging evidence suggests that inflammation and neurodegeneration underlies bipolar disorder. To investigate biological markers of cytokines and brain-derived neurotrophic factor between bipolar I, bipolar II, and other specified bipolar disorder with short duration hypomania may support the association with inflammatory dysregulation and bipolar disorder and, more specifically, provide evidence for other specified bipolar disorder with short duration hypomania patients were similar to bipolar II disorder patients from a biological marker perspective. Methods: We enrolled patients with bipolar I disorder (n=234), bipolar II disorder (n=260), other specified bipolar disorder with short duration hypomania (n=243), and healthy controls (n=140). Their clinical symptoms were rated using the Hamilton Depression Rating Scale and Young Mania Rating Scale. Inflammatory cytokine (tumor necrosis factor-α, C-reactive protein, transforming growth factor-β1, and interleukin-8) and brain-derived neurotrophic factor levels were measured in each group. Multivariate analysis of covariance and linear regression controlled for possible confounders were used to compare cytokine and brain-derived neurotrophic factor levels among the groups. Results: Multivariate analysis of covariance adjusted for age and sex and a main effect of diagnosis was significant (P<.001). Three of the 5 measured biomarkers (tumor necrosis factor-α, transforming growth factor-β1, and interleukin-8) were significantly (P=.006, .01, and <.001) higher in all bipolar disorder patients than in controls. Moreover, covarying for multiple associated confounders showed that bipolar I disorder patients had significantly higher IL-8 levels than did bipolar II disorder and other specified bipolar disorder with short duration hypomania patients in multivariate analysis of covariance (P=.03) and linear regression (P=.02) analyses. Biomarkers differences between bipolar II disorder and other specified bipolar

  2. Silicon photonic microring resonators for quantitative cytokine detection and T-cell secretion analysis.

    PubMed

    Luchansky, Matthew S; Bailey, Ryan C

    2010-03-01

    The ability to perform multiple simultaneous protein biomarker measurements in complex media with picomolar sensitivity presents a large challenge to disease diagnostics and fundamental biological studies. Silicon photonic microring resonators represent a promising platform for real-time detection of biomolecules on account of their spectral sensitivity toward surface binding events between a target and antibody-modified microrings. For all refractive index-based sensing schemes, the mass of bound analytes, in combination with other factors such as antibody affinity and surface density, contributes to the observed signal and measurement sensitivity. Therefore, proteins that are simultaneously low in abundance and have a lower molecular weight are often challenging to detect. By employing a more massive secondary antibody to amplify the signal arising from the initial binding event, it is possible to improve both the sensitivity and the specificity of protein assays, allowing for quantitative sensing in complex sample matrices. Herein, a sandwich assay is used to detect the 15.5 kDa human cytokine interleukin-2 (IL-2) at concentrations down to 100 pg/mL (6.5 pM) and to quantitate unknown solution concentrations over a dynamic range spanning 2.5 orders of magnitude. This same sandwich assay is then used to monitor the temporal secretion profile of IL-2 from Jurkat T lymphocytes in serum-containing cell culture media in the presence of the entire Jurkat secretome. The same temporal secretion analysis is performed in parallel using a commercial ELISA, revealing similar IL-2 concentration profiles but superior precision for the microring resonator sensing platform. Furthermore, we demonstrate the generality of the sandwich assay methodology on the microring resonator platform for the analysis of any biomolecular target for which two high-affinity antibodies exist by detecting the approximately 8 kDa cytokine interleukin-8 (IL-8) with a limit of detection and dynamic

  3. Inflammatory cytokines in atherosclerosis: current therapeutic approaches.

    PubMed

    Tousoulis, Dimitris; Oikonomou, Evangelos; Economou, Evangelos K; Crea, Filippo; Kaski, Juan Carlos

    2016-06-01

    The notion of atherosclerosis as a chronic inflammatory disease has intensified research on the role of cytokines and the way these molecules act and interact to initiate and sustain inflammation in the microenvironment of an atherosclerotic plaque. Cytokines are expressed by all types of cells involved in the pathogenesis of atherosclerosis, act on a variety of targets exerting multiple effects, and are largely responsible for the crosstalk among endothelial, smooth muscle cells, leucocytes, and other vascular residing cells. It is now understood that widely used drugs such as statins, aspirin, methotrexate, and colchicine act in an immunomodulatory way that may beneficially affect atherogenesis and/or cardiovascular disease progression. Moreover, advancement in pharmaceutical design has enabled the production of highly specific antibodies against key molecules involved in the perpetuation of the inflammatory cascade, raising hope for advances in the treatment of atherosclerosis. This review describes the actions and effects of these agents, their potential clinical significance, and future prospects. PMID:26843277

  4. Development of silicon photonic microring resonator biosensors for multiplexed cytokine assays and in vitro diagnostics

    NASA Astrophysics Data System (ADS)

    Luchansky, Matthew Sam

    In order to guide critical care therapies that are personalized to a patient's unique disease state, a diagnostic or theranostic medical device must quickly provide a detailed biomolecular understanding of disease onset and progression. This detailed molecular understanding of cellular processes and pathways requires the ability to measure multiple analytes in parallel. Though many traditional sensing technologies for biomarker analysis and fundamental biological studies (i.e. enzyme-linked immunosorbent assays, real-time polymerase chain reaction, etc.) rely on single-parameter measurements, it has become increasingly clear that the inherent complexity of many human illnesses and pathways necessitates quantitative and multiparameter analysis of biological samples. Currently used analytical methods are deficient in that they often provide either highly quantitative data for a single biomarker or qualitative data for many targets, but methods that simultaneously provide highly quantitative analysis of many targets have yet to be adequately developed. Fields such as medical diagnostics and cellular biology would benefit greatly from a technology that enables rapid, quantitative and reproducible assays for many targets within a single sample. In an effort to fill this unmet need, this doctoral dissertation describes the development of a clinically translational biosensing technology based on silicon photonics and developed in the chemistry research laboratory of Ryan C. Bailey. Silicon photonic microring resonators, a class of high-Q optical sensors, represent a promising platform for rapid, multiparameter in vitro measurements. The original device design utilizes 32-ring arrays for real-time biomolecular sensing without fluorescent labels, and these optical biosensors display great potential for more highly multiplexed (100s-1000s) measurements based on the impressive scalability of silicon device fabrication. Though this technology can be used to detect a variety of

  5. Development of silicon photonic microring resonator biosensors for multiplexed cytokine assays and in vitro diagnostics

    NASA Astrophysics Data System (ADS)

    Luchansky, Matthew Sam

    In order to guide critical care therapies that are personalized to a patient's unique disease state, a diagnostic or theranostic medical device must quickly provide a detailed biomolecular understanding of disease onset and progression. This detailed molecular understanding of cellular processes and pathways requires the ability to measure multiple analytes in parallel. Though many traditional sensing technologies for biomarker analysis and fundamental biological studies (i.e. enzyme-linked immunosorbent assays, real-time polymerase chain reaction, etc.) rely on single-parameter measurements, it has become increasingly clear that the inherent complexity of many human illnesses and pathways necessitates quantitative and multiparameter analysis of biological samples. Currently used analytical methods are deficient in that they often provide either highly quantitative data for a single biomarker or qualitative data for many targets, but methods that simultaneously provide highly quantitative analysis of many targets have yet to be adequately developed. Fields such as medical diagnostics and cellular biology would benefit greatly from a technology that enables rapid, quantitative and reproducible assays for many targets within a single sample. In an effort to fill this unmet need, this doctoral dissertation describes the development of a clinically translational biosensing technology based on silicon photonics and developed in the chemistry research laboratory of Ryan C. Bailey. Silicon photonic microring resonators, a class of high-Q optical sensors, represent a promising platform for rapid, multiparameter in vitro measurements. The original device design utilizes 32-ring arrays for real-time biomolecular sensing without fluorescent labels, and these optical biosensors display great potential for more highly multiplexed (100s-1000s) measurements based on the impressive scalability of silicon device fabrication. Though this technology can be used to detect a variety of

  6. Cytokines and therapeutic oligonucleotides.

    PubMed

    Hartmann, G; Bidlingmaier, M; Eigler, A; Hacker, U; Endres, S

    1997-12-01

    Therapeutic oligonucleotides - short strands of synthetic nucleic acids - encompass antisense and aptamer oligonucleotides. Antisense oligonucleotides are designed to bind to target RNA by complementary base pairing and to inhibit translation of the target protein. Antisense oligonucleotides enable specific inhibition of cytokine synthesis. In contrast, aptamer oligonucleotides are able to bind directly to specific proteins. This binding depends on the sequence of the oligonucleotide. Aptamer oligonucleotides with CpG motifs can exert strong immunostimulatory effects. Both kinds of therapeutic oligonucleotides - antisense and aptamer oligonucleotides - provide promising tools to modulate immunological functions. Recently, therapeutic oligonucleotides have moved towards clinical application. An antisense oligonucleotide directed against the proinflammatory intercellular adhesion molecule 1 (ICAM-1) is currently being tested in clinical trials for therapy of inflammatory disease. Immunostimulatory aptamer oligonucleotides are in preclinical development for immunotherapy. In the present review we summarize the application of therapeutic oligonucleotides to modulate immunological functions. We include technological aspects as well as current therapeutic concepts and clinical studies.

  7. Emerging biomarkers of prostate cancer (Review)

    PubMed Central

    MARTIN, SARAH K.; VAUGHAN, TAYLOR B.; ATKINSON, TIMOTHY; ZHU, HAINING; KYPRIANOU, NATASHA

    2012-01-01

    Prostate cancer progression involves activation of signaling pathways controlling cell proliferation, apoptosis, anoikis, angiogenesis and metastasis. The current PSA-based test for the diagnosis of prostate cancer lacks sensitivity and specificity, resulting in missed diagnoses and unnecessary biopsies. Intense research efforts to identify serum and tissue biomarkers will expand the opportunities to understand the functional activation of cancer-related pathways and consequently lead to molecular therapeutic targeting towards inhibition of tumor growth. Current literature describes multiple biomarkers that indicate the properties of prostate cancer including its presence, stage, metastatic potential and prognosis. Used singly, assays detecting these biomarkers have their respective shortcomings. Several recent studies evaluating the clinical utilization of multiple markers show promising results in improving prostate cancer profiling. This review discusses the current understanding of biomarker signature cluster-based approaches for the diagnosis and therapeutic response of prostate cancer derived from panels of biomarker tests that provide a selective molecular signature characteristic of the tumor. As these signatures are robustly defined and their pathways are exhaustively dissected, prostate cancer can be more accurately diagnosed, characterized, staged and targeted with inhibitory antitumor agents. The growing promise surrounding the recent evidence in identifying and utilizing such biomarker panels, will lead to improvement in cancer prognosis and management of the therapeutic response of prostate cancer patients. PMID:22641253

  8. Novel Biomarkers in Glomerular Disease

    PubMed Central

    Caliskan, Yasar; Kiryluk, Krzysztof

    2014-01-01

    Glomerular diseases are major contributors to the global burden of end stage kidney disease. The clinical course and outcome of these disorders are extremely variable and difficult to predict. The clinical trajectories range from a benign and spontaneously remitting condition to a symptomatic and rapidly progressive disease. The diagnosis is based entirely on the evaluation of kidney biopsy, but this invasive procedure carries multiple risks and often fails to predict the clinical course or responsiveness to treatment. However, more recent advances in genetics and molecular biology facilitated elucidation of novel pathogenic mechanisms of these disorders. These discoveries fuel the development of novel biomarkers and offer prospects of non-invasive diagnosis and improved prognostication. Our review focuses on the most promising novel biomarkers that have recently emerged for the major types of glomerular diseases, including IgA nephropathy, membranous nephropathy, focal segmental glomerulosclerosis, and membranoproliferative glomerulonephritis. PMID:24602470

  9. Proteomics Discovery of Disease Biomarkers.

    PubMed

    Ahram, Mamoun; Petricoin, Emanuel F

    2008-01-01

    Recent technological developments in proteomics have shown promising initiatives in identifying novel biomarkers of various diseases. Such technologies are capable of investigating multiple samples and generating large amount of data end-points. Examples of two promising proteomics technologies are mass spectrometry, including an instrument based on surface enhanced laser desorption/ionization, and protein microarrays. Proteomics data must, however, undergo analytical processing using bioinformatics. Due to limitations in proteomics tools including shortcomings in bioinformatics analysis, predictive bioinformatics can be utilized as an alternative strategy prior to performing elaborate, high-throughput proteomics procedures. This review describes mass spectrometry, protein microarrays, and bioinformatics and their roles in biomarker discovery, and highlights the significance of integration between proteomics and bioinformatics.

  10. Computational biomarker pipeline from discovery to clinical implementation: plasma proteomic biomarkers for cardiac transplantation.

    PubMed

    Cohen Freue, Gabriela V; Meredith, Anna; Smith, Derek; Bergman, Axel; Sasaki, Mayu; Lam, Karen K Y; Hollander, Zsuzsanna; Opushneva, Nina; Takhar, Mandeep; Lin, David; Wilson-McManus, Janet; Balshaw, Robert; Keown, Paul A; Borchers, Christoph H; McManus, Bruce; Ng, Raymond T; McMaster, W Robert

    2013-04-01

    Recent technical advances in the field of quantitative proteomics have stimulated a large number of biomarker discovery studies of various diseases, providing avenues for new treatments and diagnostics. However, inherent challenges have limited the successful translation of candidate biomarkers into clinical use, thus highlighting the need for a robust analytical methodology to transition from biomarker discovery to clinical implementation. We have developed an end-to-end computational proteomic pipeline for biomarkers studies. At the discovery stage, the pipeline emphasizes different aspects of experimental design, appropriate statistical methodologies, and quality assessment of results. At the validation stage, the pipeline focuses on the migration of the results to a platform appropriate for external validation, and the development of a classifier score based on corroborated protein biomarkers. At the last stage towards clinical implementation, the main aims are to develop and validate an assay suitable for clinical deployment, and to calibrate the biomarker classifier using the developed assay. The proposed pipeline was applied to a biomarker study in cardiac transplantation aimed at developing a minimally invasive clinical test to monitor acute rejection. Starting with an untargeted screening of the human plasma proteome, five candidate biomarker proteins were identified. Rejection-regulated proteins reflect cellular and humoral immune responses, acute phase inflammatory pathways, and lipid metabolism biological processes. A multiplex multiple reaction monitoring mass-spectrometry (MRM-MS) assay was developed for the five candidate biomarkers and validated by enzyme-linked immune-sorbent (ELISA) and immunonephelometric assays (INA). A classifier score based on corroborated proteins demonstrated that the developed MRM-MS assay provides an appropriate methodology for an external validation, which is still in progress. Plasma proteomic biomarkers of acute cardiac

  11. Computational and Empirical Studies Predict Mycobacterium tuberculosis-Specific T Cells as a Biomarker for Infection Outcome.

    PubMed

    Marino, Simeone; Gideon, Hannah P; Gong, Chang; Mankad, Shawn; McCrone, John T; Lin, Philana Ling; Linderman, Jennifer J; Flynn, JoAnne L; Kirschner, Denise E

    2016-04-01

    Identifying biomarkers for tuberculosis (TB) is an ongoing challenge in developing immunological correlates of infection outcome and protection. Biomarker discovery is also necessary for aiding design and testing of new treatments and vaccines. To effectively predict biomarkers for infection progression in any disease, including TB, large amounts of experimental data are required to reach statistical power and make accurate predictions. We took a two-pronged approach using both experimental and computational modeling to address this problem. We first collected 200 blood samples over a 2- year period from 28 non-human primates (NHP) infected with a low dose of Mycobacterium tuberculosis. We identified T cells and the cytokines that they were producing (single and multiple) from each sample along with monkey status and infection progression data. Machine learning techniques were used to interrogate the experimental NHP datasets without identifying any potential TB biomarker. In parallel, we used our extensive novel NHP datasets to build and calibrate a multi-organ computational model that combines what is occurring at the site of infection (e.g., lung) at a single granuloma scale with blood level readouts that can be tracked in monkeys and humans. We then generated a large in silico repository of in silico granulomas coupled to lymph node and blood dynamics and developed an in silico tool to scale granuloma level results to a full host scale to identify what best predicts Mycobacterium tuberculosis (Mtb) infection outcomes. The analysis of in silico blood measures identifies Mtb-specific frequencies of effector T cell phenotypes at various time points post infection as promising indicators of infection outcome. We emphasize that pairing wetlab and computational approaches holds great promise to accelerate TB biomarker discovery. PMID:27065304

  12. Computational and Empirical Studies Predict Mycobacterium tuberculosis-Specific T Cells as a Biomarker for Infection Outcome

    PubMed Central

    Gong, Chang; Mankad, Shawn; McCrone, John T.; Lin, Philana Ling; Linderman, Jennifer J.; Flynn, JoAnne L.; Kirschner, Denise E.

    2016-01-01

    Identifying biomarkers for tuberculosis (TB) is an ongoing challenge in developing immunological correlates of infection outcome and protection. Biomarker discovery is also necessary for aiding design and testing of new treatments and vaccines. To effectively predict biomarkers for infection progression in any disease, including TB, large amounts of experimental data are required to reach statistical power and make accurate predictions. We took a two-pronged approach using both experimental and computational modeling to address this problem. We first collected 200 blood samples over a 2- year period from 28 non-human primates (NHP) infected with a low dose of Mycobacterium tuberculosis. We identified T cells and the cytokines that they were producing (single and multiple) from each sample along with monkey status and infection progression data. Machine learning techniques were used to interrogate the experimental NHP datasets without identifying any potential TB biomarker. In parallel, we used our extensive novel NHP datasets to build and calibrate a multi-organ computational model that combines what is occurring at the site of infection (e.g., lung) at a single granuloma scale with blood level readouts that can be tracked in monkeys and humans. We then generated a large in silico repository of in silico granulomas coupled to lymph node and blood dynamics and developed an in silico tool to scale granuloma level results to a full host scale to identify what best predicts Mycobacterium tuberculosis (Mtb) infection outcomes. The analysis of in silico blood measures identifies Mtb-specific frequencies of effector T cell phenotypes at various time points post infection as promising indicators of infection outcome. We emphasize that pairing wetlab and computational approaches holds great promise to accelerate TB biomarker discovery. PMID:27065304

  13. Computational and Empirical Studies Predict Mycobacterium tuberculosis-Specific T Cells as a Biomarker for Infection Outcome.

    PubMed

    Marino, Simeone; Gideon, Hannah P; Gong, Chang; Mankad, Shawn; McCrone, John T; Lin, Philana Ling; Linderman, Jennifer J; Flynn, JoAnne L; Kirschner, Denise E

    2016-04-01

    Identifying biomarkers for tuberculosis (TB) is an ongoing challenge in developing immunological correlates of infection outcome and protection. Biomarker discovery is also necessary for aiding design and testing of new treatments and vaccines. To effectively predict biomarkers for infection progression in any disease, including TB, large amounts of experimental data are required to reach statistical power and make accurate predictions. We took a two-pronged approach using both experimental and computational modeling to address this problem. We first collected 200 blood samples over a 2- year period from 28 non-human primates (NHP) infected with a low dose of Mycobacterium tuberculosis. We identified T cells and the cytokines that they were producing (single and multiple) from each sample along with monkey status and infection progression data. Machine learning techniques were used to interrogate the experimental NHP datasets without identifying any potential TB biomarker. In parallel, we used our extensive novel NHP datasets to build and calibrate a multi-organ computational model that combines what is occurring at the site of infection (e.g., lung) at a single granuloma scale with blood level readouts that can be tracked in monkeys and humans. We then generated a large in silico repository of in silico granulomas coupled to lymph node and blood dynamics and developed an in silico tool to scale granuloma level results to a full host scale to identify what best predicts Mycobacterium tuberculosis (Mtb) infection outcomes. The analysis of in silico blood measures identifies Mtb-specific frequencies of effector T cell phenotypes at various time points post infection as promising indicators of infection outcome. We emphasize that pairing wetlab and computational approaches holds great promise to accelerate TB biomarker discovery.

  14. Computational and empirical studies predict Mycobacterium tuberculosis-specific T cells as a biomarker for infection outcome

    DOE PAGES

    Marino, Simeone; Gideon, Hannah P.; Gong, Chang; Mankad, Shawn; McCrone, John T.; Lin, Philana Ling; Linderman, Jennifer J.; Flynn, JoAnne L.; Kirschner, Denise E.

    2016-04-11

    Identifying biomarkers for tuberculosis (TB) is an ongoing challenge in developing immunological correlates of infection outcome and protection. Biomarker discovery is also necessary for aiding design and testing of new treatments and vaccines. To effectively predict biomarkers for infection progression in any disease, including TB, large amounts of experimental data are required to reach statistical power and make accurate predictions. We took a two-pronged approach using both experimental and computational modeling to address this problem. We first collected 200 blood samples over a 2-year period from 28 non-human primates (NHP) infected with a low dose of Mycobacterium tuberculosis. We identifiedmore » T cells and the cytokines that they were producing (single and multiple) from each sample along with monkey status and infection progression data. Machine learning techniques were used to interrogate the experimental NHP datasets without identifying any potential TB biomarker. In parallel, we used our extensive novel NHP datasets to build and calibrate a multi-organ computational model that combines what is occurring at the site of infection (e.g., lung) at a single granuloma scale with blood level readouts that can be tracked in monkeys and humans. We then generated a large in silico repository of in silico granulomas coupled to lymph node and blood dynamics and developed an in silico tool to scale granuloma level results to a full host scale to identify what best predicts Mycobacterium tuberculosis (Mtb) infection outcomes. The analysis of in silico blood measures identifies Mtb-specific frequencies of effector T cell phenotypes at various time points post infection as promising indicators of infection outcome. As a result, we emphasize that pairing wetlab and computational approaches holds great promise to accelerate TB biomarker discovery.« less

  15. Immune biomarkers in the spectrum of childhood noncommunicable diseases.

    PubMed

    Skevaki, Chrysanthi; Van den Berg, Jolice; Jones, Nicholas; Garssen, Johan; Vuillermin, Peter; Levin, Michael; Landay, Alan; Renz, Harald; Calder, Philip C; Thornton, Catherine A

    2016-05-01

    A biomarker is an accurately and reproducibly quantifiable biological characteristic that provides an objective measure of health status or disease. Benefits of biomarkers include identification of therapeutic targets, monitoring of clinical interventions, and development of personalized (or precision) medicine. Challenges to the use of biomarkers include optimizing sample collection, processing and storage, validation, and often the need for sophisticated laboratory and bioinformatics approaches. Biomarkers offer better understanding of disease processes and should benefit the early detection, treatment, and management of multiple noncommunicable diseases (NCDs). This review will consider the utility of biomarkers in patients with allergic and other immune-mediated diseases in childhood. Typically, biomarkers are used currently to provide mechanistic insight or an objective measure of disease severity, with their future role in risk stratification/disease prediction speculative at best. There are many lessons to be learned from the biomarker strategies used for cancer in which biomarkers are in routine clinical use and industry-wide standardized approaches have been developed. Biomarker discovery and validation in children with disease lag behind those in adults; given the early onset and therefore potential lifelong effect of many NCDs, there should be more studies incorporating cohorts of children. Many pediatric biomarkers are at the discovery stage, with a long path to evaluation and clinical implementation. The ultimate challenge will be optimization of prevention strategies that can be implemented in children identified as being at risk of an NCD through the use of biomarkers. PMID:27155027

  16. Immune biomarkers in the spectrum of childhood noncommunicable diseases.

    PubMed

    Skevaki, Chrysanthi; Van den Berg, Jolice; Jones, Nicholas; Garssen, Johan; Vuillermin, Peter; Levin, Michael; Landay, Alan; Renz, Harald; Calder, Philip C; Thornton, Catherine A

    2016-05-01

    A biomarker is an accurately and reproducibly quantifiable biological characteristic that provides an objective measure of health status or disease. Benefits of biomarkers include identification of therapeutic targets, monitoring of clinical interventions, and development of personalized (or precision) medicine. Challenges to the use of biomarkers include optimizing sample collection, processing and storage, validation, and often the need for sophisticated laboratory and bioinformatics approaches. Biomarkers offer better understanding of disease processes and should benefit the early detection, treatment, and management of multiple noncommunicable diseases (NCDs). This review will consider the utility of biomarkers in patients with allergic and other immune-mediated diseases in childhood. Typically, biomarkers are used currently to provide mechanistic insight or an objective measure of disease severity, with their future role in risk stratification/disease prediction speculative at best. There are many lessons to be learned from the biomarker strategies used for cancer in which biomarkers are in routine clinical use and industry-wide standardized approaches have been developed. Biomarker discovery and validation in children with disease lag behind those in adults; given the early onset and therefore potential lifelong effect of many NCDs, there should be more studies incorporating cohorts of children. Many pediatric biomarkers are at the discovery stage, with a long path to evaluation and clinical implementation. The ultimate challenge will be optimization of prevention strategies that can be implemented in children identified as being at risk of an NCD through the use of biomarkers.

  17. Inter-individual variability and genetic influences on cytokine responses to bacteria and fungi.

    PubMed

    Li, Yang; Oosting, Marije; Deelen, Patrick; Ricaño-Ponce, Isis; Smeekens, Sanne; Jaeger, Martin; Matzaraki, Vasiliki; Swertz, Morris A; Xavier, Ramnik J; Franke, Lude; Wijmenga, Cisca; Joosten, Leo A B; Kumar, Vinod; Netea, Mihai G

    2016-08-01

    Little is known about the inter-individual variation of cytokine responses to different pathogens in healthy individuals. To systematically describe cytokine responses elicited by distinct pathogens and to determine the effect of genetic variation on cytokine production, we profiled cytokines produced by peripheral blood mononuclear cells from 197 individuals of European origin from the 200 Functional Genomics (200FG) cohort in the Human Functional Genomics Project (http://www.humanfunctionalgenomics.org), obtained over three different years. We compared bacteria- and fungi-induced cytokine profiles and found that most cytokine responses were organized around a physiological response to specific pathogens, rather than around a particular immune pathway or cytokine. We then correlated genome-wide single-nucleotide polymorphism (SNP) genotypes with cytokine abundance and identified six cytokine quantitative trait loci (QTLs). Among them, a cytokine QTL at the NAA35-GOLM1 locus markedly modulated interleukin (IL)-6 production in response to multiple pathogens and was associated with susceptibility to candidemia. Furthermore, the cytokine QTLs that we identified were enriched among SNPs previously associated with infectious diseases and heart diseases. These data reveal and begin to explain the variability in cytokine production by human immune cells in response to pathogens. PMID:27376574

  18. Biomarkers in Japanese Encephalitis: A Review

    PubMed Central

    Kant Upadhyay, Ravi

    2013-01-01

    JE is a flavivirus generated dreadful CNS disease which causes high mortality in various pediatric groups. JE disease is currently diagnosed by measuring the level of viral antigens and virus neutralization IgM antibodies in blood serum and CSF by ELISA. However, it is not possible to measure various disease-identifying molecules, structural and molecular changes occurred in tissues, and cells by using such routine methods. However, few important biomarkers such as cerebrospinal fluid, plasma, neuro-imaging, brain mapping, immunotyping, expression of nonstructural viral proteins, systematic mRNA profiling, DNA and protein microarrays, active caspase-3 activity, reactive oxygen species and reactive nitrogen species, levels of stress-associated signaling molecules, and proinflammatory cytokines could be used to confirm the disease at an earlier stage. These biomarkers may also help to diagnose mutant based environment specific alterations in JEV genotypes causing high pathogenesis and have immense future applications in diagnostics. There is an utmost need for the development of new more authentic, appropriate, and reliable physiological, immunological, biochemical, biophysical, molecular, and therapeutic biomarkers to confirm the disease well in time to start the clinical aid to the patients. Hence, the present review aims to discuss new emerging biomarkers that could facilitate more authentic and fast diagnosis of JE disease and its related disorders in the future. PMID:24455705

  19. Circulating glioma biomarkers

    PubMed Central

    Kros, Johan M.; Mustafa, Dana M.; Dekker, Lennard J.M.; Sillevis Smitt, Peter A.E.; Luider, Theo M.; Zheng, Ping-Pin

    2015-01-01

    Validated biomarkers for patients suffering from gliomas are urgently needed for standardizing measurements of the effects of treatment in daily clinical practice and trials. Circulating body fluids offer easily accessible sources for such markers. This review highlights various categories of tumor-associated circulating biomarkers identified in blood and cerebrospinal fluid of glioma patients, including circulating tumor cells, exosomes, nucleic acids, proteins, and oncometabolites. The validation and potential clinical utility of these biomarkers is briefly discussed. Although many candidate circulating protein biomarkers were reported, none of these have reached the required validation to be introduced for clinical practice. Recent developments in tracing circulating tumor cells and their derivatives as exosomes and circulating nuclear acids may become more successful in providing useful biomarkers. It is to be expected that current technical developments will contribute to the finding and validation of circulating biomarkers. PMID:25253418

  20. Ensuring continued progress in biomarkers for amyotrophic lateral sclerosis

    PubMed Central

    Turner, Martin R; Benatar, Michael

    2015-01-01

    Multiple candidate biomarkers for amyotrophic lateral sclerosis (ALS) have emerged across a range of platforms. Replication of results, however, has been absent in all but a few cases, and the range of control samples has been limited. If progress toward clinical translation is to continue, the specific biomarker needs of ALS, which differ from those of other neurodegenerative disorders, as well as the challenges inherent to longitudinal ALS biomarker cohorts, must be understood. Appropriate application of multimodal approaches, international collaboration, presymptomatic studies, and biomarker integration into future therapeutic trials are among the essential priorities going forward. PMID:25288265

  1. Biomarkers for prostate cancer.

    PubMed

    Makarov, Danil V; Loeb, Stacy; Getzenberg, Robert H; Partin, Alan W

    2009-01-01

    The development of biomarkers for prostate cancer screening, detection, and prognostication has revolutionized the management of this disease. Prostate-specific antigen (PSA) is a useful, though not specific, biomarker for detecting prostate cancer. We review the literature on prostate cancer biomarkers, including serum markers (PAP, tPSA, fPSA, proPSA, PSAD, PSAV, PSADT, EPCA, and EPCA-2), tissue markers (AMACR, methylated GSTP1, and the TMPRSS2-ETS gene rearrangement), and a urine marker (DD3PCA3/UPM-3). Future research should focus on validation of already existing biomarkers and the discovery of new markers to identify men with aggressive prostate cancer.

  2. Significant biomarkers for the management of hepatocellular carcinoma.

    PubMed

    Kondo, Yasuteru; Kimura, Osamu; Shimosegawa, Tooru

    2015-06-01

    Surveillance of hepatocellular carcinoma (HCC) is important for early detection. Imaging tests including computed tomography, magnetic resonance imaging and ultrasonography with or without various kinds of contrast medium are important options for detecting HCC. In addition to the imaging tests, various kinds of biomarkers including alpha-fetoprotein (AFP), lectin-bound AFP (AFP-L3) and protein induced by vitamin K absence or antagonist II (PIVKA-II) have been widely used to detect HCC and analyze treatment response. Recently, various kinds of novel biomarkers (proteins and miRNA) have been found to predict the malignancy potential of HCC and treatment response to specific therapies. Moreover, various combinations of well-established biomarkers and novel biomarkers have been tested to improve sensitivity and specificity. In practical terms, biomarkers that can be analyzed using peripheral blood samples might be more useful than immunohistochemical techniques. It has been reported that quantification of cytokines in peripheral blood and the analysis of peripheral immune subsets could be good biomarkers for managing HCC. Here, we describe the usefulness of and update well-established and novel biomarkers for the management of HCC. PMID:25855582

  3. Significant biomarkers for the management of hepatocellular carcinoma.

    PubMed

    Kondo, Yasuteru; Kimura, Osamu; Shimosegawa, Tooru

    2015-06-01

    Surveillance of hepatocellular carcinoma (HCC) is important for early detection. Imaging tests including computed tomography, magnetic resonance imaging and ultrasonography with or without various kinds of contrast medium are important options for detecting HCC. In addition to the imaging tests, various kinds of biomarkers including alpha-fetoprotein (AFP), lectin-bound AFP (AFP-L3) and protein induced by vitamin K absence or antagonist II (PIVKA-II) have been widely used to detect HCC and analyze treatment response. Recently, various kinds of novel biomarkers (proteins and miRNA) have been found to predict the malignancy potential of HCC and treatment response to specific therapies. Moreover, various combinations of well-established biomarkers and novel biomarkers have been tested to improve sensitivity and specificity. In practical terms, biomarkers that can be analyzed using peripheral blood samples might be more useful than immunohistochemical techniques. It has been reported that quantification of cytokines in peripheral blood and the analysis of peripheral immune subsets could be good biomarkers for managing HCC. Here, we describe the usefulness of and update well-established and novel biomarkers for the management of HCC.

  4. The Function of Fish Cytokines

    PubMed Central

    Zou, Jun; Secombes, Christopher J.

    2016-01-01

    What is known about the biological activity of fish cytokines is reviewed. Most of the functional studies performed to date have been in teleost fish, and have focused on the induced effects of cytokine recombinant proteins, or have used loss- and gain-of-function experiments in zebrafish. Such studies begin to tell us about the role of these molecules in the regulation of fish immune responses and whether they are similar or divergent to the well-characterised functions of mammalian cytokines. This knowledge will aid our ability to determine and modulate the pathways leading to protective immunity, to improve fish health in aquaculture. PMID:27231948

  5. Cytokines in systemic lupus erythematosus.

    PubMed

    Lourenço, Elaine V; La Cava, Antonio

    2009-04-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies that can form immune complexes and deposit in tissues, causing inflammation and organ damage. There is evidence that interferons and some interleukins can have an active role in the pathogenesis of SLE and can contribute significantly to the immune imbalance in the disease, whereas the role of some cytokines (such as TNF) is still debated. This review discusses the activity of several cytokines in SLE, their effects on the immune cells in relation to the disease pathogenesis, and the promise and limitations of cytokine-based therapies in clinical trials for lupus patients.

  6. Quantitative multiplex detection of pathogen biomarkers

    DOEpatents

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  7. Quantitative multiplex detection of pathogen biomarkers

    DOEpatents

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.

    2016-02-09

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  8. Identification of Predictive Early Biomarkers for Sterile-SIRS after Cardiovascular Surgery

    PubMed Central

    Stoppelkamp, Sandra; Veseli, Kujtim; Stang, Katharina; Schlensak, Christian; Wendel, Hans Peter; Walker, Tobias

    2015-01-01

    Systemic inflammatory response syndrome (SIRS) is a common complication after cardiovascular surgery that in severe cases can lead to multiple organ dysfunction syndrome and even death. We therefore set out to identify reliable early biomarkers for SIRS in a prospective small patient study for timely intervention. 21 Patients scheduled for planned cardiovascular surgery were recruited in the study, monitored for signs of SIRS and blood samples were taken to investigate biomarkers at pre-assigned time points: day of admission, start of surgery, end of surgery, days 1, 2, 3, 5 and 8 post surgery. Stored plasma and cryopreserved blood samples were analyzed for cytokine expression (IL1β, IL2, IL6, IL8, IL10, TNFα, IFNγ), other pro-inflammatory markers (sCD163, sTREM-1, ESM-1) and response to endotoxin. Acute phase proteins CRP, PCT and pro-inflammatory cytokines IL6 and IL8 were significantly increased (p<0.001) at the end of surgery in all patients but could not distinguish between groups. Normalization of samples revealed significant increases in IL1β changes (p<0.05) and decreased responses to endotoxin (p<0.01) in the SIRS group at the end of surgery. Soluble TREM-1 plasma concentrations were significantly increased in patients with SIRS (p<0.01). This small scale patient study could show that common sepsis markers PCT, CRP, IL6 and TNFα had low predictive value for early diagnosis of SIRS after cardiovascular surgery. A combination of normalized IL1β plasma levels, responses to endotoxin and soluble TREM-1 plasma concentrations at the end of surgery are predictive markers of SIRS development in this small scale study and could act as an indicator for starting early therapeutic interventions. PMID:26263001

  9. Respiratory Toxicity Biomarkers

    EPA Science Inventory

    The advancement in high throughput genomic, proteomic and metabolomic techniques have accelerated pace of lung biomarker discovery. A recent growth in the discovery of new lung toxicity/disease biomarkers have led to significant advances in our understanding of pathological proce...

  10. Biomarkers in Autism

    PubMed Central

    Goldani, Andre A. S.; Downs, Susan R.; Widjaja, Felicia; Lawton, Brittany; Hendren, Robert L.

    2014-01-01

    Autism spectrum disorders (ASDs) are complex, heterogeneous disorders caused by an interaction between genetic vulnerability and environmental factors. In an effort to better target the underlying roots of ASD for diagnosis and treatment, efforts to identify reliable biomarkers in genetics, neuroimaging, gene expression, and measures of the body’s metabolism are growing. For this article, we review the published studies of potential biomarkers in autism and conclude that while there is increasing promise of finding biomarkers that can help us target treatment, there are none with enough evidence to support routine clinical use unless medical illness is suspected. Promising biomarkers include those for mitochondrial function, oxidative stress, and immune function. Genetic clusters are also suggesting the potential for useful biomarkers. PMID:25161627

  11. The ups and downs of DNA repair biomarkers for PARP inhibitor therapies

    PubMed Central

    Wang, XiaoZhe; Weaver, David T

    2011-01-01

    PARP inhibitors are emerging as a valuable new drug class in the treatment of cancer. Recent discoveries make a compelling case for the complexity of DNA repair biomarker evaluation and underscore the need to examine at multiple biomarkers in a relational manner. This review updates the current trends in DNA repair biomarker strategies in use for the PARP inhibitors and describes the impact of many DNA repair biomarkers on PARP inhibitor benefit in the cancer clinic. PMID:21968427

  12. Next-Generation Biomarkers of Health.

    PubMed

    van Ommen, Ben; Wopereis, Suzan

    2016-01-01

    Current biomarkers used in health care and in nutrition and health research are based on quantifying disease onset and its progress. Yet, both health care and nutrition should focus on maintaining optimal health, where the related biology is essentially differing from biomedical science. Health is characterized by the ability to continuously adapt in varying circumstances where multiple mechanisms of systems flexibility are involved. A new generation of biomarkers is needed that quantifies all aspects of systems flexibility, opening the door to real lifestyle-related health optimization, self-empowerment, and related products and services.

  13. [Biomarkers in Alzheimer's disease].

    PubMed

    García-Ribas, G; López-Sendón Moreno, J L; García-Caldentey, J

    2014-04-01

    The new diagnostic criteria for Alzheimer's disease (AD) include brain imaging and cerebrospinal fluid (CSF) biomarkers, with the aim of increasing the certainty of whether a patient has an ongoing AD neuropathologic process or not. Three CSF biomarkers, Aß42, total tau, and phosphorylated tau, reflect the core pathological features of AD. It is already known that these pathological processes of AD starts decades before the first symptoms, so these biomarkers may provide means of early disease detection. At least three stages of AD could be identified: preclinical AD, mild cognitive impairment due to AD, and dementia due to AD. In this review, we aim to summarize the CSF biomarker data available for each of these stages. We also review the actual research on blood-based biomarkers. Recent studies on healthy elderly subjects and on carriers of dominantly inherited AD mutations have also found biomarker changes that allow separate groups in these preclinical stages. These studies may aid for segregate populations in clinical trials and objectively evaluate if there are changes over the pathological processes of AD. Limits to widespread use of CSF biomarkers, apart from the invasive nature of the process itself, is the higher coefficient of variation for the analyses between centres. It requires strict pre-analytical and analytical procedures that may make feasible multi-centre studies and global cut-off points for the different stages of AD.

  14. Biomarkers in Severe Asthma.

    PubMed

    Wan, Xiao Chloe; Woodruff, Prescott G

    2016-08-01

    Biomarkers have been critical for studies of disease pathogenesis and the development of new therapies in severe asthma. In particular, biomarkers of type 2 inflammation have proven valuable for endotyping and targeting new biological agents. Because of these successes in understanding and marking type 2 inflammation, lack of knowledge regarding non-type 2 inflammatory mechanisms in asthma will soon be the major obstacle to the development of new treatments and management strategies in severe asthma. Biomarkers can play a role in these investigations as well by providing insight into the underlying biology in human studies of patients with severe asthma. PMID:27401625

  15. Metabolic products as biomarkers

    USGS Publications Warehouse

    Melancon, M.J.; Alscher, R.; Benson, W.; Kruzynski, G.; Lee, R.F.; Sikka, H.C.; Spies, R.B.; Huggett, Robert J.; Kimerle, Richard A.; Mehrle, Paul M.=; Bergman, Harold L.

    1992-01-01

    Ideally, endogenous biomarkers would indicate both exposure and environmental effects of toxic chemicals; however, such comprehensive biochemical and physiological indices are currently being developed and, at the present time, are unavailable for use in environmental monitoring programs. Continued work is required to validate the use of biochemical and physiological stress indices as useful components of monitoring programs. Of the compounds discussed only phytochelatins and porphyrins are currently in biomarkers in a useful state; however, glutathione,metallothioneins, stress ethylene, and polyamines are promising as biomarkers in environmental monitoring.

  16. Rheumatoid Arthritis: Notable Biomarkers Linking to Chronic Systemic Conditions and Cancer.

    PubMed

    Olumuyiwa-Akeredolu, Oore-Ofe O; Pretorius, Etheresia

    2016-01-01

    Adult rheumatoid arthritis (RA) is an autoimmune disorder affecting joints and frequently characterised by initial local and later systemic inflammation. Researchers have, for many years, traced its cause to diverse genetic, environmental and especially immunological responses that work against the body's own cells and tissues. Investigation into several of these biomarkers reveals interconnections that exist between multiple factors, which ultimately lead to specific pathologies. The goal of this paper is to highlight connections present between the major biological players long identified by researchers including more recently uncovered biomarkers in the RA repertoire and some of the pathophysiologies typically affiliated with the disease. Biomarkers reviewed, and becoming more clearly defined for RA include genetic, cytokines like tumor-necrosis factor-α (TNF-α), lymphocytes, nuclear antigens, antibodies to citrullinated peptides (anti-CPs), acute-phase proteins (APPs), microRNA, S100 proteins, platelets and erythrocytes. Some of the disease manifestations that have been connected are bone erosion, diabetes, metabolic syndrome, anemia, synovitis, felty's syndrome, extra-articular manifestations (EAMs) such as atherosclerosis, rheumatoid nodules and cardiovascular (CV) events. Several RA markers associated with malignancy have been identified in literature although there is insufficient evidence of cancer in patients. Due to the complex nature of the disease, the appearance of symptoms and markers vary amongst individuals and the connections may manifest only in part. This manuscript addresses defining factors relevant to rapid identification of pathological influences these biomolecules could exert and to the management of the disease. Each of these biological players may have its place in connecting to symptomatic pathologies and help to highlight potential targets for therapy. PMID:26648464

  17. Use of cytokines in infection.

    PubMed

    Aoki, Naoko; Xing, Zhou

    2004-11-01

    Infectious disease remains an ever-growing health concern worldwide due to increasing antibiotic-resistant microbial strains, immune-compromised populations, international traffic and globalisation, and bioterrorism. There exists an urgent need to develop novel prophylactic and therapeutic strategies. In addition to classic antibiotic therapeutics, immune-modulatory molecules such as cytokines or their inhibitors represent a promising form of antimicrobial therapeutics or immune adjuvant used for the purpose of vaccination. These molecules, in the form of either recombinant protein or transgene, exert their antimicrobial effect by enhancing infectious agent-specific immune activation or memory development, or by dampening undesired inflammatory and immune responses resulting from infection and host defence mechanisms. In the last two decades, a number of cytokine therapy-based experimental and clinical trials have been conducted, and some of these efforts have led to the routine clinical use of cytokines. For instance, although IFNs have been used to treat hepatitis C with great success, many other cytokines are yet to be fully evaluated for their antimicrobial potential. This review discusses the biology and therapeutic potential of selected immune modulatory cytokines and their inhibitors, including granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, IFN-gamma, IL-12 and TNF.

  18. Ultratrace Level Determination and Quantitative Analysis of Kidney Injury Biomarkers in Patient Samples Attained by Zinc Oxide Nanorods

    PubMed Central

    Singh, Manpreet; Alabanza, Anginelle; Gonzalez, Lorelis E.; Wang, Weiwei; Reeves, W. Brian; Hahm, Jong-in

    2016-01-01

    Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg/mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification of

  19. Ultratrace level determination and quantitative analysis of kidney injury biomarkers in patient samples attained by zinc oxide nanorods.

    PubMed

    Singh, Manpreet; Alabanza, Anginelle; Gonzalez, Lorelis E; Wang, Weiwei; Reeves, W Brian; Hahm, Jong-in

    2016-02-28

    Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg per mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification

  20. Integrated review of the association of cytokines with fibromyalgia and fibromyalgia core symptoms.

    PubMed

    Menzies, Victoria; Lyon, Debra E

    2010-04-01

    Fibromyalgia (FMS) is a chronic widespread pain (CWP) and fatigue syndrome that affects three to six million adults in the United States. Core symptoms of FMS include pain, fatigue, and mood and sleep disturbances. To date, consensus has not been reached among researchers regarding the pathogenesis of FMS nor the specific role of cytokine activation on the neuroendocrine-immune response patterns in persons with FMS. The purpose of this article is to describe and synthesize the results of research studies focused on the relationship between cytokines and FMS and among cytokines and core symptoms of FMS. There is some support in the literature for relationships among FMS symptoms and cytokines; however, there are discrepant findings related to whether proinflammatory and anti-inflammatory cytokines are elevated or reduced in persons with FMS and whether their levels correlate with the core symptoms of this disorder. Although the use of cytokine biomarkers must be considered exploratory at this time due to the lack of consistent empirical findings, biobehavioral research focused on understanding the relationship of FMS with cytokines may lead to a better understanding of this complex syndrome. This knowledge may ultimately contribute to the development of interventions for symptom management that address not only the symptom manifestation but also a biological mediator of symptoms.

  1. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications

    PubMed Central

    Sonner, Z.; Wilder, E.; Heikenfeld, J.; Kasting, G.; Beyette, F.; Swaile, D.; Sherman, F.; Joyce, J.; Hagen, J.; Kelley-Loughnane, N.; Naik, R.

    2015-01-01

    Non-invasive and accurate access of biomarkers remains a holy grail of the biomedical community. Human eccrine sweat is a surprisingly biomarker-rich fluid which is gaining increasing attention. This is especially true in applications of continuous bio-monitoring where other biofluids prove more challenging, if not impossible. However, much confusion on the topic exists as the microfluidics of the eccrine sweat gland has never been comprehensively presented and models of biomarker partitioning into sweat are either underdeveloped and/or highly scattered across literature. Reported here are microfluidic models for eccrine sweat generation and flow which are coupled with review of blood-to-sweat biomarker partition pathways, therefore providing insights such as how biomarker concentration changes with sweat flow rate. Additionally, it is shown that both flow rate and biomarker diffusion determine the effective sampling rate of biomarkers at the skin surface (chronological resolution). The discussion covers a broad class of biomarkers including ions (Na+, Cl−, K+, NH4+), small molecules (ethanol, cortisol, urea, and lactate), and even peptides or small proteins (neuropeptides and cytokines). The models are not meant to be exhaustive for all biomarkers, yet collectively serve as a foundational guide for further development of sweat-based diagnostics and for those beginning exploration of new biomarker opportunities in sweat. PMID:26045728

  2. Performance evaluation of FlowCytomix assays to quantify cytokines in patients with rheumatoid arthritis

    PubMed Central

    Wang, Xuefeng; Dong, Liyang; Liang, Yong; Ni, Hongchang; Tang, Jun; Xu, Chengcheng; Zhou, Yuepeng; Su, Yuting; Wang, Jun; Chen, Deyu; Mao, Chaoming

    2015-01-01

    Objectives: To compare the cytokine profile in RA patients and healthy control by using two methods-FlowCytomix assay and traditional ELISA. Methods: Cytokine levels were evaluated by FlowCytomix assay and ELISA in serum and supernatants of peripheral blood mononuclear cells (PBMC) cultures with and without stimulation by phytohaemagglutinin (PHA). Results: The levels of IL-6, IL-1β, and TNF-α were significantly higher in sera of RA patients than those of healthy controls. The levels of IL-22, IL-6, IL-1β, TNF-α, and IL-10 were higher in unstimulated PBMC culture supernatant of RA patients than those of healthy controls. PHA stimulation significantly increased the production of proinflammatory cytokines from PBMC with RA patients. Compared with detectable cytokine levels in sera, cytokine concentration in the supernatant of PBMCs was remarkably higher. FlowCytomix and ELISA showed significant correlation in detecting cytokines. However, the FlowCytomix assay detected more cytokines than ELISA. Conclusion: The supernatant of PBMCs provide a fine condition for the study of cytokine production because of the lack of interference factors in sera. The FlowCytomix assay is more sensitive than ELISA in detecting cytokines from RA patients. Multiple cytokine signatures using FlowCytomix assay may represent a more realistic approach in the future of personalized medicine in RA. PMID:26629129

  3. Targeted cytokines for cancer immunotherapy.

    PubMed

    Lode, H N; Reisfeld, R A

    2000-01-01

    Targeting of cytokines into the tumor microenvironment using antibody-cytokine fusion proteins, called immunocytokines, represents a novel approach in cancer immunotherapy. This article summarizes therapeutic efficacy and immune mechanisms involved in targeting interleukin-2 (IL-2) to neuroectodermal tumors using ganglioside GD2-specific antibody-IL-2 fusion protein (ch14.18-IL-2). Treatment of established melanoma metastases with ch14.18-IL-2 resulted in eradication of disease followed by a vaccination effect protecting mice from lethal challenges with wild-type tumor calls. In a syngeneic neuroblastoma model, targeted IL-2 was effective in the amplification of a weak memory immune response previously induced by IL-12 gene therapy using an engineered linear version of this heterodimeric cytokine. These findings show that targeted IL-2 may provide an effective tool in cancer immunotherapy and establish the missing link between T cell-mediated vaccination and objective clinical responses.

  4. Biomarker analysis for oncology.

    PubMed

    Ma, Yinfa; Gamagedara, Sanjeewa

    2015-01-01

    Cancer biomarkers are biological, chemical or biophysical entities that are present in tumor tissues or body fluids which give valuable information about current and future behavior of cancer. This review discusses the applicability of biomarkers in different stages of cancer from cancer risk assessment to recurrence. In medical practice, biomarkers can be helpful in finding out one's potential cancer risk, confirming whether or not one is already affected with a particular type of cancer, to which drug will the cancer respond best and in what doses should it be administered, the effectiveness of the treatment and whether the cancer will recur. Although biomarker discovery and validation is a very challenging process, when considering its applications and advantages, it is well worth the effort.

  5. Biomarker time out.

    PubMed

    Petzold, Axel; Bowser, Robert; Calabresi, Paolo; Zetterberg, Henrik; Uitdehaag, Bernard M J

    2014-10-01

    The advancement of knowledge relies on scientific investigations. The timing between asking a question and data collection defines if a study is prospective or retrospective. Prospective studies look forward from a point in time, are less prone to bias and are considered superior to retrospective studies. This conceptual framework conflicts with the nature of biomarker research. New candidate biomarkers are discovered in a retrospective manner. There are neither resources nor time for prospective testing in all cases. Relevant sources for bias are not covered. Ethical questions arise through the time penalty of an overly dogmatic concept. The timing of sample collection can be separated from testing biomarkers. Therefore the moment of formulating a hypothesis may be after sample collection was completed. A conceptual framework permissive to asking research questions without the obligation to bow to the human concept of calendar time would simplify biomarker research, but will require new safeguards against bias.

  6. The Effect of Oseltamivir on the Disease Progression of Lethal Influenza A Virus Infection: Plasma Cytokine and miRNA Responses in a Mouse Model

    PubMed Central

    Chockalingam, Ashok K.; Hamed, Salaheldin; Goodwin, David G.; Rosenzweig, Barry A.; Pang, Eric; Boyne II, Michael T.

    2016-01-01

    Lethal influenza A virus infection leads to acute lung injury and possibly lethal complications. There has been a continuous effort to identify the possible predictors of disease severity. Unlike earlier studies, where biomarkers were analyzed on certain time points or days after infection, in this study biomarkers were evaluated over the entire course of infection. Circulating proinflammatory cytokines and/or miRNAs that track with the onset and progression of lethal A/Puerto Rico/8/34 (PR8) influenza A virus infection and their response to oseltamivir treatment were investigated up to 10 days after infection. Changes in plasma cytokines (IL-1β, IL-10, IL-12p70, IL-6, KC, TNF-α, and IFN-γ) and several candidate miRNAs were profiled. Among the cytokines analyzed, IL-6 and KC/GRO cytokines appeared to correlate with peak viral titer. Over the selected 48 miRNAs profiled, certain miRNAs were up- or downregulated in a manner that was dependent on the oseltamivir treatment and disease severity. Our findings suggest that IL-6 and KC/GRO cytokines can be a potential disease severity biomarker and/or marker for the progression/remission of infection. Further studies to explore other cytokines, miRNAs, and lung injury proteins in serum with different subtypes of influenza A viruses with varying disease severity may provide new insight into other unique biomarkers. PMID:27110056

  7. The Effect of Oseltamivir on the Disease Progression of Lethal Influenza A Virus Infection: Plasma Cytokine and miRNA Responses in a Mouse Model.

    PubMed

    Chockalingam, Ashok K; Hamed, Salaheldin; Goodwin, David G; Rosenzweig, Barry A; Pang, Eric; Boyne, Michael T; Patel, Vikram

    2016-01-01

    Lethal influenza A virus infection leads to acute lung injury and possibly lethal complications. There has been a continuous effort to identify the possible predictors of disease severity. Unlike earlier studies, where biomarkers were analyzed on certain time points or days after infection, in this study biomarkers were evaluated over the entire course of infection. Circulating proinflammatory cytokines and/or miRNAs that track with the onset and progression of lethal A/Puerto Rico/8/34 (PR8) influenza A virus infection and their response to oseltamivir treatment were investigated up to 10 days after infection. Changes in plasma cytokines (IL-1β, IL-10, IL-12p70, IL-6, KC, TNF-α, and IFN-γ) and several candidate miRNAs were profiled. Among the cytokines analyzed, IL-6 and KC/GRO cytokines appeared to correlate with peak viral titer. Over the selected 48 miRNAs profiled, certain miRNAs were up- or downregulated in a manner that was dependent on the oseltamivir treatment and disease severity. Our findings suggest that IL-6 and KC/GRO cytokines can be a potential disease severity biomarker and/or marker for the progression/remission of infection. Further studies to explore other cytokines, miRNAs, and lung injury proteins in serum with different subtypes of influenza A viruses with varying disease severity may provide new insight into other unique biomarkers.

  8. Biomarkers for neuromyelitis optica.

    PubMed

    Chang, Kuo-Hsuan; Ro, Long-Sun; Lyu, Rong-Kuo; Chen, Chiung-Mei

    2015-02-01

    Neuromyelitis optica (NMO) is an acquired, heterogeneous inflammatory disorder, which is characterized by recurrent optic neuritis and longitudinally extensive spinal cord lesions. The discovery of the serum autoantibody marker, anti-aquaporin 4 (anti-AQP4) antibody, revolutionizes our understanding of pathogenesis of NMO. In addition to anti-AQP4 antibody, other biomarkers for NMO are also reported. These candidate biomarkers are particularly involved in T helper (Th)17 and astrocytic damages, which play a critical role in the development of NMO lesions. Among them, IL-6 in the peripheral blood is associated with anti-AQP4 antibody production. Glial fibrillary acidic protein (GFAP) in CSF demonstrates good correlations with clinical severity of NMO relapses. Detecting these useful biomarkers may be useful in the diagnosis and evaluation of disease activity of NMO. Development of compounds targeting these biomarkers may provide novel therapeutic strategies for NMO. This article will review the related biomarker studies in NMO and discuss the potential therapeutics targeting these biomarkers.

  9. Recent advances in cytokines in cutaneous and systemic lupus erythematosus.

    PubMed

    Mikita, Naoya; Ikeda, Takaharu; Ishiguro, Mariko; Furukawa, Fukumi

    2011-09-01

    Lupus erythematosus (LE) includes a broad spectrum of diseases from a cutaneous-limited type to a systemic type. Systemic lupus erythematosus (SLE) is a systemic autoimmune disease which affects multiple organs. Cutaneous lupus erythematosus (CLE) includes skin symptoms seen in SLE and cutaneous-limited LE. Although immune abnormalities, as well as heritable, hormonal and environmental factors, are involved in the pathology of LE, the actual pathogenesis is still unclear. Recently, the involvement of various cytokines has been shown in the pathogenesis of LE. Moreover, some trials with biological agents targeted specific cytokines are also ongoing for SLE. In this article, we review the contributions of major cytokines such as interferon, tumor necrosis factor-α and interleukin-18 to LE, especially SLE and CLE.

  10. Treatment-Related Biomarkers in Pulmonary Hypertension

    PubMed Central

    Swaminathan, Aparna C.; Dusek, Alex C.

    2015-01-01

    Significant advances in the treatment of pulmonary arterial hypertension (PAH) over the last two decades have led to the introduction of multiple classes of oral therapy, but the disease remains devastating for many patients. Disease progression, in spite of oral monotherapy, is a major problem, and alternative therapy, such as infusion of prostacyclins, is cumbersome and carries considerable potential morbidity. Use of combination oral therapy, including drugs from both the endothelin receptor antagonist and phosphodiesterase-5 inhibitor classes, has increased, and there is some evidence to support this approach. Given the multiple options now available in pulmonary hypertension (PH) therapy, biomarkers to guide treatment decisions could be helpful. Here, we review the evidence for and against the clinical use of molecular biomarkers relevant to PH pathogenesis, emphasizing assayable markers that may also inform more rational selection of agents that influence pathways targeted by treatment. We emphasize the interactive nature of changes in mediators and messengers, such as endothelin-1, prostacyclin, brain natriuretic peptide (which has demonstrated biomarker utility), nitric oxide derivatives, and cyclic guanosine monophosphate, which play important roles in processes central to progression of PAH, such as vascular remodeling, vasoconstriction, and maladaptive right ventricular changes, and are relevant to its therapy. Accordingly, we propose that the identification and use of a molecular biomarker panel that assays these molecules in parallel and serially might, if validated, better inform unique patient phenotypes, prognosis, and the rational selection and titration of combination oral and other therapy in individual patients with PH/PAH. PMID:25611885

  11. Fibrosis biomarkers in workers exposed to MWCNTs.

    PubMed

    Fatkhutdinova, Liliya M; Khaliullin, Timur O; Vasil'yeva, Olga L; Zalyalov, Ramil R; Mustafin, Ilshat G; Kisin, Elena R; Birch, M Eileen; Yanamala, Naveena; Shvedova, Anna A

    2016-05-15

    Multi-walled carbon nanotubes (MWCNT) with their unique physico-chemical properties offer numerous technological advantages and are projected to drive the next generation of manufacturing growth. As MWCNT have already found utility in different industries including construction, engineering, energy production, space exploration and biomedicine, large quantities of MWCNT may reach the environment and inadvertently lead to human exposure. This necessitates the urgent assessment of their potential health effects in humans. The current study was carried out at NanotechCenter Ltd. Enterprise (Tambov, Russia) where large-scale manufacturing of MWCNT along with relatively high occupational exposure levels was reported. The goal of this small cross-sectional study was to evaluate potential biomarkers during occupational exposure to MWCNT. All air samples were collected at the workplaces from both specific areas and personal breathing zones using filter-based devices to quantitate elemental carbon and perform particle analysis by TEM. Biological fluids of nasal lavage, induced sputum and blood serum were obtained from MWCNT-exposed and non-exposed workers for assessment of inflammatory and fibrotic markers. It was found that exposure to MWCNTs caused significant increase in IL-1β, IL6, TNF-α, inflammatory cytokines and KL-6, a serological biomarker for interstitial lung disease in collected sputum samples. Moreover, the level of TGF-β1 was increased in serum obtained from young exposed workers. Overall, the results from this study revealed accumulation of inflammatory and fibrotic biomarkers in biofluids of workers manufacturing MWCNTs. Therefore, the biomarkers analyzed should be considered for the assessment of health effects of occupational exposure to MWCNT in cross-sectional epidemiological studies. PMID:26902652

  12. The FOCUS4 design for biomarker stratified trials.

    PubMed

    Kaplan, Richard

    2015-09-01

    Randomised clinical trials (RCTs) remain the gold standard of evidence for the benefit of new therapeutics but standard designs fit awkwardly with key developments in biomarker-stratified drug development. Firstly, the unprecedented number of new agents being developed in oncology (usually with specific targets for which there may be predictive biomarkers) mandates a need for new trial designs that are more efficient in screening out new agents with modest likelihood of benefit, concentrating resources on the most promising ones. The multi-arm multi-stage (MAMS) design developed some years ago addresses this need. Secondly, biomarker-stratified trials, when tackled one biomarker/drug pairing at a time, are inherently highly inefficient. The FOCUS4 trial design was developed to overcome this problem, using a platform that incorporates multiple parallel biomarker-stratified RCTs in individual cohorts, and capable of adapting its design in response to developing evidence.

  13. Cardiac biomarkers: new tools for heart failure management.

    PubMed

    Iqbal, Navaid; Wentworth, Bailey; Choudhary, Rajiv; Landa, Alejandro De La Parra; Kipper, Benjamin; Fard, Arrash; Maisel, Alan S

    2012-06-01

    The last decade has seen exciting advances in the field of biomarkers used in managing patients with heart failure (HF). Biomarker research has broadened our knowledge base, shedding more light on the underlying pathophysiological mechanisms occurring in patients with both acute and chronic HF. The criterion required by an ideal cardiovascular biomarker has been progressively changing to an era of sensitive assays that can be used to guide treatment. Recent technological advances have made it possible to rapidly measure even minute amounts of these proteins by means of higher sensitivity assays. With a high prevalence of comorbidities associated with HF, an integrated approach utilizing multiple biomarkers have shown promise in predicting mortality, better risk stratification and reducing re-hospitalizations, thus lowering health-care costs. This review provides a brief insight into recent advances in the field of biomarkers currently used in the diagnosis and prognosis of patients with acute and chronic HF.

  14. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis.

    PubMed

    Schukur, Lina; Geering, Barbara; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2015-12-16

    Psoriasis is a chronic inflammatory skin disease characterized by a relapsing-remitting disease course and correlated with increased expression of proinflammatory cytokines, such as tumor necrosis factor (TNF) and interleukin 22 (IL22). Psoriasis is hard to treat because of the unpredictable and asymptomatic flare-up, which limits handling of skin lesions to symptomatic treatment. Synthetic biology-based gene circuits are uniquely suited for the treatment of diseases with complex dynamics, such as psoriasis, because they can autonomously couple the detection of disease biomarkers with the production of therapeutic proteins. We designed a mammalian cell synthetic cytokine converter that quantifies psoriasis-associated TNF and IL22 levels using serially linked receptor-based synthetic signaling cascades, processes the levels of these proinflammatory cytokines with AND-gate logic, and triggers the corresponding expression of therapeutic levels of the anti-inflammatory/psoriatic cytokines IL4 and IL10, which have been shown to be immunomodulatory in patients. Implants of microencapsulated cytokine converter transgenic designer cells were insensitive to simulated bacterial and viral infections as well as psoriatic-unrelated inflammation. The designer cells specifically prevented the onset of psoriatic flares, stopped acute psoriasis, improved psoriatic skin lesions and restored normal skin-tissue morphology in mice. The antipsoriatic designer cells were equally responsive to blood samples from psoriasis patients, suggesting that the synthetic cytokine converter captures the clinically relevant cytokine range. Implanted designer cells that dynamically interface with the patient's metabolism by detecting specific disease metabolites or biomarkers, processing their blood levels with synthetic circuits in real time, and coordinating immediate production and systemic delivery of protein therapeutics may advance personalized gene- and cell-based therapies.

  15. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis.

    PubMed

    Schukur, Lina; Geering, Barbara; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2015-12-16

    Psoriasis is a chronic inflammatory skin disease characterized by a relapsing-remitting disease course and correlated with increased expression of proinflammatory cytokines, such as tumor necrosis factor (TNF) and interleukin 22 (IL22). Psoriasis is hard to treat because of the unpredictable and asymptomatic flare-up, which limits handling of skin lesions to symptomatic treatment. Synthetic biology-based gene circuits are uniquely suited for the treatment of diseases with complex dynamics, such as psoriasis, because they can autonomously couple the detection of disease biomarkers with the production of therapeutic proteins. We designed a mammalian cell synthetic cytokine converter that quantifies psoriasis-associated TNF and IL22 levels using serially linked receptor-based synthetic signaling cascades, processes the levels of these proinflammatory cytokines with AND-gate logic, and triggers the corresponding expression of therapeutic levels of the anti-inflammatory/psoriatic cytokines IL4 and IL10, which have been shown to be immunomodulatory in patients. Implants of microencapsulated cytokine converter transgenic designer cells were insensitive to simulated bacterial and viral infections as well as psoriatic-unrelated inflammation. The designer cells specifically prevented the onset of psoriatic flares, stopped acute psoriasis, improved psoriatic skin lesions and restored normal skin-tissue morphology in mice. The antipsoriatic designer cells were equally responsive to blood samples from psoriasis patients, suggesting that the synthetic cytokine converter captures the clinically relevant cytokine range. Implanted designer cells that dynamically interface with the patient's metabolism by detecting specific disease metabolites or biomarkers, processing their blood levels with synthetic circuits in real time, and coordinating immediate production and systemic delivery of protein therapeutics may advance personalized gene- and cell-based therapies. PMID:26676608

  16. IL-12 Family Cytokines: Immunological Playmakers

    PubMed Central

    Vignali, Dario A.A.; Kuchroo, Vijay K.

    2014-01-01

    The interleukin-12 (IL-12) family is unique in comprising the only heterodimeric cytokines, which includes IL-12, IL-23, IL-27 and IL-35. This endows these cytokines with a unique set of connections and functional interactions not shared within other cytokine families. Despite sharing many structural features and molecular partners, they mediate surprisingly diverse functional effects. Here we discuss the unique and unusual structural and functional characteristics of this cytokine family. We outline how cells might interpret seemingly similar cytokine signals to give rise to the diverse functional outcomes which characterize this cytokine family. We will also discuss the therapeutic implications of this complexity. PMID:22814351

  17. [Cytokines. Transmittor substances of the immune system].

    PubMed

    Pisa, P; Söder, O

    1995-07-12

    Cytokines are hormone-like proteins and peptides whose principal function is that of signalling substances within the immunoinflammatory and haematopoietic systems. Since the first cytokines were characterised 15 years ago, over 50 cytokines have been strictly defined and characterised. Cytokines are classified mainly on the basis of functional criteria into families--e.g, interleukins, interferons, colony stimulating factors, and chemokines. The article provides a broad review of cytokine physiology and pathophysiology with an emphasis on recent findings of their involvement in various diseases such as infections, autoimmune and haematological disorders, and cancer. Different treatment modalities that affect cytokine activity are discussed.

  18. Kidney biomarkers in cirrhosis.

    PubMed

    Francoz, Claire; Nadim, Mitra K; Durand, François

    2016-10-01

    Impaired renal function due to acute kidney injury (AKI) and/or chronic kidney diseases (CKD) is frequent in cirrhosis. Recurrent episodes of AKI may occur in end-stage cirrhosis. Differential diagnosis between functional (prerenal and hepatorenal syndrome) and acute tubular necrosis (ATN) is crucial. The concept that AKI and CKD represent a continuum rather than distinct entities, is now emerging. Not all patients with AKI have a potential for full recovery. Precise evaluation of kidney function and identification of kidney changes in patients with cirrhosis is central in predicting reversibility. This review examines current biomarkers for assessing renal function and identifying the cause and mechanisms of impaired renal function. When CKD is suspected, clearance of exogenous markers is the reference to assess glomerular filtration rate, as creatinine is inaccurate and cystatin C needs further evaluation. Recent biomarkers may help differentiate ATN from hepatorenal syndrome. Neutrophil gelatinase-associated lipocalin has been the most extensively studied biomarker yet, however, there are no clear-cut values that differentiate each of these conditions. Studies comparing ATN and hepatorenal syndrome in cirrhosis, do not include a gold standard. Combinations of innovative biomarkers are attractive to identify patients justifying simultaneous liver and kidney transplantation. Accurate biomarkers of underlying CKD are lacking and kidney biopsy is often contraindicated in this population. Urinary microRNAs are attractive although not definitely validated. Efforts should be made to develop biomarkers of kidney fibrosis, a common and irreversible feature of CKD, whatever the cause. Biomarkers of maladaptative repair leading to irreversible changes and CKD after AKI are also promising.

  19. Biomarkers for antipsychotic therapies.

    PubMed

    Pich, Emilio Merlo; Vargas, Gabriel; Domenici, Enrico

    2012-01-01

    Molecular biomarkers for antipsychotic treatments have been conceptually linked to the measurements of dopamine functions, mostly D(2) receptor occupancy, either by imaging using selective PET/SPECT radioactive tracers or by assessing plasma prolactin levels. A quest for novel biomarkers was recently proposed by various academic, health service, and industrial institutions driven by the need for better treatments of psychoses. In this review we conceptualize biomarkers within the Translational Medicine paradigm whose goal was to provide support to critical decision-making in drug discovery. At first we focused on biomarkers as outcome measure of clinical studies by searching into the database clinicaltrial.gov. The results were somewhat disappointing, showing that out of 1,659 antipsychotic trials only 18 used a biomarker as an outcome measure. Several of these trials targeted plasma lipids as sentinel marker for metabolic adverse effects associated with the use of atypical antipsychotics, while only few studies were aimed to new disease specific biological markers. As an example of a mechanistic biomarker, we described the work done to progress the novel class of glycine transporter inhibitors as putative treatment for negative symptoms of schizophrenia. We also review how large-scale multiplex biological assays were applied to samples from tissues of psychiatric patients, so to learn from changes of numerous analytes (metabolic products, lipids, proteins, RNA transcripts) about the substrates involved in the disease. We concluded that a stringent implementation of these techniques could contribute to the endophenotypic characterization of patients, helping in the identification of key biomarkers to drive personalized medicine and new treatment development. PMID:23129338

  20. Quest for Biomarkers of Treatment-Resistant Depression: Shifting the Paradigm Toward Risk

    PubMed Central

    Smith, Donald F.

    2013-01-01

    The search for potential biomarkers of psychiatric disorders is a central topic in biological psychiatry. This review concerns published studies on potential biomarkers of treatment-resistant depression (TRD). The search for biomarkers of TRD in the bloodstream has focused on cytokines and steroids as well as brain-derived neurotropic factor. Additional approaches to identifying biomarkers of TRD have dealt with cerebrospinal fluid analysis, magnetic resonance imaging, and positron emission tomography. Some studies have also investigated potential genetic and epigenetic factors in TRD. Most studies have, however, used a post hoc experimental design that failed to determine the association between biomarkers and the initial risk of TRD. Particular attention in future studies should be on shifting the experimental paradigm toward procedures that can determine the risk for developing treatment resistance in untreated depressed individuals. PMID:23785338

  1. Cytokine and Antibody Based Diagnostic Algorithms for Sputum Culture-Positive Pulmonary Tuberculosis

    PubMed Central

    Fleming, Joy; Chen, Liang; Wang, Yunxia; Li, Haicheng; Guo, Huixin; Zhou, Jie; Chen, Xunxun; Chen, Yuhui; Liao, Qinghua; Shu, Yang; Tan, Yaoju; Yu, Meiling; Li, Guozhou; Zhou, Lin; Zhong, Qiu; Bi, Lijun; Guo, Lina; Zhao, Meigui

    2015-01-01

    Background Tuberculosis (TB) is one of the most serious infectious diseases globally and has high mortality rates. A variety of diagnostic tests are available, yet none are wholly reliable. Serum cytokines, although significantly and frequently induced by different diseases and thus good biomarkers for disease diagnosis and prognosis, are not sufficiently disease-specific. TB-specific antibody detection, on the other hand, has been reported to be highly specific but not sufficiently sensitive. In this study, our aim was to improve the sensitivity and specificity of TB diagnosis by combining detection of TB-related cytokines and TB-specific antibodies in peripheral blood samples. Methods TB-related serum cytokines were screened using a human cytokine array. TB-related cytokines and TB-specific antibodies were detected in parallel with microarray technology. The diagnostic performance of the new protocol for active TB was systematically compared with other traditional methods. Results Here, we show that cytokines I-309, IL-8 and MIG are capable of distinguishing patients with active TB from healthy controls, patients with latent TB infection, and those with a range of other pulmonary diseases, and that these cytokines, and their presence alongside antibodies for TB-specific antigens Ag14-16kDa, Ag32kDa, Ag38kDa and Ag85B, are specific markers for active TB. The diagnostic protocol for active TB developed here, which combines the detection of three TB-related cytokines and TB-specific antibodies, is highly sensitive (91.03%), specific (90.77%) and accurate (90.87%). Conclusions Our results show that combining detection of TB-related cytokines and TB-specific antibodies significantly enhances diagnostic accuracy for active TB, providing greater accuracy than conventional diagnostic methods such as interferon gamma release assays (IGRAs), TB antibody Colloidal Gold Assays and microbiological culture, and suggest that this diagnostic protocol has potential for clinical

  2. Mass spectrometry for biomarker development

    SciTech Connect

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  3. Anti-cytokine autoantibodies are associated with opportunistic infection in patients with thymic neoplasia

    PubMed Central

    Burbelo, Peter D.; Sampaio, Elizabeth P.; Giaccone, Giuseppe; Zaman, Rifat; Kristosturyan, Ervand; Rajan, Arun; Ding, Li; Ching, Kathryn H.; Berman, Arlene; Oliveira, Joao B.; Hsu, Amy P.; Klimavicz, Caitlin M.; Iadarola, Michael J.; Holland, Steven M.

    2010-01-01

    Patients with thymic malignancy have high rates of autoimmunity leading to a variety of autoimmune diseases, most commonly myasthenia gravis caused by anti-acetylcholine receptor autoantibodies. High rates of autoantibodies to cytokines have also been described, although prevalence, spectrum, and functionality of these anti-cytokine autoantibodies are poorly defined. To better understand the presence and function of anti-cytokine autoantibodies, we created a luciferase immunoprecipitation system panel to search for autoantibodies against 39 different cytokines and examined plasma from controls (n = 30) and patients with thymic neoplasia (n = 17). In this screen, our patients showed statistically elevated, but highly heterogeneous immunoreactivity against 16 of the 39 cytokines. Some patients showed autoantibodies to multiple cytokines. Functional testing proved that autoantibodies directed against interferon-α, interferon-β, interleukin-1α (IL-1α), IL-12p35, IL-12p40, and IL-17A had biologic blocking activity in vitro. All patients with opportunistic infection showed multiple anti-cytokine autoantibodies (range 3-11), suggesting that anti-cytokine autoantibodies may be important in the pathogenesis of opportunistic infections in patients with thymic malignancy. This study was registered at http://clinicaltrials.gov as NCT00001355. PMID:20716769

  4. Biomarkers in canine parvovirus enteritis.

    PubMed

    Schoeman, J P; Goddard, A; Leisewitz, A L

    2013-07-01

    Canine parvovirus (CPV) enteritis has, since its emergence in 1978, remained a common and important cause of morbidity and mortality in young dogs. The continued incidence of parvoviral enteritis is partly due to the virus' capability to evolve into more virulent and resistant variants with significant local gastrointestinal and systemic inflammatory sequelae. This paper reviews current knowledge on historical-, signalment-, and clinical factors as well as several haematological-, biochemical- and endocrine parameters that can be used as diagnostic and prognostic biomarkers in CPV enteritis. These factors include season of presentation, purebred nature, bodyweight, vomiting, leukopaenia, lymphopaenia, thrombocytopaenia, hypercoagulability, hypercortisolaemia, hypothyroxinaemia, hypoalbuminaemia, elevated C-reactive protein and tumour necrosis factor, hypocholesterolaemia and hypocitrullinaemia. Factors contributing to the manifestations of CPV infection are multiple with elements of host, pathogen, secondary infections, underlying stressors and environment affecting severity and outcome. The availability of several prognosticators has made identification of patients at high risk of death and their subsequent targeted management more rewarding.

  5. Using Periostin as a Biomarker in the Treatment of Asthma.

    PubMed

    Izuhara, Kenji; Ohta, Shoichiro; Ono, Junya

    2016-11-01

    Periostin acts both as an extracellular matrix protein belonging to the fasciclin family and as a matricellular protein functioning in cell activation by binding to its receptors on the cell surface. It has been established that periostin is a downstream molecule of interleukin (IL)-13, a signature type 2 cytokine, and that periostin plays an important role in the pathogenesis of allergic diseases, including asthma. Based on these findings, much attention has been paid to periostin as a biomarker useful in the treatment of asthma. Periostin is a surrogate biomarker for type 2 immunity; it has been shown that serum periostin can predict the efficacy of anti-IL-13 antibodies (lebrikizumab) and anti-IgE antibodies (omalizumab), and that this usefulness can be potentially expanded to other type 2 antagonists. Moreover, it has been shown that periostin is not a simple surrogate biomarker for type 2 immunity; periostin-high asthma patients have several unique characteristics, including eosinophilia, high fraction of nitric oxide, aspirin intolerance, nasal disorders, and late onset. These characteristics are likely to be correlated with the involvement of periostin in the tissue remodeling of asthma. Periostin is also associated with hyporesponsiveness to inhaled corticosteroids, probably reflecting tissue remodeling. Thus, periostin has 2 characteristics as a biomarker for early diagnosis of asthma: surrogate biomarkers for type 2 immunity and tissue remodeling. Based on these characteristics, we will be able to apply serum periostin to treatment of asthma. PMID:27582399

  6. Statistical consideration for clinical biomarker research in bladder cancer

    PubMed Central

    Shariat, Shahrokh F.; Lotan, Yair; Vickers, Andrew; Karakiewicz, Pierre I.; Schmitz-Dräger, Bernd J.; Goebell, Peter J.; Malats, Nuria

    2012-01-01

    Purpose To critically review and illustrate current methodologic and statistical considerations for bladder cancer biomarker discovery and evaluation. Methods Original, review, and methodological articles, and editorials were reviewed and summarized. Results Biomarkers may be useful at multiple stages of bladder cancer management: early detection, diagnosis, staging, prognosis, and treatment; however, few novel biomarkers are currently used in clinical practice. The reasons for this disjunction are manifold and reflect the long and difficult pathway from candidate biomarker discovery to clinical assay, and the lack of coherent and comprehensive processes (pipelines) for biomarker development. Conceptually, the development of new biomarkers should be a process that is similar to therapeutic drug evaluation - a highly regulated process with carefully regulated phases from discovery to human applications. In a further effort to address the pervasive problem of inadequacies in the design, analysis, and reporting of biomarker prognostic studies, a set of reporting recommendations are discussed. For example, biomarkers should provide unique information that adds to known clinical and pathologic information. Conventional multivariable analyses are not sufficient to demonstrate improved prediction of outcomes. Predictive models, including or excluding any new putative biomarker, needs to show clinically significant improvement of performance in order to claim any real benefit. Towards this end, proper model building, avoidance of overfitting, and external validation are crucial. In addition, it is important to choose appropriate performance measures dependent on outcome and prediction type and to avoid use of cut-points. Biomarkers providing a continuous score provide potentially more useful information than cut-points since risk fits a continuum model. Combination of complementary and independent biomarkers is likely to better capture the biologic potential of a tumor

  7. I-FABP as Biomarker for the Early Diagnosis of Acute Mesenteric Ischemia and Resultant Lung Injury

    PubMed Central

    Khadaroo, Rachel G.; Fortis, Spyridon; Salim, Saad Y.; Streutker, Catherine; Churchill, Thomas A.; Zhang, Haibo

    2014-01-01

    Acute mesenteric ischemia (AMI) is a life-threatening condition that can result in multiple organ injury and death. A timely diagnosis and treatment would have a significant impact on the morbidity and mortality in high-risk patient population. The purpose of this study was to investigate if intestinal fatty acid binding protein (I-FABP) and α-defensins can be used as biomarkers for early AMI and resultant lung injury. C57BL/6 mice were subjected to intestinal ischemia by occlusion of the superior mesenteric artery. A time course of intestinal ischemia from 0.5 to 3 h was performed and followed by reperfusion for 2 h. Additional mice were treated with N-acetyl-cysteine (NAC) at 300 mg/kg given intraperitoneally prior to reperfusion. AMI resulted in severe intestinal injury characterized by neutrophil infiltrate, myeloperoxidase (MPO) levels, cytokine/chemokine levels, and tissue histopathology. Pathologic signs of ischemia were evident at 1 h, and by 3 h of ischemia, the full thickness of the intestine mucosa had areas of coagulative necrosis. It was noted that the levels of α-defensins in intestinal tissue peaked at 1 h and I-FABP in plasma peaked at 3 h after AMI. Intestinal ischemia also resulted in lung injury in a time-dependent manner. Pretreatment with NAC decreased the levels of intestinal α-defensins and plasma I-FABP, as well as lung MPO and cytokines. In summary, the concentrations of intestinal α-defensins and plasma I-FABP predicted intestinal ischemia prior to pathological evidence of ischemia and I-FABP directly correlated with resultant lung injury. The antioxidant NAC reduced intestinal and lung injury induced by AMI, suggesting a role for oxidants in the mechanism for distant organ injury. I-FABP and α-defensins are promising biomarkers, and may guide the treatment with antioxidant in early intestinal and distal organ injury. PMID:25541714

  8. Synovitis biomarkers: ex vivo characterization of three biomarkers for identification of inflammatory osteoarthritis

    PubMed Central

    Kjelgaard-Petersen, Cecilie; Siebuhr, Anne Sofie; Christiansen, Thorbjørn; Ladel, Christoph; Karsdal, Morten; Bay-Jensen, Anne-Christine

    2015-01-01

    Abstract Objective: Characterize biomarkers measuring extracellular matrix turnover of inflamed osteoarthritis synovium. Methods: Human primary fibroblast-like synoviocytes and synovial membrane explants (SMEs) treated with various cytokines and growth factors were assessed by C1M, C3M, and acMMP3 in the conditioned medium. Results: TNFα significantly increased C1M up to seven-fold (p = 0.0002), C3M up to 24-fold (p = 0.0011), and acMMP3 up to 14-fold (p < 0.0001) in SMEs. IL-1β also significantly increased C1M up to five-fold (p = 0.00094), C3M four-fold (p = 0.007), and acMMP3 18-fold (p < 0.0001) in SMEs. Conclusion: The biomarkers C1M, C3M, and acMMP-3 were synovitis biomarkers ex vivo and provide a translational tool together with the SME model. PMID:26863055

  9. Interplay between pro-inflammatory cytokines and growth factors in depressive illnesses

    PubMed Central

    Audet, Marie-Claude; Anisman, Hymie

    2013-01-01

    The development of depressive disorders had long been attributed to monoamine variations, and pharmacological treatment strategies likewise focused on methods of altering monoamine availability. However, the limited success achieved by treatments that altered these processes spurred the search for alternative mechanisms and treatments. Here we provide a brief overview concerning a possible role for pro-inflammatory cytokines and growth factors in major depression, as well as the possibility of targeting these factors in treating this disorder. The data suggest that focusing on one or another cytokine or growth factor might be counterproductive, especially as these factors may act sequentially or in parallel in affecting depressive disorders. It is also suggested that cytokines and growth factors might be useful biomarkers for individualized treatments of depressive illnesses. PMID:23675319

  10. Cytokine Signature in Infective Endocarditis

    PubMed Central

    Araújo, Izabella Rodrigues; Ferrari, Teresa Cristina Abreu; Teixeira-Carvalho, Andréa; Campi-Azevedo, Ana Carolina; Rodrigues, Luan Vieira; Guimarães Júnior, Milton Henriques; Barros, Thais Lins Souza; Gelape, Cláudio Léo; Sousa, Giovane Rodrigo; Nunes, Maria Carmo Pereira

    2015-01-01

    Infective endocarditis (IE) is a severe disease with high mortality rate. Cytokines participate in its pathogenesis and may contribute to early diagnosis improving the outcome. This study aimed to evaluate the cytokine profile in IE. Serum concentrations of interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12 and tumor necrosis factor (TNF)-α were measured by cytometric bead array (CBA) at diagnosis in 81 IE patients, and compared with 34 healthy subjects and 30 patients with non-IE infections, matched to the IE patients by age and gender. Mean age of the IE patients was 47±17 years (range, 15–80 years), and 40 (50%) were male. The IE patients had significantly higher serum concentrations of IL-1β, IL-6, IL-8, IL-10 and TNF-α as compared to the healthy individuals. The median levels of IL-1β, TNF-α and IL-12 were higher in the IE than in the non-IE infections group. TNF-α and IL-12 levels were higher in staphylococcal IE than in the non-staphylococcal IE subgroup. There was a higher proportion of both low IL-10 producers and high producers of IL-1β, TNF-α and IL-12 in the staphylococcal IE than in the non-staphylococcal IE subgroup. This study reinforces a relationship between the expression of proinflammatory cytokines, especially IL-1β, IL-12 and TNF-α, and the pathogenesis of IE. A lower production of IL-10 and impairment in cytokine network may reflect the severity of IE and may be useful for risk stratification. PMID:26225421

  11. Biomarkers for systemic lupus erythematosus.

    PubMed

    Ahearn, Joseph M; Liu, Chau-Ching; Kao, Amy H; Manzi, Susan

    2012-04-01

    The urgent need for lupus biomarkers was demonstrated in September 2011 during a Workshop sponsored by the Food and Drug Administration: Potential Biomarkers Predictive of Disease Flare. After 2 days of discussion and more than 2 dozen presentations from thought leaders in both industry and academia, it became apparent that highly sought biomarkers to predict lupus flare have not yet been identified. Even short of the elusive biomarker of flare, few biomarkers for systemic lupus erythematosus (SLE) diagnosis, monitoring, and stratification have been validated and employed for making clinical decisions. This lack of reliable, specific biomarkers for SLE hampers proper clinical management of patients with SLE and impedes development of new lupus therapeutics. As such, the intensity of investigation to identify lupus biomarkers is climbing a steep trajectory, lending cautious optimism that a validated panel of biomarkers for lupus diagnosis, monitoring, stratification, and prediction of flare may soon be in hand.

  12. Biomarkers in Barrett's esophagus.

    PubMed

    Reid, Brian J; Blount, Patricia L; Rabinovitch, Peter S

    2003-04-01

    This article provides a framework for clinicians who are attempting the difficult task of interpreting the Barrett's biomarker literature with the goal of improving care for their patients. Although many articles. including more that 60 proposed biomarkers, have been published on this subject, only a few describe phase 3 and 4 studies that are of interest to the clinical gastroenterologist (Table 1). For year, dysplasia grade has been the sole means of risk stratification for patients with BE, and it likely will continue to be used in the foreseeable future. The current authors believe that dysplasia classification can be valuable using the team management approach and quality controls described previously. Significant problems, however, have emerged in phase 2 through 4 studies of dysplasia that make it imperative for the Barrett's field to incorporate additional biomarkers as they are validated. These problems include poor reproducibility of dysplasia interpretations, poor predictive value for negative, indefinite, and low-grade dysplasia, and inconsistent results for HGD in different centers, all of which makes it virtually impossible to develop national guidelines for surveillance. Some studies have even suggested that endoscopic biopsy surveillance using dysplasia may not be worthwhile. Currently, flow cytometric tetraploidy and aneuploidy have progressed furthest in biomarker validation (see Table 1). With proper handling, endoscopic biopsy specimens can be shipped to reference laboratories that have the instruments, computer analytic methods, and expertise to reproducibly detect tetraploidy and aneuploidy. The results of phase 4 studies indicate that flow cytometry appears to be useful in detecting a subset of patients who do not have HGD and yet have an increased risk of progression to cancer that cannot be identified by dysplasia grade. For many reasons, the authors anticipate that the number of validated biomarkers will increase substantially in the

  13. Industry perspectives on biomarker qualification

    PubMed Central

    Womack, AW

    2015-01-01

    Biomarkers have the potential to expedite drug development, increase patient safety, and optimize clinical response. Yet few have achieved regulatory qualification. A survey was conducted to clarify industry's perspective on biomarker qualification and identify the most promising biomarkers for drug development. The results across toxicities/clinical areas highlight challenges in regulatory qualification, although early prioritization and alignment on an evidentiary standard framework are key factors in facilitating biomarker development and qualification. PMID:26378777

  14. Cytokine disturbances in systemic lupus erythematosus.

    PubMed

    Jacob, Noam; Stohl, William

    2011-07-06

    The pathogenesis of systemic lupus erythematosus (SLE) is complex, and the resulting disease manifestations are heterogeneous. Cytokine dysregulation is pervasive, and their protein and gene expression profiles may serve as markers of disease activity and severity. Importantly, biologic agents that target specific cytokines may represent novel therapies for SLE. Four cytokines (IL-6, TNFα, IFNα, and BLyS) are being evaluated as therapeutic targets in SLE. The present review will examine the roles of each of these cytokines in murine and human SLE, and will summarize results from clinical trials of agents that target these cytokines.

  15. Biomarkers of cell senescence

    DOEpatents

    Dirmi, G.P.; Campisi, J.; Peacocke, M.

    1996-02-13

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, {beta}-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo. 1 fig.

  16. Biomarkers of cell senescence

    DOEpatents

    Dimri, G.P.; Campisi, J.; Peacocke, M.

    1998-08-18

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, {beta}-galactosidase activity is utilized as a means by which cell senescence may be assessed either in vitro cell cultures or in vivo. 1 fig.

  17. [Biomarkers of tobacco smoke].

    PubMed

    Sobczak, Andrzej; Wardas, Władysław; Zielińska-Danch, Wioleta; Szołtysek-Bołdys, Izabela

    2005-01-01

    In order to estimate the exposure of passive and active smokers to tobacco smoke one can use the questionnaire method or laboratory examination of chemical compounds being widely accepted exposure biomarkers. Substances that make such biomarkers include some of the tobacco smoke components and its metabolites formed in the body. The study discusses two groups of biomarkers. First, includes substances that serve as exposure markers of carcinogenous properties (metabolites of polycyclic aromatic hydrocarbons, N-nitrosamines, trans,transmuconic acid, S-phenylmercapturic acid). Second group includes substances which role is limited to the evaluation of exposure to tobacco smoke (nicotine, cotinine, anatabine, anabasine, trans-3'-hydroxycotinine, thiocyanate, carboxyhemoglobin, carbon monoxide). Sensitivity and specificity of biomakers used were evaluated, their concentration ranges in physiological fluids in non-smokers, passive-, and active smokers. The simplicity of the examination method was evaluated. Articles published during last two decades indicate that the substance that have all features that make it the most appropriate biomarker is cotinine. It can be assessed in plasma and in urine of smokers and persons exposed to environmental tobacco smoke.

  18. Biomarkers of cell senescence

    DOEpatents

    Dimri, Goberdhan P.; Campisi, Judith; Peacocke, Monica

    1998-01-01

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in vitro cell cultures or in vivo.

  19. Biomarkers of cell senescence

    DOEpatents

    Dirmi, Goberdhan P.; Campisi, Judith; Peacocke, Monica

    1996-01-01

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo.

  20. Neuroimaging Biomarkers for Psychosis

    PubMed Central

    Hager, Brandon M.

    2015-01-01

    Background Biomarkers provide clinicians with a predictable model for the diagnosis, treatment and follow-up of medical ailments. Psychiatry has lagged behind other areas of medicine in the identification of biomarkers for clinical diagnosis and treatment. In this review, we investigated the current state of neuroimaging as it pertains to biomarkers for psychosis. Methods We reviewed systematic reviews and meta-analyses of the structural (sMRI), functional (fMRI), diffusion-tensor (DTI), Positron emission tomography (PET) and spectroscopy (MRS) studies of subjects at-risk or those with an established schizophrenic illness. Only articles reporting effect-sizes and confidence intervals were included in an assessment of robustness. Results Out of the identified meta-analyses and systematic reviews, 21 studies met the inclusion criteria for assessment. There were 13 sMRI, 4 PET, 3 MRS, and 1 DTI studies. The search terms included in the current review encompassed familial high risk (FHR), clinical high risk (CHR), First episode (FES), Chronic (CSZ), schizophrenia spectrum disorders (SSD), and healthy controls (HC). Conclusions Currently, few neuroimaging biomarkers can be considered ready for diagnostic use in patients with psychosis. At least in part, this may be related to the challenges inherent in the current symptom-based approach to classifying these disorders. While available studies suggest a possible value of imaging biomarkers for monitoring disease progression, more systematic research is needed. To date, the best value of imaging data in psychoses has been to shed light on questions of disease pathophysiology, especially through the characterization of endophenotypes. PMID:25883891

  1. Reassessment of Blood Gene Expression Markers for the Prognosis of Relapsing-Remitting Multiple Sclerosis

    PubMed Central

    Hecker, Michael; Paap, Brigitte Katrin; Goertsches, Robert Hermann; Kandulski, Ole; Fatum, Christian; Koczan, Dirk; Hartung, Hans-Peter; Thiesen, Hans-Juergen; Zettl, Uwe Klaus

    2011-01-01

    Despite considerable advances in the treatment of multiple sclerosis, current drugs are only partially effective. Most patients show reduced disease activity with therapy, but still experience relapses, increasing disability, and new brain lesions. Since there are no reliable clinical or biological markers of disease progression, long-term prognosis is difficult to predict for individual patients. We identified 18 studies that suggested genes expressed in blood as predictive biomarkers. We validated the prognostic value of those genes with three different microarray data sets comprising 148 patients in total. Using these data, we tested whether the genes were significantly differentially expressed between patients with good and poor courses of the disease. Poor progression was defined by relapses and/or increase of disability during a two-year follow-up, independent of the administered therapy. Of 110 genes that have been proposed as predictive biomarkers, most could not be confirmed in our analysis. However, the G protein-coupled membrane receptor GPR3 was expressed at significantly lower levels in patients with poor disease progression in all data sets. GPR3 has therefore a high potential to be a biomarker for predicting future disease activity. In addition, we examined the IL17 cytokines and receptors in more detail and propose IL17RC as a new, promising, transcript-based biomarker candidate. Further studies are needed to better understand the roles of these receptors in multiple sclerosis and its treatment and to clarify the utility of GPR3 and IL17RC expression levels in the blood as markers of long-term prognosis. PMID:22216338

  2. Proinflammatory cytokines and matrix metalloproteinases in CSF of patients with VZV vasculopathy

    PubMed Central

    Jones, Dallas; Alvarez, Enrique; Selva, Sean; Gilden, Don

    2016-01-01

    Objective: To determine the levels of proinflammatory cytokines and matrix metalloproteinases (MMPs) in the CSF of patients with virologically verified varicella zoster virus (VZV) vasculopathy. Methods: CSF from 30 patients with virologically verified VZV vasculopathy was analyzed for levels of proinflammatory cytokines and MMPs using the Meso Scale Discovery multiplex ELISA platform. Positive CNS inflammatory disease controls were provided by CSF from 30 patients with multiple sclerosis. Negative controls were provided by CSF from 20 healthy controls. Results: Compared to multiple sclerosis CSF and CSF from healthy controls, levels of interleukin (IL)-8, IL-6, and MMP-2 were significantly elevated in VZV vasculopathy CSF. Conclusions: CSF of patients with VZV vasculopathy revealed a unique profile of elevated proinflammatory cytokines, IL-8 and IL-6, along with elevated MMP-2. The relevance of these cytokines to the pathogenesis of VZV vasculopathy requires further study. PMID:27340684

  3. TLR signals posttranscriptionally regulate the cytokine trafficking mediator sortilin

    PubMed Central

    Yabe-Wada, Toshiki; Matsuba, Shintaro; Takeda, Kazuya; Sato, Tetsuya; Suyama, Mikita; Ohkawa, Yasuyuki; Takai, Toshiyuki; Shi, Haifeng; Philpott, Caroline C.; Nakamura, Akira

    2016-01-01

    Regulating the transcription, translation and secretion of cytokines is crucial for controlling the appropriate balance of inflammation. Here we report that the sorting receptor sortilin plays a key role in cytokine production. We observed interactions of sortilin with multiple cytokines including IFN-α, and sortilin depletion in plasmacytoid dendritic cells (pDCs) led to a reduction of IFN-α secretion, suggesting a pivotal role of sortilin in the exocytic trafficking of IFN-α in pDCs. Moreover, sortilin mRNA was degraded posttranscriptionally upon stimulation with various TLR ligands. Poly-rC-binding protein 1 (PCBP1) recognized the C-rich element (CRE) in the 3′ UTR of sortilin mRNA, and depletion of PCBP1 enhanced the degradation of sortilin transcripts, suggesting that PCBP1 can act as a trans-acting factor to stabilize sortilin transcripts. The nucleotide-binding ability of PCBP1 was impaired by zinc ions and alterations of intracellular zinc affect sortilin expression. PCBP1 may therefore control the stability of sortilin transcripts by sensing intracellular zinc levels. Collectively, our findings provide insights into the posttranslational regulation of cytokine production through the posttranscriptional control of sortilin expression by TLR signals. PMID:27220277

  4. Clinical application of growth factors and cytokines in wound healing.

    PubMed

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2014-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of nonhealing wounds (e.g., pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted an online search of Medline/PubMed and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies, and future research possibilities. In this review, we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include granulocyte-macrophage colony-stimulating factor, platelet-derived growth factor, vascular endothelial growth factor, and basic fibroblast growth factor. While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy.

  5. Early-response biomarkers for assessment of radiation exposure in a mouse total-body irradiation model.

    PubMed

    Ossetrova, Natalia I; Condliffe, Donald P; Ney, Patrick H; Krasnopolsky, Katya; Hieber, Kevin P; Rahman, Arifur; Sandgren, David J

    2014-06-01

    Nuclear accidents or terrorist attacks could expose large numbers of people to ionizing radiation. Early biomarkers of radiation injury will be critical for triage, treatment, and follow-up of such individuals. The authors evaluated the utility of multiple blood biomarkers for early-response assessment of radiation exposure using a murine (CD2F1, males) total-body irradiation (TBI) model exposed to ⁶⁰Co γ rays (0.6 Gy min⁻¹) over a broad dose range (0-14 Gy) and timepoints (4 h-5 d). Results demonstrate: 1) dose-dependent changes in hematopoietic cytokines: Flt-3 ligand (Flt3L), interleukin 6 (IL-6), granulocyte colony stimulating factor (G-CSF), thrombopoietin (TPO), erythropoietin (EPO), and acute phase protein serum amyloid A (SAA); 2) dose-dependent changes in blood cell counts: lymphocytes, neutrophils, platelets, and ratio of neutrophils to lymphocytes; 3) protein results coupled with peripheral blood cell counts established very successful separation of groups irradiated to different doses; and 4) enhanced separation of dose was observed as the number of biomarkers increased. Results show that the dynamic changes in the levels of SAA, IL-6, G-CSF, and Flt3L reflect the time course and severity of acute radiation syndrome (ARS) and may function as prognostic indicators of ARS outcome. These results also demonstrate proof-in-concept that plasma proteins show promise as a complimentary approach to conventional biodosimetry for early assessment of radiation exposures and, coupled with peripheral blood cell counts, provide early diagnostic information to manage radiation casualty incidents effectively, closing a gap in capabilities to rapidly and effectively assess radiation exposure early, especially needed in case of a mass-casualty radiological incident.

  6. Biomarker Modeling of Alzheimer's Disease

    PubMed Central

    Jack, Clifford R; Holtzman, David M

    2014-01-01

    Alzheimer's disease (AD) is a slowly progressing disorder in which pathophysiological abnormalities, detectable in vivo by biomarkers, precede overt clinical symptoms by many years to decades. Five AD biomarkers are sufficiently validated to have been incorporated into clinical diagnostic criteria and commonly used in therapeutic trials. Current AD biomarkers fall into 2 categories: biomarkers of amyloid-β plaques and of tau-related neurodegeneration. Three of the 5 are imaging measures and two are cerebrospinal fluid analytes. AD biomarkers do not evolve in an identical manner but rather in a sequential but temporally overlapping manner. Models of the temporal evolution of AD biomarkers can take the form of plots of biomarker severity (degree of abnormality) vs. time. In this review we discuss several time-dependent models of AD which take into consideration varying age of onset (early vs. late) and the influence of aging and co-occurring brain pathologies that commonly arise in the elderly. PMID:24360540

  7. Principles of interleukin (IL)-6-type cytokine signalling and its regulation.

    PubMed Central

    Heinrich, Peter C; Behrmann, Iris; Haan, Serge; Hermanns, Heike M; Müller-Newen, Gerhard; Schaper, Fred

    2003-01-01

    The IL (interleukin)-6-type cytokines IL-6, IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor, cardiotrophin-1 and cardiotrophin-like cytokine are an important family of mediators involved in the regulation of the acute-phase response to injury and infection. Besides their functions in inflammation and the immune response, these cytokines play also a crucial role in haematopoiesis, liver and neuronal regeneration, embryonal development and fertility. Dysregulation of IL-6-type cytokine signalling contributes to the onset and maintenance of several diseases, such as rheumatoid arthritis, inflammatory bowel disease, osteoporosis, multiple sclerosis and various types of cancer (e.g. multiple myeloma and prostate cancer). IL-6-type cytokines exert their action via the signal transducers gp (glycoprotein) 130, LIF receptor and OSM receptor leading to the activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) and MAPK (mitogen-activated protein kinase) cascades. This review focuses on recent progress in the understanding of the molecular mechanisms of IL-6-type cytokine signal transduction. Emphasis is put on the termination and modulation of the JAK/STAT signalling pathway mediated by tyrosine phosphatases, the SOCS (suppressor of cytokine signalling) feedback inhibitors and PIAS (protein inhibitor of activated STAT) proteins. Also the cross-talk between the JAK/STAT pathway with other signalling cascades is discussed. PMID:12773095

  8. Dynamics of biomarkers in relation to aging and mortality.

    PubMed

    Arbeev, Konstantin G; Ukraintseva, Svetlana V; Yashin, Anatoliy I

    2016-06-01

    Contemporary longitudinal studies collect repeated measurements of biomarkers allowing one to analyze their dynamics in relation to mortality, morbidity, or other health-related outcomes. Rich and diverse data collected in such studies provide opportunities to investigate how various socio-economic, demographic, behavioral and other variables can interact with biological and genetic factors to produce differential rates of aging in individuals. In this paper, we review some recent publications investigating dynamics of biomarkers in relation to mortality, which use single biomarkers as well as cumulative measures combining information from multiple biomarkers. We also discuss the analytical approach, the stochastic process models, which conceptualizes several aging-related mechanisms in the structure of the model and allows evaluating "hidden" characteristics of aging-related changes indirectly from available longitudinal data on biomarkers and follow-up on mortality or onset of diseases taking into account other relevant factors (both genetic and non-genetic). We also discuss an extension of the approach, which considers ranges of "optimal values" of biomarkers rather than a single optimal value as in the original model. We discuss practical applications of the approach to single biomarkers and cumulative measures highlighting that the potential of applications to cumulative measures is still largely underused. PMID:27138087

  9. Proteomics of gliomas: initial biomarker discovery and evolution of technology.

    PubMed

    Kalinina, Juliya; Peng, Junmin; Ritchie, James C; Van Meir, Erwin G

    2011-09-01

    Gliomas are a group of aggressive brain tumors that diffusely infiltrate adjacent brain tissues, rendering them largely incurable, even with multiple treatment modalities and agents. Mostly asymptomatic at early stages, they present in several subtypes with astrocytic or oligodendrocytic features and invariably progress to malignant forms. Gliomas are difficult to classify precisely because of interobserver variability during histopathologic grading. Identifying biological signatures of each glioma subtype through protein biomarker profiling of tumor or tumor-proximal fluids is therefore of high priority. Such profiling not only may provide clues regarding tumor classification but may identify clinical biomarkers and pathologic targets for the development of personalized treatments. In the past decade, differential proteomic profiling techniques have utilized tumor, cerebrospinal fluid, and plasma from glioma patients to identify the first candidate diagnostic, prognostic, predictive, and therapeutic response markers, highlighting the potential for glioma biomarker discovery. The number of markers identified, however, has been limited, their reproducibility between studies is unclear, and none have been validated for clinical use. Recent technological advancements in methodologies for high-throughput profiling, which provide easy access, rapid screening, low sample consumption, and accurate protein identification, are anticipated to accelerate brain tumor biomarker discovery. Reliable tools for biomarker verification forecast translation of the biomarkers into clinical diagnostics in the foreseeable future. Herein we update the reader on the recent trends and directions in glioma proteomics, including key findings and established and emerging technologies for analysis, together with challenges we are still facing in identifying and verifying potential glioma biomarkers.

  10. Th17 cytokines differentiate obesity from obesity-associated type 2 diabetes and promote TNFα production

    PubMed Central

    Ip, Blanche; Cilfone, Nicholas; Belkina, Anna C.; DeFuria, Jason; Jagannathan-Bogdan, Madhumita; Zhu, Min; Kuchibhatla, Ramya; McDonnell, Marie E.; Xiao, Qiang; Kepler, Thomas B.; Apovian, Caroline M.; Lauffenburger, Douglas A.; Nikolajczyk, Barbara S.

    2015-01-01

    Objective T cell inflammation plays pivotal roles in obesity-associated type 2 diabetes (T2DM). The identification of dominant sources of T cell inflammation in humans remains a significant gap in understanding disease pathogenesis. We hypothesized that cytokine profiles from circulating T cells identify T cell subsets and T cell cytokines that define T2DM-associated inflammation. Methods We used multiplex analyses to quantify T cell-associated cytokines in αCD3/αCD28-stimulated PBMCs, or B cell-depleted PBMCs, from subjects with T2DM or BMI-matched controls. We subjected cytokine measurements to multivariate (principal component and partial least squares) analyses. Flow cytometry detected intracellular TNFα in multiple immune cells subsets in the presence/absence of antibodies that neutralize T cell cytokines. Results T cell cytokines were generally higher in T2DM samples, but Th17 cytokines are specifically important for classifying individuals correctly as T2DM. Multivariate analyses indicated that B cells support Th17 inflammation in T2DM but not control samples, while monocytes supported Th17 inflammation regardless of T2DM status. Partial least squares regression analysis indicated that both Th17 and Th1 cytokines impact %HbA1c. Conclusions Among various T cell subsets, Th17 cells are major contributors to inflammation and hyperglycemia, and are uniquely supported by B cells in obesity-associated T2DM. PMID:26576827

  11. Granzymes regulate proinflammatory cytokine responses.

    PubMed

    Wensink, Annette C; Hack, C Erik; Bovenschen, Niels

    2015-01-15

    Granzymes (Grs) are serine proteases mainly produced by cytotoxic lymphocytes and are traditionally considered to cause apoptosis in tumor cells and virally infected cells. However, the cytotoxicity of several Grs is currently being debated, and additional, predominantly extracellular, functions of Grs in inflammation are emerging. Extracellular soluble Grs are elevated in the circulation of patients with autoimmune diseases and infections. Additionally, Grs are expressed by several types of immune cells other than cytotoxic lymphocytes. Recent research has revealed novel immunomodulatory functions of Grs. In this review, we provide a comprehensive overview on the role of Grs in inflammation, highlighting their role in cytokine induction and processing.

  12. Cytokine profiles in axial spondyloarthritis

    PubMed Central

    Madej, Marta; Nowak, Beata; Sokolik, Renata; Chlebicki, Arkadiusz; Korman, Lucyna; Woytala, Patryk; Lubiński, Łukasz; Wiland, Piotr

    2015-01-01

    Objectives Current studies concentrate on the cytokine network and its role in the pathogenesis of spondyloarthritis (SpA). In this study, we analyzed whether the serum cytokine profile (interleukins: IL-10, IL-11, IL-12, IL-15, IL-17, IL-23 and IL-33) correlates with demographic data, clinical manifestations, disease activity and treatment outcome in a group of patients with axial spondyloarthritis. Material and methods Forty-nine patients with an established diagnosis of axial spondyloarthritis (aSpA) and 19 healthy volunteers as controls were enrolled in the study. Clinical evaluation included patient's medical history, 44 joint count, back pain intensity and global disease activity in the preceding week (VAS), the duration of morning stiffness and blood tests. Disease activity was assessed using BASDAI and ASDAS-CRP. Serum concentration of IL-10, IL-11, IL-12, IL-15, IL-17, IL-23 and IL-33 was determined. Results In patients with aSpA, elevated serum concentration of IL-10, IL-15, IL-17 and IL-23 was detected. In the aSpA group we detected higher values of serum concentration of IL-23 and IL-33 in the subgroup with anterior uveitis (83.1 ±184.0 pg/ml vs. 14.0 ±17.1 pg/ml, p < 0.0001 and 45.5 ±71.9 pg/ml vs. 18.4 ±14.3 pg/ml, p < 0.0001, respectively). Additionally, in the subgroup with peripheral arthritis, elevation of serum concentration of IL-12 (249.3 ±246.9 pg/ml vs. 99.9 ±105.9 pg/ml, p = 0.0001) was detected. Patients with preradiological SpA had higher serum concentration of IL-17 than patients with established diagnosis of AS (6.37 ±8.50 pg/ml vs. 2.04 ±2.98 pg/ml, p = 0.0295). No differences in serum concentration of analyzed cytokines were found between the subgroup with low to moderate disease activity and the subgroup with high to very high disease activity. Conclusions We report that in aSpA patients, compared to controls, elevated serum concentrations of IL-10, IL-15, IL-17 and IL-23 were observed. Some cytokines may predispose to a more

  13. Interpretation of fish biomarker data for identification, classification, risk assessment and testing of endocrine disrupting chemicals.

    PubMed

    Dang, ZhiChao

    2016-01-01

    Chemical induced changes in fish biomarkers vitellogenin (VTG), secondary sex characteristics (SSC), and sex ratio indicate modes/mechanisms of action (MOAs) of EAS (estrogen, androgen and steroidogenesis) pathways. These biomarkers could be used for defining MOAs and the causal link between MOAs and adverse effects in fish for the identification of endocrine disrupting chemicals (EDCs). This paper compiled data sets of 150 chemicals for VTG, 57 chemicals for SSC and 38 chemicals for sex ratio in fathead minnow, medaka and zebrafish. It showed 1) changes in fish biomarkers can indicate the MOAs as anticipated; 2) in addition to EAS pathways, chemicals with non-EAS pathways induced changes in fish biomarkers; 3) responses of fish biomarkers did not always follow the anticipated patterns of EAS pathways. These responses may result from the interaction of chemical-induced multiple MOAs and confounding factors like fish diet, infection, culture conditions, general toxicity and stress response. The complex response of fish biomarkers to a chemical of interest requires EDC testing at multiple biological levels. Interpretation of fish biomarker data should be combined with relevant information at different biological levels, which is critical for defining chemical specific MOAs. The utility of fish biomarker data for identification, classification, PBT assessment, risk assessment, and testing of EDCs in the regulatory context was discussed. This paper emphasizes the importance of fish biomarker data in the regulatory context, a weight of evidence approach for the interpretation of fish biomarker data and the need for defining levels of evidence for the identification of EDCs.

  14. Use of multiple cell and tissue-level biomarkers in mussels collected along two gas fields in the northern Adriatic Sea as a tool for long term environmental monitoring.

    PubMed

    Gomiero, A; Volpato, E; Nasci, C; Perra, G; Viarengo, A; Dagnino, A; Spagnolo, A; Fabi, G

    2015-04-15

    As a consequence of the growing global demand of energy supplies, intense oil and gas exploration and exploitation programs have been carried out worldwide especially within the marine environments. The release of oil-derived compounds in the sea from anthropogenic sources both as effluents or accidental spill is perceived as a major environmental concern. An approach based on a combination of biomarkers and the distribution of some classes of environmentally relevant pollutants was used to investigate the occurrence of a stress syndrome in mussels (Mytilus galloprovincialis) collected at three gas platforms placed in two distinct oceanographic districts within the Adriatic Sea. Biological responses were integrated by a ranking algorithm which demonstrated both a range of biological effects reflecting exposure gradients and a temporal related trend in the investigated responses. The overall results demonstrate a moderate to absent pollution from studied gas platforms with low but remarkable biological disturbance in sentinel organisms.

  15. Use of multiple cell and tissue-level biomarkers in mussels collected along two gas fields in the northern Adriatic Sea as a tool for long term environmental monitoring.

    PubMed

    Gomiero, A; Volpato, E; Nasci, C; Perra, G; Viarengo, A; Dagnino, A; Spagnolo, A; Fabi, G

    2015-04-15

    As a consequence of the growing global demand of energy supplies, intense oil and gas exploration and exploitation programs have been carried out worldwide especially within the marine environments. The release of oil-derived compounds in the sea from anthropogenic sources both as effluents or accidental spill is perceived as a major environmental concern. An approach based on a combination of biomarkers and the distribution of some classes of environmentally relevant pollutants was used to investigate the occurrence of a stress syndrome in mussels (Mytilus galloprovincialis) collected at three gas platforms placed in two distinct oceanographic districts within the Adriatic Sea. Biological responses were integrated by a ranking algorithm which demonstrated both a range of biological effects reflecting exposure gradients and a temporal related trend in the investigated responses. The overall results demonstrate a moderate to absent pollution from studied gas platforms with low but remarkable biological disturbance in sentinel organisms. PMID:25724089

  16. The Current and Potential Clinical Relevance of Heart Failure Biomarkers.

    PubMed

    Gandhi, Parul U; Testani, Jeffrey M; Ahmad, Tariq

    2015-10-01

    Heart failure is a growing epidemic, and our understanding of the intricacies of its pathophysiology continues to evolve. Over the last decade, biomarkers of heart failure have been extensively investigated, particularly for diagnosis and risk stratification. While the natriuretic peptides remain the gold standard heart failure biomarker, they are plagued by their non-specific nature; furthermore, the strategy of natriuretic peptide-guided care remains elusive. Multiple candidate markers indicative of other physiologic aspects of heart failure have been identified and studied, including soluble ST2, galectin-3, and high-sensitivity cardiac troponins. Each of these biomarkers has the potential to provide unique therapeutically relevant information. Ultimately, a multi-marker approach may be applied to improve care of patients with heart failure. Definitive clinical trials and the use of advanced statistical analytic techniques are needed to truly determine the optimal strategy of biomarker-assisted diagnosis, prognostication, and management of patients who suffer from this devastating condition.

  17. Tear biomarkers for keratoconus.

    PubMed

    Nishtala, Krishnatej; Pahuja, Natasha; Shetty, Rohit; Nuijts, Rudy M M A; Ghosh, Arkasubhra

    2016-01-01

    Keratoconus is a progressive corneal thinning, ectatic condition, which affects vision. Recent advances in corneal topography measurements has helped advance proper diagnosis of this condition and increased research and clinical interests in the disease etiopathogenesis. Considerable progress has been achieved in understanding the progression of the disease and tear fluid has played a major role in the progress. This review discusses the importance of tear fluid as a source of biomarker for keratoconus and how advances in technology have helped map the complexity of tears and thereby molecular readouts of the disease. Expanding knowledge of the tear proteome, lipidome and metabolome opened up new avenues to study keratoconus and to identify probable prognostic or diagnostic biomarkers for the disease. A multidimensional approach of analyzing tear fluid of patients layering on proteomics, lipidomics and metabolomics is necessary in effectively decoding keratoconus and thereby identifying targets for its treatment. PMID:27493978

  18. Comparison of Plasma and Urine Biomarker Performance in Acute Kidney Injury

    PubMed Central

    Schley, Gunnar; Köberle, Carmen; Manuilova, Ekaterina; Rutz, Sandra; Forster, Christian; Weyand, Michael; Formentini, Ivan; Kientsch-Engel, Rosemarie; Eckardt, Kai-Uwe; Willam, Carsten

    2015-01-01

    Background New renal biomarkers measured in urine promise to increase specificity for risk stratification and early diagnosis of acute kidney injury (AKI) but concomitantly may be altered by urine concentration effects and chronic renal insufficiency. This study therefore directly compared the performance of AKI biomarkers in urine and plasma. Methods This single-center, prospective cohort study included 110 unselected adults undergoing cardiac surgery with cardiopulmonary bypass between 2009 and 2010. Plasma and/or urine concentrations of creatinine, cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), liver fatty acid-binding protein (L-FABP), kidney injury molecule 1 (KIM1), and albumin as well as 15 additional biomarkers in plasma and urine were measured during the perioperative period. The primary outcome was AKI defined by AKIN serum creatinine criteria within 72 hours after surgery. Results Biomarkers in plasma showed markedly better discriminative performance for preoperative risk stratification and early postoperative (within 24h after surgery) detection of AKI than urine biomarkers. Discriminative power of urine biomarkers improved when concentrations were normalized to urinary creatinine, but urine biomarkers had still lower AUC values than plasma biomarkers. Best diagnostic performance 4h after surgery had plasma NGAL (AUC 0.83), cystatin C (0.76), MIG (0.74), and L-FAPB (0.73). Combinations of multiple biomarkers did not improve their diagnostic power. Preoperative clinical scoring systems (EuroSCORE and Cleveland Clinic Foundation Score) predicted the risk for AKI (AUC 0.76 and 0.71) and were not inferior to biomarkers. Preexisting chronic kidney disease limited the diagnostic performance of both plasma and urine biomarkers. Conclusions In our cohort plasma biomarkers had higher discriminative power for risk stratification and early diagnosis of AKI than urine biomarkers. For preoperative risk stratification of AKI clinical models showed

  19. Biomarkers of environmental contamination

    SciTech Connect

    McCarthy, J.F.; Shugart, L.R.

    1990-01-01

    Biological markers are measurements at the molecular, biochemical, or cellular level in either wild populations from contaminated habitats or in organisms experimentally exposed to pollutants that indicate that the organism has been exposed to toxic chemicals, and the magnitude of the organisms response to the contaminant. Biological markers measured in wild animals can directly contribute to detecting, quantifying, and understanding the significance of exposure to chemicals in the environment. These measurements in environmental species may also help assess the potential for human exposure to environmental pollutants, and for predicting the human health risks. It is the objective of this volume to review the current state of science as it pertains to the scientific basis, current state of development, validation, and use of biological markers in environmental research. The emphasis is on identifying and evaluating exposure of environmental species and effects on the health of environmental species and the integrity of their ecosystem. The various chapters describe different types of biomarkers that offer promise for environmental monitoring. The biomarkers are arranged in categories defined by the nature of the toxic endpoint being probed: anatomical and cytological endpoints; detoxification, adaptive and immunological responses; genotoxic responses; metal metabolism; and application of biomarkers in field evaluation.

  20. Prospective evaluation of cytokine in saliva of preterm and fullterm neonates.

    PubMed

    Sesso, Maria Lucia Talarico; Borges, Mariana Castro Loureiro; Ferriani, Virginia Paes Leme; Geraldo-Martins, Vinicius Rangel; Rodrigues, Denise Bertulucci Rocha; Nogueira, Ruchele Dias

    2014-11-01

    Little is known about the ontogeny of the cytokines in saliva of newborn. Previous studies showed that levels of immunoglobulin A (IgA) in saliva could be influenced by prematurity. So, the aim of this study was to analyze the levels of interleukin 6 (IL-6), interleukin 10 (IL-10), interleukin 12 (IL-12), and interferon gamma (IFN-γ) in sample saliva of fullterm (FT) and preterm (PT) neonates at birth (T0) and after 3 months of age (T3). Saliva from 50 infants (25 FT and 25 PT) were collected at T0 and T3 and analyzed by Luminex Corporation (Austin, Texas, United States) multiplex assay. Clinical characteristics and social-economic data were assessed through questionnaires. All cytokines could be detected at birth in levels higher than found in T3. The mean levels and frequency of detection of cytokines were significantly higher in PT than FT at T0 (P<0.05). There were a positive association between IL-10 and infection (P<0.05) and IL-6 and stress (P<0.005). Salivary cytokines were detected within the first hours after birth and their levels decreased after 3 months. The cytokine levels were different between PT and FT children and appear to be influenced by stress situation and/or antigenic microbial challenge. The results confirm the necessity for further studies about the mucosal immune system by using of saliva as a source of diagnostic by identification of biomarkers of the status of the immune.

  1. Fabrication of Homogeneous High-Density Antibody Microarrays for Cytokine Detection

    PubMed Central

    Hospach, Ingeborg; Joseph, Yvonne; Mai, Michaela Kathrin; Krasteva, Nadejda; Nelles, Gabriele

    2014-01-01

    Cytokine proteins are known as biomarker molecules, characteristic of a disease or specific body condition. Monitoring of the cytokine pattern in body fluids can contribute to the diagnosis of diseases. Here we report on the development of an array comprised of different anti-cytokine antibodies on an activated solid support coupled with a fluorescence readout mechanism. Optimization of the array preparation was done in regard of spot homogeneity and spot size. The proinflammatory cytokines Tumor Necrosis Factor alpha (TNFα) and Interleukin 6 (IL-6) were chosen as the first targets of interest. First, the solid support for covalent antibody immobilization and an adequate fluorescent label were selected. Three differently functionalized glass substrates for spotting were compared: amine and epoxy, both having a two-dimensional structure, and the NHS functionalized hydrogel (NHS-3D). The NHS-hydrogel functionalization of the substrate was best suited to antibody immobilization. Then, the optimization of plotting parameters and geometry as well as buffer media were investigated, considering the ambient analyte theory of Roger Ekins. As a first step towards real sample studies, a proof of principle of cytokine detection has been established. PMID:27600349

  2. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness.

    PubMed

    Furman, David; Jojic, Vladimir; Kidd, Brian; Shen-Orr, Shai; Price, Jordan; Jarrell, Justin; Tse, Tiffany; Huang, Huang; Lund, Peder; Maecker, Holden T; Utz, Paul J; Dekker, Cornelia L; Koller, Daphne; Davis, Mark M

    2013-01-01

    Despite the importance of the immune system in many diseases, there are currently no objective benchmarks of immunological health. In an effort to identifying such markers, we used influenza vaccination in 30 young (20-30 years) and 59 older subjects (60 to >89 years) as models for strong and weak immune responses, respectively, and assayed their serological responses to influenza strains as well as a wide variety of other parameters, including gene expression, antibodies to hemagglutinin peptides, serum cytokines, cell subset phenotypes and in vitro cytokine stimulation. Using machine learning, we identified nine variables that predict the antibody response with 84% accuracy. Two of these variables are involved in apoptosis, which positively associated with the response to vaccination and was confirmed to be a contributor to vaccine responsiveness in mice. The identification of these biomarkers provides new insights into what immune features may be most important for immune health. PMID:23591775

  3. Analysis of intracellular cytokines using flowcytometry.

    PubMed

    Arora, Sunil K

    2002-01-01

    Characterization of T-cell clones and identification of functional subsets of the helper T-cells with polarized cytokine production is based on testing of cytokine expression. Several methods have been developed that allow cytokine expression to be measured like ELISA, RT-PCR, ELISPOT, ISH and flowcytometry. Among all these methods, monitoring of cytokine production using flowcytometric analysis has its own advantages and disadvantages. Multi-parametric characterization of cytokine production on single cell basis, without long-term culture and cloning along with high throughput of samples is main feature attached to flowcytometric analysis. The interpretation may be difficult at times due to change in the phenotype of the cells. Cells with similar surface phenotype but synthesizing different cytokines and having different functional characteristics can be analyzed with this technique. PMID:12815288

  4. Mendelian randomization studies of biomarkers and type 2 diabetes.

    PubMed

    Abbasi, Ali

    2015-12-01

    Many biomarkers are associated with type 2 diabetes (T2D) risk in epidemiological observations. The aim of this study was to identify and summarize current evidence for causal effects of biomarkers on T2D. A systematic literature search in PubMed and EMBASE (until April 2015) was done to identify Mendelian randomization studies that examined potential causal effects of biomarkers on T2D. To replicate the findings of identified studies, data from two large-scale, genome-wide association studies (GWAS) were used: DIAbetes Genetics Replication And Meta-analysis (DIAGRAMv3) for T2D and the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) for glycaemic traits. GWAS summary statistics were extracted for the same genetic variants (or proxy variants), which were used in the original Mendelian randomization studies. Of the 21 biomarkers (from 28 studies), ten have been reported to be causally associated with T2D in Mendelian randomization. Most biomarkers were investigated in a single cohort study or population. Of the ten biomarkers that were identified, nominally significant associations with T2D or glycaemic traits were reached for those genetic variants related to bilirubin, pro-B-type natriuretic peptide, delta-6 desaturase and dimethylglycine based on the summary data from DIAGRAMv3 or MAGIC. Several Mendelian randomization studies investigated the nature of associations of biomarkers with T2D. However, there were only a few biomarkers that may have causal effects on T2D. Further research is needed to broadly evaluate the causal effects of multiple biomarkers on T2D and glycaemic traits using data from large-scale cohorts or GWAS including many different genetic variants. PMID:26446360

  5. Cytokine-Modulating Strategies and Newer Cytokine Targets for Arthritis Therapy

    PubMed Central

    Venkatesha, Shivaprasad H.; Dudics, Steven; Acharya, Bodhraj; Moudgil, Kamal D.

    2014-01-01

    Cytokines are the key mediators of inflammation in the course of autoimmune arthritis and other immune-mediated diseases. Uncontrolled production of the pro-inflammatory cytokines such as interferon-γ (IFN-γ), tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and IL-17 can promote autoimmune pathology, whereas anti-inflammatory cytokines including IL-4, IL-10, and IL-27 can help control inflammation and tissue damage. The pro-inflammatory cytokines are the prime targets of the strategies to control rheumatoid arthritis (RA). For example, the neutralization of TNFα, either by engineered anti-cytokine antibodies or by soluble cytokine receptors as decoys, has proven successful in the treatment of RA. The activity of pro-inflammatory cytokines can also be downregulated either by using specific siRNA to inhibit the expression of a particular cytokine or by using small molecule inhibitors of cytokine signaling. Furthermore, the use of anti-inflammatory cytokines or cytokine antagonists delivered via gene therapy has proven to be an effective approach to regulate autoimmunity. Unexpectedly, under certain conditions, TNFα, IFN-γ, and few other cytokines can display anti-inflammatory activities. Increasing awareness of this phenomenon might help develop appropriate regimens to harness or avoid this effect. Furthermore, the relatively newer cytokines such as IL-32, IL-34 and IL-35 are being investigated for their potential role in the pathogenesis and treatment of arthritis. PMID:25561237

  6. Proteomic Biomarkers Panel: New Insights in Chronic Kidney Disease

    PubMed Central

    Codrici, Elena; Rusu, Elena; Zilisteanu, Diana; Albulescu, Radu; Anton, Gabriela

    2016-01-01

    Chronic kidney disease, despite being a “silent epidemic” disease, represents one of the main causes of mortality in general population, along with cardiovascular disease, which is the leading cause of poor prognosis for these patients. The specific objective of our study was to characterize the relationship between the inflammatory status, the bone disorders markers, and kidney failure in chronic kidney disease patient stages 2–4, in order to design a novel biomarker panel that improves early disease diagnosis and therapeutic response, thus being further integrated into clinical applications. A panel of proteomic biomarkers, assessed by xMAP array, which includes mediators of inflammation (IL-6, TNF-α) and mineral and bone disorder biomarkers (OPG, OPN, OCN, FGF-23, and Fetuin-A), was found to be more relevant than a single biomarker to detect early CKD stages. The association between inflammatory cytokines and bone disorders markers, IL-6, TNF-α, OPN, OPG, and FGF-23, reflects the severity of vascular changes in CKD and predicts disease progression. Proteomic xMAP analyses shed light on a new approach to clinical evaluation for CKD staging and prognosis.

  7. Proteomic Biomarkers Panel: New Insights in Chronic Kidney Disease

    PubMed Central

    Codrici, Elena; Rusu, Elena; Zilisteanu, Diana; Albulescu, Radu; Anton, Gabriela

    2016-01-01

    Chronic kidney disease, despite being a “silent epidemic” disease, represents one of the main causes of mortality in general population, along with cardiovascular disease, which is the leading cause of poor prognosis for these patients. The specific objective of our study was to characterize the relationship between the inflammatory status, the bone disorders markers, and kidney failure in chronic kidney disease patient stages 2–4, in order to design a novel biomarker panel that improves early disease diagnosis and therapeutic response, thus being further integrated into clinical applications. A panel of proteomic biomarkers, assessed by xMAP array, which includes mediators of inflammation (IL-6, TNF-α) and mineral and bone disorder biomarkers (OPG, OPN, OCN, FGF-23, and Fetuin-A), was found to be more relevant than a single biomarker to detect early CKD stages. The association between inflammatory cytokines and bone disorders markers, IL-6, TNF-α, OPN, OPG, and FGF-23, reflects the severity of vascular changes in CKD and predicts disease progression. Proteomic xMAP analyses shed light on a new approach to clinical evaluation for CKD staging and prognosis. PMID:27667892

  8. Cytokines and immune surveillance in humans

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1993-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. Among the parameters shown, by us and others, to be affected is the production of interferons. Interferons are a family of cytokines that are antiviral and play a major role in regulating immune responses that control resistance to infection. Alterations in interferon and other cytokine production and activity could result in changes in immunity and a possible compromise of host defenses against both opportunistic and external infections. The purpose of the present study is to further explore the effects of space flight on cytokines and cytokine-directed immunological function.

  9. Cancer biomarker discovery and validation

    PubMed Central

    Goossens, Nicolas; Nakagawa, Shigeki; Sun, Xiaochen; Hoshida, Yujin

    2015-01-01

    With the emergence of genomic profiling technologies and selective molecular targeted therapies, biomarkers play an increasingly important role in the clinical management of cancer patients. Single gene/protein or multi-gene “signature”-based assays have been introduced to measure specific molecular pathway deregulations that guide therapeutic decision-making as predictive biomarkers. Genome-based prognostic biomarkers are also available for several cancer types for potential incorporation into clinical prognostic staging systems or practice guidelines. However, there is still a large gap between initial biomarker discovery studies and their clinical translation due to the challenges in the process of cancer biomarker development. In this review we summarize the steps of biomarker development, highlight key issues in successful validation and implementation, and overview representative examples in the oncology field. We also discuss regulatory issues and future perspectives in the era of big data analysis and precision medicine. PMID:26213686

  10. Multiple biomarkers including cardiac troponins T and I measured by high-sensitivity assays, as predictors of long-term mortality in patients with chronic renal failure who underwent dialysis.

    PubMed

    Hickman, Peter E; McGill, Darryl; Potter, Julia M; Koerbin, Gus; Apple, Fred S; Talaulikar, Girish

    2015-06-01

    There is a high cardiac mortality in patients on long-term renal dialysis. No studies have reported long-term outcomes relating to both high-sensitivity cardiac troponin T (hs-cTnT) and high-sensitivity cardiac troponin I (hs-cTnI) in these patients. Patients who underwent long-term dialysis at the Canberra Hospital had blood samples collected for both cardiac and other biomarkers. Samples were stored at -80°C until analysis. Mortality data were collected at 5 years, and univariate and multivariate analyses were performed to identify which biomarkers were predictive of mortality at 5 years. After multivariate analysis, albumin, C-reactive protein (CRP), and hs-cTnT remained independently predictive of all-cause mortality, with hs-cTnT having the highest hazard ratio. If hs-cTnT was excluded from the analysis, then hs-cTnI was independently predictive of mortality. For hs-cTnT, for both genders, the ninety-ninth percentile, derived from a population with subjects with subclinical disease excluded, served as an excellent partition between survivors and nonsurvivors. Receiver-operating characteristic curve analysis for hs-cTnT had area under the curve of 0.798 and for hs-cTnI of 0.774. Kaplan-Meier curves for the aggregation of albumin, CRP, and hs-cTnT showed a stronger predictive power with receiver-operating characteristic area under the curve of 0.805. The addition of echocardiographic data in an analysis of all patients who had an echocardiogram for clinical reasons (n = 105) did not alter the final observations in this subgroup. In conclusion, hs-cTnT retains a superior predictive power in a dialysis-dependent population for identifying those at risk for death and when aggregated with albumin and CRP also has substantial additive value for identifying mortality risk in a renal-dialysis population.

  11. Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers.

    PubMed

    Liu, Rui; Wang, Xiangdong; Aihara, Kazuyuki; Chen, Luonan

    2014-05-01

    Many studies have been carried out for early diagnosis of complex diseases by finding accurate and robust biomarkers specific to respective diseases. In particular, recent rapid advance of high-throughput technologies provides unprecedented rich information to characterize various disease genotypes and phenotypes in a global and also dynamical manner, which significantly accelerates the study of biomarkers from both theoretical and clinical perspectives. Traditionally, molecular biomarkers that distinguish disease samples from normal samples are widely adopted in clinical practices due to their ease of data measurement. However, many of them suffer from low coverage and high false-positive rates or high false-negative rates, which seriously limit their further clinical applications. To overcome those difficulties, network biomarkers (or module biomarkers) attract much attention and also achieve better performance because a network (or subnetwork) is considered to be a more robust form to characterize diseases than individual molecules. But, both molecular biomarkers and network biomarkers mainly distinguish disease samples from normal samples, and they generally cannot ensure to identify predisease samples due to their static nature, thereby lacking ability to early diagnosis. Based on nonlinear dynamical theory and complex network theory, a new concept of dynamical network biomarkers (DNBs, or a dynamical network of biomarkers) has been developed, which is different from traditional static approaches, and the DNB is able to distinguish a predisease state from normal and disease states by even a small number of samples, and therefore has great potential to achieve "real" early diagnosis of complex diseases. In this paper, we comprehensively review the recent advances and developments on molecular biomarkers, network biomarkers, and DNBs in particular, focusing on the biomarkers for early diagnosis of complex diseases considering a small number of samples and high

  12. Impact of cytokine in type 1 narcolepsy: Role of pandemic H1N1 vaccination ?

    PubMed

    Lecendreux, Michel; Libri, Valentina; Jaussent, Isabelle; Mottez, Estelle; Lopez, Régis; Lavault, Sophie; Regnault, Armelle; Arnulf, Isabelle; Dauvilliers, Yves

    2015-06-01

    Recent advances in the identification of susceptibility genes and environmental exposures (pandemic influenza 2009 vaccination) provide strong support that narcolepsy type 1 is an immune-mediated disease. Considering the limited knowledge regarding the immune mechanisms involved in narcolepsy whether related to flu vaccination or not and the recent progresses in cytokine measurement technology, we assessed 30 cytokines, chemokines and growth factors using the Luminex technology in either peripheral (serum) or central (CSF) compartments in a large population of 90 children and adult patients with narcolepsy type 1 in comparison to 58 non-hypocretin deficient hypersomniacs and 41 healthy controls. Furthermore, we compared their levels in patients with narcolepsy whether exposed to pandemic flu vaccine or not, and analyzed the effect of age, duration of disease and symptom severity. Comparison for sera biomarkers between narcolepsy (n = 84, 54 males, median age: 15.5 years old) and healthy controls (n = 41, 13 males, median age: 20 years old) revealed an increased stimulation of the immune system with high release of several pro- and anti-inflammatory serum cytokines and growth factors with interferon-γ, CCL11, epidermal growth factor, and interleukin-2 receptor being independently associated with narcolepsy. Increased levels of interferon-γ, CCL11, and interleukin-12 were found when close to narcolepsy onset. After several adjustments, only one CSF biomarker differed between narcolepsy (n = 44, 26 males, median age: 15 years old) and non-hypocretin deficient hypersomnias (n = 57, 24 males, median age: 36 years old) with higher CCL 3 levels found in narcolepsy. Comparison for sera biomarkers between patients with narcolepsy who developed the disease post-pandemic flu vaccination (n = 36) to those without vaccination (n = 48) revealed an increased stimulation of the immune system with high release of three cytokines, regulated upon activation normal T-cell expressed

  13. Impact of cytokine in type 1 narcolepsy: Role of pandemic H1N1 vaccination ?

    PubMed

    Lecendreux, Michel; Libri, Valentina; Jaussent, Isabelle; Mottez, Estelle; Lopez, Régis; Lavault, Sophie; Regnault, Armelle; Arnulf, Isabelle; Dauvilliers, Yves

    2015-06-01

    Recent advances in the identification of susceptibility genes and environmental exposures (pandemic influenza 2009 vaccination) provide strong support that narcolepsy type 1 is an immune-mediated disease. Considering the limited knowledge regarding the immune mechanisms involved in narcolepsy whether related to flu vaccination or not and the recent progresses in cytokine measurement technology, we assessed 30 cytokines, chemokines and growth factors using the Luminex technology in either peripheral (serum) or central (CSF) compartments in a large population of 90 children and adult patients with narcolepsy type 1 in comparison to 58 non-hypocretin deficient hypersomniacs and 41 healthy controls. Furthermore, we compared their levels in patients with narcolepsy whether exposed to pandemic flu vaccine or not, and analyzed the effect of age, duration of disease and symptom severity. Comparison for sera biomarkers between narcolepsy (n = 84, 54 males, median age: 15.5 years old) and healthy controls (n = 41, 13 males, median age: 20 years old) revealed an increased stimulation of the immune system with high release of several pro- and anti-inflammatory serum cytokines and growth factors with interferon-γ, CCL11, epidermal growth factor, and interleukin-2 receptor being independently associated with narcolepsy. Increased levels of interferon-γ, CCL11, and interleukin-12 were found when close to narcolepsy onset. After several adjustments, only one CSF biomarker differed between narcolepsy (n = 44, 26 males, median age: 15 years old) and non-hypocretin deficient hypersomnias (n = 57, 24 males, median age: 36 years old) with higher CCL 3 levels found in narcolepsy. Comparison for sera biomarkers between patients with narcolepsy who developed the disease post-pandemic flu vaccination (n = 36) to those without vaccination (n = 48) revealed an increased stimulation of the immune system with high release of three cytokines, regulated upon activation normal T-cell expressed

  14. Advances in biomarkers for the early diagnosis of prostate cancer.

    PubMed

    Cao, Da-Long; Yao, Xu-Dong

    2010-02-01

    More and more studies have revealed that the level of serum prostate specific antigen(PSA) has little value for early diagnosis of prostate cancer (PCa). For example, negative prostate biopsies are as high as 70%-80% for patients with serum PSA ranging between 4 ng/mL and 10 ng/mL. However, the negative results cannot exclude the existence of cancer. In the studies of the early diagnosis of PCa, investigators focused on seeking biomarkers that have higher sensitivity and specificity. Recently, PSA derivatives, HPC1, PCA3, TMPRSS2: ETS, GSTP1, AMACR, GOLPH2, EPCA, sarcosine, and the combination of multiple biomarkers are widely discussed. In this article, we have reviewed their recent development and the prospective value of the combination of multiple biomarkers, which may be helpful for the early diagnosis and the prognostic monitoring of patients with PCa.

  15. Antibody microarray profiling of osteosarcoma cell serum for identifying potential biomarkers.

    PubMed

    Zhu, Zi-Qiang; Tang, Jin-Shan; Gang, Duan; Wang, Ming-Xing; Wang, Jian-Qiang; Lei, Zhou; Feng, Zhou; Fang, Ming-Liang; Yan, Lin

    2015-07-01

    The aim of the present study was to identify biomarkers in osteosarcoma (OS) cell serum by antibody microarray profiling, which may be used for OS diagnosis and therapy. An antibody microarray was used to detect the expression levels of cytokines in serum samples from 20 patients with OS and 20 healthy individuals. Significantly expressed cytokines in OS serum were selected when P<0.05 and fold change >2. An enzyme-linked immunosorbent assay (ELISA) was used to validate the antibody microarray results. Finally, classification accuracy was calculated by cluster analysis. Twenty one cytokines were significantly upregulated in OS cell serum samples compared with control samples. Expression of interleukin-6, monocyte chemoattractant protein-1, tumor growth factor-β, growth-related oncogene, hepatocyte growth factor, chemokine ligand 16, Endoglin, matrix metalloproteinase-9 and platelet-derived growth factor-AA was validated by ELISAs. OS serum samples and control samples were distinguished by significantly expressed cytokines with an accuracy of 95%. The results demonstrated that expressed cytokines identified by antibody microarray may be used as biomarkers for OS diagnosis and therapy.

  16. Antibody microarray profiling of osteosarcoma cell serum for identifying potential biomarkers.

    PubMed

    Zhu, Zi-Qiang; Tang, Jin-Shan; Gang, Duan; Wang, Ming-Xing; Wang, Jian-Qiang; Lei, Zhou; Feng, Zhou; Fang, Ming-Liang; Yan, Lin

    2015-07-01

    The aim of the present study was to identify biomarkers in osteosarcoma (OS) cell serum by antibody microarray profiling, which may be used for OS diagnosis and therapy. An antibody microarray was used to detect the expression levels of cytokines in serum samples from 20 patients with OS and 20 healthy individuals. Significantly expressed cytokines in OS serum were selected when P<0.05 and fold change >2. An enzyme-linked immunosorbent assay (ELISA) was used to validate the antibody microarray results. Finally, classification accuracy was calculated by cluster analysis. Twenty one cytokines were significantly upregulated in OS cell serum samples compared with control samples. Expression of interleukin-6, monocyte chemoattractant protein-1, tumor growth factor-β, growth-related oncogene, hepatocyte growth factor, chemokine ligand 16, Endoglin, matrix metalloproteinase-9 and platelet-derived growth factor-AA was validated by ELISAs. OS serum samples and control samples were distinguished by significantly expressed cytokines with an accuracy of 95%. The results demonstrated that expressed cytokines identified by antibody microarray may be used as biomarkers for OS diagnosis and therapy. PMID:25815525

  17. Biomarkers in Prostate Cancer Epidemiology

    PubMed Central

    Verma, Mukesh; Patel, Payal; Verma, Mudit

    2011-01-01

    Understanding the etiology of a disease such as prostate cancer may help in identifying populations at high risk, timely intervention of the disease, and proper treatment. Biomarkers, along with exposure history and clinical data, are useful tools to achieve these goals. Individual risk and population incidence of prostate cancer result from the intervention of genetic susceptibility and exposure. Biochemical, epigenetic, genetic, and imaging biomarkers are used to identify people at high risk for developing prostate cancer. In cancer epidemiology, epigenetic biomarkers offer advantages over other types of biomarkers because they are expressed against a person's genetic background and environmental exposure, and because abnormal events occur early in cancer development, which includes several epigenetic alterations in cancer cells. This article describes different biomarkers that have potential use in studying the epidemiology of prostate cancer. We also discuss the characteristics of an ideal biomarker for prostate cancer, and technologies utilized for biomarker assays. Among epigenetic biomarkers, most reports indicate GSTP1 hypermethylation as the diagnostic marker for prostate cancer; however, NKX2-5, CLSTN1, SPOCK2, SLC16A12, DPYS, and NSE1 also have been reported to be regulated by methylation mechanisms in prostate cancer. Current challenges in utilization of biomarkers in prostate cancer diagnosis and epidemiologic studies and potential solutions also are discussed. PMID:24213111

  18. Biomarker Identification Using Text Mining

    PubMed Central

    Li, Hui; Liu, Chunmei

    2012-01-01

    Identifying molecular biomarkers has become one of the important tasks for scientists to assess the different phenotypic states of cells or organisms correlated to the genotypes of diseases from large-scale biological data. In this paper, we proposed a text-mining-based method to discover biomarkers from PubMed. First, we construct a database based on a dictionary, and then we used a finite state machine to identify the biomarkers. Our method of text mining provides a highly reliable approach to discover the biomarkers in the PubMed database. PMID:23197989

  19. Cytokine response to vitamin E supplementation is dependent on pre-supplementation cytokine levels.

    PubMed

    Belisle, Sarah E; Leka, Lynette S; Dallal, Gerard E; Jacques, Paul F; Delgado-Lista, Javier; Ordovas, Jose M; Meydani, Simin Nikbin

    2008-01-01

    Vitamin E supplementation has been suggested to improve immune response in the aged in part by altering cytokine production. However, there is not a consensus regarding the effect of supplemental vitamin E on cytokine production in humans. There is evidence that baseline immune health can affect immune response to supplemental vitamin E in the elderly. Thus, the effect of vitamin E on cytokines may depend on their pre-supplementation cytokine response. Using data from a vitamin E intervention in elderly nursing home residents, we examined if the effect of vitamin E on ex vivo cytokine production of IL-1 beta, IL-6, TNF-alpha, and IFN-gamma depended on baseline cytokine production. We observed that the effect of vitamin E supplementation on cytokine production depended on pre-supplementation production of the respective cytokines. The interactions between vitamin E and baseline cytokine production were not explained by covariates known to impact cytokine production. Our results offer evidence that baseline cytokine production should be considered in studies that examine the effect of supplemental vitamin E on immune and inflammatory responses. Our results could have implications in designing clinical trials to determine the impact of vitamin E on conditions in which cytokines are implicated such as infections and atherosclerotic disease.

  20. Cytokine response to vitamin E supplementation is dependent on pre-supplementation cytokine levels

    PubMed Central

    Belisle, Sarah E.; Leka, Lynette S.; Dallal, Gerard E.; Jacques, Paul F.; Delgado-Lista, Javier; Ordovas, Jose M.; Meydani, Simin Nikbin

    2009-01-01

    Vitamin E supplementation has been suggested to improve immune response in the aged in part by altering cytokine production. However, there is not a consensus regarding the effect of supplemental vitamin E on cytokine production in humans. There is evidence that baseline immune health can affect immune response to supplemental vitamin E in the elderly. Thus, the effect of vitamin E on cytokines may depend on their pre-supplementation cytokine response. Using data from a vitamin E intervention in elderly nursing home residents, we examined if the effect of vitamin E on ex vivo cytokine production of IL-1β, IL-6, TNF-α, and IFN-γ depended on baseline cytokine production. . We observed that the effect of vitamin E supplementation on cytokine production depended on pre-supplementation production of the respective cytokines. The interactions between vitamin E and baseline cytokine production were not explained covariates known to impact cytokine production. Our results offer evidence that baseline cytokine production should be considered in studies that examine the effect of supplemental vitamin E on immune and inflammatory responses. Our results could have implications in designing clinical trials to determine the impact of vitamin E on conditions in which cytokines are implicated such as infections and atherosclerotic disease. PMID:19478423

  1. Analysis of septic biomarker patterns: prognostic value in predicting septic state.

    PubMed

    Carlyn, Cynthia J; Andersen, Nancy J; Baltch, Aldona L; Smith, Raymond; Reilly, Andrew A; Lawrence, David A

    2015-11-01

    Patients with infection, sepsis, severe sepsis, or septic shock were compared to each other and to healthy controls with regard to serum levels of biomarkers and clinical symptoms. Of the 15 biomarkers assayed, 9 were detectable in patients, and 4, in controls. Both proinflammatory and anti-inflammatory cytokines were detected in the patients. No single biomarker could differentiate the 3 septic levels of severity from each other; however, interleukin (IL) 1 receptor antagonist (IL-1ra) had the best sensitivity and specificity for differentiating sepsis and severe sepsis from septic shock. IL-6 was the only cytokine able to differentiate infected patients without signs of sepsis from those with sepsis. Although IL-1ra, IL-6, IL-8, and monocyte chemoattractant protein 1 could differentiate infection, sepsis, and severe sepsis from septic shock, the biomarkers could not differentiate sepsis from severe sepsis. The top scoring pair algorithm with clinical and biomarker analyses was able to correctly diagnose those with sepsis who will progress to a more severe state.

  2. Associations among Inflammatory Biomarkers in the Circulating, Plasmatic, Salivary and Intraluminal Anatomical Compartments in Apparently Healthy Preschool Children from the Western Highlands of Guatemala

    PubMed Central

    Soto-Méndez, María José; Romero-Abal, María Eugenia; Aguilera, Concepción María; Rico, María Cruz; Solomons, Noel W.; Schümann, Klaus; Gil, Angel

    2015-01-01

    Background Undernutrition and inflammation are related in many ways; for instance, non-hygienic environments are associated with both poor growth and immunostimulation in children. Objective To describe any existing interaction among different inflammation biomarkers measured in the distinct anatomical compartments of whole blood, feces, plasma and saliva. Methods In this descriptive, cross-sectional study, samples of whole blood, feces, plasma and saliva were collected on the 8th and last week of observation among 87 attendees (42 girls and 45 boys) of 3 daycare centers offering a common 40-day rotating menu in Guatemala’s Western Highlands. Analyses included white blood cell count (WBC), fecal calprotectin, and plasmatic and salivary cytokines including IL-1B, IL-6, IL-8, IL-10 and TNF-α. Associations were assessed using Spearman rank-order and goodness-of-fit correlations, as indicated, followed by backwards-elimination multiple regression analyses to determine predictor variables for IL-10 in both anatomical compartments. Results Of a total of 66 cross-tabulations in the Spearman hemi-matrix, 22 (33%) were significantly associated. All 10 paired associations among the salivary cytokines had a significant r value, whereas 7 of 10 possible associations among plasma cytokines were significant. Associations across anatomical compartments, however, were rarely significant. IL-10 in both biological fluids were higher than corresponding reference values. When a multiple regression model was run in order to determine independent predictors for IL-10 in each anatomical compartment separately, IL-6, IL-8 and TNF-α emerged as predictors in plasma (r2 = 0.514) and IL-1B, IL-8 and TNF-α remained as independent predictors in saliva (r2 = 0.762). Significant cross-interactions were seen with WBC, but not with fecal calprotectin. Conclusion Interactions ranged from robust within the same anatomical compartment to limited to nil across distinct anatomical compartments. The

  3. Chiral Biomarkers in Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  4. Estimating covariate-adjusted measures of diagnostic accuracy based on pooled biomarker assessments.

    PubMed

    McMahan, Christopher S; McLain, Alexander C; Gallagher, Colin M; Schisterman, Enrique F

    2016-07-01

    There is a need for epidemiological and medical researchers to identify new biomarkers (biological markers) that are useful in determining exposure levels and/or for the purposes of disease detection. Often this process is stunted by high testing costs associated with evaluating new biomarkers. Traditionally, biomarker assessments are individually tested within a target population. Pooling has been proposed to help alleviate the testing costs, where pools are formed by combining several individual specimens. Methods for using pooled biomarker assessments to estimate discriminatory ability have been developed. However, all these procedures have failed to acknowledge confounding factors. In this paper, we propose a regression methodology based on pooled biomarker measurements that allow the assessment of the discriminatory ability of a biomarker of interest. In particular, we develop covariate-adjusted estimators of the receiver-operating characteristic curve, the area under the curve, and Youden's index. We establish the asymptotic properties of these estimators and develop inferential techniques that allow one to assess whether a biomarker is a good discriminator between cases and controls, while controlling for confounders. The finite sample performance of the proposed methodology is illustrated through simulation. We apply our methods to analyze myocardial infarction (MI) data, with the goal of determining whether the pro-inflammatory cytokine interleukin-6 is a good predictor of MI after controlling for the subjects' cholesterol levels. PMID:26927583

  5. Biomarkers in Cervical Cancer

    PubMed Central

    Yim, Eun-Kyoung; Park, Jong-Sup

    2006-01-01

    Cervical cancer, a potentially preventable disease, remains the second most common malignancy in women worldwide. Human papillomavirus (HPV) is the single most important etiological agent in cervical cancer, contributing to neoplastic progression through the action of viral oncoproteins, mainly E6 and E7. Cervical screening programs using Pap smear testing have dramatically improved cervical cancer incidence and reduced deaths, but cervical cancer still remains a global health burden. The biomarker discovery for accurate detection and diagnosis of cervical carcinoma and its malignant precursors (collectively referred to as high-grade cervical disease) represents one of the current challenges in clinical medicine and cytopathology. PMID:19690652

  6. Cytokine Regulation of Metastasis and Tumorigenicity.

    PubMed

    Yao, M; Brummer, G; Acevedo, D; Cheng, N

    2016-01-01

    The human body combats infection and promotes wound healing through the remarkable process of inflammation. Inflammation is characterized by the recruitment of stromal cell activity including recruitment of immune cells and induction of angiogenesis. These cellular processes are regulated by a class of soluble molecules called cytokines. Based on function, cell target, and structure, cytokines are subdivided into several classes including: interleukins, chemokines, and lymphokines. While cytokines regulate normal physiological processes, chronic deregulation of cytokine expression and activity contributes to cancer in many ways. Gene polymorphisms of all types of cytokines are associated with risk of disease development. Deregulation RNA and protein expression of interleukins, chemokines, and lymphokines have been detected in many solid tumors and hematopoetic malignancies, correlating with poor patient prognosis. The current body of literature suggests that in some tumor types, interleukins and chemokines work against the human body by signaling to cancer cells and remodeling the local microenvironment to support the growth, survival, and invasion of primary tumors and enhance metastatic colonization. Some lymphokines are downregulated to suppress tumor progression by enhancing cytotoxic T cell activity and inhibiting tumor cell survival. In this review, we will describe the structure/function of several cytokine families and review our current understanding on the roles and mechanisms of cytokines in tumor progression. In addition, we will also discuss strategies for exploiting the expression and activity of cytokines in therapeutic intervention. PMID:27613135

  7. Compartmentalized Cytokine Responses in Hidradenitis Suppurativa

    PubMed Central

    Savva, Athina; Kersten, Brigit; Pistiki, Aikaterini; van de Veerdonk, Frank L.; Netea, Mihai G.; van der Meer, Jos W.; Giamarellos-Bourboulis, Evangelos J.

    2015-01-01

    Background Favorable treatment outcomes with TNF blockade led us to explore cytokine responses in hidradenitis suppurativa (HS). Methods Blood monocytes of 120 patients and 24 healthy volunteers were subtyped by flow cytometry. Isolated blood mononuclear cells (PBMCs) were stimulated for cytokine production; this was repeated in 13 severe patients during treatment with etanercept. Cytokines in pus were measured. Results CD14brightCD16dim inflammatory monocytes and patrolling monocytes were increased in Hurley III patients. Cytokine production by stimulated PBMCs was low compared to controls but the cytokine gene copies did not differ, indicating post-translational inhibition. The low production of IL-17 was restored, when cells were incubated with adalimumab. In pus, high concentrations of pro-inflammatory cytokines were detected. Based on the patterns, six different cytokine profiles were discerned, which are potentially relevant for the choice of treatment. Clinical improvement with etanercept was predicted by increased production of IL-1β and IL-17 by PBMCs at week 8. Conclusions Findings indicate compartmentalized cytokine expression in HS; high in pus but suppressed in PBMCs. This is modulated through blockade of TNF. PMID:26091259

  8. [Multiple myeloma].

    PubMed

    Abe, Masahiro; Miki, Hirokazu; Nakamura, Shingen

    2016-03-01

    Owing to the positive clinical benefits obtained with new agents, complete remission (CR) can be used as a surrogate for overall survival, and should be achieved. Although multiple myeloma is a heterogeneous disease in terms of myeloma cell- and patient-related risk factors, patients should receive the most effective combination therapy based on proteasome inhibitors and/or immunomodulatory drugs (IMiDs) as backbone medication irrespective of the risks encountered in the setting of induction therapy ("one-size-fits-all" therapy), followed by consolidation/maintenance therapy to achieve CR with the ultimate goal of extended survival. Myeloma-defining biomarkers have been established to identify high-risk smoldering myeloma requiring treatment. The development of salvage treatments yielding better outcomes for relapsed/refractory myeloma is urgently needed. Upcoming novel molecular targeting agents with different modes of action and immunotherapeutic agents will be integrated into myeloma treatment regimens with a great therapeutic impact, and further evolution of the treatment paradigm for multiple myeloma is eagerly anticipated. PMID:27076236

  9. Expression of Early Growth Response Gene-2 and Regulated Cytokines Correlates with Recovery from Guillain-Barré Syndrome.

    PubMed

    Doncel-Pérez, Ernesto; Mateos-Hernández, Lourdes; Pareja, Eduardo; García-Forcada, Ángel; Villar, Margarita; Tobes, Raquel; Romero Ganuza, Francisco; Vila Del Sol, Virginia; Ramos, Ricardo; Fernández de Mera, Isabel G; de la Fuente, José

    2016-02-01

    Guillain-Barré syndrome (GBS) is an immune-mediated peripheral neuropathy. The goal of this research was the identification of biomarkers associated with recovery from GBS. In this study, we compared the transcriptome of PBMCs from a GBS patient and her healthy twin to discover possible correlates of disease progression and recovery. The study was then extended using GBS and spinal cord injury unrelated patients with similar medications and healthy individuals. The early growth response gene-2 (EGR2) was upregulated in GBS patients during disease recovery. The results provided evidence for the implication of EGR2 in GBS and suggested a role for EGR2 in the regulation of IL-17, IL-22, IL-28A, and TNF-β cytokines in GBS patients. These results identified biomarkers associated with GBS recovery and suggested that EGR2 overexpression has a pivotal role in the downregulation of cytokines implicated in the pathophysiology of this acute neuropathy. PMID:26718337

  10. Toxicogenomic identification of biomarkers of acute respiratory exposure sensitizing agents

    EPA Science Inventory

    Allergy induction requires multiple exposures to an agent. Therefore the development of high-throughput or in vitro assays for effective screening of potential sensitizers will require the identification of biomarkers. The goal of this preliminary study was to identify potential ...

  11. Time course of cytokine levels in sepsis.

    PubMed

    Thijs, L G; Hack, C E

    1995-11-01

    In severe sepsis, a network of proinflammatory cytokines (TNF, IL-1 beta, IL-6, IL-8) is activated and blood levels of these cytokines are elevated, albeit inconsistently and with large individual variations. In addition, elevated blood levels of anti-inflammatory cytokines (IL-10), as well as of soluble cytokine receptors (sTNF-RI and II, IL-1ra), have been found. They seem to have a regulatory function in the host response. Levels of TNF and IL-6 are usually highest at the time of admission, whereas the time course of IL-1 beta levels (when detectable) can vary considerably. Limited data on IL-8 levels suggest that they may remain elevated for longer periods. Elevated levels of sTNFR and IL-1ra may also persist for a prolonged period of time. The pathogenetic significance of these observations is still unclear, but persistingly high levels of proinflammatory cytokines may be associated with organ failure and mortality.

  12. Cytokines in juvenile rheumatoid arthritis (JRA).

    PubMed

    Mangge, H; Schauenstein, K

    1998-06-01

    Juvenile rheumatoid arthritis (JRA), unlike rheumatoid arthritis of adulthood (RA), is a heterogenous disease comprising at least five subtypes that differ in clinical course and prognosis, and require different therapeutical approaches. As compared to RA, the production of local and systemic cytokines in JRA have not yet been as extensively investigated. In this article we review the available literature on cytokine expression in serum and synovial fluid in all five different subtypes of JRA. Even though the data are still fragmentary, the evidence so far suggests that the determination of serum cytokines yields relevant information as to clinical subtype and inflammatory activity of the disease. Furthermore, the cytokine data suggest that the pathogenesis of JRA may even by more heterogenous than defined by the clinical subtypes. Finally, future directions of research in this area are proposed, and-based on the latest results-arguments for (anti)cytokine therapies in JRA are critically discussed.

  13. Interactions between Autophagy and Inhibitory Cytokines.

    PubMed

    Wu, Tian-Tian; Li, Wei-Min; Yao, Yong-Ming

    2016-01-01

    Autophagy is a degradative pathway that plays an essential role in maintaining cellular homeostasis. Most early studies of autophagy focused on its involvement in age-associated degeneration and nutrient deprivation. However, the immunological functions of autophagy have become more widely studied in recent years. Autophagy has been shown to be an intrinsic cellular defense mechanism in the innate and adaptive immune responses. Cytokines belong to a broad and loose category of proteins and are crucial for innate and adaptive immunity. Inhibitory cytokines have evolved to permit tolerance to self while also contributing to the eradication of invading pathogens. Interactions between inhibitory cytokines and autophagy have recently been reported, revealing a novel mechanism by which autophagy controls the immune response. In this review, we discuss interactions between autophagy and the regulatory cytokines IL-10, transforming growth factor-β, and IL-27. We also mention possible interactions between two newly discovered cytokines, IL-35 and IL-37, and autophagy.

  14. Interactions between Autophagy and Inhibitory Cytokines

    PubMed Central

    Wu, Tian-tian; Li, Wei-Min; Yao, Yong-Ming

    2016-01-01

    Autophagy is a degradative pathway that plays an essential role in maintaining cellular homeostasis. Most early studies of autophagy focused on its involvement in age-associated degeneration and nutrient deprivation. However, the immunological functions of autophagy have become more widely studied in recent years. Autophagy has been shown to be an intrinsic cellular defense mechanism in the innate and adaptive immune responses. Cytokines belong to a broad and loose category of proteins and are crucial for innate and adaptive immunity. Inhibitory cytokines have evolved to permit tolerance to self while also contributing to the eradication of invading pathogens. Interactions between inhibitory cytokines and autophagy have recently been reported, revealing a novel mechanism by which autophagy controls the immune response. In this review, we discuss interactions between autophagy and the regulatory cytokines IL-10, transforming growth factor-β, and IL-27. We also mention possible interactions between two newly discovered cytokines, IL-35 and IL-37, and autophagy. PMID:27313501

  15. Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca's area volume.

    PubMed

    Fillman, S G; Weickert, T W; Lenroot, R K; Catts, S V; Bruggemann, J M; Catts, V S; Weickert, C S

    2016-08-01

    Previous studies on schizophrenia have detected elevated cytokines in both brain and blood, suggesting neuroinflammation may contribute to the pathophysiology in some cases. We aimed to determine the extent to which elevated peripheral cytokine messenger RNA (mRNA) expression: (1) characterizes a subgroup of people with schizophrenia and (2) shows a relationship to cognition, brain volume and/or symptoms. Forty-three outpatients with schizophrenia or schizoaffective disorder and matched healthy controls were assessed for peripheral cytokine mRNAs (interleukin (IL)-1β, IL-2, IL-6, IL-8 and IL-18), intelligence quotient, memory and verbal fluency, symptom severity and cortical brain volumes integral to language (that is, Broca's and Wernicke's areas). IL-1β mRNA levels were 28% increased in schizophrenia compared with controls (t(82)=2.64, P<0.01). Using a two-step clustering procedure, we identified a subgroup of people displaying relatively elevated cytokine mRNA levels (17/43 people with schizophrenia and 9/42 controls). Individuals with schizophrenia in the elevated cytokine subgroup performed significantly worse than the low-cytokine subgroup on verbal fluency (F(1,40)=15.7, P<0.001). There was a 17% volume reduction of the left pars opercularis (POp) (Broca's area) in patients with elevated cytokines compared with patients with lower cytokines (F(1,29)=9.41, P=0.005). Negative linear relationships between IL-1β mRNA levels and both verbal fluency and left POp volume were found in schizophrenia. This study is among the first to link blood biomarkers of inflammation with both cognitive deficits and brain volume reductions in people with schizophrenia, supporting that those with elevated cytokines represent a neurobiologically meaningful subgroup. These findings raise the possibility that targeted anti-inflammatory treatments may ameliorate cognitive and brain morphological abnormalities in some people with schizophrenia. PMID:26194183

  16. Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca's area volume

    PubMed Central

    Fillman, S G; Weickert, T W; Lenroot, R K; Catts, S V; Bruggemann, J M; Catts, V S; Weickert, C S

    2016-01-01

    Previous studies on schizophrenia have detected elevated cytokines in both brain and blood, suggesting neuroinflammation may contribute to the pathophysiology in some cases. We aimed to determine the extent to which elevated peripheral cytokine messenger RNA (mRNA) expression: (1) characterizes a subgroup of people with schizophrenia and (2) shows a relationship to cognition, brain volume and/or symptoms. Forty-three outpatients with schizophrenia or schizoaffective disorder and matched healthy controls were assessed for peripheral cytokine mRNAs (interleukin (IL)-1β, IL-2, IL-6, IL-8 and IL-18), intelligence quotient, memory and verbal fluency, symptom severity and cortical brain volumes integral to language (that is, Broca's and Wernicke's areas). IL-1β mRNA levels were 28% increased in schizophrenia compared with controls (t(82)=2.64, P<0.01). Using a two-step clustering procedure, we identified a subgroup of people displaying relatively elevated cytokine mRNA levels (17/43 people with schizophrenia and 9/42 controls). Individuals with schizophrenia in the elevated cytokine subgroup performed significantly worse than the low-cytokine subgroup on verbal fluency (F(1,40)=15.7, P<0.001). There was a 17% volume reduction of the left pars opercularis (POp) (Broca's area) in patients with elevated cytokines compared with patients with lower cytokines (F(1,29)=9.41, P=0.005). Negative linear relationships between IL-1β mRNA levels and both verbal fluency and left POp volume were found in schizophrenia. This study is among the first to link blood biomarkers of inflammation with both cognitive deficits and brain volume reductions in people with schizophrenia, supporting that those with elevated cytokines represent a neurobiologically meaningful subgroup. These findings raise the possibility that targeted anti-inflammatory treatments may ameliorate cognitive and brain morphological abnormalities in some people with schizophrenia. PMID:26194183

  17. The Role and Predictive Value of Cytokines in Atherosclerosis and Coronary Artery Disease.

    PubMed

    Tousoulis, Dimitris; Economou, Evangelos K; Oikonomou, Evangelos; Papageorgiou, Nikolaos; Siasos, Gerasimos; Latsios, George; Kokkou, Eleni; Mourouzis, Kostantinos; Papaioannou, Spyridon; Deftereos, Spyridon; Cleman, Michael W; Lymberi, Maria; Gennimata, Vasiliki; Stefanadis, Christodoulos

    2015-01-01

    Atherosclerosis is currently regarded as a chronic inflammatory disease that is mediated by several types of cells and molecules. Emphasis has been placed on the role of cytokines and the way they act and interact to initiate and sustain inflammation in the microenvironment of an atherosclerotic plaque. Cytokines are invariably expressed by all cells involved in the pathogenesis of atherosclerosis, act on a variety of targets exerting multiple effects and are largely responsible for the crosstalk among endothelial, smooth muscle cells, leukocytes and other vascular residing cells. In the present paper our aim is to review current information on the role of the most commonly discussed cytokines in the process of atherogenesis and to discuss the prognostic significance of these cytokines in atherosclerosis and coronary artery disease. PMID:25876746

  18. Human cervicovaginal fluid biomarkers to predict term and preterm labor

    PubMed Central

    Heng, Yujing J.; Liong, Stella; Permezel, Michael; Rice, Gregory E.; Di Quinzio, Megan K. W.; Georgiou, Harry M.

    2015-01-01

    Preterm birth (PTB; birth before 37 completed weeks of gestation) remains the major cause of neonatal morbidity and mortality. The current generation of biomarkers predictive of PTB have limited utility. In pregnancy, the human cervicovaginal fluid (CVF) proteome is a reflection of the local biochemical milieu and is influenced by the physical changes occurring in the vagina, cervix and adjacent overlying fetal membranes. Term and preterm labor (PTL) share common pathways of cervical ripening, myometrial activation and fetal membranes rupture leading to birth. We therefore hypothesize that CVF biomarkers predictive of labor may be similar in both the term and preterm labor setting. In this review, we summarize some of the existing published literature as well as our team's breadth of work utilizing the CVF for the discovery and validation of putative CVF biomarkers predictive of human labor. Our team established an efficient method for collecting serial CVF samples for optimal 2-dimensional gel electrophoresis resolution and analysis. We first embarked on CVF biomarker discovery for the prediction of spontaneous onset of term labor using 2D-electrophoresis and solution array multiple analyte profiling. 2D-electrophoretic analyses were subsequently performed on CVF samples associated with PTB. Several proteins have been successfully validated and demonstrate that these biomarkers are associated with term and PTL and may be predictive of both term and PTL. In addition, the measurement of these putative biomarkers was found to be robust to the influences of vaginal microflora and/or semen. The future development of a multiple biomarker bed-side test would help improve the prediction of PTB and the clinical management of patients. PMID:26029118

  19. Lactate as a Biomarker for Sleep

    PubMed Central

    Naylor, Erik; Aillon, Daniel V.; Barrett, Brian S.; Wilson, George S.; Johnson, David A.; Johnson, Donna A.; Harmon, Hans P.; Gabbert, Seth; Petillo, Peter A.

    2012-01-01

    Study Objectives: An ideal biomarker for sleep should change rapidly with sleep onset, remain at a detectably differential level throughout the sleep period, and exhibit a rapid change with waking. Currently, no molecular marker has been identified that exhibits all three properties. This study examined three substances (lactate, glucose, and glutamate) for suitability as a sleep biomarker. Design: Using amperometric biosensor technology in conjunction with electroencephalograph (EEG) and electromyograph (EMG) monitoring, extracellular concentrations of lactate and glucose (Cohort 1) as well as lactate and glutamate (Cohort 2) were recorded over multiple sleep/wake cycles. Patients or Participants: There were 12 C57Bl/6J male mice (3-5 mo old). Interventions: Sleep and waking transitions were identified using EEG recordings. Extracellular concentrations of lactate, glucose, and glutamate were evaluated before and during transition events as well as during extended sleep and during a 6-h sleep deprivation period. Measurements and Results: Rapid and sustained increases in cortical lactate concentration (approximately 15 μM/min) were immediately observed upon waking and during rapid eye movement sleep. Elevated lactate concentration was also maintained throughout a 6-h period of continuous waking. A persistent and sustained decline in lactate concentration was measured during nonrapid eye movement sleep. Glutamate exhibited similar patterns, but with a much slower rise and decline (approximately 0.03 μM/min). Glucose concentration changes did not demonstrate a clear correlation with either sleep or wake. Conclusions: These findings indicate that extracellular lactate concentration is a reliable sleep/wake biomarker and can be used independently of the EEG signal. Citation: Naylor E; Aillon DV; Barrett BS; Wilson GS; Johnson DA; Johnson DA; Harmon HP; Gabbert S; Petillo PA. Lactate as a biomarker for sleep. SLEEP 2012;35(9):1209-1222. PMID:22942499

  20. Novel biomarkers of mercury-induced autoimmune dysfunction: a cross-sectional study in Amazonian Brazil.

    PubMed

    Motts, Jonathan A; Shirley, Devon L; Silbergeld, Ellen K; Nyland, Jennifer F

    2014-07-01

    exposure was associated with increased titers of several autoantibodies in serum including anti-GSTA1. These proteins play a wide variety of roles, including as antioxidants, in the regulation of pro- and anti-inflammatory cytokines, as well as danger and oxidative stress signaling. Dysregulation of these proteins and pathways is believed to play a role in autoimmune diseases such as rheumatoid arthritis, Sjögren׳s syndrome, and multiple sclerosis. Taken together, these results suggest that mercury exposure can induce complex autoimmune dysfunction and the immunotoxic effects of this dysfunction may be measured by serum titers to autoantibodies such as anti-GSTA1. PMID:24742722

  1. Novel biomarkers of mercury-induced autoimmune dysfunction: a Cross-sectional study in Amazonian Brazil

    PubMed Central

    Motts, Jonathan A.; Shirley, Devon L.; Silbergeld, Ellen K.; Nyland, Jennifer F.

    2014-01-01

    ). Mercury exposure was associated with increased titers of several autoantibodies in serum including anti-GSTA1. These proteins play a wide variety of roles, including as antioxidants, in the regulation of pro- and anti-inflammatory cytokines, as well as danger and oxidative stress signaling. Dysregulation of these proteins and pathways is believed to play a role in autoimmune diseases such as rheumatoid arthritis, Sjögren’s syndrome, and multiple sclerosis. Taken together, these results suggest that mercury exposure can induce complex autoimmune dysfunction and the immunotoxic effects of this dysfunction may be measured by serum titers to autoantibodies such as anti-GSTA1. PMID:24742722

  2. Urinary Biomarkers of Oxidative Status

    PubMed Central

    Il’yasova, Dora; Scarbrough, Peter; Spasojevic, Ivan

    2012-01-01

    Oxidative damage produced by reactive oxygen species (ROS) has been implicated in the etiology and pathology of many health conditions, including a large number of chronic diseases. Urinary biomarkers of oxidative status present a great opportunity to study redox balance in human populations. With urinary biomarkers, specimen collection is non-invasive and the organic/metal content is low, which minimizes the artifactual formation of oxidative damage to molecules in specimens. Also, urinary levels of the biomarkers present intergraded indices of redox balance over a longer period of time compared to blood levels. This review summarizes the criteria for evaluation of biomarkers applicable to epidemiological studies and evaluation of several classes of biomarkers that are formed non-enzymatically: oxidative damage to lipids, proteins, DNA, and allantoin, an oxidative product of uric acid. The review considers formation, metabolism, and exertion of each biomarker, available data on validation in animal and clinical models of oxidative stress, analytical approaches, and their intra- and inter-individual variation. The recommended biomarkers for monitoring oxidative status over time are F2-isoprostanes and 8-oxodG. For inter-individual comparisons, F2-isoprostanes are recommended, whereas urinary 8-oxodG levels may be confounded by differences in the DNA repair capacity. Promising urinary biomarkers include allantoin, acrolein-lysine, and dityrosine. PMID:22683781

  3. Biomarkers of tobacco smoke exposure.

    PubMed

    Mattes, William; Yang, Xi; Orr, Michael S; Richter, Patricia; Mendrick, Donna L

    2014-01-01

    Diseases and death caused by exposure to tobacco smoke have become the single most serious preventable public health concern. Thus, biomarkers that can monitor tobacco exposure and health effects can play a critical role in tobacco product regulation and public health policy. Biomarkers of exposure to tobacco toxicants are well established and have been used in population studies to establish public policy regarding exposure to second-hand smoke, an example being the nicotine metabolite cotinine, which can be measured in urine. Biomarkers of biological response to tobacco smoking range from those indicative of inflammation to mRNA and microRNA patterns related to tobacco use and/or disease state. Biomarkers identifying individuals with an increased risk for a pathological response to tobacco have also been described. The challenge for any novel technology or biomarker is its translation to clinical and/or regulatory application, a process that requires first technical validation of the assay and then careful consideration of the context the biomarker assay may be used in the regulatory setting. Nonetheless, the current efforts to investigate new biomarker of tobacco smoke exposure promise to offer powerful new tools in addressing the health hazards of tobacco product use. This review will examine such biomarkers, albeit with a focus on those related to cigarette smoking. PMID:25735858

  4. Epigenetic biomarkers in liver cancer.

    PubMed

    Banaudha, Krishna K; Verma, Mukesh

    2015-01-01

    Liver cancer (hepatocellular carcinoma or HCC) is a major cancer worldwide. Research in this field is needed to identify biomarkers that can be used for early detection of the disease as well as new approaches to its treatment. Epigenetic biomarkers provide an opportunity to understand liver cancer etiology and evaluate novel epigenetic inhibitors for treatment. Traditionally, liver cirrhosis, proteomic biomarkers, and the presence of hepatitis viruses have been used for the detection and diagnosis of liver cancer. Promising results from microRNA (miRNA) profiling and hypermethylation of selected genes have raised hopes of identifying new biomarkers. Some of these epigenetic biomarkers may be useful in risk assessment and for screening populations to identify who is likely to develop cancer. Challenges and opportunities in the field are discussed in this chapter.

  5. Emerging biomarkers in psoriatic arthritis.

    PubMed

    Paek, So Yeon; Han, Ling; Weiland, Matthew; Lu, Chuan-Jian; McKinnon, Kathleen; Zhou, Li; Lim, Henry W; Elder, James T; Mi, Qing-Sheng

    2015-12-01

    Psoriasis is an immune-mediated skin disease which affects 2-4% of the worldwide population. Approximately 20-30% of patients with psoriasis develop psoriatic arthritis (PsA), a frequently destructive and disabling condition. As skin manifestations precede joint symptoms in nearly all patients with PsA, identification of biomarkers for early prediction of joint damage is an important clinical need. Because not all patients with PsA respond to treatment in the same fashion, identification of biomarkers capable of predicting therapeutic response is also imperative. Here, we review existing literature and discuss current investigations to identify potential biomarkers for PsA disease activity, with particular emphasis on microRNAs as novel markers of interest. Serum (soluble) biomarkers, peripheral osteoclast precursor as cellular biomarkers, and genetic loci associated with skin and joint disease are also reviewed. PMID:26602058

  6. Targeted cytokine delivery to neuroblastoma.

    PubMed

    Dehal, P K; Embleton, M J; Kemshead, J T; Hawkins, R E

    2002-08-01

    The aim of this study was to construct a fusion protein from the cytokine granulocyte/macrophage colony-stimulating factor (GM-CSF) and a single-chain Fv fragment (scFv D29) and to investigate its potential to activate cells of the immune system against neuroblastoma cells expressing neural cell adhesion molecule (NCAM). Mammalian cell expression of the scFv D29-GM-CSF fusion protein was compared using a number of vectors, including retroviral and adenoviral vectors. The resultant fusion protein, expressed by HeLa cells, was found by ELISA to bind immobilized recombinant NCAM. Moreover, FACS analysis confirmed binding to the human neuroblastoma cell line SKNBE and a murine neuroblastoma cell line engineered to express the glycosylphosphatidylinositol form of human NCAM (N2A-rKNIE). The fusion protein was also found to stimulate the proliferation of the FDC-P1 haemopoietic cell line, which is dependent on GM-CSF (or interleukin 3) for continued growth. In vitro clonogenic assays indicated that scFv-GM-CSF could selectively induce growth inhibition of SKNBE cells by murine lymphoid cells.

  7. Inflammatory cytokines in newborn infants.

    PubMed Central

    Sarandakou, A; Giannaki, G; Malamitsi-Puchner, A; Rizos, D; Hourdaki, E; Protonotariou, E; Phocas, I

    1998-01-01

    Serum levels of IL-1beta, IL-6 and TNF-alpha were measured in 48 healthy, termed neonates on the 1st (N1), 5th (N5) and 40th (N40) day after birth, compared with those in maternal serum (MS), umbilical cord (UC) and adult controls. Cytokine values in N1 and N5 were significantly elevated, than those in UC and in controls (P<0.0001). IL-1beta and IL-6 declined significantly from N1 to N40 (P<0.0001), while TNF-alpha increased significantly from N1 to N5 and declined thereafter. MS infinity IL-1beta and IL-6, but not MS infinity TNF-alpha, were significantly higher than those of controls (P<0.0001). IL-1beta values depended on the mode of delivery. In conclusion, the increased concentrations of IL-1beta, IL-6 and TNF-alpha during the perinatal period might suggest their involvement in an inflammation-like process during normal parturition, and reflect also a newborn immune response to the stress of delivery and environmental changes. PMID:9883964

  8. Inflammatory cytokines in newborn infants.

    PubMed

    Sarandakou, A; Giannaki, G; Malamitsi-Puchner, A; Rizos, D; Hourdaki, E; Protonotariou, E; Phocas, I

    1998-01-01

    Serum levels of IL-1beta, IL-6 and TNF-alpha were measured in 48 healthy, termed neonates on the 1st (N1), 5th (N5) and 40th (N40) day after birth, compared with those in maternal serum (MS), umbilical cord (UC) and adult controls. Cytokine values in N1 and N5 were significantly elevated, than those in UC and in controls (P<0.0001). IL-1beta and IL-6 declined significantly from N1 to N40 (P<0.0001), while TNF-alpha increased significantly from N1 to N5 and declined thereafter. MS infinity IL-1beta and IL-6, but not MS infinity TNF-alpha, were significantly higher than those of controls (P<0.0001). IL-1beta values depended on the mode of delivery. In conclusion, the increased concentrations of IL-1beta, IL-6 and TNF-alpha during the perinatal period might suggest their involvement in an inflammation-like process during normal parturition, and reflect also a newborn immune response to the stress of delivery and environmental changes.

  9. Angiopoietin-2 is critical for cytokine-induced vascular leakage.

    PubMed

    Benest, Andrew V; Kruse, Karoline; Savant, Soniya; Thomas, Markus; Laib, Anna M; Loos, Elias K; Fiedler, Ulrike; Augustin, Hellmut G

    2013-01-01

    Genetic experiments (loss-of-function and gain-of-function) have established the role of Angiopoietin/Tie ligand/receptor tyrosine kinase system as a regulator of vessel maturation and quiescence. Angiopoietin-2 (Ang-2) acts on Tie2-expressing resting endothelial cells as an antagonistic ligand to negatively interfere with the vessel stabilizing effects of constitutive Ang-1/Tie-2 signaling. Ang-2 thereby controls the vascular response to inflammation-inducing as well as angiogenesis-inducing cytokines. This study was aimed at assessing the role of Ang-2 as an autocrine (i.e. endothelial-derived) regulator of rapid vascular responses (within minutes) caused by permeability-inducing agents. Employing two independent in vivo assays to quantitatively assess vascular leakage (tracheal microsphere assay, 1-5 min and Miles assay, 20 min), the immediate vascular response to histamine, bradykinin and VEGF was analyzed in Ang-2-deficient (Ang-2(-/-)) mice. In comparison to the wild type control mice, the Ang2(-/-) mice demonstrated a significantly attenuated response. The Ang-2(-/-) phenotype was rescued by systemic administration (paracrine) of an adenovirus encoding Ang-2. Furthermore, cytokine-induced intracellular calcium influx was impaired in Ang-2(-/-) endothelioma cells, consistent with reduced phospholipase activation in vivo. Additionally, recombinant human Ang-2 (rhAng-2) alone was unable to induce vascular leakage. In summary, we report here in a definite genetic setting that Ang-2 is critical for multiple vascular permeability-inducing cytokines. PMID:23940579

  10. Expression of oral cytokines in HIV-infected subjects with long-term use of antiretroviral therapy

    PubMed Central

    Nittayananta, Wipawee; Amornthatree, Korntip; Kemapunmanus, Marisa; Talungchit, Sineepat; Sriplung, Hutcha

    2013-01-01

    Objectives The objectives of this study were to determine 1) the expression of oral pro-inflammatory cytokines in HIV-infected subjects compared with non-HIV individuals, 2) the cytokine expression in the subjects with antiretroviral therapy (ART) compared with those without ART, and 3) factors associated with the expression of the cytokines. Materials and methods Oral examination was performed and saliva samples were collected and analyzed for the expression of pro-inflammatory cytokines using ELISA. Logistic regression analysis was performed to determine the association between HIV/ART status and the cytokine expression. Results One hundred and fifty-seven HIV-infected subjects with and without ART, and 50 non-HIV individuals were enrolled. TNF-α and IL-6 in saliva were significantly decreased, while IL-8 was significantly increased in HIV infection (p< 0.05). Changes in the expression of IL-8 was also observed between HIV-infected subjects who were and were not on ART (p< 0.05). Duration of HIV infection and smoking were significantly associated with the expression of pro-inflammatory cytokines in saliva (p< 0.05). Conclusion Oral innate immunity is affected by HIV infection and use of ART. IL-8 may be the useful biomarker to identify subjects at risk of infection and malignant transformation due to HIV infection and long-term use of ART. PMID:23718561

  11. Cytokines profile in hypertensive patients with left ventricular remodeling and dysfunction.

    PubMed

    Kuznetsova, Tatiana; Haddad, Francois; Knez, Judita; Rosenberg-Hasson, Yael; Sung, Janine; Cauwenberghs, Nicholas; Thijs, Lutgarde; Karakikes, Ioannis; Maecker, Holden; Mahaffey, Kenneth W; Wu, Joseph C; Staessen, Jan A

    2015-12-01

    There is strong evidence that inflammatory mediators play a key role in the progression to heart failure in patients with systemic hypertension (HTN). The present study aimed to identify a set of cytokines that are associated with early left ventricular (LV) remodeling and dysfunction as captured by echocardiography in patients with HTN in a cross-sectional case-control study nested within the FLEMish study on ENvironment, Genes and Health Outcome. We identified three groups of participants from the cohort: normotensive subjects (normotension; n = 30), HTN with normal LV structure and function (HTN [LV-]; n = 30), and HTN with evidence of adverse LV remodeling (HTN [LV+]; n = 50). We measured cytokines using a 63-plex Luminex platform. Using partial least squares-discriminant analysis, we constructed three latent variables from the measured cytokines that explained 35%-45% of the variance between groups. We identified five common cytokines (interleukin 18, monokine induced by gamma interferon, hepatocyte growth factor, epithelial neutrophil-activating peptide 78, and vascular endothelial growth factor D) with a stable signal which had a major impact on the construction of the latent variables. Among these cytokines, after adjustment for confounders, interleukin 18 remained significantly different between HTN participants with and without LV involvement (P = .02). Moreover, granulocyte-macrophage colony-stimulating factor and leptin showed a consistent upward trend in all HTN patients compared with normotensive subjects. In conclusion, in HTN patients with LV remodeling or/and dysfunction, we identified a set of cytokines strongly associated with LV maladaptation. We also found a distinct profile of inflammatory biomarkers that characterize HTN. PMID:26565110

  12. Modulation of cytokine production by carnitine

    PubMed Central

    De Simone, Claudio

    1993-01-01

    The ability of carnitine congeners to modulate cytokine production by human peripheral blood mononuclear cells (PBMC) was investigated. Modulation of cytokine production by PBMC of young (30 years of age or younger) and old (70 years of age or older) normal donors was first compared. The PBMC were collected over Ficoll–Hypaque and incubated in the presence of various concentrations of acetyl L-carnitine for 24 h. Subsequently the supernatants were collected and examined for cytokine production. The presence of cytokines in tissue culture supernatants was examined by ELISA. The cytokines measured included IL-1α, IL-1β, IL-2, IL-4, IL-6, TNFα, GM–CSF, and IFNγ. The results showed that at 50 μg/ml of acetyl L-carnitine the most significant response was obtained for TNFα. In this regard four of five young donors responded, but only one of five old donors responded. More recently these studies were expanded to examine the ability of L-carnitine to modulate cytokine production at higher doses, 200 and 400 μg/ml, in young donors. The results of these studies showed that in addition to TNFα, significant production of IL-1β and IL-6 was observed. These preliminary studies provide evidence that carnitine may modulate immune functions through the production of selected cytokines. PMID:18475565

  13. The possible role of the novel cytokines il-35 and il-37 in inflammatory bowel disease.

    PubMed

    Li, Yanmei; Wang, Yanan; Liu, Ying; Wang, Yatian; Zuo, Xiuli; Li, Yanqing; Lu, Xuefeng

    2014-01-01

    Interleukin- (IL-) 35 and IL-37 are newly discovered immune-suppressing cytokines. They have been described in inflammatory diseases such as collagen-induced arthritis and asthma. However, their expressions in inflammatory bowel disease (IBD) patients have not been yet explored. Our aim was to evaluate serum and inflamed mucosal levels in IBD patients. In 20 ulcerative colitis (UC) patients, 7 Crohn's disease (CD) patients, and 15 healthy subjects, cytokine levels in serum were determined using ELISA and mucosal expression studies were performed by immunohistochemistry, quantitative real-time PCR, and Western blot. The results showed that serums IL-35 and IL-37 levels were significantly decreased in UC and CD patients compared with healthy subjects. The cytokines levels correlated inversely with UC activity. IL-35 was expressed in infiltrating immune cells while IL-37 in intestinal epithelial cells as well as inflammatory cells. IBD patients had significantly higher Ebi3, p35 (two subunits of IL-35), and IL-37b gene expressions; IL-35 and IL-37 protein expressions were higher in IBD patients compared with controls. The study showed that serums IL-35 and IL-37 might be potentially novel biomarkers for IBD. Intestinal IL-35 and IL-37 proteins are upregulated, suggesting that regulating the expression of the two cytokines may provide a new possible target for the treatment of IBD.

  14. The diagnostic accuracy of acute phase proteins and proinflammatory cytokines in sheep with pneumonic pasteurellosis.

    PubMed

    El-Deeb, Wael M; Elmoslemany, Ahmed M

    2016-01-01

    The goal of this study was to assess the diagnostic accuracy of acute phase proteins and proinflammatory cytokines in sheep with pneumonic pasteurellosis. Blood samples were collected from 56 sheep (36 naturally infected with Pasteurella multocida and 20 healthy controls) belonging to one farm in Eastern region, Saudi Arabia. Serum samples were evaluated for acute phase proteins (Haptoglobin (Hp), serum amyloid A (SAA) and fibrinogen (Fb)), and the proinflammatory cytokines (interleukins (IL-1α, IL-1β, and IL-6), tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-ϒ)). Additionally, nasopharyngeal swabs and bronchoalveolar lavages were collected from all animals for bacteriological examinations. Receiver operating characteristic curve was used to assess the diagnostic performance of each parameter. All parameters showed moderate to high degree of positive correlation with case-control status. There was no significant difference in the area under the curve (AUC) among acute phase proteins; however, both Hp and SAA showed better sensitivity and specificity than Fb. The proinflammatory cytokines (IL1-α, IL1-β, and IL6) showed similar and highly accurate diagnostic performance (AUC > 0.9), whereas IFN-ϒ was moderately accurate (AUC = 0.79). In conclusion, this study confirms the value of acute phase proteins and cytokines as diagnostic biomarkers of naturally occuring pneumonic pasteurellosis in sheep. PMID:27547520

  15. The diagnostic accuracy of acute phase proteins and proinflammatory cytokines in sheep with pneumonic pasteurellosis

    PubMed Central

    Elmoslemany, Ahmed M.

    2016-01-01

    The goal of this study was to assess the diagnostic accuracy of acute phase proteins and proinflammatory cytokines in sheep with pneumonic pasteurellosis. Blood samples were collected from 56 sheep (36 naturally infected with Pasteurella multocida and 20 healthy controls) belonging to one farm in Eastern region, Saudi Arabia. Serum samples were evaluated for acute phase proteins (Haptoglobin (Hp), serum amyloid A (SAA) and fibrinogen (Fb)), and the proinflammatory cytokines (interleukins (IL-1α, IL-1β, and IL-6), tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-ϒ)). Additionally, nasopharyngeal swabs and bronchoalveolar lavages were collected from all animals for bacteriological examinations. Receiver operating characteristic curve was used to assess the diagnostic performance of each parameter. All parameters showed moderate to high degree of positive correlation with case-control status. There was no significant difference in the area under the curve (AUC) among acute phase proteins; however, both Hp and SAA showed better sensitivity and specificity than Fb. The proinflammatory cytokines (IL1-α, IL1-β, and IL6) showed similar and highly accurate diagnostic performance (AUC > 0.9), whereas IFN-ϒ was moderately accurate (AUC = 0.79). In conclusion, this study confirms the value of acute phase proteins and cytokines as diagnostic biomarkers of naturally occuring pneumonic pasteurellosis in sheep. PMID:27547520

  16. Imaging Biomarkers in Immunotherapy

    PubMed Central

    Juergens, Rosalyn A.; Zukotynski, Katherine A.; Singnurkar, Amit; Snider, Denis P.; Valliant, John F.; Gulenchyn, Karen Y.

    2016-01-01

    Immune-based therapies have been in use for decades but recent work with immune checkpoint inhibitors has now changed the landscape of cancer treatment as a whole. While these advances are encouraging, clinicians still do not have a consistent biomarker they can rely on that can accurately select patients or monitor response. Molecular imaging technology provides a noninvasive mechanism to evaluate tumors and may be an ideal candidate for these purposes. This review provides an overview of the mechanism of action of varied immunotherapies and the current strategies for monitoring patients with imaging. We then describe some of the key researches in the preclinical and clinical literature on the current uses of molecular imaging of the immune system and cancer. PMID:26949344

  17. Biomarkers for lymphoma

    DOEpatents

    Zangar, Richard C.; Varnum, Susan M.

    2014-09-02

    A biomarker, method, test kit, and diagnostic system for detecting the presence of lymphoma in a person are disclosed. The lymphoma may be Hodgkin's lymphoma or non-Hodgkin's lymphoma. The person may be a high-risk subject. In one embodiment, a plasma sample from a person is obtained. The level of at least one protein listed in Table S3 in the plasma sample is measured. The level of at least one protein in the plasma sample is compared with the level in a normal or healthy subject. The lymphoma is diagnosed based upon the level of the at least one protein in the plasma sample in comparison to the normal or healthy level.

  18. Molecular Pathology and Biomarkers.

    PubMed

    Ha, Patrick K; Stenman, Göran

    2016-01-01

    The field of salivary gland tumor biology is quite broad, given the numerous subtypes of both benign and malignant tumors originating from the major and minor salivary glands. Knowledge about the molecular pathology of these lesions is still limited, and there are few clinically useful diagnostic and prognostic biomarkers. However, recent discoveries of certain key genomic alterations, such as chromosome translocations, copy number alterations, and mutations, provide new insights into the molecular pathogenesis of these lesions and may help to better define them. It is also hoped that this new knowledge can help to guide therapy, but this translation has been somewhat slow to develop, perhaps due to the rarity of these tumors and the lack of large, randomized studies. However, because of the limitations inherent in what surgery and radiation can provide, there is an urgent need for understanding of the mechanisms of carcinogenesis in these tumors individually, so that chemotherapy and/or targeted therapy can be rationally selected.

  19. Cancer Salivary Biomarkers for Tumours Distant to the Oral Cavity

    PubMed Central

    Rapado-González, Óscar; Majem, Blanca; Muinelo-Romay, Laura; López-López, Rafa; Suarez-Cunqueiro, María Mercedes

    2016-01-01

    The analysis of saliva as a diagnostic approach for systemic diseases was proposed just two decades ago, but recently great interest in the field has emerged because of its revolutionary potential as a liquid biopsy and its usefulness as a non-invasive sampling method. Multiple molecules isolated in saliva have been proposed as cancer biomarkers for diagnosis, prognosis, drug monitoring and pharmacogenetic studies. In this review, we focus on the current status of the salivary diagnostic biomarkers for different cancers distant to the oral cavity, noting their potential use in the clinic and their applicability in personalising cancer therapies. PMID:27626410

  20. Immunomodulation of Skin Cytokine Secretion by House Dust Mite Extracts

    PubMed Central

    Arlian, Larry G.; Morgan, Marjorie S.

    2011-01-01

    Background Skin contact with house dust mites may contribute to atopic dermatitis and other skin diseases. We sought to determine if molecules from house dust mites could influence the release of proinflammatory cytokines and chemokines from epidermal keratinocytes and dermal fibroblasts grown in a human skin equivalent (HSE) model. Methods HSEs consisting of an epidermis of keratinocytes with stratum corneum over a dermis of fibroblasts in a collagen matrix were challenged with Dermatophagoides farinae, D. pteronyssinus and Euroglyphus maynei mite extracts. Results HSEs secreted interleukin (IL)-1α, IL-1 receptor antagonist, IL-6, IL-8, cutaneous T cell-attracting chemokine, transforming growth factor-α, granulocyte/macrophage and macrophage colony-stimulating factors and vascular endothelial cell growth factor in response to at least 1 mite extract. Extracts of different mite species stimulated HSEs to release different cytokines. Therefore, extracts of different species contained different molecules or different concentrations of similar molecules. The cytokine release profiles of cells in the HSEs were not the same as for monocultured keratinocytes and fibroblasts. Conclusions Molecules from house dust mites are capable of inducing the release of multiple proinflammatory cytokines and chemokines from epidermal keratinocytes and dermal fibroblasts. Avoiding skin contact with house dust mites would reduce the possibility of mite-induced inflammation in the skin. Therefore, measures to reduce contact with mite molecules such as frequent vacuuming of upholstered furniture and carpets and laundering of clothing and bedding to remove mite molecules and allergens could reduce skin contact with mite molecules and diminish exacerbations of skin inflammation in patients with atopic dermatitis and other skin diseases. PMID:21576987

  1. Cytokine medicines in clinical practice: current issues.

    PubMed

    Barnes, Theresa; Moots, Robert J; Goodacre, John

    2005-10-21

    Cytokine medicines have been licensed for the treatment of rheumatoid arthritis since 2000. The rheumatology community has accrued a large amount of experience in the use of these medications. This experience has led to the development of guidelines for their use that include ongoing vigilance for long term adverse events and efficacy using the Biologics Register. Delivery of these expensive therapies has prompted extensive system developments within rheumatology. The cytokine medicines have provided important tools to probe the pathogenesis of rheumatoid and other inflammatory diseases. Further cytokine medicines, in various stages of development, are on the horizon and continue to stimulate excitement within this fast expanding field.

  2. Cytokines in Radiobiological Responses: A Review

    PubMed Central

    Schaue, Dörthe; Kachikwu, Evelyn L.; McBride, William H.

    2013-01-01

    Cytokines function in many roles that are highly relevant to radiation research. This review focuses on how cytokines are structurally organized, how they are induced by radiation, and how they orchestrate mesenchymal, epithelial and immune cell interactions in irradiated tissues. Pro-inflammatory cytokines are the major components of immediate early gene programs and as such can be rapidly activated after tissue irradiation. They converge with the effects of ionizing radiation in that both generate free radicals including reactive oxygen and nitrogen species (ROS/RNS). “Self” molecules secreted or released from cells after irradiation feed the same paradigm by signaling for ROS and cytokine production. As a result, multilayered feedback control circuits can be generated that perpetuate the radiation tissue damage response. The pro-inflammatory phase persists until such times as perceived challenges to host integrity are eliminated. Antioxidant, anti-inflammatory cytokines then act to restore homeostasis. The balance between pro-inflammatory and anti-inflammatory forces may shift to and fro for a long time after radiation exposure, creating waves as the host tries to deal with persisting pathogenesis. Individual cytokines function within socially interconnected groups to direct these integrated cellular responses. They hunt in packs and form complex cytokine networks that are nested within each other so as to form mutually reinforcing or antagonistic forces. This yin-yang balance appears to have redox as a fulcrum. Because of their social organization, cytokines appear to have a considerable degree of redundancy and it follows that an elevated level of a specific cytokine in a disease situation or after irradiation does not necessarily implicate it causally in pathogenesis. In spite of this, “driver” cytokines are emerging in pathogenic situations that can clearly be targeted for therapeutic benefit, including in radiation settings. Cytokines can greatly

  3. Biomarkers of manganese intoxication.

    PubMed

    Zheng, Wei; Fu, Sherleen X; Dydak, Ulrike; Cowan, Dallas M

    2011-01-01

    Manganese (Mn), upon absorption, is primarily sequestered in tissue and intracellular compartments. For this reason, blood Mn concentration does not always accurately reflect Mn concentration in the targeted tissue, particularly in the brain. The discrepancy between Mn concentrations in tissue or intracellular components means that blood Mn is a poor biomarker of Mn exposure or toxicity under many conditions and that other biomarkers must be established. For group comparisons of active workers, blood Mn has some utility for distinguishing exposed from unexposed subjects, although the large variability in mean values renders it insensitive for discriminating one individual from the rest of the study population. Mn exposure is known to alter iron (Fe) homeostasis. The Mn/Fe ratio (MIR) in plasma or erythrocytes reflects not only steady-state concentrations of Mn or Fe in tested individuals, but also a biological response (altered Fe homeostasis) to Mn exposure. Recent human studies support the potential value for using MIR to distinguish individuals with Mn exposure. Additionally, magnetic resonance imaging (MRI), in combination with noninvasive assessment of γ-aminobutyric acid (GABA) by magnetic resonance spectroscopy (MRS), provides convincing evidence of Mn exposure, even without clinical symptoms of Mn intoxication. For subjects with long-term, low-dose Mn exposure or for those exposed in the past but not the present, neither blood Mn nor MRI provides a confident distinction for Mn exposure or intoxication. While plasma or erythrocyte MIR is more likely a sensitive measure, the cut-off values for MIR among the general population need to be further tested and established. Considering the large accumulation of Mn in bone, developing an X-ray fluorescence spectroscopy or neutron-based spectroscopy method may create yet another novel non-invasive tool for assessing Mn exposure and toxicity. PMID:20946915

  4. Influences of age and sex on leukocytes of healthy horses and their ex vivo cytokine release.

    PubMed

    Schnabel, C L; Steinig, P; Schuberth, H-J; Koy, M; Wagner, B; Wittig, B; Juhls, C; Willenbrock, S; Murua Escobar, H; Jaehnig, P; Feige, K; Cavalleri, J-M V

    2015-05-15

    Leukocytes and their functional capacities are used extensively as biomarkers in immunological research. Commonly employed indicators concerning leukocytes are as follows: number, composition in blood, response to discrete stimuli, cytokine release, and morphometric characteristics. In order to employ leukocytes as biomarkers for disease and therapeutic monitoring, physiological variations and influencing factors on the parameters measured have to be considered. The aim of this report was to describe the ranges of selected leukocyte parameters in a sample of healthy horses and to analyse whether age, sex, breed, and sampling time point (time of day) influence peripheral blood leukocyte composition, cell morphology and release of cytokines ex vivo. Flow cytometric comparative characterisation of cell size and complexity in 24 healthy horses revealed significant variance. Similarly, basal release of selected cytokines by blood mononuclear cells also showed high variability [TNFα (65-16,624pg/ml), IFNγ (4-80U/ml), IL-4 (0-5069pg/ml), IL-10 (49-1862pg/ml), and IL-17 (4-1244U/ml)]. Each animal's age influenced leukocyte composition, cell morphology and cytokine release (TNFα, IL-4, IL-10) ex vivo. Geldings showed smaller monocytes and higher spontaneous production of IL-10 when compared to the mares included. The stimulation to spontaneous release ratios of TNFα, IL-4 and IL-17 differed in Warmblood and Thoroughbred types. Sampling time influenced leukocyte composition and cell morphology. In summary, many animal factors - age being the dominant one - should be considered for studies involving the analysis of equine leukocytes. In addition, high inter-individual variances argue for individual baseline measurements.

  5. Translational research and biomarkers in neonatal sepsis.

    PubMed

    Delanghe, Joris R; Speeckaert, Marijn M

    2015-12-01

    As neonatal sepsis is a severe condition, there is a call for reliable biomarkers to differentiate between infected and noninfected newborns. Although blood culture has been considered as the gold standard, this analysis is still too slow and limited by false negative results. Use of CRP is hampered by a physiological 3-day increase, resulting in a low sensitivity to detect sepsis at an early stage. A moderate diagnostic accuracy of other acute phase proteins has been demonstrated (serum amyloid A, procalcitonin, lipopolysaccharide binding protein, mannose binding lectin and hepcidin). In neonatal sepsis, changed chemokine/cytokine levels are observed before those of acute phase reactants. High IL-6, IL-8, IL-10 and TNF-α concentrations are detected in infected infants. Soluble interleukin-2 receptor has been used to identify bacteremia, whereas low plasma RANTES concentrations are characteristic for septicemia. Several cell adhesion molecules contribute to the pathogenesis of sepsis. As an upregulated CD64 expression on granulocytes is found within 1-6h after bacterial invasion, serial CD64 measurements could guide antibiotic therapy. An increased CD11b/CD18 density can improve the diagnosis, and a positive correlation between CD11b and the severity of systemic inflammation has been reported. An early increase in sCD14-ST presepsin is also observed during sepsis, whereas high sTREM-1 values in early-onset neonatal sepsis (EOS) have been associated with mortality. Biomarkers resulting from proteomics are also promising. A 4-biomarker 'mass restricted' score has been validated as diagnostic for intra-amniotic infection and/or inflammation. S100A8 in amniotic fluid is a strong predictor of an increased incidence of EOS. Proteomic analysis of cord blood has revealed altered protein expression patterns. The ApoSAA score is useful for identifying sepsis and could guide prescription of antibiotics. (1)H-NMR and GC-MS metabolomics allow to diagnose septic shock, which is

  6. [Novel biomarkers for diabetic nephropathy].

    PubMed

    Araki, Shin-ichi

    2014-02-01

    Diabetic nephropathy is a leading cause of end-stage renal disease worldwide. An early clinical sign of this complication is an increase of urinary albumin excretion, called microalbuminuria, which is not only a predictor of the progression of nephropathy, but also an independent risk factor for cardiovascular disease. Although microalbuminuria is clinically important to assess the prognosis of diabetic patients, it may be insufficient as an early and specific biomarker of diabetic nephropathy because of a large day-to-day variation and lack of a good correlation of microalbuminuria with renal dysfunction and pathohistological changes. Thus, more sensitive and specific biomarkers are needed to improve the diagnostic capability of identifying patients at high risk. The factors involved in renal tubulo-interstitial damage, the production and degradation of extracellular matrix, microinflammation, etc., are investigated as candidate molecules. Despite numerous efforts so far, the assessment of these biomarkers is still a subject of ongoing investigations. Recently, a variety of omics and quantitative techniques in systems biology are rapidly emerging in the field of biomarker discovery, including proteomics, transcriptomics, and metabolomics, and they have been applied to search for novel putative biomarkers of diabetic nephropathy. Novel biomarkers or their combination with microalbuminuria provide a better diagnostic accuracy than microalbuminuria alone, and may be useful for establishing personal medicine. Furthermore, the identification of novel biomarkers may provide insight into the mechanisms underlying diabetic nephropathy.

  7. The Role of Proinflammatory Cytokine Interleukin-18 in Radiation Injury

    PubMed Central

    Xiao, Mang

    2016-01-01

    Abstract Massive radiation-induced inflammatory factors released from injured cells may cause innate and acquired immune reactions that can further result in stress response signal activity-induced local and systemic damage. IL‐1 family members IL‐1β, IL‐18, and IL‐33 play key roles in inflammatory and immune responses and have been recognized to have significant influences on the pathogenesis of diseases. IL‐1β, IL‐18, and IL‐33 share similarities of cytokine biology, but differences exist in signaling pathways. A key component of the inflammatory reaction is the inflammasome, which is a caspase‐1‐containing multiprotein oligomer. Pathological stimuli such as radiation can induce inflammasome and caspase‐1 activation, and subsequently cause maturation (activation) of pro-forms of IL‐1 and IL‐18 upon caspase‐1 cleavage. This caspase‐1 dependent and IL‐1 and IL‐18 associated cell damage is defined as pyroptosis. Activated IL‐1 and IL‐18 as proinflammatory cytokines drive pathology at different immune and inflammatory disorders through Toll-like receptor (TLR) signaling. While the mechanisms of IL‐1β-induced pathophysiology of diseases have been well studied, IL‐18 has received less attention. The author recently reported that gamma radiation highly increased IL‐1β, IL‐18 and IL‐33 expression in mouse thymus, spleen and/or bone marrow cells; also circulating IL‐18 can be used as a radiation biomarker to track radiation injury in mice, minipigs, and nonhuman primates. This mini-review focuses on the role of IL‐18 in response to gamma radiation-induced injury. PMID:27356067

  8. The Role of Proinflammatory Cytokine Interleukin-18 in Radiation Injury.

    PubMed

    Xiao, Mang

    2016-08-01

    Massive radiation-induced inflammatory factors released from injured cells may cause innate and acquired immune reactions that can further result in stress response signal activity-induced local and systemic damage. IL-1 family members IL-1β, IL-18, and IL-33 play key roles in inflammatory and immune responses and have been recognized to have significant influences on the pathogenesis of diseases. IL-1β, IL-18, and IL-33 share similarities of cytokine biology, but differences exist in signaling pathways. A key component of the inflammatory reaction is the inflammasome, which is a caspase-1-containing multiprotein oligomer. Pathological stimuli such as radiation can induce inflammasome and caspase-1 activation, and subsequently cause maturation (activation) of pro-forms of IL-1 and IL-18 upon caspase-1 cleavage. This caspase-1 dependent and IL-1 and IL-18 associated cell damage is defined as pyroptosis. Activated IL-1 and IL-18 as proinflammatory cytokines drive pathology at different immune and inflammatory disorders through Toll-like receptor (TLR) signaling. While the mechanisms of IL-1β-induced pathophysiology of diseases have been well studied, IL-18 has received less attention. The author recently reported that gamma radiation highly increased IL-1β, IL-18 and IL-33 expression in mouse thymus, spleen and/or bone marrow cells; also circulating IL-18 can be used as a radiation biomarker to track radiation injury in mice, minipigs, and nonhuman primates. This mini-review focuses on the role of IL-18 in response to gamma radiation-induced injury.

  9. Identification of B7-H1 as a novel mediator of the innate immune/proinflammatory response as well as a possible myeloid cell prognostic biomarker in sepsis.

    PubMed

    Huang, Xin; Chen, Yaping; Chung, Chun-Shiang; Yuan, Zhenglong; Monaghan, Sean F; Wang, Fei; Ayala, Alfred

    2014-02-01

    Identifying relevant mediators responsible for the pathogenesis during sepsis may lead to finding novel diagnostic and therapeutic targets. Recent studies indicate programmed cell death receptor (PD)-1 plays a significant role in the development of immune suppression associated with sepsis. In this study, we determine whether B7-H1, the primary ligand of PD-1, contributes to the pathogenesis of sepsis. We report that B7-H1 is upregulated extensively on various immune cells during sepsis and B7-H1 gene deficiency protects mice from the lethality of sepsis. In terms of the histological development of multiple organ damage and inflammatory cytokine levels in circulation or at infectious site, B7-H1-deficient mice showed a remarkable reduction in these indices when compared with wild-type mice. However, B7-H1 gene-deficient mice did not exhibit a lower bacterial burden when compared with wild-type mice, although they recruited more macrophages and neutrophils into infectious site. In addition, we found that, during sepsis, whereas there were no marked differences affecting ex vivo macrophage cytokine productive capacity between PD-1 and B7-H1 gene-deficient mice, preservation of ex vivo macrophage phagocytic function was only seen in septic PD-1 knockout mouse cells. Finally, higher percentage B7-H1(+) neutrophils in peripheral blood correlated not only with higher levels of pro- and anti-inflammatory cytokines/chemokines (CCL2, IL-6, CXCL2, KC, TNF-α, and IL-10), but with lethal outcome as well. Together, these results indicate B7-H1 contributes to septic morbidity in fashion distinct from PD-1 and suggest B7-H1 expression on neutrophils could be used as a biomarker of septic severity.

  10. Functional Biomarkers of Depression: Diagnosis, Treatment, and Pathophysiology

    PubMed Central

    Schmidt, Heath D; Shelton, Richard C; Duman, Ronald S

    2011-01-01

    Major depressive disorder (MDD) is a heterogeneous illness for which there are currently no effective methods to objectively assess severity, endophenotypes, or response to treatment. Increasing evidence suggests that circulating levels of peripheral/serum growth factors and cytokines are altered in patients with MDD, and that antidepressant treatments reverse or normalize these effects. Furthermore, there is a large body of literature demonstrating that MDD is associated with changes in endocrine and metabolic factors. Here we provide a brief overview of the evidence that peripheral growth factors, pro-inflammatory cytokines, endocrine factors, and metabolic markers contribute to the pathophysiology of MDD and antidepressant response. Recent preclinical studies demonstrating that peripheral growth factors and cytokines influence brain function and behavior are also discussed along with their implications for diagnosing and treating patients with MDD. Together, these studies highlight the need to develop a biomarker panel for depression that aims to profile diverse peripheral factors that together provide a biological signature of MDD subtypes as well as treatment response. PMID:21814182

  11. Interleukin-17A as a Biomarker for Bovine Tuberculosis

    PubMed Central

    Maggioli, Mayara F.; Palmer, Mitchell V.; Thacker, Tyler C.; McGill, Jodi L.; Vordermeier, H. Martin; Berney-Meyer, Linda; Jacobs, William R.; Larsen, Michelle H.

    2015-01-01

    T helper 17 (Th17)-associated cytokines are integral to the immune responses to tuberculosis, initiating both protective and harmful inflammatory responses. The aim of the present study was to evaluate applied aspects of interleukin-17 (IL-17) biology in the context of Mycobacterium bovis infection of cattle. Using transcriptome sequencing (RNA-Seq), numerous Th17-associated cytokine genes (including IL-17A, IL-17F, IL-22, IL-19, and IL-27) were upregulated >9-fold in response to purified protein derivative stimulation of peripheral blood mononuclear cells from experimentally M. bovis-infected cattle. Protective vaccines elicited IL-17A, IL-17F, IL-22, and IL-27 responses. Reduced IL-17A responses by vaccine recipients, compared to nonvaccinated animals, at 2.5 weeks after M. bovis challenge correlated with reduced disease burdens. Additionally, IL-17A and interferon gamma (IFN-γ) responses were highly correlated and exhibited similar diagnostic capacities. The present findings support the use of Th17-associated cytokines as biomarkers of infection and protection in the immune responses to bovine tuberculosis. PMID:26677202

  12. [Targeted therapy in inflammatory disease: cytokines].

    PubMed

    von Frenckell, C; Malaise, M G

    2012-01-01

    Summarizing 15 years of therapeutic development of a discipline into a few lines is not an easy thing to do. There are many potential targets involved in the inflammatory of auto-immune diseases. Due to the development of biotherapies the choice has become larger, and it is now possible to target practically any molecule (cytokine, chemokine or surface receptor for example). Cytokines represent the first example of therapeutic target that played a major role in the revolution of our discipline. The first part of presentation will focus on the pro-inflammatory cytokines (TNFalpha, and interleukines 1 and 6). We shall then, detail the development of a new cytokinic target: BLyS (B lymphocyte stimulator) whose role in the autoimmune diseases appeared recently.

  13. Dynamical Systems, Cytokine Storms, and Blood Filtration

    NASA Astrophysics Data System (ADS)

    Foster, Glenn; Hubler, Alfred

    2008-03-01

    Various infections and non-infectious diseases can trigger immune cells and the proteins (cytokines) the cells use to communicate with each other to be caught in a positive feedback loop; this ``cytokine storm'' is frequently fatal. By examining the network of cytokine-immune cell interactions we will illustrate why anti-mediator drugs have been generally ineffective in stopping this feedback. A more effective approach may be to try and reduce interactions by dampening many signals at once by filtering the cytokines out of the blood directly (think dialysis). We will argue that feedback on an out of control nonlinear dynamical system is easier to understand than its normal healthy state and apply filtration to a toy model of immune response.

  14. Cytokines in neuroblastoma: from pathogenesis to treatment.

    PubMed

    Pistoia, Vito; Bianchi, Giovanna; Borgonovo, Giacomo; Raffaghello, Lizzia

    2011-07-01

    Cytokines released by cancer cells or by cells of the tumor microenvironment stimulate angiogenesis, act as autocrine or paracrine growth factors for malignant cells, promote tumor cell migration and metastasis or create an immunosuppressive microenvironment. These tumor-promoting effects of cytokines also apply to neuroblastoma (NB), a pediatric neuroectodermal malignancy with frequent metastatic presentation at diagnosis and poor prognosis. IL-6 and VEGF are the best characterized cytokines that stimulated tumor growth and metastasis, while others such as IFN-γ can exert anti-NB activity by inducing tumor cell apoptosis and inhibiting angiogenesis. On the other hand, cytokines are part of the anti-NB therapeutic armamentarium, as exemplified by IL-2 and granulocyte-macrophage colony stimulating factor that potentiate the activity of anti-NB antibodies. These recent results raise hope for more efficacious treatment of this ominous pediatric malignancy.

  15. Use of miRNAs as biomarkers in sepsis.

    PubMed

    Dumache, Raluca; Rogobete, Alexandru Florin; Bedreag, Ovidiu Horea; Sarandan, Mirela; Cradigati, Alina Carmen; Papurica, Marius; Dumbuleu, Corina Maria; Nartita, Radu; Sandesc, Dorel

    2015-01-01

    Sepsis is one of the most common causes of death in critical patients. Severe generalized inflammation, infections, and severe physiological imbalances significantly decrease the survival rate with more than 50%. Moreover, monitoring, evaluation, and therapy management often become extremely difficult for the clinician in this type of patients. Current methods of diagnosing sepsis vary based especially on the determination of biochemical-humoral markers, such as cytokines, components of the complement, and proinflammatory and anti-inflammatory compounds. Recent studies highlight the use of new biomarkers for sepsis, namely, miRNAs. miRNAs belong to a class of small, noncoding RNAs with an approximate content of 19-23 nucleotides. Following biochemical and physiological imbalances, the expression of miRNAs in blood or other body fluids changes significantly. Moreover, its stability, specificity, and selectivity make miRNAs ideal candidates for sepsis biomarkers. In conclusion, we can affirm that stable species of circulating miRNAs represent potential biomarkers for monitoring the evolution of sepsis.

  16. Measurement of Soluble Biomarkers by Flow Cytometry

    PubMed Central

    Nagy, Béla; Debreceni, Ildikó Beke; Kappelmayer, János

    2013-01-01

    Microparticle based flow cytometric assays for determination of the level of soluble biomarkers are widely used in several research applications and in some diagnostic setups. The major advantages of these multiplex systems are that they can measure a large number of analytes (up to 500) at the same time reducing assay time, costs and sample volume. Most of these assays are based on antigen-antibody interactions and work as traditional immunoassays, but nucleic acid alterations – by using special hybridization probes –, enzyme- substrate or receptor-ligand interactions can be also studied with them. The applied beads are nowadays provided by the manufacturers, but cheaper biological microbeads can be prepared by any user. One part of the systems can be used on any research or clinical cytometers, but some companies provide dedicated analyzers for their multiplex bead arrays. Due to the high standardization of the bead production and the preparation of the assay components the analytical properties of these assays are quite reliable with a wide range of available applications. Cytokines, intracellular fusion proteins, activated/phosphorylated components of different signaling pathways, transcription factors and nuclear receptors can be identified and quantitated. The assays may serve the diagnostics of autoimmune disorders, different viral and bacterial infections, as well as genetic alterations such as single nucleotide polymorphisms, small deletions/insertions or even nucleotide triplet expansions can be also identified. The most important principles, technical details and applications of these systems are discussed in this short review.

  17. Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage

    PubMed Central

    Poil, Simon-Shlomo; de Haan, Willem; van der Flier, Wiesje M.; Mansvelder, Huibert D.; Scheltens, Philip; Linkenkaer-Hansen, Klaus

    2013-01-01

    Alzheimer's disease (AD) is a devastating disorder of increasing prevalence in modern society. Mild cognitive impairment (MCI) is considered a transitional stage between normal aging and AD; however, not all subjects with MCI progress to AD. Prediction of conversion to AD at an early stage would enable an earlier, and potentially more effective, treatment of AD. Electroencephalography (EEG) biomarkers would provide a non-invasive and relatively cheap screening tool to predict conversion to AD; however, traditional EEG biomarkers have not been considered accurate enough to be useful in clinical practice. Here, we aim to combine the information from multiple EEG biomarkers into a diagnostic classification index in order to improve the accuracy of predicting conversion from MCI to AD within a 2-year period. We followed 86 patients initially diagnosed with MCI for 2 years during which 25 patients converted to AD. We show that multiple EEG biomarkers mainly related to activity in the beta-frequency range (13–30 Hz) can predict conversion from MCI to AD. Importantly, by integrating six EEG biomarkers into a diagnostic index using logistic regression the prediction improved compared with the classification using the individual biomarkers, with a sensitivity of 88% and specificity of 82%, compared with a sensitivity of 64% and specificity of 62% of the best individual biomarker in this index. In order to identify this diagnostic index we developed a data mining approach implemented in the Neurophysiological Biomarker Toolbox (http://www.nbtwiki.net/). We suggest that this approach can be used to identify optimal combinations of biomarkers (integrative biomarkers) also in other modalities. Potentially, these integrative biomarkers could be more sensitive to disease progression and response to therapeutic intervention. PMID:24106478

  18. Anti cytokine therapy in chronic inflammatory arthritis.

    PubMed

    Thompson, Charlotte; Davies, Ruth; Choy, Ernest

    2016-10-01

    This is a review looking at anti cytokine therapy in Rheumatoid Arthritis (RA), Psoriatic Arthritis (PSA) and Ankylosing Spondylitis (AS). The review explores the similarities and differences in the clinical features, as well as treatments and cytokines involved in the development and propagation of the disease. Particular attention is paid to TNFα inhibitors IL-1ra, IL-6 and JAK kinase Inhibitors, anti IL23 and IL-12 and the new developments with anti-IL-17. PMID:27497159

  19. Stable Isotope Ratios as Biomarkers of Diet for Health Research.

    PubMed

    O'Brien, Diane M

    2015-01-01

    Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently, there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short- and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general US population. Approaches to improve specificity for specific foods are needed; for example, by modeling intake using multiple stable isotope ratios or by isolating and measuring specific molecules linked to foods of interest. PMID:26048703

  20. Stable Isotope Ratios as Biomarkers of Diet for Health Research.

    PubMed

    O'Brien, Diane M

    2015-01-01

    Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently, there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short- and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general US population. Approaches to improve specificity for specific foods are needed; for example, by modeling intake using multiple stable isotope ratios or by isolating and measuring specific molecules linked to foods of interest.

  1. Stable Isotope Ratios as Biomarkers of Diet for Health Research

    PubMed Central

    O’Brien, Diane M.

    2016-01-01

    Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general United States population. Approaches to improve specificity for specific foods are needed, for example, by modeling intake using multiple stable isotope ratios, or by isolating and measuring specific molecules linked to foods of interest. PMID:26048703

  2. Intermittent preventive treatment with sulfadoxine-pyrimethamine does not modify plasma cytokines and chemokines or intracellular cytokine responses to Plasmodium falciparum in Mozambican Children

    PubMed Central

    2012-01-01

    Background Cytokines and chemokines are key mediators of anti-malarial immunity. We evaluated whether Intermittent Preventive Treatment in infants with Sulfadoxine-Pyrimethamine (IPTi-SP) had an effect on the acquisition of these cellular immune responses in Mozambican children. Multiple cytokines and chemokines were quantified in plasma by luminex, and antigen-specific cytokine production in whole blood was determined by intracellular cytokine staining and flow cytometry, at ages 5, 9, 12 and 24 months. Results IPTi-SP did not significantly affect the proportion of CD3+ cells producing IFN-γ, IL-4 or IL-10. Overall, plasma cytokine or chemokine concentrations did not differ between treatment groups. Th1 and pro-inflammatory responses were higher than Th2 and anti-inflammatory responses, respectively, and IFN-γ:IL-4 ratios were higher for placebo than for SP recipients. Levels of cytokines and chemokines varied according to age, declining from 5 to 9 months. Plasma concentrations of IL-10, IL-12 and IL-13 were associated with current infection or prior malaria episodes. Higher frequencies of IFN-γ and IL-10 producing CD3+ cells and elevated IL-10, IFN-γ, MCP-1 and IL-13 in plasma were individually associated with increased malaria incidence, at different time points. When all markers were analyzed together, only higher IL-17 at 12 months was associated with lower incidence of malaria up to 24 months. Conclusions Our work has confirmed that IPTi-SP does not negatively affect the development of cellular immune response during early childhood. This study has also provided new insights as to how these cytokine responses are acquired upon age and exposure to P. falciparum, as well as their associations with malaria susceptibility. Trial Registration ClinicalTrials.gov: NCT00209795 PMID:22280502

  3. The role of cytokines in cancer.

    PubMed

    Oppenheim, J; Fujiwara, H

    1996-10-01

    The role of cytokines was intensively discussed over the course of a two and a half day meeting sponsored by the US-JAPAN Cancer Cooperative Research Program of the Office of International Affairs, National Cancer Institute and held at The National Institutes of Health, Bethesda, Maryland on 15-17 January 1996. Most of the first day was devoted to a discussion of the role of cytokines in modulating angiogenesis and the consequent effect of this on tumor growth and metastases. This was followed by sessions on the effect of various cytokines in enhancing or suppressing immunological responses to tumors. Several presentations focused on the direct inhibitory or growth promoting effects of cytokines on tumor growth. The final session consisted of a comparison of the efficacy of different approaches to tumor vaccination including gene therapy, enhanced antigen presentation, use of polymeric carriers or of DNA vectors. For background information the reader is referred to appropriate chapters on the role of cytokines in neoplastic diseases (Oppenheim JJ, Rossio JL, Gearing AJH, eds. In Clinical Application of Cytokines: Role of Pathogenesis, Diagnosis and Therapy. Oxford University Press, New York, 1993 [1]).

  4. Cytokine expression in muscle following traumatic injury

    PubMed Central

    Jackson, Wesley M.; Aragon, Amber B.; Onodera, Jun; Koehler, Steven M.; Ji, Youngmi; Bulken-Hoover, Jamie D.; Vogler, Jared A.; Tuan, Rocky S.; Nesti, Leon J.

    2011-01-01

    Heterotopic ossification (HO) occurs at a high frequency in severe orthopaedic extremity injuries; however, the etiology of traumatic HO is virtually unknown. Osteogenic progenitor cells have previously been identified within traumatized muscle. Although the signaling mechanisms that lead to this dysregulated differentiation pathway have not been identified, it is assumed that inflammation and fibrosis, which contribute to an osteoinductive environment, are necessary for the development of HO. The hypothesis of this study was that cytokines related to chronic inflammation, fibrogenesis and osteogenesis become up-regulated following severe muscle trauma where HO forms. Classification of these cytokines by their differential expression relative to control muscle will provide guidance for further study of the mechanisms leading to HO. Real-time RT-PCR analysis revealed no significant up-regulation of cytokines typically associated with HO (e.g., BMP-4, as observed in the genetic form of heterotopic ossification, Fibrodysplasia Ossificans Progressiva). Instead, the cytokine gene expression profile associated with the traumatized muscle included up-regulation of cytokines associated with osteogenesis and fibrosis (i.e., BMP-1 and TGF-beta1). Using immunohistochemistry, these cytokines were localized to fibroproliferative lesions, which have previously been implicated in HO. This study identifies other cell and tissue-level interactions in traumatized muscle that should be investigated further to better define the etiology of HO. PMID:21452302

  5. Serum cytokine changes in systemic vasculitis.

    PubMed Central

    Grau, G E; Roux-Lombard, P; Gysler, C; Lambert, C; Lambert, P H; Dayer, J M; Guillevin, L

    1989-01-01

    Cytokines are known to alter a number of vascular tissue cell functions. The aim of this retrospective study was to determine serum cytokine levels in patients with vasculitis and to analyse the possible relation to the severity of the disease. Tumour necrosis factor alpha (TNF alpha), interleukin-1 (IL-1)beta, IL-2, interferon (IFN)- and IFN-gamma were assayed in 33 patients with polyarteritis nodosa (PAN) or Churg and Strauss angiitis (CSA), and three with Wegener granulomatosis (WG). Serum cytokine changes were observed in most patients with active disease, i.e. before treatment was started. In the majority of patients with PAN or CSA, there was a marked increase in serum IFN-alpha and IL-2 levels, while TNF-alpha and IL-beta levels were moderately elevated. Serum IFN-gamma remained undetectable in all but one of these patients. In patients with WG, serum IFN-alpha and IL-2 levels were also elevated, whereas IL-1 beta, IFN-gamma and TNF alpha levels remained within normal limits. In paired samples of patients with PAN, IFN-alpha and IL-2 levels were significantly higher before than after treatment. These preliminary data suggest that a particular pattern of cytokine changes is associated with vasculitis and that cytokines might be involved in the pathogenesis of PAN/CSA and WG. Prospective studies are warranted to determine whether cytokines could be considered for the monitoring of disease activity and therapy. PMID:2478451

  6. Ultratrace level determination and quantitative analysis of kidney injury biomarkers in patient samples attained by zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet; Alabanza, Anginelle; Gonzalez, Lorelis E.; Wang, Weiwei; Reeves, W. Brian; Hahm, Jong-In

    2016-02-01

    Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg per mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification

  7. Multiplexed Cytokine Detection of Interstitial Fluid Collected from Polymeric Hollow Tube Implants – A Feasibility Study

    PubMed Central

    Wang, Xiangdan; Lennartz, Michelle R.; Loegering, Daniel J.; Stenken, Julie A.

    2008-01-01

    Cytokines are important cellular signaling proteins involved in inflammation, wound healing and are thought to direct the foreign body response to implanted materials. In this work, polyurethane tubes (25 mm length, 1.02 mm i.d., and 1.65 mm o.d.) were implanted into subcutaneous tissue of male Sprague-Dawley rats. The tubes served as the biomaterial and a means to collect the interstitial fluid that would be exchanged within the tube lumen and the surrounding tissue. After three and seven days, the tubes were explanted and cytokines in the fluid were quantified with a multiplexed cytokine immunoassay. Six cytokines, interleukin-1β. (IL-1β), IL-4, IL-6, IL-10, macrophage chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNF-α), were simultaneously quantified. All cytokine concentrations with the exception of IL-4 and TNF-α ranged between low pg/mL to mid ng/mL levels. Neither TNF-α nor IL-4 was detected from any sample. These results illustrate the potential of using the tube materials combined with bead-based immunoassays as a direct method for in vivo collection of multiple cytokines in low microliter sample volumes for fixed day biomaterial implant studies. PMID:18519165

  8. Detection of inflammatory cytokines using a fiber optic microsphere immunoassay array

    NASA Astrophysics Data System (ADS)

    Blicharz, Timothy M.; Walt, David R.

    2006-10-01

    A multiplexed fiber optic microsphere-based immunoassay array capable of simultaneously measuring five inflammatory cytokines has been developed. Five groups of amine-functionalized 3.1 micron microspheres were internally encoded with five distinct concentrations of a europium dye and converted to cytokine probes by covalently coupling monoclonal capture antibodies specific for human VEGF, IFN-gamma, RANTES, IP-10, and Eotaxin-3 to the microspheres via glutaraldehyde chemistry. The microspheres were pooled and loaded into a 1 mm diameter fiber optic bundle containing ~50,000 individual etched microwells, producing the multiplexed cytokine immunoassay array. Multiple arrays can be created from a single microsphere pool for high throughput sample analysis. Sandwich fluoroimmunoassays were performed by incubating the probe array in a sample, followed by incubation in a mixture of biotin-labeled detection antibodies that are complementary to the five cytokines. Finally, universal detection of each protein was performed using a fluorescence imaging system after briefly immersing the array in a solution of fluorophore-labeled streptavidin. The multiplexed cytokine array has been shown to respond selectively to VEGF, IFNgamma, RANTES, IP-10, and Eotaxin-3, permitting multiplexed quantitative analysis. Ultimately, the multiplexed cytokine array will be utilized to evaluate the potential of using saliva as a noninvasive diagnostic fluid for pulmonary inflammatory diseases such as asthma.

  9. Investigation of Macrophage Differentiation and Cytokine Production in an Undergraduate Immunology Laboratory

    ERIC Educational Resources Information Center

    Berkes, Charlotte; Chan, Leo Li-Ying

    2015-01-01

    We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…

  10. Biomarker in archaeological soils

    NASA Astrophysics Data System (ADS)

    Wiedner, Katja; Glaser, Bruno; Schneeweiß, Jens

    2015-04-01

    The use of biomarkers in an archaeological context allow deeper insights into the understanding of anthropogenic (dark) earth formation and from an archaeological point of view, a completely new perspective on cultivation practices in the historic past. During an archaeological excavation of a Slavic settlement (10th/11th C. A.D.) in Brünkendorf (Wendland region in Northern Germany), a thick black soil (Nordic Dark Earth) was discovered that resembled the famous terra preta phenomenon. For the humid tropics, terra preta could act as model for sustainable agricultural practices and as example for long-term CO2-sequestration into terrestrial ecosystems. The question was whether this Nordic Dark Earth had similar properties and genesis as the famous Amazonian Dark Earth in order to find a model for sustainable agricultural practices and long term CO2-sequestration in temperate zones. For this purpose, a multi-analytical approach was used to characterize the sandy-textured Nordic Dark Earth in comparison to less anthropogenically influenced soils in the adjacent area in respect of ecological conditions (e.g. amino sugar), input materials (faeces) and the presence of stable soil organic matter (black carbon). Amino sugar analyses showed that Nordic Dark Earth contained higher amounts of microbial residues being dominated by soil fungi. Faecal biomarkers such as stanols and bile acids indicated animal manure from omnivores and herbivores but also human excrements. Black carbon content of about 30 Mg ha-1 in the Nordic Dark Earth was about four times higher compared to the adjacent soil and in the same order of magnitude compared to terra preta. Our data strongly suggest parallels to anthropogenic soil formation in Amazonia and in Europe by input of organic wastes, faecal material and charred organic matter. An obvious difference was that in terra preta input of human-derived faecal material dominated while in NDE human-derived faecal material played only a minor role

  11. A Robust Biomarker

    NASA Technical Reports Server (NTRS)

    Westall, F.; Steele, A.; Toporski, J.; Walsh, M. M.; Allen, C. C.; Guidry, S.; McKay, D. S.; Gibson, E. K.; Chafetz, H. S.

    2000-01-01

    containing fossil biofilm, including the 3.5 b.y..-old carbonaceous cherts from South Africa and Australia. As a result of the unique compositional, structural and "mineralisable" properties of bacterial polymer and biofilms, we conclude that bacterial polymers and biofilms constitute a robust and reliable biomarker for life on Earth and could be a potential biomarker for extraterrestrial life.

  12. Urinary Biomarkers of Brain Diseases

    PubMed Central

    An, Manxia; Gao, Youhe

    2016-01-01

    Biomarkers are the measurable changes associated with a physiological or pathophysiological process. Unlike blood, urine is not subject to homeostatic mechanisms. Therefore, greater fluctuations could occur in urine than in blood, better reflecting the changes in human body. The roadmap of urine biomarker era was proposed. Although urine analysis has been attempted for clinical diagnosis, and urine has been monitored during the progression of many diseases, particularly urinary system diseases, whether urine can reflect brain disease status remains uncertain. As some biomarkers of brain diseases can be detected in the body fluids such as cerebrospinal fluid and blood, there is a possibility that urine also contain biomarkers of brain diseases. This review summarizes the clues of brain diseases reflected in the urine proteome and metabolome. PMID:26751805

  13. Biomarkers in localized prostate cancer.

    PubMed

    Ferro, Matteo; Buonerba, Carlo; Terracciano, Daniela; Lucarelli, Giuseppe; Cosimato, Vincenzo; Bottero, Danilo; Deliu, Victor M; Ditonno, Pasquale; Perdonà, Sisto; Autorino, Riccardo; Coman, Ioman; De Placido, Sabino; Di Lorenzo, Giuseppe; De Cobelli, Ottavio

    2016-02-01

    Biomarkers can improve prostate cancer diagnosis and treatment. Accuracy of prostate-specific antigen (PSA) for early diagnosis of prostate cancer is not satisfactory, as it is an organ- but not cancer-specific biomarker, and it can be improved by using models that incorporate PSA along with other test results, such as prostate cancer antigen 3, the molecular forms of PSA (proPSA, benign PSA and intact PSA), as well as kallikreins. Recent reports suggest that new tools may be provided by metabolomic studies as shown by preliminary data on sarcosine. Additional molecular biomarkers have been identified by the use of genomics, proteomics and metabolomics. We review the most relevant biomarkers for early diagnosis and management of localized prostate cancer.

  14. Translational progress on tumor biomarkers

    PubMed Central

    Guo, Hongwei; Zhou, Xiaolin; Lu, Yi; Xie, Liye; Chen, Qian; Keller, Evan T; Liu, Qian; Zhou, Qinghua; Zhang, Jian

    2015-01-01

    There is an urgent need to apply basic research achievements to the clinic. In particular, mechanistic studies should be developed by bench researchers, depending upon clinical demands, in order to improve the survival and quality of life of cancer patients. To date, translational medicine has been addressed in cancer biology, particularly in the identification and characterization of novel tumor biomarkers. This review focuses on the recent achievements and clinical application prospects in tumor biomarkers based on translational medicine. PMID:26557902

  15. Prostate cancer proteomics: The urgent need for clinically validated biomarkers.

    PubMed

    Evans, Caroline A; Glen, Adam; Eaton, Colby L; Larré, Stéphane; Catto, James W F; Hamdy, Freddie C; Wright, Phillip C; Rehman, Ishtiaq

    2009-02-01

    Prostate cancer (PCa) is the most common cancer diagnosis and the second most common cause of cancer-related deaths in men. Currently, serum prostate-specific antigen (PSA) is the only biomarker widely used in the diagnosis and management of patients with PCa. However, PSA lacks diagnostic sensitivity and specificity, leading to false-negative and false-positive test results. PSA cannot distinguish indolent from aggressive disease, leading to many patients being over-treated with associated side-effects. Furthermore, PSA is unable to identify which tumors are likely to become unresponsive to treatment at an early stage. Thus, there is an urgent need for clinically validated biomarkers which will improve the diagnosis and management of PCa. Given the heterogeneity of PCa it is likely that a panel of biomarkers will be required. In the quest for PCa biomarkers, a wide range of samples including urine, serum, tissues, and cell lines have been studied using proteomic approaches such as 2-DE, SELDI-TOF, SILAC, ICAT, iTRAQ, and MALDI-IMS. The value of these technologies, and other emerging platforms such as selected reaction monitoring (SRM) and multiple reaction monitoring (MRM), are discussed in the context of biomarker discovery, validation and addressing the "bottle-necks" that exist prior to clinical translation. PMID:26238619

  16. Combinatorial signals by inflammatory cytokines and chemokines mediate leukocyte interactions with extracellular matrix.

    PubMed

    Vaday, G G; Franitza, S; Schor, H; Hecht, I; Brill, A; Cahalon, L; Hershkoviz, R; Lider, O

    2001-06-01

    On their extravasation from the vascular system into inflamed tissues, leukocytes must maneuver through a complex insoluble network of molecules termed the extracellular matrix (ECM). Leukocytes navigate toward their target sites by adhering to ECM glycoproteins and secreting degradative enzymes, while constantly orienting themselves in response to specific signals in their surroundings. Cytokines and chemokines are key biological mediators that provide such signals for cell navigation. Although the individual effects of various cytokines have been well characterized, it is becoming increasingly evident that the mixture of cytokines encountered in the ECM provides important combinatorial signals that influence cell behavior. Herein, we present an overview of previous and ongoing studies that have examined how leukocytes integrate signals from different combinations of cytokines that they encounter either simultaneously or sequentially within the ECM, to dynamically alter their navigational activities. For example, we describe our findings that tumor necrosis factor (TNF)-alpha acts as an adhesion-strengthening and stop signal for T cells migrating toward stromal cell-derived factor-1alpha, while transforming growth factor-beta down-regulates TNF-alpha-induced matrix metalloproteinase-9 secretion by monocytes. These findings indicate the importance of how one cytokine, such as TNF-alpha, can transmit diverse signals to different subsets of leukocytes, depending on its combination with other cytokines, its concentration, and its time and sequence of exposure. The combinatorial effects of multiple cytokines thus affect leukocytes in a step-by-step manner, whereby cells react to cytokine signals in their immediate vicinity by altering their adhesiveness, directional movement, and remodeling of the ECM. PMID:11404372

  17. Diverse Toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages.

    PubMed

    Park, Se-Ra; Kim, Dong-Jae; Han, Seung-Hyun; Kang, Min-Jung; Lee, Jun-Young; Jeong, Yu-Jin; Lee, Sang-Jin; Kim, Tae-Hyoun; Ahn, Sang-Gun; Yoon, Jung-Hoon; Park, Jong-Hwan

    2014-05-01

    Toll-like receptors (TLRs) orchestrate a repertoire of immune responses in macrophages against various pathogens. Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans are two important periodontal pathogens. In the present study, we investigated TLR signaling regulating cytokine production of macrophages in response to F. nucleatum and A. actinomycetemcomitans. TLR2 and TLR4 are redundant in the production of cytokines (interleukin-6 [IL-6] and tumor necrosis factor alpha [TNF-α]) in F. nucleatum- and A. actinomycetemcomitans-infected macrophages. The production of cytokines by macrophages in response to F. nucleatum and A. actinomycetemcomitans infection was impaired in MyD88-deficient macrophages. Moreover, cytokine concentrations were lower in MyD88-deficient macrophages than in TLR2/TLR4 (TLR2/4) double-deficient cells. An endosomal TLR inhibitor, chloroquine, reduced cytokine production in TLR2/4-deficient macrophages in response to F. nucleatum and A. actinomycetemcomitans, and DNA from F. nucleatum or A. actinomycetemcomitans induced IL-6 production in bone marrow-derived macrophages (BMDMs), which was abolished by chloroquine. Western blot analysis revealed that TLR2/4 and MyD88 were required for optimal activation of NF-κB and mitogen-activated protein kinases (MAPKs) in macrophages in response to F. nucleatum and A. actinomycetemcomitans, with different kinetics. An inhibitor assay showed that NF-κB and all MAPKs (p38, extracellular signal-regulated kinase [ERK], and Jun N-terminal protein kinase [JNK]) mediate F. nucleatum-induced production of cytokines in macrophages, whereas NF-κB and p38, but not ERK and JNK, are involved in A. actinomycetemcomitans-mediated cytokine production. These findings suggest that multiple TLRs may participate in the cytokine production of macrophages against periodontal bacteria.

  18. Clinical biomarkers in metabolic syndrome.

    PubMed

    Barazzoni, Rocco; Silva, Veronica; Singer, Pierre

    2014-04-01

    A biomarker can be defined as a measurable variable that may be used as an indicator of a given biological state or condition. Biomarkers have been used in health and disease for diagnostic purposes, as tools to assess effectiveness of nutritional or drug intervention, or as risk markers to predict the development of certain diseases. In nutrition studies, selecting appropriate biomarkers is important to assess compliance, or incidence of a particular dietary component in the biochemistry of the organism, and in the diagnosis and prognosis of nutrition-related diseases. Metabolic syndrome is a cluster of cardiovascular risk factors that occur simultaneously in the same individual, and it is associated with systemic alterations that may involve several organs and tissues. Given its close association with obesity and the increasing prevalence of obesity worldwide, identifying obese individuals at risk for metabolic syndrome is a major clinical priority. Biomarkers for metabolic syndrome are therefore potential important tools to maximize the effectiveness of treatment in subjects who would likely benefit the most. Choice of biomarkers may be challenging due to the complexity of the syndrome, and this article will mainly focus on nutrition biomarkers related to the diagnosis and prognosis of the metabolic syndrome.

  19. A genetic contribution to circulating cytokines and obesity in children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytokines are considered to be involved in obesity-related metabolic diseases. Study objectives are to determine the heritability of circulating cytokine levels, to investigate pleiotropy between cytokines and obesity traits, and to present genome scan results for cytokines in 1030 Hispanic children...

  20. Serum Glycoprotein Biomarker Discovery and Qualification Pipeline Reveals Novel Diagnostic Biomarker Candidates for Esophageal Adenocarcinoma.

    PubMed

    Shah, Alok K; Cao, Kim-Anh Lê; Choi, Eunju; Chen, David; Gautier, Benoît; Nancarrow, Derek; Whiteman, David C; Saunders, Nicholas A; Barbour, Andrew P; Joshi, Virendra; Hill, Michelle M

    2015-11-01

    We report an integrated pipeline for efficient serum glycoprotein biomarker candidate discovery and qualification that may be used to facilitate cancer diagnosis and management. The discovery phase used semi-automated lectin magnetic bead array (LeMBA)-coupled tandem mass spectrometry with a dedicated data-housing and analysis pipeline; GlycoSelector (http://glycoselector.di.uq.edu.au). The qualification phase used lectin magnetic bead array-multiple reaction monitoring-mass spectrometry incorporating an interactive web-interface, Shiny mixOmics (http://mixomics-projects.di.uq.edu.au/Shiny), for univariate and multivariate statistical analysis. Relative quantitation was performed by referencing to a spiked-in glycoprotein, chicken ovalbumin. We applied this workflow to identify diagnostic biomarkers for esophageal adenocarcinoma (EAC), a life threatening malignancy with poor prognosis in the advanced setting. EAC develops from metaplastic condition Barrett's esophagus (BE). Currently diagnosis and monitoring of at-risk patients is through endoscopy and biopsy, which is expensive and requires hospital admission. Hence there is a clinical need for a noninvasive diagnostic biomarker of EAC. In total 89 patient samples from healthy controls, and patients with BE or EAC were screened in discovery and qualification stages. Of the 246 glycoforms measured in the qualification stage, 40 glycoforms (as measured by lectin affinity) qualified as candidate serum markers. The top candidate for distinguishing healthy from BE patients' group was Narcissus pseudonarcissus lectin (NPL)-reactive Apolipoprotein B-100 (p value = 0.0231; AUROC = 0.71); BE versus EAC, Aleuria aurantia lectin (AAL)-reactive complement component C9 (p value = 0.0001; AUROC = 0.85); healthy versus EAC, Erythroagglutinin Phaseolus vulgaris (EPHA)-reactive gelsolin (p value = 0.0014; AUROC = 0.80). A panel of 8 glycoforms showed an improved AUROC of 0.94 to discriminate EAC from BE. Two biomarker candidates