Science.gov

Sample records for multiple cytokine biomarkers

  1. Multiple Serum Cytokine Profiling to Identify Combinational Diagnostic Biomarkers in Attacks of Familial Mediterranean Fever

    PubMed Central

    Koga, Tomohiro; Migita, Kiyoshi; Sato, Shuntaro; Umeda, Masataka; Nonaka, Fumiaki; Kawashiri, Shin-Ya; Iwamoto, Naoki; Ichinose, Kunihiro; Tamai, Mami; Nakamura, Hideki; Origuchi, Tomoki; Ueki, Yukitaka; Masumoto, Junya; Agematsu, Kazunaga; Yachie, Akihiro; Yoshiura, Koh-Ichiro; Eguchi, Katsumi; Kawakami, Atsushi

    2016-01-01

    Abstract The precise cytokine networks in the serum of individuals with familial Mediterranean fever (FMF) that are associated with its pathogenesis have been unknown. Here, we attempted to identify specific biomarkers to diagnose or assess disease activity in FMF patients. We measured serum levels of 45 cytokines in 75 FMF patients and 40 age-matched controls by multisuspension cytokine array. FMF in “attack” or “remission” was classified by Japan College of Rheumatology-certified rheumatologists according to the Tel Hashomer criteria. Cytokines were ranked by their importance by a multivariate classification algorithm. We performed a logistic regression analysis to determine specific biomarkers for discriminating FMF patients in attack. To identify specific molecular networks, we performed a cluster analysis of each cytokine. Twenty-nine of the 45 cytokines were available for further analyses. Eight cytokines’ serum levels were significantly elevated in the FMF attack versus healthy control group. Nine cytokines were increased in FMF attack compared to FMF remission. Multivariate classification algorithms followed by a logistic regression analysis revealed that the combined measurement of IL-6, IL-18, and IL-17 distinguished FMF patients in attack from the controls with the highest accuracy (sensitivity 89.2%, specificity 100%, and accuracy 95.5%). Among the FMF patients, the combined measurement of IL-6, G-CSF, IL-10, and IL-12p40 discriminated febrile attack periods from remission periods with the highest accuracy (sensitivity 75.0%, specificity 87.9%, and accuracy 84.0%). Our data identified combinational diagnostic biomarkers in FMF patients based on the measurement of multiple cytokines. These findings help to improve the diagnostic performance of FMF in daily practice and extend our understanding of the activation of the inflammasome leading to enhanced cytokine networks. PMID:27100444

  2. Cytokines as biomarkers in rheumatoid arthritis.

    PubMed

    Burska, Agata; Boissinot, Marjorie; Ponchel, Frederique

    2014-01-01

    RA is a complex disease that develops as a series of events often referred to as disease continuum. RA would benefit from novel biomarker development for diagnosis where new biomarkers are still needed (even if progresses have been made with the inclusion of ACPA into the ACR/EULAR 2010 diagnostic criteria) and for prognostic notably in at risk of evolution patients with autoantibody-positive arthralgia. Risk biomarkers for rapid evolution or cardiovascular complications are also highly desirable. Monitoring biomarkers would be useful in predicting relapse. Finally, predictive biomarkers for therapy outcome would allow tailoring therapy to the individual. Increasing numbers of cytokines have been involved in RA pathology. Many have the potential as biomarkers in RA especially as their clinical utility is already established in other diseases and could be easily transferable to rheumatology. We will review the current knowledge's relation to cytokine used as biomarker in RA. However, given the complexity and heterogeneous nature of RA, it is unlikely that a single cytokine may provide sufficient discrimination; therefore multiple biomarker signatures may represent more realistic approach for the future of personalised medicine in RA.

  3. Circulating Cytokines as Biomarkers of Alcohol Abuse and Alcoholism

    PubMed Central

    Achur, Rajeshwara N.; Freeman, Willard M.; Vrana, Kent E.

    2010-01-01

    There are currently no consistent objective biochemical markers of alcohol abuse and alcoholism. Development of reliable diagnostic biomarkers that permit accurate assessment of alcohol intake and patterns of drinking is of prime importance to treatment and research fields. Diagnostic biomarker development in other diseases has demonstrated the utility of both open, systems biology, screening for biomarkers and more rational focused efforts on specific biomolecules or families of biomolecules. Long term alcohol consumption leads to altered inflammatory cell and adaptive immune responses with associated pathologies and increased incidence of infections. This has led researchers to focus attention on identifying cytokine biomarkers in models of alcohol abuse. Alcohol is known to alter cytokine levels in plasma and a variety of tissues including lung, liver, and very importantly brain. A number of cytokine biomarker candidates have been identified, including: TNF alpha, IL1-alpha, IL1-beta, IL6, IL8, IL12 and MCP-1. This is an emerging and potentially exciting avenue of research in that circulating cytokines may contribute to diagnostic biomarker panels and a combination of multiple biomarkers may significantly increase the sensitivity and specificity of the biochemical tests aiding reliable and accurate detection of excessive alcohol intake. PMID:20020329

  4. Cytokines as predictive biomarkers of alloreactivity.

    PubMed

    Brunet, M

    2012-09-08

    Clinical use of valid biomarkers enables the prediction of alloreactive response (risk of rejection) and personal susceptibility to immunosuppressive treatment could lead to personalized immunosuppressive therapy. In clinical transplantation, it has been reported that cytokine production and secretion could be modified by immunosuppressive drugs, as well as during the rejection process. Some cytokines such as interferon (IFN)-γ, interleukin (IL)-2, IL-10, and transforming growth factor (TGF)-β have been identified as candidate biomarkers that correlate with graft outcome and personal response to immunosuppressive agents. This review will focus on the current state of knowledge, indicating that monitoring changes in cytokine production could be used to predict the risk of rejection and to guide immunosuppression therapy in transplant recipients. In addition, many questions regarding the characteristics and standardization of the methods used for cytokine monitoring (ELISA; ELISPOT; Flow Cytometry) that need to be addressed before these assays can be clinically applied will be discussed in light of recent studies showing an association between the expression of some cytokines and genetic variants, the impact of immunosuppression, and the incidence of rejection. The clinical implementation of cytokine monitoring should be tested in prospective multicenter clinical trials with standard operating procedures and objective interpretation of the results obtained.

  5. Cytokines as potential biomarkers of liver toxicity.

    PubMed

    Lacour, Sandrine; Gautier, Jean-Charles; Pallardy, Marc; Roberts, Ruth

    2005-01-01

    Several important drug classes show pre-clinical hepatotoxicity or, in some cases hepatotoxicity in man in Phase III/IV not predicted by pre-clinical studies. This hepatotoxicity is associated with death of the parenchyma by both necrosis and apoptosis. Recent data have implicated molecular mediators of the immune response such as tumor necrosis factor alpha (TNFalpha), interleukin 1beta(1L-1beta) and interleukin 6 (IL6) in acute and chronic liver damage. These cytokines networks have been implicated in mediating the hepatic response to xenobiotics as diverse as PPAR ligands, acetaminophen and phenobarbitone. Thus, pro-inflammatory cytokines such as TNFalpha, IL1 beta and IL6 are released into the bloodstream both from the liver and from distal sites during hepatic toxic injury. Probably due to differences in the responses of rodent and human hepatocytes to cytokines, some clinical hepatotoxicities are not predicted by rodent models. However, the cytokine changes implicated in this human hepatic cell death could be manifest in rodent models and thus could be detected at the molecular level. Here we review the role of cytokines in different types of drug-induced liver injury and discuss whether these cytokine fingerprints are potential biomarkers of so-called idiosyncratic human liver toxicity.

  6. Multiple Circulating Cytokines Are Coelevated in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Todd, Ian; John, Michelle; Bolton, Charlotte E.; Harrison, Timothy

    2016-01-01

    Inflammatory biomarkers, including cytokines, are associated with COPD, but the association of particular circulating cytokines with systemic pathology remains equivocal. To investigate this, we developed a protein microarray system to detect multiple cytokines in small volumes of serum. Fourteen cytokines were measured in serum from never-smokers, ex-smokers, current smokers, and COPD patients (GOLD stages 1–3). Certain individual circulating cytokines (particularly TNFα and IL-1β) were significantly elevated in concentration in the serum of particular COPD patients (and some current/ex-smokers without COPD) and may serve as markers of particularly significant systemic inflammation. However, numerous circulating cytokines were raised such that their combined, but not individual, elevation was significantly associated with severity of disease, and these may be further indicators of, and contributors to, the systemic inflammatory manifestations of COPD. The coelevation of numerous circulating cytokines in COPD is consistent with the insidious development, chronic nature, and systemic comorbidities of the disease. PMID:27524865

  7. Multiple Circulating Cytokines Are Coelevated in Chronic Obstructive Pulmonary Disease.

    PubMed

    Selvarajah, Senthooran; Todd, Ian; Tighe, Patrick J; John, Michelle; Bolton, Charlotte E; Harrison, Timothy; Fairclough, Lucy C

    2016-01-01

    Inflammatory biomarkers, including cytokines, are associated with COPD, but the association of particular circulating cytokines with systemic pathology remains equivocal. To investigate this, we developed a protein microarray system to detect multiple cytokines in small volumes of serum. Fourteen cytokines were measured in serum from never-smokers, ex-smokers, current smokers, and COPD patients (GOLD stages 1-3). Certain individual circulating cytokines (particularly TNFα and IL-1β) were significantly elevated in concentration in the serum of particular COPD patients (and some current/ex-smokers without COPD) and may serve as markers of particularly significant systemic inflammation. However, numerous circulating cytokines were raised such that their combined, but not individual, elevation was significantly associated with severity of disease, and these may be further indicators of, and contributors to, the systemic inflammatory manifestations of COPD. The coelevation of numerous circulating cytokines in COPD is consistent with the insidious development, chronic nature, and systemic comorbidities of the disease.

  8. The inflammatory cytokines: molecular biomarkers for major depressive disorder?

    PubMed

    Martin, Charlotte; Tansey, Katherine E; Schalkwyk, Leonard C; Powell, Timothy R

    2015-01-01

    Cytokines are pleotropic cell signaling proteins that, in addition to their role as inflammatory mediators, also affect neurotransmitter systems, brain functionality and mood. Here we explore the potential utility of cytokine biomarkers for major depressive disorder. Specifically, we explore how genetic, transcriptomic and proteomic information relating to the cytokines might act as biomarkers, aiding clinical diagnosis and treatment selection processes. We advise future studies to investigate whether cytokine biomarkers might differentiate major depressive disorder patients from other patient groups with overlapping clinical characteristics. Furthermore, we invite future pharmacogenetic studies to investigate whether early antidepressant-induced changes to cytokine mRNA or protein levels precede behavioral changes and act as longer-term predictors of clinical antidepressant response.

  9. The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder.

    PubMed

    Masi, Anne; Glozier, Nicholas; Dale, Russell; Guastella, Adam J

    2017-04-01

    Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental condition characterized by variable impairments in communication and social interaction as well as restricted interests and repetitive behaviors. Heterogeneity of presentation is a hallmark. Investigations of immune system problems in ASD, including aberrations in cytokine profiles and signaling, have been increasing in recent times and are the subject of ongoing interest. With the aim of establishing whether cytokines have utility as potential biomarkers that may define a subgroup of ASD, or function as an objective measure of response to treatment, this review summarizes the role of the immune system, discusses the relationship between the immune system, the brain, and behavior, and presents previously-identified immune system abnormalities in ASD, specifically addressing the role of cytokines in these aberrations. The roles and identification of biomarkers are also addressed, particularly with respect to cytokine profiles in ASD.

  10. CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: A systematic review.

    PubMed

    Kothur, Kavitha; Wienholt, Louise; Brilot, Fabienne; Dale, Russell C

    2016-01-01

    Despite improved understanding of the pathogenesis of neuroinflammatory disorders of the brain and development of new diagnostic markers, our biomarker repertoire to demonstrate and monitor inflammation remains limited. Using PubMed database, we reviewed 83 studies on CSF cytokines and chemokines and describe the pattern of elevation and possible role of cytokines/chemokines as biomarkers in viral and autoimmune inflammatory neurological disorders of the CNS. Despite inconsistencies and overlap of cytokines and chemokines in different neuroinflammation syndromes, there are some trends regarding the pattern of cytokines/chemokine elevation. Namely B cell markers, such as CXCL13 and BAFF are predominantly investigated and found to be elevated in autoantibody-associated disorders, whereas interferon gamma (IFN-γ) is elevated mainly in viral encephalitis. Th2 and Th17 cytokines are frequently elevated in acute disseminated encephalomyelitis (ADEM) and neuromyelitis optica (NMO), whereas Th1 and Th17 cytokines are more commonly elevated in multiple sclerosis (MS). Cytokine/chemokine profiling might provide new insights into disease pathogenesis, and improve our ability to monitor inflammation and response to treatment.

  11. Cytokines as Biomarkers of Pancreatic Ductal Adenocarcinoma: A Systematic Review

    PubMed Central

    Yako, Yandiswa Yolanda; Kruger, Deirdré; Smith, Martin; Brand, Martin

    2016-01-01

    Objectives A systematic review of the role of cytokines in clinical medicine as diagnostic, prognostic, or predictive biomarkers in pancreatic ductal adenocarcinoma was undertaken. Materials and Methods A systematic review was conducted according to the 2009 PRISMA guidelines. PubMed database was searched for all original articles on the topic of interest published until June 2015, and this was supplemented with references cited in relevant articles. Studies were evaluated for risk of bias using the Quality in Prognosis Studies tools. Results Forty one cytokines were investigated with relation to pancreatic ductal adenocarcinoma (PDAC) in 65 studies, ten of which were analyzed by more than three studies. Six cytokines (interleukin[IL]-1β, -6, -8, -10, vascular endothelial growth factor, and transforming growth factor) were consistently reported to be increased in PDAC by more than four studies; irrespective of sample type; method of measurement; or statistical analysis model used. When evaluated as part of distinct panels that included CA19-9, IL-1β, -6 and -8 improved the performance of CA19-9 alone in differentiating PDAC from healthy controls. For example, a panel comprising IL-1β, IL-8, and CA 19–9 had a sensitivity of 94.1% vs 85.9%, specificity of 100% vs 96.3%, and area under the curve of 0.984 vs 0.925. The above-mentioned cytokines were associated with the severity of PDAC. IL-2, -6, -10, VEGF, and TGF levels were reported to be altered after patients received therapy or surgery. However, studies did not show any evidence of their ability to predict treatment response. Conclusion Our review demonstrates that there is insufficient evidence to support the role of individual cytokines as diagnostic, predictive or prognostic biomarkers for PDAC. However, emerging evidence indicates that a panel of cytokines may be a better tool for discriminating PDAC from other non-malignant pancreatic diseases or healthy individuals. PMID:27170998

  12. Translational implications of inflammatory biomarkers and cytokine networks in psychoneuroimmunology.

    PubMed

    Yan, Qing

    2012-01-01

    Developments in psychoneuroimmunology (PNI) need to be translated into personalized medicine to achieve better clinical outcomes. One of the most critical steps in this translational process is to identify systemic biomarkers for better diagnosis and treatment. Applications of systems biology approaches in PNI would enable the insights into the correlations among various systems and different levels for the identification of the basic elements of the psychophysiological framework. Among the potential PNI biomarkers, inflammatory markers deserve special attention as they play a pivotal role linking various health conditions and disorders. The elucidation of inflammatory markers, cytokine networks, and immune-brain-behavior interactions may help establish PNI profiles for the identification of potential targets for personalized interventions in at risk populations. The understanding of the general systemic pathways among different disorders may contribute to the transition from the disease-centered medicine to patient-centered medicine. Integrative strategies targeting these factors and pathways would be useful for the prevention and treatment of a spectrum of diseases that share the common links. Examples of the translational implications of potential PNI biomarkers and networks in diseases including depression, Alzheimer's disease, obesity, cardiovascular disease, stroke, and HIV are discussed in details.

  13. Cytokines as biomarkers of Crimean-Congo hemorrhagic fever.

    PubMed

    Papa, Anna; Tsergouli, Katerina; Çağlayık, Dilek Yağcı; Bino, Silvia; Como, Najada; Uyar, Yavuz; Korukluoglu, Gulay

    2016-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is a potentially severe disease caused by CCHF virus. As in other viral hemorrhagic fevers, it is considered that the course and outcome of the disease depend on the viral load and the balance among the immune response mediators, and that a fatal outcome is the result of a "cytokine storm." The level of 27 cytokines was measured in serum samples taken from 29 patients during the acute phase of the disease. Two cases were fatal. Among survivors, significant differences between severe and non-severe cases were observed in the levels of IP-10, and MCP-1, while the levels of IL-1b, IL-5, IL-6, IL-8, IL-9, IL-10, IL-15, IP-10, MCP-1, TNF-α, and RANTES differed significantly between fatal and non-fatal cases (P < 0.05). RANTES was negatively correlated with the outcome of the disease. A striking similarity with the cytokine patterns seen in Ebola virus disease was observed. A weak Th1 immune response was seen. The viral load was positively correlated with IL-10, IP-10, and MCP-1 levels, and negatively correlated with the ratio IL-12/IL-10. Especially IP-10 and MCP-1 were significantly associated with the viral load, the severity and outcome of the disease, and they could act as biomarkers and, probably, as potential targets for treatment strategies design.

  14. Plasma Biomarkers Discriminate Clinical Forms of Multiple Sclerosis

    PubMed Central

    Tejera-Alhambra, Marta; Casrouge, Armanda; de Andrés, Clara; Seyfferth, Ansgar; Ramos-Medina, Rocío; Alonso, Bárbara; Vega, Janet; Fernández-Paredes, Lidia; Albert, Matthew L.; Sánchez-Ramón, Silvia

    2015-01-01

    Multiple sclerosis, the most common cause of neurological disability in young population after trauma, represents a significant public health burden. Current challenges associated with management of multiple sclerosis (MS) patients stem from the lack of biomarkers that might enable stratification of the different clinical forms of MS and thus prompt treatment for those patients with progressive MS, for whom there is currently no therapy available. In the present work we analyzed a set of thirty different plasma cytokines, chemokines and growth factors present in circulation of 129 MS patients with different clinical forms (relapsing remitting, secondary progressive and primary progressive MS) and 53 healthy controls, across two independent cohorts. The set of plasma analytes was quantified with Luminex xMAP technology and their predictive power regarding clinical outcome was evaluated both individually using ROC curves and in combination using logistic regression analysis. Our results from two independent cohorts of MS patients demonstrate that the divergent clinical and histology-based MS forms are associated with distinct profiles of circulating plasma protein biomarkers, with distinct signatures being composed of chemokines and growth/angiogenic factors. With this work, we propose that an evaluation of a set of 4 circulating biomarkers (HGF, Eotaxin/CCL11, EGF and MIP-1β/CCL4) in MS patients might serve as an effective tool in the diagnosis and more personalized therapeutic targeting of MS patients. PMID:26039252

  15. Cytokines as biomarkers in depressive disorder: current standing and prospects.

    PubMed

    Lichtblau, Nicole; Schmidt, Frank M; Schumann, Robert; Kirkby, Kenneth C; Himmerich, Hubertus

    2013-10-01

    The frequently observed co-occurrence of depressive disorders and inflammatory diseases suggests a close connection between the nervous and the immune systems. Increased pro-inflammatory and type 1 cytokines, such as interleukin (IL)-1, tumour necrosis factor (TNF)-α and interferon (IFN)-γ, appear to be an important link. Cytokines are synthesized by immune cells in the blood and peripheral tissues and by glial cells in the central nervous system (CNS). Evidence suggests that the blood-brain barrier (BBB) is permeable to cytokines and immune cells, and that afferent nerves, e.g. the vagus nerve, mediate the communication between peripheral inflammatory processes and CNS. Cytokines such as IL-1ß, TNF-α and IFN-γ seem to contribute to the pathophysiology of depression by activating monoamine reuptake, stimulating the hypothalamic-pituitary-adrenocortical (HPA) axis and decreasing production of serotonin due to increased activity of indolamine-2,3-dioxygenase (IDO). However, critical appraisal of these hypotheses is required, because cytokine elevation is not specific to depression. Moreover, several effective antidepressants such as amitriptyline and mirtazapine have been shown to increase cytokine production. When applying immunomodulatory therapies, these drugs may increase the risk of specific side effects such as infections or interact with antidepressant drugs on important functions of the body such as the coagulation system.

  16. Cytokine biomarkers in tear film for primary open-angle glaucoma

    PubMed Central

    Gupta, Divakar; Wen, Joanne C; Huebner, Janet L; Stinnett, Sandra; Kraus, Virginia B; Tseng, Henry C; Walsh, Molly

    2017-01-01

    Purpose To determine the utility of tear film cytokines as biomarkers for early primary open-angle glaucoma (POAG). Methods Patients without POAG and eye drop-naïve patients with newly diagnosed POAG were recruited from an academic hospital-based glaucoma practice. Tear films of recruited patients were obtained and analyzed using a multiplex, high-sensitivity electrochemiluminescent enzyme-linked immunosorbent assay for proinflammatory cytokines (IFNγ, IL-10, IL-12p70, IL-13, IL-1β, IL-2, IL-4, IL-6, IL-8, and TNFα). Results Mean concentrations of tear film cytokines were lower in the glaucoma group for 8 of 10 cytokines tested. IL-12p70 (3.94±2.19 pg/mL in control vs 2.31±1.156 pg/mL in POAG; P=0.035) was significantly lower in the tear film of patients with newly diagnosed POAG. Conclusion Proinflammatory cytokines were lower in eye drop-naïve newly diagnosed glaucoma patients. Tear film cytokine profiles may be used as biomarkers of early POAG. PMID:28260854

  17. Biomarker Qualification: Toward a Multiple Stakeholder Framework for Biomarker Development, Regulatory Acceptance, and Utilization.

    PubMed

    Amur, S; LaVange, L; Zineh, I; Buckman-Garner, S; Woodcock, J

    2015-07-01

    The discovery, development, and use of biomarkers for a variety of drug development purposes are areas of tremendous interest and need. Biomarkers can become accepted for use through submission of biomarker data during the drug approval process. Another emerging pathway for acceptance of biomarkers is via the biomarker qualification program developed by the Center for Drug Evaluation and Research (CDER, US Food and Drug Administration). Evidentiary standards are needed to develop and evaluate various types of biomarkers for their intended use and multiple stakeholders, including academia, industry, government, and consortia must work together to help develop this evidence. The article describes various types of biomarkers that can be useful in drug development and evidentiary considerations that are important for qualification. A path forward for coordinating efforts to identify and explore needed biomarkers is proposed for consideration.

  18. Detection of multiple cytokines by protein arrays from cell lysate and tissue lysate.

    PubMed

    Lin, Ying; Huang, Ruochun; Cao, Xuan; Wang, Shen-Ming; Shi, Qing; Huang, Ruo-Pan

    2003-02-01

    Previously we demonstrated that multiple cytokines could be simultaneously detected using an antibody-based protein array system with high sensitivity and specificity from conditioned medium and serum. Here, we created a higher density array system to simultaneously detect 35 cytokines from cell lysates and tissue lysates. This assay combines the advantages of the specificity of enzyme-linked immunosorbent assays (ELISA), sensitivity of enhanced chemiluminescence (ECL), and high-throughput of microspot. In this system, capture antibodies dissolved in methanol were spotted onto polyvinylidene difluoride (PVDF) membranes. The membranes were then incubated with tissue lysates or cell lysates. After removing unbound proteins by extensive washing, the membranes were exposed to horseradish peroxidase (HRP)-conjugated antibody(ies). The signals were visualized with an ECL system. High specificity, sensitivity, and accuracy of this approach were demonstrated. This approach can be used in any general laboratory setting without any sophisticated equipment. It should be feasible to extend this concept to develop a high-throughput protein array system. Combining nitrocellulose membrane-based and PVDF membrane-based approaches, the human cytokine array system can be applied to detect multiple cytokine expression from cell lysate, tissue lysate, serum, plasma, and conditioned medium. Future applications of this new approach include direct protein expression profiling, immunological disease diagnostics, and discovery of new biomarkers.

  19. Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways

    PubMed Central

    Zhao, Michael; Song, Lan; Yu, Tao; Liu, Yu; Liu, Jeffrey C.; McCurdy, Sean; Ma, Anqi; Wither, Joan; Jin, Jian; Zacksenhaus, Eldad; Wrana, Jeffrey L.; Bremner, Rod

    2015-01-01

    Polycomb Repressive Complex 2 (PRC2) is an epigenetic regulator induced in many cancers. It is thought to drive tumorigenesis by repressing division, stemness, and/or developmental regulators. Cancers evade immune detection, and diverse immune regulators are perturbed in different tumors. It is unclear how such cell-specific effects are coordinated. Here, we show a profound and cancer-selective role for PRC2 in repressing multiple cytokine pathways. We find that PRC2 represses hundreds of IFNγ stimulated genes (ISGs), cytokines and cytokine receptors. This target repertoire is significantly broadened in cancer vs non-cancer cells, and is distinct in different cancer types. PRC2 is therefore a higher order regulator of the immune program in cancer cells. Inhibiting PRC2 with either RNAi or EZH2 inhibitors activates cytokine/cytokine receptor promoters marked with bivalent H3K27me3/H3K4me3 chromatin, and augments responsiveness to diverse immune signals. PRC2 inhibition rescues immune gene induction even in the absence of SWI/SNF, a tumor suppressor defective in ~20% of human cancers. This novel PRC2 function in tumor cells could profoundly impact the mechanism of action and efficacy of EZH2 inhibitors in cancer treatment. PMID:26030458

  20. Colostrum proinflammatory cytokines as biomarkers of bovine immune response to bovine tuberculosis (bTB).

    PubMed

    Sánchez-Soto, Eduardo; Ponce-Ramos, Rosa; Hernández-Gutiérrez, Rodolfo; Gutiérrez-Ortega, Abel; Álvarez, Angel H; Martínez-Velázquez, Moisés; Absalón, Angel E; Ortiz-Lazareno, Pablo; Limón-Flores, Alberto; Estrada-Chávez, Ciro; Herrera-Rodríguez, Sara E

    2017-02-01

    Bovine colostrum contains compounds, which provide passive immune protection from mother to newborn calves. Little is known about cytokine levels and their role in bovine colostrum. Moreover, the capacity of bovine colostrum cells to mount specific immune responses after natural exposure to bovine tuberculosis (bTB) antigens in dairy herds has not been studied, thus far. The purpose of this study was to identify biomarkers for bTB infection measurable in bovine colostrum. The present study reveals that isolated-immune colostrum cells can mount a specific immune response against bTB antigens, by measuring the novo IFN-γ release in cell culture. We found that IFN-γ levels in the responders (Bov(+)) to bTB antigen were higher than in non-responders (Bov(-)). On the other hand, proinflammatory cytokines contained in colostrum's whey were tested in Tuberculin Skin Test (TST) reactor (TST(+)) and non-reactor (TST(-)) animals to assess their potential role as biomarker. We observed that IFN-γ levels were lower or undetectable, as opposed to IL4 levels were measurable, the TNF-α level was higher in TST(-) than TST(+), while IL-6 levels showed the opposite reaction and with no statistical significance. Moreover, IL-1α mRNA expression levels were higher in colostrum mononuclear cells (CMC) in Bov(+) cattle. Collectively, these data suggest that the differential expression of pro and anti-inflammatory cytokines could have relevant value to diagnose bTB in cattle.

  1. Regulation network of serum cytokines induced by tuberculosis-specific antigens reveals biomarkers for tuberculosis diagnosis.

    PubMed

    Wei, M; Wu, Z Y; Lin, J H; Li, Y; Qian, Z X; Xie, Y Q; Su, H; Zhou, W

    2015-12-17

    In this study, we identified potential serum biomarkers for the diagnosis of active tuberculosis (TB) and screening for latent TB infections (LTBIs). Peripheral blood samples from 40 healthy individuals, 40 patients with TB, and 40 LTBI individuals were stimulated with the TB-specific antigens ESAT-6 and CFP-10. Human inflammatory cytokine arrays were used to detect the expression of inflammatory cytokines. Cytokines with significant changes were screened to construct a cytokine regulation network. The levels of the cytokines CCL1 (I-309), CXCL9 (MIG), IL-10, IL-6, CSF2, CSF3, IL-8, IL-1α, IL-7, TGF-β1, CCL2, IL-2, IL-13, and TNFα were significantly upregulated in the active TB group. The levels of CCL3, IL-1β, CCL8, IFNγ, and CXCL10 were significantly increased in the TB groups compared to those in the healthy control group. sTNF RII was upregulated in the LTBI group. CCL4 and MIP1d were significantly increased in all groups.The upregulated cytokines were mainly found in the IFNγ and IL-1α regulatory networks. Importantly, we found that CXCL10 (IP-10), CCL3, CCL8, and IL-1β may be more suitable than IFNγ for active or latent TB infection screening. Furthermore, we found that levels of CCL1 (I-309), CXCL9 (MIG), IL-10, IL-6, CSF2, CSF3, IL-8, IL-1α, IL-7, TGF-β1, CCL2, IL-2, and IL-13 after TB antigen stimulation may help distinguish between active and latent TB.

  2. The role of cytokines in the pathogenesis of rheumatoid arthritis--Practical and potential application of cytokines as biomarkers and targets of personalized therapy.

    PubMed

    Brzustewicz, Edyta; Bryl, Ewa

    2015-12-01

    Rheumatoid arthritis (RA), as a common chronic disease leading to severe disability, requires early diagnosis and introduction of proper treatment. Deregulation in the cytokine network plays an undoubtedly crucial role in the pathogenesis of RA. The understanding of the role of cytokines in RA can be used for patients' benefit. Technological advances had already allowed introduction of the tailor-made cytokine-targeted therapies (so far anti-TNF, anti-IL-1 and anti-IL-6) into clinical practice. This type of treatment is currently developing very fast. Moreover, cytokines are considered to be potential powerful biomarkers of RA with roles predicted to grow in the future. Detailed understanding of the cytokine balance in RA may assist both the diagnostic process and therapy.

  3. miRNA in multiple sclerosis: search for novel biomarkers.

    PubMed

    Gandhi, Roopali

    2015-08-01

    A major challenge in multiple sclerosis (MS) is to develop biomarkers that could help in understanding individual MS patients, i.e. whether they are a responder or non-responder to therapy, which medicine is more effective, and the degree to which they may be entering the progressive phase of disease. In the last few years, a lot of attention has been drawn toward identification of diagnostic, prognostic, process-specific, and treatment-related biomarkers for MS. In this review, we will focus on the micro RNAs (miRNAs) as potential candidates for MS biomarkers.

  4. Fluid biomarkers in multiple system atrophy: A review of the MSA Biomarker Initiative.

    PubMed

    Laurens, Brice; Constantinescu, Radu; Freeman, Roy; Gerhard, Alexander; Jellinger, Kurt; Jeromin, Andreas; Krismer, Florian; Mollenhauer, Brit; Schlossmacher, Michael G; Shaw, Leslie M; Verbeek, Marcel M; Wenning, Gregor K; Winge, Kristian; Zhang, Jing; Meissner, Wassilios G

    2015-08-01

    Despite growing research efforts, no reliable biomarker currently exists for the diagnosis and prognosis of multiple system atrophy (MSA). Such biomarkers are urgently needed to improve diagnostic accuracy, prognostic guidance and also to serve as efficacy measures or surrogates of target engagement for future clinical trials. We here review candidate fluid biomarkers for MSA and provide considerations for further developments and harmonization of standard operating procedures. A PubMed search was performed until April 24, 2015 to review the literature with regard to candidate blood and cerebrospinal fluid (CSF) biomarkers for MSA. Abstracts of 1760 studies were retrieved and screened for eligibility. The final list included 60 studies assessing fluid biomarkers in patients with MSA. Most studies have focused on alpha-synuclein, markers of axonal degeneration or catecholamines. Their results suggest that combining several CSF fluid biomarkers may be more successful than using single markers, at least for the diagnosis. Currently, the clinically most useful markers may comprise a combination of the light chain of neurofilament (which is consistently elevated in MSA compared to controls and Parkinson's disease), metabolites of the catecholamine pathway and proteins such as α-synuclein, DJ-1 and total-tau. Beyond future efforts in biomarker discovery, the harmonization of standard operating procedures will be crucial for future success.

  5. Inflammatory Cytokines: Potential Biomarkers of Immunologic Dysfunction in Autism Spectrum Disorders

    PubMed Central

    Li, Xiaohong; Zhong, Yan

    2015-01-01

    Autism is a disorder of neurobiological origin characterized by problems in communication and social skills and repetitive behavior. After more than six decades of research, the etiology of autism remains unknown, and no biomarkers have been proven to be characteristic of autism. A number of studies have shown that the cytokine levels in the blood, brain, and cerebrospinal fluid (CSF) of autistic subjects differ from that of healthy individuals; for example, a series of studies suggests that interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) are significantly elevated in different tissues in autistic subjects. However, the expression of some cytokines, such as IL-1, IL-2, transforming growth factor-β (TGF-β), and granulocyte-macrophage colony-stimulating factor (GM-CSF), is controversial, and different studies have found various results in different tissues. In this review, we focused on several types of proinflammatory and anti-inflammatory cytokines that might affect different cell signal pathways and play a role in the pathophysiological mechanism of autistic spectrum disorders. PMID:25729218

  6. Cytokines and Chemokines as Biomarkers of Community-Acquired Bacterial Infection

    PubMed Central

    Lawrence, David A.; Andersen, Nancy; Beran, Ondřej; Marešová, Vilma

    2013-01-01

    Routinely used biomarkers of bacterial etiology of infection, such as C-reactive protein and procalcitonin, have limited usefulness for evaluation of infections since their expression is enhanced by a number of different conditions. Therefore, several inflammatory cytokines and chemokines were analyzed with sera from patients hospitalized for moderate bacterial and viral infectious diseases. In total, 57 subjects were enrolled: 21 patients with community-acquired bacterial infections, 26 patients with viral infections, and 10 healthy subjects (control cohorts). The laboratory analyses were performed using Luminex technology, and the following molecules were examined: IL-1Ra, IL-2, IL-4, IL-6, IL-8, TNF-α, INF-γ, MIP-1β, and MCP-1. Bacterial etiology of infection was associated with significantly (P < 0.001) elevated serum concentrations of IL-1Ra, IL-2, IL-6, and TNF-α in comparison to levels observed in the sera of patients with viral infections. In the patients with bacterial infections, IL-1Ra and IL-8 demonstrated positive correlation with C-reactive protein, whereas, IL-1Ra, TNF-α, and MCP-1 correlated with procalcitonin. Furthermore, elevated levels of IL-1Ra, IL-6, and TNF-α decreased within 3 days of antibiotic therapy to levels observed in control subjects. The results show IL-1Ra as a potential useful biomarker of community-acquired bacterial infection. PMID:23690657

  7. Cytokines and chemokines as biomarkers of community-acquired bacterial infection.

    PubMed

    Holub, Michal; Lawrence, David A; Andersen, Nancy; Davidová, Alžběta; Beran, Ondřej; Marešová, Vilma; Chalupa, Pavel

    2013-01-01

    Routinely used biomarkers of bacterial etiology of infection, such as C-reactive protein and procalcitonin, have limited usefulness for evaluation of infections since their expression is enhanced by a number of different conditions. Therefore, several inflammatory cytokines and chemokines were analyzed with sera from patients hospitalized for moderate bacterial and viral infectious diseases. In total, 57 subjects were enrolled: 21 patients with community-acquired bacterial infections, 26 patients with viral infections, and 10 healthy subjects (control cohorts). The laboratory analyses were performed using Luminex technology, and the following molecules were examined: IL-1Ra, IL-2, IL-4, IL-6, IL-8, TNF- α , INF- γ , MIP-1 β , and MCP-1. Bacterial etiology of infection was associated with significantly (P < 0.001) elevated serum concentrations of IL-1Ra, IL-2, IL-6, and TNF- α in comparison to levels observed in the sera of patients with viral infections. In the patients with bacterial infections, IL-1Ra and IL-8 demonstrated positive correlation with C-reactive protein, whereas, IL-1Ra, TNF- α , and MCP-1 correlated with procalcitonin. Furthermore, elevated levels of IL-1Ra, IL-6, and TNF- α decreased within 3 days of antibiotic therapy to levels observed in control subjects. The results show IL-1Ra as a potential useful biomarker of community-acquired bacterial infection.

  8. Cytokine levels as biomarkers of radiation fibrosis in patients treated with breast radiotherapy

    PubMed Central

    2014-01-01

    Background Radiation fibrosis is not easily measurable although clinical scores have been developed for this purpose. Biomarkers present an alternative more objective approach to quantification, and estimation in blood provides accessible samples. We investigated if blood cytokines could be used to measure established fibrosis in patients who have undergone radiotherapy for breast cancer. Methods We studied two cohorts treated by breast-conserving surgery and radiotherapy in the UK START Trial A, one with breast fibrosis (cases) and one with no or minimal fibrosis (controls). Two candidate cytokines, plasma connective tissue growth factor (CTGF) and serum interleukin-6 (IL6) were estimated by ELISA. Comparisons between cases and controls used the t-test or Mann–Whitney test and associations between blood concentration and clinical factors were assessed using the Spearman rank correlation coefficient. Results Seventy patients were included (26 cases, 44 controls). Mean time since radiotherapy was 9.9 years (range 8.3-12.0). No statistically significant differences between cases and controls in serum IL6 (median (IQR) 0.84 pg/ml (0.57-1.14), 0.75 pg/ml (0.41-1.43) respectively) or plasma CTGF (331.4 pg/ml (234.8-602.9), 334.5 pg/ml (270.0-452.8) were identified. There were no significant associations between blood cytokine concentration and age, fibrosis severity, breast size or time since radiotherapy. Conclusions No significant difference in IL6 or CTGF concentrations was detected between patients with breast fibrosis and controls with minimal or no fibrosis. PMID:24885397

  9. Biomarkers in Multiple Sclerosis: An Up-to-Date Overview

    PubMed Central

    Katsavos, Serafeim; Anagnostouli, Maria

    2013-01-01

    During the last decades, the effort of establishing satisfactory biomarkers for multiple sclerosis has been proven to be very difficult, due to the clinical and pathophysiological complexities of the disease. Recent knowledge acquired in the domains of genomics-immunogenetics and neuroimmunology, as well as the evolution in neuroimaging, has provided a whole new list of biomarkers. This variety, though, leads inevitably to confusion in the effort of decision making concerning strategic and individualized therapeutics. In this paper, our primary goal is to provide the reader with a list of the most important characteristics that a biomarker must possess in order to be considered as reliable. Additionally, up-to-date biomarkers are further divided into three subgroups, genetic-immunogenetic, laboratorial, and imaging. The most important representatives of each category are presented in the text and for the first time in a summarizing workable table, in a critical way, estimating their diagnostic potential and their efficacy to correlate with phenotypical expression, neuroinflammation, neurodegeneration, disability, and therapeutical response. Special attention is given to the “gold standards” of each category, like HLA-DRB1∗ polymorphisms, oligoclonal bands, vitamin D, and conventional and nonconventional imaging techniques. Moreover, not adequately established but quite promising, recently characterized biomarkers, like TOB-1 polymorphisms, are further discussed. PMID:23401777

  10. COPD Exacerbation Biomarkers Validated Using Multiple Reaction Monitoring Mass Spectrometry

    PubMed Central

    Leung, Janice M.; Chen, Virginia; Hollander, Zsuzsanna; Dai, Darlene; Tebbutt, Scott J.; Aaron, Shawn D.; Vandemheen, Kathy L.; Rennard, Stephen I.; FitzGerald, J. Mark; Woodruff, Prescott G.; Lazarus, Stephen C.; Connett, John E.; Coxson, Harvey O.; Miller, Bruce; Borchers, Christoph; McManus, Bruce M.; Ng, Raymond T.; Sin, Don D.

    2016-01-01

    Background Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) result in considerable morbidity and mortality. However, there are no objective biomarkers to diagnose AECOPD. Methods We used multiple reaction monitoring mass spectrometry to quantify 129 distinct proteins in plasma samples from patients with COPD. This analytical approach was first performed in a biomarker cohort of patients hospitalized with AECOPD (Cohort A, n = 72). Proteins differentially expressed between AECOPD and convalescent states were chosen using a false discovery rate <0.01 and fold change >1.2. Protein selection and classifier building were performed using an elastic net logistic regression model. The performance of the biomarker panel was then tested in two independent AECOPD cohorts (Cohort B, n = 37, and Cohort C, n = 109) using leave-pair-out cross-validation methods. Results Five proteins were identified distinguishing AECOPD and convalescent states in Cohort A. Biomarker scores derived from this model were significantly higher during AECOPD than in the convalescent state in the discovery cohort (p<0.001). The receiver operating characteristic cross-validation area under the curve (CV-AUC) statistic was 0.73 in Cohort A, while in the replication cohorts the CV-AUC was 0.77 for Cohort B and 0.79 for Cohort C. Conclusions A panel of five biomarkers shows promise in distinguishing AECOPD from convalescence and may provide the basis for a clinical blood test to diagnose AECOPD. Further validation in larger cohorts is necessary for future clinical translation. PMID:27525416

  11. Enhancing cytokine-induced killer cell therapy of multiple myeloma.

    PubMed

    Liu, Chunsheng; Suksanpaisan, Lukkana; Chen, Yun-Wen; Russell, Stephen J; Peng, Kah-Whye

    2013-06-01

    Cytokine-induced killer (CIK) cells are in clinical testing against various tumor types, including multiple myeloma. In this study, we show that CIK cells have activity against subcutaneous and disseminated models of human myeloma (KAS-6/1), which can be enhanced by infecting the CIK cells with an oncolytic measles virus (MV) or by pretreating the myeloma cells with ionizing radiation (XRT). KAS-6/1 cells were killed by coculture with CIK or MV-infected CIK (CIK/MV) cells, and the addition of an anti-NKG2D antibody inhibited cytolysis by 50%. However, human bone marrow stromal cells can reduce CIK and CIK/MV mediated killing of myeloma cells (RPMI 8226, JJN-3 and MM1). In vivo, CIK and CIK/MV prolonged the survival of mice with systemic myeloma, although CIK/MV showed enhanced antitumor activity compared with CIK. Irradiation of the KAS-6/1 cells induced mRNA and protein expression of NKG2D ligands, MICA, and MICB in a dose-dependent manner and enhanced delivery of CIK/MV to the irradiated tumors. In both subcutaneous and disseminated myeloma models, XRT at 2 Gy resulted in superior prolongation of the survival of mice given CIK/MV therapy compared with CIK/MV with no XRT. This study demonstrates the potential of CIK against myeloma and that the combination of virotherapy with radiation could be used to further enhance therapeutic outcome using CIK cells.

  12. Suppressor of cytokine signaling 1 gene mutation status as a prognostic biomarker in classical Hodgkin lymphoma.

    PubMed

    Lennerz, Jochen K; Hoffmann, Karl; Bubolz, Anna-Maria; Lessel, Davor; Welke, Claudia; Rüther, Nele; Viardot, Andreas; Möller, Peter

    2015-10-06

    Suppressor of cytokine signaling 1 (SOCS1) mutations are among the most frequent somatic mutations in classical Hodgkin lymphoma (cHL), yet their prognostic relevance in cHL is unexplored. Here, we performed laser-capture microdissection of Hodgkin/Reed-Sternberg (HRS) cells from tumor samples in a cohort of 105 cHL patients. Full-length SOCS1 gene sequencing showed mutations in 61% of all cases (n = 64/105). Affected DNA-motifs and mutation pattern suggest that many of these SOCS1 mutations are the result of aberrant somatic hypermutation and we confirmed expression of mutant alleles at the RNA level. Contingency analysis showed no significant differences of patient-characteristics with HRS-cells containing mutant vs. wild-type SOCS1. By predicted mutational consequence, mutations can be separated into those with non-truncating point mutations ('minor' n = 49/64 = 77%) and those with length alteration ('major'; n = 15/64 = 23%). Subgroups did not differ in clinicopathological characteristics; however, patients with HRS-cells that contained SOCS1 major mutations suffered from early relapse and significantly shorter overall survival (P = 0.03). The SOCS1 major status retained prognostic significance in uni-(P = 0.016) and multivariate analyses (P = 0.005). Together, our data indicate that the SOCS1 mutation type qualifies as a single-gene prognostic biomarker in cHL.

  13. Acute-phase proteins, oxidative stress biomarkers, proinflammatory cytokines, and cardiac troponin in Arabian mares affected with pyometra.

    PubMed

    El-Bahr, S M; El-Deeb, W M

    2016-09-01

    New biomarkers are essential for diagnosis of pyometra in mares. In this context, 12 subfertile Arabian mares suffered from pyometra were admitted to the Veterinary Teaching Hospital. The basis for diagnosis of pyometra was positive findings of clinical examination and rectal palpation. Blood samples were collected from diseased animals and from five Arabian healthy mares, which were considered as control group. Acute-phase proteins (APP), oxidative stress biomarkers, proinflammatory cytokines, and cardiac troponin I were estimated in the harvested sera of both groups. Clinical examination revealed purulent yellowish fluid discharged from vagina of affected animals and rectal palpation of the reproductive tract revealed uterine distention. The biochemical analysis of the serum revealed significant increase in cardiac troponin I, creatin kinase, alkaline phosphatase, malondialdehyde, tumor necrosis factor α, interleukins 6, prostaglandin F2α, haptoglobin, and serum amyloid A and significant decrease in reduced glutathione, superoxide dismutase (SOD), total antioxidant capacity, and nitric oxide (NO) of mares affected with pyometra compare to control. Cardiac troponin I was positively correlated with aspartate aminotransferase, creatin kinase, malondialdehyde, alkaline phosphatase, tumor necrosis factor α, interleukins 6, prostaglandin F2α, haptoglobin and serum amyloid A and negatively correlated with glutathione, superoxide dismutase, total antioxidant capacity and nitric oxide in serum of mares affected with pyometra. Moreover, there was high positive correlation between proinflammatory cytokines and APP in serum of mares affected with pyometra. The present study suggests cardiac troponin I together with APP, proinflammatory cytokines, and oxidative stress parameters as biomarkers for pyometra in Arabian mares.

  14. Impact of child obesity on adipose tissue physiology: assessment of adipocytokines and inflammatory cytokines as biomarkers of obesity

    PubMed Central

    Leoni, Maria Chiara; Valsecchi, Chiara; Mantelli, Melissa; Marastoni, Laura; Tinelli, Carmine; Marchi, Antonietta; Castellazzi, Annamaria

    2010-01-01

    Obesity could be interpreted as a low grade inflammatory state. The role of cytokines for innate and acquired immune response and adipocytokines in pathogenesis of obesity is not completely understood. The aim of the study was to evaluate anthropometric parameters, adipocytokines and inflammatory cytokine levels as biomarkers of childhood obesity. This investigation was designed as a longitudinal observational study. Forty-seven obese children (19 males and 28 females) were enrolled by Pediatric Clinic of the Foundation IRCCS Policlinico San Matteo, Pavia, Italy. For each patients a blood sample, used for other biochemical evaluations, was collected. Cytokines and adipocytokines plasmatic levels were determined using an ELISA method. Plasma leptin levels are in correlation with age (r=0.5; P<0.001) and BMI-z score (r=0.36; P<0.001), particularly in girls; plasma resistin levels are in inverse correlation with age, particularly in boys (r=-0.67; P<0.001) and in correlation with BMI-z score (r=0.52; P=0.002). Plasma leptin and resistin levels show a good correlation with antrophometric parameters of child obesity (sex and BMI z score). This study suggests that leptin and resistin can be considered as biomarker of childhood obesity and its comorbility. We observed a statistically significant correlation between plasma leptin and resistin levels and antrophometric parameters of child obesity (sex and BMI z score). This study suggests that adipocytokines, such as leptin and resistin, can be considered as biomarkers of childhood obesity. PMID:21589832

  15. Biomarkers in multiple sclerosis: an update for 2014.

    PubMed

    Fernandez, Oscar; Martin, Roland; Rovira, Alex; Llufriu, Sara; Vidal-Jordana, Angela; Fernandez-Sanchez, Victoria E; Alvarez-Cermeno, José C; Izquierdo, Guillermo; Arroyo-Gonzalez, Rafael; Rodriguez-Antiguedad, Alfredo; Casanova-Estruch, Bonaventura; Montalban, Xavier

    2014-06-16

    Multiple sclerosis is a chronic, demyelinating and inflammatory disease of the central nervous system that mainly affects young adults. It is characterised by processes involving inflammation, demyelination and axonal destruction, and as a result the pathogenic aspects and response to treatment of the disease vary widely. It is therefore difficult to establish a prognosis for these patients or to determine the effectiveness of the different drugs that are employed. Current clinical research into the development of new biomarkers has advanced a great deal in recent years, especially in the early stages of the disease. Yet, it is essential to further our knowledge about novel markers of the disease, and not only in the more advanced stages, so as to be able to stop disability from progressing and to establish new therapy regimens in these patients. This review presents an update on the information available about the biomarkers that are currently validated and used in multiple sclerosis, together with the possible candidates for utilisation in routine clinical practice.

  16. MAG-DPA curbs inflammatory biomarkers and pharmacological reactivity in cytokine-triggered hyperresponsive airway models.

    PubMed

    Khaddaj-Mallat, Rayan; Hiram, Roddy; Sirois, Chantal; Sirois, Marco; Rizcallah, Edmond; Marouan, Sofia; Morin, Caroline; Rousseau, Éric

    2016-12-01

    Bronchial inflammation contributes to a sustained elevation of airway hyperresponsiveness (AHR) in asthma. Conversely, omega-3 fatty acid derivatives have been shown to resolve inflammation in various tissues. Thus, the effects of docosapentaenoic acid monoacylglyceride (MAG-DPA) were assessed on inflammatory markers and reactivity of human distal bronchi as well as in a cultured model of guinea pig tracheal rings. Human bronchi were dissected and cultured for 48 h with 10 ng/mL TNF-α or IL-13. Guinea pig tracheas were maintained in organ culture for 72 h which was previously shown to trigger spontaneous AHR. All tissues were treated with increasing concentrations of MAG-DPA (0.1, 0.3, and 1 μmol/L). Pharmacomechanical reactivity, Ca(2+) sensitivity, and western blot analysis for specific phosphoproteins and transcription factors were performed to assess the effects of both cytokines, alone or in combination with MAG-DPA, on human and guinea pig airway preparations. Although 0.1 μmol/L MAG-DPA did not significantly reduce inflammatory biomarkers, the higher concentrations of MAG-DPA (0.3 and 1 μmol/L) blunted the activation of the TNF-α/NF κB pathway and abolished COX-2 expression in human and guinea pig tissues. Moreover, 0.3 and 1 μmol/L MAG-DPA consistently decreased the Ca(2+) sensitivity and pharmacological reactivity of cultured bronchial explants. Furthermore, in human bronchi, IL-13-stimulated phosphorylation of CPI-17 was reversed by 1 μmol/L MAG-DPA. This effect was further amplified in the presence of 100 μmol/L aspirin. MAG-DPA mediates antiphlogistic effects by increasing the resolution of inflammation, while resetting Ca(2+) sensitivity and contractile reactivity.

  17. Sublineage structure analysis of Mycobacterium tuberculosis complex strains using multiple-biomarker tensors

    PubMed Central

    2011-01-01

    Background Strains of Mycobacterium tuberculosis complex (MTBC) can be classified into major lineages based on their genotype. Further subdivision of major lineages into sublineages requires multiple biomarkers along with methods to combine and analyze multiple sources of information in one unsupervised learning model. Typically, spacer oligonucleotide type (spoligotype) and mycobacterial interspersed repetitive units (MIRU) are used for TB genotyping and surveillance. Here, we examine the sublineage structure of MTBC strains with multiple biomarkers simultaneously, by employing a tensor clustering framework (TCF) on multiple-biomarker tensors. Results Simultaneous analysis of the spoligotype and MIRU type of strains using TCF on multiple-biomarker tensors leads to coherent sublineages of major lineages with clear and distinctive spoligotype and MIRU signatures. Comparison of tensor sublineages with SpolDB4 families either supports tensor sublineages, or suggests subdivision or merging of SpolDB4 families. High prediction accuracy of major lineage classification with supervised tensor learning on multiple-biomarker tensors validates our unsupervised analysis of sublineages on multiple-biomarker tensors. Conclusions TCF on multiple-biomarker tensors achieves simultaneous analysis of multiple biomarkers and suggest a new putative sublineage structure for each major lineage. Analysis of multiple-biomarker tensors gives insight into the sublineage structure of MTBC at the genomic level. PMID:21988942

  18. Investigation of cytokines, oxidative stress, metabolic, and inflammatory biomarkers after orange juice consumption by normal and overweight subjects

    PubMed Central

    Dourado, Grace K. Z. S.; Cesar, Thais B.

    2015-01-01

    Background Abdominal adiposity has been linked to metabolic abnormalities, including dyslipidemia, oxidative stress, and low-grade inflammation. Objective To test the hypothesis that consumption of 100% orange juice (OJ) would improve metabolic, oxidative, and inflammatory biomarkers and cytokine levels in normal and overweight subjects with increased waist circumference. Design Subjects were divided into two groups in accordance with their body mass index: normal and overweight. Both groups of individuals consumed 750 mL of OJ daily for 8 weeks. Body composition (weight, height, percentage of fat mass, and waist circumference); metabolic biomarkers (total cholesterol, low-density lipoprotein-cholesterol [LDL-C], high-density lipoprotein-cholesterol [HDL-C], triglycerides, glucose, insulin, HOMA-IR, and glycated hemoglobin); oxidative biomarkers (malondialdehyde and DPPH•); inflammatory biomarkers (high-sensitivity C-reactive protein [hsCRP]); cytokines (IL-4, IL-10, IL-12, TNF-α, and IFN-γ); and diet were evaluated before and after consumption of OJ for 8 weeks. Results The major findings of this study were: 1) no alteration in body composition in either group; 2) improvement of the lipid profile, evidenced by a reduction in total cholesterol and LDL-C; 3) a potential stimulation of the immune response due to increase in IL-12; 4) anti-inflammatory effect as a result of a marked reduction in hsCRP; and 5) antioxidant action by the enhancement of total antioxidant capacity and the reduction of lipid peroxidation, in both normal and overweight subjects. Conclusions OJ consumption has a positive effect on important biomarkers of health status in normal and overweight subjects, thereby supporting evidence that OJ acts as functional food and could be consumed as part of a healthy diet to prevent metabolic and chronic diseases. PMID:26490535

  19. Looking for new biomarkers of skin wound vitality with a cytokine-based multiplex assay: preliminary study.

    PubMed

    Peyron, Pierre-Antoine; Baccino, Éric; Nagot, Nicolas; Lehmann, Sylvain; Delaby, Constance

    2017-02-01

    Determination of skin wound vitality is an important issue in forensic practice. No reliable biomarker currently exists. Quantification of inflammatory cytokines in injured skin with MSD(®) technology is an innovative and promising approach. This preliminary study aims to develop a protocol for the preparation and the analysis of skin samples. Samples from ante mortem wounds, post mortem wounds, and intact skin ("control samples") were taken from corpses at the autopsy. After an optimization of the pre-analytical protocol had been performed in terms of skin homogeneisation and proteic extraction, the concentration of TNF-α was measured in each sample with the MSD(®) approach. Then five other cytokines of interest (IL-1β, IL-6, IL-10, IL-12p70 and IFN-γ) were simultaneously quantified with a MSD(®) multiplex assay. The optimal pre-analytical conditions consist in a proteic extraction from a 6 mm diameter skin sample, in a PBS buffer with triton 0,05%. Our results show the linearity and the reproductibility of the TNF-α quantification with MSD(®), and an inter- and intra-individual variability of the concentrations of proteins. The MSD(®) multiplex assay is likely to detect differential skin concentrations for each cytokine of interest. This preliminary study was used to develop and optimize the pre-analytical and analytical conditions of the MSD(®) method using injured and healthy skin samples, for the purpose of looking for and identifying the cytokine, or the set of cytokines, that may be biomarkers of skin wound vitality.

  20. Analysis of complex biomarkers for human immune-mediated disorders based on cytokine responsiveness of peripheral blood cells123

    PubMed Central

    Davis, John M.; Knutson, Keith L.; Strausbauch, Michael A.; Crowson, Cynthia S.; Therneau, Terry M.; Wettstein, Peter J.; Matteson, Eric L.; Gabriel, Sherine E.

    2010-01-01

    The advent of improved biomarkers promises to enhance the clinical care for patients with rheumatoid arthritis (RA) and other immune-mediated disorders. We have developed an innovative approach to broadly assess the cytokine responsiveness of human PBMC using a multi-stimulant panel and multiplexed immunoassays. The objective of this study was to demonstrate this concept by determining whether cytokine profiles could discriminate RA patients according to disease stage (early vs. late) or severity. A 10-cytokine profile, consisting of IL-12, CCL4, TNFα, IL-4, and IL-10 release in response to stimulation with anti-CD3/anti-CD28, CXCL8 and IL-6 in response to CMV/EBV lysate, and IL-17A, GM-CSF, and CCL2 in response to HSP60, easily discriminated the early RA group from controls. These data were used to create an immune response score, which performed well in distinguishing the early RA patients from controls and also correlated with several markers of disease severity among the patients with late RA. In contrast, the same 10-cytokine profile assessed in serum was far less effective in discriminating the groups. Thus, our approach lays the foundation for the development of immunologic ‘signatures’ that could be useful in predicting disease course and monitoring the outcomes of therapy among patients with immune-mediated diseases. PMID:20495063

  1. Putative transcriptomic biomarkers in the inflammatory cytokine pathway differentiate major depressive disorder patients from control subjects and bipolar disorder patients.

    PubMed

    Powell, Timothy R; McGuffin, Peter; D'Souza, Ursula M; Cohen-Woods, Sarah; Hosang, Georgina M; Martin, Charlotte; Matthews, Keith; Day, Richard K; Farmer, Anne E; Tansey, Katherine E; Schalkwyk, Leonard C

    2014-01-01

    Mood disorders consist of two etiologically related, but distinctly treated illnesses, major depressive disorder (MDD) and bipolar disorder (BPD). These disorders share similarities in their clinical presentation, and thus show high rates of misdiagnosis. Recent research has revealed significant transcriptional differences within the inflammatory cytokine pathway between MDD patients and controls, and between BPD patients and controls, suggesting this pathway may possess important biomarker properties. This exploratory study attempts to identify disorder-specific transcriptional biomarkers within the inflammatory cytokine pathway, which can distinguish between control subjects, MDD patients and BPD patients. This is achieved using RNA extracted from subject blood and applying synthesized complementary DNA to quantitative PCR arrays containing primers for 87 inflammation-related genes. Initially, we use ANOVA to test for transcriptional differences in a 'discovery cohort' (total n = 90) and then we use t-tests to assess the reliability of any identified transcriptional differences in a 'validation cohort' (total n = 35). The two most robust and reliable biomarkers identified across both the discovery and validation cohort were Chemokine (C-C motif) ligand 24 (CCL24) which was consistently transcribed higher amongst MDD patients relative to controls and BPD patients, and C-C chemokine receptor type 6 (CCR6) which was consistently more lowly transcribed amongst MDD patients relative to controls. Results detailed here provide preliminary evidence that transcriptional measures within inflammation-related genes might be useful in aiding clinical diagnostic decision-making processes. Future research should aim to replicate findings detailed in this exploratory study in a larger medication-free sample and examine whether identified biomarkers could be used prospectively to aid clinical diagnosis.

  2. Chemokine biomarkers in central nervous system tissue and cerebrospinal fluid in the Theiler's virus model mirror those in multiple sclerosis.

    PubMed

    Pachner, Andrew R; Li, Libin; Gilli, Francesca

    2015-12-01

    Chemokines have increasingly been implicated in inflammatory and infectious disease of the central nervous system, both as biomarkers and as molecules important in pathogenesis. Multiple sclerosis is a disabling disease of unknown etiology, and recently chemokines have been identified as being upregulated molecules in the disease. We were interested in how the chemokine expression patterns in the central nervous system of a viral model of multiple sclerosis, Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), compared to that in humans with multiple sclerosis. Cerebrospinal fluid and spinal cord tissue were analyzed for expression of a range of cytokines and chemokines. Three chemokines, CXCL10, CXCL9, and CCL5 were strongly and specifically upregulated in both the cerebrospinal fluid and spinal cord in chronic disease, a pattern identical to that in multiple sclerosis. These data, the first study of cytokines in central nervous system tissue and cerebrospinal fluid in TMEV-IDD, support the hypothesis that multiple sclerosis is caused by chronic infection with an as-yet unidentified pathogen, possibly a picornavirus.

  3. Kidney tumor biomarkers revealed by simultaneous multiple matrix metabolomics analysis.

    PubMed

    Ganti, Sheila; Taylor, Sandra L; Abu Aboud, Omran; Yang, Joy; Evans, Christopher; Osier, Michael V; Alexander, Danny C; Kim, Kyoungmi; Weiss, Robert H

    2012-07-15

    Metabolomics is increasingly being used in cancer biology for biomarker discovery and identification of potential novel therapeutic targets. However, a systematic metabolomics study of multiple biofluids to determine their interrelationships and to describe their use as tumor proxies is lacking. Using a mouse xenograft model of kidney cancer, characterized by subcapsular implantation of Caki-1 clear cell human kidney cancer cells, we examined tissue, serum, and urine all obtained simultaneously at baseline (urine) and at, or close to, animal sacrifice (urine, tissue, and plasma). Uniform metabolomics analysis of all three "matrices" was accomplished using gas chromatography- and liquid chromatography-mass spectrometry. Of all the metabolites identified (267 in tissue, 246 in serum, and 267 in urine), 89 were detected in all 3 matrices, and the majority was altered in the same direction. Heat maps of individual metabolites showed that alterations in serum were more closely related to tissue than was urine. Two metabolites, cinnamoylglycine and nicotinamide, were concordantly and significantly (when corrected for multiple testing) altered in tissue and serum, and cysteine-glutathione disulfide showed the highest change (232.4-fold in tissue) of any metabolite. On the basis of these and other considerations, three pathways were chosen for biologic validation of the metabolomic data, resulting in potential therapeutic target identification. These data show that serum metabolomics analysis is a more accurate proxy for tissue changes than urine and that tryptophan degradation (yielding anti-inflammatory metabolites) is highly represented in renal cell carcinoma, and support the concept that PPAR-α antagonism may be a potential therapeutic approach for this disease.

  4. DNA Repair and Cytokines: TGF-β, IL-6, and Thrombopoietin as Different Biomarkers of Radioresistance

    PubMed Central

    Centurione, Lucia; Aiello, Francesca B.

    2016-01-01

    Double strand breaks (DSBs) induced by radiotherapy are highly cytotoxic lesions, leading to chromosomal aberrations and cell death. Ataxia-telangiectasia-mutated (ATM)-dependent DNA-damage response, non-homologous end joining, and homologous recombination pathways coordinately contribute to repairing DSBs in higher eukaryotes. It is known that the expression of DSB repair genes is increased in tumors, which is one of the main reasons for radioresistance. The inhibition of DSB repair pathways may be useful to increase tumor cell radiosensitivity and may target stem cell-like cancer cells, known to be the most radioresistant tumor components. Commonly overexpressed in neoplastic cells, cytokines confer radioresistance by promoting proliferation, survival, invasion, and angiogenesis. Unfortunately, tumor irradiation increases the expression of various cytokines displaying these effects, including transforming growth factor-beta and interleukin-6. Recently, the capabilities of these cytokines to support DNA repair pathways and the ATM-dependent DNA response have been demonstrated. Thrombopoietin, essential for megakaryopoiesis and very important for hematopoietic stem cell (HSC) homeostasis, has also been found to promote DNA repair in a highly selective manner. These findings reveal a novel mechanism underlying cytokine-related radioresistance, which may be clinically relevant. Therapies targeting specific cytokines may be used to improve radiosensitivity. Specific inhibitors may be chosen in consideration of different tumor microenvironments. Thrombopoietin may be useful in fending off irradiation-induced loss of HSCs. PMID:27500125

  5. Cytokine profiles show heterogeneity of interferon-β response in multiple sclerosis patients

    PubMed Central

    Hegen, Harald; Adrianto, Indra; Lessard, Christopher J.; Millonig, Alban; Bertolotto, Antonio; Comabella, Manuel; Giovannoni, Gavin; Guger, Michael; Hoelzl, Martina; Khalil, Michael; Fazekas, Franz; Killestein, Joep; Lindberg, Raija L.P.; Malucchi, Simona; Mehling, Matthias; Montalban, Xavier; Rudzki, Dagmar; Schautzer, Franz; Sellebjerg, Finn; Sorensen, Per Soelberg; Deisenhammer, Florian; Steinman, Lawrence

    2016-01-01

    Objective: To evaluate serum cytokine profiles for their utility to determine the heterogeneous responses to interferon (IFN)–β treatment in patients with multiple sclerosis (MS). Methods: Patients with relapsing-remitting MS (RRMS) or clinically isolated syndrome receiving de novo IFN-β treatment were included in this prospective, observational study. Number of relapses and changes in disability were assessed 2 years prior to and 2 years after initiation of treatment. Sera were collected at baseline and after 3 months on therapy. Cytokine levels in sera were assessed by Luminex multiplex assays. Baseline cytokine profiles were grouped by hierarchical clustering analysis. Demographic features, changes in cytokines, and clinical outcome were then assessed in the clustered patient groups. Results: A total of 157 patients were included in the study and clustered into 6 distinct subsets by baseline cytokine profiles. These subsets differed significantly in their clinical and biological response to IFN-β therapy. Two subsets were associated with patients who responded poorly to therapy. Two other subsets, associated with a good response to therapy, showed a significant reduction in relapse rates and no worsening of disability. Each subset also had differential changes in cytokine levels after 3 months of IFN-β treatment. Conclusions: There is heterogeneity in the immunologic pathways of the RRMS population, which correlates with IFN-β response. PMID:26894205

  6. Increased urinary levels of podocyte glycoproteins, matrix metallopeptidases, inflammatory cytokines, and kidney injury biomarkers in women with preeclampsia.

    PubMed

    Wang, Yuping; Gu, Yang; Loyd, Susan; Jia, Xiuyue; Groome, Lynn J

    2015-12-15

    To investigate kidney injury in preeclampsia, we analyzed 14 biomarkers in urine specimen from 4 groups of pregnant women (normotensive pregnant women and those with pregnancy complicated with chronic hypertension or mild or severe preeclampsia). These biomarkers included 1) podocyte glycoproteins nephrin and podocalyxin, 2) matrix metallopeptidase (MMP)-2 and MMP-9 and their inhibitor tissue inhibitor of metalloproteinase-2, 3) inflammatory molecules and cytokines soluble VCAM-1, TNF-α, soluble TNF receptor receptor-1, IL-6, IL-8, IL-10, and IL-18, and 4) kidney injury biomarkers neutrophil gelatinase-associated lipocalin and kidney injury molecule-1. Postpartum urine specimens (6-8 wk) from normotensive women and those with severe preeclampsia were also evaluated. We found that, first, urine levels of nephrin, MMP-2, MMP-9, and kidney injury molecule-1 were significantly higher before delivery in severe preeclampsia than normotensive groups. The increased levels were all reduced to levels similar to those of the normotensive control group in postpartum specimens from the severe preeclampsia group. Second, soluble VCAM-1, soluble TNF receptor-1, and neutrophil gelatinase-associated lipocalin levels were significantly increased in the severe preeclampsia group compared with the normotensive control group before delivery, but levels of these molecules were significantly reduced in postpartum specimens in both groups. Third, IL-6 and IL-8 levels were not different between preeclampsia and normotensive groups but significantly increased in pregnancy complicated with chronic hypertension. Finally, tissue inhibitor of metalloproteinase-2 and IL-18 levels were not different among the study groups before delivery but were significantly reduced in postpartum specimens from normotensive controls. Our results indicate that the kidney experiences an increased inflammatory response during pregnancy. Most interestingly, tubular epithelial cell injury may also occur in severe

  7. Targeting the binding interface on a shared receptor subunit of a cytokine family enables the inhibition of multiple member cytokines with selectable target spectrum.

    PubMed

    Nata, Toshie; Basheer, Asjad; Cocchi, Fiorenza; van Besien, Richard; Massoud, Raya; Jacobson, Steven; Azimi, Nazli; Tagaya, Yutaka

    2015-09-11

    The common γ molecule (γc) is a shared signaling receptor subunit used by six γc-cytokines. These cytokines play crucial roles in the differentiation of the mature immune system and are involved in many human diseases. Moreover, recent studies suggest that multiple γc-cytokines are pathogenically involved in a single disease, thus making the shared γc-molecule a logical target for therapeutic intervention. However, the current therapeutic strategies seem to lack options to treat such cases, partly because of the lack of appropriate neutralizing antibodies recognizing the γc and, more importantly, because of the inherent and practical limitations in the use of monoclonal antibodies. By targeting the binding interface of the γc and cytokines, we successfully designed peptides that not only inhibit multiple γc-cytokines but with a selectable target spectrum. Notably, the lead peptide inhibited three γc-cytokines without affecting the other three or non-γc-cytokines. Biological and mutational analyses of our peptide provide new insights to our current understanding on the structural aspect of the binding of γc-cytokines the γc-molecule. Furthermore, we provide evidence that our peptide, when conjugated to polyethylene glycol to gain stability in vivo, efficiently blocks the action of one of the target cytokines in animal models. Collectively, our technology can be expanded to target various combinations of γc-cytokines and thereby will provide a novel strategy to the current anti-cytokine therapies against immune, inflammatory, and malignant diseases.

  8. Multiple Biomarkers for the Prediction of First Major Cardiovascular Events and Death

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few investigations have evaluated the incremental usefulness of multiple biomarkers from distinct biologic pathways for predicting the risk of cardiovascular events. We measured 10 biomarkers in 3209 participants attending a routine examination cycle of the Framingham Heart Study: the levels of C-r...

  9. Network-Based Identification of Biomarkers Coexpressed with Multiple Pathways

    PubMed Central

    Guo, Nancy Lan; Wan, Ying-Wooi

    2014-01-01

    Unraveling complex molecular interactions and networks and incorporating clinical information in modeling will present a paradigm shift in molecular medicine. Embedding biological relevance via modeling molecular networks and pathways has become increasingly important for biomarker identification in cancer susceptibility and metastasis studies. Here, we give a comprehensive overview of computational methods used for biomarker identification, and provide a performance comparison of several network models used in studies of cancer susceptibility, disease progression, and prognostication. Specifically, we evaluated implication networks, Boolean networks, Bayesian networks, and Pearson’s correlation networks in constructing gene coexpression networks for identifying lung cancer diagnostic and prognostic biomarkers. The results show that implication networks, implemented in Genet package, identified sets of biomarkers that generated an accurate prediction of lung cancer risk and metastases; meanwhile, implication networks revealed more biologically relevant molecular interactions than Boolean networks, Bayesian networks, and Pearson’s correlation networks when evaluated with MSigDB database. PMID:25392692

  10. Factors Associated with Multiple Biomarkers of Systemic Inflammation†

    PubMed Central

    Navarro, Sandi L.; Kantor, Elizabeth D.; Song, Xiaoling; Milne, Ginger L.; Lampe, Johanna W.; Kratz, Mario; White, Emily

    2016-01-01

    Background While much is known about correlates of C-reactive protein (CRP), little is known about correlates of other inflammation biomarkers. As these measures are increasingly being used in epidemiologic studies, it is important to determine what factors affect inflammation biomarker concentrations. Methods Using age, sex and body mass index (BMI) adjusted linear regression, we examined 38 exposures (demographic and anthropometric measures, chronic disease history, NSAIDs, dietary factors, supplement use) of 8 inflammation biomarkers [CRP, interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-alpha (TNF-α), and soluble TNF receptors (sTNFR) in plasma; and prostaglandin E2 –metabolite (PGE-M) in urine] in 217 adults, aged 50-76 years. Results Increasing age was associated with higher concentrations of all biomarkers except IL-1β. BMI was positively associated with CRP and sTNFR I and II. Saturated fat intake was associated with increased CRP, sTNFRII, TNF-α, and IL-1β, while EPA+DHA intake (diet or total) was associated with decreased CRP, TNF-α, and IL-1β. Results for sex were varied: CRP and IL-6 were lower among men, whereas PGE-M and sTNFRI were higher. Higher CRP was also associated with smoking, HRT use, and γ-tocopherol intake; lower CRP with physical activity, and intakes of dietary vitamin C and total fiber. Conclusions Although the associations varied by biomarker, the factors having the greatest number of significant associations (p<=0.05) with the inflammation biomarkers were age, BMI, dietary saturated fat and EPA+DHA omega 3 fatty acids. Impact Our results suggest that potential confounders in epidemiologic studies assessing associations with inflammation biomarkers vary across specific biomarkers. PMID:26908433

  11. Effect of Black Tea Consumption on Intracellular Cytokines, Regulatory T Cells and Metabolic Biomarkers in Type 2 Diabetes Patients.

    PubMed

    Mahmoud, Fadia; Haines, David; Al-Ozairi, Ebaa; Dashti, Ali

    2016-03-01

    The present study was undertaken to evaluate the effects of black tea intake on inflammatory cytokines and metabolic biomarkers in Type 2 diabetes mellitus (T2DM). Thirty patients with T2DM were randomly assigned either to a High Intake (HI) group, consuming three cups (600 mL) of black tea per day; and a Low Intake (LI) group, administered 1 cup (200 mL) per day, each during a 12-week period. Intracellular cytokine expression, regulatory T cells (Treg), glycemic and lipid profiles were measured at baseline and following the tea intake period. Tea consumption correlated with major effects measured in peripheral blood of subjects that included significantly reduced glycated hemoglobin (HbA1c) levels, along with increased regulatory T cells CD3+ CD4+ CD25+ FOXP3, CD3+ CD4+ IL-10+ cells (an immunosuppressive phenotype), reduced (pro-inflammatory) CD3+ CD4+ IL-17+ cells and reduced Th1-associated CD3+ CD4+ IFN-Υ+ cells. Tea consumption was also observed to abolish the significance of an inverse correlation between total serum cholesterol and representation of CD4+ IL-4+ T cells, which may reflect protection against atopy-related oxidative stress. Outcomes of this study describe both advantages and limitations to consumption of black tea as an aid to sustained health maintenance by persons at-risk for TD2M and related obesity-associated metabolic syndromes.

  12. Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis.

    PubMed

    Teunissen, Charlotte; Menge, Til; Altintas, Ayse; Álvarez-Cermeño, José C; Bertolotto, Antonio; Berven, Frode S; Brundin, Lou; Comabella, Manuel; Degn, Matilde; Deisenhammer, Florian; Fazekas, Franz; Franciotta, Diego; Frederiksen, Jette L; Galimberti, Daniela; Gnanapavan, Sharmilee; Hegen, Harald; Hemmer, Bernhard; Hintzen, Rogier; Hughes, Steve; Iacobaeus, Ellen; Kroksveen, Ann C; Kuhle, Jens; Richert, John; Tumani, Hayrettin; Villar, Luisa M; Drulovic, Jelena; Dujmovic, Irena; Khalil, Michael; Bartos, Ales

    2013-11-01

    The choice of appropriate control group(s) is critical in cerebrospinal fluid (CSF) biomarker research in multiple sclerosis (MS). There is a lack of definitions and nomenclature of different control groups and a rationalized application of different control groups. We here propose consensus definitions and nomenclature for the following groups: healthy controls (HCs), spinal anesthesia subjects (SASs), inflammatory neurological disease controls (INDCs), peripheral inflammatory neurological disease controls (PINDCs), non-inflammatory neurological controls (NINDCs), symptomatic controls (SCs). Furthermore, we discuss the application of these control groups in specific study designs, such as for diagnostic biomarker studies, prognostic biomarker studies and therapeutic response studies. Application of these uniform definitions will lead to better comparability of biomarker studies and optimal use of available resources. This will lead to improved quality of CSF biomarker research in MS and related disorders.

  13. Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines

    SciTech Connect

    Mameli, Giuseppe . E-mail: viross@uniss.it; Astone, Vito; Khalili, Kamel; Serra, Caterina; Sawaya, Bassel E.; Dolei, Antonina

    2007-05-25

    Syncytin-1 has a physiological role during early pregnancy, as mediator of trophoblast fusion into the syncytiotrophoblast layer, hence allowing embryo implantation. In addition, its expression in nerve tissue has been proposed to contribute to the pathogenesis of multiple sclerosis (MS). Syncytin-1 is the env glycoprotein of the ERVWE1 component of the W family of human endogenous retroviruses (HERV), located on chromosome 7q21-22, in a candidate region for genetic susceptibility to MS. The mechanisms of ERVWE1 regulation in nerve tissue remain to be identified. Since there are correlations between some cytokines and MS outcome, we examined the regulation of the syncytin-1 promoter by MS-related cytokines in human U-87MG astrocytic cells. Using transient transfection assays, we observed that the MS-detrimental cytokines TNF{alpha}, interferon-{gamma}, interleukin-6, and interleukin-1 activate the ERVWE1 promoter, while the MS-protective interferon-{beta} is inhibitory. The effects of cytokines are reduced by the deletion of the cellular enhancer domain of the promoter that contains binding sites for several transcription factors. In particular, we found that TNF{alpha} had the ability to activate the ERVWE1 promoter through an NF-{kappa}B-responsive element located within the enhancer domain of the promoter. Electrophoretic mobility shift and ChIP assays showed that TNF{alpha} enhances the binding of the p65 subunit of NF-{kappa}B, to its cognate site within the promoter. The effect of TNF{alpha} is abolished by siRNA directed against p65. Taken together, these results illustrate a role for p65 in regulating the ERVWE1 promoter and in TNF{alpha}-mediated induction of syncytin-1 in multiple sclerosis.

  14. Multiple biomarkers in molecular oncology. I. Molecular diagnostics applications in cervical cancer detection.

    PubMed

    Malinowski, Douglas P

    2007-03-01

    The screening for cervical carcinoma and its malignant precursors (cervical neoplasia) currently employs morphology-based detection methods (Papanicolaou [Pap] smear) in addition to the detection of high-risk human papillomavirus. The combination of the Pap smear with human papillomavirus testing has achieved significant improvements in sensitivity for the detection of cervical disease. Diagnosis of cervical neoplasia is dependent upon histology assessment of cervical biopsy specimens. Attempts to improve the specificity of cervical disease screening have focused on the investigation of molecular biomarkers for adjunctive use in combination with the Pap smear. Active research into the genomic and proteomic alterations that occur during human papillomavirus-induced neoplastic transformation have begun to characterize some of the basic mechanisms inherent to the disease process of cervical cancer development. This research continues to demonstrate the complexity of multiple genomic and proteomic alterations that accumulate during the tumorigenesis process. Despite this diversity, basic patterns of uncontrolled signal transduction, cell cycle deregulation, activation of DNA replication and altered extracellular matrix interactions are beginning to emerge as common features inherent to cervical cancer development. Some of these gene or protein expression alterations have been investigated as potential biomarkers for screening and diagnostics applications. The contribution of multiple gene alterations in the development of cervical cancer suggests that the application of multiple biomarker panels has the potential to develop clinically useful molecular diagnostics. In this review, the application of biomarkers for the improvement of sensitivity and specificity of the detection of cervical neoplasia within cytology specimens will be discussed.

  15. NCCN Work Group Report: Designing Clinical Trials in the Era of Multiple Biomarkers and Targeted Therapies

    PubMed Central

    Venook, Alan P.; Arcila, Maria E.; Benson, Al B.; Berry, Donald A.; Camidge, David Ross; Carlson, Robert W.; Choueiri, Toni K.; Guild, Valerie; Kalemkerian, Gregory P.; Kurzrock, Razelle; Lovly, Christine M.; McKee, Amy E.; Morgan, Robert J.; Olszanski, Anthony J.; Redman, Mary W.; Stearns, Vered; McClure, Joan; Birkeland, Marian L.

    2016-01-01

    Defining treatment susceptible or resistant populations of cancer patients through the use of genetically defined biomarkers has revolutionized cancer care in recent years for some disease/patient groups. Research continues to show that histologically defined diseases are diverse in their expression of unique mutations or other genetic alterations, however, which presents both opportunities for the development of personalized cancer treatments, but increased difficulty in testing these therapies because potential patient populations are divided into ever-smaller numbers. To address some of the growing challenges in biomarker development and clinical trial design, NCCN assembled a group of experts across specialties and solid tumor disease types to begin to define the problems and to consider alternate ways of designing clinical trials in the era of multiple biomarkers and targeted therapies. Results from that discussion are presented, focusing on issues of clinical trial design from the perspective of statisticians, clinical researchers, regulators, pathologists and information developers. PMID:25361808

  16. Data integration and systems biology approaches for biomarker discovery: challenges and opportunities for multiple sclerosis.

    PubMed

    Villoslada, Pablo; Baranzini, Sergio

    2012-07-15

    New "omic" technologies and their application to systems biology approaches offer new opportunities for biomarker discovery in complex disorders, including multiple sclerosis (MS). Recent studies using massive genotyping, DNA arrays, antibody arrays, proteomics, glycomics, and metabolomics from different tissues (blood, cerebrospinal fluid, brain) have identified many molecules associated with MS, defining both susceptibility and functional targets (e.g., biomarkers). Such discoveries involve many different levels in the complex organizational hierarchy of humans (DNA, RNA, protein, etc.), and integrating these datasets into a coherent model with regard to MS pathogenesis would be a significant step forward. Given the dynamic and heterogeneous nature of MS, validating biomarkers is mandatory. To develop accurate markers of disease prognosis or therapeutic response that are clinically useful, combining molecular, clinical, and imaging data is necessary. Such an integrative approach would pave the way towards better patient care and more effective clinical trials that test new therapies, thus bringing the paradigm of personalized medicine in MS one step closer.

  17. Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays.

    PubMed

    Qureshi, Anjum; Niazi, Javed H; Kallempudi, Saravan; Gurbuz, Yasar

    2010-06-15

    In this study, a highly sensitive and label-free multianalyte capacitive immunosensor was developed based on gold interdigitated electrodes (GID) capacitor arrays to detect a panel of disease biomarkers. C-reactive protein (CRP), TNFalpha, and IL6 have strong and consistent relationships between markers of inflammation and future cardiovascular risk (CVR) events. Early detection of a panel of biomarkers for a disease could enable accurate prediction of a disease risk. The detection of protein biomarkers was based on relative change in capacitive/dielectric properties. Two different lab-on-a-chip formats were employed for multiple biomarker detection on GID-capacitors. In format I, capacitor arrays were immobilized with pure forms of anti-CRP, -TNFalpha, and -IL6 antibodies in which each capacitor array contained a different immobilized antibody. Here, the CRP and IL6 were detected in the range 25 pg/ml to 25 ng/ml and 25 pg/ml to 1 ng/ml for TNFalpha in format I. Sensitive detection was achieved with chips co-immobilized (diluted) with equimolar mixtures of anti-CRP, -IL6, and -TNFalpha antibodies (format II) in which all capacitors in an array were identical and tested for biomarkers with sequential incubation. The resulting response to CRP, IL6, and TNFalpha in format II for all biomarkers was found to be within 25 pg/ml to 25 ng/ml range. The capacitive biosensor for panels of inflammation and CVR markers show significant clinical value and provide great potential for detection of biomarker panel in suspected subjects for early diagnosis.

  18. Development of biomarkers for screening hepatocellular carcinoma using global data mining and multiple reaction monitoring.

    PubMed

    Kim, Hyunsoo; Kim, Kyunggon; Yu, Su Jong; Jang, Eun Sun; Yu, Jiyoung; Cho, Geunhee; Yoon, Jung-Hwan; Kim, Youngsoo

    2013-01-01

    Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers and is associated with a poor survival rate. Clinically, the level of alpha-fetoprotein (AFP) has been used as a biomarker for the diagnosis of HCC. The discovery of useful biomarkers for HCC, focused solely on the proteome, has been difficult; thus, wide-ranging global data mining of genomic and proteomic databases from previous reports would be valuable in screening biomarker candidates. Further, multiple reaction monitoring (MRM), based on triple quadrupole mass spectrometry, has been effective with regard to high-throughput verification, complementing antibody-based verification pipelines. In this study, global data mining was performed using 5 types of HCC data to screen for candidate biomarker proteins: cDNA microarray, copy number variation, somatic mutation, epigenetic, and quantitative proteomics data. Next, we applied MRM to verify HCC candidate biomarkers in individual serum samples from 3 groups: a healthy control group, patients who have been diagnosed with HCC (Before HCC treatment group), and HCC patients who underwent locoregional therapy (After HCC treatment group). After determining the relative quantities of the candidate proteins by MRM, we compared their expression levels between the 3 groups, identifying 4 potential biomarkers: the actin-binding protein anillin (ANLN), filamin-B (FLNB), complementary C4-A (C4A), and AFP. The combination of 2 markers (ANLN, FLNB) improved the discrimination of the before HCC treatment group from the healthy control group compared with AFP. We conclude that the combination of global data mining and MRM verification enhances the screening and verification of potential HCC biomarkers. This efficacious integrative strategy is applicable to the development of markers for cancer and other diseases.

  19. Rapid verification of candidate serological biomarkers using gel-based, label-free multiple reaction monitoring.

    PubMed

    Tang, Hsin-Yao; Beer, Lynn A; Barnhart, Kurt T; Speicher, David W

    2011-09-02

    Stable isotope dilution-multiple reaction monitoring-mass spectrometry (SID-MRM-MS) has emerged as a promising platform for verification of serological candidate biomarkers. However, cost and time needed to synthesize and evaluate stable isotope peptides, optimize spike-in assays, and generate standard curves quickly becomes unattractive when testing many candidate biomarkers. In this study, we demonstrate that label-free multiplexed MRM-MS coupled with major protein depletion and 1D gel separation is a time-efficient, cost-effective initial biomarker verification strategy requiring less than 100 μL of serum. Furthermore, SDS gel fractionation can resolve different molecular weight forms of targeted proteins with potential diagnostic value. Because fractionation is at the protein level, consistency of peptide quantitation profiles across fractions permits rapid detection of quantitation problems for specific peptides from a given protein. Despite the lack of internal standards, the entire workflow can be highly reproducible, and long-term reproducibility of relative protein abundance can be obtained using different mass spectrometers and LC methods with external reference standards. Quantitation down to ~200 pg/mL could be achieved using this workflow. Hence, the label-free GeLC-MRM workflow enables rapid, sensitive, and economical initial screening of large numbers of candidate biomarkers prior to setting up SID-MRM assays or immunoassays for the most promising candidate biomarkers.

  20. Macrophage Inhibitory Cytokine-1 as a Novel Diagnostic and Prognostic Biomarker in Stage I and II Nonsmall Cell Lung Cancer

    PubMed Central

    Liu, Yu-Ning; Wang, Xiao-Bing; Wang, Teng; Zhang, Chao; Zhang, Kun-Peng; Zhi, Xiu-Yi; Zhang, Wei; Sun, Ke-Lin

    2016-01-01

    Background: Increased level of serum macrophage inhibitory cytokine-1 (MIC-1), a member of transforming growth factor-β superfamily, was found in patients with epithelial tumors. This study aimed to evaluate whether serum level of MIC-1 can be a candidate diagnostic and prognostic indicator for early-stage nonsmall cell lung cancer (NSCLC). Methods: A prospective study enrolled 152 patients with Stage I–II NSCLC, who were followed up after surgical resection. Forty-eight patients with benign pulmonary disease (BPD) and 105 healthy controls were also included in the study. Serum MIC-1 levels were measured using an enzyme-linked immunosorbent assay, and the association with clinical and prognostic features was analyzed. Results: In patients with NSCLC, serum protein levels of MIC-1 were significantly increased compared with healthy controls and BPD patients (all P < 0.001). A threshold of 1000 pg/ml of MIC-1 was found in patients with early-stage (Stage I and II) NSCLC, with sensitivity and specificity of 70.4% and 99.0%, respectively. The serum levels of MIC-1 were associated with age (P = 0.001), gender (P = 0.030), and T stage (P = 0.022). Serum MIC-1 threshold of 1465 pg/ml was found in patients with poor early outcome, with sensitivity and specificity of 72.2% and 66.1%, respectively. The overall 3-year survival rate of NSCLC patients with high serum levels of MIC-1 (≥1465 pg/ml) was lower than that of NSCLC patients with low serum MIC-1 levels (77.6% vs. 94.8%). Multivariate Cox regression survival analysis showed that a high serum level of MIC-1 was an independent risk factor for reduced overall survival (hazard ratio = 3.37, 95% confidential interval: 1.09–10.42, P = 0.035). Conclusion: The present study suggested that serum MIC-1 may be a potential diagnostic and prognostic biomarker for patients with early-stage NSCLC. PMID:27569226

  1. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers.

    PubMed

    Saito, Mak A; McIlvin, Matthew R; Moran, Dawn M; Goepfert, Tyler J; DiTullio, Giacomo R; Post, Anton F; Lamborg, Carl H

    2014-09-05

    Marine primary productivity is strongly influenced by the scarcity of required nutrients, yet our understanding of these nutrient limitations is informed by experimental observations with sparse geographical coverage and methodological limitations. We developed a quantitative proteomic method to directly assess nutrient stress in high-light ecotypes of the abundant cyanobacterium Prochlorococcus across a meridional transect in the central Pacific Ocean. Multiple peptide biomarkers detected widespread and overlapping regions of nutritional stress for nitrogen and phosphorus in the North Pacific Subtropical Gyre and iron in the equatorial Pacific. Quantitative protein analyses demonstrated simultaneous stress for these nutrients at biome interfaces. This application of proteomic biomarkers to diagnose ocean metabolism demonstrated Prochlorococcus actively and simultaneously deploying multiple biochemical strategies for low-nutrient conditions in the oceans.

  2. Multiple biomarkers biosensor with just-in-time functionalization: Application to prostate cancer detection.

    PubMed

    Parra-Cabrera, C; Samitier, J; Homs-Corbera, A

    2016-03-15

    We present a novel lab-on-a-chip (LOC) device for the simultaneous detection of multiple biomarkers using simple voltage measurements. The biosensor functionalization is performed in-situ, immediately before its use, facilitating reagents storage and massive devices fabrication. Sensitivity, limit of detection (LOD) and limit of quantification (LOQ) are tunable depending on the in-chip flown sample volumes. As a proof-of-concept, the system has been tested and adjusted to quantify two proteins found in blood that are susceptible to be used combined, as a screening tool, to diagnose prostate cancer (PCa): prostate-specific antigen (PSA) and spondin-2 (SPON2). This combination of biomarkers has been reported to be more specific for PCa diagnostics than the currently accepted but rather controversial PSA indicator. The range of detection for PSA and SPON2 could be adjusted to the clinically relevant range of 1 to 10 ng/ml. The system was tested for specificity to the evaluated biomarkers. This multiplex system can be modified and adapted to detect a larger quantity of biomarkers, or different ones, of relevance to other specific diseases.

  3. Simultaneous detection of multiple biomarkers by means of SERS on polymer nanopillar gold arrays

    NASA Astrophysics Data System (ADS)

    Morasso, Carlo; Picciolini, Silvia; Mehn, Dora; Pellacani, Paola; Frangolho, Ana; Marchesini, Gerardo; Vanna, Renzo; Gualerzi, Alice; Bedoni, Marzia; Marabelli, Franco; Gramatica, Furio

    2016-03-01

    The detection of biomarkers by means of Surface Enhanced Raman Spectroscopy (SERS) is foreseen to became a very important tool in the clinical practice because of its excellent sensitivity and potential for the simultaneous detection of multiple biomarkers. In the present paper we describe how it was possible to build a sensor for the detection of genetic biomarkers involved in acute myeloid leukemia. The assay is based on the use of a specifically designed SERS substrate made of a 2D crystal structure of polymeric pillars embedded in a gold layer. This substrate is characterized by good enhancing properties coupled with an excellent homogeneity. The SERS substrate was conjugated with DNA probes complementary to a target sequence and used in a sandwich assay with gold nanoparticles labeled with a second DNA probe and a Raman reporter. The so developed assay allowed the detection of a leukemia biomarker (WT1 gene) and an housekeeping gene with low picomolar sensitivity. At last, we optimized the assay in order to tackle one of the main limitations of SERS based assay: the loss of signal that is observed when the Raman spectra are collected in liquid. Combining a preferential functionalization on the polymeric pillars with a different height of the polymer pillars from the gold layer the assay demonstrated its effectiveness even when measured in buffer.

  4. Hematopoietic cytokines.

    PubMed

    Metcalf, Donald

    2008-01-15

    The production of hematopoietic cells is under the tight control of a group of hematopoietic cytokines. Each cytokine has multiple actions mediated by receptors whose cytoplasmic domains contain specialized regions initiating the various responses-survival, proliferation, differentiation commitment, maturation, and functional activation. Individual cytokines can be lineage specific or can regulate cells in multiple lineages, and for some cell types, such as stem cells or megakaryocyte progenitors, the simultaneous action of multiple cytokines is required for proliferative responses. The same cytokines control basal and emergency hematopoietic cell proliferation. Three cytokines, erythropoietin, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor, have now been in routine clinical use to stimulate cell production and in total have been used in the management of many millions of patients. In this little review, discussion will be restricted to those cytokines well established as influencing the production of hematopoietic cells and will exclude newer candidate regulators and those active on lymphoid cells. As requested, this account will describe the cytokines in a historical manner, using a sequential format of discovery, understanding, validation, and puzzlement, a sequence that reflects the evolving views on these cytokines over the past 50 years.

  5. Encapsulated Solid-Liquid Phase Change Nanoparticles as Thermal Barcodes for Highly Sensitive Detections of Multiple Lung Cancer Biomarkers

    DTIC Science & Technology

    2012-10-01

    nanoparticles as thermal barcodes for highly sensitive detections of multiple lung cancer biomarkers PRINCIPAL INVESTIGATOR: Ming Su...nanoparticles to detect multiple cancer biomarkers for enhanced cancer detection at early stage. With the support from DOD-LCRP, we have proved the new signal...been used to obtain an NSF-CAREER project in 2011, as well as two grants to NIH and National Institute of Justice in 2012. 15. SUBJECT TERMS Cancer

  6. Quality assurance of intracellular cytokine staining assays: analysis of multiple rounds of proficiency testing.

    PubMed

    Jaimes, Maria C; Maecker, Holden T; Yan, Ming; Maino, Vernon C; Hanley, Mary Beth; Greer, Angela; Darden, Janice M; D'Souza, M Patricia

    2011-01-05

    When evaluating candidate prophylactic HIV and cancer vaccines, intracellular cytokine staining (ICS) assays that measure the frequency and magnitude of antigen-specific T-cell subsets are one tool to monitor immunogen performance and make product advancement decisions. To assess the inter-laboratory assay variation among multiple laboratories testing vaccine candidates, the NIH/NIAID/DAIDS in collaboration with BD Biosciences implemented an ICS Quality Assurance Program (QAP). Seven rounds of testing have been conducted in which 16 laboratories worldwide participated. In each round, IFN-γ, IL-2 and/or TNF-α responses in CD4+ and CD8+ T-cells to CEF or CMV pp65 peptide mixes were tested using cryopreserved peripheral blood mononuclear cells (PBMC) from CMV seropositive donors. We found that for responses measured above 0.2%, inter-laboratory %CVs were, on average, 35%. No differences in inter-laboratory variation were observed if a 4-color antibody cocktail or a 7-color combination was used. Moreover, the data allowed identification of important sources of variability for flow cytometry-based assays, including: number of collected events, gating strategy and instrument setup and performance. As a consequence, in this multi-site study we were able to define pass and fail criteria for ICS assays, which will be adopted in the subsequent rounds of testing and could be easily extrapolated to QAP for other flow cytometry-based assays.

  7. Identification of potential biomarkers from microarray experiments using multiple criteria optimization.

    PubMed

    Sánchez-Peña, Matilde L; Isaza, Clara E; Pérez-Morales, Jaileene; Rodríguez-Padilla, Cristina; Castro, José M; Cabrera-Ríos, Mauricio

    2013-04-01

    Microarray experiments are capable of determining the relative expression of tens of thousands of genes simultaneously, thus resulting in very large databases. The analysis of these databases and the extraction of biologically relevant knowledge from them are challenging tasks. The identification of potential cancer biomarker genes is one of the most important aims for microarray analysis and, as such, has been widely targeted in the literature. However, identifying a set of these genes consistently across different experiments, researches, microarray platforms, or cancer types is still an elusive endeavor. Besides the inherent difficulty of the large and nonconstant variability in these experiments and the incommensurability between different microarray technologies, there is the issue of the users having to adjust a series of parameters that significantly affect the outcome of the analyses and that do not have a biological or medical meaning. In this study, the identification of potential cancer biomarkers from microarray data is casted as a multiple criteria optimization (MCO) problem. The efficient solutions to this problem, found here through data envelopment analysis (DEA), are associated to genes that are proposed as potential cancer biomarkers. The method does not require any parameter adjustment by the user, and thus fosters repeatability. The approach also allows the analysis of different microarray experiments, microarray platforms, and cancer types simultaneously. The results include the analysis of three publicly available microarray databases related to cervix cancer. This study points to the feasibility of modeling the selection of potential cancer biomarkers from microarray data as an MCO problem and solve it using DEA. Using MCO entails a new optic to the identification of potential cancer biomarkers as it does not require the definition of a threshold value to establish significance for a particular gene and the selection of a normalization

  8. Buccal Cell Cytokeratin 14 Correlates with Multiple Blood Biomarkers of Alzheimer's Disease Risk.

    PubMed

    Leifert, Wayne R; Nguyen, Tori; Rembach, Alan; Martins, Ralph; Rainey-Smith, Stephanie; Masters, Colin L; Ames, David; Rowe, Christopher C; Macaulay, S Lance; François, Maxime; Fenech, Michael F

    2015-01-01

    Mild cognitive impairment (MCI) may reflect early stages of neurodegenerative disorders such as Alzheimer's disease (AD). Our hypothesis was that cytokeratin 14 (CK14) expression could be used with blood-based biomarkers such as homocysteine, vitamin B12, and folate to identify individuals with MCI or AD from the Australian Imaging, Biomarkers and Lifestyle (AIBL) flagship study of aging. Buccal cells from 54 individuals were analyzed by a newly developed method that is rapid, automated, and quantitative for buccal cell CK14 expression levels. CK14 was negatively correlated with plasma Mg²⁺ and LDL, while positively correlated with vitamin B12, red cell hematocrit/volume, and basophils in the MCI group and positively correlated with insulin and vitamin B12 in the AD group. The combined biomarker panel (CK14 expression, plasma vitamin B12, and homocysteine) was significantly lower in the MCI (p = 0.003) and AD (p = 0.0001) groups compared with controls. Receiver-operating characteristic curves yielded area under the curve (AUC) values of 0.829 for the MCI (p = 0.002) group and 0.856 for the AD (p = 0.0003) group. These complex associations of multiple related parameters highlight the differences between the MCI and AD cohorts and possibly an underlying metabolic pathology associated with the development of early memory impairment. The changes in buccal cell CK14 expression observed in this pilot study supports previous results suggesting the peripheral biomarkers and metabolic changes are not restricted to brain pathology alone in MCI and AD and could prove useful as a potential biomarker in identifying individuals with an increased risk of developing MCI and eventually AD.

  9. Search for Specific Biomarkers of IFNβ Bioactivity in Patients with Multiple Sclerosis

    PubMed Central

    Malhotra, Sunny; Bustamante, Marta F.; Pérez-Miralles, Francisco; Rio, Jordi; Ruiz de Villa, Mari Carmen; Vegas, Esteban; Nonell, Lara; Deisenhammer, Florian; Fissolo, Nicolás; Nurtdinov, Ramil N.; Montalban, Xavier; Comabella, Manuel

    2011-01-01

    Myxovirus A (MxA), a protein encoded by the MX1 gene with antiviral activity, has proven to be a sensitive measure of IFNβ bioactivity in multiple sclerosis (MS). However, the use of MxA as a biomarker of IFNβ bioactivity has been criticized for the lack of evidence of its role on disease pathogenesis and the clinical response to IFNβ. Here, we aimed to identify specific biomarkers of IFNβ bioactivity in order to compare their gene expression induction by type I IFNs with the MxA, and to investigate their potential role in MS pathogenesis. Gene expression microarrays were performed in PBMC from MS patients who developed neutralizing antibodies (NAB) to IFNβ at 12 and/or 24 months of treatment and patients who remained NAB negative. Nine genes followed patterns in gene expression over time similar to the MX1, which was considered the gold standard gene, and were selected for further experiments: IFI6, IFI27, IFI44L, IFIT1, HERC5, LY6E, RSAD2, SIGLEC1, and USP18. In vitro experiments in PBMC from healthy controls revealed specific induction of selected biomarkers by IFNβ but not IFNγ, and several markers, in particular USP18 and HERC5, were shown to be significantly induced at lower IFNβ concentrations and more selective than the MX1 as biomarkers of IFNβ bioactivity. In addition, USP18 expression was deficient in MS patients compared with healthy controls (p = 0.0004). We propose specific biomarkers that may be considered in addition to the MxA to evaluate IFNβ bioactivity, and to further explore their implication in MS pathogenesis. PMID:21886806

  10. Vaccination induced changes in pro-inflammatory cytokine levels as an early putative biomarker for cognitive improvement in a transgenic mouse model for Alzheimer disease.

    PubMed

    Lin, Xiaoyang; Bai, Ge; Lin, Linda; Wu, Hengyi; Cai, Jianfeng; Ugen, Kenneth E; Cao, Chuanhai

    2014-01-01

    Several pieces of experimental evidence suggest that administration of anti-β amyloid (Aβ) vaccines, passive anti-Aβ antibodies or anti-inflammatory drugs can reduce Aβ deposition as well as associated cognitive/behavioral deficits in an Alzheimer disease (AD) transgenic (Tg) mouse model and, as such, may have some efficacy in human AD patients as well. In the investigation reported here an Aβ 1-42 peptide vaccine was administered to 16-month old APP+PS1 transgenic (Tg) mice in which Aβ deposition, cognitive memory deficits as well as levels of several pro-inflammatory cytokines were measured in response to the vaccination regimen. After vaccination, the anti-Aβ 1-42 antibody-producing mice demonstrated a significant reduction in the sera levels of 4 pro-inflammatory cytokines (TNF-α, IL-6, IL-1 α, and IL-12). Importantly, reductions in the cytokine levels of TNF-α and IL-6 were correlated with cognitive/behavioral improvement in the Tg mice. However, no differences in cerebral Aβ deposition in these mice were noted among the different control and experimental groups, i.e., Aβ 1-42 peptide vaccinated, control peptide vaccinated, or non-vaccinated mice. However, decreased levels of pro-inflammatory cytokines as well as improved cognitive performance were noted in mice vaccinated with the control peptide as well as those immunized with the Aβ 1-42 peptide. These findings suggest that reduction in pro-inflammatory cytokine levels in these mice may be utilized as an early biomarker for vaccination/treatment induced amelioration of cognitive deficits and are independent of Aβ deposition and, interestingly, antigen specific Aβ 1-42 vaccination. Since cytokine changes are typically related to T cell activation, the results imply that T cell regulation may have an important role in vaccination or other immunotherapeutic strategies in an AD mouse model and potentially in AD patients. Overall, these cytokine changes may serve as a predictive marker for AD

  11. A Novel Electrochemical Microfluidic Chip Combined with Multiple Biomarkers for Early Diagnosis of Gastric Cancer

    NASA Astrophysics Data System (ADS)

    Xie, Yao; Zhi, Xiao; Su, Haichuan; Wang, Kan; Yan, Zhen; He, Nongyue; Zhang, Jingpu; Chen, Di; Cui, Daxiang

    2015-12-01

    Early diagnosis is very important to improve the survival rate of patients with gastric cancer and to understand the biology of cancer. In order to meet the clinical demands for early diagnosis of gastric cancer, we developed a disposable easy-to-use electrochemical microfluidic chip combined with multiple antibodies against six kinds of biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), Helicobacter pylori CagA protein (H.P.), P53oncoprotein (P53), pepsinogen I (PG I), and PG-II). The six kinds of biomarkers related to gastric cancer can be detected sensitively and synchronously in a short time. The specially designed three electrodes system enables cross-contamination to be avoided effectively. The linear ranges of detection of the electrochemical microfluidic chip were as follows: 0.37-90 ng mL-1 for CEA, 10.75-172 U mL-1 for CA19-9, 10-160 U L-1 for H.P., 35-560 ng mL-1 for P53, 37.5-600 ng mL-1 for PG I, and 2.5-80 ng mL-1for PG II. This method owns better sensitivity compared with enzyme-linked immunosorbent assay (ELISA) results of 394 specimens of gastric cancer sera. Furthermore, we established a multi-index prediction model based on the six kinds of biomarkers for predicting risk of gastric cancer. In conclusion, the electrochemical microfluidic chip for detecting multiple biomarkers has great potential in applications such as early screening of gastric cancer patients, and therapeutic evaluation, and real-time dynamic monitoring the progress of gastric cancer in near future.

  12. A Novel Electrochemical Microfluidic Chip Combined with Multiple Biomarkers for Early Diagnosis of Gastric Cancer.

    PubMed

    Xie, Yao; Zhi, Xiao; Su, Haichuan; Wang, Kan; Yan, Zhen; He, Nongyue; Zhang, Jingpu; Chen, Di; Cui, Daxiang

    2015-12-01

    Early diagnosis is very important to improve the survival rate of patients with gastric cancer and to understand the biology of cancer. In order to meet the clinical demands for early diagnosis of gastric cancer, we developed a disposable easy-to-use electrochemical microfluidic chip combined with multiple antibodies against six kinds of biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), Helicobacter pylori CagA protein (H.P.), P53oncoprotein (P53), pepsinogen I (PG I), and PG-II). The six kinds of biomarkers related to gastric cancer can be detected sensitively and synchronously in a short time. The specially designed three electrodes system enables cross-contamination to be avoided effectively. The linear ranges of detection of the electrochemical microfluidic chip were as follows: 0.37-90 ng mL(-1) for CEA, 10.75-172 U mL(-1) for CA19-9, 10-160 U L(-1) for H.P., 35-560 ng mL(-1) for P53, 37.5-600 ng mL(-1) for PG I, and 2.5-80 ng mL(-1)for PG II. This method owns better sensitivity compared with enzyme-linked immunosorbent assay (ELISA) results of 394 specimens of gastric cancer sera. Furthermore, we established a multi-index prediction model based on the six kinds of biomarkers for predicting risk of gastric cancer. In conclusion, the electrochemical microfluidic chip for detecting multiple biomarkers has great potential in applications such as early screening of gastric cancer patients, and therapeutic evaluation, and real-time dynamic monitoring the progress of gastric cancer in near future.

  13. Genetic Diversity in Cytokines Associated with Immune Variation and Resistance to Multiple Pathogens in a Natural Rodent Population

    PubMed Central

    Turner, Andrew K.; Begon, Mike; Jackson, Joseph A.; Bradley, Janette E.; Paterson, Steve

    2011-01-01

    Pathogens are believed to drive genetic diversity at host loci involved in immunity to infectious disease. To date, studies exploring the genetic basis of pathogen resistance in the wild have focussed almost exclusively on genes of the Major Histocompatibility Complex (MHC); the role of genetic variation elsewhere in the genome as a basis for variation in pathogen resistance has rarely been explored in natural populations. Cytokines are signalling molecules with a role in many immunological and physiological processes. Here we use a natural population of field voles (Microtus agrestis) to examine how genetic diversity at a suite of cytokine and other immune loci impacts the immune response phenotype and resistance to several endemic pathogen species. By using linear models to first control for a range of non-genetic factors, we demonstrate strong effects of genetic variation at cytokine loci both on host immunological parameters and on resistance to multiple pathogens. These effects were primarily localized to three cytokine genes (Interleukin 1 beta (Il1b), Il2, and Il12b), rather than to other cytokines tested, or to membrane-bound, non-cytokine immune loci. The observed genetic effects were as great as for other intrinsic factors such as sex and body weight. Our results demonstrate that genetic diversity at cytokine loci is a novel and important source of individual variation in immune function and pathogen resistance in natural populations. The products of these loci are therefore likely to affect interactions between pathogens and help determine survival and reproductive success in natural populations. Our study also highlights the utility of wild rodents as a model of ecological immunology, to better understand the causes and consequences of variation in immune function in natural populations including humans. PMID:22039363

  14. Biomarkers of sepsis.

    PubMed

    Faix, James D

    2013-01-01

    Sepsis is an unusual systemic reaction to what is sometimes an otherwise ordinary infection, and it probably represents a pattern of response by the immune system to injury. A hyper-inflammatory response is followed by an immunosuppressive phase during which multiple organ dysfunction is present and the patient is susceptible to nosocomial infection. Biomarkers to diagnose sepsis may allow early intervention which, although primarily supportive, can reduce the risk of death. Although lactate is currently the most commonly used biomarker to identify sepsis, other biomarkers may help to enhance lactate's effectiveness; these include markers of the hyper-inflammatory phase of sepsis, such as pro-inflammatory cytokines and chemokines; proteins such as C-reactive protein and procalcitonin which are synthesized in response to infection and inflammation; and markers of neutrophil and monocyte activation. Recently, markers of the immunosuppressive phase of sepsis, such as anti-inflammatory cytokines, and alterations of the cell surface markers of monocytes and lymphocytes have been examined. Combinations of pro- and anti-inflammatory biomarkers in a multi-marker panel may help identify patients who are developing severe sepsis before organ dysfunction has advanced too far. Combined with innovative approaches to treatment that target the immunosuppressive phase, these biomarkers may help to reduce the mortality rate associated with severe sepsis which, despite advances in supportive measures, remains high.

  15. A Minimally-invasive Blood-derived Biomarker of Oligodendrocyte Cell-loss in Multiple Sclerosis.

    PubMed

    Olsen, John A; Kenna, Lauren A; Tipon, Regine C; Spelios, Michael G; Stecker, Mark M; Akirav, Eitan M

    2016-08-01

    Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS). Minimally invasive biomarkers of MS are required for disease diagnosis and treatment. Differentially methylated circulating-free DNA (cfDNA) is a useful biomarker for disease diagnosis and prognosis, and may offer to be a viable approach for understanding MS. Here, methylation-specific primers and quantitative real-time PCR were used to study methylation patterns of the myelin oligodendrocyte glycoprotein (MOG) gene, which is expressed primarily in myelin-producing oligodendrocytes (ODCs). MOG-DNA was demethylated in O4(+) ODCs in mice and in DNA from human oligodendrocyte precursor cells (OPCs) when compared with other cell types. In the cuprizone-fed mouse model of demyelination, ODC derived demethylated MOG cfDNA was increased in serum and was associated with tissue-wide demyelination, demonstrating the utility of demethylated MOG cfDNA as a biomarker of ODC death. Collected sera from patients with active (symptomatic) relapsing-remitting MS (RRMS) demonstrated a higher signature of demethylated MOG cfDNA when compared with patients with inactive disease and healthy controls. Taken together, these results offer a minimally invasive approach to measuring ODC death in the blood of MS patients that may be used to monitor disease progression.

  16. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease.

    PubMed

    Badea, Alexandra; Kane, Lauren; Anderson, Robert J; Qi, Yi; Foster, Mark; Cofer, Gary P; Medvitz, Neil; Buckley, Anne F; Badea, Andreas K; Wetsel, William C; Colton, Carol A

    2016-11-15

    Multivariate biomarkers are needed for detecting Alzheimer's disease (AD), understanding its etiology, and quantifying the effect of therapies. Mouse models provide opportunities to study characteristics of AD in well-controlled environments that can help facilitate development of early interventions. The CVN-AD mouse model replicates multiple AD hallmark pathologies, and we identified multivariate biomarkers characterizing a brain circuit disruption predictive of cognitive decline. In vivo and ex vivo magnetic resonance imaging (MRI) revealed that CVN-AD mice replicate the hippocampal atrophy (6%), characteristic of humans with AD, and also present changes in subcortical areas. The largest effect was in the fornix (23% smaller), which connects the septum, hippocampus, and hypothalamus. In characterizing the fornix with diffusion tensor imaging, fractional anisotropy was most sensitive (20% reduction), followed by radial (15%) and axial diffusivity (2%), in detecting pathological changes. These findings were strengthened by optical microscopy and ultrastructural analyses. Ultrastructual analysis provided estimates of axonal density, diameters, and myelination-through the g-ratio, defined as the ratio between the axonal diameter, and the diameter of the axon plus the myelin sheath. The fornix had reduced axonal density (47% fewer), axonal degeneration (13% larger axons), and abnormal myelination (1.5% smaller g-ratios). CD68 staining showed that white matter pathology could be secondary to neuronal degeneration, or due to direct microglial attack. In conclusion, these findings strengthen the hypothesis that the fornix plays a role in AD, and can be used as a disease biomarker and as a target for therapy.

  17. Covalently deposited dyes: a new chromogen paradigm that facilitates analysis of multiple biomarkers in situ.

    PubMed

    Day, William A; Lefever, Mark R; Ochs, Robert L; Pedata, Anne; Behman, Lauren J; Ashworth-Sharpe, Julia; Johnson, Donald D; May, Eric J; Grille, James G; Roberts, Esteban A; Kosmeder, Jerry W; Morrison, Larry E

    2017-01-01

    Multiplexed analysis of multiple biomarkers in a tissue sample requires use of reporter dyes with specific spectral properties that enable discrimination of signals. Conventional chromogens with broad absorbance spectra, widely used in immunohistochemistry (IHC), offer limited utility for multiplexed detection. Many dyes with narrow absorbance spectra, eg rhodamines, fluoresceins, and cyanines, potentially useful for multiplexed detection are well-characterized; however, generation of a chromogenic reagent useful for IHC analysis has not been demonstrated. Studies reported herein demonstrate utility of tyramine-chemistry for synthesis of a wide variety of new chromogenic dye conjugates useful for multiplexed in situ analysis using conventional light microscopes. The dyes, useful individually or in blends to generate new colors, provide signal sensitivity and dynamic range similar to conventional DAB chromogen, while enabling analysis of co-localized biomarkers. It is anticipated that this new paradigm will enable generation of a wide variety of new chromogens, useful for both research and clinical biomarker analysis that will benefit clinicians and patients.

  18. Tumor necrosis factor and its targets in the inflammatory cytokine pathway are identified as putative transcriptomic biomarkers for escitalopram response.

    PubMed

    Powell, Timothy R; Schalkwyk, Leonard C; Heffernan, Andrew L; Breen, Gerome; Lawrence, Timothy; Price, Tom; Farmer, Anne E; Aitchison, Katherine J; Craig, Ian W; Danese, Andrea; Lewis, Cathryn; McGuffin, Peter; Uher, Rudolf; Tansey, Katherine E; D'Souza, Ursula M

    2013-09-01

    Converging evidence suggests that the activation of the inflammatory cytokine pathway is important in the pathophysiology of unipolar depression. Antidepressants have anti-inflammatory properties and evidence suggests that inter-individual variability in response to antidepressants may reflect genetic differences in the inflammatory cytokine pathway. In particular, protein levels of Tumor Necrosis Factor (TNF) and the SNPs rs1126757 in interleukin-11 (IL11), and rs7801617 in interleukin-6 (IL6), have previously been implicated in the clinical response to the selective serotonin reuptake inhibitor (SSRI) antidepressant escitalopram. This study investigated the transcription of TNF, IL11 and IL6 as well as genes in the wider inflammatory cytokine pathway both at baseline and after escitalopram treatment in depressed patients who were either clinical "responders" (n=25) or "non-responders" (n=21). Samples were obtained as a subset of the Genome-Based Therapeutic Drugs for Depression (GENDEP) project and response status is based on changes in the Montgomery-Asberg Depression Rating Scores over a 12 wk treatment period. Binary logistic regressions revealed significant expression differences at baseline between responders and non-responders in TNF, and after escitalopram treatment in TNF and IL11. Differences in IL11 after treatment were found to be driven by drug-induced allele-specific expression differences relating to rs1126757. Top hits in the wider inflammatory cytokine pathway at both baseline and after escitalopram treatment were found to be targets of TNF. The current study adds substantial support for the role of the inflammatory cytokine pathway in mediating response to the SSRI escitalopram, and is the first to identify TNF and its targets as putative transcriptomic predictors of clinical response.

  19. Multiple biomarkers responses in Prochilodus lineatus allowed assessing changes in the water quality of Salado River basin (Santa Fe, Argentina).

    PubMed

    Cazenave, Jimena; Bacchetta, Carla; Parma, María J; Scarabotti, Pablo A; Wunderlin, Daniel A

    2009-11-01

    This field study assessed water quality of Salado River basin by using a set of biomarkers in the fish Prochilodus lineatus. Multiple biomarkers were measured, including morphological indexes (condition factor, liver somatic index), hematological (red and white blood cells) and biochemical (glucose, total protein and cholinesterase activity) parameters. Besides, detoxication and oxidative stress markers (antioxidant enzymes, lipid peroxidation) were measured in liver, gills and kidney. Despite water quality assessment did not show marked differences among sites, biomarkers responses indicate that fish are living under stressful environmental conditions. According to multivariate analysis glucose, glutathione S-transferase activity, lipid peroxidation levels and the count of white blood cells are key biomarkers to contribute to discrimination of sites. So, we suggest use those biomarkers in future monitoring of freshwater aquatic systems.

  20. Multiple Inflammatory Biomarkers in Relation to Cardiovascular Events and Mortality in the Community

    PubMed Central

    Schnabel, Renate B.; Yin, Xiaoyan; Larson, Martin G.; Yamamoto, Jennifer F.; Fontes, João D.; Kathiresan, Sekar; Rong, Jian; Levy, Daniel; Keaney, John F.; Wang, Thomas J.; Murabito, Joanne M.; Vasan, Ramachandran S.; Benjamin, Emelia J.

    2013-01-01

    Objective Evidence suggests that chronic low-grade inflammation and oxidative stress are related to cardiovascular disease (CVD) and mortality. Approach and Results We examined 11 established and novel biomarkers representing inflammation and oxidative stress (C-reactive protein [CRP], fibrinogen, interleukin-6, intercellular adhesion molecule-1 [ICAM-1], lipoprotein-associated phospholipase A2 (mass and activity), monocyte chemoattractant protein-1, myeloperoxidase, CD40 ligand, P-selectin, tumor necrosis factor receptor II [TNFRII]) in relation to incident major CVD and mortality in the community. We studied 3035 participants (mean age 61±9 years, 53% women). During follow-up (median 8.9 years), 253 participants experienced a CVD event and 343 died. CRP (hazard ratios [HR] reported per standard deviation ln-transformed biomarker, 1.18, 95% confidence interval [CI] 1.02-1.35; nominal P=0.02) and TNFRII (HR 1.15, 95% CI; 1.01-1.32; nominal P=0.04) were retained in multivariable-adjusted models for major CVD, but were not significant after adjustment for multiple testing. The biomarkers related to mortality were TNFRII (HR 1.33, 95% CI: 1.19-1.49; P<0.0001); ICAM-1 (HR 1.24, 95% CI: 1.12-1.37; P<0.0001), and interleukin-6 (HR 1.25, 95% CI: 1.12-1.39; P<0.0001). The addition of these markers to the model including traditional risk factors increased discrimination and reclassification for risk of death (P<0.0001), but not for CVD. Conclusions Of 11 biomarkers, TNFRII was associated nominally with incident major CVD, and significantly with all-cause mortality, which renders it an interesting target for future research. The combination of TNFRII with CRP in relation to CVD and with interleukin-6 to mortality increased the predictive ability in addition to CVD risk factors for total mortality but not for incident CVD. PMID:23640499

  1. MicroRNAs in Cerebrospinal Fluid as Potential Biomarkers for Parkinson's Disease and Multiple System Atrophy.

    PubMed

    Marques, Tainá M; Kuiperij, H Bea; Bruinsma, Ilona B; van Rumund, Anouke; Aerts, Marjolein B; Esselink, Rianne A J; Bloem, Bas R; Verbeek, Marcel M

    2016-11-14

    Parkinson's disease (PD) and multiple system atrophy (MSA) are both part of the spectrum of neurodegenerative movement disorders and α-synucleinopathies with overlap of symptoms especially at early stages of the disease but with distinct disease progression and responses to dopaminergic treatment. Therefore, having biomarkers that specifically classify patients, which could discriminate PD from MSA, would be very useful. MicroRNAs (miRNAs) regulate protein translation and are observed in biological fluids, including cerebrospinal fluid (CSF), and may therefore have potential as biomarkers of disease. The aim of our study was to determine if miRNAs in CSF could be used as biomarkers for either PD or MSA. Using quantitative PCR (qPCR), we evaluated expression levels of 10 miRNAs in CSF patient samples from PD (n = 28), MSA (n = 17), and non-neurological controls (n = 28). We identified two miRNAs (miR-24 and miR-205) that distinguished PD from controls and four miRNAs that differentiated MSA from controls (miR-19a, miR-19b, miR-24, and miR-34c). Combinations of miRNAs accurately discriminated either PD (area under the curve (AUC) = 0.96) or MSA (AUC = 0.86) from controls. In MSA, we also observed that miR-24 and miR-148b correlated with cerebellar ataxia symptoms, suggesting that these miRNAs are involved in cerebellar degeneration in MSA. Our findings support the potential of miRNA panels as biomarkers for movement disorders and may provide more insights into the pathological mechanisms related to these disorders.

  2. Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis

    PubMed Central

    Bergman, Petra; Piket, Eliane; Khademi, Mohsen; James, Tojo; Brundin, Lou; Olsson, Tomas; Piehl, Fredrik

    2016-01-01

    Objective: To explore circulating microRNAs (miRNAs) in cell-free CSF as novel biomarkers for multiple sclerosis (MS). Methods: Profiling of miRNAs in CSF of pooled patients with clinically isolated syndrome (CIS), patients with relapsing-remitting MS, and inflammatory and noninflammatory neurologic disease controls was performed using TaqMan miRNA arrays. Two independent patient cohorts (n = 142 and n = 430) were used for validation with real-time PCR. Results: We reliably detected 88 CSF miRNAs in the exploratory cohort. Subsequent validation in 2 cohorts demonstrated significantly higher levels of miR-150 in patients with MS. Higher miR-150 levels were also observed in patients with CIS who converted to MS compared to nonconverters, and in patients initiating natalizumab treatment. Levels of miR-150 correlated with immunologic parameters including CSF cell count, immunoglobulin G index, and presence of oligoclonal bands, and with candidate protein biomarkers C-X-C motif chemokine 13, matrix metallopeptidase 9, and osteopontin. Correlation with neurofilament light chain (NFL) was observed only when NFL was adjusted for age using a method that requires further validation. Additionally, miR-150 discriminated MS from controls and CIS converters from nonconverters equally well as the most informative protein biomarkers. Following treatment with natalizumab, but not fingolimod, CSF levels of miR-150 decreased, while plasma levels increased with natalizumab and decreased with fingolimod, suggesting immune cells as a source of miR-150. Conclusions: Our findings demonstrate miR-150 as a putative novel biomarker of inflammatory active disease with the potential to be used for early diagnosis of MS. Classification of evidence: This study provides Class II evidence that CSF miR-150 distinguishes patients with MS from patients with other neurologic conditions. PMID:27144214

  3. The KISS1 Receptor as an In Vivo Microenvironment Imaging Biomarker of Multiple Myeloma Bone Disease

    PubMed Central

    Brandl, Andreas; Müller, Marc; Hofbauer, Lorenz C.; Beilhack, Andreas; Ebert, Regina; Glüer, Claus C.; Tiwari, Sanjay; Schütze, Norbert; Jakob, Franz

    2016-01-01

    Multiple myeloma is one of the most common hematological diseases and is characterized by an aberrant proliferation of plasma cells within the bone marrow. As a result of crosstalk between cancer cells and the bone microenvironment, bone homeostasis is disrupted leading to osteolytic lesions and poor prognosis. Current diagnostic strategies for myeloma typically rely on detection of excess monoclonal immunoglobulins or light chains in the urine or serum. However, these strategies fail to localize the sites of malignancies. In this study we sought to identify novel biomarkers of myeloma bone disease which could target the malignant cells and/or the surrounding cells of the tumor microenvironment. From these studies, the KISS1 receptor (KISS1R), a G-protein-coupled receptor known to play a role in the regulation of endocrine functions, was identified as a target gene that was upregulated on mesenchymal stem cells (MSCs) and osteoprogenitor cells (OPCs) when co-cultured with myeloma cells. To determine the potential of this receptor as a biomarker, in vitro and in vivo studies were performed with the KISS1R ligand, kisspeptin, conjugated with a fluorescent dye. In vitro microscopy showed binding of fluorescently-labeled kisspeptin to both myeloma cells as well as MSCs under direct co-culture conditions. Next, conjugated kisspeptin was injected into immune-competent mice containing myeloma bone lesions. Tumor-burdened limbs showed increased peak fluorescence compared to contralateral controls. These data suggest the utility of the KISS1R as a novel biomarker for multiple myeloma, capable of targeting both tumor cells and host cells of the tumor microenvironment. PMID:27158817

  4. Hexavalent chromium-induced multiple biomarker responses in liver and kidney of goldfish, Carassius auratus.

    PubMed

    Velma, Venkatramreddy; Tchounwou, Paul B

    2011-11-01

    Hexavalent chromium [Cr (VI)] is a constituent of chromite ore. Although it is known to have several industrial and technological applications, its release into the aquatic environment as a result of chemical spill or inadequate waste discharge may hamper the health of aquatic organisms. In this study, we have investigated the effects of Cr (VI) on multiple biomarkers responses in goldfish under subchronic exposure conditions. Laboratory-acclimatized fish were exposed to 4.25 ppm and 8.57 ppm Cr (VI) for four weeks using a continuous flow-through system. During exposure, fish samples were collected on a weekly basis and analyzed for multiple biomarkers including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), metallothionein (MT), and total protein in liver and kidney. Study results indicated that the CAT activity and total protein levels in Cr (VI) - treated goldfish did not significantly differ (P > 0.05) from their respective controls during experimentation. However, highly significant up-regulations (P < 0.05) of SOD, GPx, and MT expression in Cr (VI) - treated goldfish were recorded at different exposure times depending on Cr (VI) concentration, test organ, and/or biomarker of interest. For example, significantly higher liver GPx levels were found at weeks 2 and 3 in the 4.25 ppm concentration, and at weeks 3 and 4 in the 8.57 ppm, while kidney GPx levels were significantly higher at weeks 1, 2 and 3 in the 4.25 ppm concentration, and at weeks 2, 3 and 4 in the 8.57 ppm concentration. In summary, Cr (VI)-induced oxidative stress was characterized by statistically significant increases in SOD, GPx, and MT expression in goldfish tissues; with the kidney showing a relatively higher sensitivity to Cr (VI) toxicity compared with the liver.

  5. Hexavalent Chromium-Induced Multiple Biomarker Responses in Liver and Kidney of Goldfish, Carassius auratus

    PubMed Central

    Velma, Venkatramreddy; Tchounwou, Paul B.

    2010-01-01

    Hexavalent chromium [Cr (VI)] is a constituent of chromite ore. Although it is known to have several industrial and technological applications, its release into the aquatic environment as a result of chemical spill or inadequate waste discharge may hamper the health of aquatic organisms. In this study, we have investigated the effects of Cr (VI) on multiple biomarkers responses in goldfish under sub-chronic exposure conditions. Laboratory-acclimatized fish were exposed to 4.25 ppm and 8.57 ppm Cr (VI) for four weeks using a continuous flow-through system. During exposure, fish samples were collected on a weekly basis and analyzed for multiple biomarkers including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), metallothionein (MT), and total protein in liver and kidney. Study results indicated that the CAT activity and total protein levels in Cr (VI) – treated goldfish did not significantly differ (p>0.05) from their respective controls during experimentation. However, highly significant up-regulations (p<0.05) of SOD, GPx, and MT expression in Cr (VI) – treated goldfish were recorded at different exposure times depending on Cr (VI) concentration, test organ, and/or biomarker of interest. For example, significantly higher liver GPx levels were found at weeks 2 and 3 in the 4.25 ppm concentration, and at weeks 3 and 4 in the 8.57 ppm, while kidney GPx levels were significantly higher at weeks 1, 2 and 3 in the 4.25 ppm concentration, and at weeks 2, 3 and 4 in the 8.57 ppm concentration. In summary, Cr (VI)-induced oxidative stress was characterized by statistically significant increases in SOD, GPx, and MT expression in goldfish tissues; with the kidney showing a relatively higher sensitivity to Cr (VI) toxicity compared to the liver. PMID:20549632

  6. Correlation between TH1 response standard cytokines as biomarkers in patients with the delta virus in the western Brazilian Amazon

    PubMed Central

    Nicolete, Larissa Deadame de Figueiredo; Borzacov, Lourdes Maria Pinheiro; Vieira, Deusilene Souza; Nicolete, Roberto; Salcedo, Juan Miguel Villalobos

    2016-01-01

    Hepatitis D virus (HDV) is endemic in the Amazon Region and its pathophysiology is the most severe among viral hepatitis. Treatment is performed with pegylated interferon and the immune response appears to be important for infection control. HDV patients were studied: untreated and polymerase chain reaction (PCR) positive (n = 9), anti-HDV positive and PCR negative (n = 8), and responders to treatment (n = 12). The cytokines, interleukin (IL)-2 (p = 0.0008) and IL-12 (p = 0.02) were differentially expressed among the groups and were also correlated (p = 0.0143). Future studies will be conducted with patients at different stages of treatment, associating the viral load with serum cytokines produced, thereby attempting to establish a prognostic indicator of the infection. PMID:27074258

  7. A Meta-Regression Method for Studying Etiological Heterogeneity Across Disease Subtypes Classified by Multiple Biomarkers

    PubMed Central

    Wang, Molin; Kuchiba, Aya; Ogino, Shuji

    2015-01-01

    In interdisciplinary biomedical, epidemiologic, and population research, it is increasingly necessary to consider pathogenesis and inherent heterogeneity of any given health condition and outcome. As the unique disease principle implies, no single biomarker can perfectly define disease subtypes. The complex nature of molecular pathology and biology necessitates biostatistical methodologies to simultaneously analyze multiple biomarkers and subtypes. To analyze and test for heterogeneity hypotheses across subtypes defined by multiple categorical and/or ordinal markers, we developed a meta-regression method that can utilize existing statistical software for mixed-model analysis. This method can be used to assess whether the exposure-subtype associations are different across subtypes defined by 1 marker while controlling for other markers and to evaluate whether the difference in exposure-subtype association across subtypes defined by 1 marker depends on any other markers. To illustrate this method in molecular pathological epidemiology research, we examined the associations between smoking status and colorectal cancer subtypes defined by 3 correlated tumor molecular characteristics (CpG island methylator phenotype, microsatellite instability, and the B-Raf protooncogene, serine/threonine kinase (BRAF), mutation) in the Nurses' Health Study (1980–2010) and the Health Professionals Follow-up Study (1986–2010). This method can be widely useful as molecular diagnostics and genomic technologies become routine in clinical medicine and public health. PMID:26116215

  8. Ultrasensitive photoelectrochemical biosensing of multiple biomarkers on a single electrode by a light addressing strategy.

    PubMed

    Wang, Juan; Liu, Zhihong; Hu, Chengguo; Hu, Shengshui

    2015-09-15

    Ultrasensitive multiplexed detection of biomarkers on a single electrode is usually a great challenge for electrochemical sensors. Here, a light addressable photoelectrochemical sensor (LAPECS) for the sensitive detection of multiple DNA biomarkers on a single electrode was reported. The sensor was constructed through four steps: (1) immobilization of capture DNA (C-DNA) of different targets on different areas of a single large-sized gold film electrode, (2) recognition of each target DNA (T-DNA) and the corresponding biotin-labeled probe DNA (P-DNA) through hybridization, (3) reaction of the biotin-labeled probe DNA with a streptavidin-labeled all-carbon PEC bioprobe, and (4) PEC detection of multiple DNA targets one by one via a light addressing strategy. Through this principle, the LAPECS can achieve ultrasensitive detection of three DNA sequences related to hepatitis B (HBV), hepatitis C (HCV) and human immunodeficiency (HIV) viruses with a similar wide calibration range of 1.0 pM ∼ 0.01 μM and a low detection limit of 0.7 pM by using one kind of PEC bioprobe. Moreover, the detection throughput of LAPECS may be conveniently expanded by simply enlarging the size of the substrate electrode or reducing the size of the sensing arrays and the light beam. The present work thus demonstrates the promising applications of LAPECS in developing portable, sensitive, high-throughput, and cost-effective biosensing systems.

  9. Biomarkers of respiratory syncytial virus (RSV) infection: specific neutrophil and cytokine levels provide increased accuracy in predicting disease severity.

    PubMed

    Brown, Paul M; Schneeberger, Dana L; Piedimonte, Giovanni

    2015-09-01

    Despite fundamental advances in the research on respiratory syncytial virus (RSV) since its initial identification almost 60 years ago, recurring failures in developing vaccines and pharmacologic strategies effective in controlling the infection have allowed RSV to become a leading cause of global infant morbidity and mortality. Indeed, the burden of this infection on families and health care organizations worldwide continues to escalate and its financial costs are growing. Furthermore, strong epidemiologic evidence indicates that early-life lower respiratory tract infections caused by RSV lead to the development of recurrent wheezing and childhood asthma. While some progress has been made in the identification of reliable biomarkers for RSV bronchiolitis, a "one size fits all" biomarker capable of accurately and consistently predicting disease severity and post-acute outcomes has yet to be discovered. Therefore, it is of great importance on a global scale to identify useful biomarkers for this infection that will allow pediatricians to cost-effectively predict the clinical course of the disease, as well as monitor the efficacy of new therapeutic strategies.

  10. Inflammatory Cytokines Interleukin-1β and Tumour Necrosis Factor-α - Novel Biomarkers for the Detection of Periodontal Diseases: a Literature Review

    PubMed Central

    Gomes, Francisco Isaac Fernandes; Aragão, Maria Gerusa Brito; Barbosa, Francisco Cesar Barroso; Bezerra, Mirna Marques; de Paulo Teixeira Pinto, Vicente

    2016-01-01

    ABSTRACT Objectives The article aims to discuss the IL-1β and TNF-α potential use as salivary biomarkers of periodontal diseases pathogenesis and progression. Material and Methods This literature review has been registered in PROSPERO database with following number: CRD42016035729. Data investigation was performed on PubMed database as the main source of studies. The following search terms were used: “salivary biomarkers”, “periodontal diseases”, “TNF-alpha”, “Interleukin-1 beta”. Clinical trials and animal experimental models of periodontal disease were included in the discussion. In regards to inclusive dates, published studies from January 2006 to December 2015 were considered in this review along with the mentioned inclusion criteria. Results IL-1β and TNF-α salivary levels increased in diseased groups, they were associated with onset and disease severity, and their levels reduced in response to periodontal therapy. IL-1β and TNF-α could be promising biomarkers in the detection of periodontal diseases. Conclusions The use of a salivary cytokine-based diagnosis appears to be a screening method capable of diagnosing periodontal diseases in an early fashion, establishing an era of individualized clinical decisions. PMID:27489606

  11. Serum Levels of Cytokines, and Biomarkers for Inflammation and Immune Activation, and HIV-Associated Non-Hodgkin B cell Lymphoma Risk

    PubMed Central

    Vendrame, Elena; Hussain, Shehnaz K.; Breen, Elizabeth Crabb; Magpantay, Larry; Widney, Daniel P.; Jacobson, Lisa P.; Variakojis, Daina; Knowlton, Emilee R.; Bream, Jay H.; Ambinder, Richard F.; Detels, Roger; Martínez-Maza, Otoniel

    2013-01-01

    Background: HIV infection is associated with a marked increase in risk for non-Hodgkin lymphoma (AIDS-NHL). However, the mechanisms that promote the development of AIDS-NHL are not fully understood. Methods: In this study serum levels of several cytokines and other molecules associated with immune activation were measured in specimens collected longitudinally during 1-to-5 years preceding AIDS-NHL diagnosis, in 176 AIDS-NHL cases and 176 HIV+ controls from the Multicenter AIDS Cohort Study (MACS). Results: Multivariate analyses revealed that serum levels of immunoglobulin free light chains (FLC), IL-6, IL-10, IP-10/CXCL10, neopterin, and TNFα were elevated in those HIV+ individuals who went on to develop AIDS-NHL. Additionally, the fraction of specimens with detectable IL-2 was increased, and the fraction with detectable IL-4 was decreased, in these subjects. Conclusions: These results suggest that long term, chronic immune activation, possibly driven by macrophage-produced cytokines, precedes development of NHL in HIV+ individuals. Impact: FLC, IL-6, IL-10, IP-10/CXCL10, neopterin, and TNFα may serve as biomarkers for AIDS-NHL. PMID:24220912

  12. Association of Th1 and Th2 cytokines with transient inflammatory reaction during lenalidomide plus dexamethasone therapy in multiple myeloma.

    PubMed

    Harada, Takeshi; Ozaki, Shuji; Oda, Asuka; Fujii, Shiro; Nakamura, Shingen; Miki, Hirokazu; Kagawa, Kumiko; Takeuchi, Kyoko; Matsumoto, Toshio; Abe, Masahiro

    2013-06-01

    Transient inflammatory reactions have been reported in a subpopulation of patients with multiple myeloma (MM) during lenalidomide (Len) plus dexamethasone (DEX) therapy. Here, we examined serum levels of Th1 (IL-2 and IFN-γ) and Th2 cytokines (IL-6 and TNF-α) in nine refractory or relapsed MM patients treated with Len plus low-dose DEX. Six patients showed elevation of C-reactive protein (CRP) after the initiation of therapy. In these patients, IFN-γ and IL-6 were also elevated in two and three patients, respectively. The remaining three patients showed no appreciable changes in CRP or these cytokines. Furthermore, Len enhanced the production of both Th1 and Th2 cytokines in normal peripheral blood mononuclear cells and in patient bone marrow mononuclear cells containing primary myeloma cells and lymphocytes. These results suggest that the modulation of the Th1 and Th2 cytokine production by Len may contribute to transient inflammatory reaction in MM patients.

  13. Pathogenesis of multiple organ dysfunction syndrome--endotoxin, inflammatory cells, and their mediators: cytokines and reactive oxygen species.

    PubMed

    Maier, R V

    2000-01-01

    Multiple organ dysfunction syndrome (MODS) is caused by an overwhelming, uncontrolled systemic inflammatory response that is activated by a number of hostile stimuli including sepsis, hypovolemic shock, and severe trauma resulting in massive tissue injury. The indiscriminate activation of the inflammatory response due to these insults causes loss of the host's ability to localize the inflammation to the focus of the problem, leading to systemic inflammation and severe host tissue damage and subsequent MODS. While the major players, namely neutrophils, macrophages, endotoxin, cytokines, and oxidants have been known for some time, the disease processes responsible for the pathogenesis of MODS have only recently been elucidated. Our newly found knowledge has resulted in the development of novel therapeutic strategies to prevent or treat MODS, such as scavenging toxic oxygen species and inhibiting endotoxin, or cytokine production, or cytokine activity. Unfortunately, these strategies have not resulted in improved mortality rates among patients with MODS. The complex nature of the host response to severe insults combined with the fact that the host has multiple, redundant parallel systems to deal with various insults has made it difficult for clinical interventions to adequately ameliorate the disease process among patients at risk for MODS. The purpose of this article is to attempt to "dissect out" several individual components of the inflammatory response that play important roles in the development of MODS and to review some potentially beneficial approaches to combat these harmful processes.

  14. SIRT1 as a potential biomarker of response to treatment with glatiramer acetate in multiple sclerosis.

    PubMed

    Hewes, Daniel; Tatomir, Alexandru; Kruszewski, Adam M; Rao, Gautam; Tegla, Cosmin A; Ciriello, Jonathan; Nguyen, Vingh; Royal, Walter; Bever, Christopher; Rus, Violeta; Rus, Horea

    2017-01-19

    SIRT1, a NAD dependent histone and protein deacetylase, is a member of the histone deacetylase class III family. We previously showed that SIRT1 mRNA expression is significantly lower in peripheral blood mononuclear cells (PBMCs) of multiple sclerosis (MS) patients during relapses than in stable patients. We have now investigated SIRT1 as a possible biomarker to predict relapse as well as responsiveness to glatiramer acetate (GA) treatment in relapsing-remitting MS (RRMS) patients. Over the course of 2years, a cohort of 15 GA-treated RRMS patients were clinically monitored using the Expanded Disability Status Scale and assessed for MS relapses. Blood samples collected from MS patients were analyzed for levels of SIRT1 and histone H3 lysine 9 (H3K9) acetylation and dimethylation. During relapses, MS patients had a lower expression of SIRT1 mRNA than did stable MS patients. In addition, there was a significant decrease in H3K9 dimethylation (H3K9me2) during relapses in MS patients when compared to stable patients (p=0.01). Responders to GA treatment had significantly higher SIRT1 mRNA (p=0.01) and H3K9me2 levels than did non-responders (p=0.018). Receiver operating characteristic analysis was used to assess the predictive power of SIRT1 and H3K9me2 as putative biomarkers: for SIRT1 mRNA, the predictive value for responsiveness to GA treatment was 70% (p=0.04) and for H3K9me2 was 71% (p=0.03). Our data suggest that SIRT1 and H3K9me2 could serve as potential biomarkers for evaluating patients' responsiveness to GA therapy in order to help guide treatment decisions in MS.

  15. Systemic complement profiling in multiple sclerosis as a biomarker of disease state

    PubMed Central

    Ingram, G; Hakobyan, S; Hirst, CL; Harris, CL; Loveless, S; Mitchell, JP; Pickersgill, TP; Robertson, NP

    2012-01-01

    Background: There is increasing evidence of significant and dynamic systemic activation and upregulation of complement in multiple sclerosis (MS), which may contribute to disease pathogenesis. Objective: We aimed to investigate the pathological role of complement in MS and the potential role for complement profiling as a biomarker of MS disease state. Methods: Key components of the classical, alternative and terminal pathways of complement were measured in plasma and cerebrospinal fluid (CSF) of patients with MS in different clinical phases of disease and in matched controls. Results: Increased plasma levels of C3 (p<0.003), C4 (p<0.001), C4a (p<0.001), C1 inhibitor (p<0.001), and factor H (p<0.001), and reduced levels of C9 (p<0.001) were observed in MS patients compared with controls. Combined profiling of these analytes produced a statistical model with a predictive value of 97% for MS and 73% for clinical relapse when combined with selected demographic data. CSF-plasma correlations suggested that source of synthesis of these components was both systemic and central. Conclusion: These data provide further evidence of alterations in both local and systemic expression and activation of complement in MS and suggest that complement profiling may be informative as a biomarker of MS disease, although further work is needed to determine its use in distinguishing MS from its differential. PMID:22354735

  16. The Search for Reliable Biomarkers of Disease in Multiple Chemical Sensitivity and Other Environmental Intolerances

    PubMed Central

    De Luca, Chiara; Raskovic, Desanka; Pacifico, Valeria; Thai, Jeffrey Chung Sheun; Korkina, Liudmila

    2011-01-01

    Whilst facing a worldwide fast increase of food and environmental allergies, the medical community is also confronted with another inhomogeneous group of environment-associated disabling conditions, including multiple chemical sensitivity (MCS), fibromyalgia, chronic fatigue syndrome, electric hypersensitivity, amalgam disease and others. These share the features of poly-symptomatic multi-organ cutaneous and systemic manifestations, with postulated inherited/acquired impaired metabolism of chemical/physical/nutritional xenobiotics, triggering adverse reactions at exposure levels far below toxicologically-relevant values, often in the absence of clear-cut allergologic and/or immunologic involvement. Due to the lack of proven pathogenic mechanisms generating measurable disease biomarkers, these environmental hypersensitivities are generally ignored by sanitary and social systems, as psychogenic or “medically unexplained symptoms”. The uncontrolled application of diagnostic and treatment protocols not corresponding to acceptable levels of validation, safety, and clinical efficacy, to a steadily increasing number of patients demanding assistance, occurs in many countries in the absence of evidence-based guidelines. Here we revise available information supporting the organic nature of these clinical conditions. Following intense research on gene polymorphisms of phase I/II detoxification enzyme genes, so far statistically inconclusive, epigenetic and metabolic factors are under investigation, in particular free radical/antioxidant homeostasis disturbances. The finding of relevant alterations of catalase, glutathione-transferase and peroxidase detoxifying activities significantly correlating with clinical manifestations of MCS, has recently registered some progress towards the identification of reliable biomarkers of disease onset, progression, and treatment outcomes. PMID:21845158

  17. Selected Cytokines Serve as Potential Biomarkers for Predicting Liver Inflammation and Fibrosis in Chronic Hepatitis B Patients With Normal to Mildly Elevated Aminotransferases.

    PubMed

    Deng, Yong-Qiong; Zhao, Hong; Ma, An-Lin; Zhou, Ji-Yuan; Xie, Shi-Bin; Zhang, Xu-Qing; Zhang, Da-Zhi; Xie, Qing; Zhang, Guo; Shang, Jia; Cheng, Jun; Zhao, Wei-Feng; Zou, Zhi-Qiang; Zhang, Ming-Xiang; Wang, Gui-Qiang

    2015-11-01

    Previous studies of small cohorts have implicated several circulating cytokines with progression of chronic hepatitis B (CHB). However, to date there have been no reliable biomarkers for assessing histological liver damage in CHB patients with normal or mildly elevated alanine aminotransferase (ALT). The aim of the present study was to investigate the association between circulating cytokines and histological liver damage in a large cohort. Also, this study was designed to assess the utility of circulating cytokines in diagnosing liver inflammation and fibrosis in CHB patients with ALT less than 2 times the upper limit of normal range (ULN). A total of 227 CHB patients were prospectively enrolled. All patients underwent liver biopsy and staging by Ishak system. Patients with at least moderate inflammation showed significantly higher levels of CXCL-11, CXCL-10, and interleukin (IL)-2 receptor (R) than patients with less than moderate inflammation (P < 0.001). Patients with significant fibrosis had higher levels of IL-8 (P = 0.027), transforming growth factor alpha (TGF-α) (P = 0.011), IL-2R (P = 0.002), and CXCL-11 (P = 0.032) than the group without significant fibrosis. In addition, 31.8% and 29.1% of 151 patients with ALT < 2 × ULN had at least moderate inflammation and significant fibrosis, respectively. Multivariate analysis demonstrated that CXCL-11 was independently associated with at least moderate inflammation, and TGF-α and IL-2R independently correlated with significant fibrosis in patients with ALT < 2 × ULN. Based on certain cytokines and clinical parameters, an inflammation-index and fib-index were developed, which showed areas under the receiver operating characteristics curve (AUROC) of 0.75 (95% CI 0.66-0.84) for at least moderate inflammation and 0.82 (95% CI 0.75-0.90) for significant fibrosis, correspondingly. Compared to existing scores, fib-index was significantly superior to aspartate aminotransferase

  18. Selected Cytokines Serve as Potential Biomarkers for Predicting Liver Inflammation and Fibrosis in Chronic Hepatitis B Patients With Normal to Mildly Elevated Aminotransferases

    PubMed Central

    Deng, Yong-Qiong; Zhao, Hong; Ma, An-Lin; Zhou, Ji-Yuan; Xie, Shi-Bin; Zhang, Xu-Qing; Zhang, Da-Zhi; Xie, Qing; Zhang, Guo; Shang, Jia; Cheng, Jun; Zhao, Wei-Feng; Zou, Zhi-Qiang; Zhang, Ming-Xiang; Wang, Gui-Qiang

    2015-01-01

    Abstract Previous studies of small cohorts have implicated several circulating cytokines with progression of chronic hepatitis B (CHB). However, to date there have been no reliable biomarkers for assessing histological liver damage in CHB patients with normal or mildly elevated alanine aminotransferase (ALT). The aim of the present study was to investigate the association between circulating cytokines and histological liver damage in a large cohort. Also, this study was designed to assess the utility of circulating cytokines in diagnosing liver inflammation and fibrosis in CHB patients with ALT less than 2 times the upper limit of normal range (ULN). A total of 227 CHB patients were prospectively enrolled. All patients underwent liver biopsy and staging by Ishak system. Patients with at least moderate inflammation showed significantly higher levels of CXCL-11, CXCL-10, and interleukin (IL)-2 receptor (R) than patients with less than moderate inflammation (P < 0.001). Patients with significant fibrosis had higher levels of IL-8 (P = 0.027), transforming growth factor alpha (TGF-α) (P = 0.011), IL-2R (P = 0.002), and CXCL-11 (P = 0.032) than the group without significant fibrosis. In addition, 31.8% and 29.1% of 151 patients with ALT < 2 × ULN had at least moderate inflammation and significant fibrosis, respectively. Multivariate analysis demonstrated that CXCL-11 was independently associated with at least moderate inflammation, and TGF-α and IL-2R independently correlated with significant fibrosis in patients with ALT < 2 × ULN. Based on certain cytokines and clinical parameters, an inflammation-index and fib-index were developed, which showed areas under the receiver operating characteristics curve (AUROC) of 0.75 (95% CI 0.66–0.84) for at least moderate inflammation and 0.82 (95% CI 0.75–0.90) for significant fibrosis, correspondingly. Compared to existing scores, fib-index was significantly superior to aspartate

  19. Multiple biomarkers of biological effects induced by cadmium in clam Ruditapes philippinarum.

    PubMed

    Ji, Chenglong; Wu, Huifeng; Zhou, Mo; Zhao, Jianmin

    2015-06-01

    Cadmium (Cd) is a known heavy metal pollutant in the Bohai Sea. Manila clam Ruditapes philippinarum is an important fishery species along the Bohai coast. In this study, the biological effects induced by two concentrations (20 and 200 μg/L) of Cd were characterized using multiple biochemical indices in the digestive glands of clam R. philippinarum. The total hemocyte counts, reactive oxygen species productions and antioxidant enzyme activities exhibited that Cd induced dose-dependent immune and oxidative stresses in clam digestive glands. Metabolic responses indicated that both Cd exposures caused immune stress marked by the elevated branched chain amino acids (valine, leucine and isoleucine), together with the disturbance in energy metabolism. The differential metabolic biomarkers related to osmotic stress, including homarine, betaine, tyrosine and phenylalanine, suggested the differential responsive mechanisms in clam digestive glands induced by Cd exposures. In addition, both Cd treatments enhanced the anaerobiosis metabolism in clam digestive glands via differential metabolic pathways.

  20. Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers

    PubMed Central

    Xu, Sai; Dong, Biao; Zhou, Donglei; Yin, Ze; Cui, Shaobo; Xu, Wen; Chen, Baojiu; Song, Hongwei

    2016-01-01

    A paper-based upconversion fluorescence resonance energy transfer assay device is proposed for sensitive detection of CEA. The device is fabricated on a normal filter paper with simple nano-printing method. Upconversion nanoparticles tagged with specific antibodies are printed to the test zones on the test paper, followed by the introduction of assay antigen. Upconversion fluorescence measurements are directly conducted on the test zones after the antigen-to-antibody reactions. Furthermore, a multi-channel test paper for simultaneous detection of multiple cancer biomarkers was established by the same method and obtained positive results. The device showed high anti-interfere, stability, reproducible and low detection limit (0.89 ng/mL), moreover it is very easy to fabricate and operate, which is a promising prospect for a clinical point-of-care test. PMID:27001460

  1. Stimulated Whole Blood Cytokine Release as a Biomarker of Immunosuppression in the Critically Ill: The Need for a Standardized Methodology

    PubMed Central

    Segre, Elisabetta; Fullerton, James N.

    2016-01-01

    ABSTRACT Objective: Reduced ex vivo lipopolysaccharide (LPS) stimulated whole blood pro-inflammatory cytokine release is a hallmark of immunosuppression in the critically ill and predicts adverse clinical outcomes. No standard technique for performing the assay currently exists. The impact of methodological heterogeneity was determined. Design, Setting, Subjects, and Interventions: Clinical experimental study set in a research laboratory. Venous blood from 5 to 10 healthy volunteers/experiment (total participant group: 18 subjects, 72% men, mean age 32) was stimulated ex vivo to evaluate the effect of variables identified via literature review on tumor necrosis factor-α (TNFα) release. These included sample handling, stimulation technique, and incubation conditions. Reporting convention was additionally assessed. Main Results: Measured TNFα release was significantly altered by source of LPS, concentration of LPS employed, duration and temperature of incubation prior to supernatant aspiration, and predilution of blood (repeated measures ANOVA, all P < 0.01). Sample handling prior to stimulation (anticoagulant employed, time to LPS addition, and storage temperature) also caused significant alterations in TNFα release. Considerable interindividual variation was observed (range 1,024–4,649 pg/mL, mean 2,339 pg/mL). Normalization by monocyte count and pretreatment with a cyclooxygenase inhibitor (indomethacin 10 μM) reduced the coefficient of variation from 47.17% to 32.09%. Conclusions: Inconsistency in interlaboratory methodology and reporting impairs interpretation, comparability, and reproducibility of the ex vivo LPS-stimulated whole blood cytokine release assay. A standardized validated technique is required. The advent of trials of immunoadjuvant agents renders this a clinical imperative. PMID:27089173

  2. Predictive value of cytokines and immune activation biomarkers in AIDS-related non-Hodgkin lymphoma treated with rituximab plus infusional EPOCH (AMC-034 trial)

    PubMed Central

    Epeldegui, Marta; Lee, Jeannette Y.; Martínez, Anna C.; Widney, Daniel P.; Magpantay, Larry I.; Regidor, Deborah; Mitsuyasu, Ronald; Sparano, Joseph A.; Ambinder, Richard F.; Martínez-Maza, Otoniel

    2015-01-01

    Purpose The aims of this study were to determine if pre-treatment plasma levels of cytokines and immune activation-associated molecules changed following treatment for AIDS-NHL with rituximab plus infusional EPOCH, and to determine if pre-treatment levels of these molecules were associated with response to treatment and/or survival. Experimental design We quantified plasma levels of B cell activation-associated molecules (sCD27, sCD30, sCD23) and cytokines (IL-6, IL-10, CXCL13) prior to and after the initiation of treatment in persons with AIDS-NHL (n=69) in the AIDS Malignancies Consortium (AMC) 034 study, which evaluated treatment of AIDS-NHL with EPOCH chemotherapy and rituximab. Results Treatment resulted in decreased plasma levels of some of these molecules (CXCL13, sCD27, sCD30), with decreased levels persisting for one year following the completion of treatment. Lower levels of CXCL13 before treatment were associated with complete responses following lymphoma therapy. Elevated levels of IL-6 pre-treatment were associated with decreased overall survival, while higher IL-10 levels were associated with shorter progression-free survival, in multivariate analyses. Furthermore, patients with CXCL13 or IL-6 levels higher than the median levels for the NHL group, as well as those who had detectable IL-10, had lower overall survival and PFS, in Kaplan Meier analyses. Conclusions These results indicate that CXCL13, IL-6 and IL-10 have significant potential as prognostic biomarkers for AIDS-NHL. PMID:26384320

  3. Predicting the outcomes for out-of-hospital cardiac arrest patients using multiple biomarkers and suspension microarray assays

    PubMed Central

    Huang, Chien-Hua; Tsai, Min-Shan; Chien, Kuo-Liong; Chang, Wei-Tien; Wang, Tzung-Dau; Chen, Shyr-Chyr; Ma, Matthew Huei-Ming; Hsu, Hsin-Yun; Chen, Wen-Jone

    2016-01-01

    Predicting the prognosis for cardiac arrest is still challenging. Combining biomarkers from diverse pathophysiological pathways may provide reliable indicators for the severity of injury and predictors of long-term outcomes. We investigated the feasibility of using a multimarker strategy with key independent biomarkers to improve the prediction of outcomes in cardiac arrest. Adult out-of-hospital cardiac arrest patients with sustained return of spontaneous circulation were prospectively enrolled in this study. Blood samples were taken at 2 and 24 hours after cardiac arrest. Suspension microarray assays were used to test 21 different biomarkers. A total of 99 patients were enrolled, 45 of whom survived to hospital discharge. We identified 11 biomarkers that, when combined with clinical variables and factors of APACHE II score and history of arrhythmia, were independent determinants for outcome of in-hospital mortality (concordance = 0.9249, standard error = 0.0779). Three biomarkers combined with APACHE II and age were independent determinants for favorable neurological outcome at hospital discharge (area under the receiver-operator characteristic curve, 0.938; 95% confidence interval, 0.854 ~ 1.0). In conclusion, a systemic multiple biomarker approach using suspension microarray assays can identify independent predictors and model the outcomes of cardiac arrest patients during the post-cardiac arrest period. PMID:27256246

  4. Comprehensive evaluation of serum microRNAs as biomarkers in multiple sclerosis

    PubMed Central

    Regev, Keren; Paul, Anu; Healy, Brian; von Glenn, Felipe; Diaz-Cruz, Camilo; Gholipour, Taha; Mazzola, Maria Antonietta; Raheja, Radhika; Nejad, Parham; Glanz, Bonnie I.; Kivisakk, Pia; Chitnis, Tanuja; Weiner, Howard L.

    2016-01-01

    Objective: To identify circulating microRNAs (miRNAs) linked to disease stage and disability in multiple sclerosis (MS). Methods: Sera from 296 participants including patients with MS, other neurologic diseases (Alzheimer disease and amyotrophic lateral sclerosis), and inflammatory diseases (rheumatoid arthritis and asthma) and healthy controls (HCs) were tested. miRNA profiles were determined using LNA (locked nucleic acid)-based quantitative PCR. Patients with MS were categorized according to disease stage and disability. In the discovery phase, 652 miRNAs were measured in sera from 26 patients with MS and 20 HCs. Following this, significant miRNAs (p < 0.05) from the discovery set were validated using quantitative PCR in 58 patients with MS, 30 HCs, and in 74 samples from other disease controls (Alzheimer disease, amyotrophic lateral sclerosis, asthma, and rheumatoid arthritis). Results: We validated 7 miRNAs that differentiate patients with MS from HCs (p < 0.05 in both the discovery and validation phase); miR-320a upregulation was the most significantly changing serum miRNA in patients with MS. We also identified 2 miRNAs linked to disease progression, with miR-27a-3p being the most significant. Ten miRNAs correlated with the Expanded Disability Status Scale of which miR.199a.5p had the strongest correlation with disability. Of the 15 unique miRNAs we identified in the different group comparisons, 12 have previously been reported to be associated with MS but not in serum. Conclusions: Our findings identify circulating serum miRNAs as potential biomarkers to diagnose and monitor disease status in MS. Classification of evidence: This study provides Class III evidence that circulating serum miRNAs can be used as biomarker for MS. PMID:27606352

  5. Limited value of pro-inflammatory oxylipins and cytokines as circulating biomarkers in endometriosis – a targeted ‘omics study

    PubMed Central

    Lee, Yie Hou; Cui, Liang; Fang, Jinling; Chern, Bernard Su Min; Tan, Heng Hao; Chan, Jerry K. Y.

    2016-01-01

    Endometriosis is a common, complex gynecologic disorder characterized by the presence of endometrial-like tissues at extrauterine sites. Elevation in protein and lipid mediators of inflammation including oxylipins and cytokines within the peritoneum characterize the inflamed pelvic region and may contribute to the survival and growth of displaced endometrial tissues. The presence of a clinically silent but molecularly detectable systemic inflammation in endometriosis has been proposed. Thus, we examined serum oxylipin and immunomodulatory protein levels in 103 women undergoing laparoscopy to evaluate systematically any involvement in systemic pathophysiological inflammation in endometriosis. Oxylipin levels were similar between women with and without endometriosis. Stratification by menstrual phase or severity did not offer any difference. Women with ovarian endometriosis had significantly lower 12-HETE relative to peritoneal endometriosis (−50.7%). Serum oxylipin levels were not associated with pre-operative pain symptoms. Changes to immunomodulatory proteins were minimal, with IL-12(p70), IL-13 and VEGF significantly lower in mild endometriotic women compared to non-endometriotic women (−39%, −54% and −76% respectively). Verification using C-reactive protein as a non-specific marker of inflammation further showed similar levels between groups. The implications of our work suggest pro-inflammatory mediators in the classes studied may have potentially limited value as circulating biomarkers for endometriosis, suggesting of potentially tenuous systemic inflammation in endometriosis. PMID:27193963

  6. Multiple Functions of the New Cytokine-Based Antimicrobial Peptide Thymic Stromal Lymphopoietin (TSLP)

    PubMed Central

    Bjerkan, Louise; Sonesson, Andreas; Schenck, Karl

    2016-01-01

    Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, hitherto mostly known to be involved in inflammatory responses and immunoregulation. The human tslp gene gives rise to two transcription and translation variants: a long form (lfTSLP) that is induced by inflammation, and a short, constitutively-expressed form (sfTSLP), that appears to be downregulated by inflammation. The TSLP forms can be produced by a number of cell types, including epithelial and dendritic cells (DCs). lfTSLP can activate mast cells, DCs, and T cells through binding to the lfTSLP receptor (TSLPR) and has a pro-inflammatory function. In contrast, sfTSLP inhibits cytokine secretion of DCs, but the receptor mediating this effect is unknown. Our recent studies have demonstrated that both forms of TSLP display potent antimicrobial activity, exceeding that of many other known antimicrobial peptides (AMPs), with sfTSLP having the strongest effect. The AMP activity is primarily mediated by the C-terminal region of the protein and is localized within a 34-mer peptide (MKK34) that spans the C-terminal α-helical region in TSLP. Fluorescent studies of peptide-treated bacteria, electron microscopy, and liposome leakage models showed that MKK34 exerted membrane-disrupting effects comparable to those of LL-37. Expression of TSLP in skin, oral mucosa, salivary glands, and intestine is part of the defense barrier that aids in the control of both commensal and pathogenic microbes. PMID:27399723

  7. Multiple effects of TRAIL in human carcinoma cells: Induction of apoptosis, senescence, proliferation, and cytokine production

    SciTech Connect

    Levina, Vera; Marrangoni, Adele M.; DeMarco, Richard; Gorelik, Elieser; Lokshin, Anna E.

    2008-04-15

    TRAIL is a death ligand that induces apoptosis in malignant but not normal cells. Recently the ability of TRAIL to induce proliferation in apoptosis-resistant normal and malignant cells was reported. In this study, we analyzed TRAIL effects in apoptosis sensitive MCF7, OVCAR3 and H460 human tumor cell lines. TRAIL at low concentrations preferentially induced cell proliferation. At 100 ng/ml, apoptotic death was readily observed, however surviving cells acquired higher proliferative capacity. TRAIL-stimulated production of several cytokines, IL-8, RANTES, MCP-1 and bFGF, and activation of caspases 1 and 8 was essential for this effect. Antibodies to IL-8, RANTES, and bFGF blocked TRAIL-induced cell proliferation and further stimulated apoptosis. For the first time, we report that high TRAIL concentrations induced cell senescence as determined by the altered morphology and expression of several senescence markers: SA-{beta}-gal, p21{sup Waf1/Cip1}, p16{sup INK4a}, and HMGA. Caspase 9 inhibition protected TRAIL-treated cells from senescence, whereas inhibition of caspases 1 and 8 increased the yield of SLP cells. In conclusion, in cultured human carcinoma cells, TRAIL therapy results in three functional outcomes, apoptosis, proliferation and senescence. TRAIL-induced proapoptotic and prosurvival responses correlate with the strength of signaling. TRAIL-induced cytokine production is responsible for its proliferative and prosurvival effects.

  8. The proinflammatory cytokine interleukin-18 alters multiple signaling pathways to inhibit natural killer cell death

    USGS Publications Warehouse

    Hodge, D.L.; Subleski, J.J.; Reynolds, D.A.; Buschman, M.D.; Schill, W.B.; Burkett, M.W.; Malyguine, A.M.; Young, H.A.

    2006-01-01

    The proinflammatory cytokine, interleukin-18 (IL-18), is a natural killer (NK) cell activator that induces NK cell cytotoxicity and interferon-?? (IFN-??) expression. In this report, we define a novel role for IL-18 as an NK cell protective agent. Specifically, IL-18 prevents NK cell death initiated by different and distinct stress mechanisms. IL-18 reduces NK cell self-destruction during NK-targeted cell killing, and in the presence of staurosporin, a potent apoptotic inducer, IL-18 reduces caspase-3 activity. The critical regulatory step in this process is downstream of the mitochondrion and involves reduced cleavage and activation of caspase-9 and caspase-3. The ability of IL-18 to regulate cell survival is not limited to a caspase death pathway in that IL-18 augments tumor necrosis factor (TNF) signaling, resulting in increased and prolonged mRNA expression of c-apoptosis inhibitor 2 (cIAP2), a prosurvival factor and caspase-3 inhibitor, and TNF receptor-associated factor 1 (TRAF1), a prosurvival protein. The cumulative effects of IL-18 define a novel role for this cytokine as a molecular survival switch that functions to both decrease cell death through inhibition of the mitochondrial apoptotic pathway and enhance TNF induction of prosurvival factors. ?? Mary Ann Liebert, Inc.

  9. Current and future biomarkers in allergic asthma.

    PubMed

    Zissler, U M; Esser-von Bieren, J; Jakwerth, C A; Chaker, A M; Schmidt-Weber, C B

    2016-04-01

    Diagnosis early in life, sensitization, asthma endotypes, monitoring of disease and treatment progression are key motivations for the exploration of biomarkers for allergic rhinitis and allergic asthma. The number of genes related to allergic rhinitis and allergic asthma increases steadily; however, prognostic genes have not yet entered clinical application. We hypothesize that the combination of multiple genes may generate biomarkers with prognostic potential. The current review attempts to group more than 161 different potential biomarkers involved in respiratory inflammation to pave the way for future classifiers. The potential biomarkers are categorized into either epithelial or infiltrate-derived or mixed origin, epithelial biomarkers. Furthermore, surface markers were grouped into cell-type-specific categories. The current literature provides multiple biomarkers for potential asthma endotypes that are related to T-cell phenotypes such as Th1, Th2, Th9, Th17, Th22 and Tregs and their lead cytokines. Eosinophilic and neutrophilic asthma endotypes are also classified by epithelium-derived CCL-26 and osteopontin, respectively. There are currently about 20 epithelium-derived biomarkers exclusively derived from epithelium, which are likely to innovate biomarker panels as they are easy to sample. This article systematically reviews and categorizes genes and collects current evidence that may promote these biomarkers to become part of allergic rhinitis or allergic asthma classifiers with high prognostic value.

  10. Bayesian modeling and inference for diagnostic accuracy and probability of disease based on multiple diagnostic biomarkers with and without a perfect reference standard.

    PubMed

    Jafarzadeh, S Reza; Johnson, Wesley O; Gardner, Ian A

    2016-03-15

    The area under the receiver operating characteristic (ROC) curve (AUC) is used as a performance metric for quantitative tests. Although multiple biomarkers may be available for diagnostic or screening purposes, diagnostic accuracy is often assessed individually rather than in combination. In this paper, we consider the interesting problem of combining multiple biomarkers for use in a single diagnostic criterion with the goal of improving the diagnostic accuracy above that of an individual biomarker. The diagnostic criterion created from multiple biomarkers is based on the predictive probability of disease, conditional on given multiple biomarker outcomes. If the computed predictive probability exceeds a specified cutoff, the corresponding subject is allocated as 'diseased'. This defines a standard diagnostic criterion that has its own ROC curve, namely, the combined ROC (cROC). The AUC metric for cROC, namely, the combined AUC (cAUC), is used to compare the predictive criterion based on multiple biomarkers to one based on fewer biomarkers. A multivariate random-effects model is proposed for modeling multiple normally distributed dependent scores. Bayesian methods for estimating ROC curves and corresponding (marginal) AUCs are developed when a perfect reference standard is not available. In addition, cAUCs are computed to compare the accuracy of different combinations of biomarkers for diagnosis. The methods are evaluated using simulations and are applied to data for Johne's disease (paratuberculosis) in cattle.

  11. UCHL1 is a biomarker of aggressive multiple myeloma required for disease progression

    PubMed Central

    Hussain, Sajjad; Bedekovics, Tibor; Chesi, Marta; Bergsagel, P. Leif; Galardy, Paul J.

    2015-01-01

    The success of proteasome inhibition in multiple myeloma highlights the critical role for the ubiquitin-proteasome system (UPS) in this disease. However, there has been little progress in finding more specific targets within the UPS involved in myeloma pathogenesis. We previously found the ubiquitin hydrolase UCH-L1 to be frequently over-expressed in B-cell malignancies, including myeloma, and showed it to be a potent oncogene in mice. Here we show that UCH-L1 is a poor prognostic factor that is essential for the progression of myeloma. We found high levels of UCHL1 to predict early progression in newly diagnosed patients; a finding reversed by the inclusion of bortezomib. We also found high UCHL1 levels to be a critical factor in the superiority of bortezomib over high-dose dexamethasone in relapsed patients. High UCHL1 partially overlaps with, but is distinct from, known genetic risks including 4p16 rearrangement and 1q21 amplification. Using an orthotopic mouse model, we found UCH-L1 depletion delays myeloma dissemination and causes regression of established disease. We conclude that UCH-L1 is a biomarker of aggressive myeloma that may be an important marker of bortezomib response, and may itself be an effective target in disseminated disease. PMID:26513019

  12. Transcriptome Analysis of Recurrently Deregulated Genes across Multiple Cancers Identifies New Pan-Cancer Biomarkers.

    PubMed

    Kaczkowski, Bogumil; Tanaka, Yuji; Kawaji, Hideya; Sandelin, Albin; Andersson, Robin; Itoh, Masayoshi; Lassmann, Timo; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R

    2016-01-15

    Genes that are commonly deregulated in cancer are clinically attractive as candidate pan-diagnostic markers and therapeutic targets. To globally identify such targets, we compared Cap Analysis of Gene Expression profiles from 225 different cancer cell lines and 339 corresponding primary cell samples to identify transcripts that are deregulated recurrently in a broad range of cancer types. Comparing RNA-seq data from 4,055 tumors and 563 normal tissues profiled in the The Cancer Genome Atlas and FANTOM5 datasets, we identified a core transcript set with theranostic potential. Our analyses also revealed enhancer RNAs, which are upregulated in cancer, defining promoters that overlap with repetitive elements (especially SINE/Alu and LTR/ERV1 elements) that are often upregulated in cancer. Lastly, we documented for the first time upregulation of multiple copies of the REP522 interspersed repeat in cancer. Overall, our genome-wide expression profiling approach identified a comprehensive set of candidate biomarkers with pan-cancer potential, and extended the perspective and pathogenic significance of repetitive elements that are frequently activated during cancer progression.

  13. Identification of four potential predicting miRNA biomarkers for multiple myeloma from published datasets

    PubMed Central

    Sun, Peng; Liu, Gao

    2017-01-01

    Background Multiple myeloma is a cancer which has a high occurrence rate and causes great injury to people worldwide. In recent years, many studies reported the effects of miRNA on the appearance of multiple myeloma. However, due to the differences of samples and sequencing platforms, a large number of inconsistent results have been generated among these studies, which limited the cure of multiple myeloma at the miRNA level. Methods We performed meta-analyses to identify the key miRNA biomarkers which could be applied on the treatment of multiple myeloma. The key miRNAs were determined by overlap comparisons of seven datasets in multiple myeloma. Then, the target genes for key miRNAs were predicted by the software TargetScan. Additionally, functional enrichments and binding TFs were investigated by DAVID database and Tfacts database, respectively. Results Firstly, comparing the normal tissues, 13 miRNAs were differently expressed miRNAs (DEMs) for at least three datasets. They were considered as key miRNAs, with 12 up-regulated (hsa-miR-106b, hsa-miR-125b, hsa-miR-130b, hsa-miR-138, hsa-miR-15b, hsa-miR-181a, hsa-miR-183, hsa-miR-191, hsa-miR-19a, hsa-miR-20a, hsa-miR-221 and hsa-miR-25) and one down-regulated (hsa-miR-223). Secondly, functional enrichment analyses indicated that target genes of the upregulated miRNAs were mainly transcript factors and enriched in transcription regulation. Besides, these genes were enriched in multiple pathways: the cancer signal pathway, insulin signal metabolic pathway, cell binding molecules, melanin generation, long-term regression and P53 signaling pathway. However, no significant enrichment was found for target genes of the down-regulated genes. Due to the distinct regulation function, four miRNAs (hsa-miR-19a has-miR-221 has-miR25 and has-miR223) were ascertained as the potential prognostic and diagnostic markers in MM. Thirdly, transcript factors analysis unveiled that there were 148 TFs and 60 TFs which bind target genes

  14. Multiple biomarkers and risk of clinical and subclinical vascular brain injury: the framingham offspring study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several biomarkers have been individually associated with vascular brain injury, but no prior study has explored the simultaneous association of a biologically plausible panel of biomarkers with the incidence of stroke/transient ischemic attack and the prevalence of subclinical brain injury. In 3127...

  15. Quantitative analysis of the suppressors of cytokine signaling 1 and 3 in peripheral blood leukocytes of patients with multiple sclerosis.

    PubMed

    Sedeño-Monge, Virginia; Arcega-Revilla, Raúl; Rojas-Morales, Emmanuel; Santos-López, Gerardo; Perez-García, Juan Carlos; Sosa-Jurado, Francisca; Vallejo-Ruiz, Verónica; Solis-Morales, Casandra Lucrecia; Aguilar-Rosas, Salvador; Reyes-Leyva, Julio

    2014-08-15

    Multiple sclerosis (MS) is an autoimmune disease characterized by a triad of inflammation, demyelination and gliosis. Because the suppressors of cytokine signaling (Socs) regulate the immune response, we quantified SOCS1 and SOCS3 transcription in peripheral blood leukocytes of patients with MS. SOCS1 transcription decreased significantly in MS patients compared with neurologically healthy persons (0.08±0.02 vs. 1.02±0.23; p=0.0001); while SOCS3 transcription increased in MS patients compared with controls (2.76±0.66 vs. 1.03±0.27; p=0.0008). Our results showed an imbalance of SOCS1 and SOCS3 transcription in MS patients, and a moderated negative correlation between them (Spearman's r=-0.57; p=0.0003).

  16. Cytokine assays: an assessment of the preparation and treatment of blood and tissue samples.

    PubMed

    Keustermans, Genoveva C E; Hoeks, Sanne B E; Meerding, Jenny M; Prakken, Berent J; de Jager, Wilco

    2013-05-15

    Cytokines are key components of the innate and adaptive immune system. As pivotal players in the progression or regression of a pathological process, these molecules provide a window through which diseases can be monitored and can thus act as biomarkers. In order to measure cytokine levels, a plethora of protocols can be applied. These methods include bioassays, protein microarrays, high-performance liquid chromatography (HPLC), sandwich enzyme-linked immunosorbent assay (ELISA), Meso Scale Discovery (MSD) electrochemiluminescence and bead based multiplex immunoassays (MIA). Due to the interaction and activity of cytokines, multiplex immunoassays are at the forefront of cytokine analysis by allowing multiple cytokines to be measured in parallel. However, even with optimized protocols, sample standardization needs to occur before these proteins can optimally act as biomarkers. This review describes various factors influencing the levels of cytokines measured in plasma, serum, dried blood spots and tissue biopsies, focusing on sample collection and handling, long term storage and the repetitive use of samples. By analyzing how each of these factors influences protein levels, it is concluded that samples should be stored at low temperatures in order to maintain cytokine stability. In addition, within a study, sample manipulations should be kept the same, with measurement protocols being chosen for their compatibility with the research in question. By having a clear understanding of what factors influence cytokine levels and how to overcome these technical issues, minimally confounded data can be obtained and cytokines can achieve optimal biomarker activity.

  17. Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light.

    PubMed Central

    LaVail, M M; Unoki, K; Yasumura, D; Matthes, M T; Yancopoulos, G D; Steinberg, R H

    1992-01-01

    Recent demonstrations of survival-promoting activity by neurotrophic agents in diverse neuronal systems have raised the possibility of pharmacological therapy for inherited and degenerative disorders of the central nervous system. We have shown previously that, in the retina, basic fibroblast growth factor delays photoreceptor degeneration in Royal College of Surgeons rats with inherited retinal dystrophy and that the growth factor reduces or prevents the rapid photoreceptor degeneration produced by constant light in the rat. This light-damage model now provides an efficient way to assess quantitatively the survival-promoting activity in vivo of a number of growth factors and other molecules. We report here that photoreceptors can be significantly protected from the damaging effects of light by intravitreal injection of eight different growth factors, cytokines, and neurotrophins that typically act through several distinct receptor families. In addition to basic fibroblast growth factor, those factors providing a high degree of photoreceptor rescue include brain-derived neurotrophic factor, ciliary neurotrophic factor, interleukin 1 beta, and acidic fibroblast growth factor; those with less activity include neurotrophin 3, insulin-like growth factor II, and tumor necrosis factor alpha; those showing little or no protective effect are nerve growth factor, epidermal growth factor, platelet-derived growth factor, insulin, insulin-like growth factor I, heparin, and laminin. Although we used at least one relatively high concentration of each agent (the highest available), it is still possible that other concentrations or factor combinations might be more protective. Injecting heparin along with acidic fibroblast growth factor or basic fibroblast growth factor further enhanced the degree of photoreceptor survival and also suppressed the increased incidence of macrophages produced by either factor, especially basic fibroblast growth factor. These results now provide the

  18. Integrating multiple ‘omics’ analyses identifies serological protein biomarkers for preeclampsia

    PubMed Central

    2013-01-01

    Background Preeclampsia (PE) is a pregnancy-related vascular disorder which is the leading cause of maternal morbidity and mortality. We sought to identify novel serological protein markers to diagnose PE with a multi-’omics’ based discovery approach. Methods Seven previous placental expression studies were combined for a multiplex analysis, and in parallel, two-dimensional gel electrophoresis was performed to compare serum proteomes in PE and control subjects. The combined biomarker candidates were validated with available ELISA assays using gestational age-matched PE (n=32) and control (n=32) samples. With the validated biomarkers, a genetic algorithm was then used to construct and optimize biomarker panels in PE assessment. Results In addition to the previously identified biomarkers, the angiogenic and antiangiogenic factors (soluble fms-like tyrosine kinase (sFlt-1) and placental growth factor (PIGF)), we found 3 up-regulated and 6 down-regulated biomakers in PE sera. Two optimal biomarker panels were developed for early and late onset PE assessment, respectively. Conclusions Both early and late onset PE diagnostic panels, constructed with our PE biomarkers, were superior over sFlt-1/PIGF ratio in PE discrimination. The functional significance of these PE biomarkers and their associated pathways were analyzed which may provide new insights into the pathogenesis of PE. PMID:24195779

  19. A lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform for identification of multiple liver cancer biomarkers in human plasma.

    PubMed

    Ahn, Yeong Hee; Shin, Park Min; Oh, Na Ree; Park, Gun Wook; Kim, Hoguen; Yoo, Jong Shin

    2012-09-18

    Aberrantly glycosylated proteins related to liver cancer progression were captured with specific lectin and identified from human plasma by multiple reaction monitoring (MRM) mass spectrometry as multiple biomarkers for hepatocellular carcinoma (HCC). The lectin fractionation for fucosylated protein glycoforms in human plasma was conducted with a fucose-specific aleuria aurantia lectin (AAL). Following tryptic digestion of the lectin-captured fraction, plasma samples from 30 control cases (including 10 healthy, 10 hepatitis B virus [HBV], and 10 cirrhosis cases) and 10 HCC cases were quantitatively analyzed by MRM to identify which glycoproteins are viable HCC biomarkers. A1AG1, AACT, A1AT, and CERU were found to be potent biomarkers to differentiate HCC plasma from control plasmas. The AUROC generated independently from these four biomarker candidates ranged from 0.73 to 0.92. However, the lectin-coupled MRM assay with multiple combinations of biomarker candidates is superior statistically to those generated from the individual candidates with AUROC more than 0.95, which can be an alternative to the immunoassay inevitably requiring tedious development of multiple antibodies against biomarker candidates to be verified. Eventually the lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform was found to be efficient to identify multiple biomarkers from human plasma according to cancer progression.

  20. Increased effect of IMiDs by addition of cytokine-induced killer cells in multiple myeloma.

    PubMed

    Bullok, Katharina F; Sippel, Christoph; Schmidt-Wolf, Ingo G H

    2016-12-01

    Immunomodulatory drugs (IMiDs), such as thalidomide, lenalidomide and pomalidomide, represent the basic principle of multiple myeloma treatment. However, the development of resistance is a limiting factor. Over the last years, the efficient application of cytokine-induced killer (CIK) cells has been reported as an alternative strategy to treat hematological neoplasms. In this study, we tested for a potential synergistic effect by combining the IMiDs thalidomide, lenalidomide and pomalidomide with CIK cells in different myeloma cell lines in vitro. Myeloma cells tested with CIK cells were significantly reduced. In the combination, myeloma cells were significantly reduced compared with cells only tested with IMiDs but not to the cells tested with CIK cells. Otherwise, the number of CIK cells was significantly reduced when treated with IMiDs. Because IMiDs are active in patients with myeloma, these results lead to the expectation that combination of IMiDs and CIK cells achieve better results in the treatment of multiple myeloma compared with the single use of IMiDs. Therefore, further examinations in an in vivo setting are necessary to have a closer look on the cellular interactions. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Semi-automated literature mining to identify putative biomarkers of disease from multiple biofluids

    PubMed Central

    2014-01-01

    Background Computational methods for mining of biomedical literature can be useful in augmenting manual searches of the literature using keywords for disease-specific biomarker discovery from biofluids. In this work, we develop and apply a semi-automated literature mining method to mine abstracts obtained from PubMed to discover putative biomarkers of breast and lung cancers in specific biofluids. Methodology A positive set of abstracts was defined by the terms ‘breast cancer’ and ‘lung cancer’ in conjunction with 14 separate ‘biofluids’ (bile, blood, breastmilk, cerebrospinal fluid, mucus, plasma, saliva, semen, serum, synovial fluid, stool, sweat, tears, and urine), while a negative set of abstracts was defined by the terms ‘(biofluid) NOT breast cancer’ or ‘(biofluid) NOT lung cancer.’ More than 5.3 million total abstracts were obtained from PubMed and examined for biomarker-disease-biofluid associations (34,296 positive and 2,653,396 negative for breast cancer; 28,355 positive and 2,595,034 negative for lung cancer). Biological entities such as genes and proteins were tagged using ABNER, and processed using Python scripts to produce a list of putative biomarkers. Z-scores were calculated, ranked, and used to determine significance of putative biomarkers found. Manual verification of relevant abstracts was performed to assess our method’s performance. Results Biofluid-specific markers were identified from the literature, assigned relevance scores based on frequency of occurrence, and validated using known biomarker lists and/or databases for lung and breast cancer [NCBI’s On-line Mendelian Inheritance in Man (OMIM), Cancer Gene annotation server for cancer genomics (CAGE), NCBI’s Genes & Disease, NCI’s Early Detection Research Network (EDRN), and others]. The specificity of each marker for a given biofluid was calculated, and the performance of our semi-automated literature mining method assessed for breast and lung cancer

  2. Pointwise mutual information quantifies intratumor heterogeneity in tissue sections labeled with multiple fluorescent biomarkers

    PubMed Central

    Spagnolo, Daniel M.; Gyanchandani, Rekha; Al-Kofahi, Yousef; Stern, Andrew M.; Lezon, Timothy R.; Gough, Albert; Meyer, Dan E.; Ginty, Fiona; Sarachan, Brion; Fine, Jeffrey; Lee, Adrian V.; Taylor, D. Lansing; Chennubhotla, S. Chakra

    2016-01-01

    Background: Measures of spatial intratumor heterogeneity are potentially important diagnostic biomarkers for cancer progression, proliferation, and response to therapy. Spatial relationships among cells including cancer and stromal cells in the tumor microenvironment (TME) are key contributors to heterogeneity. Methods: We demonstrate how to quantify spatial heterogeneity from immunofluorescence pathology samples, using a set of 3 basic breast cancer biomarkers as a test case. We learn a set of dominant biomarker intensity patterns and map the spatial distribution of the biomarker patterns with a network. We then describe the pairwise association statistics for each pattern within the network using pointwise mutual information (PMI) and visually represent heterogeneity with a two-dimensional map. Results: We found a salient set of 8 biomarker patterns to describe cellular phenotypes from a tissue microarray cohort containing 4 different breast cancer subtypes. After computing PMI for each pair of biomarker patterns in each patient and tumor replicate, we visualize the interactions that contribute to the resulting association statistics. Then, we demonstrate the potential for using PMI as a diagnostic biomarker, by comparing PMI maps and heterogeneity scores from patients across the 4 different cancer subtypes. Estrogen receptor positive invasive lobular carcinoma patient, AL13-6, exhibited the highest heterogeneity score among those tested, while estrogen receptor negative invasive ductal carcinoma patient, AL13-14, exhibited the lowest heterogeneity score. Conclusions: This paper presents an approach for describing intratumor heterogeneity, in a quantitative fashion (via PMI), which departs from the purely qualitative approaches currently used in the clinic. PMI is generalizable to highly multiplexed/hyperplexed immunofluorescence images, as well as spatial data from complementary in situ methods including FISSEQ and CyTOF, sampling many different components

  3. Semi-quantitative analysis of multiple cytokines in canine peripheral blood mononuclear cells by [correction of zby] a single tube RT-PCR.

    PubMed

    Chamizo, C; Rubio, J M; Moreno, J; Alvar, J

    2001-12-01

    Cytokines play an important role in the regulation of the immune system, but low circulating levels in plasma make routine measurement a difficult task. A new methodology based on single tube RT-PCR has been developed to determine the expression of multiple canine cytokines (TNF-alpha, IL-2, IFN-gamma, IL-18, IL-4, IL-6 and IL-10) using primers and protocols designed allow specific amplification of the mRNAs. The technique is performed in one tube in two consecutive steps, a specific transcription of the mRNA of a given cytokine and amplification of the corresponding gene by PCR. The technique was used to analyse the mRNA cytokine profile of peripheral blood mononuclear cells (PBMCs) from healthy dogs using two approaches: (i) analysis of PBMC isolated ex vivo; (ii) analysis of PBMC after in vitro cultures with or without the mitogen ConA. The samples were separated in agarose gels and the intensity of ethidium bromide signals quantified using standard video imaging equipment. Results were interpreted as the ratio of cytokine to GAPDH expression. The results obtained show that the method is easy to use and reproducible. Therefore, this method of monitoring the mRNA cytokine expression might be an useful tool for understanding the immune response in dogs.

  4. STAT2 Is a Pervasive Cytokine Regulator due to Its Inhibition of STAT1 in Multiple Signaling Pathways

    PubMed Central

    Ho, Johnathan; Pelzel, Christin; Begitt, Andreas; Mee, Maureen; Elsheikha, Hany M.; Scott, David J.; Vinkemeier, Uwe

    2016-01-01

    STAT2 is the quintessential transcription factor for type 1 interferons (IFNs), where it functions as a heterodimer with STAT1. However, the human and murine STAT2-deficient phenotypes suggest important additional and currently unidentified type 1 IFN-independent activities. Here, we show that STAT2 constitutively bound to STAT1, but not STAT3, via a conserved interface. While this interaction was irrelevant for type 1 interferon signaling and STAT1 activation, it precluded the nuclear translocation specifically of STAT1 in response to IFN-γ, interleukin-6 (IL-6), and IL-27. This is explained by the dimerization between activated STAT1 and unphosphorylated STAT2, whereby the semiphosphorylated dimers adopted a conformation incapable of importin-α binding. This, in turn, substantially attenuated cardinal IFN-γ responses, including MHC expression, senescence, and antiparasitic immunity, and shifted the transcriptional output of IL-27 from STAT1 to STAT3. Our results uncover STAT2 as a pervasive cytokine regulator due to its inhibition of STAT1 in multiple signaling pathways and provide an understanding of the type 1 interferon-independent activities of this protein. PMID:27780205

  5. Effect of temperature in multiple biomarkers of oxidative stress in coastal shrimp.

    PubMed

    Vinagre, Catarina; Madeira, Diana; Mendonça, Vanessa; Dias, Marta; Roma, Joma; Diniz, Mário S

    2014-04-01

    Various studies in captivity and in the wild have pointed to the effect of season, and temperature in particular, in the levels of the oxidative stress biomarkers currently used for environmental quality assessment. However, knowledge on how temperature affects the oxidative stress response is unavailable for most species. This study investigated the effect of increasing temperature on lipid peroxidation, catalase activity, superoxide dismutase and glutathione-S-transferase in the shrimps, Palaemon elegans and Palaemon serratus. It was concluded that increasing temperatures significantly affect all the biomarkers tested in both species, with the exception of superoxide dismutase in P. serratus which was not affected by temperature. The oxidative stress response was more intense in P. elegans, than in P. serratus, producing higher peaks of all biomarkers at temperatures between 22°C and 26°C, followed by low levels at higher temperatures. It was concluded that monitoring of ecosystems using oxidative stress biomarkers should take into account the species and thermal history of the organisms. Sampling should be avoided during heat waves and immediately after heat waves.

  6. Multiple biomarkers of pollution effects in caged mussels on the Greek coastline.

    PubMed

    Tsangaris, C; Kormas, K; Strogyloudi, E; Hatzianestis, I; Neofitou, C; Andral, B; Galgani, F

    2010-04-01

    A suite of biomarkers was measured in caged mussels at areas impacted by different anthropogenic activities along the Greek coastline to assess biological effects of environmental pollution. Mussels were caged at coastal sites in the vicinity of major cities, in areas influenced by major industries, agricultural practices and in islands away from known sources of pollution. Biomarkers indicative of neurotoxicity (acetylcholinesterase, AchE), oxidative stress (catalase, CAT), phase II biotransformation of xenobiotics (glutathione S-transferase, GST), metal exposure (metallothioneins, MTs) and protein synthesis (RNA:DNA ratio) were measured to assess effects of various types of pollutants. AchE activity proved to be the most responsive biomarker with decreased values at sites influenced by agricultural, urban and industrial activities. Decreased CAT and GST activities and increased MTs levels were recorded at a number of anthropogenic-impacted sites. RNA:DNA ratio showed a biphasic response as both high and low values were found at impacted sites. Principal component analysis clearly distinguished sites receiving pollution inputs from non-polluted sites. The combination of the selected biomarkers used in caged mussels resulted useful in the assessment of the effects of environmental pollution.

  7. Multiple biomarkers of pollution effects in Solea solea fish on the Tunisia coastline.

    PubMed

    Jebali, Jamel; Sabbagh, Marwa; Banni, Mohamed; Kamel, Naouel; Ben-Khedher, Sana; M'hamdi, Naceur; Boussetta, Hamadi

    2013-06-01

    This field study investigates the morphological indices (condition index, hepatosomatic index) and biochemical (catalase (CAT), glutathione S-transferase (GST), acetylcholinesterase (AChE), metallothionein (MT), lipid peroxidation) parameters in liver, gills and kidney of common sole (Solea solea) originating from different sites of the Tunisian coast area impacted by different anthropogenic activities. Differences among sites and tissues for AChE, GST, CAT, MT and TBARS were found and possibly related to known sources of domestic and industrial discharges in the studied sites. Liver, gills and kidney CAT, liver and kidney MT and brain AChE were key biomarkers to discriminate fish of different sites. So, we suggest using these biomarkers in future biomonitoring.

  8. Development of a diagnostic test based on multiple continuous biomarkers with an imperfect reference test.

    PubMed

    García Barrado, Leandro; Coart, Els; Burzykowski, Tomasz

    2016-02-20

    Ignoring the fact that the reference test used to establish the discriminative properties of a combination of diagnostic biomarkers is imperfect can lead to a biased estimate of the diagnostic accuracy of the combination. In this paper, we propose a Bayesian latent-class mixture model to select a combination of biomarkers that maximizes the area under the ROC curve (AUC), while taking into account the imperfect nature of the reference test. In particular, a method for specification of the prior for the mixture component parameters is developed that allows controlling the amount of prior information provided for the AUC. The properties of the model are evaluated by using a simulation study and an application to real data from Alzheimer's disease research. In the simulation study, 100 data sets are simulated for sample sizes ranging from 100 to 600 observations, with a varying correlation between biomarkers. The inclusion of an informative as well as a flat prior for the diagnostic accuracy of the reference test is investigated. In the real-data application, the proposed model was compared with the generally used logistic-regression model that ignores the imperfectness of the reference test. Conditional on the selected sample size and prior distributions, the simulation study results indicate satisfactory performance of the model-based estimates. In particular, the obtained average estimates for all parameters are close to the true values. For the real-data application, AUC estimates for the proposed model are substantially higher than those from the 'traditional' logistic-regression model.

  9. Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method.

    PubMed

    Rolfe, S M; Patel, M R; Gilmour, I; Olsson-Francis, K; Ringrose, T J

    2016-06-01

    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examined L-alanine, L-aspartic acid, L-cysteine, L-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for L-alanine (strongest intensity band: 832 cm(-1)), L-aspartic acid (938 cm(-1)), L-cysteine (679 cm(-1)), L-glutamine (1090 cm(-1)) and glycine (875 cm(-1)), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made.

  10. Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method

    NASA Astrophysics Data System (ADS)

    Rolfe, S. M.; Patel, M. R.; Gilmour, I.; Olsson-Francis, K.; Ringrose, T. J.

    2016-06-01

    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examined l-alanine, l-aspartic acid, l-cysteine, l-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for l-alanine (strongest intensity band: 832 cm-1), l-aspartic acid (938 cm-1), l-cysteine (679 cm-1), l-glutamine (1090 cm-1) and glycine (875 cm-1), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made.

  11. Assessment of proliferating cell nuclear antigen and its relationship with proinflammatory cytokines and parameters of disease activity in multiple myeloma patients.

    PubMed

    Tsirakis, G; Pappa, C A; Kaparou, M; Katsomitrou, V; Hatzivasili, A; Alegakis, T; Xekalou, A; Stathopoulos, E N; Alexandrakis, M G

    2011-01-01

    Multiple myeloma (MM) is a malignant plasma cell disease. Several proinflammatory cytokines produced by malignant plasma cells and bone marrow (BM) stromal cells are involved in the pathogenesis of the disease. We evaluated serum levels of the proinflammatory cytokines Interleukin-1β (IL-1β), Interleukin-6 (IL-6), Interleukin-8 (IL-8), macrophage inflammatory protein-1α (MIP-1α), in MM patients before treatment, and determined its significance in tumor progression. We also analyzed the correlation between measured parameters with proliferating cell nuclear antigen (PCNA). Forty-four MM patients and 20 healthy controls were studied. Serum levels of the proinflammatory cytokines were measured using enzyme-linked immunosorbent assay (ELISA), whereas PCNA value in the BM was determined by immunohistochemistry staining. The mean concentrations of the measured cytokines were significantly different among the three stages of disease, with higher values in advanced disease stage. Furthermore, patients with MM had significantly higher serum levels of the measured cytokines than in controls. A positive correlation was found between IL-6 with IL-1β, IL-8 and MIP-1α. Similarly, IL-8 and MIP-1α were positively correlated with markers of disease activity such as β2 microglobulin and LDH. The proliferation index, determined by PCNA immunostaining, was higher in advanced disease stage. Furthermore PCNA value correlated significantly with β2 microglobulin, LDH and the levels of the measured cytokines. Our results showed that the proliferative activity, as measured with PCNA, increases in parallel with disease stage. The positive correlation between PCNA and other measured mediators supports the involvement of these factors in the biology of myeloma cell growth and can be used as markers of disease activity and as possible therapeutic targets.

  12. A novel microRNA-132-sirtuin-1 axis underlies aberrant B-cell cytokine regulation in patients with relapsing-remitting multiple sclerosis [corrected].

    PubMed

    Miyazaki, Yusei; Li, Rui; Rezk, Ayman; Misirliyan, Hétoum; Moore, Craig; Farooqi, Nasr; Solis, Mayra; Goiry, Lorna Galleguillos; de Faria Junior, Omar; Dang, Van Duc; Colman, David; Dhaunchak, Ajit Singh; Antel, Jack; Gommerman, Jennifer; Prat, Alexandre; Fillatreau, Simon; Bar-Or, Amit

    2014-01-01

    Clinical trial results demonstrating that B-cell depletion substantially reduces new relapses in patients with multiple sclerosis (MS) have established that B cells play a role in the pathophysiology of MS relapses. The same treatment appears not to impact antibodies directed against the central nervous system, which underscores the contribution of antibody-independent functions of B cells to disease activity. One mechanism by which B cells are now thought to contribute to MS activity is by over-activating T cells, including through aberrant expression of B cell pro-inflammatory cytokines. However, the mechanisms underlying the observed B cell cytokine dysregulation in MS remain unknown. We hypothesized that aberrant expression of particular microRNAs might be involved in the dysregulated pro-inflammatory cytokine responses of B cells of patients with MS. Through screening candidate microRNAs in activated B cells of MS patients and matched healthy subjects, we discovered that abnormally increased secretion of lymphotoxin and tumor necrosis factor α by MS B cells is associated with abnormally increased expression of miR-132. Over-expression of miR-132 in normal B cells significantly enhanced their production of lymphotoxin and tumor necrosis factor α. The over-expression of miR-132 also suppressed the miR-132 target, sirtuin-1. We confirmed that pharmacological inhibition of sirtuin-1 in normal B cells induces exaggerated lymphotoxin and tumor necrosis factor α production, while the abnormal production of these cytokines by MS B cells can be normalized by resveratrol, a sirtuin-1 activator. These results define a novel miR-132-sirtuin-1 axis that controls pro-inflammatory cytokine secretion by human B cells, and demonstrate that a dysregulation of this axis underlies abnormal pro-inflammatory B cell cytokine responses in patients with MS.

  13. Metabolomics Identifies Multiple Candidate Biomarkers to Diagnose and Stage Human African Trypanosomiasis

    PubMed Central

    Vincent, Isabel M.; Daly, Rónán; Courtioux, Bertrand; Cattanach, Amy M.; Biéler, Sylvain; Ndung’u, Joseph M.; Bisser, Sylvie; Barrett, Michael P.

    2016-01-01

    Treatment for human African trypanosomiasis is dependent on the species of trypanosome causing the disease and the stage of the disease (stage 1 defined by parasites being present in blood and lymphatics whilst for stage 2, parasites are found beyond the blood-brain barrier in the cerebrospinal fluid (CSF)). Currently, staging relies upon detecting the very low number of parasites or elevated white blood cell numbers in CSF. Improved staging is desirable, as is the elimination of the need for lumbar puncture. Here we use metabolomics to probe samples of CSF, plasma and urine from 40 Angolan patients infected with Trypanosoma brucei gambiense, at different disease stages. Urine samples provided no robust markers indicative of infection or stage of infection due to inherent variability in urine concentrations. Biomarkers in CSF were able to distinguish patients at stage 1 or advanced stage 2 with absolute specificity. Eleven metabolites clearly distinguished the stage in most patients and two of these (neopterin and 5-hydroxytryptophan) showed 100% specificity and sensitivity between our stage 1 and advanced stage 2 samples. Neopterin is an inflammatory biomarker previously shown in CSF of stage 2 but not stage 1 patients. 5-hydroxytryptophan is an important metabolite in the serotonin synthetic pathway, the key pathway in determining somnolence, thus offering a possible link to the eponymous symptoms of “sleeping sickness”. Plasma also yielded several biomarkers clearly indicative of the presence (87% sensitivity and 95% specificity) and stage of disease (92% sensitivity and 81% specificity). A logistic regression model including these metabolites showed clear separation of patients being either at stage 1 or advanced stage 2 or indeed diseased (both stages) versus control. PMID:27941966

  14. St. John's wort extract and hyperforin inhibit multiple phosphorylation steps of cytokine signaling and prevent inflammatory and apoptotic gene induction in pancreatic β cells.

    PubMed

    Novelli, Michela; Menegazzi, Marta; Beffy, Pascale; Porozov, Svetlana; Gregorelli, Alex; Giacopelli, Daniela; De Tata, Vincenzo; Masiello, Pellegrino

    2016-12-01

    The extract of the herbaceous plant St. John's wort (SJW) and its phloroglucinol component hyperforin (HPF) were previously shown to inhibit cytokine-induced STAT-1 and NF-κB activation and prevent damage in pancreatic β cells. To further clarify the mechanisms underlying their protective effects, we evaluated the phosphorylation state of various factors of cytokine signaling pathways and the expression of target genes involved in β-cell function, inflammatory response and apoptosis induction. In the INS-1E β-cell line, exposed to a cytokine mixture with/without SJW extract (2-5μg/ml) or HPF (1-5μM), protein phosphorylation was assessed by western blotting and expression of target genes by real-time quantitative PCR. SJW and HPF markedly inhibited, in a dose-dependent manner (from 60 to 100%), cytokine-induced activating phosphorylations of STAT-1, NF-κB p65 subunit and IKK (NF-κB inhibitory subunit IκBα kinase). MAPK and Akt pathways were also modulated by the vegetal compounds through hindrance of p38 MAPK, ERK1/2, JNK and Akt phosphorylations, each reduced by at least 65% up to 100% at the higher dose. Consistently, SJW and HPF a) abolished cytokine-induced mRNA expression of pro-inflammatory genes; b) avoided down-regulation of relevant β-cell functional/differentiation genes; c) corrected cytokine-driven imbalance between pro- and anti-apoptotic factors, by fully preventing up-regulation of pro-apoptotic genes and preserving expression or function of anti-apoptotic Bcl-2 family members; d) protected INS-1E cells against cytokine-induced apoptosis. In conclusion, SJW extract and HPF exert their protective effects through simultaneous inhibition of multiple phosphorylation steps along various cytokine signaling pathways and consequent restriction of inflammatory and apoptotic gene expression. Thus, they have a promising therapeutic potential for the prevention or limitation of immune-mediated β-cell dysfunction and damage leading to type 1 diabetes.

  15. ST. JOHN's wort extract and hyperforin inhibit multiple phosphorylation steps of cytokine signaling and prevent inflammatory and apoptotic gene induction in pancreatic β cells.

    PubMed

    Novelli, Michela; Menegazzi, Marta; Beffy, Pascale; Porozov, Svetlana; Gregorelli, Alex; Giacopelli, Daniela; Tata, Vincenzo De; Masiello, Pellegrino

    2016-10-22

    The extract of the herbaceous plant St. John's wort (SJW) and its phloroglucinol component hyperforin (HPF) were previously shown to inhibit cytokine-induced STAT-1 and NF-κB activation and prevent damage in pancreatic β cells. To further clarify the mechanisms underlying their protective effects, we evaluated the phosphorylation state of various factors of cytokine signaling pathways and the expression of target genes involved in β-cell function, inflammatory response and apoptosis induction. In the INS-1E β-cell line, exposed to a cytokine mixture with/without SJW extract (2-5μg/ml) or HPF (1-5μM), protein phosphorylation was assessed by Western blotting and expression of target genes by real-time quantitative PCR. SJW and HPF markedly inhibited, in a dose-dependent manner (from 60 to 100%), cytokine-induced activating phosphorylations of STAT-1, NF-κB p65 subunit and IKK (NF-κB inhibitory subunit IκBα kinase). MAPK and Akt pathways were also modulated by the vegetal compounds through hindrance of p38 MAPK, ERK1/2, JNK and Akt phosphorylations, each reduced by at least 65% up to 100% at the higher dose. Consistently, SJW and HPF a) abolished cytokine-induced mRNA expression of pro-inflammatory genes; b) avoided down-regulation of relevant β-cell functional/differentiation genes; c) corrected cytokine-driven imbalance between pro- and anti-apoptotic factors, by fully preventing up-regulation of pro-apoptotic genes and preserving expression or function of anti-apoptotic Bcl-2 family members; d) protected INS-1E cells against cytokine-induced apoptosis. In conclusion, SJW extract and HPF exert their protective effects through simultaneous inhibition of multiple phosphorylation steps along various cytokine signaling pathways and consequent restriction of inflammatory and apoptotic gene expression. Thus, they have a promising therapeutic potential for the prevention or limitation of immune-mediated β-cell dysfunction and damage leading to type 1 diabetes.

  16. A Magnetic Bead-Based Sensor for the Quantification of Multiple Prostate Cancer Biomarkers

    PubMed Central

    Jokerst, Jesse V.; Chen, Zuxiong; Xu, Lingyun; Nolley, Rosalie; Chang, Edwin; Mitchell, Breeana; Brooks, James D.; Gambhir, Sanjiv S.

    2015-01-01

    Novel biomarker assays and upgraded analytical tools are urgently needed to accurately discriminate benign prostatic hypertrophy (BPH) from prostate cancer (CaP). To address this unmet clinical need, we report a piezeoelectric/magnetic bead-based assay to quantitate prostate specific antigen (PSA; free and total), prostatic acid phosphatase, carbonic anhydrase 1 (CA1), osteonectin, IL-6 soluble receptor (IL-6sr), and spondin-2. We used the sensor to measure these seven proteins in serum samples from 120 benign prostate hypertrophy patients and 100 Gleason score 6 and 7 CaP using serum samples previously collected and banked. The results were analyzed with receiver operator characteristic curve analysis. There were significant differences between BPH and CaP patients in the PSA, CA1, and spondin-2 assays. The highest AUC discrimination was achieved with a spondin-2 OR free/total PSA operation—the area under the curve was 0.84 with a p value below 10−6. Some of these data seem to contradict previous reports and highlight the importance of sample selection and proper assay building in the development of biomarker measurement schemes. This bead-based system offers important advantages in assay building including low cost, high throughput, and rapid identification of an optimal matched antibody pair. PMID:26421725

  17. Rapid assessment of marine pollution using multiple biomarkers and chemical immunoassays.

    PubMed

    Galloway, Tamara S; Sanger, Ross C; Smith, Karen L; Fillmann, Gilberto; Readman, James W; Ford, Timothy E; Depledge, Michael H

    2002-05-15

    To fully assess the impact of pollutant releases into the environment, it is necessary to determine both the concentration of chemicals accumulating in biota and the biological effects they give rise to. Owing to time, expertise, and cost constraints, this is, however, rarely achieved. Here, quick, simple to perform, and inexpensive biomarkers and chemical immunoassays were combined in a rapid assessment approach to measure exposure to and effects of organic and metal pollutants on the ribbed mussel (Geukensia demmissa) from New Bedford Harbor, MA. Significant differences in polychlorinated biphenyl (PCB) and polyaromatic hydrocarbon (PAH) tissue residue concentrations were detected among sites using RaPID immunoassay. Selected analyses were verified using GC/MS. No significant differences were observed in metal concentrations (Cu, Cd, Pb, As, Hg, Ni) throughout the area. While causality cannot be attributed, multivariate canonical correlation analysis indicated that PCB and PAH concentrations were strongly associated with the induction of biomarkers of genotoxicity (micronucleus formation), immunotoxicity (spontaneous cytotoxicity), and physiological impairment (heart rate). It is concluded thatthe incorporation of chemical immunoassays with biological monitoring tools into routine management procedures is clearly viable and valuable as a means of identifying toxic impacts of pollutants on biota in situ.

  18. SERS-based multiple biomarker detection using a gold-patterned microarray chip

    NASA Astrophysics Data System (ADS)

    Kim, Insup; Junejo, Inam-ur-Rehman; Lee, Moonkwon; Lee, Sangyeop; Lee, Eun Kyu; Chang, Soo-Ik; Choo, Jaebum

    2012-09-01

    We report a highly sensitive surface-enhanced Raman scattering (SERS)-based immunoassay platform for the multiplex detection of biomarkers. For this purpose, a gold-patterned microarray chip has been fabricated and used as a SERS detection template. Here, a typical sandwich immunocomplex protocol was adopted. Monoclonal antibodies were immobilized on gold patterned substrates, and then antigen solutions and polyclonal antibody-conjugated hollow gold nanospheres (HGNs) were sequentially added for the formation of sandwich immunocomplexes. Antigen biomarkers can be quantitatively assayed by monitoring the intensity change of a characteristic SERS peak of a reporter molecule adsorbed on the surfaces of HGNs. Under optimized assay conditions, the limits of detections (LODs) were determined to be 10 fg/mL for human IgG and 10-100 fg/mL for rabbit IgG. In addition, the SERS-based immunoassay technique can be applied in a wider dynamic concentration range with a good sensitivity compared to ELISA. The proposed method fulfills the current needs of high sensitivity and selectivity which are essential for the clinical diagnosis of a disease.

  19. Combined exercise training reduces fatigue and modulates the cytokine profile of T-cells from multiple sclerosis patients in response to neuromediators.

    PubMed

    Alvarenga-Filho, Helcio; Sacramento, Priscila M; Ferreira, Thais B; Hygino, Joana; Abreu, Jorge Eduardo Canto; Carvalho, Sonia Regina; Wing, Ana Cristina; Alvarenga, Regina Maria Papais; Bento, Cleonice A M

    2016-04-15

    Fatigue is a common and disabling symptom of multiple sclerosis (MS), a classical Th1- and Th17-mediated autoimmune disease. There is no effective pharmacological treatment for fatigue, but some reports point towards beneficial effects of physical activity on management of the fatigue in MS patients. As both MS and fatigue have been associated with dysregulated cytokine network production, the objective of the present study was to evaluate the impact of a physical activity program consisting of a 12-week series of combining Pilates and aerobic exercises on fatigue severity, determined by FSS, and cytokine production, quantified by ELISA, by T cells from MS patients (n=08) with low disability (EDSS≤2). The results showed decrease in FSSs in all patients at the end of physical activity intervention. Regarding the cytokines, a significant reduction of IL-22 release was observed in polyclonally-activated T cells form MS patients post-training follow-up. Interestingly, while the physical activity attenuated the ability of dopamine in up-regulating Th17-related cytokines, it enhanced the anti-inflammatory effects of serotonin, evidenced by high IL-10 production. In summary, all results suggest that programmed physical activity has beneficial effects on management of fatigue in MS patients, and it could be related, at least in part, to its ability in regulating neuroimmune parameters into T cell compartment.

  20. Assessment of a mussel as a metal bioindicator of coastal contamination: relationships between metal bioaccumulation and multiple biomarker responses.

    PubMed

    Chandurvelan, Rathishri; Marsden, Islay D; Glover, Chris N; Gaw, Sally

    2015-04-01

    This is the first study to use a multiple biomarker approach on the green-lipped mussel, Perna canaliculus to test its feasibility as a bioindicator of coastal metal contamination in New Zealand (NZ). Mussels were collected from six low intertidal sites varying in terms of anthropogenic impacts, within two regions (West Coast and Nelson) of the South Island of NZ. Trace elements, including arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn), were measured in the gills, digestive gland, foot and mantle, and in the surface sediments from where mussels were collected. Metal levels in the sediment were relatively low and there was only one site (Mapua, Nelson) where a metal (Ni) exceeded the Australian and New Zealand Interim Sediment Quality Guideline values. Metal levels in the digestive gland were generally higher than those from the other tissues. A variety of biomarkers were assessed to ascertain mussel health. Clearance rate, a physiological endpoint, correlated with metal level in the tissues, and along with scope for growth, was reduced in the most contaminated site. Metallothionein-like protein content and catalase activity in the digestive gland, and catalase activity and lipid peroxidation in the gill, were also correlated to metal accumulation. Although there were few regional differences, the sampling sites were clearly distinguishable based on the metal contamination profiles and biomarker responses. P. canaliculus appears to be a useful bioindicator species for coastal habitats subject to metal contamination. In this study tissue and whole organism responses provided insight into the biological stress responses of mussels to metal contaminants, indicating that such measurements could be a useful addition to biomonitoring programmes in NZ.

  1. Single v. multiple measures of skin carotenoids by resonance Raman spectroscopy as a biomarker of usual carotenoid status.

    PubMed

    Scarmo, Stephanie; Cartmel, Brenda; Lin, Haiqun; Leffell, David J; Ermakov, Igor V; Gellermann, Werner; Bernstein, Paul S; Mayne, Susan T

    2013-09-14

    Resonance Raman spectroscopy (RRS) is a non-invasive method of assessing carotenoid status in the skin, which has been suggested as an objective indicator of fruit/vegetable intake. The present study assessed agreement and identified predictors of single v. multiple RRS measures of skin carotenoid status. A total of seventy-four participants had their skin carotenoid status measured in the palm of the hand by RRS at six time points over 6 months. Questionnaires were administered to collect information on demographic, lifestyle and dietary data. Mean age of the participants was 36.6 years, 62.2% were female, 83.8% Caucasian and 85.1% were non-smoking at baseline. There was a good agreement between a single measure of skin carotenoids by RRS and multiple measures (weighted κ = 0.80; 95% CI 0.72, 0.88). The same variables were significantly associated with carotenoid status based on single or multiple measures, including a positive association with intake of total carotenoids (P< 0.01) and an inverse association with season of measurement (P≤ 0.05). The exception was recent sun exposure, which emerged as a significant predictor of lower carotenoid status only when using multiple RRS measures (P≤ 0.01). A single RRS measure was reasonably accurate at classifying usual skin carotenoid status. Researchers using RRS may want to take into account other factors that are associated with the biomarker, including season of measurement and recent sun exposure.

  2. Single v. multiple measures of skin carotenoids by resonance Raman spectroscopy as a biomarker of usual carotenoid status

    PubMed Central

    Scarmo, Stephanie; Cartmel, Brenda; Lin, Haiqun; Leffell, David J.; Ermakov, Igor V.; Gellermann, Werner; Bernstein, Paul S.; Mayne, Susan T.

    2013-01-01

    Resonance Raman spectroscopy (RRS) is a non-invasive method of assessing carotenoid status in the skin, which has been suggested as an objective indicator of fruit/vegetable intake. The present study assessed agreement and identified predictors of single v. multiple RRS measures of skin carotenoid status. A total of seventy-four participants had their skin carotenoid status measured in the palm of the hand by RRS at six time points over 6 months. Questionnaires were administered to collect information on demographic, lifestyle and dietary data. Mean age of the participants was 36.6 years, 62.2% were female, 83.8% Caucasian and 85.1% were non-smoking at baseline. There was a good agreement between a single measure of skin carotenoids by RRS and multiple measures (weighted κ = 0.80; 95% CI 0.72, 0.88). The same variables were significantly associated with carotenoid status based on single or multiple measures, including a positive association with intake of total carotenoids (P<0.01) and an inverse association with season of measurement (P≤0.05). The exception was recent sun exposure, which emerged as a significant predictor of lower carotenoid status only when using multiple RRS measures (P≤0.01). A single RRS measure was reasonably accurate at classifying usual skin carotenoid status. Researchers using RRS may want to take into account other factors that are associated with the biomarker, including season of measurement and recent sun exposure. PMID:23351238

  3. Vitamin D Binding Protein Isoforms and Apolipoprotein E in Cerebrospinal Fluid as Prognostic Biomarkers of Multiple Sclerosis

    PubMed Central

    Lis, Katarzyna; Minari, Nicoletta; Falvo, Sara; Marnetto, Fabiana; Caldano, Marzia; Reviglione, Raffaella; Berchialla, Paola; Capobianco, Marco A.; Malentacchi, Maria; Corpillo, Davide; Bertolotto, Antonio

    2015-01-01

    Background Multiple sclerosis (MS) is a multifactorial autoimmune disease of the central nervous system with a heterogeneous and unpredictable course. To date there are no prognostic biomarkers even if they would be extremely useful for early patient intervention with personalized therapies. In this context, the analysis of inter-individual differences in cerebrospinal fluid (CSF) proteome may lead to the discovery of biological markers that are able to distinguish the various clinical forms at diagnosis. Methods To this aim, a two dimensional electrophoresis (2-DE) study was carried out on individual CSF samples from 24 untreated women who underwent lumbar puncture (LP) for suspected MS. The patients were clinically monitored for 5 years and then classified according to the degree of disease aggressiveness and the disease-modifying therapies prescribed during follow up. Results The hierarchical cluster analysis of 2-DE dataset revealed three protein spots which were identified by means of mass spectrometry as Apolipoprotein E (ApoE) and two isoforms of vitamin D binding protein (DBP). These three protein spots enabled us to subdivide the patients into subgroups correlated with clinical classification (MS aggressive forms identification: 80%). In particular, we observed an opposite trend of values for the two protein spots corresponding to different DBP isoforms suggesting a role of a post-translational modification rather than the total protein content in patient categorization. Conclusions These findings proved to be very interesting and innovative and may be developed as new candidate prognostic biomarkers of MS aggressiveness, if confirmed. PMID:26046356

  4. DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model

    PubMed Central

    Vargas-Sanchez, Karina; Vekris, Antonios; Petry, Klaus G.

    2016-01-01

    To streamline in vivo biomarker discovery, we developed a suppression subtractive DNA hybridization technique adapted for phage-displayed combinatorial libraries of 12 amino acid peptides (PhiSSH). Physical DNA subtraction is performed in a one-tube-all-reactions format by sequential addition of reagents, producing the enrichment of specific clones of one repertoire. High-complexity phage repertoires produced by in vivo selections in the multiple sclerosis rat model (experimental autoimmune encephalomyelitis, EAE) and matched healthy control rats were used to evaluate the technique. The healthy repertoire served as a physical DNA subtractor from the EAE repertoire to produce the subtraction repertoire. Full next-generation sequencing (NGS) of the three repertoires was performed to evaluate the efficiency of the subtraction technique. More than 96% of the clones common to the EAE and healthy repertoires were absent from the subtraction repertoire, increasing the probability of randomly selecting various specific peptides for EAE pathology to about 70%. Histopathology experiments were performed to confirm the quality of the subtraction repertoire clones, producing distinct labeling of the blood–brain barrier (BBB) affected by inflammation among healthy nervous tissue or the preferential binding to IL1-challenged vs. resting human BBB model. Combining PhiSSH with NGS will be useful for controlled in vivo screening of small peptide combinatorial libraries to discover biomarkers of specific molecular alterations interspersed within healthy tissues. PMID:26917946

  5. A Comparison of Multiple Esterases as Biomarkers of Organophosphate Exposure and Effect in Two Earthworm Species

    PubMed Central

    Schneider, Ashley; Stoskopf, Michael K.

    2011-01-01

    Two different earthworm species, Eisenia fetida and Lumbricus terrestris, were exposed to 5 μg/cm2 of malathion to evaluate their usefulness as sentinels of organophosphate exposure and to assess three different esterases, as biomarkers of malathion exposure and effect. Tissue xenobiotic burdens and esterase activity were determined for each species and each esterase in order to assess variability. E. fetida exhibited 4-fold less variability in tissue burdens than did L. terrestris and had less variable basal esterase activities. An attempt was made to correlate malathion and malaoxon tissue burdens with esterase activity post-exposure. There was no malaoxon present in the earthworm tissues. No significant correlations were determined by comparing acetylcholinesterase, butyrylcholinesterase, nor carboxylesterase activities with malathion burdens. PMID:21404045

  6. Comparative investigations on the biological effects of As (III) and As (V) in clam Ruditapes philippinarum using multiple biomarkers.

    PubMed

    Ji, Chenglong; Xu, Hai'e; Wang, Qing; Zhao, Jianmin; Wu, Huifeng

    2015-11-01

    Inorganic arsenic is a known pollutant with two chemical forms, arsenite (As (III)) and arsenate (As (V)), in marine environment. Clam Ruditapes philippinarum is an important fishery species along the Bohai coast. In this study, the biological effects induced by the two arsenic chemical forms (arsenite and arsenate) were compared using multiple biochemical indices in the digestive glands of clam R. philippinarum. The production of reactive oxygen species, antioxidant enzyme activities and metabolic responses exhibited that both As (III) and As (V) induced immune, oxidative and osmotic stresses in clam digestive glands. The differential metabolic biomarkers, histidine and taurine, indicated the differential responsive mechanisms in osmotic regulation in clam digestive glands. In addition, both arsenic treatments enhanced the anaerobiosis metabolism in clam digestive glands. Overall, this work illustrated that arsenite and arsenate induced similar biological effects in clams, which might be accounted for the biological transformation of arsenate to arsenite in clams.

  7. Role of platelet-derived growth factor-AB in tumour growth and angiogenesis in relation with other angiogenic cytokines in multiple myeloma.

    PubMed

    Tsirakis, George; Pappa, Constantina A; Kanellou, Peggy; Stratinaki, Maria A; Xekalou, Athina; Psarakis, Fotios E; Sakellaris, George; Alegakis, Athanasios; Stathopoulos, Efstathios N; Alexandrakis, Michael G

    2012-09-01

    Angiogenesis is a complex process essential for the growth, invasion, and metastasis of various malignant tumours, including multiple myeloma (MM). Various angiogenic cytokines have been implicated in the angiogenic process. Among them, platelet-derived growth factor-AB (PDGF-AB) has been reported to be a potent stimulator of angiogenesis in many solid tumours and haematological malignancies, including MM. The aim of the study was to investigate the relationship between PDGF-AB, microvascular density (MVD), and various angiogenic cytokines, such as basic fibroblast growth factor (b-FGF), angiogenin (ANG), and interleukin-6 (IL-6), in MM patients. Forty-seven MM patients before treatment, 22 of whom were in plateau phase, were studied. We determined the serum levels of the aforementioned cytokines and MVD in bone marrow biopsies before and after treatment. Mean serum values of PDGF-AB, b-FGF, ANG, and MVD were significantly higher in patients compared with controls and with increasing disease stage. Significant positive correlations were observed between serum PDGF-AB, ANG, and IL-6 levels and MVD. Furthermore, we found significant positive correlations between PDGF-AB and b-FGF, IL-6, ANG, and β2 microglobulin. We also found that patients with high MVD had statistically significantly higher serum levels of PDGF-AB when a median MVD value of 7.7 was used as the cutoff point. Furthermore, a significant difference was found in serum levels of PDGF-AB between pre- and post-treatment patients. Finally, survival time was significantly higher in the low MVD group versus the high MVD group (76 vs 51 months). Our results showed that there is a strong positive correlation between PDGF-AB and the studied angiogenic cytokines and MVD. It seems that PDGF-AB plays a role in the complex network of cytokines inducing bone marrow neovascularization in patients with MM.

  8. Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance.

    PubMed

    Kubiczkova, Lenka; Kryukov, Fedor; Slaby, Ondrej; Dementyeva, Elena; Jarkovsky, Jiri; Nekvindova, Jana; Radova, Lenka; Greslikova, Henrieta; Kuglik, Petr; Vetesnikova, Eva; Pour, Ludek; Adam, Zdenek; Sevcikova, Sabina; Hajek, Roman

    2014-03-01

    Multiple myeloma still remains incurable in the majority of cases prompting a further search for new and better prognostic markers. Emerging evidence has suggested that circulating microRNAs can serve as minimally invasive biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance. In this study, a global analysis of serum microRNAs by TaqMan Low Density Arrays was performed, followed by quantitative real-time PCR. The analyses revealed five deregulated microRNAs: miR-744, miR-130a, miR-34a, let-7d and let-7e in monoclonal gammopathy of undetermined significance, newly diagnosed and relapsed multiple myeloma when compared to healthy donors. Multivariate logistical regression analysis showed that a combination of miR-34a and let-7e can distinguish multiple myeloma from healthy donors with a sensitivity of 80.6% and a specificity of 86.7%, and monoclonal gammopathy of undetermined significance from healthy donors with a sensitivity of 91.1% and a specificity of 96.7%. Furthermore, lower levels of miR-744 and let-7e were associated with shorter overall survival and remission of myeloma patients. One-year mortality rates for miR-744 and let-7e were 41.9% and 34.6% for the 'low' expression and 3.3% and 3.9% for the 'high' expression groups, respectively. Median time of remission for both miR-744 and let-7e was approximately 11 months for the 'low' expression and approximately 47 months for the 'high' expression groups of myeloma patients These data demonstrate that expression patterns of circulating microRNAs are altered in multiple myeloma and monoclonal gammopathy of undetermined significance and miR-744 with let-7e are associated with survival of myeloma patients.

  9. Mercury exposure and neurochemical biomarkers in multiple brain regions of Wisconsin river otters (Lontra canadensis).

    PubMed

    Dornbos, Peter; Strom, Sean; Basu, Niladri

    2013-04-01

    River otters are fish-eating wildlife that bioaccumulate high levels of mercury (Hg). Mercury is a proven neurotoxicant to mammalian wildlife, but little is known about the underlying, sub-clinical effects. Here, the overall goal was to increase understanding of Hg's neurological risk to otters. First, Hg values across several brain regions and tissues were characterized. Second, in three brain regions with known sensitivity to Hg (brainstem, cerebellum, and occipital cortex), potential associations among Hg levels and neurochemical biomarkers [N-methyl-D-aspartic acid (NMDA) and gamma-aminobutyric acid (GABAA) receptor] were explored. There were no significant differences in Hg levels across eight brain regions (rank order, highest to lowest: frontal cortex, cerebellum, temporal cortex, occipital cortex, parietal cortex, basal ganglia, brainstem, and thalamus), with mean values ranging from 0.7 to 1.3 ug/g dry weight. These brain levels were significantly lower than mean values in the muscle (2.1 ± 1.4 ug/g), liver (4.7 ± 4.3 ug/g), and fur (8.8 ± 4.8 ug/g). While a significant association was found between Hg and NMDA receptor levels in the brain stem (P = 0.028, rp = -0.293), no relationships were found in the cerebellum and occipital cortex. For the GABA receptor, no relationships were found. The lack of consistent Hg-associated neurochemical changes is likely due to low brain Hg levels in these river otters, which are amongst the lowest reported.

  10. Genetic, Immune-Inflammatory, and Oxidative Stress Biomarkers as Predictors for Disability and Disease Progression in Multiple Sclerosis.

    PubMed

    Kallaur, Ana Paula; Reiche, Edna Maria Vissoci; Oliveira, Sayonara Rangel; Simão, Andrea Name Colado; Pereira, Wildea Lice de Carvalho Jennings; Alfieri, Daniela Frizon; Flauzino, Tamires; Proença, Caio de Meleck; Lozovoy, Marcell Alysson Batisti; Kaimen-Maciel, Damacio Ramón; Maes, Michael

    2017-01-01

    The aim of this study was to evaluate the TNFβ NcoI polymorphism (rs909253) and immune-inflammatory, oxidative, and nitrosative stress (IO&NS) biomarkers as predictors of disease progression in multiple sclerosis (MS). We included 212 MS patients (150 female, 62 male, mean (±standard deviation (SD)) age = 42.7 ± 13.8 years) and 249 healthy controls (177 female, 72 male, 36.8 ± 11 years). The disability was measured the Expanded Disability Status Scale (EDSS) in 2006 and 2011. We determined the TNFβ NcoI polymorphism and serum levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-4, IL-10, and IL-17, albumin, ferritin, and plasma levels of lipid hydroperoxides (CL-LOOH), carbonyl protein, advanced oxidation protein products (AOPPs), nitric oxide metabolites (NOx), and total radical-trapping antioxidant parameter (TRAP). The mean EDSS (±SD) in 2006 was 1.62 ± 2.01 and in 2011 3.16 ± 2.29, and disease duration was 7.34 ± 7.0 years. IL-10, TNF-α, IFN-γ, AOPP, and NOx levels were significantly higher and IL-4 lower in MS patients with a higher 2011 EDSS scores (≥3) as compared with those with EDSS < 3. The actual increases in EDSS from 2006 to 2011 were positively associated with TNF-α and IFN-γ. Increased IFN-γ values were associated with higher pyramidal symptoms and increased IL-6 with sensitive symptoms. Increased carbonyl protein and IL-10 but lowered albumin levels predicted cerebellar symptoms. The TNFB1/B2 genotype decreased risk towards progression of pyramidal symptoms. Treatments with IFN-β and glatiramer acetate significantly reduced TNF-α but did not affect the other IO&NS biomarkers or disease progression. Taken together, IO&NS biomarkers and NcoI TNFβ genotypes predict high disability in MS and are associated with different aspects of disease progression. New drugs to treat MS should also target oxidative stress pathways.

  11. Intense Inflammation and Nerve Damage in Early Multiple Sclerosis Subsides at Older Age: A Reflection by Cerebrospinal Fluid Biomarkers

    PubMed Central

    Khademi, Mohsen; Dring, Ann M.; Gilthorpe, Jonathan D.; Wuolikainen, Anna; Al Nimer, Faiez; Harris, Robert A.; Andersson, Magnus; Brundin, Lou; Piehl, Fredrik; Olsson, Tomas; Svenningsson, Anders

    2013-01-01

    Inflammatory mediators have crucial roles in leukocyte recruitment and subsequent central nervous system (CNS) neuroinflammation. The extent of neuronal injury and axonal loss are associated with the degree of CNS inflammation and determine physical disability in multiple sclerosis (MS). The aim of this study was to explore possible associations between a panel of selected cerebrospinal fluid biomarkers and robust clinical and demographic parameters in a large cohort of patients with MS and controls (n = 1066) using data-driven multivariate analysis. Levels of matrix metalloproteinase 9 (MMP9), chemokine (C–X–C motif) ligand 13 (CXCL13), osteopontin (OPN) and neurofilament-light chain (NFL) were measured by ELISA in 548 subjects comprising different MS subtypes (relapsing-remitting, secondary progressive and primary progressive), clinically isolated syndrome and persons with other neurological diseases with or without signs of inflammation/infection. Principal component analyses and orthogonal partial least squares methods were used for unsupervised and supervised interrogation of the data. Models were validated using data from a further 518 subjects in which one or more of the four selected markers were measured. There was a significant association between increased patient age and lower levels of CXCL13, MMP9 and NFL. CXCL13 levels correlated well with MMP9 in the younger age groups, but less so in older patients, and after approximately 54 years of age the levels of CXCL13 and MMP9 were consistently low. CXCL13 and MMP9 levels also correlated well with both NFL and OPN in younger patients. We demonstrate a strong effect of age on both inflammatory and neurodegenerative biomarkers in a large cohort of MS patients. The findings support an early use of adequate immunomodulatory disease modifying drugs, especially in younger patients, and may provide a biological explanation for the relative inefficacy of such treatments in older patients at later disease

  12. Development of multiple necrotizing enteritis induced by a tumor necrosis factor-like cytokine from lipopolysaccharide-stimulated peritoneal macrophages in rats.

    PubMed Central

    Torimoto, K.; Sato, N.; Okubo, M.; Yagihashi, A.; Wada, Y.; Hara, I.; Hayasaka, H.; Kikuchi, K.

    1990-01-01

    We report the development of an animal model of multiple necrotizing enteritis (MNE) in rats. When rats were injected directly with a culture supernatant of lipopolysaccharide (LPS)-stimulated rat peritoneal macrophages into the abdominal aorta, the overt pathologic lesions of MNE developed within 30 minutes after injection. The rats showed an elevated level of blood fibrinogen degradation product content even 30 minutes after injection. Furthermore the rats that were pretreated intravenously with heparin sulfate did not develop MNE, indicating the acute disturbances of blood microcirculation in the intestine. Multiple necrotizing enteritis was developed also by the injection with recombinant tumor necrosis factor (rTNF) but rarely was observed with even a high dose of recombinant interleukin-1 (rIL-1) or platelet-activating factor (PAF). The supernatant was cytotoxic in vitro to TNF-susceptible LM and many other cells but was less cytotoxic to the TNF-resistant LR line. Partial purification of the supernatant suggested that the supernatant contained a cytokine that has biochemical features of TNF. Furthermore polyclonal anti-TNF antibody could inhibit not only the cytotoxicity in vitro but also MNE development in vivo by this factor. These data strongly indicate that MNE possibly could be caused by a TNF-like cytokine produced by macrophages that are stimulated by the endotoxin. Images Figure 1 PMID:2240161

  13. Interleukin 3-dependent and -independent mast cells stimulated with IgE and antigen express multiple cytokines

    PubMed Central

    1989-01-01

    In response to IgE and specific multivalent antigen, mast cell lines (both growth factor-dependent and -independent) induce the transcription and/or secretion of a number of cytokines having a wide spectrum of activities. We have identified IL-1, IL-3, IL-5, IL-6, IFN- gamma, GM-CSF, JE, MIP1 alpha, MIP1 beta, and TCA3 RNA in at least two of four mast cell clones. The production of these products (except JE) is activation-associated and can be induced by IgE plus antigen. In selected instances cytokine expression can also be induced by activation with Con A or phorbol ester plus ionophore, albeit to levels less than those observed with IgE plus antigen. In addition, long-term mast cell clones and primary cultures of bone marrow-derived mast cells specifically release IL-1, IL-4, and/or IL-6 bioactivity after activation. These findings suggest that in addition to their inflammatory effector function mast cells may serve as a source of growth and regulatory factors. The relationship of mast cells to cells of the T lymphocyte lineage is discussed. PMID:2473161

  14. Proteomic Profiling in Multiple Sclerosis Clinical Courses Reveals Potential Biomarkers of Neurodegeneration

    PubMed Central

    Liguori, Maria; Qualtieri, Antonio; Tortorella, Carla; Direnzo, Vita; Bagalà, Angelo; Mastrapasqua, Mariangela; Spadafora, Patrizia; Trojano, Maria

    2014-01-01

    The aim of our project was to perform an exploratory analysis of the cerebrospinal fluid (CSF) proteomic profiles of Multiple Sclerosis (MS) patients, collected in different phases of their clinical course, in order to investigate the existence of peculiar profiles characterizing the different MS phenotypes. The study was carried out on 24 Clinically Isolated Syndrome (CIS), 16 Relapsing Remitting (RR) MS, 11 Progressive (Pr) MS patients. The CSF samples were analysed using the Matrix Assisted Laser Desorption Ionisation Time Of Flight (MALDI-TOF) mass spectrometer in linear mode geometry and in delayed extraction mode (m/z range: 1000–25000 Da). Peak lists were imported for normalization and statistical analysis. CSF data were correlated with demographic, clinical and MRI parameters. The evaluation of MALDI-TOF spectra revealed 348 peak signals with relative intensity ≥1% in the study range. The peak intensity of the signals corresponding to Secretogranin II and Protein 7B2 were significantly upregulated in RRMS patients compared to PrMS (p<0.05), whereas the signals of Fibrinogen and Fibrinopeptide A were significantly downregulated in CIS compared to PrMS patients (p<0.04). Additionally, the intensity of the Tymosin β4 peak was the only signal to be significantly discriminated between the CIS and RRMS patients (p = 0.013). Although with caution due to the relatively small size of the study populations, and considering that not all the findings remained significant after adjustment for multiple comparisons, in our opinion this mass spectrometry evaluation confirms that this technique may provide useful and important information to improve our understanding of the complex pathogenesis of MS. PMID:25098164

  15. Proteomic profiling in multiple sclerosis clinical courses reveals potential biomarkers of neurodegeneration.

    PubMed

    Liguori, Maria; Qualtieri, Antonio; Tortorella, Carla; Direnzo, Vita; Bagalà, Angelo; Mastrapasqua, Mariangela; Spadafora, Patrizia; Trojano, Maria

    2014-01-01

    The aim of our project was to perform an exploratory analysis of the cerebrospinal fluid (CSF) proteomic profiles of Multiple Sclerosis (MS) patients, collected in different phases of their clinical course, in order to investigate the existence of peculiar profiles characterizing the different MS phenotypes. The study was carried out on 24 Clinically Isolated Syndrome (CIS), 16 Relapsing Remitting (RR) MS, 11 Progressive (Pr) MS patients. The CSF samples were analysed using the Matrix Assisted Laser Desorption Ionisation Time Of Flight (MALDI-TOF) mass spectrometer in linear mode geometry and in delayed extraction mode (m/z range: 1000-25000 Da). Peak lists were imported for normalization and statistical analysis. CSF data were correlated with demographic, clinical and MRI parameters. The evaluation of MALDI-TOF spectra revealed 348 peak signals with relative intensity ≥ 1% in the study range. The peak intensity of the signals corresponding to Secretogranin II and Protein 7B2 were significantly upregulated in RRMS patients compared to PrMS (p<0.05), whereas the signals of Fibrinogen and Fibrinopeptide A were significantly downregulated in CIS compared to PrMS patients (p<0.04). Additionally, the intensity of the Tymosin β4 peak was the only signal to be significantly discriminated between the CIS and RRMS patients (p = 0.013). Although with caution due to the relatively small size of the study populations, and considering that not all the findings remained significant after adjustment for multiple comparisons, in our opinion this mass spectrometry evaluation confirms that this technique may provide useful and important information to improve our understanding of the complex pathogenesis of MS.

  16. Comparative proteomic profiling of refractory/relapsed multiple myeloma reveals biomarkers involved in resistance to bortezomib-based therapy

    PubMed Central

    Wrobel, Tomasz; Usnarska-Zubkiewicz, Lidia; Brzezniakiewicz, Katarzyna; Jamroziak, Krzysztof; Giannopoulos, Krzysztof; Przybylowicz-Chalecka, Anna; Ratajczak, Blazej; Czerwinska-Rybak, Joanna; Nowicki, Adam; Joks, Monika; Czechowska, Elzbieta; Zawartko, Magdalena; Szczepaniak, Tomasz; Grzasko, Norbert; Morawska, Marta; Bochenek, Maciej; Kubicki, Tadeusz; Morawska, Michalina; Tusznio, Katarzyna; Jakubowiak, Andrzej; Komarnicki, Mieczysław

    2016-01-01

    Identifying biomarkers of the resistance in multiple myeloma (MM) is a key research challenge. We aimed to identify proteins that differentiate plasma cells in patients with refractory/relapsed MM (RRMM) who achieved at least very good partial response (VGPR) and in those with reduced response to PAD chemotherapy (bortezomib, doxorubicin and dexamethasone). Comparative proteomic analysis was conducted on pretreatment plasma cells from 77 proteasome inhibitor naïve patients treated subsequently with PAD due to RRMM. To increase data confidence we used two independent proteomic platforms: isobaric Tags for Relative and Absolute Quantitation (iTRAQ) and label free (LF). Proteins were considered as differentially expressed when their accumulation between groups differed by at least 50% in iTRAQ and LF. The proteomic signature revealed 118 proteins (35 up-regulated and 83 down-regulated in ≥ VGPR group). Proteins were classified into four classes: (1) involved in proteasome function; (2) involved in the response to oxidative stress; (3) related to defense response; and (4) regulating the apoptotic process. We confirmed the differential expression of proteasome activator complex subunit 1 (PSME1) by enzyme-linked immunosorbent assay. Increased expression of proteasomes and proteins involved in protection from oxidative stress (eg., TXN, TXNDC5) plays a major role in bortezomib resistance. PMID:27527861

  17. Soluble PD-L1: A biomarker to predict progression of autologous transplantation in patients with multiple myeloma

    PubMed Central

    Lin, Chung-Wu; Li, Chi-Cheng; Yao, Ming; Tang, Jih-Luh; Hou, Hsin-An; Tsay, Woei; Chou, Sheng-Je; Cheng, Chieh-Lung; Tien, Hwei-Fang

    2016-01-01

    Autologous hematopoietic stem cell transplantation (AuHSCT) is standard in treating eligible multiple myeloma (MM) patients. However, the outcome after treatment is highly variable. We used ELISA to analyze the levels of soluble PD-L1 (suPD-L1) in bone marrow (BM) plasma from 61 patients with MM at 100 days after AuHSCT. Patients were classified into high (H) and normal-to-low (NL) groups depending on their suPD-L1 levels. Among patients who had a very good partial response (VGPR) or better after AuHSCT, those in the H-group had a shorter response period (RpSCT) as well as shorter overall survival (OS) than those in the NL-group. Multivariate analyses confirmed that a high suPD-L1 level and high-risk cytogenetic abnormalities are independent factors for RpSCT. Our data suggest that suPD-L1 in the BM plasma of MM patients who have VGPR or better after AuHSCT could be used as a biomarker to predict outcome. PMID:27566569

  18. Multiple biomarkers in molecular oncology. II. Molecular diagnostics applications in breast cancer management.

    PubMed

    Malinowski, Douglas P

    2007-05-01

    In recent years, the application of genomic and proteomic technologies to the problem of breast cancer prognosis and the prediction of therapy response have begun to yield encouraging results. Independent studies employing transcriptional profiling of primary breast cancer specimens using DNA microarrays have identified gene expression profiles that correlate with clinical outcome in primary breast biopsy specimens. Recent advances in microarray technology have demonstrated reproducibility, making clinical applications more achievable. In this regard, one such DNA microarray device based upon a 70-gene expression signature was recently cleared by the US FDA for application to breast cancer prognosis. These DNA microarrays often employ at least 70 gene targets for transcriptional profiling and prognostic assessment in breast cancer. The use of PCR-based methods utilizing a small subset of genes has recently demonstrated the ability to predict the clinical outcome in early-stage breast cancer. Furthermore, protein-based immunohistochemistry methods have progressed from using gene clusters and gene expression profiling to smaller subsets of expressed proteins to predict prognosis in early-stage breast cancer. Beyond prognostic applications, DNA microarray-based transcriptional profiling has demonstrated the ability to predict response to chemotherapy in early-stage breast cancer patients. In this review, recent advances in the use of multiple markers for prognosis of disease recurrence in early-stage breast cancer and the prediction of therapy response will be discussed.

  19. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers

    PubMed Central

    Sanjay, Sharma T.; Dou, Maowei; Sun, Jianjun; Li, XiuJun

    2016-01-01

    Enzyme linked immunosorbent assay (ELISA) is one of the most widely used laboratory disease diagnosis methods. However, performing ELISA in low-resource settings is limited by long incubation time, large volumes of precious reagents, and well-equipped laboratories. Herein, we developed a simple, miniaturized paper/PMMA (poly(methyl methacrylate)) hybrid microfluidic microplate for low-cost, high throughput, and point-of-care (POC) infectious disease diagnosis. The novel use of porous paper in flow-through microwells facilitates rapid antibody/antigen immobilization and efficient washing, avoiding complicated surface modifications. The top reagent delivery channels can simply transfer reagents to multiple microwells thus avoiding repeated manual pipetting and costly robots. Results of colorimetric ELISA can be observed within an hour by the naked eye. Quantitative analysis was achieved by calculating the brightness of images scanned by an office scanner. Immunoglobulin G (IgG) and Hepatitis B surface Antigen (HBsAg) were quantitatively analyzed with good reliability in human serum samples. Without using any specialized equipment, the limits of detection of 1.6 ng/mL for IgG and 1.3 ng/mL for HBsAg were achieved, which were comparable to commercial ELISA kits using specialized equipment. We envisage that this simple POC hybrid microplate can have broad applications in various bioassays, especially in resource-limited settings. PMID:27456979

  20. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers

    NASA Astrophysics Data System (ADS)

    Sanjay, Sharma T.; Dou, Maowei; Sun, Jianjun; Li, Xiujun

    2016-07-01

    Enzyme linked immunosorbent assay (ELISA) is one of the most widely used laboratory disease diagnosis methods. However, performing ELISA in low-resource settings is limited by long incubation time, large volumes of precious reagents, and well-equipped laboratories. Herein, we developed a simple, miniaturized paper/PMMA (poly(methyl methacrylate)) hybrid microfluidic microplate for low-cost, high throughput, and point-of-care (POC) infectious disease diagnosis. The novel use of porous paper in flow-through microwells facilitates rapid antibody/antigen immobilization and efficient washing, avoiding complicated surface modifications. The top reagent delivery channels can simply transfer reagents to multiple microwells thus avoiding repeated manual pipetting and costly robots. Results of colorimetric ELISA can be observed within an hour by the naked eye. Quantitative analysis was achieved by calculating the brightness of images scanned by an office scanner. Immunoglobulin G (IgG) and Hepatitis B surface Antigen (HBsAg) were quantitatively analyzed with good reliability in human serum samples. Without using any specialized equipment, the limits of detection of 1.6 ng/mL for IgG and 1.3 ng/mL for HBsAg were achieved, which were comparable to commercial ELISA kits using specialized equipment. We envisage that this simple POC hybrid microplate can have broad applications in various bioassays, especially in resource-limited settings.

  1. Ultraviolet light and osmotic stress: Activation of the JNK cascade through multiple growth factor and cytokine receptors

    SciTech Connect

    Rosette, C.; Karin, M.

    1996-11-15

    Exposure of mammalian cells to ultraviolet (UV) light or high osmolarity strongly activated the c-Jun amino-terminal protein kinase (JNK) cascade, causing induction of many target genes. Exposure to UV light or osmotic shock induced clustering and internalization of cell surface receptors for epidermal growth factor (EGF), tumor necrosis factor (TNF), and interleukin-1 (IL-1). Activation of the EGF and TNF receptors was also detected biochemically. Whereas activation of each receptor alone resulted in modest activation of JNK, coadministration of EGF, IL-1, and TNF resulted in a strong synergistic response equal to that caused by exposure to osmotic shock or UV light. Inhibition of clustering or receptor down-regulation attenuated both the osmotic shock and UV responses. Physical stresses may perturb the cell surface or alter receptor conformation, thereby subverting signaling pathways normally used by growth factors and cytokines. 24 refs., 5 figs.

  2. [MicroRNAs and their neuroimmunoregulator mechanisms in multiple sclerosis. Development of biomarkers for diagnosis].

    PubMed

    Sánchez-Chaparro, M Marisela; Rodríguez-Sánchez, Iram P; Barrera-Saldaña, Hugo A; Martínez-Villarreal, Laura E; Resendez-Pérez, Diana; Gámez-Escobedo, Idalia A

    2015-06-16

    Introduccion. Los microARN (miARN) son moleculas que han generado gran atencion como reguladores de procesos de silenciamiento genico en diferentes organismos. La desregulacion de los mecanismos efectuados por estas moleculas se vincula al desarrollo y progresion de los trastornos relacionados con el sistema inmune. Diferentes estudios exponen que los miARN desempeñan un papel fundamental en procesos neuronales e inmunes, y se relacionan con los mecanismos de las enfermedades que afectan ambos sistemas. La esclerosis multiple (EM) es una enfermedad neurodegenerativa debida a la desmielinizacion axonal causada por procesos autoinmunes. Objetivo. Mostrar la estrecha relacion de las funciones regulatorias de los miARN en vias de señalizacion neuroinmunologicas en el desarrollo de la EM, asi como su estudio como biomarcadores diagnosticos para su uso en pacientes. Desarrollo. En la literatura cientifica se ha estudiado y establecido el papel de los miARN como moduladores de los procesos celulares. Sin embargo, poco se ha abordado sobre su funcionalidad en las celulas gliales dentro de los procesos de plasticidad neuronal, regulacion de la desmielinizacion y reconstitucion axonal, por lo que su revision constituye el proposito de este escrito. Ademas, algunos miARN previamente evaluados se describen para su enfoque diagnostico para la deteccion, curso y tratamiento de la EM, y se encuentran en investigacion o implementacion. Conclusiones. Existe una fuerte evidencia del papel que realizan los miARN en los mecanismos homeostaticos axonales durante la evolucion de la EM. Esto representa un area de estudio para explorar el uso de estas moleculas para la comprension de esta enfermedad, su diagnostico oportuno y la evolucion en los pacientes.

  3. Serum Biomarker gMS-Classifier2: Predicting Conversion to Clinically Definite Multiple Sclerosis

    PubMed Central

    Yarden, Jennifer; Fire, Ella; Spector, Larissa; Dotan, Nir; Dukler, Avinoam; Rovira, Alex; Montalban, Xavier; Tintore, Mar

    2013-01-01

    Background Anti-glycan antibodies can be found in autoimmune diseases. IgM against glycan P63 was identified in clinically isolated syndromes (CIS) and included in gMS-Classifier2, an algorithm designed with the aim of identifying patients at risk of a second demyelinating attack. Objective To determine the value of gMS-Classifier2 as an early and independent predictor of conversion to clinically definite multiple sclerosis (CDMS). Methods Data were prospectively acquired from a CIS cohort. gMS-Classifier2 was determined in patients first seen between 1995 and 2007 with ≥ two 200 µL serum aliquots (N = 249). The primary endpoint was time to conversion to CDMS at two years, the factor tested was gMS-Classifier2 status (positive/negative) or units; other exploratory time points were 5 years and total time of follow-up. Results Seventy-five patients (30.1%) were gMS-Classifier2 positive. Conversion to CDMS occurred in 31/75 (41.3%) of positive and 45/174 (25.9%) of negative patients (p = 0.017) at two years. Median time to CDMS was 37.8 months (95% CI 10.4–65.3) for positive and 83.9 months (95% CI 57.5–110.5) for negative patients. gMS-Classifier2 status predicted conversion to CDMS within two years of follow-up (HR = 1.8, 95% CI 1.1–2.8; p = 0.014). gMS-Classifier2 units were also independent predictors when tested with either Barkhof criteria and OCB (HR = 1.2, CI 1.0–1.5, p = 0.020) or with T2 lesions and OCB (HR = 1.3, CI 1.1–1.5, p = 0.008). Similar results were obtained at 5 years of follow-up. Discrimination measures showed a significant change in the area under the curve (ΔAUC) when adding gMS-Classifier2 to a model with either Barkhof criteria (ΔAUC 0.0415, p = 0.012) or number of T2 lesions (ΔAUC 0.0467, p = 0.009), but not when OCB were added to these models. Conclusions gMS-Classifier2 is an independent predictor of early conversion to CDMS and could be of clinical relevance, particularly in cases in

  4. The critical role of antigen-presentation-induced cytokine crosstalk in the central nervous system in multiple sclerosis and experimental autoimmune encephalomyelitis.

    PubMed

    Sosa, Rebecca A; Forsthuber, Thomas G

    2011-10-01

    Multiple sclerosis (MS) is a debilitating disease of the central nervous system (CNS) that has been extensively studied using the animal model experimental autoimmune encephalomyelitis (EAE). It is believed that CD4(+) T lymphocytes play an important role in the pathogenesis of this disease by mediating the demyelination of neuronal axons via secretion of proinflammatory cytokines resulting in the clinical manifestations. Although a great deal of information has been gained in the last several decades about the cells involved in the inflammatory and disease mediating process, important questions have remained unanswered. It has long been held that initial neuroantigen presentation and T cell activation events occur in the immune periphery and then translocate to the CNS. However, an increasing body of evidence suggests that antigen (Ag) presentation might initiate within the CNS itself. Importantly, it has remained unresolved which antigen presenting cells (APCs) in the CNS are the first to acquire and present neuroantigens during EAE/MS to T cells, and what the conditions are under which this takes place, ie, whether this occurs in the healthy CNS or only during inflammatory conditions and what the related cytokine microenvironment is comprised of. In particular, the central role of interferon-γ as a primary mediator of CNS pathology during EAE has been challenged by the emergence of Th17 cells producing interleukin-17. This review describes our current understanding of potential APCs in the CNS and the contribution of these and other CNS-resident cells to disease pathology. Additionally, we discuss the question of where Ag presentation is initiated and under what conditions neuroantigens are made available to APCs with special emphasis on which cytokines may be important in this process.

  5. Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes

    SciTech Connect

    De Luca, Chiara; Scordo, Maria G.; Cesareo, Eleonora; Pastore, Saveria; Mariani, Serena; Maiani, Gianluca; Stancato, Andrea; Loreti, Beatrice; Valacchi, Giuseppe; Lubrano, Carla; Raskovic, Desanka; De Padova, Luigia; Genovesi, Giuseppe; Korkina, Liudmila G.

    2010-11-01

    Background: Multiple chemical sensitivity (MCS) is a poorly clinically and biologically defined environment-associated syndrome. Although dysfunctions of phase I/phase II metabolizing enzymes and redox imbalance have been hypothesized, corresponding genetic and metabolic parameters in MCS have not been systematically examined. Objectives: We sought for genetic, immunological, and metabolic markers in MCS. Methods: We genotyped patients with diagnosis of MCS, suspected MCS and Italian healthy controls for allelic variants of cytochrome P450 isoforms (CYP2C9, CYP2C19, CYP2D6, and CYP3A5), UDP-glucuronosyl transferase (UGT1A1), and glutathione S-transferases (GSTP1, GSTM1, and GSTT1). Erythrocyte membrane fatty acids, antioxidant (catalase, superoxide dismutase (SOD)) and glutathione metabolizing (GST, glutathione peroxidase (Gpx)) enzymes, whole blood chemiluminescence, total antioxidant capacity, levels of nitrites/nitrates, glutathione, HNE-protein adducts, and a wide spectrum of cytokines in the plasma were determined. Results: Allele and genotype frequencies of CYPs, UGT, GSTM, GSTT, and GSTP were similar in the Italian MCS patients and in the control populations. The activities of erythrocyte catalase and GST were lower, whereas Gpx was higher than normal. Both reduced and oxidised glutathione were decreased, whereas nitrites/nitrates were increased in the MCS groups. The MCS fatty acid profile was shifted to saturated compartment and IFNgamma, IL-8, IL-10, MCP-1, PDGFbb, and VEGF were increased. Conclusions: Altered redox and cytokine patterns suggest inhibition of expression/activity of metabolizing and antioxidant enzymes in MCS. Metabolic parameters indicating accelerated lipid oxidation, increased nitric oxide production and glutathione depletion in combination with increased plasma inflammatory cytokines should be considered in biological definition and diagnosis of MCS.

  6. The Critical Role of Antigen-Presentation-Induced Cytokine Crosstalk in the Central Nervous System in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Sosa, Rebecca A.

    2011-01-01

    Multiple sclerosis (MS) is a debilitating disease of the central nervous system (CNS) that has been extensively studied using the animal model experimental autoimmune encephalomyelitis (EAE). It is believed that CD4+ T lymphocytes play an important role in the pathogenesis of this disease by mediating the demyelination of neuronal axons via secretion of proinflammatory cytokines resulting in the clinical manifestations. Although a great deal of information has been gained in the last several decades about the cells involved in the inflammatory and disease mediating process, important questions have remained unanswered. It has long been held that initial neuroantigen presentation and T cell activation events occur in the immune periphery and then translocate to the CNS. However, an increasing body of evidence suggests that antigen (Ag) presentation might initiate within the CNS itself. Importantly, it has remained unresolved which antigen presenting cells (APCs) in the CNS are the first to acquire and present neuroantigens during EAE/MS to T cells, and what the conditions are under which this takes place, ie, whether this occurs in the healthy CNS or only during inflammatory conditions and what the related cytokine microenvironment is comprised of. In particular, the central role of interferon-γ as a primary mediator of CNS pathology during EAE has been challenged by the emergence of Th17 cells producing interleukin-17. This review describes our current understanding of potential APCs in the CNS and the contribution of these and other CNS-resident cells to disease pathology. Additionally, we discuss the question of where Ag presentation is initiated and under what conditions neuroantigens are made available to APCs with special emphasis on which cytokines may be important in this process. PMID:21919736

  7. Interplay between pro-inflammatory cytokines and brain oxidative stress biomarkers: evidence of parallels between butyl paraben intoxication and the valproic acid brain physiopathology in autism rat model.

    PubMed

    Hegazy, Hoda G; Ali, Elham H A; Elgoly, Amany H Mahmoud

    2015-02-01

    Butyl paraben is a preservative used in food, drugs and cosmetics. Neurotoxic effect was reported recently beside the potential estrogenic activity of parabens. There is controversy as to the potential harmful effects of butyl parabens, which are suspected to contribute to autism and learning disabilities. The purpose of this study was to examine the similarities between paraben intoxication signs in the rat brain and brain markers in an autistic like rat model. This study provides evidence of many parallels between the two, including (1) oxidative stress, (2) decreased reduced glutathione levels and elevated oxidised glutathione, (3) mitochondrial dysfunction, and (4) neuroinflammation and increased pro-inflammatory cytokine levels in the brain (tumour necrosis factor-alpha, interleukin-1-beta, and interleukin-6). (5) Increased protein oxidation reported by a significant increase in 3-nitrotyrosine (3-NT)/tyrosine ratio. (6) A marked disturbance was found in the production of energy carriers (AMP, ATP and AMP/ATP ratio) in comparison with the control. The evidence suggests that paraben may, to some extent, either cause or contribute to the brain physiopathology in ASDs or pathogens that produce the brain pathology observed in the diagnosed rat model of ASD.

  8. Pattern of cytokine (IL-6 and IL-10) level as inflammation and anti-inflammation mediator of multiple organ dysfunction syndrome (MODS) in polytrauma.

    PubMed

    Sapan, Heber Bombang; Paturusi, Idrus; Jusuf, Irawan; Patellongi, Ilhamjaya; Massi, Muh Nasrum; Pusponegoro, Aryono Djuned; Arief, Syafrie Kamsul; Labeda, Ibrahim; Islam, Andi Asadul; Rendy, Leo; Hatta, Mochammad

    2016-01-01

    Massive injury remains the most common cause of death for productive age group globally. The current immune, inflammatory paradigm, based on an incomplete understanding of the functional integration of the complex host response, remains a major impediment to the development of effective innovative diagnostic and therapeutic effort. This study attempt to investigate the pattern of inflammatory and anti-inflammatory cytokines such as interleukin-6 and 10 (IL-6 and IL-10) and their interaction in severe injury condition with its major complication as multiple organ dysfunction syndrome (MODS) and failure (MOF) after polytrauma. This is multicenter study held at 4 academic Level-1 Trauma center included 54 polytrauma participants. Inclusion criteria were age between 16-60 years old, had new acute episode of polytrauma which defined as injury in ≥2 body region with Injury Severity Score (ISS) ≥16, and the presence of Systemic Inflammation Response Syndrome (SIRS). Serum level of IL-6 and IL-10 were taken on day 2, 3, and 5 after trauma. During hospitalization, samples were observed for the occurrence of MODS or MOF using Sequential Organ Failure Assessment (SOFA) and mortality rate were also noted. Participant were mostly male with mean of age of 35, 9 years old, endured polytrauma caused by traffic accident. Elevation of cytokines (IL-6, IL-10, and IL-6/IL-10 ratio) had directly proportional with MODS and mortality. Threshold level of compensation for severe trauma is IL-6 of 50 pg/mL and trauma load of ISS ≥30. Inflammation reaction greater than this threshold level would result in downhill level of IL-6, IL-10, or IL-6/IL-10 ratio which associated with poor outcome (MODS and death). The elevation of these cytokines level were represent as compensation/adaptive immune system and its fall represent decompensating/failure of immune system after severe trauma. The pattern of IL-6 and IL-10 after polytrauma represent immune system effort to restore homeostasis

  9. Pattern of cytokine (IL-6 and IL-10) level as inflammation and anti-inflammation mediator of multiple organ dysfunction syndrome (MODS) in polytrauma

    PubMed Central

    Sapan, Heber Bombang; Paturusi, Idrus; Jusuf, Irawan; Patellongi, Ilhamjaya; Massi, Muh Nasrum; Pusponegoro, Aryono Djuned; Arief, Syafrie Kamsul; Labeda, Ibrahim; Islam, Andi Asadul; Rendy, Leo; Hatta, Mochammad

    2016-01-01

    Massive injury remains the most common cause of death for productive age group globally. The current immune, inflammatory paradigm, based on an incomplete understanding of the functional integration of the complex host response, remains a major impediment to the development of effective innovative diagnostic and therapeutic effort. This study attempt to investigate the pattern of inflammatory and anti-inflammatory cytokines such as interleukin-6 and 10 (IL-6 and IL-10) and their interaction in severe injury condition with its major complication as multiple organ dysfunction syndrome (MODS) and failure (MOF) after polytrauma. This is multicenter study held at 4 academic Level-1 Trauma center included 54 polytrauma participants. Inclusion criteria were age between 16-60 years old, had new acute episode of polytrauma which defined as injury in ≥2 body region with Injury Severity Score (ISS) ≥16, and the presence of Systemic Inflammation Response Syndrome (SIRS). Serum level of IL-6 and IL-10 were taken on day 2, 3, and 5 after trauma. During hospitalization, samples were observed for the occurrence of MODS or MOF using Sequential Organ Failure Assessment (SOFA) and mortality rate were also noted. Participant were mostly male with mean of age of 35, 9 years old, endured polytrauma caused by traffic accident. Elevation of cytokines (IL-6, IL-10, and IL-6/IL-10 ratio) had directly proportional with MODS and mortality. Threshold level of compensation for severe trauma is IL-6 of 50 pg/mL and trauma load of ISS ≥30. Inflammation reaction greater than this threshold level would result in downhill level of IL-6, IL-10, or IL-6/IL-10 ratio which associated with poor outcome (MODS and death). The elevation of these cytokines level were represent as compensation/adaptive immune system and its fall represent decompensating/failure of immune system after severe trauma. The pattern of IL-6 and IL-10 after polytrauma represent immune system effort to restore homeostasis

  10. Macrophage Inhibitory Cytokine 1 Biomarker Serum Immunoassay in Combination with PSA Is a More Specific Diagnostic Tool for Detection of Prostate Cancer

    PubMed Central

    Li, Ji; Veltri, Robert W.; Yuan, Zhen; Christudass, Christhunesa S.; Mandecki, Wlodek

    2015-01-01

    Background Prostate cancer (PCa) is the most common malignancy among men in the United States. Though highly sensitive, the often-used prostate-specific antigen (PSA) test has low specificity which leads to overdiagnosis and overtreatment of PCa. This paper presents results of a retrospective study that indicates that testing for macrophage inhibitory cytokine 1 (MIC-1) concentration along with the PSA assay could provide much improved specificity to the assay. Methods The MIC-1 serum level was determined by a novel p-Chip-based immunoassay run on 70 retrospective samples. The assay was configured on p-Chips, small integrated circuits (IC) capable of storing in their electronic memories a serial number to identify the molecular probe immobilized on its surface. The distribution of MIC-1 and pre-determined PSA concentrations were displayed in a 2D plot and the predictive power of the dual MIC-1/PSA assay was analyzed. Results MIC-1 concentration in serum was elevated in PCa patients (1.44 ng/ml) compared to normal and biopsy-negative individuals (0.93 ng/ml and 0.88 ng/ml, respectively). In addition, the MIC-1 level was correlated with the progression of PCa. The area under the receiver operator curve (AUC-ROC) was 0.81 providing an assay sensitivity of 83.3% and specificity of 60.7% by using a cutoff of 0.494 for the logistic regression value of MIC-1 and PSA. Another approach, by defining high-frequency PCa zones in a two-dimensional plot, resulted in assay sensitivity of 78.6% and specificity of 89.3%. Conclusions The analysis based on correlation of MIC-1 and PSA concentrations in serum with the patient PCa status improved the specificity of PCa diagnosis without compromising the high sensitivity of the PSA test alone and has potential for PCa prognosis for patient therapy strategies. PMID:25853582

  11. The Glycan Role in the Glycopeptide Immunogenicity Revealed by Atomistic Simulations and Spectroscopic Experiments on the Multiple Sclerosis Biomarker CSF114(Glc)

    NASA Astrophysics Data System (ADS)

    Bruno, Agostino; Scrima, Mario; Novellino, Ettore; D'Errico, Gerardino; D'Ursi, Anna Maria; Limongelli, Vittorio

    2015-03-01

    Glycoproteins are often recognized as not-self molecules by antibodies triggering the onset of severe autoimmune diseases such as Multiple Sclerosis (MS). Thus, the development of antigen-mimicking biomarkers represents an attractive strategy for an early diagnosis of the disease. An example is the synthetic glycopeptide CSF114(Glc), which was designed and tested as MS biomarker and whose clinical application was limited by its reduced ability to detect autoantibodies in MS patients. In the attempt to improve the efficacy of CSF114(Glc), we have characterized all the events leading to the final binding of the biomarker to the autoantibody using atomistic simulations, ESR and NMR experiments. The glycosydic moiety plays a primary role in the whole process. In particular, in an environment mimicking that used in the clinical tests the glycopeptide assumes a α-helix structure that is functional for the interaction with the antibody. In this conformation CSF114(Glc) binds the monoclonal antibody mAb8-18C5 similarly to the myelin oligodendrocyte glycoprotein MOG, which is a known MS auto-antigen, thus explaining its diagnostic activity. Our study offers new molecular bases to design more effective biomarkers and provides a most valid protocol to investigate other systems where the environment effect is determinant for the biological activity.

  12. The Glycan Role in the Glycopeptide Immunogenicity Revealed by Atomistic Simulations and Spectroscopic Experiments on the Multiple Sclerosis Biomarker CSF114(Glc)

    PubMed Central

    Bruno, Agostino; Scrima, Mario; Novellino, Ettore; D'Errico, Gerardino; D'Ursi, Anna Maria; Limongelli, Vittorio

    2015-01-01

    Glycoproteins are often recognized as not-self molecules by antibodies triggering the onset of severe autoimmune diseases such as Multiple Sclerosis (MS). Thus, the development of antigen-mimicking biomarkers represents an attractive strategy for an early diagnosis of the disease. An example is the synthetic glycopeptide CSF114(Glc), which was designed and tested as MS biomarker and whose clinical application was limited by its reduced ability to detect autoantibodies in MS patients. In the attempt to improve the efficacy of CSF114(Glc), we have characterized all the events leading to the final binding of the biomarker to the autoantibody using atomistic simulations, ESR and NMR experiments. The glycosydic moiety plays a primary role in the whole process. In particular, in an environment mimicking that used in the clinical tests the glycopeptide assumes a α-helix structure that is functional for the interaction with the antibody. In this conformation CSF114(Glc) binds the monoclonal antibody mAb8-18C5 similarly to the myelin oligodendrocyte glycoprotein MOG, which is a known MS auto-antigen, thus explaining its diagnostic activity. Our study offers new molecular bases to design more effective biomarkers and provides a most valid protocol to investigate other systems where the environment effect is determinant for the biological activity. PMID:25776265

  13. CENTRAL AUDTIORY DEVELOPMENT IN CHILDREN WITH HEARING LOSS: CLINICAL RELEVANCE OF THE P1 CAEP BIOMARKER IN HEARING-IMPAIRED CHILDREN WITH MULTIPLE DISABILITIES*

    PubMed Central

    Sharma, Anu; Glick, Hannah; Campbell, Julia; Biever, Allison

    2013-01-01

    Objective First, we review the development and plasticity of the central auditory pathways in infants and children with hearing loss who are fitted with cochlear implants (CIs). Second, we describe case studies demonstrating the clinical utility of the P1 central auditory evoked potential (CAEP) for evaluating cortical auditory maturation in the rapidly increasing number of cochlear-implanted children who have multiple disabilities. Study Design Children who receive CIs provide a platform to examine the trajectories of deprivation-induced and experience-dependent plasticity in the central auditory system. We review the evidence for, and time limits of sensitive periods for cortical auditory maturation framing an optimal period for cochlear implantation. Finally, we evaluate the use of the P1 biomarker as an objective assessment tool in the special case of children with multiple disabilities. Results The P1 response was useful in assessing central auditory maturation in patients with CHARGE association, ANSD, and Pallister-Killian Syndrome concomitant with hearing loss. Conclusion The presence of co-existing disabilities in addition to hearing loss poses unique challenges regarding both pre-intervention evaluation and post-intervention rehabilitation for children with multiple disabilities. When combined with a standard audiological test battery, the P1 CAEP biomarker has a useful role in objectively evaluating the maturation of central auditory pathways to determine the effectiveness of various intervention strategies in hearing-impaired children with multiple disabilities. PMID:24273704

  14. A multiplex cytokine score for the prediction of disease severity in pediatric hematology/oncology patients with septic shock.

    PubMed

    Xu, Xiao-Jun; Tang, Yong-Min; Song, Hua; Yang, Shi-Long; Xu, Wei-Qun; Shi, Shu-Wen; Zhao, Ning; Liao, Chan

    2013-11-01

    Although many inflammatory cytokines are prognostic in sepsis, the utility of cytokines in evaluating disease severity in pediatric hematology/oncology patients with septic shock was rarely studied. On the other hand, a single particular cytokine is far from ideal in guiding therapeutic intervention, but combination of multiple biomarkers improves the accuracy. In this prospective observational study, 111 episodes of septic shock in pediatric hematology/oncology patients were enrolled from 2006 through 2012. Blood samples were taken for inflammatory cytokine measurement by cytometric bead array (CBA) technology at the initial onset of septic shock. Interleukin (IL)-6 and IL-10 were significantly elevated in majority of patients, while tumor necrosis factor (TNF)-α and interferon (IFN)-γ were markedly increased in patients with high pediatric index of mortality 2 (PIM2) score and non-survivors. All the four cytokines paralleled the PIM2 score and differentially correlated with hemodynamic disorder and fatal outcomes. The pediatric multiplex cytokine score (PMCS), which integrated the four cytokines into one score system, was related to hemodynamic disorder and mortality as well, but showed more powerful prediction ability than each of the four cytokines. PMCS was an independent predictive factor for fatal outcome, presenting similar discriminative power with PIM2, with accuracy of 0.83 (95% CI, 0.71-0.94). In conclusion, this study develops a cytokine scoring system based on CBA technique, which performs well in disease severity and fatality prediction in pediatric hematology/oncology patients with septic shock.

  15. Mining potential biomarkers associated with space flight in Caenorhabditis elegans experienced Shenzhou-8 mission with multiple feature selection techniques.

    PubMed

    Zhao, Lei; Gao, Ying; Mi, Dong; Sun, Yeqing

    To identify the potential biomarkers associated with space flight, a combined algorithm, which integrates the feature selection techniques, was used to deal with the microarray datasets of Caenorhabditis elegans obtained in the Shenzhou-8 mission. Compared with the ground control treatment, a total of 86 differentially expressed (DE) genes in responses to space synthetic environment or space radiation environment were identified by two filter methods. And then the top 30 ranking genes were selected by the random forest algorithm. Gene Ontology annotation and functional enrichment analyses showed that these genes were mainly associated with metabolism process. Furthermore, clustering analysis showed that 17 genes among these are positive, including 9 for space synthetic environment and 8 for space radiation environment only. These genes could be used as the biomarkers to reflect the space environment stresses. In addition, we also found that microgravity is the main stress factor to change the expression patterns of biomarkers for the short-duration spaceflight.

  16. Cytokines and autoimmunity.

    PubMed Central

    Cavallo, M G; Pozzilli, P; Thorpe, R

    1994-01-01

    Although the immunopathology of most autoimmune diseases has been well defined, the mechanisms responsible for the breakdown of self-tolerance and which lead to the development of systemic and organ-specific autoaggression are still unclear. Evidence has accumulated which supports a role for a disregulated production of cytokines by leucocytes and possibly other cells in the pathogenesis of some autoimmune diseases. However, due to the complexity and heterogeneity of cytokine effects in the regulation of the immune response, it is difficult to determine whether abnormalities in the patterns of cytokine production are primary or secondary to the pathological process. Confusion is also caused by the fact that the biological activities of cytokines are multiple and often overlapping, and consequently it is difficult to focus on a unique effect of any one cytokine. Characterization of the potential and actual involvement of cytokines is important not only for a better understanding of the pathogenesis of autoimmune conditions, but particularly because of the implications for the development of immunotherapeutic strategies for the prevention and treatment of the diseases. PMID:8149655

  17. Biomarkers in bipolar disorder: a positional paper from the International Society for Bipolar Disorders Biomarkers Task Force.

    PubMed

    Frey, Benicio N; Andreazza, Ana C; Houenou, Josselin; Jamain, Stéphane; Goldstein, Benjamin I; Frye, Mark A; Leboyer, Marion; Berk, Michael; Malhi, Gin S; Lopez-Jaramillo, Carlos; Taylor, Valerie H; Dodd, Seetal; Frangou, Sophia; Hall, Geoffrey B; Fernandes, Brisa S; Kauer-Sant'Anna, Marcia; Yatham, Lakshmi N; Kapczinski, Flavio; Young, L Trevor

    2013-04-01

    Although the etiology of bipolar disorder remains uncertain, multiple studies examining neuroimaging, peripheral markers and genetics have provided important insights into the pathophysiologic processes underlying bipolar disorder. Neuroimaging studies have consistently demonstrated loss of gray matter, as well as altered activation of subcortical, anterior temporal and ventral prefrontal regions in response to emotional stimuli in bipolar disorder. Genetics studies have identified several potential candidate genes associated with increased risk for developing bipolar disorder that involve circadian rhythm, neuronal development and calcium metabolism. Notably, several groups have found decreased levels of neurotrophic factors and increased pro-inflammatory cytokines and oxidative stress markers. Together these findings provide the background for the identification of potential biomarkers for vulnerability, disease expression and to help understand the course of illness and treatment response. In other areas of medicine, validated biomarkers now inform clinical decision-making. Although the findings reviewed herein hold promise, further research involving large collaborative studies is needed to validate these potential biomarkers prior to employing them for clinical purposes. Therefore, in this positional paper from the ISBD-BIONET (biomarkers network from the International Society for Bipolar Disorders), we will discuss our view of biomarkers for these three areas: neuroimaging, peripheral measurements and genetics; and conclude the paper with our position for the next steps in the search for biomarkers for bipolar disorder.

  18. Bioanalytical Chemistry of Cytokines-A Review

    PubMed Central

    Stenken, Julie A.; Poschenrieder, Andreas J.

    2014-01-01

    Cytokines are bioactive proteins produced by many different cells of the immune system. Due to their role in different inflammatory disease states and maintaining homeostasis, there is enormous clinical interest in the quantitation of cytokines. The typical standard methods for quantitation of cytokines are immunoassay-based techniques including enzyme-linked immusorbent assays (ELISA) and bead-based immunoassays read by either standard or modified flow cytometers. A review of recent developments in analytical methods for measurements of cytokine proteins is provided. This review briefly covers cytokine biology and the analysis challenges associated with measurement of these biomarker proteins for understanding both health and disease. New techniques applied to immunoassay-based assays are presented along with the uses of aptamers, electrochemistry, mass spectrometry, optical resonator-based methods. Methods used for elucidating the release of cytokines from single cells as well as in vivo collection methods are described. PMID:25467452

  19. Bioanalytical chemistry of cytokines--a review.

    PubMed

    Stenken, Julie A; Poschenrieder, Andreas J

    2015-01-01

    Cytokines are bioactive proteins produced by many different cells of the immune system. Due to their role in different inflammatory disease states and maintaining homeostasis, there is enormous clinical interest in the quantitation of cytokines. The typical standard methods for quantitation of cytokines are immunoassay-based techniques including enzyme-linked immusorbent assays (ELISA) and bead-based immunoassays read by either standard or modified flow cytometers. A review of recent developments in analytical methods for measurements of cytokine proteins is provided. This review briefly covers cytokine biology and the analysis challenges associated with measurement of these biomarker proteins for understanding both health and disease. New techniques applied to immunoassay-based assays are presented along with the uses of aptamers, electrochemistry, mass spectrometry, optical resonator-based methods. Methods used for elucidating the release of cytokines from single cells as well as in vivo collection methods are described.

  20. Can biomarkers help us hit targets in difficult-to-treat asthma?

    PubMed

    Fricker, Michael; Heaney, Liam G; Upham, John W

    2017-04-01

    Biomarkers may be a key foundation for the precision medicine of the future. In this article, we review current knowledge regarding biomarkers in difficult-to-treat asthma and their ability to guide the use of both conventional asthma therapies and novel (targeted) therapies. Biomarkers (as measured by tests including prednisolone and cortisol assays and the fractional exhaled nitric oxide (NO) suppression test) show promise in the assessment and management of non-adherence to inhaled and oral corticosteroids. Multiple markers of type 2 inflammation have been developed, including eosinophils in sputum and blood, exhaled NO, serum IgE and periostin. Although these show potential in guiding the selection of novel interventions for refractory type 2 inflammation in asthma, and in determining if the desired response is being achieved, it is becoming clear that different biomarkers reflect distinct components of the complex type 2 inflammatory pathways. Less progress has been made in identifying biomarkers for use in difficult-to-treat asthma that is not associated with type 2 inflammation. The future is likely to see further biomarker discovery, direct measurements of individual cytokines rather than surrogates of their activity and the increasing use of biomarkers in combination. If the promise of biomarkers is to be fulfilled, they will need to provide useful information that aids clinical decision-making, rather than being 'just another test' for clinicians to order.

  1. Autoantibodies to myelin basic protein (MBP) in healthy individuals and in patients with multiple sclerosis: a role in regulating cytokine responses to MBP.

    PubMed

    Hedegaard, Chris J; Chen, Ning; Sellebjerg, Finn; Sørensen, Per Soelberg; Leslie, R Graham Q; Bendtzen, Klaus; Nielsen, Claus H

    2009-09-01

    Anti-myelin basic protein (-MBP) autoantibodies have generally been considered to be absent from sera from healthy individuals, but to be detectable in sera from some patients with multiple sclerosis (MS). However, their pathogenic role is uncertain. We demonstrate the presence of MBP-reactive autoantibodies in sera from 17 healthy individuals and 17 MS patients. The addition of MBP to the sera caused a dose-dependent deposition of MBP and co-deposition of immunoglobulin M (IgM) and fragments of complement component 3 (C3) on allogeneic monocytes. Calcium chelation abrogated the immunoglobulin deposition, indicating that formation of complement-activating immune complexes played a role in the binding process. Furthermore, MBP elicited tumour necrosis factor (TNF)-alpha and interleukin (IL)-10 production by normal mononuclear cells in the presence of serum from both patients and controls. Mononuclear cells from MS patients responded to MBP with the production of interferon (IFN)-gamma, IL-4 and IL-5, in addition to TNF-alpha and IL-10. The production of IFN-gamma and IL-5 was increased when MS serum was added rather than normal serum. Denaturation of MBP strongly inhibited MBP deposition and the MBP-induced IgM deposition and cytokine production, indicating that these events were facilitated by autoantibodies recognizing conformational epitopes on MBP. We infer that MBP-elicited TNF-alpha and IL-10 responses are promoted to equal extents by naturally occurring MBP autoantibodies and autoantibodies contained in MS sera. However, the latter seem to be more efficient in facilitating the production of IFN-gamma and IL-5.

  2. Z-Scan Analysis: a New Method to Determine the Oxidative State of Low-Density Lipoprotein and Its Association with Multiple Cardiometabolic Biomarkers

    NASA Astrophysics Data System (ADS)

    de Freitas, Maria Camila Pruper; Figueiredo Neto, Antonio Martins; Giampaoli, Viviane; da Conceição Quintaneiro Aubin, Elisete; de Araújo Lima Barbosa, Milena Maria; Damasceno, Nágila Raquel Teixeira

    2016-04-01

    The great atherogenic potential of oxidized low-density lipoprotein has been widely described in the literature. The objective of this study was to investigate whether the state of oxidized low-density lipoprotein in human plasma measured by the Z-scan technique has an association with different cardiometabolic biomarkers. Total cholesterol, high-density lipoprotein cholesterol, triacylglycerols, apolipoprotein A-I and apolipoprotein B, paraoxonase-1, and glucose were analyzed using standard commercial kits, and low-density lipoprotein cholesterol was estimated using the Friedewald equation. A sandwich enzyme-linked immunosorbent assay was used to detect electronegative low-density lipoprotein. Low-density lipoprotein and high-density lipoprotein sizes were determined by Lipoprint® system. The Z-scan technique was used to measure the non-linear optical response of low-density lipoprotein solution. Principal component analysis and correlations were used respectively to resize the data from the sample and test association between the θ parameter, measured with the Z-scan technique, and the principal component. A total of 63 individuals, from both sexes, with mean age 52 years (±11), being overweight and having high levels of total cholesterol and low levels of high-density lipoprotein cholesterol, were enrolled in this study. A positive correlation between the θ parameter and more anti-atherogenic pattern for cardiometabolic biomarkers together with a negative correlation for an atherogenic pattern was found. Regarding the parameters related with an atherogenic low-density lipoprotein profile, the θ parameter was negatively correlated with a more atherogenic pattern. By using Z-scan measurements, we were able to find an association between oxidized low-density lipoprotein state and multiple cardiometabolic biomarkers in samples from individuals with different cardiovascular risk factors.

  3. Biological hypotheses and biomarkers of bipolar disorder.

    PubMed

    Sigitova, Ekaterina; Fišar, Zdeněk; Hroudová, Jana; Cikánková, Tereza; Raboch, Jiří

    2017-02-01

    The most common mood disorders are major depressive disorders and bipolar disorders (BD). The pathophysiology of BD is complex, multifactorial, and not fully understood. Creation of new hypotheses in the field gives impetus for studies and for finding new biomarkers for BD. Conversely, new biomarkers facilitate not only diagnosis of a disorder and monitoring of biological effects of treatment, but also formulation of new hypotheses about the causes and pathophysiology of the BD. BD is characterized by multiple associations between disturbed brain development, neuroplasticity, and chronobiology, caused by: genetic and environmental factors; defects in apoptotic, immune-inflammatory, neurotransmitter, neurotrophin, and calcium-signaling pathways; oxidative and nitrosative stress; cellular bioenergetics; and membrane or vesicular transport. Current biological hypotheses of BD are summarized, including related pathophysiological processes and key biomarkers, which have been associated with changes in genetics, systems of neurotransmitter and neurotrophic factors, neuroinflammation, autoimmunity, cytokines, stress axis activity, chronobiology, oxidative stress, and mitochondrial dysfunctions. Here we also discuss the therapeutic hypotheses and mechanisms of the switch between depressive and manic state.

  4. Biomarkers present in asphaltenes

    SciTech Connect

    Philp, R.P.

    1985-01-01

    The significance and distribution of biomarkers in sediments, source rocks and crude oils are well documented in the literature. Little attention has been directed towards the biomarkers that are present in the asphaltene fractions of crude oils and source rock extracts. Asphaltene fractions by definition are insoluble in certain solvents and consist of high molecular components which makes them difficult to analyze by techniques commonly used to characterize the soluble extracts. Asphaltenes are ideally suited for analysis by microscale pyrolysis techniques (py) combined with gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Utilization of the multiple ion detection technique in conjunction with the py-GC-MS analyses permits the distribution of the steranes, triterpanes and other biomarker produced by pyrolysis of the asphaltenes to be easily determined. It is proposed in this paper to discuss the pyrolysis of asphaltene from a variety of source rocks and analysis of the biomarkers, released by the pyrolysis. These biomarkers distributions can be used to obtain information on source and maturity of the organic matter in a similar manner to using the soluble biomarkers. It is proposed to discuss the asphaltene biomarker distributions and also to speculate as to why certain biomarkers are present only in the extracts and asphaltenes and not produced by pyrolysis of the kerogens.

  5. High multi-cytokine levels are not a predictive marker of alloimmunization in transfused sickle cell disease patients.

    PubMed

    Tatari-Calderone, Zohreh; Fasano, Ross M; Miles, Megan R; Pinto, Ligia A; Luban, Naomi L C; Vukmanovic, Stanislav

    2014-07-01

    Patients with sickle cell disease (SCD) receive multiple red blood cell (RBC) transfusions for both prevention of and therapy for disease-related complications. In some patients, transfusion results in development of both allo- and auto-antibodies to RBC antigens. What precipitates the antibody formation is currently unclear. It has been hypothesized that a pro-inflammatory state preceding the therapeutic transfusion may be a predisposing factor. Plasma levels of ten cytokines were evaluated upon recruitment to the study of 83 children with SCD undergoing therapeutic RBC transfusions. The levels of cytokines were correlated with development of anti-RBC antibodies prior, or during seven years post recruitment. Twelve subjects displayed significantly higher levels of all cytokines examined, with pro-, as well as anti-inflammatory properties. Surprisingly, the elevated levels of cytokines were preferentially found in patients without anti-RBC allo- and/or auto-antibodies. Further, presence of high cytokine levels was not predictive of anti-RBC antibody development during the subsequent seven year follow up. These data suggest that the increased concentration of multiple cytokines is not a biomarker of either the presence of or susceptibility to the development of RBC alloimmunization.

  6. [Cytokines in bone diseases. What is cytokine?].

    PubMed

    Murakami, Yousuke; Kohsaka, Hitoshi

    2010-10-01

    Cytokines have an essential role for cell-cell communication. They can regulate cell proliferation, differentiation, survival, and function. Interaction of cell surface receptor with cytokines is necessary for control of physiological responses. Activation of cytokine receptors transduces specific signal in the receptor-expressing cells, resulting that cytokines can regulate specific cell population. Thus, cytokines contribute directly or indirectly to morphogenesis, host defense and immune response, play critical roles for homeostasis and development.

  7. Macrophage migration inhibitory factor (MIF): a promising biomarker

    PubMed Central

    Grieb, Gerrit; Merk, Melanie; Bernhagen, Jürgen; Bucala, Richard

    2011-01-01

    Macrophage migration inhibitory (MIF) factor is an immunoregulatory cytokine whose effect on arresting random immune cell movement was recognized several decades ago. Despite its historic name, MIF also has a direct chemokine-like function and promotes cell recruitment. Multiple clinical studies have pointed to the utility of MIF as a biomarker for different diseases that have an inflammatory component; these include systemic infections and sepsis, autoimmune diseases, cancer, and metabolic disorders such as type 2 diabetes and obesity. The identification of functional promoter polymorphisms in the MIF gene (MIF) and their association with the susceptibility or severity of different diseases has served not only to validate MIF’s role in disease development but opened the possibility of using MIF genotype information to better predict risk and outcome. In this article, we review the clinical data of MIF and discuss its potential as a biomarker for different disease applications. PMID:20520854

  8. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway

    PubMed Central

    Feng, Lin; Xue, Deting; Chen, Erman; Zhang, Wei; Gao, Xiang; Yu, Jiawei; Feng, Yadong; Pan, Zhijun

    2016-01-01

    High mobility group box 1 (HMGB1) protein has been previously been detected in the inflammatory microenvironment of bone fractures. It is well known that HMGB1 acts as a chemoattractant to mesenchymal stem cells (MSCs). In the present study, the effects of HMGB1 on cytokine secretion from MSCs were determined, and the molecular mechanisms underlying these effects of HMGB1 on osteogenic differentiation were elucidated. To detect cytokine secretion, antibody array assays were performed, which demonstrated that HGMB1 induced the differential secretion of cytokines that are predominantly associated with cell development, regulation of growth and cell migration, stress responses, and immune system functions. Moreover, the secretion of epidermal growth factor receptor (EGFR) was significantly upregulated by HMGB1. The EGFR-activated Ras/MAPK pathway regulates the osteogenic differentiation of MSCs. These results suggested that HMGB1 enhances the secretion of various cytokines by MSCs and promotes osteogenic differentiation via the Ras/MAPK signaling pathway. The present study may provide a theoretical basis for the development of novel techniques for the treatment of bone fractures in the future. PMID:28105126

  9. Wolfberry Water Soluble Phytochemicals Down-Regulate ER Stress Biomarkers and Modulate Multiple Signaling Pathways Leading To Inhibition of Proliferation and Induction of Apoptosis in Jurkat Cells

    PubMed Central

    Jiang, Yu; Zhang, Yunong; Wark, Logan; Ortiz, Edlin; Lim, Soyoung; He, Hui; Wang, Weiqun; Medeiros, Denis; Lin, Dingbo

    2012-01-01

    Phytochemicals have received much recent attention in cancer prevention through simultaneous targeting multiple pathways in the disease progression. Here we determined that wolfberry phytochemicals was chemopreventive on the leukemic Jurkat cell. The water soluble wolfberry fractions (i.e., wolfberry phytochemicals) were enriched in carbohydrates (73.4 ± 4.5 % (w/w)), polyphenolics (1555 ± 112 mg quercetin equivalent/100 g freeze dry powder, including 213 mg rutin/100 g freeze dry powder), and had enhanced antioxidant activity (7771 ± 207 μM Trolox equivalent/100 g freeze dry powder). Wolfberry phytochemicals, but not purified wolfberry polysaccharide fractions, inhibited Jurkat cell proliferation, induced cycle arrest at the G2/M phase in a dose dependent manner starting at 1 mg/ml for 48 h. Wolfberry phytochemicals eliminated cellular reactive oxygen species, declined expression of endoplasmic reticulum (ER) stress biomarkers, including glucose regulated protein 78, inositol-requiring protein 1(IRE1), activating transcription factor 6 (ATF6), protein kinase RNA-like ER kinase (PERK), and c/EBP-homologous protein, and induced activation of AMP activated protein kinase, stabilization of β-catenin, and inhibition of NFκB, and AKT activity. Simultaneous siRNA knockdown of ATF6, IRE1 and PERK caused inhibition of cell proliferation and induction of apoptosis. Data suggested that ER stress and multiple survival/apoptosis signaling pathways were modulated by wolfberry phytochemicals during the apoptotic progression. Consumption of wolfberry could be an efficacious dietary strategy for preventing leukemia. PMID:22685690

  10. The Association of Multiple Biomarkers of Iron Metabolism and Type 2 Diabetes - the EPIC-InterAct Study

    PubMed Central

    Podmore, Clara; Meidtner, Karina; Schulze, Matthias B; Scott, Robert A; Ramond, Anna; Butterworth, Adam S; Di Angelantonio, Emanuele; Danesh, John; Arriola, Larraitz; Barricarte, Aurelio; Boeing, Heiner; Clavel-Chapelon, Françoise; Cross, Amanda J; Dahm, Christina C; Fagherazzi, Guy; Franks, Paul W; Gavrila, Diana; Grioni, Sara; Gunter, Marc J; Gusto, Gaelle; Jakszyn, Paula; Katzke, Verena; Key, Timothy J; Kühn, Tilman; Mattiello, Amalia; Nilsson, Peter M; Olsen, Anja; Overvad, Kim; Palli, Domenico; Quirós, J. Ramón; Rolandsson, Olov; Sacerdote, Carlotta; Sánchez-Cantalejo, Emilio; Slimani, Nadia; Sluijs, Ivonne; Spijkerman, Annemieke MW; Tjonneland, Anne; Tumino, Rosario; van der A, Daphne L; van der Schouw, Yvonne T; Feskens, Edith JM; Forouhi, Nita G; Sharp, Stephen J; Riboli, Elio; Langenberg, Claudia; Wareham, Nicholas J

    2016-01-01

    Objective Observational studies show an association between ferritin and type 2 diabetes (T2D), suggesting a role of high iron stores for T2D development. However, ferritin is influenced by factors other than iron stores, which is less the case for other biomarkers of iron metabolism. We investigate associations of ferritin, transferrin saturation (TSAT), serum iron and transferrin with T2D incidence, to clarify the role of iron in the pathogenesis of T2D. Research and Design Methods The EPIC-InterAct study includes 12,403 incident T2D cases and a representative sub-cohort of 16,154 individuals from a European cohort with 3.99 million person-years of follow-up. We studied the prospective association of ferritin, TSAT, serum iron and transferrin with incident T2D in 11,052 cases and a random sub-cohort of 15,182 individuals and assessed whether these associations differed by subgroups of the population. Results Higher levels of ferritin and transferrin were associated with a higher risk of T2D [HR in men and women, respectively: 1.07 (95% CI: 1.01; 1.12) and 1.12 (1.05; 1.19) per 100 μg/L higher ferritin level; 1.11 (1.00; 1.24) and 1.22 (1.12; 1.33) per 0.5 g/L higher transferrin level] after adjustment for age, centre, BMI, physical activity, smoking status, education, hsCRP, ALT and GGT. Elevated TSAT (≥45% versus <45%) was associated with a lower risk of T2D in women [0.68 (0.54; 0.86)] but was not statistically significantly associated in men [0.90 (0.75; 1.08)]. Serum iron was not associated with T2D. The association of ferritin with T2D was stronger among leaner individuals (pinteraction<0.01). Conclusions The pattern of association of TSAT and transferrin with T2D suggests that the underlying relationship between iron stores and T2D is more complex than the simple link suggested by the association of ferritin with T2D. PMID:26861925

  11. High-Resolution Diffusion Tensor Spinal Cord MRI Measures as Biomarkers of Disability Progression in a Rodent Model of Progressive Multiple Sclerosis

    PubMed Central

    Gilli, Francesca; Chen, Xi; Pachner, Andrew R.; Gimi, Barjor

    2016-01-01

    Disease in the spinal cord is a major component of disability in multiple sclerosis, yet current techniques of imaging spinal cord injury are insensitive and nonspecific. This study seeks to remove this major impediment to research in multiple sclerosis and other spinal cord diseases by identifying reliable biomarkers of disability progression using diffusion tensor imaging (DTI), a magnetic resonance imaging technique, to evaluate the spinal cord in a model of multiple sclerosis, i.e. the Theiler’s Murine Encephalitis Virus-Induced Demyelinating Disease (TMEV-IDD). Mice with TMEV-IDD with varying levels of clinical disease were imaged using a 9.4T small animal MRI scanner. Axial diffusivity, radial diffusivity, and fractional anisotropy were calculated. Disability was assessed periodically using Rotarod assay and data were expressed as a neurological function index. Correlation was performed between DTI measurements and disability scores. TMEV-IDD mice displayed significant increased neurological deficits over time when compared with controls (p<0.0001). Concurrently, the values of fractional anisotropy and axial diffusivity were both decreased compared to controls (both p<0.0001), while radial diffusivity was increased (p<0.0001). Overall, fractional anisotropy changes were larger in white matter than in grey matter and differences were more pronounced in the ventral region. Lower disability scores were associated with decreased fractional anisotropy values measured in the ventral (r = 0.68; p<0.0001) and ventral-lateral (r = 0.70; p<0.0001) regions of the white matter. These data demonstrate that DTI measures of the spinal cord contribute to strengthening the association between neuroradiological markers and clinical disability, and support the use of DTI measures in spinal cord imaging in MS patients. PMID:27467829

  12. Cytokines for monitoring anti-tuberculous therapy: A systematic review.

    PubMed

    Clifford, Vanessa; Zufferey, Christel; Street, Alan; Denholm, Justin; Tebruegge, Marc; Curtis, Nigel

    2015-05-01

    The ability to monitor response to therapy for tuberculosis (TB) and confirm adequate treatment would be a major advance. The low reversion rate of interferon-gamma based assays means that they are unlikely to be useful for monitoring therapy. Several exploratory studies have evaluated the diagnostic potential of cytokine biomarkers other than interferon-gamma for monitoring anti-tuberculous therapy. A systematic review of these studies was performed to identify the most promising candidate biomarkers. TNF-α, IL-2, IL-6, IL-10 and IL-12 were the most extensively investigated cytokines. There was significant heterogeneity between studies in relation to study design and laboratory methodology, complicating direct comparisons. There was marked variation between studies in the observed changes during treatment for many of the biomarkers. Further longitudinal studies in sufficiently large patient cohorts with rigorous methodology are needed to determine the true potential of individual cytokine biomarkers, or combinations, for monitoring TB treatment.

  13. Novel Approaches to Detect Serum Biomarkers for Clinical Response to Interferon-β Treatment in Multiple Sclerosis

    PubMed Central

    Gandhi, Kaushal S.; McKay, Fiona C.; Diefenbach, Eve; Crossett, Ben; Schibeci, Stephen D.; Heard, Robert N.; Stewart, Graeme J.; Booth, David R.; Arthur, Jonathan W.

    2010-01-01

    Interferon beta (IFNβ) is the most common immunomodulatory treatment for relapsing-remitting multiple sclerosis (RRMS). However, some patients fail to respond to treatment. In this study, we identified putative clinical response markers in the serum and plasma of people with multiple sclerosis (MS) treated with IFNβ. In a discovery-driven approach, we use 2D-difference gel electrophoresis (DIGE) to identify putative clinical response markers and apply power calculations to identify the sample size required to further validate those markers. In the process we have optimized a DIGE protocol for plasma to obtain cost effective and high resolution gels for effective spot comparison. APOA1, A2M, and FIBB were identified as putative clinical response markers. Power calculations showed that the current DIGE experiment requires a minimum of 10 samples from each group to be confident of 1.5 fold difference at the p<0.05 significance level. In a complementary targeted approach, Cytometric Beadarray (CBA) analysis showed no significant difference in the serum concentration of IL-6, IL-8, MIG, Eotaxin, IP-10, MCP-1, and MIP-1α, between clinical responders and non-responders, despite the association of these proteins with IFNβ treatment in MS. PMID:20463963

  14. Novel approaches to detect serum biomarkers for clinical response to interferon-beta treatment in multiple sclerosis.

    PubMed

    Gandhi, Kaushal S; McKay, Fiona C; Diefenbach, Eve; Crossett, Ben; Schibeci, Stephen D; Heard, Robert N; Stewart, Graeme J; Booth, David R; Arthur, Jonathan W

    2010-05-05

    Interferon beta (IFNbeta) is the most common immunomodulatory treatment for relapsing-remitting multiple sclerosis (RRMS). However, some patients fail to respond to treatment. In this study, we identified putative clinical response markers in the serum and plasma of people with multiple sclerosis (MS) treated with IFNbeta. In a discovery-driven approach, we use 2D-difference gel electrophoresis (DIGE) to identify putative clinical response markers and apply power calculations to identify the sample size required to further validate those markers. In the process we have optimized a DIGE protocol for plasma to obtain cost effective and high resolution gels for effective spot comparison. APOA1, A2M, and FIBB were identified as putative clinical response markers. Power calculations showed that the current DIGE experiment requires a minimum of 10 samples from each group to be confident of 1.5 fold difference at the p<0.05 significance level. In a complementary targeted approach, Cytometric Beadarray (CBA) analysis showed no significant difference in the serum concentration of IL-6, IL-8, MIG, Eotaxin, IP-10, MCP-1, and MIP-1alpha, between clinical responders and non-responders, despite the association of these proteins with IFNbeta treatment in MS.

  15. Biomarkers for Heart Failure in Asia.

    PubMed

    Richards, Arthur Mark

    2015-10-01

    Contributions from the Asian biomedical community to knowledge of biomarkers in heart failure have grown rapidly since 2000. Japan has made world-leading contributions in the discovery and application of cardiac natriuretic peptides as biomarkers in heart failure, but there has been rapid growth in reports from China. Contributions also come from Taiwan, South Korea, Singapore, and Hong Kong. Centers in Asia have established clinical cohorts providing powerful platforms for the discovery and validation of biomarkers in heart failure. This century, Asian enquiry into biomarkers in heart failure will include peptides, cytokines, metabolites, nucleic acids, and other analytes.

  16. Plasma Biomarker Profiles Differ Depending on Breast Cancer Subtype but RANTES is Consistently Increased

    SciTech Connect

    Gonzales, Rachel M.; Daly, Don S.; Tan, Ruimin; Marks, Jeffrey R.; Zangar, Richard C.

    2011-07-01

    Background: Current biomarkers for breast cancer have little potential for detection. We determined if breast cancer subtypes influence circulating protein biomarkers. Methods: A sandwich-ELISA microarray platform was used to evaluate 23 candidate biomarkers in plasma samples that were obtained from subjects with either benign breast disease or invasive breast cancer. All plasma samples were collected at the time of biopsy, after a referral due to a suspicious screen (e.g., mammography). Cancer samples were evaluated based on breast cancer subtypes, as defined by the HER2 and estrogen receptor statuses. Results: Ten proteins were statistically altered in at least one breast cancer subtype, including four epidermal growth factor receptor ligands, two matrix metalloproteases, two cytokines, and two angiogenic factors. Only one cytokine, RANTES, was significantly increased (P<0.01 for each analysis) in all four subtypes, with areas under receiver operating characteristic curves (AUC) that ranged from 0.76 to 0.82, depending on cancer subtype. The best AUC values were observed for analyses that combined data from multiple biomarkers, with values ranging from 0.70 to 0.99, depending on the cancer subtype. Although the results for RANTES are consistent with previous publications, the multi-assay results need to be validated in independent sample sets. Conclusions: Different breast cancer subtypes produce distinct biomarker profiles, and circulating protein biomarkers have potential to differentiate between true and false positive screens for breast cancer. Impact: Subtype-specific biomarker panels may be useful for detecting breast cancer or as an adjunct assay to improve the accuracy of current screening methods.

  17. Assessment of intracellular cytokines and regulatory cells in patients with autoimmune diseases and primary immunodeficiencies - novel tool for diagnostics and patient follow-up.

    PubMed

    Osnes, Liv T; Nakken, Britt; Bodolay, Edit; Szodoray, Peter

    2013-08-01

    Serum and intracytoplasmic cytokines are mandatory in host defense against microbes, but also play a pivotal role in the pathogenesis of autoimmune diseases by initiating and perpetuating various cellular and humoral autoimmune processes. The intricate interplay and fine balance of pro- and anti-inflammatory processes drive, whether inflammation and eventually organ damage will occur, or the inflammatory cascade quenches. In the early and late, as well as inactive and active stages of autoimmune diseases, different cellular and molecular patterns can dominate in these patients. However, the simultaneous assessment of pro- and anti-inflammatory biomarkers aids to define the immunological state of a patient. A group of the most useful inflammatory biomarkers are cytokines, and with increasing knowledge during the last decade their role have been well-defined in patients with autoimmune diseases and immunodeficiencies. Multiple pathological processes drive the development of autoimmunity and immunodeficiencies, most of which involve quantitative and qualitative disturbances in regulatory cells, cytokine synthesis and signaling pathways. The assessment of these biomarkers does not aid only in the mechanistic description of autoimmune diseases and immunodeficiencies, but further helps to subcategorize diseases and to evaluate therapy responses. Here, we provide an overview, how monitoring of cytokines and regulatory cells aid in the diagnosis and follow-up of patients with autoimmune diseases and immunodeficiencies furthermore, we pinpoint novel cellular and molecular diagnostic possibilities in these diseases.

  18. An in vivo assay performed using multiple biomarkers related to testosterone synthesis and conversion for assessing the androgenic potency of refuse leachate.

    PubMed

    Gong, Yufeng; Tian, Hua; Dong, Yifei; Zhang, Xiaona; Wang, Wei; Ru, Shaoguo

    2017-01-01

    Refuse leachate is likely an important source of androgens. However, common in vitro bioassays underestimate the potential androgenic activity of leachate, owing to non-receptor-mediated mechanisms that modify the balance of sex hormones and promote the accumulation of endogenous androgens. This study aimed to develop an in vivo assay by using multiple biomarkers related to testosterone synthesis and conversion for assessing the potential androgenic activity of refuse leachate sampled from a municipal solid waste treatment plant in Qingdao, China. The results indicated that exposure to leachate increased the levels of testosterone and luteinizing hormone, but decreased those of 17β-estradiol in both male and female goldfish (Carassius auratus), suggesting a potential androgenic activity. Further, Leydig cell hyperplasia and decreased gonadal P450 aromatase mRNA levels were observed; these alterations might promote the biosynthesis of testosterone and hinder the conversion of testosterone to 17β-estradiol, which in turn enhance testosterone accumulation. Exposure to leachate also resulted in reproductive impairments, including decreased gonadosomatic index and plasma vitellogenin levels of female goldfish, as well as decreased testicular enzyme activities in male goldfish. The integrated use of biochemical, molecular, and histological markers not only improved our understanding of the androgenic effects of leachate but also verified the reliability and validity of the results. Therefore, the in vivo bioassay described in this study might allow the investigation of the androgenic effects of other complex contaminant mixtures in the future.

  19. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  20. IKAROS expression in distinct bone marrow cell populations as a candidate biomarker for outcome with lenalidomide-dexamethasone therapy in multiple myeloma.

    PubMed

    Bolomsky, Arnold; Hübl, Wolfgang; Spada, Stefano; Müldür, Ercan; Schlangen, Karin; Heintel, Daniel; Rocci, Alberto; Weißmann, Adalbert; Fritz, Veronique; Willheim, Martin; Zojer, Niklas; Palumbo, Antonio; Ludwig, Heinz

    2017-03-01

    Immunomodulatory drugs (IMiDs) are a cornerstone in the treatment of multiple myeloma (MM), but specific markers to predict outcome are still missing. Recent work pointed to a prognostic role for IMiD target genes (e.g. CRBN). Moreover, indirect activity of IMiDs on immune cells correlated with outcome, raising the possibility that cell populations in the bone marrow (BM) microenvironment could serve as biomarkers. We therefore analysed gene expression levels of six IMiD target genes in whole BM samples of 44 myeloma patients treated with lenalidomide-dexamethasone. Expression of CRBN (R = 0.30, P = .05), IKZF1 (R = 0.31, P = .04), IRF4 (R = 0.38, P = .01), MCT-1 (R = 0.30, P = .05), and CD147 (R = 0.38, P = .01), but not IKZF3 (R = -0.15, P = .34), was significantly associated with response. Interestingly, IKZF1 expression was elevated in BM environmental cells and thus selected for further investigation by multicolor flow cytometry. High IKAROS protein levels in total BM mononuclear cells (median OS 83.4 vs. 32.2 months, P = .02), CD19(+) B cells (median OS 71.1 vs. 32.2 months, P = .05), CD3(+) CD8(+) T cells (median OS 83.4 vs 19.0 months, P = .008) as well as monocytes (median OS 53.9 vs 18.0 months, P = .009) were associated with superior overall survival (OS). In contrast, IKAROS protein expression in MM cells was not predictive for OS. Our data therefore corroborate the central role of immune cells for the clinical activity of IMiDs and built the groundwork for prospective analysis of IKAROS protein levels in distinct cell populations as a potential biomarker for IMiD based therapies.

  1. Th1 cytokine-based immunotherapy for cancer.

    PubMed

    Xu, Hong-Mei

    2014-10-01

    Cytokine-based immunotherapy is executed by harnessing cytokines to activate the immune system to suppress tumors. Th1-type cytokines including IL-1, IL-2, IL-12 and granulocyte-macrophage colony-stimulating factor are potent stimulators of Th1 differentiation and Th1-based antitumor response. Many preclinical studies demonstrated the antitumor effects of Th1 cytokines but their clinical efficacy is limited. Multiple factors influence the efficacy of immunotherapy for tumors. For instance immunosuppressive cells in the tumor microenvironment can produce inhibitory cytokines which suppress antitumor immune response. Most studies on cytokine immunotherapy focused on how to boost Th1 response; many studies combined cytokine-based therapy with other treatments to reverse immunosuppression in tumor microenvironment. In addition, cytokines have pleiotropic functions and some cytokines show paradoxical activities under different settings. Better understanding the physiological and pathological functions of cytokines helps clinicians to design Th1-based cancer therapy in clinical practice.

  2. Serum cytokine profiling and enrichment analysis reveal the involvement of immunological and inflammatory pathways in stable patients with chronic obstructive pulmonary disease.

    PubMed

    Bade, Geetanjali; Khan, Meraj Alam; Srivastava, Akhilesh Kumar; Khare, Parul; Solaiappan, Krishna Kumar; Guleria, Randeep; Palaniyar, Nades; Talwar, Anjana

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a major global health problem. It results from chronic inflammation and causes irreversible airway damage. Levels of different serum cytokines could be surrogate biomarkers for inflammation and lung function in COPD. We aimed to determine the serum levels of different biomarkers in COPD patients, the association between cytokine levels and various prognostic parameters, and the key pathways/networks involved in stable COPD. In this study, serum levels of 48 cytokines were examined by multiplex assays in 30 subjects (control, n=9; COPD, n=21). Relationships between serum biomarkers and forced expiratory volume in 1 second, peak oxygen uptake, body mass index, dyspnea score, and smoking were assessed. Enrichment pathways and network analyses were implemented, using a list of cytokines showing differential expression between healthy controls and patients with COPD by Cytoscape and GeneGo Metacore™ software (Thomson-Reuters Corporation, New York, NY, USA). Concentrations of cutaneous T-cell attracting chemokine, eotaxin, hepatocyte growth factor, interleukin 6 (IL-6), IL-16, and stem cell factor are significantly higher in COPD patients compared with in control patients. Notably, this study identifies stem cell factor as a biomarker for COPD. Multiple regression analysis predicts that cutaneous T-cell-attracting chemokine, eotaxin, IL-6, and stem cell factor are inversely associated with forced expiratory volume in 1 second and peak oxygen uptake change, whereas smoking is related to eotaxin and hepatocyte growth factor changes. Enrichment pathways and network analyses reveal the potential involvement of specific inflammatory and immune process pathways in COPD. Identified network interaction and regulation of different cytokines would pave the way for deeper insight into mechanisms of the disease process.

  3. Identification of Novel Inflammatory Cytokines and Contribution of Keratinocyte-Derived Chemokine to Inflammation in Response to Vibrio vulnificus Infection in Mice.

    PubMed

    Liu, Xiao-Fei; Wu, Jing; Wang, Ming-Yi; Chen, Ying-Jian; Cao, Yuan; Hu, Cheng-Jin

    2015-10-01

    Currently, only tumor necrosis factor alpha (TNF-α) and interleukin family cytokines have been found to be elicited in Vibrio vulnificus (V. vulnificus)-infected animal models and humans. However, multiple other cytokines are also involved in the immune and inflammatory responses to foreign microorganism infection. Antibody array technology, unlike traditional enzyme-linked immunosorbent assay (ELISA), is able to detect multiple cytokines at one time. Therefore, in this study, we examined the proinflammatory cytokine profile in the serum and liver homogenate samples of bacterial-infected mice using antibody array technology. We identified nine novel cytokines in response to V. vulnificus infection in mice. We found that keratinocyte-derived chemokine (KC) was the most elevated cytokine and demonstrated that KC played a very important role in the V. vulnificus infection-elicited inflammatory response in mice, as evidenced by the fact that the blocking of KC by anti-KC antibody reduced hepatic injury in vivo and that KC induced by V. vulnificus infection in AML-12 cells chemoattracted neutrophils. Our findings implicate that KC may serve as a novel diagnostic biomarker and a possible therapeutic target for V. vulnificus infection.

  4. Proteomic-Based Approaches for the Study of Cytokines in Lung Cancer.

    PubMed

    Marrugal, Ángela; Ojeda, Laura; Paz-Ares, Luis; Molina-Pinelo, Sonia; Ferrer, Irene

    2016-01-01

    Proteomic techniques are currently used to understand the biology of different human diseases, including studies of the cell signaling pathways implicated in cancer progression, which is important in knowing the roles of different proteins in tumor development. Due to its poor prognosis, proteomic approaches are focused on the identification of new biomarkers for the early diagnosis, prognosis, and targeted treatment of lung cancer. Cytokines are proteins involved in inflammatory processes and have been proposed as lung cancer biomarkers and therapeutic targets because it has been reported that some cytokines play important roles in tumor development, invasion, and metastasis. In this review, we aim to summarize the different proteomic techniques used to discover new lung cancer biomarkers and therapeutic targets. Several cytokines have been identified as important players in lung cancer using these techniques. We underline the most important cytokines that are useful as biomarkers and therapeutic targets. We also summarize some of the therapeutic strategies targeted for these cytokines in lung cancer.

  5. [Protein biomarker measurement and simple/rapid diagnostics with supersensitive and multiplex assay, MUSTag technology].

    PubMed

    Shibasaki, Futoshi; Morizane, Yoshihito; Makisaka, Noriko

    2009-11-01

    Recently, we face the rapid progression of an aging population, and so the importance of preventive medicine is growing. We would all like to pursue a healthy life during old age through effective treatment on the basis of the early detection of diseases. In this situation, we have developed MUSTag (Multiple Simultaneous Tag) assay technology through an innovative modification of the immuno-PCR method for the super-sensitive and multiplex detection of target biomarkers. In MUSTag technology, each different oligo-tag simultaneously detects multiplex protein targets with extremely high-level sensitivity (more than 10 fg(10(-15) g)/ml) in a dose-dependent manner by qRT-PCR (maximum: 3 plexes). Herein we report our recent results of multiple cytokine assays or disease-specific biomarker assays using MUSTag technology, and, further, clinical results from patients with cancer, ischemic brain, or heart attack, who need a prompt and predictive diagnosis for adequate treatment.

  6. Direct Write Protein Patterns for Multiplexed Cytokine Detection From Live Cells Using Electron Beam Lithography

    PubMed Central

    Lau, Uland Y.; Saxer, Sina S.; Lee, Juneyoung; Bat, Erhan; Maynard, Heather D.

    2016-01-01

    Simultaneous detection of multiple biomarkers, such as extracellular signaling molecules, is a critical aspect in disease profiling and diagnostics. Precise positioning of antibodies on surfaces, especially at the micro- and nano- scale, is important for the improvement of assays, biosensors, and diagnostics on the molecular level, and therefore, the pursuit of device miniaturization for parallel, fast, low-volume assays is a continuing challenge. Here, we describe a multiplexed cytokine immunoassay utilizing electron beam lithography and a trehalose glycopolymer as a resist for the direct writing of antibodies on silicon substrates allowing for micro- and nano-scale precision of protein immobilization. Specifically, anti-interleukin 6 (IL-6) and anti-tumor necrosis factor alpha (TNFα) antibodies were directly patterned. Retention of the specific binding properties of the patterned antibodies was shown by the capture of secreted cytokines from stimulated RAW 264.7 macrophages. A sandwich immunoassay was employed using gold nanoparticles and enhancement with silver for the detection and visualization of bound cytokines to the patterns by localized surface plasmon resonance detected with dark field microscopy. Multiplexing with both IL-6 and TNFα on a single chip was also successfully demonstrated with high specificity and in relevant cell culture conditions and at different times after cell stimulation. The direct fabrication of capture antibody patterns for cytokine detection described here could be useful for biosensing applications. PMID:26679368

  7. Current status and challenges of cytokine pharmacology

    PubMed Central

    Zídek, Z; Anzenbacher, P; Kmoníčková, E

    2009-01-01

    The major concern of pharmacology about cytokines has originated from plentiful data showing association between gross changes in their production and pathophysiological processes. Despite the enigmatic role of cytokines in diseases, a number of them have become a subject of cytokine and anti-cytokine immunotherapies. Production of cytokines can be influenced by many endogenous and exogenous stimuli including drugs. Cells of the immune system, such as macrophages and lymphocytes, are richly endowed with receptors for the mediators of physiological functions, such as biogenic amines, adenosine, prostanoids, steroids, etc. Drugs, agonists or antagonists of these receptors can directly or indirectly up- and down-regulate secretion of cytokines and expression of cytokine receptors. Vice versa, cytokines interfere with drug pharmacokinetics and pharmacodynamics through the interactions with cytochrome P450 and multiple drug resistance proteins. The aim of the review is to encourage more intensive studies in these fields of cytokine pharmacology. It also outlines major areas of searching promising candidates for immunotherapeutic interventions. PMID:19371342

  8. Cytokines in Drosophila immunity.

    PubMed

    Vanha-Aho, Leena-Maija; Valanne, Susanna; Rämet, Mika

    2016-02-01

    Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity.

  9. [Interleukins network in rheumatoid arthritis pathophysiology: beyond proinflammatory cytokines].

    PubMed

    Sánchez-Ramón, Silvia; López-Longo, Francisco Javier; Carreño, Luis

    2011-03-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by synovitis and progressive destruction of the joint cartilage and underlying bone, together with diverse extra-articular manifestations. Cytokines act as soluble effector mediators of the inflammatory process. Therapeutic neutralization with monoclonal antibodies against the pro-inflammatory cytokines TNF-alpha and interleukin 1 (IL-1) has shown a clear efficacy on inflammation and clinical manifestations of RA, although a percentage of patients do not respond. This review covers new relevant cytokines in the RA physiopathology and potential biomarkers of inflammation. The current challenge is to develop biomarkers that enable an earlier diagnosis, as well as prognostic markers and new therapeutic candidates. Combined administration of several of these cytokines could eventually address a personalized treatment approach for each patient.

  10. Cytokines as biochemical markers for knee osteoarthritis

    PubMed Central

    Mabey, Thomas; Honsawek, Sittisak

    2015-01-01

    Osteoarthritis (OA) is a debilitating degenerative joint disease particularly affecting weightbearing joints within the body, principally the hips and knees. Current radiographic techniques are insufficient to show biochemical changes within joint tissue which can occur many years before symptoms become apparent. The need for better diagnostic and prognostic tools is heightened with the prevalence of OA set to increase in aging and obese populations. As inflammation is increasingly being considered an important part of OAs pathophysiology, cytokines are being assessed as possible candidates for biochemical markers. Cytokines, both pro- and anti-inflammatory, as well as angiogenic and chemotactic, have in recent years been studied for relevant characteristics. Biochemical markers show promise in determination of the severity of disease in addition to monitoring of the efficacy and safety of disease-modifying OA drugs, with the potential to act as diagnostic and prognostic tools. Currently, the diagnostic power of interleukin (IL)-6 and the relationship to disease burden of IL-1β, IL-15, tumor necrosis factor-α, and vascular endothelial growth factor make these the best candidates for assessment. Grouping appropriate cytokine markers together and assessing them collectively alongside other bone and cartilage degradation products will yield a more statistically powerful tool in research and clinical applications, and additionally aid in distinguishing between OA and a number of other diseases in which cytokines are known to have an involvement. Further large scale studies are needed to assess the validity and efficacy of current biomarkers, and to discover other potential biomarker candidates. PMID:25621214

  11. [Diagnosis of acute heart failure and relevance of biomarkers in elderly patients].

    PubMed

    Ruiz Ortega, Raúl Antonio; Manzano, Luis; Montero-Pérez-Barquero, Manuel

    2014-03-01

    Diagnosis of acute heart failure (HF) is difficult in elderly patients with multiple comorbidities. Risk scales and classification criteria based exclusively on clinical manifestations, such as the Framingham scales, lack sufficient specificity. In addition to clinical manifestations, diagnosis should be based on two key factors: natriuretic peptides and echocardiographic study. When there is clinical suspicion of acute HF, a normal natriuretic peptide level will rule out this process. When a consistent clinical suspicion is present, an echocardiographic study should also be performed. Diagnosis of HF with preserved ejection fraction (HF/pEF) requires detection of an enlarged left atrium or the presence of parameters of diastolic dysfunction. Elevation of cardiac biomarkers seems to be due to myocardial injury and the compensatory mechanisms of the body against this injury (hormone and inflammatory response and repair mechanisms). Elevation of markers of cardiac damage (troponins and natriuretic peptides) have been shown to be useful both in the diagnosis of acute HF and in prediction of outcome. MMP-2 could be useful in the diagnosis of HF/pEF. In addition to biomarkers with diagnostic value, other biomarkers are helpful in prognosis in the acute phase of HF, such as biomarkers of renal failure (eGFR, cystatin and urea), inflammation (cytokines and CRP), and the cell regeneration marker, galectin-3. A promising idea that is under investigation is the use of panels of biomarkers, which could allow more accurate diagnosis and prognosis of acute HF.

  12. Suppression of Canine Dendritic Cell Activation/Maturation and Inflammatory Cytokine Release by Mesenchymal Stem Cells Occurs Through Multiple Distinct Biochemical Pathways.

    PubMed

    Wheat, William H; Chow, Lyndah; Kurihara, Jade N; Regan, Daniel P; Coy, Jonathan W; Webb, Tracy L; Dow, Steven W

    2017-02-15

    Mesenchymal stem cells (MSC) represent a readily accessible source of cells with potent immune modulatory activity. MSC can suppress ongoing inflammatory responses by suppressing T cell function, while fewer studies have examined the impact of MSC on dendritic cell (DC) function. The dog spontaneous disease model represents an important animal model with which to evaluate the safety and effectiveness of cellular therapy with MSC. This study evaluated the effects of canine MSC on the activation and maturation of canine monocyte-derived DC, as well as mechanisms underlying these effects. Adipose-derived canine MSC were cocultured with canine DC, and the MSC effects on DC maturation and activation were assessed by flow cytometry, cytokine ELISA, and confocal microscopy. We found that canine MSC significantly suppressed lipopolysaccharide (LPS)-stimulated upregulation of DC activation markers such as major histocompatibility class II (MHCII), CD86, and CD40. Furthermore, pretreatment of MSC with interferon gamma (IFNγ) augmented this suppressive activity. IFNγ-activated MSC also significantly reduced LPS-elicited DC secretion of tumor necrosis factor alpha without reducing secretion of interleukin-10. The suppressive effect of IFNγ-treated MSC on LPS-induced DC activation was mediated by soluble factors secreted by both MSC and DC. Pathways of DC functional suppression included programmed death ligand-1 expression and secretion of nitrous oxide, prostaglandin E2, and adenosine by activated MSC. Coculture of DC with IFNγ-treated MSC maintained DC in an immature state and prolonged DC antigen uptake during LPS maturation stimulus. Taken together, canine MSC are capable of potently suppressing DC function in a potentially inflammatory microenvironment through several separate immunological pathways and confirm the potential for immune therapy with MSC in canine immune-mediated disease models.

  13. Intracellular Cytokine Staining and Flow Cytometry: Considerations for Application in Clinical Trials of Novel Tuberculosis Vaccines.

    PubMed

    Smith, Steven G; Smits, Kaatje; Joosten, Simone A; van Meijgaarden, Krista E; Satti, Iman; Fletcher, Helen A; Caccamo, Nadia; Dieli, Francesco; Mascart, Francoise; McShane, Helen; Dockrell, Hazel M; Ottenhoff, Tom H M

    2015-01-01

    Intracellular cytokine staining combined with flow cytometry is one of a number of assays designed to assess T-cell immune responses. It has the specific advantage of enabling the simultaneous assessment of multiple phenotypic, differentiation and functional parameters pertaining to responding T-cells, most notably, the expression of multiple effector cytokines. These attributes make the technique particularly suitable for the assessment of T-cell immune responses induced by novel tuberculosis vaccines in clinical trials. However, depending upon the particular nature of a given vaccine and trial setting, there are approaches that may be taken at different stages of the assay that are more suitable than other alternatives. In this paper, the Tuberculosis Vaccine Initiative (TBVI) TB Biomarker Working group reports on efforts to assess the conditions that will determine when particular assay approaches should be employed. We have found that choices relating to the use of fresh whole blood or peripheral blood mononuclear cells (PBMC) and frozen PBMC; use of serum-containing or serum-free medium; length of stimulation period and use of co-stimulatory antibodies can all affect the sensitivity of intracellular cytokine assays. In the case of sample material, frozen PBMC, despite some loss of sensitivity, may be more advantageous for batch analysis. We also recommend that for multi-site studies, common antibody panels, gating strategies and analysis approaches should be employed for better comparability.

  14. Cytokines in sleep regulation.

    PubMed

    Krueger, J M; Takahashi, S; Kapás, L; Bredow, S; Roky, R; Fang, J; Floyd, R; Renegar, K B; Guha-Thakurta, N; Novitsky, S

    1995-01-01

    The central thesis of this essay is that the cytokine network in brain is a key element in the humoral regulation of sleep responses to infection and in the physiological regulation of sleep. We hypothesize that many cytokines, their cellular receptors, soluble receptors, and endogenous antagonists are involved in physiological sleep regulation. The expressions of some cytokines are greatly amplified by microbial challenge. This excess cytokine production during infection induces sleep responses. The excessive sleep and wakefulness that occur at different times during the course of the infectious process results from dynamic changes in various cytokines that occur during the host's response to infectious challenge. Removal of any one somnogenic cytokine inhibits normal sleep, alters the cytokine network by changing the cytokine mix, but does not completely disrupt sleep due to the redundant nature of the cytokine network. The cytokine network operates in a paracrine/autocrine fashion and is responsive to neuronal use. Finally, cytokines elicit their somnogenic actions via endocrine and neurotransmitter systems as well as having direct effects neurons and glia. Evidence in support of these postulates is reviewed in this essay.

  15. Temporal trends in the inflammatory cytokine profile of human breastmilk.

    PubMed

    Chollet-Hinton, Lynn S; Stuebe, Alison M; Casbas-Hernandez, Patricia; Chetwynd, Ellen; Troester, Melissa A

    2014-12-01

    A longer lifetime duration of breastfeeding may decrease the risk of breast cancer by reducing breast inflammation and mitigating inflammatory cytokine expression during postlactational involution. However, little is known about how the inflammatory cytokine profile in human breastmilk changes over time. To study temporal trends in breastmilk cytokine expression, we measured 80 human cytokines in the whey fraction of breastmilk samples from 15 mothers at 1, 4, 8, and 12 weeks postpartum. We used mixed models to identify temporal changes in cytokine expression and investigated parity status (multiparous vs. primiparous) as a potential confounder. Nine cytokines (monocyte chemoattractant protein-1, epithelial-derived neutrophil-activating protein-78, hepatocyte growth factor, insulin-like growth factor-binding protein-1, interleukin-16, interleukin-8, macrophage colony-stimulating factor, osteoprotegerin, and tissue inhibitor of metallopeptidase-2) had significantly decreased expression with increasing breastfeeding duration; all nine have known roles in breast involution, inflammation, and cancer and may serve as biomarkers of changing breast microenvironment. No cytokine significantly increased in level over the study period. Total protein concentration significantly decreased over time (p<0.0001), which may mediate the association between length of breastfeeding and inflammatory cytokine expression. Parity status did not confound temporal trends, but levels of several cytokines were significantly higher among multiparous versus primiparous women. Our results suggest that inflammatory cytokine expression during lactation is dynamic, and expressed milk may provide a noninvasive window into the extensive biological changes that occur in the postpartum breast.

  16. Drug targets in the cytokine universe for autoimmune disease.

    PubMed

    Liu, Xuebin; Fang, Lei; Guo, Taylor B; Mei, Hongkang; Zhang, Jingwu Z

    2013-03-01

    In autoimmune disease, a network of diverse cytokines is produced in association with disease susceptibility to constitute the 'cytokine milieu' that drives chronic inflammation. It remains elusive how cytokines interact in such a complex network to sustain inflammation in autoimmune disease. This has presented huge challenges for successful drug discovery because it has been difficult to predict how individual cytokine-targeted therapy would work. Here, we combine the principles of Chinese Taoism philosophy and modern bioinformatics tools to dissect multiple layers of arbitrary cytokine interactions into discernible interfaces and connectivity maps to predict movements in the cytokine network. The key principles presented here have important implications in our understanding of cytokine interactions and development of effective cytokine-targeted therapies for autoimmune disorders.

  17. Inflammatory biomarkers for AMD.

    PubMed

    Stanton, Chloe M; Wright, Alan F

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness worldwide, affecting an estimated 50 million individuals aged over 65 years.Environmental and genetic risk-factors implicate chronic inflammation in the etiology of AMD, contributing to the formation of drusen, retinal pigment epithelial cell dysfunction and photoreceptor cell death. Consistent with a role for chronic inflammation in AMD pathogenesis, several inflammatory mediators, including complement components, chemokines and cytokines, are elevated at both the local and systemic levels in AMD patients. These mediators have diverse roles in the alternative complement pathway, including recruitment of inflammatory cells, activation of the inflammasome, promotion of neovascularisation and in the resolution of inflammation. The utility of inflammatory biomarkers in assessing individual risk and progression of the disease is controversial. However, understanding the role of these inflammatory mediators in AMD onset, progression and response to treatment may increase our knowledge of disease pathogenesis and provide novel therapeutic options in the future.

  18. Biomarkers in pediatrics: children as biomarker orphans.

    PubMed

    Savage, William J; Everett, Allen D

    2010-12-01

    Biomarkers have enormous potential to improve patient care by establishing tests of diagnosis, prognosis, and treatment effects. Successfully translating a biomarker from discovery to clinical application demands high-quality discovery research and high-quality clinical studies for biomarker validation; however, there are additional challenges that face biomarker research in pediatrics. There are also additional characteristics of pediatric medicine that make biomarker research especially needed. This review focuses on the fundamentals of biomarkers, the additional considerations needed for applying biomarker research to children, and recommendations for advancing pediatric biomarker research.

  19. Capparis ovata treatment suppresses inflammatory cytokine expression and ameliorates experimental allergic encephalomyelitis model of multiple sclerosis in C57BL/6 mice.

    PubMed

    Ozgun-Acar, Ozden; Celik-Turgut, Gurbet; Gazioglu, Isil; Kolak, Ufuk; Ozbal, Seda; Ergur, Bekir U; Arslan, Sevki; Sen, Alaattin; Topcu, Gulacti

    2016-09-15

    Since ancient times, Capparis species have been widely used in traditional medicine to treat various diseases. Our recent investigations have suggested Capparis ovata's potential anti-neuroinflammatory application for the treatment of multiple sclerosis (MS). The present study was designed to precisely determine the underlying mechanism of its anti-neuroinflammatory effect in a mouse model of MS. C. ovata water extract (COWE) was prepared using the plant's fruit, buds, and flower parts (Turkish Patent Institute, PT 2012/04,093). We immunized female C57BL/6J mice with MOG35-55/CFA. COWE was administered at a daily dose of 500mg/kg by oral gavage either from the day of immunization (T1) or at disease onset (T2) for 21days. Gene expression analysis was performed using a Mouse Multiple Sclerosis RT² Profiler PCR Array, and further determinations and validations of the identified genes were performed using qPCR. Whole-genome transcriptome profiling was analyzed using Agilent SurePrint G3 Mouse GE 8X60K microarrays. Immunohistochemical staining was applied to brain sections of the control and treated mice to examine the degree of degeneration. COWE was further fractionated and analyzed phytochemically using the Zivak Tandem Gold Triple Quadrupole LC/MS-MS system. COWE remarkably suppressed the development of EAE in T1, and the disease activity was completely inhibited. In the T2 group, the maximal score was significantly reduced compared with that of the parallel EAE group. The COWE suppression of EAE was associated with a significantly decreased expression of genes that are important in inflammatory signaling, such as TNFα, IL6, NF-κB, CCL5, CXCL9, and CXCK10. On the other hand, the expression of genes involved in myelination/remyelination was significantly increased. Immunohistochemical analysis further supported these effects, showing that the number of infiltrating immune cells was decreased in the brains of COWE-treated animals. In addition, differential

  20. Meeting Report--NASA Radiation Biomarker Workshop

    SciTech Connect

    Straume, Tore; Amundson, Sally A,; Blakely, William F.; Burns, Frederic J.; Chen, Allen; Dainiak, Nicholas; Franklin, Stephen; Leary, Julie A.; Loftus, David J.; Morgan, William F.; Pellmar, Terry C.; Stolc, Viktor; Turteltaub, Kenneth W.; Vaughan, Andrew T.; Vijayakumar, Srinivasan; Wyrobek, Andrew J.

    2008-05-01

    A summary is provided of presentations and discussions from the NASA Radiation Biomarker Workshop held September 27-28, 2007, at NASA Ames Research Center in Mountain View, California. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including for long-duration space travel. Topics discussed include the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage following large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass-spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. Summary conclusions are provided at the end of the report.

  1. Imaging Biomarkers or Biomarker Imaging?

    PubMed Central

    Mitterhauser, Markus; Wadsak, Wolfgang

    2014-01-01

    Since biomarker imaging is traditionally understood as imaging of molecular probes, we highly recommend to avoid any confusion with the previously defined term “imaging biomarkers” and, therefore, only use “molecular probe imaging (MPI)” in that context. Molecular probes (MPs) comprise all kinds of molecules administered to an organism which inherently carry a signalling moiety. This review highlights the basic concepts and differences of molecular probe imaging using specific biomarkers. In particular, PET radiopharmaceuticals are discussed in more detail. Specific radiochemical and radiopharmacological aspects as well as some legal issues are presented. PMID:24967536

  2. Cytokines in psoriasis.

    PubMed

    Baliwag, Jaymie; Barnes, Drew H; Johnston, Andrew

    2015-06-01

    Psoriasis is a common inflammatory skin disease with an incompletely understood etiology. The disease is characterized by red, scaly and well-demarcated skin lesions formed by the hyperproliferation of epidermal keratinocytes. This hyperproliferation is driven by cytokines secreted by activated resident immune cells, an infiltrate of T cells, dendritic cells and cells of the innate immune system, as well as the keratinocytes themselves. Psoriasis has a strong hereditary character and has a complex genetic background. Genome-wide association studies have identified polymorphisms within or near a number of genes encoding cytokines, cytokine receptors or elements of their signal transduction pathways, further implicating these cytokines in the psoriasis pathomechanism. A considerable number of inflammatory cytokines have been shown to be elevated in lesional psoriasis skin, and the serum concentrations of a subset of these also correlate with psoriasis disease severity. The combined effects of the cytokines found in psoriasis lesions likely explain most of the clinical features of psoriasis, such as the hyperproliferation of keratinocytes, increased neovascularization and skin inflammation. Thus, understanding which cytokines play a pivotal role in the disease process can suggest potential therapeutic targets. A number of cytokines have been therapeutically targeted with success, revolutionizing treatment of this disease. Here we review a number of key cytokines implicated in the pathogenesis of psoriasis.

  3. Multiple biomarker responses in Prochilodus lineatus subjected to short-term in situ exposure to streams from agricultural areas in Southern Brazil.

    PubMed

    Vieira, Carlos Eduardo Delfino; Costa, Patrícia Gomes; Lunardelli, Bruna; de Oliveira, Luciana Fernandes; Cabrera, Liziara da Costa; Risso, Wagner Ezequiel; Primel, Ednei Gilberto; Meletti, Paulo César; Fillmann, Gilberto; Martinez, Claudia Bueno dos Reis

    2016-01-15

    In order to assess the quality of streams susceptible to contamination by pesticides we apply biochemical and genotoxic biomarkers in the Neotropical fish Prochilodus lineatus submitted to in situ tests. Fish were caged, for 96 h, in two streams located in areas with intensive use of pesticides, the Apertados (AP) and the Jacutinga (JC), and in a small stream (Godoy stream — GD) found inside a forest fragment adjacent to a State Park. Biochemical parameters, such as biotransformation enzymes 7-ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST), non-protein thiols (NPSH), lipoperoxidation (LPO), protein carbonylation (PCO) and acetylcholinesterase (AChE) were evaluated in various fish organs, as well as genotoxic biomarkers (damage to DNA and occurrence of micronuclei and erythrocyte nuclear abnormalities). Samples of water and sediment were collected for analysis of metals (Cu, Cr, Pb, Ni, Mn, Cd and Zn), organochloride pesticides, and triazine and glyphosate herbicides. We observed an increase in liver GST activity in fish at AP and gill GST activity in fish at JC. An increase in liver LPO was also observed in fish exposed to AP and JC. The same animals also exhibited increased DNA damage and erythrocyte nuclear abnormalities (ENAs) compared to the fish kept in GD. A number of compounds showed concentrations higher than the permitted levels, in particular, dichlorodiphenyltrichloroethane (DDT), its metabolites dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD), hexachlorocyclohexanes (HCH), heptachloride, diclofluanid and aldrins. These pesticides were detected at higher concentrations in water and sediment samples from AP, followed by JC and GD. The Integrated Biomarker Response Index (IBR) indicated that AP and JC (AP: 21.7 > JC: 18.5 > GD: 12.6) have the worst environmental quality. Integrated biomarker analysis revealed that the alterations observed related well with the levels of environmental contaminants

  4. Using exposure biomarkers in children to compare between-child and within-child variance and calculate correlations among siblings for multiple environmental chemicals.

    PubMed

    Sexton, Ken; Ryan, Andrew D

    2012-01-01

    Longitudinal measurements of biomarkers for metals, phthalates, environmental tobacco smoke, organochlorine and organophosphate pesticides, polychlorinated biphenyls, and volatile organic compounds were made in blood and/or urine from a stratified, random sample of more than 100 elementary school-aged children living in an inner-city section of Minneapolis. Repeated measures of 31 exposure biomarkers indicate that between-child variance (B-CV) was greater than within-child variance (W-CV) for 8 compounds, B-CV was a significant proportion of total variance for 9 compounds, and variances were homogeneous for 14 compounds. Among siblings living in the same household, positive correlations were observed for biomarker concentrations of polychlorinated biphenyls, organochlorine pesticides, metals, and volatile organic chemicals in blood, and total cotinine in urine. Biologic markers confirm that children from a low-income, ethnically diverse neighborhood experienced concurrent exposure to a variety of hazardous environmental chemicals during their everyday activities. Future monitoring studies should examine the nature and magnitude of children's cumulative exposure to both chemical and non-chemical stressors, especially in disadvantaged populations.

  5. Integrating multiple fish biomarkers and risk assessment as indicators of metal pollution along the Red Sea coast of Hodeida, Yemen Republic.

    PubMed

    Omar, Wael A; Saleh, Yousef S; Marie, Mohamed-Assem S

    2014-12-01

    The marine environment of the Red Sea coast of Yemen Republic is subjected to increasing anthropogenic activities. The present field study assesses the impacts of metal pollutants on two common marine fish species; Pomadasys hasta and Lutjanus russellii collected from a reference site in comparison to two polluted sites along the Red Sea coast of Hodeida, Yemen Republic. Concentrations of heavy metals (Fe, Cu, Zn, Cd and Pb) in fish vital organs, metal pollution index (MPI), indicative biochemical parameters of liver functions (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) and kidney functions (urea and creatinine) as well as histopathological changes in gills, liver and kidney of both fish species are integrated as biomarkers of metal pollution. These biomarkers showed species-specific and/or site-specific response. The hazard index (HI) was used as an indicator of human health risks associated with fish consumption. The detected low HI values in most cases doesn't neglect the fact that the cumulative risk effects for metals together give an alarming sign and that the health of fish consumers is endangered around polluted sites. The levels of ALT, AST and urea in plasma of both fish species collected from the polluted sites showed significant increase in comparison to those of reference site. Histopathological alterations and evident damage were observed in tissues of fish collected from the polluted sites. The investigated set of biomarkers proved to be efficient and reliable in biomonitoring the pollution status along different pollution gradients.

  6. Oral Palmitoylethanolamide Treatment Is Associated with Reduced Cutaneous Adverse Effects of Interferon-β1a and Circulating Proinflammatory Cytokines in Relapsing-Remitting Multiple Sclerosis.

    PubMed

    Orefice, Nicola S; Alhouayek, Mireille; Carotenuto, Antonio; Montella, Silvana; Barbato, Franscesco; Comelli, Albert; Calignano, Antonio; Muccioli, Giulio G; Orefice, Giuseppe

    2016-04-01

    Palmitoylethanolamide (PEA) is an endogenous lipid mediator known to reduce pain and inflammation. However, only limited clinical studies have evaluated the effects of PEA in neuroinflammatory and neurodegenerative diseases. Multiple sclerosis (MS) is a chronic autoimmune and inflammatory disease of the central nervous system. Although subcutaneous administration of interferon (IFN)-β1a is approved as first-line therapy for the treatment of relapsing-remitting MS (RR-MS), its commonly reported adverse events (AEs) such as pain, myalgia, and erythema at the injection site, deeply affect the quality of life (QoL) of patients with MS. In this randomized, double-blind, placebo-controlled study, we tested the effect of ultramicronized PEA (um-PEA) added to IFN-β1a in the treatment of clinically defined RR-MS. The primary objectives were to estimate whether, with um-PEA treatment, patients with MS perceived an improvement in pain and a decrease of the erythema width at the IFN-β1a injection site in addition to an improvement in their QoL. The secondary objectives were to evaluate the effects of um-PEA on circulating interferon-γ, tumor necrosis factor-α, and interleukin-17 serum levels, N-acylethanolamine plasma levels, Expanded Disability Status Scale (EDSS) progression, and safety and tolerability after 1 year of treatment. Patients with MS receiving um-PEA perceived an improvement in pain sensation without a reduction of the erythema at the injection site. A significant improvement in QoL was observed. No significant difference was reported in EDSS score, and um-PEA was well tolerated. We found a significant increase of palmitoylethanolamide, anandamide and oleoylethanolamide plasma levels, and a significant reduction of interferon-γ, tumor necrosis factor-α, and interleukin-17 serum profile compared with the placebo group. Our results suggest that um-PEA may be considered as an appropriate add-on therapy for the treatment of IFN-β1a-related adverse effects in

  7. Elevated specific peripheral cytokines found in major depressive disorder patients with childhood trauma exposure: a cytokine antibody array analysis.

    PubMed

    Lu, Shaojia; Peng, Hongjun; Wang, Lifeng; Vasish, Seewoobudul; Zhang, Yan; Gao, Weijia; Wu, Weiwei; Liao, Mei; Wang, Mi; Tang, Hao; Li, Wenping; Li, Weihui; Li, Zexuan; Zhou, Jiansong; Zhang, Zhijun; Li, Lingjiang

    2013-10-01

    Taking into consideration the previous evidence of revealing the relationship of early life adversity, major depressive disorder (MDD), and stress-linked immunological changes, we recruited 22 MDD patients with childhood trauma exposures (CTE), 21 MDD patients without CTE, and 22 healthy controls without CTE, and then utilized a novel cytokine antibody array methodology to detect potential biomarkers underlying MDD in 120 peripheral cytokines and to evaluate the effect of CTE on cytokine changes in MDD patients. Although 13 cytokines were identified with highly significant differences in expressions between MDD patients and normal controls, this relationship was significantly attenuated and no longer significant after consideration of the effect of CTE in MDD patients. Depressed individuals with CTE (TD patients) were more likely to have higher peripheral levels of those cytokines. Severity of depression was associated with plasma levels of certain increased cytokines; meanwhile, the increased cytokines led to a proper separation of TD patients from normal controls during clustering analyses. Our research outcomes add great strength to the relationship between depression and cytokine changes and suggest that childhood trauma may play a vital role in the co-appearance of cytokine changes and depression.

  8. Cytokines and chemokines in neuromyelitis optica: pathogenetic and therapeutic implications.

    PubMed

    Uzawa, Akiyuki; Mori, Masahiro; Masahiro, Mori; Kuwabara, Satoshi

    2014-01-01

    Neuromyelitis optica (NMO) is characterized by severe optic neuritis and longitudinally extensive transverse myelitis. The discovery of an NMO-specific autoantibody to the aquaporin-4 (AQP4) water channel has improved knowledge of NMO pathogenesis. Many studies have focused on inflammatory and pathological biomarkers of NMO, including cytokines and chemokines. Increased concentrations of T helper (Th)17- and Th2-related cytokines and chemokines may be essential factors for developing NMO inflammatory lesions. For example, interleukin-6 could play important roles in NMO pathogenesis, as it is involved in the survival of plasmablasts that produce anti-AQP4 antibody in peripheral circulation and in the enhancement of inflammation in the central nervous system. Therefore, assessment of these useful biomarkers may become a supportive criterion for diagnosing NMO. Significant advances in the understanding of NMO pathogenesis will lead to the development of novel treatment strategies. This review focuses on the current advances in NMO immunological research, particularly that of cytokines and chemokines.

  9. Insights into cytokine-receptor interactions from cytokine engineering.

    PubMed

    Spangler, Jamie B; Moraga, Ignacio; Mendoza, Juan L; Garcia, K Christopher

    2015-01-01

    Cytokines exert a vast array of immunoregulatory actions critical to human biology and disease. However, the desired immunotherapeutic effects of native cytokines are often mitigated by toxicity or lack of efficacy, either of which results from cytokine receptor pleiotropy and/or undesired activation of off-target cells. As our understanding of the structural principles of cytokine-receptor interactions has advanced, mechanism-based manipulation of cytokine signaling through protein engineering has become an increasingly feasible and powerful approach. Modified cytokines, both agonists and antagonists, have been engineered with narrowed target cell specificities, and they have also yielded important mechanistic insights into cytokine biology and signaling. Here we review the theory and practice of cytokine engineering and rationalize the mechanisms of several engineered cytokines in the context of structure. We discuss specific examples of how structure-based cytokine engineering has opened new opportunities for cytokines as drugs, with a focus on the immunotherapeutic cytokines interferon, interleukin-2, and interleukin-4.

  10. Measurement of inflammatory biomarkers in synovial tissue extracts by enzyme-linked immunosorbent assay.

    PubMed

    Rosengren, Sanna; Firestein, Gary S; Boyle, David L

    2003-11-01

    We developed methods for measuring inflammatory biomarkers (cytokines, chemokines, and metalloproteinases) in synovial biopsy specimens from patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Soluble extracts of synovial fragments were prepared with mild detergent and analyzed by enzyme-linked immunosorbent assay (ELISA) for interleukin 1beta (IL-1beta), IL-6, IL-8, tumor necrosis factor alpha (TNF-alpha), and matrix metalloproteinase 3. The optimal detergent was 0.1% Igepal CA-630, which interfered minimally with ELISA detection but extracted 80% of IL-6 from synovial tissue. Upon spiking, 81 to 107% of added biomarkers could be recovered. To determine within-tissue variability, multiple biopsy specimens from each RA synovial extract were analyzed individually. A resulting coefficient of variation of 35 to 62% indicated that six biopsy specimens per synovial extract would result in a sampling error of < or = 25%. Preliminary power analysis suggested that 8 to 15 patients per group would suffice to observe a threefold difference before and after treatment in a serial biopsy clinical study. The previously described significant differences in IL-1beta, IL-6, IL-8, and TNF-alpha levels between RA and OA could be detected, thereby validating the use of synovial extracts for biomarker analysis in arthritis. These methods allow monitoring of biomarker protein levels in synovial tissue and could potentially be applied to early-phase clinical trials to provide a preliminary estimate of drug efficacy.

  11. Oxidative stress: Biomarkers and novel therapeutic pathways.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2010-03-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.

  12. OXIDATIVE STRESS: BIOMARKERS AND NOVEL THERAPEUTIC PATHWAYS

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2010-01-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation. PMID:20064603

  13. Use of Lithobates catesbeianus tadpoles in a multiple biomarker approach for the assessment of water quality of the Reconquista River (Argentina).

    PubMed

    Ossana, N A; Castañé, P M; Salibián, A

    2013-10-01

    The water quality of the Reconquista River (Argentina) water was monitored between 2009 and 2010 by means of a multiparametric approach. This periurban river is affected by agricultural, urban, and industrial discharges. Water samples were collected at a dam located in the headwaters and at 18 km downstream (M). Physicochemical profile and two water-quality indices (WQIs) were determined. Laboratory bioassays were performed by exposing Lithobates catesbeianus tadpoles to environmental samples for 96 h and determining the following parameters: (1) brain: acetylcholinesterase (AChE) activity; (2) gill: catalase and glutathione-S-transferase (GST) activities and glutathione (GSH) content; (3) liver: CAT and GST activities, superoxide dismutase, lipid peroxidation, and GSH content; (4) condition factor and hepatosomatic index; and (5) genotoxicity [micronucleus (MN) test in erythrocytes]. Physicochemical profile and WQIs corresponded with extensive pollution in M. Important temporal and spatial variability in biomarkers of tadpoles exposed to samples was found. Multivariate analyses showed that AChE in brain, MN frequency, liver and gill GST activities, and GSH content were key biomarkers.

  14. Recombinant cytokines from plants.

    PubMed

    Sirko, Agnieszka; Vaněk, Tomas; Góra-Sochacka, Anna; Redkiewicz, Patrycja

    2011-01-01

    Plant-based platforms have been successfully applied for the last two decades for the efficient production of pharmaceutical proteins. The number of commercialized products biomanufactured in plants is, however, rather discouraging. Cytokines are small glycosylated polypeptides used in the treatment of cancer, immune disorders and various other related diseases. Because the clinical use of cytokines is limited by high production costs they are good candidates for plant-made pharmaceuticals. Several research groups explored the possibilities of cost-effective production of animal cytokines in plant systems. This review summarizes recent advances in this field.

  15. Inflammation biomarkers in vaginal fluid and preterm delivery

    PubMed Central

    Taylor, Brandie D.; Holzman, Claudia B.; Fichorova, Raina N.; Tian, Yan; Jones, Nicole M.; Fu, Wenjiang; Senagore, Patricia K.

    2013-01-01

    both PTD subtypes. Results were similar when a combination of IL-6 and bacterial vaginosis (BV) was explored. Thus, the use of multiple biomarkers did not detect PTD subtypes with a greater sensitivity than IL-6 alone, and IL-6 is a specific but non-sensitive marker for the detection of spontaneous PTD. LIMITATIONS, REASONS FOR CAUTION Our ability to find small effect size associations between PTD and inflammation biomarkers (OR <2.0) might have been limited by the modest number of less common PTD subtypes in our population (e.g. spontaneous delivery <35 weeks, PTD accompanied by HCA) and by relatively higher variability for some cytokines, for example tumor necrosis factor-α, IL-12p70, IL-10 and granulocyte-macrophage colony-stimulating factor, that are less stable and commonly undetectable or detectable at low levels in human vaginal secretions. WIDER IMPLICATIONS OF THE FINDINGS Larger studies are needed to further explore a role of inflammation biomarkers in combination with other risk factors, including specific BV-associated organisms, for the prediction of PTD subtypes. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Institute of Child Health and Human Development, National Institute of Nursing, March of Dimes Foundation, Thrasher Research Foundation and Centers for Disease Control and Prevention. The authors have no conflicts of interest. PMID:23416276

  16. Cytokines: The Good, the Bad, and the Deadly.

    PubMed

    Ramani, Thulasi; Auletta, Carol S; Weinstock, Daniel; Mounho-Zamora, Barbara; Ryan, Patricia C; Salcedo, Theodora W; Bannish, Gregory

    2015-01-01

    Over the past 30 years, the world of pharmaceutical toxicology has seen an explosion in the area of cytokines. An overview of the many aspects of cytokine safety evaluation currently in progress and evolving strategies for evaluating these important entities was presented at this symposium. Cytokines play a broad role to help the immune system respond to diseases, and drugs which modulate their effect have led to some amazing therapies. Cytokines may be "good" when stimulating the immune system to fight a foreign pathogen or attack tumors. Other "good" cytokine effects include reduction of an immune response, for example interferon β reduction of neuron inflammation in patients with multiple sclerosis. They may be "bad" when their expression causes inflammatory diseases, such as the role of tumor necrosis factor α in rheumatoid arthritis or asthma and Crohn's disease. Therapeutic modulation of cytokine expression can help the "good" cytokines to generate or quench the immune system and block the "bad" cytokines to prevent damaging inflammatory events. However, care must be exercised, as some antibody therapeutics can cause "ugly" cytokine release which can be deadly. Well-designed toxicology studies should incorporate careful assessment of cytokine modulation that will allow effective therapies to treat unmet needs. This symposium discussed lessons learned in cytokine toxicology using case studies and suggested future directions.

  17. Holocene climate changes in the eastern equatorial Pacific from hydrogen isotopes of multiple biomarkers from a Galápagos lake

    NASA Astrophysics Data System (ADS)

    Atwood, A.; Sachs, J. P.

    2012-12-01

    The climate dynamics of the tropical Pacific play a fundamental role in climate variability across the globe. Rainfall patterns in the tropical Pacific are largely governed by the position of the Intertropical Convergence Zone (ITCZ) and the El Niño/Southern Oscillation (ENSO). Robust reconstructions of past changes in these two climate phenomena have been elusive, as few paleoclimate records come from within the core regions of the ITCZ and ENSO but outside the complicating influence of continents. We present a Holocene rainfall record from the Galápagos Islands that is based on paired biomarker records from the sediment of El Junco Lake. Rainfall in this area is highly sensitive to both movements of the ITCZ and ENSO and is little affected by monsoons and other regional climate processes, allowing inference of changes in these large-scale climate phenomena from local rainfall patterns. We distinguish between ITCZ- and ENSO-related rainfall changes through analysis of biomarker distributions and hydrogen isotopes from several types of plants and algae that are thought to grow under differing climate conditions. These biomarker records show significant oscillations between wet and dry conditions throughout the Holocene and no evidence for multi-millennial scale changes in ENSO or the position of the ITCZ. The early Holocene (9 - 7 ka) is characterized by multi-centennial scale fluctuations in the position of the ITCZ and El Niño activity, while the mid-Holocene (6 - 4 ka) is characterized by predominately wetter conditions than modern and intermittent periods of a southward shifted ITCZ and weaker El Niño activity. The largest rainfall changes appear to have occurred over the last millennium even though the primary drivers of Earth's climate, including orbital parameters and continental ice sheet extent, did not change significantly during this time. Changes in the tropical Pacific inferred from our records are concomitant with global-scale changes of the

  18. Biomarkers of Selenium Status

    PubMed Central

    Combs, Gerald F.

    2015-01-01

    The essential trace element, selenium (Se), has multiple biological activities, which depend on the level of Se intake. Relatively low Se intakes determine the expression of selenoenzymes in which it serves as an essential constituent. Higher intakes have been shown to have anti-tumorigenic potential; and very high Se intakes can produce adverse effects. This hierarchy of biological activities calls for biomarkers informative at different levels of Se exposure. Some Se-biomarkers, such as the selenoproteins and particularly GPX3 and SEPP1, provide information about function directly and are of value in identifying nutritional Se deficiency and tracking responses of deficient individuals to Se-treatment. They are useful under conditions of Se intake within the range of regulated selenoprotein expression, e.g., for humans <55 μg/day and for animals <20 μg/kg diet. Other Se-biomarkers provide information indirectly through inferences based on Se levels of foods, tissues, urine or feces. They can indicate the likelihood of deficiency or adverse effects, but they do not provide direct evidence of either condition. Their value is in providing information about Se status over a wide range of Se intake, particularly from food forms. There is need for additional Se biomarkers particularly for assessing Se status in non-deficient individuals for whom the prospects of cancer risk reduction and adverse effects risk are the primary health considerations. This would include determining whether supranutritional intakes of Se may be required for maximal selenoprotein expression in immune surveillance cells. It would also include developing methods to determine low molecular weight Se-metabolites, i.e., selenoamino acids and methylated Se-metabolites, which to date have not been detectable in biological specimens. Recent analytical advances using tandem liquid chromatography-mass spectrometry suggest prospects for detecting these metabolites. PMID:25835046

  19. IL-1β is a key cytokine that induces trypsin upregulation in the influenza virus-cytokine-trypsin cycle.

    PubMed

    Indalao, I L; Sawabuchi, T; Takahashi, E; Kido, H

    2017-01-01

    Severe influenza is characterized by a cytokine storm, and the influenza virus-cytokine-trypsin cycle is one of the important mechanisms of viral multiplication and multiple organ failure. The aim of this study was to define the key cytokine(s) responsible for trypsin upregulation. Mice were infected with influenza virus strain A/Puerto Rico/8/34 (H1N1) or treated individually or with a combination of interleukin-1β, interleukin-6, and tumor necrosis factor α. The levels of these cytokines and trypsin in the lungs were monitored. The neutralizing effects of anti-IL-1β antibodies on cytokine and trypsin expression in human A549 cells and lung inflammation in the infected mice were examined. Infection induced interleukin-1β, interleukin-6, tumor necrosis factor α, and ectopic trypsin in mouse lungs in a dose- and time-dependent manner. Intraperitoneal administration of interleukin-1β combined with other cytokines tended to upregulate trypsin and cytokine expression in the lungs, but the combination without interleukin-1β did not induce trypsin. In contrast, incubation of A549 cells with interleukin-1β alone induced both cytokines and trypsin, and anti-interleukin-1β antibody treatment abrogated these effects. Administration of the antibody in the infected mice reduced lung inflammation area. These findings suggest that IL-1β plays a key role in trypsin upregulation and has a pathological role in multiple organ failure.

  20. Multiplex cytokine analysis of Werner syndrome

    PubMed Central

    Goto, Makoto; Hayata, Koichiro; Chiba, Junji; Matsuura, Masaaki; Iwaki-Egawa, Sachiko; Watanabe, Yasuhiro

    2015-01-01

    Summary We reported a minor inflammation-driven ageing (inflammageing) assessed by highly sensitive CRP (hsCRP) in normal individuals and patients with Werner syndrome (WS), followed by an ageing associated Th2-biased cytokine change in normal ageing in the previous papers. To further study the association of hsCRP and 26 cytokines/chemokines in 35 WS patients, a multiple cytokine array system was used in the same serum samples as were examined for hsCRP. The serum levels of Th2 cytokines (IL-4, IL-6, IL-10, and GM-CSF), Th1 products (IL-2, TNFα, IL-12, and IFNγ) and monocyte/macrophage products (MCP-1, basic FGF and G-CSF) in WS were significantly elevated compared with normal ageing. Elevated hsCRP level in WS was significantly correlated with IL-6, IL-12 and VEGF levels, if age and sex were taken into account. A pro-inflammatory cytokine/chemokine circuit-stimulated immunological shift to Th2 in WS was similar to normal ageing. These cytokine/chemokine changes may induce a systemic chronic inflammation monitored by hsCRP, though these immunological changes in WS were more complicated than normal ageing, possibly due to the WS-specific chronic inflammation such as skin ulcer, diabetes mellitus and central obesity with visceral fat deposition. Further study may warrant the pathophysiology of Th2 shift and Th2-biased inflammageing in normal ageing and WS. PMID:26668779

  1. Separating ITCZ- and ENSO-related rainfall changes in the Galápagos over the last 3 kyr using D/H ratios of multiple lipid biomarkers

    NASA Astrophysics Data System (ADS)

    Atwood, Alyssa R.; Sachs, Julian P.

    2014-10-01

    We present a 3000-yr rainfall reconstruction from the Galápagos Islands that is based on paired biomarker records from the sediment of El Junco Lake. Located in the eastern equatorial Pacific, the climate of the Galápagos Islands is governed by movements of the Intertropical Convergence Zone (ITCZ) and the El Niño-Southern Oscillation (ENSO). We use a novel method for reconstructing past ENSO- and ITCZ-related rainfall changes through analysis of molecular and isotopic biomarker records representing several types of plants and algae that grow under differing climatic conditions. We propose that δD values of dinosterol, a sterol produced by dinoflagellates, record changes in mean rainfall in El Junco Lake, while δD values of C34 botryococcene, a hydrocarbon unique to the green alga Botryococcus braunii, record changes in rainfall associated with moderate-to-strong El Niño events. We use these proxies to infer changes in mean rainfall and El Niño-related rainfall over the past 3000 yr. During periods in which the inferred change in El Niño-related rainfall opposed the change in mean rainfall, we infer changes in the amount of ITCZ-related rainfall. Simulations with an idealized isotope hydrology model of El Junco Lake help illustrate the interpretation of these proxy reconstructions. Opposing changes in El Niño- and ITCZ-related rainfall appear to account for several of the largest inferred hydrologic changes in El Junco Lake. We propose that these reconstructions can be used to infer changes in frequency and/or intensity of El Niño events and changes in the position of the ITCZ in the eastern equatorial Pacific over the past 3000 yr. Comparison with El Junco Lake sediment grain size records indicates general agreement of inferred rainfall changes over the late Holocene.

  2. Cytokines and Blastocyst Hatching.

    PubMed

    Seshagiri, Polani B; Vani, Venkatappa; Madhulika, Pathak

    2016-03-01

    Blastocyst implantation into the uterine endometrium establishes early pregnancy. This event is regulated by blastocyst- and/or endometrium-derived molecular factors which include hormones, growth factors, cell adhesion molecules, cytokines and proteases. Their coordinated expression and function are critical for a viable pregnancy. A rate-limiting event that immediately precedes implantation is the hatching of blastocyst. Ironically, blastocyst hatching is tacitly linked to peri-implantation events, although it is a distinct developmental phenomenon. The exact molecular network regulating hatching is still unclear. A number of implantation-associated molecular factors are expressed in the pre-implanting blastocyst. Among others, cytokines, expressed by peri-implantation blastocysts, are thought to be important for hatching, making blastocysts implantation competent. Pro-inflammatory (IL-6, LIF, GM-CSF) and anti-inflammatory (IL-11, CSF-1) cytokines improve hatching rates; they modulate proteases (MMPs, tPAs, cathepsins and ISP1). However, functional involvement of cytokines and their specific mediation of hatching-associated proteases are unclear. There is a need to understand mechanistic roles of cytokines and proteases in blastocyst hatching. This review will assess the available knowledge on blastocyst-derived pro-inflammatory and anti-inflammatory cytokines and their role in potentially regulating blastocyst hatching. They have implications in our understanding of early embryonic loss and infertility in mammals, including humans.

  3. Cytokines in rheumatoid arthritis.

    PubMed

    Vervoordeldonk, Margriet J B M; Tak, Paul P

    2002-06-01

    Rheumatoid arthritis (RA) is a chronic disease characterized by synovial inflammation that leads to the destruction of cartilage and bone. In the last decade, there was a lot of successful research in the field of cytokine expression and regulation. It has become clear that pro- and anti-inflammatory cytokines, derived predominantely from cells of macrophage lineage, play a major role in the initiation and perpetuation of the chronic inflammatory process in the RA synovial membrane. Monokines are abundant in rheumatoid synovial tissue, whereas low amounts of lymphokines are found. The involvement of pro-inflammatory cytokines, particularly interleukin (IL)-1 and tumor necrosis factor-alpha, in the pathogenesis of RA is well accepted. Recent data provide evidence that the pro-inflammatory cytokine IL-18 plays a crucial role in the development and sustenance of inflammatory joint diseases. There also appears to be a compensatory anti-inflammatory response in RA synovial membrane. It has become clear in the last few years that T cell-derived cytokines expressed preferentially by Th1 cells contribute to joint destruction and inflammation in RA. However, products from Th2 cells may be protective.

  4. [Cytokines and asthma].

    PubMed

    Gani, F; Senna, G; Piglia, P; Grosso, B; Mezzelani, P; Pozzi, E

    1998-10-01

    Asthma is a chronic inflammatory lung disease in which eosinophils are one of the most important involved cells. These cells accumulate in the lung because of cytokines, which are able to regulate cellular responses. The role of cytokines is well known in allergic asthma: IL4, IL5, IL3, GMCSF are the principally cytokine involved. IL4 regulate IgE synthesis while IL5, (and IL3) cause the activation and accumulation of eosinophils. In non allergic asthma, whilst only IL5 seemed to be important recent data, shows that also IL4 plays an important role. Therefore nowadays no relevant difference seems to exist between allergic and non allergic asthma; instead the primer is different: the allergen in allergic asthma and often an unknown factor in the non allergic asthma. Recently other cytokines have been proved to play a role in the pathogenesis of asthma. IL8 is chemotactic not only for neutrophils but also for eosinophils and might cause chronic inflammation in severe asthma. IL13 works like IL4, while RANTES seems to be a more important chemotactic agent than IL5. Finally IL10, which immunoregulates T lymphocyte responses, may reduce asthma inflammation. In conclusion cytokine made us to learn more about the pathogenesis of asthma even if we do not yet know when and how asthma inflammation develops.

  5. Biomarkers in Diabetic Retinopathy.

    PubMed

    Jenkins, Alicia J; Joglekar, Mugdha V; Hardikar, Anandwardhan A; Keech, Anthony C; O'Neal, David N; Januszewski, Andrzej S

    2015-01-01

    There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat

  6. Insulin resistance, atherogenicity, and iron metabolism in multiple sclerosis with and without depression: Associations with inflammatory and oxidative stress biomarkers and uric acid.

    PubMed

    Oliveira, Sayonara Rangel; Kallaur, Ana Paula; Lopes, Josiane; Colado Simão, Andrea Name; Vissoci Reiche, Edna Maria; de Almeida, Elaine Regina Delicato; Morimoto, Helena Kaminami; de Carvalho Jennings de Pereira, Wildea Lice; Alfieri, Daniela Frizon; Flauzino, Tamires; de Meleck Proença, Caio; Gomes, Anna Maria; Kaimen-Maciel, Damacio Ramón; Maes, Michael

    2017-04-01

    Depression is accompanied by metabolic disorders in iron metabolism, lipoproteins, and insulin resistance. We measured plasma levels of ferritin, iron, lipids, insulin, and glucose and computed the homeostasis model assessment (HOMA2IR) and atherogenic index of plasma (AIP) in MS patients with and without depression and healthy controls. Explanatory variables were serum uric acid, interleukin (IL)-6, lipid hydroperoxides (CL-LOOH), albumin, and C-reactive protein (CRP). Depression was assessed using the Hospital Anxiety and Depression Scale (HADS), neurological disability using the Expanded Disability Status Scale (EDSS), and disease progression using ∆EDSS over five years earlier. HOMA2IR and insulin were predicted by diagnosis (increased in MS), age and body mass index (BMI); AIP by diagnosis, sex, BMI, CRP, and uric acid; triglycerides by diagnosis (higher in MS without depression), age, BMI and uric acid; ferritin by diagnosis (higher in MS), sex, CRP, and albumin; and iron by albumin. The HADS score was significantly predicted by ∆EDSS, gastro-intestinal symptoms, iron (inverse), and age. MS is characterized by significantly increased insulin resistance, which is determined by increased insulin levels; and increased ferritin, a biomarker of inflammation. Depression in MS is not associated with increased insulin resistance and atherogenicity but with lowered iron.

  7. Circulating Biomarkers in Bladder Cancer

    PubMed Central

    Nandagopal, Lakshminarayanan; Sonpavde, Guru

    2016-01-01

    Bladder cancer is a molecularly heterogeneous disease characterized by multiple unmet needs in the realm of diagnosis, clinical staging, monitoring and therapy. There is an urgent need to develop precision medicine for advanced urothelial carcinoma. Given the difficulty of serial analyses of metastatic tumor tissue to identify resistance and new therapeutic targets, development of non-invasive monitoring using circulating molecular biomarkers is critically important. Although the development of circulating biomarkers for the management of bladder cancer is in its infancy and may currently suffer from lower sensitivity of detection, they have inherent advantages owing to non-invasiveness. Additionally, circulating molecular alterations may capture tumor heterogeneity without the sampling bias of tissue biopsy. This review describes the accumulating data to support further development of circulating biomarkers including circulating tumor cells, cell-free circulating tumor (ct)-DNA, RNA, micro-RNA and proteomics to improve the management of bladder cancer. PMID:28035318

  8. The effects of age and gender on plasma levels of 63 cytokines.

    PubMed

    Larsson, Anders; Carlsson, Lena; Gordh, Torsten; Lind, Anne-Li; Thulin, Måns; Kamali-Moghaddam, Masood

    2015-10-01

    Cytokines play important roles as regulators of cell functions, and over the last decades a number of cytokine assays have been developed. The aim of the present study was to investigate the effects of age and gender on a large number of cytokines. Plasma samples were collected from 33 healthy blood donors. The samples were analyzed using a multiplex proximity extension assay (PEA) allowing simultaneous measurement of 92 cytokines and four technical controls. Biomarkers with less than 80% quantitative results were excluded leaving 63 cytokines that were analyzed for the effects of gender and age. The plasma level of three of the investigated biomarkers (DNER, MCP-4 and MMP-10) were found to be significantly different for the two genders (adjusted p-value<0.05), and 15 of the biomarkers (CCL11, CCL25, CDCP1, CSF-1, CXCL11, CXCL9, FGF-23, Flt3L, HGF, IL-10RB, MCP-3, MCP-4, MMP-10, OPG, VEGF-A) were significantly associated with age. This study reveals the effects of age and gender on a large number of cytokine assays. CXCL5 and TNFB were significantly higher in females, while the other markers with significant gender-dependent differences were higher in males. For the markers that were significantly associated with age, only CXCL6 was found to decrease with age, while the other biomarkers increased with age.

  9. Utility of CSF Cytokine/Chemokines as Markers of Active Intrathecal Inflammation: Comparison of Demyelinating, Anti-NMDAR and Enteroviral Encephalitis

    PubMed Central

    Kothur, Kavitha; Wienholt, Louise; Mohammad, Shekeeb S.; Tantsis, Esther M.; Pillai, Sekhar; Britton, Philip N.; Jones, Cheryl A.; Angiti, Rajeshwar R.; Barnes, Elizabeth H.; Schlub, Timothy; Bandodkar, Sushil; Brilot, Fabienne; Dale, Russell C.

    2016-01-01

    Background Despite the discovery of CSF and serum diagnostic autoantibodies in autoimmune encephalitis, there are still very limited CSF biomarkers for diagnostic and monitoring purposes in children with inflammatory or autoimmune brain disease. The cause of encephalitis is unknown in up to a third of encephalitis cohorts, and it is important to differentiate infective from autoimmune encephalitis given the therapeutic implications. Aim To study CSF cytokines and chemokines as diagnostic biomarkers of active neuroinflammation, and assess their role in differentiating demyelinating, autoimmune, and viral encephalitis. Methods We measured and compared 32 cytokine/chemokines using multiplex immunoassay and APRIL and BAFF using ELISA in CSF collected prior to commencing treatment from paediatric patients with confirmed acute disseminated encephalomyelitis (ADEM, n = 16), anti-NMDAR encephalitis (anti-NMDAR E, n = 11), and enteroviral encephalitis (EVE, n = 16). We generated normative data using CSF from 20 non-inflammatory neurological controls. The sensitivity of CSF cytokine/chemokines to diagnose encephalitis cases was calculated using 95th centile of control values as cut off. We correlated CSF cytokine/chemokines with disease severity and follow up outcome based on modified Rankin scale. One-way hierarchical correlational cluster analysis of molecules was performed in different encephalitis and outcome groups. Results In descending order, CSF TNF-α, IL-10, IFN-α, IL-6, CXCL13 and CXCL10 had the best sensitivity (>79.1%) when all encephalitis patients were included. The combination of IL-6 and IFN-α was most predictive of inflammation on multiple logistic regression with area under the ROC curve 0.99 (CI 0.97–1.00). There were no differences in CSF cytokine concentrations between EVE and anti-NMDAR E, whereas ADEM showed more pronounced elevation of Th17 related (IL-17, IL-21) and Th2 (IL-4, CCL17) related cytokine/chemokines. Unlike EVE, heat map analysis

  10. [Cytokine imbalance in critically ill patients: SIRS and CARS].

    PubMed

    Murata, A; Kikuchi, M; Mishima, S; Sakaki, S; Goto, H; Matsuoka, T; Tanaka, H; Yukioka, T; Shimazaki, S

    1999-07-01

    It remains difficult to treat severely ill patients, especially those who have sepsis and subsequent multiple organ dysfunction syndrome. We propose the hypothesis that the pathophysiology in the sequential sepsis and multiple organ dysfunction syndrome may be strongly related to the imbalance between inflammatory cytokines and antiinflammatory cytokines induced for the host defense to active neutrophils and endothelial cells. Thus we attempted to develop cytokine modulation therapy to normalize the cytokine balance in the host defense system. In this review, we elucidate the relationship between cytokine imbalance and SIRS/CARS in patients with severe burn injury. Furthermore, we examine the possible usage of G-CSF to amplify neutrophil function, and clarify the reasons why various innovative therapies against sepsis have failed.

  11. Multiplexed Detection of Cytokines Based on Dual Bar-Code Strategy and Single-Molecule Counting.

    PubMed

    Li, Wei; Jiang, Wei; Dai, Shuang; Wang, Lei

    2016-02-02

    Cytokines play important roles in the immune system and have been regarded as biomarkers. While single cytokine is not specific and accurate enough to meet the strict diagnosis in practice, in this work, we constructed a multiplexed detection method for cytokines based on dual bar-code strategy and single-molecule counting. Taking interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as model analytes, first, the magnetic nanobead was functionalized with the second antibody and primary bar-code strands, forming a magnetic nanoprobe. Then, through the specific reaction of the second antibody and the antigen that fixed by the primary antibody, sandwich-type immunocomplex was formed on the substrate. Next, the primary bar-code strands as amplification units triggered multibranched hybridization chain reaction (mHCR), producing nicked double-stranded polymers with multiple branched arms, which were served as secondary bar-code strands. Finally, the secondary bar-code strands hybridized with the multimolecule labeled fluorescence probes, generating enhanced fluorescence signals. The numbers of fluorescence dots were counted one by one for quantification with epi-fluorescence microscope. By integrating the primary and secondary bar-code-based amplification strategy and the multimolecule labeled fluorescence probes, this method displayed an excellent sensitivity with the detection limits were both 5 fM. Unlike the typical bar-code assay that the bar-code strands should be released and identified on a microarray, this method is more direct. Moreover, because of the selective immune reaction and the dual bar-code mechanism, the resulting method could detect the two targets simultaneously. Multiple analysis in human serum was also performed, suggesting that our strategy was reliable and had a great potential application in early clinical diagnosis.

  12. Myelin basic protein-primed T cells of female but not male mice induce nitric-oxide synthase and proinflammatory cytokines in microglia: implications for gender bias in multiple sclerosis.

    PubMed

    Dasgupta, Subhajit; Jana, Malabendu; Liu, Xiaojuan; Pahan, Kalipada

    2005-09-23

    Females are more susceptible than males to multiple sclerosis (MS). However, the underlying mechanism behind this gender difference is poorly understood. Because the presence of neuroantigen-primed T cells within the CNS is necessary for the development of MS, the present study was undertaken to investigate the activation of microglia by myelin basic protein (MBP)-primed T cells of male, female, and castrated male mice. Interestingly, MBP-primed T cells isolated from female and castrated male but not from male mice induced the expression of inducible nitric-oxide synthase (iNOS) and proinflammatory cytokines (interleukin-1beta (IL-1beta), IL-1alpha, IL-6, and tumor necrosis factor-alpha) in microglia by cell-cell contact. Again there was no apparent defect in male microglia, because MBP-primed T cells isolated from female and castrated male but not male mice were capable of inducing the production of NO in male primary microglia. Inhibition of female T cell contact-mediated microglial expression of proinflammatory molecules by dominant-negative mutants of p65 and C/EBPbeta suggest that female MBP-primed T cells induce microglial expression of proinflammatory molecules through the activation of NF-kappaB and C/EBPbeta. Interestingly, MBP-primed T cells of male, female, and castrated male mice were able to induce microglial activation of NF-kappaB. However, MBP-primed T cells of female and castrated male but not male mice induced microglial activation of C/EBPbeta. These studies suggest that microglial activation of C/EBPbeta but not NF-kappaB by T cell:microglial contact is a gender-specific event and that male MBP-primed T cells are not capable of inducing microglial expression of proinflammatory molecules due to their inability to induce the activation of C/EBPbeta in microglia. This novel gender-sensitive activation of microglia by neuroantigen-primed T cell contact could be one of the mechanisms behind the female-loving nature of MS.

  13. Quantitative validation and comparison of multiplex cytokine kits.

    PubMed

    Richens, Joanna L; Urbanowicz, Richard A; Metcalf, Rebecca; Corne, Jonathan; O'Shea, Paul; Fairclough, Lucy

    2010-06-01

    The focus of biomarker studies is shifting toward deciphering patterns of biomolecules as they provide a more comprehensive depiction of disease than individual biomarkers. Multiplexing technologies are crucial in deciphering such patterns, but it is essential that they are validated for reproducibility and precision to ensure accurate protein identification. Here the authors examine such properties in Cytokine Bead Array (CBA) and Luminex kits and compare concentration measurements to those obtained using enzyme-linked immunosorbent assay (ELISA). Luminex kits were found to be highly reproducible and reliable; however, CBA kits were not due to aberrant standards. Absolute cytokine concentrations were dependent on the detection kit, but correlations with ELISA were good for all technologies.

  14. The PREVENT study: a prospective cohort study to identify mid-life biomarkers of late-onset Alzheimer's disease

    PubMed Central

    Ritchie, Craig W; Ritchie, Karen

    2012-01-01

    Introduction Epidemiological studies indicate that significant decreases in the incidence of Alzheimer's disease (AD) may be obtained by targeting multiple middle-age risk factors. However, as dementia is unlikely to be diagnosed for decades, short-term outcome measures are required. AD biomarker changes precede clinical symptoms by many years, but their sensitivity to mid-life change remains unknown. Methods and analysis PREVENT is a prospective cohort study examining biomarker status at mid-life in at least 150 individuals genetically at high, medium or low risk of late-onset AD. Participants are children of individuals with or without a diagnosed AD allocated to high, medium and low-risk groups according to parental clinical status and ApoE genotype. The biomarkers examined over 2 years are plasma and CSF Aβ42 amyloid, Tau and pTau, proinflammatory cytokines, acute-phase proteins, medial temporal-lobe atrophy, white matter lesion volume, cognitive performance related to transentorhinal and hippocampal functioning and hypothalamic−pituitary−adrenal and sympathetic axes regulation. Ethics and dissemination Detected pathologies are communicated to the participant's general practitioner with their permission. Risk status by genotype would not be revealed. The results of the study would be published in peer-reviewed journals and validated biomarkers used to construct a randomised controlled intervention study. PMID:23166135

  15. Cerebrospinal fluid and serum cytokine profiling to detect immune control of infectious and inflammatory neurological and psychiatric diseases.

    PubMed

    Maxeiner, Horst-Guenter; Marion Schneider, E; Kurfiss, Sina-Tatjana; Brettschneider, Johannes; Tumani, Hayrettin; Bechter, Karl

    2014-09-01

    The present study aimed at profiling inflammatory cytokines for neurological and psychiatric diseases. A total of 86 patients with meningitis, multiple sclerosis, tension-type headache, idiopathic facial nerve palsy (IFNP), affective and schizophrenic disorders were tested for both, serum and cerebrospinal fluid (CSF) using a multiplexed cytokine ELISA for IFN-γ, TNF-α, IL-1β, IL-2, IL-4, IL-5, IL-8/CXCL8, IL-10, IL12p70, IL-13 and IL-17. Cases with viral and bacterial meningitis had unequivocally higher cytokine concentrations in the CSF when compared with serum. Bacterial meningitis was unique by extremely elevated IL-17, TNF-α and IL-1β, indicating a plethora of inflammatory pathways, selectively activated in the CSF. In relapsing multiple sclerosis, IFN-γ and IL-10 were elevated in both, serum and CSF, but IL-12p70, IL-5, IL-13, and TNF-α were more prominent in serum than in CSF. Qualitatively similar biomarker patterns were detected in patients with idiopathic facial nerve palsy and tension-type cephalgia. Affective and schizophrenic disorders clearly present with an inflammatory phenotype in the CSF and also serum, the cytokines determined were in general higher in schizophrenia. Except IFN-γ, schizophrenic patients had higher IL-12p70 and a trend of higher IL-10 and IL-13 in serum suggesting a more prominent TH2-type counter regulatory immune response than in affective disorders. These differences were also mirrored in the CSF. Elevated IL-8 appears to be the most sensitive marker for inflammation in the CSF of all diseases studied, whereas TNF-α was restricted to peripheral blood. With the exception of IL-8, all but viral and bacterial meningitis, studied, displayed higher means of elevated lymphokine concentrations in the serum than in the CSF. This observation supports the concept of immunological crosstalk between periphery and intrathecal immunity in neurological and psychiatric diseases.

  16. Cytokines in Neuropathic Pain and Associated Depression.

    PubMed

    Lees, Justin G; Fivelman, Brett; Duffy, Samuel S; Makker, Preet G S; Perera, Chamini J; Moalem-Taylor, Gila

    2015-01-01

    Neuropathic pain occurs as a result of lesion or disease affecting the somatosensory nervous system and is present in a diverse set of peripheral and central pathologies such as nerve trauma, diabetic neuropathy, post-herpetic neuralgia, chemotherapy-induced peripheral neuropathy, spinal cord injury and multiple sclerosis. Debilitating symptoms including allodynia, hyperalgesia and spontaneous pain have a substantial negative impact on patients' quality of life. The currently available therapeutic treatments are generally ineffective and characterised by poor response rates. Accumulating evidence suggests that neuroinflammation and cytokine signalling play a critical role in neuropathic pain. Numerous experimental studies have demonstrated that certain pro-inflammatory cytokines are elevated in neuropathic pain conditions, and administration of these cytokines can elicit pain hypersensitivity in the absence of injury or disease. This phenomenon is also apparent in the 'sickness response', which encompasses a broad inflammatory response to disease and injury and involves a series of physiological and behavioural changes including pain hypersensitivity. Interestingly, the 'sickness response' is also similar in nature to some of the defining characteristics of the depressed state of affective disorder. In this review, we explore links that may relate the co-existence of depression in neuropathic pain patients with the activity of cytokines and discuss the role of several key pro-inflammatory and anti-inflammatory cytokines in neuropathic pain.

  17. Biomarker Validation: Common Data Analysis Concerns

    PubMed Central

    2014-01-01

    Biomarker validation, like any other confirmatory process based on statistical methodology, must discern associations that occur by chance from those reflecting true biological relationships. Validity of a biomarker is established by authenticating its correlation with clinical outcome. Validated biomarkers can lead to targeted therapy, improve clinical diagnosis, and serve as useful prognostic and predictive factors of clinical outcome. Statistical concerns such as confounding and multiplicity are common in biomarker validation studies. This article discusses four major areas of concern in the biomarker validation process and some of the proposed solutions. Because present-day statistical packages enable the researcher to address these common concerns, the purpose of this discussion is to raise awareness of these statistical issues in the hope of improving the reproducibility of validation study findings. PMID:25001264

  18. Relationship between Irisin Concentration and Serum Cytokines in Mother and Newborn

    PubMed Central

    Hernandez-Trejo, Maria; Garcia-Rivas, Gerardo; Torres-Quintanilla, Alejandro

    2016-01-01

    Introduction Irisin is considered to be a myokine and adipokine that may also participate in reproductive functions, as it increases significantly throughout pregnancy. However, the regulation of circulating irisin and its relationship with other cytokines has not been assessed thus far in pregnant women and their offspring. Objective The aim of this study was to evaluate differences in irisin and cytokine concentrations between women at the end of pregnancy and their offspring, as well as the relationship between maternal and newborn irisin and maternal and newborn biomarkers. Methods Twenty-eight mother/newborn pairs were included in this study. The following biomarkers were evaluated in maternal venous and arterial umbilical cord blood samples: irisin, 27 cytokine panel, total antioxidant capacity (TAC), total plasma protein, and free fatty acid concentration. Results The newborns had significantly lower irisin concentrations compared to their mothers (p = 0.03), but this difference was present only in babies born from mothers without labor prior to cesarean section delivery (p = 0.01). No significant differences in maternal and newborn irisin concentrations were found between diabetic and non-diabetic mothers or between overweight/obese and normal weight mothers. A significant positive correlation was found between TAC level and irisin concentration in newborns. Maternal and newborn interleukin (IL)-1β, IL-1RA, IL-5, IL-7, and interferon gamma-induced protein (IP)-10 levels were significantly positively correlated with irisin concentrations in both study groups. In addition, maternal IL1β, IL-5, IL-7, and IP-10 levels positively predicted maternal irisin concentrations. Furthermore, arterial cord blood TAC and IL-1β and IL1-RA levels positively predicted newborn irisin concentrations. Multiple regression analyses showed that maternal IL-13 negatively predicted offspring irisin levels (p = 0.03) and that maternal IL-1β positively predicted newborn irisin

  19. Placental growth factor and soluble c-kit receptor dynamics characterize the cytokine signature of imatinib in prostate cancer and bone metastases.

    PubMed

    Mathew, Paul; Wen, Sijin; Morita, Satoshi; Thall, Peter F

    2011-07-01

    To assess the hypothesis that the dynamics of plasma angiogenic and inflammatory cytokines after docetaxel chemotherapy with or without the c-kit/abl/platelet-derived growth factor receptor (PDGFR) inhibitor imatinib mesylate for prostate cancer are associated with outcome, the kinetics of 17 plasma cytokines before versus after chemotherapy were assessed and associations with progression-free survival (PFS) examined. After adjusting for multiple tests, significantly different declines in placental growth factor (PIGF), soluble vascular endothelial growth factor receptor-1 (VEGFR1), VEGF, and soluble c-kit were observed with docetaxel plus imatinib (n=41) compared to docetaxel alone (n=47). Based on a piecewise linear regression model for change in concentration of each cytokine as a function of the probability of change in p-PDGFR in vivo, only the dynamics of PIGF (P<0.0001) and soluble c-kit (P<0.0001) differed with imatinib therapy. In a Bayesian log-normal regression model for PFS, a rise in human matrix metalloproteinase 9 after docetaxel alone associated with a longer PFS. Distinct plasma angiogenic cytokines are modified by imatinib and partitioned by in vivo p-PDGFR dynamics after docetaxel chemotherapy for metastatic prostate cancer. Plasma PIGF and soluble c-kit kinetics are candidate biomarkers of imatinib effect. The predictive value of human matrix metalloproteinase 9 kinetics for docetaxel efficacy requires prospective validation.

  20. A review of the application of inflammatory biomarkers in epidemiologic cancer research.

    PubMed

    Brenner, Darren R; Scherer, Dominique; Muir, Kenneth; Schildkraut, Joellen; Boffetta, Paolo; Spitz, Margaret R; Le Marchand, Loic; Chan, Andrew T; Goode, Ellen L; Ulrich, Cornelia M; Hung, Rayjean J

    2014-09-01

    Inflammation is a facilitating process for multiple cancer types. It is believed to affect cancer development and progression through several etiologic pathways, including increased levels of DNA adduct formation, increased angiogenesis, and altered antiapoptotic signaling. This review highlights the application of inflammatory biomarkers in epidemiologic studies and discusses the various cellular mediators of inflammation characterizing the innate immune system response to infection and chronic insult from environmental factors. Included is a review of six classes of inflammation-related biomarkers: cytokines/chemokines, immune-related effectors, acute-phase proteins, reactive oxygen and nitrogen species, prostaglandins and cyclooxygenase-related factors, and mediators such as transcription factors and growth factors. For each of these biomarkers, we provide a brief overview of the etiologic role in the inflammation response and how they have been related to cancer etiology and progression within the literature. We provide a discussion of the common techniques available for quantification of each marker, including strengths, weaknesses, and potential pitfalls. Subsequently, we highlight a few under-studied measures to characterize the inflammatory response and their potential utility in epidemiologic studies of cancer. Finally, we suggest integrative methods for future studies to apply multifaceted approaches to examine the relationship between inflammatory markers and their roles in cancer development.

  1. GDF 15 - A Novel Biomarker in the Offing for Heart Failure

    PubMed Central

    George, Melvin; Jena, Amrita; Srivatsan, Varsha; Muthukumar, Rajaram; Dhandapani, VE

    2016-01-01

    Background: Several diagnostic and prognostic biomarkers are being explored in heart failure. GDF-15 belongs to the transforming growth factor β (TGF-β) cytokine family that is highly up regulated in inflammatory conditions. We undertook this systematic review to summarize the current evidence on the utility of GDF-15 as a biomarker in heart failure. Design and Methods: Multiple electronic databases for studies that reported the association between GDF- 15 and heart failure were searched using different electronic databases such as MEDLINE, Science Direct, Springer Link, Scopus, Cochrane Reviews, and Google Scholar using pre-defined inclusion- exclusion criteria. Results: Twenty one original studies were identified that included data from 20,920 study participants. GDF 15 was found to be a strong prognosticator of all-cause mortality in heart failure patients. Several studies found the benefit of using GDF-15 as a component of a multi-biomarker strategy in prognosticating patients with heart failure. Conclusion: More studies are warranted to elucidate the molecular pathways involving GDF-15 and to see how knowledge about GDF-15 can be used to make therapeutic decisions in the clinic. PMID:26750722

  2. Biomarkers in neonatology: the next generation of tests.

    PubMed

    Ng, Pak C; Lam, Hugh S

    2012-01-01

    Over the past two decades, neonatal clinicians have commonly used host response biomarkers to diagnose and assess the severity of systemic infection. Most of these biomarkers, such as acute-phase proteins or cytokines, are non-specific immunomodulating mediators of the inflammatory cascade. With advances in biochemical/genetic research, it is anticipated that future biomarkers will be 'organ and/or disease specific'. There is also the quest for discovery of 'novel' biomarkers to assist diagnosis and prognosis of neonatal diseases using powerful mass-screening techniques, e.g. the next-generation sequencing, proteomics and arrays. This article aims to introduce the concept of the next generation of biomarkers to practising neonatal clinicians, and, hopefully, to integrate basic science research into day-to-day clinical practice in the future.

  3. Simultaneous analysis of T helper subsets (Th1, Th2, Th9, Th17, Th22, Tfh, Tr1 and Tregs) markers expression in periapical lesions reveals multiple cytokine clusters accountable for lesions activity and inactivity status

    PubMed Central

    ARAUJO-PIRES, Ana Claudia; FRANCISCONI, Carolina Favaro; BIGUETTI, Claudia Cristina; CAVALLA, Franco; ARANHA, Andreza Maria Fabio; LETRA, Ariadne; TROMBONE, Ana Paula Favaro; FAVERI, Marcelo; SILVA, Renato Menezes; GARLET, Gustavo Pompermaier

    2014-01-01

    Previous studies demonstrate that the balance between pro- and anti-inflammatory mediators determines the stable or progressive nature of periapical granulomas by modulating the balance of the osteoclastogenic factor RANKL and its antagonist OPG. However, the cytokine networks operating in the development of periapical lesions are quite more complex than what the simple pro- versus anti-inflammatory mediators' paradigm suggests. Here we simultaneously investigated the patterns of Th1, Th2, Th9, Th17, Th22, Thf, Tr1 and Tregs cytokines/markers expression in human periapical granulomas. Methods The expression of TNF-α, IFN-γ, IL-17A, IL23, IL21, IL-33, IL-10, IL-4, IL-9, IL-22, FOXp3 markers (via RealTimePCR array) was accessed in active/progressive (N=40) versus inactive/stable (N=70) periapical granulomas (as determined by RANKL/OPG expression ratio), and also to compare these samples with a panel of control specimens (N=26). A cluster analysis of 13 cytokine levels was performed to examine possible clustering between the cytokines in a total of 110 granulomas. Results The expression of all target cytokines was higher in the granulomas than in control samples. TNF-α, IFN-γ, IL-17A and IL-21 mRNA levels were significantly higher in active granulomas, while in inactive lesions the expression levels of IL-4, IL-9, IL-10, IL-22 and FOXp3 were higher than in active granulomas. Five clusters were identified in inactive lesion groups, being the variance in the expression levels of IL-17, IL-10, FOXp3, IFN-γ, IL-9, IL-33 and IL-4 statistically significant (KW p<0.05). Three clusters were identified in active lesions, being the variance in the expression levels of IL-22, IL-10, IFN-γ, IL-17, IL-33, FOXp3, IL-21 and RANKL statistically significant (KW p<0.05). Conclusion There is a clear dichotomy in the profile of cytokine expression in inactive and active periapical lesions. While the widespread cytokine expression seems to be a feature of chronic lesions

  4. Molecular biomarkers of neurodegeneration.

    PubMed

    Höglund, Kina; Salter, Hugh

    2013-11-01

    Neuronal dysfunction and degeneration are central events of a number of major diseases with significant unmet need. Neuronal dysfunction may not necessarily be the result of cell death, but may also be due to synaptic damage leading to impaired neuronal cell signaling or long-term potentiation. Once degeneration occurs, it is unclear whether axonal or synaptic loss comes first or whether this precedes neuronal cell death. In this review we summarize the pathophysiology of four major neurodegenerative diseases; Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis (Lou Gehrig's disease) For each of these diseases, we describe how biochemical biomarkers are currently understood in relation to the pathophysiology and in terms of neuronal biology, and we discuss the clinical and diagnostic utility of these potential tools, which are at present limited. We discuss how markers may be used to drive drug development and clinical practice.

  5. Cytokine profiles of seventeen cytokines, growth factors and chemokines in cord blood and its relation to perinatal clinical findings.

    PubMed

    Takahashi, Naoto; Uehara, Ritei; Kobayashi, Mami; Yada, Yukari; Koike, Yasunori; Kawamata, Ryou; Odaka, Jun; Honma, Yoko; Momoi, Mariko Y

    2010-03-01

    Few papers have investigated the cytokine profiles of multiple cytokines in cord blood. We obtained cord blood samples from 224 infants admitted to our neonatal intensive care unit. Cytokine profiles of 17 cytokines were investigated using cytometric bead array technology. We found a wide variety of cytokines of various levels which ranged from 0.59pg/ml (in Interleukin (IL)-4) to 222.0pg/ml (in macrophage inflammatory protein-1beta. Pro-inflammatory cytokines were highly correlated with each other and with granulocyte-colony stimulating factor and IL-8. On the contrary, IL-5, IL-13, and IL-17 did not show any significant correlation with other cytokines. Several maternal factors were strongly related to several cytokines in cord blood. IL-6, IL-8 and monocyte chemotactic protein-1 were closely related to certain neonatal diseases in preterm neonates. Some cytokines may be regulated independently of each other, while others appear to work as a network affecting physiological and pathological conditions in the fetus.

  6. Biomarkers for wound healing and their evaluation.

    PubMed

    Patel, S; Maheshwari, A; Chandra, A

    2016-01-01

    A biological marker (biomarker) is a substance used as an indicator of biological state. Advances in genomics, proteomics and molecular pathology have generated many candidate biomarkers with potential clinical value. Research has identified several cellular events and mediators associated with wound healing that can serve as biomarkers. Macrophages, neutrophils, fibroblasts and platelets release cytokines molecules including TNF-α, interleukins (ILs) and growth factors, of which platelet-derived growth factor (PDGF) holds the greatest importance. As a result, various white cells and connective tissue cells release both matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). Studies have demonstrated that IL-1, IL-6, and MMPs, levels above normal, and an abnormally high MMP/TIMP ratio are often present in non-healing wounds. Clinical examination of wounds for these mediators could predict which wounds will heal and which will not, suggesting use of these chemicals as biomarkers of wound healing. There is also evidence that the application of growth factors like PDGF will alleviate the recuperating process of chronic, non-healing wounds. Finding a specific biomarker for wound healing status would be a breakthrough in this field and helping treat impaired wound healing.

  7. Cytokines and anti-cytokines as therapeutics--an update.

    PubMed

    Tayal, Vandana; Kalra, Bhupinder Singh

    2008-01-28

    Cytokines which comprise of a family of proteins--interleukins, lymphokines, monokines, interferons, and chemokines, are important components of the immune system. They act in concert with specific cytokine inhibitors and soluble cytokine receptors to regulate the human immune response. Their physiologic role in inflammation and pathologic role in systemic inflammatory states are now well recognized. An imbalance in cytokine production or cytokine receptor expression and/or dysregulation of a cytokine process contributes to various pathological disorders. Research is progressing rapidly in the area of cytokines and their therapeutic targets, the two major therapeutic modalities being the administration of purified recombinant cytokines and the use of their antagonists in various inflammatory disorders. However, given the large number of cytokines, it is disappointing that only relatively few can be used clinically. In the present article, we have made an attempt to review and present a glimpse of the history as well as up to date information that is pertinent to cytokines and anti-cytokine therapies in the treatment of cancer, autoimmune disorders and various other related diseases.

  8. Coordinate cytokine regulatory sequences

    DOEpatents

    Frazer, Kelly A.; Rubin, Edward M.; Loots, Gabriela G.

    2005-05-10

    The present invention provides CNS sequences that regulate the cytokine gene expression, expression cassettes and vectors comprising or lacking the CNS sequences, host cells and non-human transgenic animals comprising the CNS sequences or lacking the CNS sequences. The present invention also provides methods for identifying compounds that modulate the functions of CNS sequences as well as methods for diagnosing defects in the CNS sequences of patients.

  9. Defining Pesticide Biomarkers

    EPA Pesticide Factsheets

    Biomarkers are measurable substances or characteristics in the human body that can be used to monitor the presence of a chemical in the body, biological responses or harm to health. This Web page describes categories of biomarkers and provides examples.

  10. BIOMARKERS OF REPRODUCTIVE TOXICITY

    EPA Science Inventory

    Identification and verification of anatomical, endocrine, cellular and molecular biomarkers is crucial for successful clinical diagnosis and treatment of toxicity and disease, as well as basic toxicological, epidemiological and other research. Various in situ biomarkers of repro...

  11. Biomarkers in Computational Toxicology

    EPA Science Inventory

    Biomarkers are a means to evaluate chemical exposure and/or the subsequent impacts on toxicity pathways that lead to adverse health outcomes. Computational toxicology can integrate biomarker data with knowledge of exposure, chemistry, biology, pharmacokinetics, toxicology, and e...

  12. Relationships between biomarkers of exposure and toxicokinetics in Fischer 344 rats and B6C3F{sub 1} mice administered single doses of acrylamide and glycidamide and multiple doses of acrylamide

    SciTech Connect

    Tareke, Eden; Twaddle, Nathan C.; McDaniel, L. Patrice; Churchwell, Mona I.; Young, John F.; Doerge, Daniel R. . E-mail: daniel.doerge@fda.hhs.gov

    2006-11-15

    Acrylamide (AA) is a widely studied industrial chemical that is neurotoxic, mutagenic to somatic and germ cells and carcinogenic in rodents. AA is also formed in many commonly consumed starchy foods during cooking. Our previous toxicokinetic investigations of AA and its important genotoxic metabolite, glycidamide (GA), in rodents showed that AA is highly bioavailable from oral routes of administration, is widely distributed to tissues and that the dietary route, in particular, favors metabolism to GA. Measurements of DNA adducts in many tissues supported the hypothesis that AA is carcinogenic in rodent bioassays through metabolism to GA. The current investigation describes the development and validation of methodology for measuring hemoglobin (Hb) adducts with AA and GA in the same rodents previously used for toxicokinetic and DNA adduct measurements. The goal was to investigate possible relationships between these circulating biomarkers of exposure and serum toxicokinetic parameters for AA and GA and tissue GA-DNA adducts in rodents from both single and repeated dosing with AA. Significant correlations were observed between GA-Hb and liver GA-DNA adducts for either single or multiple dosing regimens with AA. Using available GA-Hb adduct data, empirical and allometric relationships permitted estimation of liver DNA adducts in humans in the range of 0.06-0.3 adducts/10{sup 8} nucleotides. This approach may prove useful in extrapolating human cancer risks from findings in rodent bioassays.

  13. Biomarkers in Veterinary Medicine.

    PubMed

    Myers, Michael J; Smith, Emily R; Turfle, Phillip G

    2017-02-08

    This article summarizes the relevant definitions related to biomarkers; reviews the general processes related to biomarker discovery and ultimate acceptance and use; and finally summarizes and reviews, to the extent possible, examples of the types of biomarkers used in animal species within veterinary clinical practice and human and veterinary drug development. We highlight opportunities for collaboration and coordination of research within the veterinary community and leveraging of resources from human medicine to support biomarker discovery and validation efforts for veterinary medicine.

  14. Interaction Study of Phospholipid Membranes with an N-Glucosylated β-Turn Peptide Structure Detecting Autoantibodies Biomarkers of Multiple Sclerosis

    PubMed Central

    Becucci, Lucia; Benci, Stefano; Nuti, Francesca; Real-Fernandez, Feliciana; Vaezi, Zahra; Stella, Lorenzo; Venanzi, Mariano; Rovero, Paolo; Papini, Anna Maria

    2015-01-01

    The interaction of lipid environments with the type I’ β-turn peptide structure called CSF114 and its N-glucosylated form CSF114(Glc), previously developed as a synthetic antigenic probe recognizing specific autoantibodies in a subpopulation of multiple sclerosis patients’ serum, was investigated by fluorescence spectroscopy and electrochemical experiments using large unilamellar vesicles, mercury supported lipid self-assembled monolayers (SAMs) and tethered bilayer lipid membranes (tBLMs). The synthetic antigenic probe N-glucosylated peptide CSF114(Glc) and its unglucosylated form interact with the polar heads of lipid SAMs of dioleoylphosphatidylcholine at nonzero transmembrane potentials, probably establishing a dual electrostatic interaction of the trimethylammonium  and phosphate groups of the phosphatidylcholine polar head with the Glu5 and His9 residues on the opposite ends of the CSF114(Glc) β-turn encompassing residues 6-9. His9 protonation at pH 7 eliminates this dual interaction. CSF114(Glc) is adsorbed on top of SAMs of mixtures of dioleoylphosphatidylcholine with sphingomyelin, an important component of myelin, whose proteins are hypothesized to undergo an aberrant N-glucosylation triggering the autoimmune response. Incorporation of the type I’ β-turn peptide structure CSF114 into lipid SAMs by potential scans of electrochemical impedance spectroscopy induces defects causing a slight permeabilization toward cadmium ions. The N-glucopeptide CSF114(Glc) does not affect  tBLMs to a detectable extent. PMID:26437433

  15. TRAIL and TRAIL receptors splice variants during long-term interferon β treatment of patients with multiple sclerosis: evaluation as biomarkers for therapeutic response

    PubMed Central

    López-Gómez, Carlos; Oliver-Martos, Begoña; Pinto-Medel, María-Jesús; Suardiaz, Margarita; Reyes-Garrido, Virginia; Urbaneja, Patricia; Fernández, Óscar; Leyva, Laura

    2016-01-01

    Objective We aimed to assess the effects of interferon β (IFNβ) treatment on the expression of the splice variants of the Tumour necrosis factor-Related Apoptosis Inducing Ligand (TRAIL) and its receptors in different cell subpopulations (CD14+, CD4+ and CD8+) from patients with multiple sclerosis (MS), and to determine whether this expression discriminated responders from non-responders to IFNβ therapy. Methods We examined mRNA expression of the TRAIL and TRAIL receptors variants in patients with MS, at baseline and after one year of IFNβ therapy, according to responsiveness to this drug. Results Long-term therapy with IFNβ increased the expression of TRAIL-α in T cell subsets exclusively from responders and decreased the expression of the isoform 2 of TRAILR-2 in monocytes from responders as well as non-responders. Lower expression of TRAIL-α, and higher expression of TRAIL-β in monocytes and T cells, was found before the onset of IFNβ therapy in patients who will subsequently become responders. Baseline expression of TRAILR-1 was also significantly higher in monocytes and CD4+ T cells from responders. Conclusions The present study shows that long-term IFNβ treatment has a direct influence on TRAIL-α and TRAILR-2 isoform 2 expression. Besides, receiver operating characteristic analysis revealed that the baseline expression of TRAIL-α in monocytes and T cells, and that of TRAILR-1 in monocytes and CD4+ T cells, showed a predictive value of the clinical response to IFNβ therapy, pointing to a role of TRAIL system in the mechanism of action of IFNβ in MS that will need further investigation. PMID:25736057

  16. Novel associations between contaminant body burdens and biomarkers of reproductive condition in male Common Carp along multiple gradients of contaminant exposure in Lake Mead National Recreation Area, USA

    USGS Publications Warehouse

    Patino, Reynaldo; VanLandeghem, Matthew M.; Goodbred, Steven L.; Orsak, Erik; Jenkins, Jill A.; Echols, Kathy R.; Rosen, Michael R.; Torres, Leticia

    2015-01-01

    reported by studies where exposure concentrations were relatively high. Lastly, this study highlighted advantages of multivariate/multiple regression approaches for exploring associations between complex contaminant mixtures and gradients and reproductive condition in wild fishes.

  17. Biomarkers in orthodontic tooth movement.

    PubMed

    Kumar, A Anand; Saravanan, K; Kohila, K; Kumar, S Sathesh

    2015-08-01

    Tooth movement by orthodontic treatment is characterized by remodeling changes in the periodontal ligament, alveolar bone, and gingiva. A reflection of these phenomenons can be found in the gingival crevicular fluid (GCF) of moving teeth, with significant elevations in the concentrations of its components like, cytokines, neurotransmitters, growth Factors, and a arachidonic acid metabolites. GCF arises at the gingival margin and can be described as a transudate or an exudate. Several studies have focused on the composition of GCF and the changes that occur during orthodontic tooth movement (OTM). GCF component analysis is a non-invasive method for studying the cellular response of the underlying periodontium. Clinically, GCF can be easily collected using platinum loops, filter paper strips, gingival washings, and micropipettes. A number of GCF biomarkers involve in bone remodeling during OTM. The data suggest that knowledge of all the biomarkers present in the GCF that can be used to mark the changes in tooth that is undergoing orthodontic treatment may be of clinical usefulness leading to proper choice of mechanical stress to improve and to shorten treatment time and avoid side effects.

  18. Consumption of soy isoflavone enriched bread in men with prostate cancer is associated with reduced proinflammatory cytokines and immunosuppressive cells.

    PubMed

    Lesinski, Gregory B; Reville, Patrick K; Mace, Thomas A; Young, Gregory S; Ahn-Jarvis, Jennifer; Thomas-Ahner, Jennifer; Vodovotz, Yael; Ameen, Zeenath; Grainger, Elizabeth; Riedl, Kenneth; Schwartz, Steven; Clinton, Steven K

    2015-11-01

    We hypothesized that soy phytochemicals may have immunomodulatory properties that may affect prostate carcinogenesis and progression. A randomized, phase II trial was conducted in 32 patients with prostate cancer with asymptomatic biochemical recurrence but no measurable disease on standard staging studies. Patients were randomized to two slices of soy bread (34 mg isoflavones/slice) or soy bread containing almond powder daily as a source of β-glucosidase. Flow cytometry and bioplex assays were used to measure cytokines or immune cell phenotype in blood at baseline (day 0) and following intervention (day 56). Adequate blood samples were available at enrollment and day 56 and evaluated. Multiple plasma cytokines and chemokines were significantly decreased on day 56 versus baseline. Subgroup analysis indicated reduced TH1 (P = 0.028) and myeloid-derived suppressor cell (MDSC)-associated cytokines (P = 0.035). TH2 and TH17 cytokines were not significantly altered. Phenotypic analysis revealed no change in CD8(+) or CD4(+) T cells but showed increased CD56(+) natural killer (NK) cells (P = 0.038). The percentage of cells with a T regulatory cell phenotype (CD4(+)CD25(+)FoxP3(+)) was significantly decreased after 56 days of soy bread (P = 0.0136). Significantly decreased monocytic (CD33(+)HLADR(neg)CD14(+)) MDSC were observed in patients consuming soy bread (P = 0.0056). These data suggest that soy bread modulates systemic soluble and cellular biomarkers consistent with limiting inflammation and suppression of MDSCs. Additional studies to elucidate impact on the carcinogenic process or as a complement to immune-based therapy are required.

  19. Cardiorenal biomarkers in acute heart failure

    PubMed Central

    Choudhary, Rajiv; Gopal, Dipika; Kipper, Ben A.; De La Parra Landa, Alejandro; Lee, Hermineh Aramin Elizabeth; Shah, Saloni; Maisel, Alan S.

    2012-01-01

    Managing patients with heart failure (HF) is a challenging task within itself, but the presence of associated worsening renal function can greatly increase mortality and morbidity. Early diagnosis and treatment is the key to prevent re-hospitalizations and reduce healthcare costs. Biomarkers have long been established as highly sensitive and specific tools in diagnosing and prognosticating patients with HF. Reflecting distinct pathophysiological events and ongoing cellular insult, biomarkers have been proven superior to conventional laboratory tests. Availability of better assays and rapid analysis has allowed the use of biomarkers as point-of-care tests in the emergency department and at the patient's bed-side. Acute HF patients often go on to develop worsening renal function, termed as acute cardiorenal syndrome. The growing breadth of studies has shown the implications of combining multiple biomarkers to better chart outcomes and produce desirable results in such patients. PMID:23097660

  20. Breast cancer screening and biomarkers.

    PubMed

    Brooks, Mai

    2009-01-01

    Annual screening mammograms have been shown to be cost-effective and are credited for the decline in mortality of breast cancer. New technologies including breast magnetic resonance imaging (MRI) may further improve early breast cancer detection in asymptomatic women. Serum tumor markers such as CA 15-3, carcinoembyonic antigen (CEA), and CA 27-29 are ordered in the clinic mainly for disease surveillance, and not useful for detection of localized cancer. This review will discuss blood-based markers and breast-based markers, such as nipple/ductal fluid, with an emphasis on biomarkers for early detection of breast cancer. In the future, it is likely that a combination approach to simultaneously measure multiple markers would be most successful in detecting early breast cancer. Ideally, such a biomarker panel should be able to detect breast cancer in asymptomatic patients, even in the setting of normal mammogram and physical examination results.

  1. Candidate immune biomarkers for radioimmunotherapy.

    PubMed

    Levy, Antonin; Nigro, Giulia; Sansonetti, Philippe J; Deutsch, Eric

    2017-02-28

    Newly available immune checkpoint blockers (ICBs), capable to revert tumor immune tolerance, are revolutionizing the anticancer armamentarium. Recent evidence also established that ionizing radiation (IR) could produce antitumor immune responses, and may as well synergize with ICBs. Multiple radioimmunotherapy combinations are thenceforth currently assessed in early clinical trials. Past examples have highlighted the need for treatment personalization, and there is an unmet need to decipher immunological biomarkers that could allow selecting patients who could benefit from these promising but expensive associations. Recent studies have identified potential predictive and prognostic immune assays at the cellular (tumor microenvironment composition), genomic (mutational/neoantigen load), and peripheral blood levels. Within this review, we collected the available evidence regarding potential personalized immune biomarker-directed radiation therapy strategies that might be used for patient selection in the era of radioimmunotherapy.

  2. Computational biomarker pipeline from discovery to clinical implementation: plasma proteomic biomarkers for cardiac transplantation.

    PubMed

    Cohen Freue, Gabriela V; Meredith, Anna; Smith, Derek; Bergman, Axel; Sasaki, Mayu; Lam, Karen K Y; Hollander, Zsuzsanna; Opushneva, Nina; Takhar, Mandeep; Lin, David; Wilson-McManus, Janet; Balshaw, Robert; Keown, Paul A; Borchers, Christoph H; McManus, Bruce; Ng, Raymond T; McMaster, W Robert

    2013-04-01

    Recent technical advances in the field of quantitative proteomics have stimulated a large number of biomarker discovery studies of various diseases, providing avenues for new treatments and diagnostics. However, inherent challenges have limited the successful translation of candidate biomarkers into clinical use, thus highlighting the need for a robust analytical methodology to transition from biomarker discovery to clinical implementation. We have developed an end-to-end computational proteomic pipeline for biomarkers studies. At the discovery stage, the pipeline emphasizes different aspects of experimental design, appropriate statistical methodologies, and quality assessment of results. At the validation stage, the pipeline focuses on the migration of the results to a platform appropriate for external validation, and the development of a classifier score based on corroborated protein biomarkers. At the last stage towards clinical implementation, the main aims are to develop and validate an assay suitable for clinical deployment, and to calibrate the biomarker classifier using the developed assay. The proposed pipeline was applied to a biomarker study in cardiac transplantation aimed at developing a minimally invasive clinical test to monitor acute rejection. Starting with an untargeted screening of the human plasma proteome, five candidate biomarker proteins were identified. Rejection-regulated proteins reflect cellular and humoral immune responses, acute phase inflammatory pathways, and lipid metabolism biological processes. A multiplex multiple reaction monitoring mass-spectrometry (MRM-MS) assay was developed for the five candidate biomarkers and validated by enzyme-linked immune-sorbent (ELISA) and immunonephelometric assays (INA). A classifier score based on corroborated proteins demonstrated that the developed MRM-MS assay provides an appropriate methodology for an external validation, which is still in progress. Plasma proteomic biomarkers of acute cardiac

  3. Computational Biomarker Pipeline from Discovery to Clinical Implementation: Plasma Proteomic Biomarkers for Cardiac Transplantation

    PubMed Central

    Cohen Freue, Gabriela V.; Meredith, Anna; Smith, Derek; Bergman, Axel; Sasaki, Mayu; Lam, Karen K. Y.; Hollander, Zsuzsanna; Opushneva, Nina; Takhar, Mandeep; Lin, David; Wilson-McManus, Janet; Balshaw, Robert; Keown, Paul A.; Borchers, Christoph H.; McManus, Bruce; Ng, Raymond T.; McMaster, W. Robert

    2013-01-01

    Recent technical advances in the field of quantitative proteomics have stimulated a large number of biomarker discovery studies of various diseases, providing avenues for new treatments and diagnostics. However, inherent challenges have limited the successful translation of candidate biomarkers into clinical use, thus highlighting the need for a robust analytical methodology to transition from biomarker discovery to clinical implementation. We have developed an end-to-end computational proteomic pipeline for biomarkers studies. At the discovery stage, the pipeline emphasizes different aspects of experimental design, appropriate statistical methodologies, and quality assessment of results. At the validation stage, the pipeline focuses on the migration of the results to a platform appropriate for external validation, and the development of a classifier score based on corroborated protein biomarkers. At the last stage towards clinical implementation, the main aims are to develop and validate an assay suitable for clinical deployment, and to calibrate the biomarker classifier using the developed assay. The proposed pipeline was applied to a biomarker study in cardiac transplantation aimed at developing a minimally invasive clinical test to monitor acute rejection. Starting with an untargeted screening of the human plasma proteome, five candidate biomarker proteins were identified. Rejection-regulated proteins reflect cellular and humoral immune responses, acute phase inflammatory pathways, and lipid metabolism biological processes. A multiplex multiple reaction monitoring mass-spectrometry (MRM-MS) assay was developed for the five candidate biomarkers and validated by enzyme-linked immune-sorbent (ELISA) and immunonephelometric assays (INA). A classifier score based on corroborated proteins demonstrated that the developed MRM-MS assay provides an appropriate methodology for an external validation, which is still in progress. Plasma proteomic biomarkers of acute cardiac

  4. The cytokines cardiotrophin-like cytokine/cytokine-like factor-1 (CLC/CLF) and ciliary neurotrophic factor (CNTF) differ in their receptor specificities.

    PubMed

    Tormo, Aurélie Jeanne; Letellier, Marie-Claude; Lissilaa, Rami; Batraville, Laurie-Anne; Sharma, Mukut; Ferlin, Walter; Elson, Greg; Crabé, Sandrine; Gauchat, Jean-François

    2012-12-01

    Ciliary neurotrophic factor (CNTF) and cardiotrophin-like cytokine (CLC) are two cytokines with neurotrophic and immunomodulatory activities. CNTF is a cytoplasmic factor believed to be released upon cellular damage, while CLC requires interaction with a soluble cytokine receptor, cytokine-like factor 1 (CLF), to be efficiently secreted. Both cytokines activate a receptor complex comprising the cytokine binding CNTF receptor α (CNTFRα) and two signaling chains namely, leukemia inhibitory factor receptor β (LIFRβ) and gp130. Human CNTF can recruit and activate an alternative receptor in which CNTFRα is substituted by IL-6Rα. As both CNTF and CLC have immune-regulatory activities in mice, we compared their ability to recruit mouse receptors comprising both gp130 and LIFRβ signaling chains and either IL-6Rα or IL-11Rα which, unlike CNTFRα, are expressed by immune cells. Our results indicate that 1) mouse CNTF, like its human homologue, can activate cells expressing gp130/LIFRβ with either CNTFRα or IL-6Rα and, 2) CLC/CLF is more restricted in its specificity in that it activates only the tripartite CNTFR. Several gp130 signaling cytokines influence T helper cell differentiation. We therefore investigated the effect of CNTF on CD4 T cell cytokine production. We observed that CNTF increased the number of IFN-γ producing CD4 T cells. As IFN-γ is considered a mediator of the therapeutic effect of IFN-β in multiple sclerosis, induction of IFN-γ by CNTF may contribute to the beneficial immunomodulatory effect of CNTF in mouse multiple sclerosis models. Together, our results indicate that CNTF activates the same tripartite receptors in mouse and human cells and further validate rodent models for pre-clinical investigation of CNTF and CNTF derivatives. Furthermore, CNTF and CLC/CLF differ in their receptor specificities. The receptor α chain involved in the immunomodulatory effects of CLC/CLF remains to be identified.

  5. Computational and Empirical Studies Predict Mycobacterium tuberculosis-Specific T Cells as a Biomarker for Infection Outcome

    PubMed Central

    Gong, Chang; Mankad, Shawn; McCrone, John T.; Lin, Philana Ling; Linderman, Jennifer J.; Flynn, JoAnne L.; Kirschner, Denise E.

    2016-01-01

    Identifying biomarkers for tuberculosis (TB) is an ongoing challenge in developing immunological correlates of infection outcome and protection. Biomarker discovery is also necessary for aiding design and testing of new treatments and vaccines. To effectively predict biomarkers for infection progression in any disease, including TB, large amounts of experimental data are required to reach statistical power and make accurate predictions. We took a two-pronged approach using both experimental and computational modeling to address this problem. We first collected 200 blood samples over a 2- year period from 28 non-human primates (NHP) infected with a low dose of Mycobacterium tuberculosis. We identified T cells and the cytokines that they were producing (single and multiple) from each sample along with monkey status and infection progression data. Machine learning techniques were used to interrogate the experimental NHP datasets without identifying any potential TB biomarker. In parallel, we used our extensive novel NHP datasets to build and calibrate a multi-organ computational model that combines what is occurring at the site of infection (e.g., lung) at a single granuloma scale with blood level readouts that can be tracked in monkeys and humans. We then generated a large in silico repository of in silico granulomas coupled to lymph node and blood dynamics and developed an in silico tool to scale granuloma level results to a full host scale to identify what best predicts Mycobacterium tuberculosis (Mtb) infection outcomes. The analysis of in silico blood measures identifies Mtb-specific frequencies of effector T cell phenotypes at various time points post infection as promising indicators of infection outcome. We emphasize that pairing wetlab and computational approaches holds great promise to accelerate TB biomarker discovery. PMID:27065304

  6. Computational and empirical studies predict Mycobacterium tuberculosis-specific T cells as a biomarker for infection outcome

    DOE PAGES

    Marino, Simeone; Gideon, Hannah P.; Gong, Chang; ...

    2016-04-11

    Identifying biomarkers for tuberculosis (TB) is an ongoing challenge in developing immunological correlates of infection outcome and protection. Biomarker discovery is also necessary for aiding design and testing of new treatments and vaccines. To effectively predict biomarkers for infection progression in any disease, including TB, large amounts of experimental data are required to reach statistical power and make accurate predictions. We took a two-pronged approach using both experimental and computational modeling to address this problem. We first collected 200 blood samples over a 2-year period from 28 non-human primates (NHP) infected with a low dose of Mycobacterium tuberculosis. We identifiedmore » T cells and the cytokines that they were producing (single and multiple) from each sample along with monkey status and infection progression data. Machine learning techniques were used to interrogate the experimental NHP datasets without identifying any potential TB biomarker. In parallel, we used our extensive novel NHP datasets to build and calibrate a multi-organ computational model that combines what is occurring at the site of infection (e.g., lung) at a single granuloma scale with blood level readouts that can be tracked in monkeys and humans. We then generated a large in silico repository of in silico granulomas coupled to lymph node and blood dynamics and developed an in silico tool to scale granuloma level results to a full host scale to identify what best predicts Mycobacterium tuberculosis (Mtb) infection outcomes. The analysis of in silico blood measures identifies Mtb-specific frequencies of effector T cell phenotypes at various time points post infection as promising indicators of infection outcome. As a result, we emphasize that pairing wetlab and computational approaches holds great promise to accelerate TB biomarker discovery.« less

  7. Computational and empirical studies predict Mycobacterium tuberculosis-specific T cells as a biomarker for infection outcome

    SciTech Connect

    Marino, Simeone; Gideon, Hannah P.; Gong, Chang; Mankad, Shawn; McCrone, John T.; Lin, Philana Ling; Linderman, Jennifer J.; Flynn, JoAnne L.; Kirschner, Denise E.

    2016-04-11

    Identifying biomarkers for tuberculosis (TB) is an ongoing challenge in developing immunological correlates of infection outcome and protection. Biomarker discovery is also necessary for aiding design and testing of new treatments and vaccines. To effectively predict biomarkers for infection progression in any disease, including TB, large amounts of experimental data are required to reach statistical power and make accurate predictions. We took a two-pronged approach using both experimental and computational modeling to address this problem. We first collected 200 blood samples over a 2-year period from 28 non-human primates (NHP) infected with a low dose of Mycobacterium tuberculosis. We identified T cells and the cytokines that they were producing (single and multiple) from each sample along with monkey status and infection progression data. Machine learning techniques were used to interrogate the experimental NHP datasets without identifying any potential TB biomarker. In parallel, we used our extensive novel NHP datasets to build and calibrate a multi-organ computational model that combines what is occurring at the site of infection (e.g., lung) at a single granuloma scale with blood level readouts that can be tracked in monkeys and humans. We then generated a large in silico repository of in silico granulomas coupled to lymph node and blood dynamics and developed an in silico tool to scale granuloma level results to a full host scale to identify what best predicts Mycobacterium tuberculosis (Mtb) infection outcomes. The analysis of in silico blood measures identifies Mtb-specific frequencies of effector T cell phenotypes at various time points post infection as promising indicators of infection outcome. As a result, we emphasize that pairing wetlab and computational approaches holds great promise to accelerate TB biomarker discovery.

  8. Development of silicon photonic microring resonator biosensors for multiplexed cytokine assays and in vitro diagnostics

    NASA Astrophysics Data System (ADS)

    Luchansky, Matthew Sam

    In order to guide critical care therapies that are personalized to a patient's unique disease state, a diagnostic or theranostic medical device must quickly provide a detailed biomolecular understanding of disease onset and progression. This detailed molecular understanding of cellular processes and pathways requires the ability to measure multiple analytes in parallel. Though many traditional sensing technologies for biomarker analysis and fundamental biological studies (i.e. enzyme-linked immunosorbent assays, real-time polymerase chain reaction, etc.) rely on single-parameter measurements, it has become increasingly clear that the inherent complexity of many human illnesses and pathways necessitates quantitative and multiparameter analysis of biological samples. Currently used analytical methods are deficient in that they often provide either highly quantitative data for a single biomarker or qualitative data for many targets, but methods that simultaneously provide highly quantitative analysis of many targets have yet to be adequately developed. Fields such as medical diagnostics and cellular biology would benefit greatly from a technology that enables rapid, quantitative and reproducible assays for many targets within a single sample. In an effort to fill this unmet need, this doctoral dissertation describes the development of a clinically translational biosensing technology based on silicon photonics and developed in the chemistry research laboratory of Ryan C. Bailey. Silicon photonic microring resonators, a class of high-Q optical sensors, represent a promising platform for rapid, multiparameter in vitro measurements. The original device design utilizes 32-ring arrays for real-time biomolecular sensing without fluorescent labels, and these optical biosensors display great potential for more highly multiplexed (100s-1000s) measurements based on the impressive scalability of silicon device fabrication. Though this technology can be used to detect a variety of

  9. Biomarkers in clinical medicine.

    PubMed

    Chen, Xiao-He; Huang, Shuwen; Kerr, David

    2011-01-01

    Biomarkers have been used in clinical medicine for decades. With the rise of genomics and other advances in molecular biology, biomarker studies have entered a whole new era and hold promise for early diagnosis and effective treatment of many diseases. A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes or pharmacologic responses to a therapeutic intervention (1). They can be classified into five categories based on their application in different disease stages: 1) antecedent biomarkers to identify the risk of developing an illness, 2) screening biomarkers to screen for subclinical disease, 3) diagnostic biomarkers to recognize overt disease, 4) staging biomarkers to categorise disease severity, and 5) prognostic biomarkers to predict future disease course, including recurrence, response to therapy, and monitoring efficacy of therapy (1). Biomarkers can indicate a variety of health or disease characteristics, including the level or type of exposure to an environmental factor, genetic susceptibility, genetic responses to environmental exposures, markers of subclinical or clinical disease, or indicators of response to therapy. This chapter will focus on how these biomarkers have been used in preventive medicine, diagnostics, therapeutics and prognostics, as well as public health and their current status in clinical practice.

  10. Inflammatory cytokines in atherosclerosis: current therapeutic approaches.

    PubMed

    Tousoulis, Dimitris; Oikonomou, Evangelos; Economou, Evangelos K; Crea, Filippo; Kaski, Juan Carlos

    2016-06-07

    The notion of atherosclerosis as a chronic inflammatory disease has intensified research on the role of cytokines and the way these molecules act and interact to initiate and sustain inflammation in the microenvironment of an atherosclerotic plaque. Cytokines are expressed by all types of cells involved in the pathogenesis of atherosclerosis, act on a variety of targets exerting multiple effects, and are largely responsible for the crosstalk among endothelial, smooth muscle cells, leucocytes, and other vascular residing cells. It is now understood that widely used drugs such as statins, aspirin, methotrexate, and colchicine act in an immunomodulatory way that may beneficially affect atherogenesis and/or cardiovascular disease progression. Moreover, advancement in pharmaceutical design has enabled the production of highly specific antibodies against key molecules involved in the perpetuation of the inflammatory cascade, raising hope for advances in the treatment of atherosclerosis. This review describes the actions and effects of these agents, their potential clinical significance, and future prospects.

  11. Biomarkers in Japanese Encephalitis: A Review

    PubMed Central

    Kant Upadhyay, Ravi

    2013-01-01

    JE is a flavivirus generated dreadful CNS disease which causes high mortality in various pediatric groups. JE disease is currently diagnosed by measuring the level of viral antigens and virus neutralization IgM antibodies in blood serum and CSF by ELISA. However, it is not possible to measure various disease-identifying molecules, structural and molecular changes occurred in tissues, and cells by using such routine methods. However, few important biomarkers such as cerebrospinal fluid, plasma, neuro-imaging, brain mapping, immunotyping, expression of nonstructural viral proteins, systematic mRNA profiling, DNA and protein microarrays, active caspase-3 activity, reactive oxygen species and reactive nitrogen species, levels of stress-associated signaling molecules, and proinflammatory cytokines could be used to confirm the disease at an earlier stage. These biomarkers may also help to diagnose mutant based environment specific alterations in JEV genotypes causing high pathogenesis and have immense future applications in diagnostics. There is an utmost need for the development of new more authentic, appropriate, and reliable physiological, immunological, biochemical, biophysical, molecular, and therapeutic biomarkers to confirm the disease well in time to start the clinical aid to the patients. Hence, the present review aims to discuss new emerging biomarkers that could facilitate more authentic and fast diagnosis of JE disease and its related disorders in the future. PMID:24455705

  12. Circulating glioma biomarkers

    PubMed Central

    Kros, Johan M.; Mustafa, Dana M.; Dekker, Lennard J.M.; Sillevis Smitt, Peter A.E.; Luider, Theo M.; Zheng, Ping-Pin

    2015-01-01

    Validated biomarkers for patients suffering from gliomas are urgently needed for standardizing measurements of the effects of treatment in daily clinical practice and trials. Circulating body fluids offer easily accessible sources for such markers. This review highlights various categories of tumor-associated circulating biomarkers identified in blood and cerebrospinal fluid of glioma patients, including circulating tumor cells, exosomes, nucleic acids, proteins, and oncometabolites. The validation and potential clinical utility of these biomarkers is briefly discussed. Although many candidate circulating protein biomarkers were reported, none of these have reached the required validation to be introduced for clinical practice. Recent developments in tracing circulating tumor cells and their derivatives as exosomes and circulating nuclear acids may become more successful in providing useful biomarkers. It is to be expected that current technical developments will contribute to the finding and validation of circulating biomarkers. PMID:25253418

  13. Photonic crystal enhanced cytokine immunoassay.

    PubMed

    Mathias, Patrick C; Ganesh, Nikhil; Cunningham, Brian T

    2009-01-01

    Photonic crystal surfaces are demonstrated as a means for enhancing the detection sensitivity and resolution for assays that use a fluorescent tag to quantify the concentration of an analyte protein molecule in a liquid test sample. Computer modeling of the spatial distribution of resonantly coupled electromagnetic fields on the photonic crystal surface are used to estimate the magnitude of enhancement factor compared to performing the same fluorescent assay on a plain glass surface, and the photonic crystal structure is fabricated and tested to experimentally verify the performance using a sandwich immunoassay for the protein Tumor Necrosis Factor-alpha (TNF-alpha). The demonstrated photonic crystal fabrication method utilizes a nanoreplica molding technique that allows for large-area inexpensive fabrication of the structure in a format that is compatible with confocal microarray laser scanners. The signal-to-noise ratio for fluorescent spots on the photonic crystal is increased by at least five-fold relative to the glass slide, allowing a TNF-alpha concentration of 1.6 pg/ml to be distinguished from noise on a photonic crystal surface. In addition, the minimum quantitative limit of detection on the photonic crystal surface is one-third the limit on the glass slide - a decrease from 18 pg/ml to 6 pg/ml. The increased performance of the immunoassay allows for more accurate quantitation of physiologically relevant concentrations of TNF-alpha in a protein microarray format that can be expanded to multiple cytokines.

  14. Ensuring continued progress in biomarkers for amyotrophic lateral sclerosis

    PubMed Central

    Turner, Martin R; Benatar, Michael

    2015-01-01

    Multiple candidate biomarkers for amyotrophic lateral sclerosis (ALS) have emerged across a range of platforms. Replication of results, however, has been absent in all but a few cases, and the range of control samples has been limited. If progress toward clinical translation is to continue, the specific biomarker needs of ALS, which differ from those of other neurodegenerative disorders, as well as the challenges inherent to longitudinal ALS biomarker cohorts, must be understood. Appropriate application of multimodal approaches, international collaboration, presymptomatic studies, and biomarker integration into future therapeutic trials are among the essential priorities going forward. PMID:25288265

  15. Biomarkers for Parkinson's disease.

    PubMed

    Sherer, Todd B

    2011-04-20

    Biomarkers for detecting the early stages of Parkinson's disease (PD) could accelerate development of new treatments. Such biomarkers could be used to identify individuals at risk for developing PD, to improve early diagnosis, to track disease progression with precision, and to test the efficacy of new treatments. Although some progress has been made, there are many challenges associated with developing biomarkers for detecting PD in its earliest stages.

  16. Erythropoietin, forkhead proteins, and oxidative injury: biomarkers and biology.

    PubMed

    Maiese, Kenneth; Hou, Jinling; Chong, Zhao Zhong; Shang, Yan Chen

    2009-10-02

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO), and members of the mammalian forkhead transcription factors of the O class (FoxOs), may offer the greatest promise for new treatment regimens, since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. Yet, EPO and FoxOs may sometimes have unexpected and undesirable effects that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as the complex role that EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.

  17. Erythropoietin, Forkhead Proteins, and Oxidative Injury: Biomarkers and Biology

    PubMed Central

    Maiese, Kenneth; Hou, Jinling; Chong, Zhao Zhong; Shang, Yan Chen

    2009-01-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO), and members of the mammalian forkhead transcription factors of the O class (FoxOs), may offer the greatest promise for new treatment regimens, since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. Yet, EPO and FoxOs may sometimes have unexpected and undesirable effects that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as the complex role that EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation. PMID:19802503

  18. The Biomarker Guide

    NASA Astrophysics Data System (ADS)

    Peters, K. E.; Walters, C. C.; Moldowan, J. M.

    2005-01-01

    Biomarkers are compounds found in crude oil with structures inherited from once-living organisms. They persist in oil spills, refinery products and archaeological artifacts, and can be used to identify the origin, geological age and environmental conditions prevalent during their formation and alteration. These two volumes will be an invaluable resource for geologists, petroleum geochemists, biogeochemists, environmental and forensic scientists, natural product chemists and archaeologists. The first of two volumes of The Biomarker Guide discusses the origins of biomarkers and introduces basic chemical principles relevant to their study. It goes on to discuss analytical techniques, and the applications of biomarkers in environmental and archaeological problems.

  19. A novel retinoic acid, catechin hydrate and mustard oil-based emulsion for enhanced cytokine and antibody responses against multiple strains of HIV-1 following mucosal and systemic vaccinations

    PubMed Central

    Yu, Mingke; Vajdy, Michael

    2011-01-01

    Non-replicating protein- or DNA-based antigens generally require immune-enhancing adjuvants and delivery systems. It has been particularly difficult to raise antibodies against gp120 of HIV-1, which constitutes an important approach in HIV vaccine design. While almost all effort in adjuvant research has focused on mimicking the pathogens and the danger signals they engender in the host, relatively little effort has been spent on nutritive approaches. In this study, a new nutritive immune-enhancing delivery system (NIDS) composed of vitamin A, a polyphenol-flavonoid catechin hydrate, and mustard oil was tested for its adjuvant effect in immune responses against the gp120 protein of HIV-1CN54. Following a combination of two mucosal and two systemic vaccinations of mice, we found significant enhancement of both local and systemic antibodies as well as cytokine responses. These data have important implications for vaccine and adjuvant design against HIV-1 and other pathogens. PMID:21272602

  20. Cytokine cascade and networks among MSM HIV seroconverters: implications for early immunotherapy

    PubMed Central

    Huang, Xiaojie; Liu, Xinchao; Meyers, Kathrine; Liu, Lihong; Su, Bin; Wang, Pengfei; Li, Zhen; Li, Lan; Zhang, Tong; Li, Ning; Chen, Hui; Li, Haiying; Wu, Hao

    2016-01-01

    The timing, intensity and duration of the cytokine cascade and reorganized interrelations in cytokine networks are not fully understood during acute HIV-1 infection (AHI). Using sequential plasma samples collected over three years post-infection in a cohort of MSM HIV-1 seroconvertors, we determined the early kinetics of cytokine levels during FiebigI-IV stages using Luminex-based multiplex assays. Cytokines were quantified and relationships between cytokines were assessed by Spearman correlation. Compared with HIV-negative MSM, HIV-infected individuals had significantly increased multiple plasma cytokines, including GM-CSF, IFN-α2, IL-12p70, IP-10 and VEGF, during both acute and chronic stages of infection. Furthermore, rapid disease progressors (RDPs) had earlier and more robust cytokine storms, compared with slow disease progressors (SDPs) (49.6 days vs. 74.9 days, respectively; 6.7-fold vs. 3.7-fold change of cytokines, respectively), suggesting the faster and stronger cytokine storm during AHI could promote disease progression. On the other hand, HIV-1 infection induced more interlocked cytokines network, establishing new strong correlations and imposing a higher rigidity. There were, respectively, 146 (44.9%) statistically significant correlations of cytokines in RDPs and 241 (74.2%) in SDPs (p < 0.001). This study suggests that immunomodulatory interventions aimed at controlling cytokine storm in AHI may be beneficial to slow eventual disease progression. PMID:27830756

  1. Characterization of renal biomarkers for use in clinical trials: biomarker evaluation in healthy volunteers

    PubMed Central

    Brott, David A; Adler, Scott H; Arani, Ramin; Lovick, Susan C; Pinches, Mark; Furlong, Stephen T

    2014-01-01

    Background Several preclinical urinary biomarkers have been qualified and accepted by the health authorities (US Food and Drug Administration, European Medicines Agency, and Pharmaceuticals and Medical Devices Agency) for detecting drug-induced kidney injury during preclinical toxicologic testing. Validated human assays for many of these biomarkers have become commercially available, and this study was designed to characterize some of the novel clinical renal biomarkers. The objective of this study was to evaluate clinical renal biomarkers in a typical Phase I healthy volunteer population to determine confidence intervals (pilot reference intervals), intersubject and intrasubject variability, effects of food intake, effect of sex, and vendor assay comparisons. Methods Spot urine samples from 20 male and 19 female healthy volunteers collected on multiple days were analyzed using single analyte and multiplex assays. The following analytes were measured: α-1-microglobulin, β-2-microglobulin, calbindin, clusterin, connective tissue growth factor, creatinine, cystatin C, glutathione S-transferase-α, kidney injury marker-1, microalbumin, N-acetyl-β-(D) glucosaminidase, neutrophil gelatinase-associated lipocalin, osteopontin, Tamm-Horsfall urinary glycoprotein, tissue inhibitor of metalloproteinase 1, trefoil factor 3, and vascular endothelial growth factor. Results Confidence intervals were determined from the single analyte and multiplex assays. Intersubject and intrasubject variability ranged from 38% to 299% and from 29% to 82% for biomarker concentration, and from 24% to 331% and from 10% to 67% for biomarker concentration normalized to creatinine, respectively. There was no major effect of food intake or sex. Single analyte and multiplex assays correlated with r2≥0.700 for five of six biomarkers when evaluating biomarker concentration, but for only two biomarkers when evaluating concentration normalized to creatinine. Conclusion Confidence intervals as well as

  2. Quantitative multiplex detection of pathogen biomarkers

    DOEpatents

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.

    2016-02-09

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  3. Quantitative multiplex detection of pathogen biomarkers

    DOEpatents

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  4. Multisite comparison of high-sensitivity multiplex cytokine assays.

    PubMed

    Breen, Elizabeth Crabb; Reynolds, Sandra M; Cox, Christopher; Jacobson, Lisa P; Magpantay, Larry; Mulder, Candice B; Dibben, Oliver; Margolick, Joseph B; Bream, Jay H; Sambrano, Elise; Martínez-Maza, Otoniel; Sinclair, Elizabeth; Borrow, Persephone; Landay, Alan L; Rinaldo, Charles R; Norris, Philip J

    2011-08-01

    The concentrations of cytokines in human serum and plasma can provide valuable information about in vivo immune status, but low concentrations often require high-sensitivity assays to permit detection. The recent development of multiplex assays, which can measure multiple cytokines in one small sample, holds great promise, especially for studies in which limited volumes of stored serum or plasma are available. Four high-sensitivity cytokine multiplex assays on a Luminex (Bio-Rad, BioSource, Linco) or electrochemiluminescence (Meso Scale Discovery) platform were evaluated for their ability to detect circulating concentrations of 13 cytokines, as well as for laboratory and lot variability. Assays were performed in six different laboratories utilizing archived serum from HIV-uninfected and -infected subjects from the Multicenter AIDS Cohort Study (MACS) and the Women's Interagency HIV Study (WIHS) and commercial plasma samples spanning initial HIV viremia. In a majority of serum samples, interleukin-6 (IL-6), IL-8, IL-10, and tumor necrosis factor alpha were detectable with at least three kits, while IL-1β was clearly detected with only one kit. No single multiplex panel detected all cytokines, and there were highly significant differences (P < 0.001) between laboratories and/or lots with all kits. Nevertheless, the kits generally detected similar patterns of cytokine perturbation during primary HIV viremia. This multisite comparison suggests that current multiplex assays vary in their ability to measure serum and/or plasma concentrations of cytokines and may not be sufficiently reproducible for repeated determinations over a long-term study or in multiple laboratories but may be useful for longitudinal studies in which relative, rather than absolute, changes in cytokines are important.

  5. A fully integrated electrochemical biosensor platform fabrication process for cytokines detection.

    PubMed

    Baraket, Abdoullatif; Lee, Michael; Zine, Nadia; Sigaud, Monique; Bausells, Joan; Errachid, Abdelhamid

    2017-07-15

    Interleukin-1b (IL-1b) and interleukin-10 (IL-10) biomarkers are one of many antigens that are secreted in acute stages of inflammation after left ventricle assisted device (LVAD) implantation for patients suffering from heart failure (HF). In the present study, we have developed a fully integrated electrochemical biosensor platform for cytokine detection at minute concentrations. Using eight gold working microelectrodes (WEs) the design will increase the sensitivity of detection, decrease the time of measurements, and allow a simultaneous detection of varying cytokine biomarkers. The biosensor platform was fabricated onto silicon substrates using silicon technology. Monoclonal antibodies (mAb) of anti-human IL-1b and anti-human IL-10 were electroaddressed onto the gold WEs through functionalization with 4-carboxymethyl aryl diazonium (CMA). Cyclic voltammetry (CV) was applied during the WE functionalization process to characterize the gold WE surface properties. Finally, electrochemical impedance spectroscopy (EIS) characterized the modified gold WE. The biosensor platform was highly sensitive to the corresponding cytokines and no interference with other cytokines was observed. Both cytokines: IL-10 and IL-1b were detected within the range of 1pgmL(-1) to 15pgmL(-1). The present electrochemical biosensor platform is very promising for multi-detection of biomolecules which can dramatically decrease the time of analysis. This can provide data to clinicians and doctors concerning cytokines secretion at minute concentrations and the prediction of the first signs of inflammation after LVAD implantation.

  6. Emerging Cytokine Biosensors with Optical Detection Modalities and Nanomaterial-Enabled Signal Enhancement.

    PubMed

    Singh, Manpreet; Truong, Johnson; Reeves, W Brian; Hahm, Jong-In

    2017-02-22

    Protein biomarkers, especially cytokines, play a pivotal role in the diagnosis and treatment of a wide spectrum of diseases. Therefore, a critical need for advanced cytokine sensors has been rapidly growing and will continue to expand to promote clinical testing, new biomarker development, and disease studies. In particular, sensors employing transduction principles of various optical modalities have emerged as the most common means of detection. In typical cytokine assays which are based on the binding affinities between the analytes of cytokines and their specific antibodies, optical schemes represent the most widely used mechanisms, with some serving as the gold standard against which all existing and new sensors are benchmarked. With recent advancements in nanoscience and nanotechnology, many of the recently emerging technologies for cytokine detection exploit various forms of nanomaterials for improved sensing capabilities. Nanomaterials have been demonstrated to exhibit exceptional optical properties unique to their reduced dimensionality. Novel sensing approaches based on the newly identified properties of nanomaterials have shown drastically improved performances in both the qualitative and quantitative analyses of cytokines. This article brings together the fundamentals in the literature that are central to different optical modalities developed for cytokine detection. Recent advancements in the applications of novel technologies are also discussed in terms of those that enable highly sensitive and multiplexed cytokine quantification spanning a wide dynamic range. For each highlighted optical technique, its current detection capabilities as well as associated challenges are discussed. Lastly, an outlook for nanomaterial-based cytokine sensors is provided from the perspective of optimizing the technologies for sensitivity and multiplexity as well as promoting widespread adaptations of the emerging optical techniques by lowering high thresholds currently

  7. Emerging Cytokine Biosensors with Optical Detection Modalities and Nanomaterial-Enabled Signal Enhancement

    PubMed Central

    Singh, Manpreet; Truong, Johnson; Reeves, W. Brian; Hahm, Jong-in

    2017-01-01

    Protein biomarkers, especially cytokines, play a pivotal role in the diagnosis and treatment of a wide spectrum of diseases. Therefore, a critical need for advanced cytokine sensors has been rapidly growing and will continue to expand to promote clinical testing, new biomarker development, and disease studies. In particular, sensors employing transduction principles of various optical modalities have emerged as the most common means of detection. In typical cytokine assays which are based on the binding affinities between the analytes of cytokines and their specific antibodies, optical schemes represent the most widely used mechanisms, with some serving as the gold standard against which all existing and new sensors are benchmarked. With recent advancements in nanoscience and nanotechnology, many of the recently emerging technologies for cytokine detection exploit various forms of nanomaterials for improved sensing capabilities. Nanomaterials have been demonstrated to exhibit exceptional optical properties unique to their reduced dimensionality. Novel sensing approaches based on the newly identified properties of nanomaterials have shown drastically improved performances in both the qualitative and quantitative analyses of cytokines. This article brings together the fundamentals in the literature that are central to different optical modalities developed for cytokine detection. Recent advancements in the applications of novel technologies are also discussed in terms of those that enable highly sensitive and multiplexed cytokine quantification spanning a wide dynamic range. For each highlighted optical technique, its current detection capabilities as well as associated challenges are discussed. Lastly, an outlook for nanomaterial-based cytokine sensors is provided from the perspective of optimizing the technologies for sensitivity and multiplexity as well as promoting widespread adaptations of the emerging optical techniques by lowering high thresholds currently

  8. The IL-2 cytokine family in cancer immunotherapy.

    PubMed

    Sim, Geok Choo; Radvanyi, Laszlo

    2014-08-01

    The use of cytokines from the IL-2 family (also called the common γ chain cytokine family) such as interleukin (IL)-2, IL-7, IL-15, and IL-21 to activate the immune system of cancer patients is one of the most important areas of current cancer immunotherapy research. The infusion of IL-2 at low or high doses for multiple cycles in patients with metastatic melanoma and renal cell carcinoma was the first successful immunotherapy for cancer proving that the immune system could completely eradicate tumor cells under certain conditions. The initial clinical success observed in some IL-2-treated patients encouraged further efforts focused on developing and improving the application of other IL-2 family cytokines (IL-4, IL-7, IL-9, IL-15, and IL-21) that have unique biological effects playing important roles in the development, proliferation, and function of specific subsets of lymphocytes at different stages of differentiation with some overlapping effects with IL-2. IL-7, IL-15, and IL-21, as well as mutant forms or variants of IL-2, are now also being actively pursued in the clinic with some measured early successes. In this review, we summarize the current knowledge on the biology of the IL-2 cytokine family focusing on IL-2, IL-15 and IL-21. We discuss the similarities and differences between the signaling pathways mediated by these cytokines and their immunomodulatory effects on different subsets of immune cells. Current clinical application of IL-2, IL-15 and IL-21 either as single agents or in combination with other biological agents and the limitation and potential drawbacks of these cytokines for cancer immunotherapy are also described. Lastly, we discuss the future direction of research on these cytokines, such as the development of new cytokine mutants and variants for improving cytokine-based immunotherapy through differential binding to specific receptor subunits.

  9. Potential Biomarkers of Fat Loss as a Feature of Cancer Cachexia

    PubMed Central

    Ebadi, Maryam; Mazurak, Vera C.

    2015-01-01

    Fat loss is associated with shorter survival and reduced quality of life in cancer patients. Effective intervention for fat loss in cachexia requires identification of the condition using prognostic biomarkers for early detection and prevention of further depletion. No biomarkers of fat mass alterations have been defined for application to the neoplastic state. Several inflammatory cytokines have been implicated in mediating fat loss associated with cachexia; however, plasma levels may not relate to adipose atrophy. Zinc-α2-glycoprotein may be a local catabolic mediator within adipose tissue rather than serving as a plasma biomarker of fat loss. Plasma glycerol and leptin associate with adipose tissue atrophy and mass, respectively; however, no study has evaluated their potential as a prognostic biomarker of cachexia-associated fat loss. This review confirms the need for further studies to identify valid prognostic biomarkers to identify loss of fat based on changes in plasma levels of biomarkers. PMID:26508820

  10. Identification of Predictive Early Biomarkers for Sterile-SIRS after Cardiovascular Surgery.

    PubMed

    Stoppelkamp, Sandra; Veseli, Kujtim; Stang, Katharina; Schlensak, Christian; Wendel, Hans Peter; Walker, Tobias

    2015-01-01

    Systemic inflammatory response syndrome (SIRS) is a common complication after cardiovascular surgery that in severe cases can lead to multiple organ dysfunction syndrome and even death. We therefore set out to identify reliable early biomarkers for SIRS in a prospective small patient study for timely intervention. 21 Patients scheduled for planned cardiovascular surgery were recruited in the study, monitored for signs of SIRS and blood samples were taken to investigate biomarkers at pre-assigned time points: day of admission, start of surgery, end of surgery, days 1, 2, 3, 5 and 8 post surgery. Stored plasma and cryopreserved blood samples were analyzed for cytokine expression (IL1β, IL2, IL6, IL8, IL10, TNFα, IFNγ), other pro-inflammatory markers (sCD163, sTREM-1, ESM-1) and response to endotoxin. Acute phase proteins CRP, PCT and pro-inflammatory cytokines IL6 and IL8 were significantly increased (p<0.001) at the end of surgery in all patients but could not distinguish between groups. Normalization of samples revealed significant increases in IL1β changes (p<0.05) and decreased responses to endotoxin (p<0.01) in the SIRS group at the end of surgery. Soluble TREM-1 plasma concentrations were significantly increased in patients with SIRS (p<0.01). This small scale patient study could show that common sepsis markers PCT, CRP, IL6 and TNFα had low predictive value for early diagnosis of SIRS after cardiovascular surgery. A combination of normalized IL1β plasma levels, responses to endotoxin and soluble TREM-1 plasma concentrations at the end of surgery are predictive markers of SIRS development in this small scale study and could act as an indicator for starting early therapeutic interventions.

  11. Respiratory Toxicity Biomarkers

    EPA Science Inventory

    The advancement in high throughput genomic, proteomic and metabolomic techniques have accelerated pace of lung biomarker discovery. A recent growth in the discovery of new lung toxicity/disease biomarkers have led to significant advances in our understanding of pathological proce...

  12. Biology of chronic graft-vs-host disease: Immune mechanisms and progress in biomarker discovery

    PubMed Central

    Presland, Richard B

    2016-01-01

    Chronic graft-vs-host disease (cGVHD) is the leading cause of long-term morbidity and mortality following allogeneic hematopoietic stem cell transplantation. It presents as a chronic inflammatory and sclerotic autoimmune-like condition that most frequently affects the skin, oral mucosa, liver, eyes and gastrointestinal tract. Both clinical and animal studies have shown that multiple T cell subsets including Th1, Th2, Th17, T follicular helper cells and regulatory T-cells play some role in cGVHD development and progression; B cells also play an important role in the disease including the production of antibodies to HY and nuclear antigens that can cause serious tissue damage. An array of cytokines and chemokines produced by different types of immune cells also mediate tissue inflammation and damage of cGVHD target tissues such as the skin and oral cavity. Many of these same immune regulators have been studied as candidate cGVHD biomarkers. Recent studies suggest that some of these biomarkers may be useful for determining disease prognosis and planning long-term clinical follow-up of cGVHD patients. PMID:28058210

  13. Cytokine therapy for craniosynostosis.

    PubMed

    Mooney, Mark P; Moursi, Amr M; Opperman, Lynne A; Siegel, Michael I

    2004-03-01

    The birth prevalence of craniosynostosis (premature suture fusion) is 300-500 per 1,000,000 live births. Surgical management involves the release of the synostosed suture. In many cases, however, the suturectomy site rapidly reossifies, further restricts the growing brain and alters craniofacial growth. This resynostosis requires additional surgery, which increases patient morbidity and mortality. New findings in bone biology and molecular pathways involved with suture fusion, combined with novel tissue engineering techniques, may allow the design of targeted and complementary therapies to decrease complications inherent in high-risk surgical procedures. This paper selectively reviews recent advances in i) identifying genetic mutations and the aetiopathogenesis of a number of craniosynostotic conditions; ii) cranial suture biology and molecular biochemical pathways involved in suture fusion; and iii) the design, development and application of various vehicles and tissue engineered constructs to deliver cytokines and genes to cranial sutures. Such biologically based therapies may be used as surgical adjuncts to rescue fusing sutures or help manage postoperative resynostosis.

  14. Biomarkers in Parkinson's disease.

    PubMed

    Morgan, John C; Mehta, Shyamal H; Sethi, Kapil D

    2010-11-01

    Biomarkers are objectively measured characteristics that are indicators of normal biological processes, pathogenic processes, or responses to therapeutic interventions. To date, clinical assessment remains the gold standard in the diagnosis of Parkinson's disease (PD) and clinical rating scales are well established as the gold standard for tracking progression of PD. Researchers have identified numerous potential biomarkers that may aid in the differential diagnosis of PD and/or tracking disease progression. Clinical, genetic, blood and cerebrospinal fluid (proteomics, transcriptomics, metabolomics), and neuroimaging biomarkers may provide useful tools in the diagnosis of PD and in measuring disease progression and response to therapies. Some potential biomarkers are inexpensive and do not require much technical expertise, whereas others are expensive or require specialized equipment and technical skills. Many potential biomarkers in PD show great promise; however, they need to be assessed for their sensitivity and specificity over time in large and varied samples of patients with and without PD.

  15. Biomarkers of Reflux Disease.

    PubMed

    Kia, Leila; Pandolfino, John E; Kahrilas, Peter J

    2016-06-01

    Gastroesophageal reflux disease (GERD) encompasses an array of disorders unified by the reflux of gastric contents. Because there are many potential disease manifestations, esophageal and extraesophageal, there is no single biomarker of the entire disease spectrum; a set of GERD biomarkers that each quantifies specific aspects of GERD-related pathology might be needed. We review recent reports of biomarkers of GERD, specifically in relation to endoscopically negative esophageal disease and excluding conventional pH-impedance monitoring. We consider histopathologic biomarkers, baseline impedance, and serologic assays to determine that most markers are based on manifestations of impaired esophageal mucosal integrity, which is based on increased ionic and molecular permeability, and/or destruction of tight junctions. Impaired mucosal integrity quantified by baseline mucosal impedance, proteolytic fragments of junctional proteins, or histopathologic features has emerged as a promising GERD biomarker.

  16. Prognosis Relevance of Serum Cytokines in Pancreatic Cancer

    PubMed Central

    Torres, Carolina; Linares, Ana; Alejandre, Maria José; Palomino-Morales, Rogelio J.; Caba, Octavio; Prados, Jose; Aránega, Antonia; Delgado, Juan R.; Irigoyen, Antonio; Martínez-Galán, Joaquina; Ortuño, Francisco M.; Rojas, Ignacio; Perales, Sonia

    2015-01-01

    The overall survival of patients with pancreatic ductal adenocarcinoma is extremely low. Although gemcitabine is the standard used chemotherapy for this disease, clinical outcomes do not reflect significant improvements, not even when combined with adjuvant treatments. There is an urgent need for prognosis markers to be found. The aim of this study was to analyze the potential value of serum cytokines to find a profile that can predict the clinical outcome in patients with pancreatic cancer and to establish a practical prognosis index that significantly predicts patients' outcomes. We have conducted an extensive analysis of serum prognosis biomarkers using an antibody array comprising 507 human cytokines. Overall survival was estimated using the Kaplan-Meier method. Univariate and multivariate Cox's proportional hazard models were used to analyze prognosis factors. To determine the extent that survival could be predicted based on this index, we used the leave-one-out cross-validation model. The multivariate model showed a better performance and it could represent a novel panel of serum cytokines that correlates to poor prognosis in pancreatic cancer. B7-1/CD80, EG-VEGF/PK1, IL-29, NRG1-beta1/HRG1-beta1, and PD-ECGF expressions portend a poor prognosis for patients with pancreatic cancer and these cytokines could represent novel therapeutic targets for this disease. PMID:26346854

  17. Cytokine receptors and hematopoietic differentiation.

    PubMed

    Robb, L

    2007-10-15

    Colony-stimulating factors and other cytokines signal via their cognate receptors to regulate hematopoiesis. In many developmental systems, inductive signalling determines cell fate and, by analogy with this, it has been postulated that cytokines, signalling via their cognate receptors, may play an instructive role in lineage specification in hematopoiesis. An alternative to this instructive hypothesis is the stochastic or permissive hypothesis. The latter proposes that commitment to a particular hematopoietic lineage is an event that occurs independently of extrinsic signals. It predicts that the role of cytokines is to provide nonspecific survival and proliferation signals. In this review, we look at the role of cytokine receptor signalling in hematopoiesis and consider the evidence for both hypotheses. Data from experiments that genetically manipulate receptor gene expression in vitro or in vivo are reviewed. Experiments in which cytokine receptors were installed in multipotential cells showed that, in some cases, stimulation with the cognate ligand could lead to alterations in lineage output. The creation of genetically manipulated mouse strains demonstrated that cytokine receptors are required for expansion and survival of single lineages but did not reveal a role in lineage commitment. We conclude that hematopoietic differentiation involves mainly stochastic events, but that cytokine receptors also have some instructive role.

  18. Mnk Kinases in Cytokine Signaling and Regulation of Cytokine Responses

    PubMed Central

    Joshi, Sonali; Platanias, Leonidas C.

    2013-01-01

    The kinases Mnk1 and Mnk2 are activated downstream of the p38 MAPK and MEK/ERK signaling pathways. Extensive work over the years has shown that these kinases control phosphorylation of the eukaryotic initiation factor 4E (eIF4E) and regulate engagement of other effector elements, including hnRNPA1 and PSF. Mnk kinases are ubiquitously expressed and play critical roles in signaling for various cytokine receptors, while there is emerging evidence that they have important functions as mediators of pro-inflammatory cytokine production. In this review the mechanisms of activation of MNK pathways by cytokine receptors are addressed and their roles in diverse cytokine-dependent biological processes are reviewed. The clinical-translational implications of such work and the relevance of future development of specific MNK inhibitors for the treatment of malignancies and auto-immune disorders are discussed. PMID:23710261

  19. The Function of Fish Cytokines

    PubMed Central

    Zou, Jun; Secombes, Christopher J.

    2016-01-01

    What is known about the biological activity of fish cytokines is reviewed. Most of the functional studies performed to date have been in teleost fish, and have focused on the induced effects of cytokine recombinant proteins, or have used loss- and gain-of-function experiments in zebrafish. Such studies begin to tell us about the role of these molecules in the regulation of fish immune responses and whether they are similar or divergent to the well-characterised functions of mammalian cytokines. This knowledge will aid our ability to determine and modulate the pathways leading to protective immunity, to improve fish health in aquaculture. PMID:27231948

  20. Next-Generation Biomarkers of Health.

    PubMed

    van Ommen, Ben; Wopereis, Suzan

    2016-01-01

    Current biomarkers used in health care and in nutrition and health research are based on quantifying disease onset and its progress. Yet, both health care and nutrition should focus on maintaining optimal health, where the related biology is essentially differing from biomedical science. Health is characterized by the ability to continuously adapt in varying circumstances where multiple mechanisms of systems flexibility are involved. A new generation of biomarkers is needed that quantifies all aspects of systems flexibility, opening the door to real lifestyle-related health optimization, self-empowerment, and related products and services.

  1. Cytokines and cytokine-specific therapy in asthma.

    PubMed

    Desai, Dhananjay; Brightling, Christopher

    2012-01-01

    Asthma is increasing in prevalence worldwide. It is characterized by typical symptoms and variable airway obstruction punctuated with episodes of worsening symptoms known as exacerbations. Underlying this clinical expression of disease is airway inflammation and remodeling. Cytokines and their networks are implicated in the innate and adaptive immune responses driving airway inflammation in asthma and are modulated by host-environment interactions. Asthma is a complex heterogeneous disease, and the paradigm of Th2 cytokine-mediated eosinophilic inflammation as a consequence of allergic sensitization has been challenged and probably represents a subgroup of asthma. Indeed, as attention has switched to the importance of severe asthma, which represents the highest burden both to the patient and health care provider, there is an increasing recognition of inflammatory subphenotypes that are likely to be driven by different cytokine networks. Interestingly, these networks may be specific to aspects of clinical expression as well as inflammatory cell profiles and therefore present novel phenotype-specific therapeutic strategies. Here, we review the breadth of cytokines implicated in the pathogenesis of asthma and focus upon the outcomes of early clinical trials conducted using cytokines or cytokine-blocking therapies.

  2. Proallergic cytokines and group 2 innate lymphoid cells in allergic nasal diseases.

    PubMed

    Matsushita, Kazufumi; Kato, Yukinori; Akasaki, Shoko; Yoshimoto, Tomohiro

    2015-07-01

    Recent advances in our understanding of proallergic cytokines and group 2 innate lymphoid cells (ILC2s) indicate their critical roles in type 2 immunity-mediated disorders. Proallergic cytokines, interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin, are released from epithelial cells in inflamed tissues and drive type 2 inflammation by acting on innate and acquired immune systems. ILC2s are an innate immune population that responds to proallergic cytokines by producing type 2 cytokines. In line with allergic disorders in the lung, skin, and intestine, emerging evidence suggests the involvement of proallergic cytokines and ILC2s in allergic nasal diseases such as chronic rhinosinusitis with polyps (CRSwNP), allergic fungal rhinosinusitis, and allergic rhinitis (AR). In CRSwNP patients, both proallergic cytokine levels and ILC2s frequency are increased in the nasal mucosa. Increased proallergic cytokine levels correlate with poorer disease outcomes in CRSwNP. Levels of nasal proallergic cytokines are also elevated in AR patients. In addition, animal studies demonstrate that cytokines are essential for the development of AR. It is becoming clear that the proallergic cytokine/ILC2s axis participates in allergic diseases by multiple mechanisms dependent upon the inflammatory context. Thus, a thorough understanding of these cytokines and ILC2s including their tissue- and disease-specific roles is essential for targeting the pathways to achieve therapeutic applications.

  3. [Biomarkers in Alzheimer's disease].

    PubMed

    García-Ribas, G; López-Sendón Moreno, J L; García-Caldentey, J

    2014-04-01

    The new diagnostic criteria for Alzheimer's disease (AD) include brain imaging and cerebrospinal fluid (CSF) biomarkers, with the aim of increasing the certainty of whether a patient has an ongoing AD neuropathologic process or not. Three CSF biomarkers, Aß42, total tau, and phosphorylated tau, reflect the core pathological features of AD. It is already known that these pathological processes of AD starts decades before the first symptoms, so these biomarkers may provide means of early disease detection. At least three stages of AD could be identified: preclinical AD, mild cognitive impairment due to AD, and dementia due to AD. In this review, we aim to summarize the CSF biomarker data available for each of these stages. We also review the actual research on blood-based biomarkers. Recent studies on healthy elderly subjects and on carriers of dominantly inherited AD mutations have also found biomarker changes that allow separate groups in these preclinical stages. These studies may aid for segregate populations in clinical trials and objectively evaluate if there are changes over the pathological processes of AD. Limits to widespread use of CSF biomarkers, apart from the invasive nature of the process itself, is the higher coefficient of variation for the analyses between centres. It requires strict pre-analytical and analytical procedures that may make feasible multi-centre studies and global cut-off points for the different stages of AD.

  4. Commentary: statistics for biomarkers.

    PubMed

    Lovell, David P

    2012-05-01

    This short commentary discusses Biomarkers' requirements for the reporting of statistical analyses in submitted papers. It is expected that submitters will follow the general instructions of the journal, the more detailed guidance given by the International Committee of Medical Journal Editors, the specific guidelines developed by the EQUATOR network, and those of various specialist groups. Biomarkers expects that the study design and subsequent statistical analyses are clearly reported and that the data reported can be made available for independent assessment. The journal recognizes that there is continuing debate about different approaches to statistical science. Biomarkers appreciates that the field continues to develop rapidly and encourages the use of new methodologies.

  5. Metabolic products as biomarkers

    USGS Publications Warehouse

    Melancon, M.J.; Alscher, R.; Benson, W.; Kruzynski, G.; Lee, R.F.; Sikka, H.C.; Spies, R.B.; Huggett, Robert J.; Kimerle, Richard A.; Mehrle, Paul M.=; Bergman, Harold L.

    1992-01-01

    Ideally, endogenous biomarkers would indicate both exposure and environmental effects of toxic chemicals; however, such comprehensive biochemical and physiological indices are currently being developed and, at the present time, are unavailable for use in environmental monitoring programs. Continued work is required to validate the use of biochemical and physiological stress indices as useful components of monitoring programs. Of the compounds discussed only phytochelatins and porphyrins are currently in biomarkers in a useful state; however, glutathione,metallothioneins, stress ethylene, and polyamines are promising as biomarkers in environmental monitoring.

  6. Evaluating the physiological reserves of older patients with cancer: the value of potential biomarkers of aging?

    PubMed

    Pallis, Athanasios G; Hatse, Sigrid; Brouwers, Barbara; Pawelec, Graham; Falandry, Claire; Wedding, Ulrich; Lago, Lissandra Dal; Repetto, Lazzaro; Ring, Alistair; Wildiers, Hans

    2014-04-01

    Aging of an individual entails a progressive decline of functional reserves and loss of homeostasis that eventually lead to mortality. This process is highly individualized and is influenced by multiple genetic, epigenetic and environmental factors. This individualization and the diversity of factors influencing aging result in a significant heterogeneity among people with the same chronological age, representing a major challenge in daily oncology practice. Thus, many factors other than mere chronological age will contribute to treatment tolerance and outcome in the older patients with cancer. Clinical/comprehensive geriatric assessment can provide information on the general health status of individuals, but is far from perfect as a prognostic/predictive tool for individual patients. On the other hand, aging can also be assessed in terms of biological changes in certain tissues like the blood compartment which result from adaptive alterations due to past history of exposures, as well as intrinsic aging processes. There are major signs of 'aging' in lymphocytes (e.g. lymphocyte subset distribution, telomere length, p16INK4A expression), and also in (inflammatory) cytokine expression and gene expression patterns. These result from a combination of the above two processes, overlaying genetic predispositions which contribute significantly to the aging phenotype. These potential "aging biomarkers" might provide additional prognostic/predictive information supplementing clinical evaluation. The purpose of the current paper is to describe the most relevant potential "aging biomarkers" (markers that indicate the biological functional age of patients) which focus on the biological background, the (limited) available clinical data, and technical challenges. Despite their great potential interest, there is a need for much more (validated) clinical data before these biomarkers could be used in a routine clinical setting. This manuscript tries to provide a guideline on how

  7. Ultratrace Level Determination and Quantitative Analysis of Kidney Injury Biomarkers in Patient Samples Attained by Zinc Oxide Nanorods

    PubMed Central

    Singh, Manpreet; Alabanza, Anginelle; Gonzalez, Lorelis E.; Wang, Weiwei; Reeves, W. Brian; Hahm, Jong-in

    2016-01-01

    Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg/mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification of

  8. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications.

    PubMed

    Sonner, Z; Wilder, E; Heikenfeld, J; Kasting, G; Beyette, F; Swaile, D; Sherman, F; Joyce, J; Hagen, J; Kelley-Loughnane, N; Naik, R

    2015-05-01

    Non-invasive and accurate access of biomarkers remains a holy grail of the biomedical community. Human eccrine sweat is a surprisingly biomarker-rich fluid which is gaining increasing attention. This is especially true in applications of continuous bio-monitoring where other biofluids prove more challenging, if not impossible. However, much confusion on the topic exists as the microfluidics of the eccrine sweat gland has never been comprehensively presented and models of biomarker partitioning into sweat are either underdeveloped and/or highly scattered across literature. Reported here are microfluidic models for eccrine sweat generation and flow which are coupled with review of blood-to-sweat biomarker partition pathways, therefore providing insights such as how biomarker concentration changes with sweat flow rate. Additionally, it is shown that both flow rate and biomarker diffusion determine the effective sampling rate of biomarkers at the skin surface (chronological resolution). The discussion covers a broad class of biomarkers including ions (Na(+), Cl(-), K(+), NH4 (+)), small molecules (ethanol, cortisol, urea, and lactate), and even peptides or small proteins (neuropeptides and cytokines). The models are not meant to be exhaustive for all biomarkers, yet collectively serve as a foundational guide for further development of sweat-based diagnostics and for those beginning exploration of new biomarker opportunities in sweat.

  9. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications

    PubMed Central

    Sonner, Z.; Wilder, E.; Heikenfeld, J.; Kasting, G.; Beyette, F.; Swaile, D.; Sherman, F.; Joyce, J.; Hagen, J.; Kelley-Loughnane, N.; Naik, R.

    2015-01-01

    Non-invasive and accurate access of biomarkers remains a holy grail of the biomedical community. Human eccrine sweat is a surprisingly biomarker-rich fluid which is gaining increasing attention. This is especially true in applications of continuous bio-monitoring where other biofluids prove more challenging, if not impossible. However, much confusion on the topic exists as the microfluidics of the eccrine sweat gland has never been comprehensively presented and models of biomarker partitioning into sweat are either underdeveloped and/or highly scattered across literature. Reported here are microfluidic models for eccrine sweat generation and flow which are coupled with review of blood-to-sweat biomarker partition pathways, therefore providing insights such as how biomarker concentration changes with sweat flow rate. Additionally, it is shown that both flow rate and biomarker diffusion determine the effective sampling rate of biomarkers at the skin surface (chronological resolution). The discussion covers a broad class of biomarkers including ions (Na+, Cl−, K+, NH4+), small molecules (ethanol, cortisol, urea, and lactate), and even peptides or small proteins (neuropeptides and cytokines). The models are not meant to be exhaustive for all biomarkers, yet collectively serve as a foundational guide for further development of sweat-based diagnostics and for those beginning exploration of new biomarker opportunities in sweat. PMID:26045728

  10. Biomarker time out.

    PubMed

    Petzold, Axel; Bowser, Robert; Calabresi, Paolo; Zetterberg, Henrik; Uitdehaag, Bernard M J

    2014-10-01

    The advancement of knowledge relies on scientific investigations. The timing between asking a question and data collection defines if a study is prospective or retrospective. Prospective studies look forward from a point in time, are less prone to bias and are considered superior to retrospective studies. This conceptual framework conflicts with the nature of biomarker research. New candidate biomarkers are discovered in a retrospective manner. There are neither resources nor time for prospective testing in all cases. Relevant sources for bias are not covered. Ethical questions arise through the time penalty of an overly dogmatic concept. The timing of sample collection can be separated from testing biomarkers. Therefore the moment of formulating a hypothesis may be after sample collection was completed. A conceptual framework permissive to asking research questions without the obligation to bow to the human concept of calendar time would simplify biomarker research, but will require new safeguards against bias.

  11. Biomarkers in ALH84001???

    NASA Technical Reports Server (NTRS)

    Treiman, Allen H.

    1999-01-01

    D. McKay and colleagues suggested that four sets of features in ALH84001 were biomarkers, signs of an ancient martian biota that once inhabited the meteorite. Subsequent work has not validated their hypothesis; each suggested biomarker has been found to be ambiguous or immaterial. Nor has their hypothesis been disproved. Rather, it is now one of many hypotheses about the alteration of ALH84001. Additional information is contained in the original extended abstract.

  12. Circadian Rhythm in Cytokines Administration.

    PubMed

    Trufakin, Valery A; Shurlygina, Anna V

    2016-01-01

    In recent times, a number of diseases involving immune system dysfunction have appeared. This increases the importance of research aimed at finding and developing optimized methods for immune system correction. Numerous studies have found a positive effect in using cytokines to treat a variety of diseases, yet the clinical use of cytokines is limited by their toxicity. Research in the field of chronotherapy, aimed at designing schedules of medicine intake using circadian biorhythms of endogenous production of factors, and receptors' expression to the factors on the target cells, as well as chronopharmacodynamics and chronopharmacokinetics of medicines may contribute to the solution of this problem. Advantages of chronotherapy include a greater effectiveness of treatment, reduced dose of required drugs, and minimized adverse effects. This review presents data on the presence of circadian rhythms of spontaneous and induced cytokine production, as well as the expression of cytokine receptors in the healthy body and in a number of diseases. The article reviews various effects of cytokines, used at different times of the day in humans and experimental animals, as well as possible mechanisms underlying the chronodependent effects of cytokines. The article presents the results of chronotherapeutic modes of administering IL-2, interferons, G-CSF, and GM-CSF in treatment of various types of cancer as well as in experimental models of immune suppression and inflammation, which lead to a greater effectiveness of therapy, the possibility of reducing or increasing the dosage, and reduced drug toxicity. Further research in this field will contribute to the effectiveness and safety of cytokine therapy.

  13. Biomarkers for neuromyelitis optica.

    PubMed

    Chang, Kuo-Hsuan; Ro, Long-Sun; Lyu, Rong-Kuo; Chen, Chiung-Mei

    2015-02-02

    Neuromyelitis optica (NMO) is an acquired, heterogeneous inflammatory disorder, which is characterized by recurrent optic neuritis and longitudinally extensive spinal cord lesions. The discovery of the serum autoantibody marker, anti-aquaporin 4 (anti-AQP4) antibody, revolutionizes our understanding of pathogenesis of NMO. In addition to anti-AQP4 antibody, other biomarkers for NMO are also reported. These candidate biomarkers are particularly involved in T helper (Th)17 and astrocytic damages, which play a critical role in the development of NMO lesions. Among them, IL-6 in the peripheral blood is associated with anti-AQP4 antibody production. Glial fibrillary acidic protein (GFAP) in CSF demonstrates good correlations with clinical severity of NMO relapses. Detecting these useful biomarkers may be useful in the diagnosis and evaluation of disease activity of NMO. Development of compounds targeting these biomarkers may provide novel therapeutic strategies for NMO. This article will review the related biomarker studies in NMO and discuss the potential therapeutics targeting these biomarkers.

  14. Treatment-Related Biomarkers in Pulmonary Hypertension

    PubMed Central

    Swaminathan, Aparna C.; Dusek, Alex C.

    2015-01-01

    Significant advances in the treatment of pulmonary arterial hypertension (PAH) over the last two decades have led to the introduction of multiple classes of oral therapy, but the disease remains devastating for many patients. Disease progression, in spite of oral monotherapy, is a major problem, and alternative therapy, such as infusion of prostacyclins, is cumbersome and carries considerable potential morbidity. Use of combination oral therapy, including drugs from both the endothelin receptor antagonist and phosphodiesterase-5 inhibitor classes, has increased, and there is some evidence to support this approach. Given the multiple options now available in pulmonary hypertension (PH) therapy, biomarkers to guide treatment decisions could be helpful. Here, we review the evidence for and against the clinical use of molecular biomarkers relevant to PH pathogenesis, emphasizing assayable markers that may also inform more rational selection of agents that influence pathways targeted by treatment. We emphasize the interactive nature of changes in mediators and messengers, such as endothelin-1, prostacyclin, brain natriuretic peptide (which has demonstrated biomarker utility), nitric oxide derivatives, and cyclic guanosine monophosphate, which play important roles in processes central to progression of PAH, such as vascular remodeling, vasoconstriction, and maladaptive right ventricular changes, and are relevant to its therapy. Accordingly, we propose that the identification and use of a molecular biomarker panel that assays these molecules in parallel and serially might, if validated, better inform unique patient phenotypes, prognosis, and the rational selection and titration of combination oral and other therapy in individual patients with PH/PAH. PMID:25611885

  15. Cardiac biomarkers: new tools for heart failure management.

    PubMed

    Iqbal, Navaid; Wentworth, Bailey; Choudhary, Rajiv; Landa, Alejandro De La Parra; Kipper, Benjamin; Fard, Arrash; Maisel, Alan S

    2012-06-01

    The last decade has seen exciting advances in the field of biomarkers used in managing patients with heart failure (HF). Biomarker research has broadened our knowledge base, shedding more light on the underlying pathophysiological mechanisms occurring in patients with both acute and chronic HF. The criterion required by an ideal cardiovascular biomarker has been progressively changing to an era of sensitive assays that can be used to guide treatment. Recent technological advances have made it possible to rapidly measure even minute amounts of these proteins by means of higher sensitivity assays. With a high prevalence of comorbidities associated with HF, an integrated approach utilizing multiple biomarkers have shown promise in predicting mortality, better risk stratification and reducing re-hospitalizations, thus lowering health-care costs. This review provides a brief insight into recent advances in the field of biomarkers currently used in the diagnosis and prognosis of patients with acute and chronic HF.

  16. Cardiac biomarkers: new tools for heart failure management

    PubMed Central

    Wentworth, Bailey; Choudhary, Rajiv; Landa, Alejandro De La Parra; Kipper, Benjamin; Fard, Arrash; Maisel, Alan S.

    2012-01-01

    The last decade has seen exciting advances in the field of biomarkers used in managing patients with heart failure (HF). Biomarker research has broadened our knowledge base, shedding more light on the underlying pathophysiological mechanisms occurring in patients with both acute and chronic HF. The criterion required by an ideal cardiovascular biomarker has been progressively changing to an era of sensitive assays that can be used to guide treatment. Recent technological advances have made it possible to rapidly measure even minute amounts of these proteins by means of higher sensitivity assays. With a high prevalence of comorbidities associated with HF, an integrated approach utilizing multiple biomarkers have shown promise in predicting mortality, better risk stratification and reducing re-hospitalizations, thus lowering health-care costs. This review provides a brief insight into recent advances in the field of biomarkers currently used in the diagnosis and prognosis of patients with acute and chronic HF. PMID:24282708

  17. Calculations for Adjusting Endogenous Biomarker Levels During Analytical Recovery Assessments for Ligand-Binding Assay Bioanalytical Method Validation.

    PubMed

    Marcelletti, John F; Evans, Cindy L; Saxena, Manju; Lopez, Adriana E

    2015-07-01

    It is often necessary to adjust for detectable endogenous biomarker levels in spiked validation samples (VS) and in selectivity determinations during bioanalytical method validation for ligand-binding assays (LBA) with a matrix like normal human serum (NHS). Described herein are case studies of biomarker analyses using multiplex LBA which highlight the challenges associated with such adjustments when calculating percent analytical recovery (%AR). The LBA test methods were the Meso Scale Discovery V-PLEX® proinflammatory and cytokine panels with NHS as test matrix. The NHS matrix blank exhibited varied endogenous content of the 20 individual cytokines before spiking, ranging from undetectable to readily quantifiable. Addition and subtraction methods for adjusting endogenous cytokine levels in %AR calculations are both used in the bioanalytical field. The two methods were compared in %AR calculations following spiking and analysis of VS for cytokines having detectable endogenous levels in NHS. Calculations for %AR obtained by subtracting quantifiable endogenous biomarker concentrations from the respective total analytical VS values yielded reproducible and credible conclusions. The addition method, in contrast, yielded %AR conclusions that were frequently unreliable and discordant with values obtained with the subtraction adjustment method. It is shown that subtraction of assay signal attributable to matrix is a feasible alternative when endogenous biomarkers levels are below the limit of quantitation, but above the limit of detection. These analyses confirm that the subtraction method is preferable over that using addition to adjust for detectable endogenous biomarker levels when calculating %AR for biomarker LBA.

  18. B cells responses and cytokine production are regulated by their immune microenvironment.

    PubMed

    Vazquez, Monica I; Catalan-Dibene, Jovani; Zlotnik, Albert

    2015-08-01

    The adaptive immune system consists of two types of lymphocytes: T and B cells. These two lymphocytes originate from a common precursor, yet are fundamentally different with B cells mediating humoral immunity while T cells mediate cell mediated immunity. In cytokine production, naïve T cells produce multiple cytokines upon activation while naïve activated B cells do not. B cells are capable of producing cytokines, but their cytokine production depends on their differentiation state and activation conditions. Hence, unlike T cells that can produce a large amount of cytokines upon activation, B cells require specific differentiation and activation conditions to produce cytokines. Many cytokines act on B cells as well. Here, we discuss several cytokines and their effects on B cells including: Interleukins, IL-7, IL-4, IL-6, IL-10, and Interferons, IFN-α, IFN-β, IFN-γ. These cytokines play important roles in the development, survival, differentiation and/or proliferation of B cells. Certain chemokines also play important roles in B cell function, namely antibody production. As an example, we discuss CCL28, a chemokine that directs the migration of plasma cells to mucosal sites. We conclude with a brief overview of B cells as cytokine producers and their likely functional consequences on the immune response.

  19. Cellular events and biomarkers of wound healing

    PubMed Central

    Shah, Jumaat Mohd. Yussof; Omar, Effat; Pai, Dinker R.; Sood, Suneet

    2012-01-01

    Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs) and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF) is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth factors initiate fibroblast and keratinocyte proliferation. Inflammation is followed by the proliferation of fibroblasts, which lay down the extracellular matrix. Simultaneously, various white cells and other connective tissue cells release both the matrix metalloproteinases (MMPs) and the tissue inhibitors of these metalloproteinases (TIMPs). MMPs remove damaged structural proteins such as collagen, while the fibroblasts lay down fresh extracellular matrix proteins. Fluid collected from acute, healing wounds contains growth factors, and stimulates fibroblast proliferation, but fluid collected from chronic, nonhealing wounds does not. Fibroblasts from chronic wounds do not respond to chronic wound fluid, probably because the fibroblasts of these wounds have lost the receptors that respond to cytokines and growth factors. Nonhealing wounds contain high levels of IL1, IL6, and MMPs, and an abnormally high MMP/TIMP ratio. Clinical examination of wounds inconsistently predicts which wounds will heal when procedures like secondary closure are planned. Surgeons therefore hope that these chemicals can be used as biomarkers of wounds which have impaired ability to heal. There is also evidence that the application of growth factors like PDGF will help the healing of chronic, nonhealing wounds. PMID:23162220

  20. The Effect of Oseltamivir on the Disease Progression of Lethal Influenza A Virus Infection: Plasma Cytokine and miRNA Responses in a Mouse Model

    PubMed Central

    Chockalingam, Ashok K.; Hamed, Salaheldin; Goodwin, David G.; Rosenzweig, Barry A.; Pang, Eric; Boyne II, Michael T.

    2016-01-01

    Lethal influenza A virus infection leads to acute lung injury and possibly lethal complications. There has been a continuous effort to identify the possible predictors of disease severity. Unlike earlier studies, where biomarkers were analyzed on certain time points or days after infection, in this study biomarkers were evaluated over the entire course of infection. Circulating proinflammatory cytokines and/or miRNAs that track with the onset and progression of lethal A/Puerto Rico/8/34 (PR8) influenza A virus infection and their response to oseltamivir treatment were investigated up to 10 days after infection. Changes in plasma cytokines (IL-1β, IL-10, IL-12p70, IL-6, KC, TNF-α, and IFN-γ) and several candidate miRNAs were profiled. Among the cytokines analyzed, IL-6 and KC/GRO cytokines appeared to correlate with peak viral titer. Over the selected 48 miRNAs profiled, certain miRNAs were up- or downregulated in a manner that was dependent on the oseltamivir treatment and disease severity. Our findings suggest that IL-6 and KC/GRO cytokines can be a potential disease severity biomarker and/or marker for the progression/remission of infection. Further studies to explore other cytokines, miRNAs, and lung injury proteins in serum with different subtypes of influenza A viruses with varying disease severity may provide new insight into other unique biomarkers. PMID:27110056

  1. Biomarkers for antipsychotic therapies.

    PubMed

    Pich, Emilio Merlo; Vargas, Gabriel; Domenici, Enrico

    2012-01-01

    Molecular biomarkers for antipsychotic treatments have been conceptually linked to the measurements of dopamine functions, mostly D(2) receptor occupancy, either by imaging using selective PET/SPECT radioactive tracers or by assessing plasma prolactin levels. A quest for novel biomarkers was recently proposed by various academic, health service, and industrial institutions driven by the need for better treatments of psychoses. In this review we conceptualize biomarkers within the Translational Medicine paradigm whose goal was to provide support to critical decision-making in drug discovery. At first we focused on biomarkers as outcome measure of clinical studies by searching into the database clinicaltrial.gov. The results were somewhat disappointing, showing that out of 1,659 antipsychotic trials only 18 used a biomarker as an outcome measure. Several of these trials targeted plasma lipids as sentinel marker for metabolic adverse effects associated with the use of atypical antipsychotics, while only few studies were aimed to new disease specific biological markers. As an example of a mechanistic biomarker, we described the work done to progress the novel class of glycine transporter inhibitors as putative treatment for negative symptoms of schizophrenia. We also review how large-scale multiplex biological assays were applied to samples from tissues of psychiatric patients, so to learn from changes of numerous analytes (metabolic products, lipids, proteins, RNA transcripts) about the substrates involved in the disease. We concluded that a stringent implementation of these techniques could contribute to the endophenotypic characterization of patients, helping in the identification of key biomarkers to drive personalized medicine and new treatment development.

  2. Kidney biomarkers in cirrhosis.

    PubMed

    Francoz, Claire; Nadim, Mitra K; Durand, François

    2016-10-01

    Impaired renal function due to acute kidney injury (AKI) and/or chronic kidney diseases (CKD) is frequent in cirrhosis. Recurrent episodes of AKI may occur in end-stage cirrhosis. Differential diagnosis between functional (prerenal and hepatorenal syndrome) and acute tubular necrosis (ATN) is crucial. The concept that AKI and CKD represent a continuum rather than distinct entities, is now emerging. Not all patients with AKI have a potential for full recovery. Precise evaluation of kidney function and identification of kidney changes in patients with cirrhosis is central in predicting reversibility. This review examines current biomarkers for assessing renal function and identifying the cause and mechanisms of impaired renal function. When CKD is suspected, clearance of exogenous markers is the reference to assess glomerular filtration rate, as creatinine is inaccurate and cystatin C needs further evaluation. Recent biomarkers may help differentiate ATN from hepatorenal syndrome. Neutrophil gelatinase-associated lipocalin has been the most extensively studied biomarker yet, however, there are no clear-cut values that differentiate each of these conditions. Studies comparing ATN and hepatorenal syndrome in cirrhosis, do not include a gold standard. Combinations of innovative biomarkers are attractive to identify patients justifying simultaneous liver and kidney transplantation. Accurate biomarkers of underlying CKD are lacking and kidney biopsy is often contraindicated in this population. Urinary microRNAs are attractive although not definitely validated. Efforts should be made to develop biomarkers of kidney fibrosis, a common and irreversible feature of CKD, whatever the cause. Biomarkers of maladaptative repair leading to irreversible changes and CKD after AKI are also promising.

  3. Lung Cancer Biomarkers.

    PubMed

    I, Hoseok; Cho, Je-Yoel

    2015-01-01

    Lung cancer is the most frequently occurring cancer in the world and continually leads in mortality among cancers. The overall 5-year survival rate for lung cancer has risen only 4% (from 12% to 16%) over the past 4 decades, and late diagnosis is a major obstacle in improving lung cancer prognosis. Survival of patients undergoing lung resection is greater than 80%, suggesting that early detection and diagnosis of cancers before they become inoperable and lethal will greatly improve mortality. Lung cancer biomarkers can be used for screening, detection, diagnosis, prognosis, prediction, stratification, therapy response monitoring, and so on. This review focuses on noninvasive diagnostic and prognostic biomarkers. For that purpose, our discussion in this review will focus on biological fluid-based biomarkers. The body fluids include blood (serum or plasma), sputum, saliva, BAL, pleural effusion, and VOC. Since it is rich in different cellular and molecular elements and is one of the most convenient and routine clinical procedures, serum or plasma is the main source for the development and validation of many noninvasive biomarkers. In terms of molecular aspects, the most widely validated ones are proteins, some of which are used in the clinical sector, though in limited accessory purposes. We will also discuss the lung cancer (protein) biomarkers in clinical trials and currently in the validation phase with hundreds of samples. After proteins, we will discuss microRNAs, methylated DNA, and circulating tumor cells, which are being vigorously developed and validated as potential lung cancer biomarkers. The main aim of this review is to provide researchers and clinicians with an understanding of the potential noninvasive lung cancer biomarkers in biological fluids that have recently been discovered.

  4. Agents to reduce cytokine storm

    PubMed Central

    Gerlach, Herwig

    2016-01-01

    The increasing insight into pathomechanisms of dysregulated host response in several inflammatory diseases led to the implementation of the term “cytokine storm” in the literature more than 20 years ago. Direct toxic effects as well as indirect immunomodulatory mechanisms during cytokine storm have been described and were the basis for the rationale to use several substances and devices in life-threatening infections and hyperinflammatory states. Clinical trials have been performed, most of them in the form of minor, investigator-initiated protocols; major clinical trials focused mostly on sepsis and septic shock. The following review tries to summarize the background, pathophysiology, and results of clinical investigations that had implications for the development of therapeutic strategies and international guidelines for the management of hyperinflammation during syndromes of cytokine storm in adult patients, predominantly in septic shock. PMID:28105327

  5. Agents to reduce cytokine storm.

    PubMed

    Gerlach, Herwig

    2016-01-01

    The increasing insight into pathomechanisms of dysregulated host response in several inflammatory diseases led to the implementation of the term "cytokine storm" in the literature more than 20 years ago. Direct toxic effects as well as indirect immunomodulatory mechanisms during cytokine storm have been described and were the basis for the rationale to use several substances and devices in life-threatening infections and hyperinflammatory states. Clinical trials have been performed, most of them in the form of minor, investigator-initiated protocols; major clinical trials focused mostly on sepsis and septic shock. The following review tries to summarize the background, pathophysiology, and results of clinical investigations that had implications for the development of therapeutic strategies and international guidelines for the management of hyperinflammation during syndromes of cytokine storm in adult patients, predominantly in septic shock.

  6. Assessed and Emerging Biomarkers in Stroke and Training-Mediated Stroke Recovery: State of the Art

    PubMed Central

    Vella, Antonio

    2017-01-01

    Since the increasing update of the biomolecular scientific literature, biomarkers in stroke have reached an outstanding and remarkable revision in the very recent years. Besides the diagnostic and prognostic role of some inflammatory markers, many further molecules and biological factors have been added to the list, including tissue derived cytokines, growth factor-like molecules, hormones, and microRNAs. The literatures on brain derived growth factor and other neuroimmune mediators, bone-skeletal muscle biomarkers, cellular and immunity biomarkers, and the role of microRNAs in stroke recovery were reviewed. To date, biomarkers represent a possible challenge in the diagnostic and prognostic evaluation of stroke onset, pathogenesis, and recovery. Many molecules are still under investigation and may become promising and encouraging biomarkers. Experimental and clinical research should increase this list and promote new discoveries in this field, to improve stroke diagnosis and treatment. PMID:28373915

  7. Imaging Biomarkers of Cardiovascular Disease

    PubMed Central

    Wang, Jinnan; Balu, Niranjan; Canton, Gador; Yuan, Chun

    2010-01-01

    Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Current clinical techniques that rely on stenosis measurement alone appear to be insufficient for risk prediction in atherosclerosis patients. Many novel imaging methods have been developed to study atherosclerosis progression and to identify new features that can predict future clinical risk. MRI of atherosclerotic vessel walls is one such method. It has the ability to non-invasively evaluate multiple biomarkers of the disease such as luminal stenosis, plaque burden, tissue composition and plaque activity. In addition, the accuracy of in vivo MRI has been validated against histology with high reproducibility, thus paving the way for application to epidemiological studies of disease pathogenesis and, by serial MRI, in monitoring the efficacy of therapeutic intervention. In this review, we describe the various MR techniques used to evaluate aspects of plaque progression, discuss imaging based measurements (imaging biomarkers), and also detail their validation. The application of plaque MRI in clinical trials as well as emerging imaging techniques used to evaluate plaque compositional features and biological activities are also discussed. PMID:20815049

  8. Depression, cytokines, and pancreatic cancer

    PubMed Central

    Breitbart, William; Rosenfeld, Barry; Tobias, Kristen; Pessin, Hayley; Ku, Geoffrey Y.; Yuan, Jianda; Gibson, Christopher; Wolchok, Jedd

    2014-01-01

    Background To examine the relationships between cytokines, depression, and pancreatic cancer. Method 75 individuals were recruited from two New York City hospitals (a cancer center and a psychiatric hospital) and comprised 4 subgroups: patients with adenocarcinoma of the pancreas who did (n=17) and did not (n=26) have a diagnosis of Major Depressive Episode (MDE), and healthy participants with (n=7) and without (n=25) MDE. All individuals completed a battery of self-report measures. Sera was assayed using Meso Scale Discovery techniques to measure the following pro- and anti-inflammatory cytokines: IL-1beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-10, IL-12p70, IFN-gamma, TGF-beta, and TNF-alpha; we also calculated the IL-2/IL-4 ratio. Results Pancreatic cancer patients had significantly higher levels of IL-6 and IL-10, and significantly lower TGF-beta levels than healthy participants. When the sample was divided into those with and without MDE, the groups only differed with regard to serum IL-6 levels. No significant cancer×depression interaction effect was observed. Severity of depressive symptoms was also significantly correlated with IL-6, rs=.28, p=.02, while hopelessness was associated with IFN-alpha, rs=.34, p=.006. Pain, fatigue and sleep disturbance were associated with several of the cytokines assayed including IL-1beta (pain intensity), IL-4 (pain intensity and overall sleep quality), IL-12p70 (pain intensity), TGF-beta (fatigue intensity), but anxiety was not associated with any of the cytokines assayed. Conclusions This study demonstrated an association between depression and IL-6, but not with other cytokines. Moreover, IL-6 was not significantly associated with other measures of psychological distress (anxiety, hopelessness) or with symptom distress (pain, fatigue, sleep quality), although some cytokines assayed were associated with specific symptoms. The implications of these findings for the etiology and treatment of depression in pancreatic cancer

  9. Structural basis of receptor sharing by interleukin 17 cytokines

    SciTech Connect

    Ely, Lauren K.; Fischer, Suzanne; Garcia, K. Christopher; Stanford-MED

    2010-02-19

    Interleukin 17 (IL-17)-producing helper T cells (T{sub H}-17 cells), together with their effector cytokines, including members of the IL-17 family, are emerging as key mediators of chronic inflammatory and autoimmune disorders. Here we present the crystal structure of a complex of IL-17 receptor A (IL-17RA) bound to IL-17F in a 1:2 stoichiometry. The mechanism of complex formation was unique for cytokines and involved the engagement of IL-17 by two fibronectin-type domains of IL-17RA in a groove between the IL-17 homodimer interface. Binding of the first receptor to the IL-17 cytokines modulated the affinity and specificity of the second receptor-binding event, thereby promoting heterodimeric versus homodimeric complex formation. IL-17RA used a common recognition strategy to bind to several members of the IL-17 family, which allows it to potentially act as a shared receptor in multiple different signaling complexes.

  10. Cytokine crowdsourcing: multicellular production of TH17-associated cytokines.

    PubMed

    Busman-Sahay, Kathleen O; Walrath, Travis; Huber, Samuel; O'Connor, William

    2015-03-01

    In the 2 decades since its discovery, IL-17A has become appreciated for mounting robust, protective responses against bacterial and fungal pathogens. When improperly regulated, however, IL-17A can play a profoundly pathogenic role in perpetuating inflammation and has been linked to a wide variety of debilitating diseases. IL-17A is often present in a composite milieu that includes cytokines produced by TH17 cells (i.e., IL-17F, IL-21, IL-22, and IL-26) or associated with other T cell lineages (e.g., IFN-γ). These combinatorial effects add mechanistic complexity and more importantly, contribute differentially to disease outcome. Whereas TH17 cells are among the best-understood cell types that secrete IL-17A, they are frequently neither the earliest nor dominant producers. Indeed, non-TH17 cell sources of IL-17A can dramatically alter the course and severity of inflammatory episodes. The dissection of the temporal regulation of TH17-associated cytokines and the resulting net signaling outcomes will be critical toward understanding the increasingly intricate role of IL-17A and TH17-associated cytokines in disease, informing our therapeutic decisions. Herein, we discuss important non-TH17 cell sources of IL-17A and other TH17-associated cytokines relevant to inflammatory events in mucosal tissues.

  11. Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases.

    PubMed

    Tumani, Hayrettin; Teunissen, Charlotte; Süssmuth, Sigurd; Otto, Markus; Ludolph, Albert C; Brettschneider, Johannes

    2008-07-01

    Chronic neurological diseases (CND) like amyotrophic lateral sclerosis (ALS), dementia or multiple sclerosis (MS) share a chronic progressive course of disease that frequently leads to the common pathological pathway of neurodegeneration, including neuroaxonal damage, apoptosis and gliosis. There is an ongoing search for biomarkers that could support early diagnosis of CND and help to identify responders to interventions in therapeutic treatment trials. Cerebrospinal fluid (CSF) is a promising source of biomarkers in CND, since the CSF compartment is in close anatomical contact with the brain interstitial fluid, where biochemical changes related to CND are reflected. We review recent advances in CSF biomarkers research in CND and thereby focus on markers associated with neurodegeneration.

  12. Biomarkers intersect with the exposome.

    PubMed

    Rappaport, Stephen M

    2012-09-01

    The exposome concept promotes use of omic tools for discovering biomarkers of exposure and biomarkers of disease in studies of diseased and healthy populations. A two-stage scheme is presented for profiling omic features in serum to discover molecular biomarkers and then for applying these biomarkers in follow-up studies. The initial component, referred to as an exposome-wide-association study (EWAS), employs metabolomics and proteomics to interrogate the serum exposome and, ultimately, to identify, validate and differentiate biomarkers of exposure and biomarkers of disease. Follow-up studies employ knowledge-driven designs to explore disease causality, prevention, diagnosis, prognosis and treatment.

  13. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis.

    PubMed

    Schukur, Lina; Geering, Barbara; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2015-12-16

    Psoriasis is a chronic inflammatory skin disease characterized by a relapsing-remitting disease course and correlated with increased expression of proinflammatory cytokines, such as tumor necrosis factor (TNF) and interleukin 22 (IL22). Psoriasis is hard to treat because of the unpredictable and asymptomatic flare-up, which limits handling of skin lesions to symptomatic treatment. Synthetic biology-based gene circuits are uniquely suited for the treatment of diseases with complex dynamics, such as psoriasis, because they can autonomously couple the detection of disease biomarkers with the production of therapeutic proteins. We designed a mammalian cell synthetic cytokine converter that quantifies psoriasis-associated TNF and IL22 levels using serially linked receptor-based synthetic signaling cascades, processes the levels of these proinflammatory cytokines with AND-gate logic, and triggers the corresponding expression of therapeutic levels of the anti-inflammatory/psoriatic cytokines IL4 and IL10, which have been shown to be immunomodulatory in patients. Implants of microencapsulated cytokine converter transgenic designer cells were insensitive to simulated bacterial and viral infections as well as psoriatic-unrelated inflammation. The designer cells specifically prevented the onset of psoriatic flares, stopped acute psoriasis, improved psoriatic skin lesions and restored normal skin-tissue morphology in mice. The antipsoriatic designer cells were equally responsive to blood samples from psoriasis patients, suggesting that the synthetic cytokine converter captures the clinically relevant cytokine range. Implanted designer cells that dynamically interface with the patient's metabolism by detecting specific disease metabolites or biomarkers, processing their blood levels with synthetic circuits in real time, and coordinating immediate production and systemic delivery of protein therapeutics may advance personalized gene- and cell-based therapies.

  14. The influence of traditional herbal formulas on cytokine activity.

    PubMed

    Burns, J J; Zhao, Lijun; Taylor, Ethan Will; Spelman, Kevin

    2010-11-28

    Many of the botanical "immunomodulators", a class of herbal medicines widely recognized in traditional medical systems such as Chinese Medicine (TCM) and Ayurvedic Medicine, alter immune function and may offer clinically relevant therapeutics or leads to therapeutics. Many of these traditional remedies are prepared from combinations of medicinal plants which may influence numerous molecular pathways. These effects may differ from the sum of effects from the individual plants and therefore, research demonstrating the effects of the formula is crucial for insights into the effects of traditional remedies. In this review we surveyed the primary literature for research that focused on combinations of medicinal plants and effects on cytokine activity. The results demonstrate that many extracts of herb mixtures have effects on at least one cytokine. The most commonly studies cytokines were IL-4, IL-6, IL-10, TNF and IFN-γ. The majority of the formulas researched derived from TCM. The following formulas had activity on at least three cytokines; Chizukit N, CKBM, Daeganghwal-tang, Food Allergy Formula, Gamcho-Sasim-Tang, Hachimi-jio-gan, Herbkines, Hochuekki, Immune System Formula, Jeo-Dang-Tang, Juzen-taiho-to, Kakkon-to, Kan jang, Mao-Bushi-Saishin-to, MSSM-002, Ninjin-youei-to, PG201, Protec, Qing-huo-bai-du-yin, Qingfu Guanjieshu, Sambucol Active Defense, Seng-fu-tang, Shin-Xiao-Xiang, Tien Hsien, Thuja formula, Unkei-to, Vigconic, Wheeze-relief-formula, Xia-Bai-San, Yangyuk-Sanhwa-Tang, Yi-fey Ruenn-hou, and Yuldahansotang. Of the western based combinations, formulas with Echinacea spp. were common and showed multiple activities. Numerous formulas demonstrated activity on both gene and protein expression. The research demonstrates that the reviewed botanical formulas modulate cytokine activity, although the bulk of the research is in vitro. Therapeutic success using these formulas may be partially due to their effects on cytokines. Further study of phytotherapy on

  15. Biomarkers in canine parvovirus enteritis.

    PubMed

    Schoeman, J P; Goddard, A; Leisewitz, A L

    2013-07-01

    Canine parvovirus (CPV) enteritis has, since its emergence in 1978, remained a common and important cause of morbidity and mortality in young dogs. The continued incidence of parvoviral enteritis is partly due to the virus' capability to evolve into more virulent and resistant variants with significant local gastrointestinal and systemic inflammatory sequelae. This paper reviews current knowledge on historical-, signalment-, and clinical factors as well as several haematological-, biochemical- and endocrine parameters that can be used as diagnostic and prognostic biomarkers in CPV enteritis. These factors include season of presentation, purebred nature, bodyweight, vomiting, leukopaenia, lymphopaenia, thrombocytopaenia, hypercoagulability, hypercortisolaemia, hypothyroxinaemia, hypoalbuminaemia, elevated C-reactive protein and tumour necrosis factor, hypocholesterolaemia and hypocitrullinaemia. Factors contributing to the manifestations of CPV infection are multiple with elements of host, pathogen, secondary infections, underlying stressors and environment affecting severity and outcome. The availability of several prognosticators has made identification of patients at high risk of death and their subsequent targeted management more rewarding.

  16. SNP/haplotype associations in cytokine and cytokine receptor genes and immunity to rubella vaccine.

    PubMed

    Dhiman, Neelam; Haralambieva, Iana H; Kennedy, Richard B; Vierkant, Robert A; O'Byrne, Megan M; Ovsyannikova, Inna G; Jacobson, Robert M; Poland, Gregory A

    2010-04-01

    An effective immune response to vaccination is, in part, a complex interaction of alleles of multiple genes regulating cytokine networks. We conducted a genotyping study of Th1/Th2/inflammatory cytokines/cytokine receptors in healthy children (n = 738, 11-19 years) to determine associations between individual single-nucleotide polymorphisms (SNPs)/haplotypes and immune outcomes after two doses of rubella vaccine. SNPs (n = 501) were selected using the ldSelect-approach and genotyped using Illumina GoldenGate and TaqMan assays. Rubella-IgG levels were measured by immunoassay and secreted cytokines by ELISA. Linear regression and post hoc haplotype analyses were used to determine associations between single SNPs/haplotypes and immune outcomes. Increased carriage of minor alleles for the promoter SNPs (rs2844482 and rs2857708) of the TNFA gene were associated with dose-related increases in rubella antibodies. IL-6 secretion was co-directionally associated (p < or = 0.01) with five intronic SNPs in the TNFRSF1B gene in an allele dose-related manner, while five promoter/intronic SNPs in the IL12B gene were associated with variations in IL-6 secretion. TNFA haplotype AAACGGGGC (t-statistic = 3.32) and IL12B promoter haplotype TAG (t-statistic = 2.66) were associated with higher levels of (p < or = 0.01) rubella-IgG and IL-6 secretion, respectively. We identified individual SNPs/haplotypes in TNFA/TNFRSF1B and IL12B genes that appear to modulate immunity to rubella vaccination. Identification of such "genetic fingerprints" may predict the outcome of vaccine response and inform new vaccine strategies.

  17. Nanoparticles: potential biomarker harvesters.

    PubMed

    Geho, David H; Jones, Clinton D; Petricoin, Emanuel F; Liotta, Lance A

    2006-02-01

    A previously untapped bank of information resides within the low molecular weight proteomic fraction of blood. Intensive efforts are underway to harness this information so that it can be used for early diagnosis of diseases such as cancer. The physicochemical malleability and high surface areas of nanoparticle surfaces make them ideal candidates for developing biomarker harvesting platforms. Given the variety of engineering strategies afforded through nanoparticle technologies, a significant goal is to tailor nanoparticle surfaces to selectively bind a subset of biomarkers, sequestering them for later study using high sensitivity proteomic tests. To date, applications of nanoparticles have largely focused on imaging systems and drug delivery vectors. As such, biomarker harvesting is an underutilized application of nanoparticle technology and is an area of nanotechnology research that will likely undergo substantial growth.

  18. Statistical consideration for clinical biomarker research in bladder cancer

    PubMed Central

    Shariat, Shahrokh F.; Lotan, Yair; Vickers, Andrew; Karakiewicz, Pierre I.; Schmitz-Dräger, Bernd J.; Goebell, Peter J.; Malats, Nuria

    2012-01-01

    Purpose To critically review and illustrate current methodologic and statistical considerations for bladder cancer biomarker discovery and evaluation. Methods Original, review, and methodological articles, and editorials were reviewed and summarized. Results Biomarkers may be useful at multiple stages of bladder cancer management: early detection, diagnosis, staging, prognosis, and treatment; however, few novel biomarkers are currently used in clinical practice. The reasons for this disjunction are manifold and reflect the long and difficult pathway from candidate biomarker discovery to clinical assay, and the lack of coherent and comprehensive processes (pipelines) for biomarker development. Conceptually, the development of new biomarkers should be a process that is similar to therapeutic drug evaluation - a highly regulated process with carefully regulated phases from discovery to human applications. In a further effort to address the pervasive problem of inadequacies in the design, analysis, and reporting of biomarker prognostic studies, a set of reporting recommendations are discussed. For example, biomarkers should provide unique information that adds to known clinical and pathologic information. Conventional multivariable analyses are not sufficient to demonstrate improved prediction of outcomes. Predictive models, including or excluding any new putative biomarker, needs to show clinically significant improvement of performance in order to claim any real benefit. Towards this end, proper model building, avoidance of overfitting, and external validation are crucial. In addition, it is important to choose appropriate performance measures dependent on outcome and prediction type and to avoid use of cut-points. Biomarkers providing a continuous score provide potentially more useful information than cut-points since risk fits a continuum model. Combination of complementary and independent biomarkers is likely to better capture the biologic potential of a tumor

  19. On comparing heterogeneity across biomarkers.

    PubMed

    Steininger, Robert J; Rajaram, Satwik; Girard, Luc; Minna, John D; Wu, Lani F; Altschuler, Steven J

    2015-06-01

    Microscopy reveals complex patterns of cellular heterogeneity that can be biologically informative. However, a limitation of microscopy is that only a small number of biomarkers can typically be monitored simultaneously. Thus, a natural question is whether additional biomarkers provide a deeper characterization of the distribution of cellular states in a population. How much information about a cell's phenotypic state in one biomarker is gained by knowing its state in another biomarker? Here, we describe a framework for comparing phenotypic states across biomarkers. Our approach overcomes the current limitation of microscopy by not requiring costaining biomarkers on the same cells; instead, we require staining of biomarkers (possibly separately) on a common collection of phenotypically diverse cell lines. We evaluate our approach on two image datasets: 33 oncogenically diverse lung cancer cell lines stained with 7 biomarkers, and 49 less diverse subclones of one lung cancer cell line stained with 12 biomarkers. We first validate our method by comparing it to the "gold standard" of costaining. We then apply our approach to all pairs of biomarkers and use it to identify biomarkers that yield similar patterns of heterogeneity. The results presented in this work suggest that many biomarkers provide redundant information about heterogeneity. Thus, our approach provides a practical guide for selecting independently informative biomarkers and, more generally, will yield insights into both the connectivity of biological networks and the complexity of the state space of biological systems.

  20. Assessing Immune Function by Profiling Cytokine Release from Stimulated Blood Leukocytes and the Risk of Infection in Rheumatoid Arthritis

    PubMed Central

    Krause, Megan L.; Davis, John M.; Knutson, Keith L.; Strausbach, Michael A.; Crowson, Cynthia S.; Therneau, Terry M.; Wettstein, Peter J.; Matteson, Eric L.; Gabriel, Sherine E.

    2011-01-01

    Persons with rheumatoid arthritis (RA) suffer a high burden of infections, but currently no biomarkers are available to identify individuals at greatest risk. A prospective longitudinal study was therefore conducted to determine the association between the responsiveness of ex vivo cytokine production and 6-month risk of infections. Infections were identified by billing codes and validated by medical record review. At baseline, the release of 17 cytokines by peripheral blood mononuclear cells in response to stimulation, or media alone, was measured using multiplexed cytokine analysis. Production of IL-2, IL-8, IL-10, IL-17, TNF-α, IFN-γ, and GM-CSF, induced by various conditions, was significantly associated with the occurrence of infections. A multivariable prediction model based on these data provided new information on the risk of infection beyond standard assessments of disease activity, severity, and treatment. Future studies could utilize this information to devise new biomarkers for the prediction of infection in patients with RA. PMID:21703930

  1. Cytokines in human lung fibrosis.

    PubMed

    Martinet, Y; Menard, O; Vaillant, P; Vignaud, J M; Martinet, N

    1996-01-01

    Fibrosis is a pathological process characterized by the replacement of normal tissue by mesenchymal cells and the extracellular matrix produced by these cells. The sequence of events leading to fibrosis of an organ involves the subsequent processes of injury with inflammation and disruption of the normal tissue architecture, followed by tissue repair with accumulation of mesenchymal cells in the area of derangement. The same sequence of events occurs in wound healing with normal granulation tissue and scar formation, but, while normal scar formation is very localized and transient, in contrast, in fibrosis, the repair process is exaggerated and usually widespread and can be chronic. Inflammatory cells (mainly mononuclear phagocytes), platelets, endothelial cells, and type II pneumocytes play a direct and indirect role in tissue injury and repair. The evaluation of three human fibrotic lung diseases, two diffuse [idiopathic pulmonary fibrosis (IPF), and the adult respiratory distress syndrome (ARDS)], and one focal (tumor stroma in lung cancer), has shown that several cytokines participate to the local injury and inflammatory reaction [interleukin-1 (IL-1), interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-alpha)], while other cytokines are involved in tissue repair and fibrosis [platelet-derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1), transforming growth factor-beta (TGF-beta), and basic-fibroblast growth factor (b-FGF)]. A better understanding of the cytokines and cytokine networks involved in lung fibrosis leads to the possibility of new therapeutic approaches.

  2. Formulation and stability of cytokine therapeutics.

    PubMed

    Lipiäinen, Tiina; Peltoniemi, Marikki; Sarkhel, Sanjay; Yrjönen, Teijo; Vuorela, Heikki; Urtti, Arto; Juppo, Anne

    2015-02-01

    Cytokines are messenger proteins that regulate the proliferation and differentiation of cells and control immune responses. Interferons, interleukins, and growth factors have applications in cancer, autoimmune, and viral disease treatment. The cytokines are susceptible to chemical and physical instability. This article reviews the structure and stability issues of clinically used cytokines, as well as formulation strategies for improved stability. Some general aspects for identifying most probable stability concerns, selecting excipients, and developing stable cytokine formulations are presented. The vast group of cytokines offers possibilities for new biopharmaceuticals. The formulation approaches of the current cytokine products could facilitate development of new biopharmaceuticals.

  3. Prognostic clinical and molecular biomarkers of renal disease in type 2 diabetes.

    PubMed

    Pena, Michelle J; de Zeeuw, Dick; Mischak, Harald; Jankowski, Joachim; Oberbauer, Rainer; Woloszczuk, Wolfgang; Benner, Jacqueline; Dallmann, Guido; Mayer, Bernd; Mayer, Gert; Rossing, Peter; Lambers Heerspink, Hiddo J

    2015-08-01

    Diabetic kidney disease occurs in ∼ 25-40% of patients with type 2 diabetes. Given the high risk of progressive renal function loss and end-stage renal disease, early identification of patients with a renal risk is important. Novel biomarkers may aid in improving renal risk stratification. In this review, we first focus on the classical panel of albuminuria and estimated glomerular filtration rate as the primary clinical predictors of renal disease and then move our attention to novel biomarkers, primarily concentrating on assay-based multiple/panel biomarkers, proteomics biomarkers and metabolomics biomarkers. We focus on multiple biomarker panels since the molecular processes of renal disease progression in type 2 diabetes are heterogeneous, rendering it unlikely that a single biomarker significantly adds to clinical risk prediction. A limited number of prospective studies of multiple biomarkers address the predictive performance of novel biomarker panels in addition to the classical panel in type 2 diabetes. However, the prospective studies conducted so far have small sample sizes, are insufficiently powered and lack external validation. Adequately sized validation studies of multiple biomarker panels are thus required. There is also a paucity of studies that assess the effect of treatments on novel biomarker panels and determine whether initial treatment-induced changes in novel biomarkers predict changes in long-term renal outcomes. Such studies can not only improve our healthcare but also our understanding of the mechanisms of actions of existing and novel drugs and may yield biomarkers that can be used to monitor drug response. We conclude that this will be an area to focus research on in the future.

  4. [Biomarkers for anorexia nervosa].

    PubMed

    Sjøgren, Jan Magnus

    2017-01-16

    Biomarkers for anorexia nervosa (AN) which reflect the pathophysiology and relate to the aetiology of the disease, are warranted and could bring us one step closer to targeted treatment of AN. Some leads may be found in the biochemistry which often is found disturbed in AN, although normalization in many aspects is seen at recovery from undernutrition. Recent genome-wide association studies support that genetic factors play a role in the pathophysiology of AN, of which some are independent of BMI-related mechanisms. In this review, an update on blood-based biomarkers of AN is presented.

  5. Lung Cancer Biomarkers.

    PubMed

    Villalobos, Pamela; Wistuba, Ignacio I

    2017-02-01

    The molecular characterization of lung cancer has changed the classification and treatment of these tumors, becoming an essential component of pathologic diagnosis and oncologic therapy decisions. Through the recognition of novel biomarkers, such as epidermal growth factor receptor mutations and anaplastic lymphoma kinase translocations, it is possible to identify subsets of patients who benefit from targeted molecular therapies. The success of targeted anticancer therapies and new immunotherapy approaches has created a new paradigm of personalized therapy and has led to accelerated development of new drugs for lung cancer treatment. This article focuses on clinically relevant cancer biomarkers as targets for therapy and potential new targets for drug development.

  6. Established and novel biomarkers of sepsis.

    PubMed

    Faix, James D

    2011-04-01

    The increased incidence of sepsis, a systemic response to infection that occurs in some patients, has stimulated interest in identifying infected patients who are at risk and intervening early. When this condition progresses to severe sepsis (characterized by organ dysfunction), mortality is high. Hospitals that have implemented recommendations of the Surviving Sepsis Campaign have seen a reduction in mortality rate for hospital-acquired severe sepsis. They may reduce this further by focusing on new approaches to diagnosing sepsis, especially at an early stage. Sepsis is a complicated syndrome with many physiological derangements and many emerging laboratory markers of sepsis have been proposed as adjuncts to clinical evaluation. The list includes cytokines, acute phase proteins, neutrophil activation markers, markers of abnormal coagulation and, recently, markers of suppression of both the innate and adaptive immune response. The perfect biomarker would accurately identify patients at risk of developing severe sepsis and then guide targeted therapy.

  7. Biomarkers for systemic lupus erythematosus.

    PubMed

    Ahearn, Joseph M; Liu, Chau-Ching; Kao, Amy H; Manzi, Susan

    2012-04-01

    The urgent need for lupus biomarkers was demonstrated in September 2011 during a Workshop sponsored by the Food and Drug Administration: Potential Biomarkers Predictive of Disease Flare. After 2 days of discussion and more than 2 dozen presentations from thought leaders in both industry and academia, it became apparent that highly sought biomarkers to predict lupus flare have not yet been identified. Even short of the elusive biomarker of flare, few biomarkers for systemic lupus erythematosus (SLE) diagnosis, monitoring, and stratification have been validated and employed for making clinical decisions. This lack of reliable, specific biomarkers for SLE hampers proper clinical management of patients with SLE and impedes development of new lupus therapeutics. As such, the intensity of investigation to identify lupus biomarkers is climbing a steep trajectory, lending cautious optimism that a validated panel of biomarkers for lupus diagnosis, monitoring, stratification, and prediction of flare may soon be in hand.

  8. Synovitis biomarkers: ex vivo characterization of three biomarkers for identification of inflammatory osteoarthritis

    PubMed Central

    Kjelgaard-Petersen, Cecilie; Siebuhr, Anne Sofie; Christiansen, Thorbjørn; Ladel, Christoph; Karsdal, Morten; Bay-Jensen, Anne-Christine

    2015-01-01

    Abstract Objective: Characterize biomarkers measuring extracellular matrix turnover of inflamed osteoarthritis synovium. Methods: Human primary fibroblast-like synoviocytes and synovial membrane explants (SMEs) treated with various cytokines and growth factors were assessed by C1M, C3M, and acMMP3 in the conditioned medium. Results: TNFα significantly increased C1M up to seven-fold (p = 0.0002), C3M up to 24-fold (p = 0.0011), and acMMP3 up to 14-fold (p < 0.0001) in SMEs. IL-1β also significantly increased C1M up to five-fold (p = 0.00094), C3M four-fold (p = 0.007), and acMMP3 18-fold (p < 0.0001) in SMEs. Conclusion: The biomarkers C1M, C3M, and acMMP-3 were synovitis biomarkers ex vivo and provide a translational tool together with the SME model. PMID:26863055

  9. Individual differences in pre-carcinogen cytokine and corticosterone concentrations and depressive-like behavior predict tumor onset in rats exposed to a carcinogen.

    PubMed

    Pyter, Leah M; Prendergast, Brian J

    2013-06-01

    Individual variation in the susceptibility to chronic disease can be attributed to both genetic and environmental factors. Measures of the immune, nervous, and endocrine systems are predictive of survival outcomes after a chronic disease is diagnosed. However, determining biomarkers or "traits" that predict risk before chronic disease development remains elusive. In this study, natural individual variation in circulating cytokines, corticosterone, and depressive-like behaviors (using the Porsolt forced swim test) were measured in female rats before induction of mammary tumors using a chemical carcinogen (N-nitroso-N-methylurea). Early tumor onset was associated with relatively high (but within the physiologically typical range) circulating cytokine concentrations (IL-1α, IL-1β, TNFα) and depressive-like behavior and with relatively low corticosterone concentrations, all of which were assessed at baseline before carcinogen treatment. Multiple regression analyses indicated that IL-1β was primarily responsible for the variation in tumor onset when controlling for corticosterone concentration. These results suggest that the susceptibility to tumor initiation and/or growth may be related to individual differences in baseline immune and endocrine physiology and emotional tone present at the time of carcinogen exposure. Investigation of the mechanistic relevance of these individual differences may lead to prophylactic approaches to cancer treatment in the context of carcinogen exposure.

  10. Prognostic Biomarkers in Ovarian Cancer

    PubMed Central

    Huang, Jie; Hu, Wei; Sood, Anil K

    2014-01-01

    Epithelial ovarian cancer (EOC) remains the most lethal gynecological malignancy despite several decades of progress in diagnosis and treatment. Taking advantage of the robust development of discovery and utility of prognostic biomarkers, clinicians and researchers are developing personalized and targeted treatment strategies. This review encompasses recently discovered biomarkers of ovarian cancer, the utility of published prognostic biomarkers for EOC (especially biomarkers related to angiogenesis and key signaling pathways), and their integration into clinical practice. PMID:22045356

  11. Cerebrospinal Fluid Biomarker Candidates for Parkinsonian Disorders

    PubMed Central

    Constantinescu, Radu; Mondello, Stefania

    2013-01-01

    The Parkinsonian disorders are a large group of neurodegenerative diseases including idiopathic Parkinson’s disease (PD) and atypical Parkinsonian disorders (APD), such as multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, and dementia with Lewy bodies. The etiology of these disorders is not known although it is considered to be a combination of genetic and environmental factors. One of the greatest obstacles for developing efficacious disease-modifying treatment strategies is the lack of biomarkers. Reliable biomarkers are needed for early and accurate diagnosis, to measure disease progression, and response to therapy. In this review several of the most promising cerebrospinal biomarker candidates are discussed. Alpha-synuclein seems to be intimately involved in the pathogenesis of synucleinopathies and its levels can be measured in the cerebrospinal fluid and in plasma. In a similar way, tau protein accumulation seems to be involved in the pathogenesis of tauopathies. Urate, a potent antioxidant, seems to be associated to the risk of developing PD and with its progression. Neurofilament light chain levels are increased in APD compared with PD and healthy controls. The new “omics” techniques are potent tools offering new insights in the patho-etiology of these disorders. Some of the difficulties encountered in developing biomarkers are discussed together with future perspectives. PMID:23346074

  12. Biomarkers of cell senescence

    DOEpatents

    Dirmi, G.P.; Campisi, J.; Peacocke, M.

    1996-02-13

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, {beta}-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo. 1 fig.

  13. Biomarkers of cell senescence

    DOEpatents

    Dimri, G.P.; Campisi, J.; Peacocke, M.

    1998-08-18

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, {beta}-galactosidase activity is utilized as a means by which cell senescence may be assessed either in vitro cell cultures or in vivo. 1 fig.

  14. Biomarkers of cell senescence

    DOEpatents

    Dirmi, Goberdhan P.; Campisi, Judith; Peacocke, Monica

    1996-01-01

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo.

  15. Biomarkers of cell senescence

    DOEpatents

    Dimri, Goberdhan P.; Campisi, Judith; Peacocke, Monica

    1998-01-01

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in vitro cell cultures or in vivo.

  16. BluePen Biomarkers LLC: integrated biomarker solutions.

    PubMed

    Blair, Ian A; Mesaros, Clementina; Lilley, Patrick; Nunez, Matthew

    2016-06-01

    BluePen Biomarkers provides a unique comprehensive multi-omics biomarker discovery and validation platform. We can quantify, integrate and analyze genomics, proteomics, metabolomics and lipidomics biomarkers, alongside clinical data, demographics and other phenotypic data. A unique bio-inspired signal processing analytic approach is used that has the proven ability to identify biomarkers in a wide variety of diseases. The resulting biomarkers can be used for diagnosis, prognosis, mechanistic studies and predicting treatment response, in contexts from core research through clinical trials. BluePen Biomarkers provides an additional groundbreaking research goal: identifying surrogate biomarkers from different modalities. This not only provides new biological insights, but enables least invasive, least-cost tests that meet or exceed the predictive quality of current tests.

  17. Cytokine determinants of viral tropism.

    PubMed

    McFadden, Grant; Mohamed, Mohamed R; Rahman, Masmudur M; Bartee, Eric

    2009-09-01

    The specificity of a given virus for a cell type, tissue or species - collectively known as viral tropism - is an important factor in determining the outcome of viral infection in any particular host. Owing to the increased prevalence of zoonotic infections and the threat of emerging and re-emerging pathogens, gaining a better understanding of the factors that determine viral tropism has become particularly important. In this Review, we summarize our current understanding of the central role of antiviral and pro-inflammatory cytokines, particularly the interferons and tumour necrosis factor, in dictating viral tropism and how these cytokine pathways can be exploited therapeutically for cancer treatment and to better counter future threats from emerging zoonotic pathogens.

  18. Biomarkers of Inflammatory Bowel Disease

    PubMed Central

    Fengming, Yi; Jianbing, Wu

    2014-01-01

    Inflammatory bowel disease (IBD) is a chronic disease mostly involved with intestine with unknown etiology. Diagnosis, evaluation of severity, and prognosis are still present as challenges for physicians. An ideal biomarker with the characters such as simple, easy to perform, noninvasive or microinvasive, cheap, rapid, and reproducible is helpful for patients and clinicians. Currently biomarkers applied in clinic include CRP, ESR, pANCA, ASCA, and fecal calprotectin. However, they are far from ideal. Lots of studies are focused on seeking for ideal biomarker for IBD. Herein, the paper reviewed recent researches on biomarkers of IBD to get advances of biomarkers in inflammatory bowel disease. PMID:24963213

  19. Cytokine Signature in Infective Endocarditis

    PubMed Central

    Araújo, Izabella Rodrigues; Ferrari, Teresa Cristina Abreu; Teixeira-Carvalho, Andréa; Campi-Azevedo, Ana Carolina; Rodrigues, Luan Vieira; Guimarães Júnior, Milton Henriques; Barros, Thais Lins Souza; Gelape, Cláudio Léo; Sousa, Giovane Rodrigo; Nunes, Maria Carmo Pereira

    2015-01-01

    Infective endocarditis (IE) is a severe disease with high mortality rate. Cytokines participate in its pathogenesis and may contribute to early diagnosis improving the outcome. This study aimed to evaluate the cytokine profile in IE. Serum concentrations of interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12 and tumor necrosis factor (TNF)-α were measured by cytometric bead array (CBA) at diagnosis in 81 IE patients, and compared with 34 healthy subjects and 30 patients with non-IE infections, matched to the IE patients by age and gender. Mean age of the IE patients was 47±17 years (range, 15–80 years), and 40 (50%) were male. The IE patients had significantly higher serum concentrations of IL-1β, IL-6, IL-8, IL-10 and TNF-α as compared to the healthy individuals. The median levels of IL-1β, TNF-α and IL-12 were higher in the IE than in the non-IE infections group. TNF-α and IL-12 levels were higher in staphylococcal IE than in the non-staphylococcal IE subgroup. There was a higher proportion of both low IL-10 producers and high producers of IL-1β, TNF-α and IL-12 in the staphylococcal IE than in the non-staphylococcal IE subgroup. This study reinforces a relationship between the expression of proinflammatory cytokines, especially IL-1β, IL-12 and TNF-α, and the pathogenesis of IE. A lower production of IL-10 and impairment in cytokine network may reflect the severity of IE and may be useful for risk stratification. PMID:26225421

  20. Cytokine-induced sickness behavior.

    PubMed

    Kelley, Keith W; Bluthé, Rose-Marie; Dantzer, Robert; Zhou, Jian-Hua; Shen, Wen-Hong; Johnson, Rodney W; Broussard, Suzanne R

    2003-02-01

    The behavioral repertoire of humans and animals changes dramatically following infection. Sick individuals have little motivation to eat, are listless, complain of fatigue and malaise, loose interest in social activities and have significant changes in sleep patterns. They display an inability to experience pleasure, have exaggerated responses to pain and fail to concentrate. Proinflammatory cytokines acting in the brain cause sickness behaviors. These nearly universal behavioral changes are a manifestation of a central motivational state that is designed to promote recovery. Exaggerated symptoms of sickness in cancer patients, such as cachexia, can be life-threatening. However, quality of life is often drastically impaired before the cancer becomes totally debilitating. Although basic studies in psychoneuroimmunology have defined proinflammatory cytokines as the central mediators of sickness behavior, a much better understanding of how cytokine and neurotransmitter receptors communicate with each other is needed. Advances that have been made during the past decade should now be extended to clinical studies in an attempt to alleviate sickness symptoms and improve quality of life for cancer patients.

  1. Use of multiple cell and tissue-level biomarkers in mussels collected along two gas fields in the northern Adriatic Sea as a tool for long term environmental monitoring.

    PubMed

    Gomiero, A; Volpato, E; Nasci, C; Perra, G; Viarengo, A; Dagnino, A; Spagnolo, A; Fabi, G

    2015-04-15

    As a consequence of the growing global demand of energy supplies, intense oil and gas exploration and exploitation programs have been carried out worldwide especially within the marine environments. The release of oil-derived compounds in the sea from anthropogenic sources both as effluents or accidental spill is perceived as a major environmental concern. An approach based on a combination of biomarkers and the distribution of some classes of environmentally relevant pollutants was used to investigate the occurrence of a stress syndrome in mussels (Mytilus galloprovincialis) collected at three gas platforms placed in two distinct oceanographic districts within the Adriatic Sea. Biological responses were integrated by a ranking algorithm which demonstrated both a range of biological effects reflecting exposure gradients and a temporal related trend in the investigated responses. The overall results demonstrate a moderate to absent pollution from studied gas platforms with low but remarkable biological disturbance in sentinel organisms.

  2. Plasma cytokine concentrations associated with HIV/Hepatitis C coinfection are related to attention, executive and psychomotor functioning

    PubMed Central

    Cohen, Ronald A.; de la Monte, Suzanne; Gongvatana, Assawin; Ombao, Hernando; Gonzalez, Beverly; Devlin, Kathryn N.; Navia, Bradford; Tashima, Karen T.

    2011-01-01

    Cytokine disturbances have been linked to brain dysfunction among HIV-infected people. Past studies have not simultaneously examined a large set of cytokine measures and their relationships to HIV-associated neurocognitive deficits. We hypothesized that performance on measures of attention, and executive and psychomotor functions would be associated with plasma cytokine concentrations in HIV-infected individuals. Plasma samples drawn from 30 HIV-infected and 37 HIV seronegative individuals were analyzed via xMAP multiplexed bead array immunoassay to determine concentrations of thirteen cytokines. Performance on Trail Making A/B, Stroop Test, Letter Number Sequencing, Digit Symbol Coding, Symbol Search, and Grooved Pegboard tests was assessed. Statistical analyses were performed to examine group differences in cytokine concentrations, and associations between cytokine and HIV clinical variables and neurocognitive performance. Significant HIV effects were found on seven of the thirteen cytokines, primarily with respect to interleukins. HIV clinical factors (CD4 and HIV RNA levels, duration of illness, antiretroviral treatment) and hepatitis C status were associated with specific plasma cytokine concentrations. Neurocognitive measures were associated with cytokine concentrations, most consistently among the interleukins and IP-10. Generally, cytokine concentrations were among the strongest predictors of neurocognitive function relative to other clinical factors, which reinforces their potential importance in examining the neuropathological processes of HIV. The findings also point to the potential value of simultaneously examining a panel of biomarkers. The current results suggest that a complex relationship likely exists among cytokines [how?], and that these relationships are mediated not only by HIV infection, but also by antiretroviral treatment and other comorbid conditions. PMID:21146232

  3. DNA Methylation Biomarkers for Nasopharyngeal Carcinoma: Diagnostic and Prognostic Tools.

    PubMed

    Jiang, Wei; Cai, Rui; Chen, Qiu-Qiu

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is a common tumor in southern China and south-eastern Asia. Effective strategies for the prevention or screening of NPC are limited. Exploring effective biomarkers for the early diagnosis and prognosis of NPC continues to be a rigorous challenge. Evidence is accumulating that DNA methylation alterations are involved in the initiation and progression of NPC. Over the past few decades, aberrant DNA methylation in single or multiple tumor suppressor genes (TSGs) in various biologic samples have been described in NPC, which potentially represents useful biomarkers. Recently, large-scale DNA methylation analysis by genome-wide methylation platform provides a new way to identify candidate DNA methylated markers of NPC. This review summarizes the published research on the diagnostic and prognostic potential biomarkers of DNA methylation for NPC and discusses the current knowledge on DNA methylation as a biomarker for the early detection and monitoring of progression of NPC.

  4. Emerging biomarkers for PD-1 pathway cancer therapy.

    PubMed

    Lim, Joline Sj; Sundar, Raghav; Chénard-Poirier, Maxime; Lopez, Juanita; Yap, Timothy A

    2017-01-01

    The field of immuno-oncology has witnessed unprecedented success in recent years, with several PD=1 and PD-L1 inhibitors obtaining US FDA registration and breakthrough drug therapy designation in multiple tumor types. Despite its clear efficacy in certain cancers, treatment with these agents carries a risk of immune-related toxicities and substantial financial burden. It is, therefore, critical to identify patients likely to benefit from such immunotherapies and develop strategies to differentiate responders from nonresponders early during treatment. Here we discuss the development of predictive and treatment response biomarkers for immune checkpoint inhibitors. We first examine the role of PD-L1 expression, the most extensively studied predictive biomarker of response, and further discuss emerging putative predictive biomarkers. We also detail challenges faced in the development of response assessments for immunotherapeutics and propose other biomarkers that may be useful as surrogate intermediate end points of response.

  5. Inflammatory Biomarkers in Osteoarthritis

    PubMed Central

    Daghestani, Hikmat N.; Kraus, Virginia B.

    2015-01-01

    Summary Osteoarthritis (OA) is highly prevalent and a leading cause of disability worldwide. Despite the global burden of OA, diagnostic tests and treatments for the molecular or early subclinical stages are still not available for clinical use. In recent years, there has been a large shift in the understanding of OA as a “wear and tear” disease to an inflammatory disease. This has been demonstrated through various studies using MRI, ultrasound, histochemistry, and biomarkers. It would of great value to be able to readily identify subclinical and/or sub-acute inflammation, particularly in such a way as to be appropriate for a clinical setting. Here we review several types of biomarkers associated with OA in human studies that point to a role of inflammation in OA. PMID:26521734

  6. Biomarkers for PTSD

    DTIC Science & Technology

    2012-07-01

    smaller dentate/ CA3 hippocampal subfield volumes, lower ambient cortisol levels, and greater cortisol suppression following dexamethasone...administration. It is also predicted that lower neuropeptide Y levels will be associated with smaller Dentate/ CA3 volumes, and that APO E4 polymorphisms will be...associated with smaller Dentate/ CA3 volumes. 5 BODY: The Biomarkers for PTSD study is in the implementation phase. In year 2 of the grant

  7. A Prospective Evaluation of Systemic Biomarkers and Cognitive Function Associated with Carotid Revascularization

    PubMed Central

    Zuniga, Mary C.; Tran, Thuy B.; Baughman, Brittanie D.; Raghuraman, Gayatri; Hitchner, Elizabeth; Rosen, Allyson; Zhou, Wei

    2017-01-01

    Objective To determine factors affecting cognition and identify predictors of long-term cognitive impairment following carotid revascularization procedures. Background Cognitive impairment is common in older patients with carotid occlusive diseases. Methods Patients undergoing carotid intervention for severe occlusive diseases were prospectively recruited. Patients received neurocognitive testing before, 1, and 6 months after carotid interventions. Plasma samples were also collected within 24 hours after carotid intervention and inflammatory cytokines were analyzed. Univariate and multivariate logistic regressions were performed to identify risk factors associated with significant cognitive deterioration (>10% decline). Results A total of 98 patients (48% symptomatic) were recruited, including 55 patients receiving carotid stenting and 43 receiving endarterectomy. Mean age was 69 (range 54–91 years). Patients had overall improvement in cognitive measures 1 month after revascularization. When compared with carotid stenting, endarterectomy patients demonstrated postoperative improvement in cognition at 1 and 6 months compared with baseline. Carotid stenting (odds ratio 6.49, P = 0.020) and age greater than 80 years (odds ratio 12.6, P = 0.023) were associated with a significant long-term cognitive impairment. Multiple inflammatory cytokines also showed significant changes after revascularization. On multivariate analysis, after controlling for procedure and age, IL-12p40 (P = 0.041) was associated with a higher risk of significant cognitive impairment at 1 month; SDF1-α (P = 0.004) and tumor necrosis factor alpha (P = 0.006) were independent predictors of cognitive impairment, whereas interleukin-6 (P = 0.019) demonstrated cognitive protective effects at 6 months after revascularization. Conclusions Carotid interventions affect cognitive function. Systemic biomarkers can be used to identify patients at risk of significant cognitive decline postprocedures that

  8. Proinflammatory cytokines and matrix metalloproteinases in CSF of patients with VZV vasculopathy

    PubMed Central

    Jones, Dallas; Alvarez, Enrique; Selva, Sean; Gilden, Don

    2016-01-01

    Objective: To determine the levels of proinflammatory cytokines and matrix metalloproteinases (MMPs) in the CSF of patients with virologically verified varicella zoster virus (VZV) vasculopathy. Methods: CSF from 30 patients with virologically verified VZV vasculopathy was analyzed for levels of proinflammatory cytokines and MMPs using the Meso Scale Discovery multiplex ELISA platform. Positive CNS inflammatory disease controls were provided by CSF from 30 patients with multiple sclerosis. Negative controls were provided by CSF from 20 healthy controls. Results: Compared to multiple sclerosis CSF and CSF from healthy controls, levels of interleukin (IL)-8, IL-6, and MMP-2 were significantly elevated in VZV vasculopathy CSF. Conclusions: CSF of patients with VZV vasculopathy revealed a unique profile of elevated proinflammatory cytokines, IL-8 and IL-6, along with elevated MMP-2. The relevance of these cytokines to the pathogenesis of VZV vasculopathy requires further study. PMID:27340684

  9. [Biomarkers of Alzheimer disease].

    PubMed

    Rachel, Wojciech; Grela, Agatha; Zyss, Tomasz; Zieba, Andrzej; Piekoszewski, Wojciech

    2014-01-01

    Cognitive impairment is one of the most abundant age-related psychiatric disorders. The outcome of cognitive impairment in Alzheimer's disease has both individual (the patients and their families) and socio-economic effects. The prevalence of Alzheimer's disease doubles after the age of 65 years, every 4.5 years. An etiologically heterogenic group of disorders related to aging as well as genetic and environmental interactions probably underlie the impairment in Alzheimer's disease. Those factors cause the degeneration of brain tissue which leads to significant cognitive dysfunction. There are two main hypotheses that are linked to the process of neurodegeneration: (i) amyloid cascade and (ii) the role of secretases and dysfunction of mitochondria. From the therapeutic standpoint it is crucial to get an early diagnosis and start with an adequate treatment. The undeniable progress in the field of biomarker research should lead to a better understanding of the early stages of the disorder. So far, the best recognised and described biomarkers of Alzheimer's disease, which can be detected in both cerebrospinal fluid and blood, are: beta-amyloid, tau-protein and phosphorylated tau-protein (phospho-tau). The article discusses the usefulness of the known biomarkers of Alzheimer's disease in early diagnosis.

  10. Stemina biomarker discovery.

    PubMed

    Cezar, Gabriela G; Donley, Elizabeth L R

    2008-09-01

    Stemina Biomarker Discovery was established in 2006 to commercialize technology developed by Dr Gabriela Cezar at the University of Wisconsin (WI, USA). Stemina's cell-based assays arise from the strategic convergence of two cutting edge technologies: metabolomics and human embryonic stem (hES) cells. Stemina analyzes the small molecules secreted by hES cells and differentiated cell types such as neural and heart cells derived from hES cells by liquid chromatography mass spectrometry at its state-of-the-art facilities in Madison, WI, USA. Stemina's first technology platform has identified a dynamic set of small molecules in the extracellular secretome of hES cells secreted in response to exposure to a library of known teratogens. Alterations to small molecules in the biochemical pathway(s) of hES cells are mapped in silico to identify biomarkers of toxicity for drug screening and development in an all human system. These small human molecules may then be translated in vivo as biomarkers of toxic response and disease.

  11. IDBD: infectious disease biomarker database.

    PubMed

    Yang, In Seok; Ryu, Chunsun; Cho, Ki Joon; Kim, Jin Kwang; Ong, Swee Hoe; Mitchell, Wayne P; Kim, Bong Su; Oh, Hee-Bok; Kim, Kyung Hyun

    2008-01-01

    Biomarkers enable early diagnosis, guide molecularly targeted therapy and monitor the activity and therapeutic responses across a variety of diseases. Despite intensified interest and research, however, the overall rate of development of novel biomarkers has been falling. Moreover, no solution is yet available that efficiently retrieves and processes biomarker information pertaining to infectious diseases. Infectious Disease Biomarker Database (IDBD) is one of the first efforts to build an easily accessible and comprehensive literature-derived database covering known infectious disease biomarkers. IDBD is a community annotation database, utilizing collaborative Web 2.0 features, providing a convenient user interface to input and revise data online. It allows users to link infectious diseases or pathogens to protein, gene or carbohydrate biomarkers through the use of search tools. It supports various types of data searches and application tools to analyze sequence and structure features of potential and validated biomarkers. Currently, IDBD integrates 611 biomarkers for 66 infectious diseases and 70 pathogens. It is publicly accessible at http://biomarker.cdc.go.kr and http://biomarker.korea.ac.kr.

  12. The use and misuse of biomarkers in ecotoxicology.

    PubMed

    Forbes, Valery E; Palmqvist, Annemette; Bach, Lis

    2006-01-01

    Substantial efforts have been devoted to developing and applying biomarkers for use in ecotoxicology. These efforts have resulted partly from a desire for early warning indicators that respond before measurable effects on individuals and populations occur and partly as an aid to identifying the causes of observed population- and community-level effects. Whereas older biomarkers focused on measures of organism physiology or biochemistry, advances in molecular biology are extending the biomarker philosophy to the level of the genes (i.e., ecotoxicogenomics). However, the extent to which biomarkers are able to provide unambiguous and ecologically relevant indicators of exposure to or effects of toxicants remains highly controversial. In the present paper, we briefly discuss the application of biomarkers in ecotoxicology and ecological risk assessment, and we provide examples of how they have been applied. We conclude that although biomarkers can be helpful for gaining insight regarding the mechanisms causing observed effects of chemicals on whole-organism performance and may, in some cases, provide useful indicators of exposure, individual biomarker responses should not be expected to provide useful predictions of relevant ecological effects--and probably not even predictions of whole-organism effects. Suites of biomarkers are only likely to provide increased predictability if they can be used in a comprehensive mechanistic model that integrates them into a measure of fitness. Until this can be achieved, biomarkers may be useful for hypothesis generation in carefully controlled experiments. However, because the aims of environmental monitoring and ecological risk assessment are to detect and/or predict adverse chemical impacts on populations, communities, and ecosystems, we should be focusing our efforts on improving methods to do this directly. This will involve developing and testing models of appropriate complexity that can describe real-world systems at multiple

  13. Mendelian randomization studies of biomarkers and type 2 diabetes

    PubMed Central

    Abbasi, Ali

    2015-01-01

    Many biomarkers are associated with type 2 diabetes (T2D) risk in epidemiological observations. The aim of this study was to identify and summarize current evidence for causal effects of biomarkers on T2D. A systematic literature search in PubMed and EMBASE (until April 2015) was done to identify Mendelian randomization studies that examined potential causal effects of biomarkers on T2D. To replicate the findings of identified studies, data from two large-scale, genome-wide association studies (GWAS) were used: DIAbetes Genetics Replication And Meta-analysis (DIAGRAMv3) for T2D and the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) for glycaemic traits. GWAS summary statistics were extracted for the same genetic variants (or proxy variants), which were used in the original Mendelian randomization studies. Of the 21 biomarkers (from 28 studies), ten have been reported to be causally associated with T2D in Mendelian randomization. Most biomarkers were investigated in a single cohort study or population. Of the ten biomarkers that were identified, nominally significant associations with T2D or glycaemic traits were reached for those genetic variants related to bilirubin, pro-B-type natriuretic peptide, delta-6 desaturase and dimethylglycine based on the summary data from DIAGRAMv3 or MAGIC. Several Mendelian randomization studies investigated the nature of associations of biomarkers with T2D. However, there were only a few biomarkers that may have causal effects on T2D. Further research is needed to broadly evaluate the causal effects of multiple biomarkers on T2D and glycaemic traits using data from large-scale cohorts or GWAS including many different genetic variants. PMID:26446360

  14. Evaluating many treatments and biomarkers in oncology: a new design.

    PubMed

    Kaplan, Richard; Maughan, Timothy; Crook, Angela; Fisher, David; Wilson, Richard; Brown, Louise; Parmar, Mahesh

    2013-12-20

    There is a pressing need for more-efficient trial designs for biomarker-stratified clinical trials. We suggest a new approach to trial design that links novel treatment evaluation with the concurrent evaluation of a biomarker within a confirmatory phase II/III trial setting. We describe a new protocol using this approach in advanced colorectal cancer called FOCUS4. The protocol will ultimately answer three research questions for a number of treatments and biomarkers: (1) After a period of first-line chemotherapy, do targeted novel therapies provide signals of activity in different biomarker-defined populations? (2) If so, do these definitively improve outcomes? (3) Is evidence of activity restricted to the biomarker-defined groups? The protocol randomizes novel agents against placebo concurrently across a number of different biomarker-defined population-enriched cohorts: BRAF mutation; activated AKT pathway: PI3K mutation/absolute PTEN loss tumors; KRAS and NRAS mutations; and wild type at all the mentioned genes. Within each biomarker-defined population, the trial uses a multistaged approach with flexibility to adapt in response to planned interim analyses for lack of activity. FOCUS4 is the first test of a protocol that assigns all patients with metastatic colorectal cancer to one of a number of parallel population-enriched, biomarker-stratified randomized trials. Using this approach allows questions regarding efficacy and safety of multiple novel therapies to be answered in a relatively quick and efficient manner, while also allowing for the assessment of biomarkers to help target treatment.

  15. Circulating microRNAs as potential biomarkers for smoking-related interstitial fibrosis.

    PubMed

    Huang, Yuchuan; Dai, Ya; Zhang, Jie; Wang, Changguo; Li, Dongliang; Cheng, Jingqiu; Lu, Yanrong; Ma, Kuoyan; Tan, Lanlan; Xue, Fang; Qin, Bo

    2012-08-01

    Numerous efforts have been made to indentify reliable and predictive biomarkers to detect the early signs of smoking-induced lung disease. Using 6-month cigarette smoking in mice, we have established smoking-related interstitial fibrosis (SRIF). Microarray analyses and cytokine/chemokine biomarker measurements were made to select circulating microRNAs (miRNAs) biomarkers. We have demonstrated that specific miRNAs species (miR-125b-5p, miR-128, miR-30e, and miR-20b) were significantly changed, both in the lung tissue and in plasma, and exhibited mainstream (MS) exposure duration-dependent pathological changes in the lung. These findings suggested a potential use of specific circulating miRNAs as sensitive and informative biomarkers for smoking-induced lung disease.

  16. TLR signals posttranscriptionally regulate the cytokine trafficking mediator sortilin

    PubMed Central

    Yabe-Wada, Toshiki; Matsuba, Shintaro; Takeda, Kazuya; Sato, Tetsuya; Suyama, Mikita; Ohkawa, Yasuyuki; Takai, Toshiyuki; Shi, Haifeng; Philpott, Caroline C.; Nakamura, Akira

    2016-01-01

    Regulating the transcription, translation and secretion of cytokines is crucial for controlling the appropriate balance of inflammation. Here we report that the sorting receptor sortilin plays a key role in cytokine production. We observed interactions of sortilin with multiple cytokines including IFN-α, and sortilin depletion in plasmacytoid dendritic cells (pDCs) led to a reduction of IFN-α secretion, suggesting a pivotal role of sortilin in the exocytic trafficking of IFN-α in pDCs. Moreover, sortilin mRNA was degraded posttranscriptionally upon stimulation with various TLR ligands. Poly-rC-binding protein 1 (PCBP1) recognized the C-rich element (CRE) in the 3′ UTR of sortilin mRNA, and depletion of PCBP1 enhanced the degradation of sortilin transcripts, suggesting that PCBP1 can act as a trans-acting factor to stabilize sortilin transcripts. The nucleotide-binding ability of PCBP1 was impaired by zinc ions and alterations of intracellular zinc affect sortilin expression. PCBP1 may therefore control the stability of sortilin transcripts by sensing intracellular zinc levels. Collectively, our findings provide insights into the posttranslational regulation of cytokine production through the posttranscriptional control of sortilin expression by TLR signals. PMID:27220277

  17. Cytokine expression in Peyer's patches following hemorrhage and resuscitation.

    PubMed

    Shenkar, R; Chang, Y H; Abraham, E

    1994-01-01

    Intestinal dysfunction commonly occurs following hemorrhage and injury and appears to contribute to the development of multiple organ system failure in this setting. In order to examine possible mechanisms leading to intestinal dysfunction following blood loss, we investigated mRNA levels for cytokines with proinflammatory and immunoregulatory properties (interleukin 1 beta (IL-1 beta), IL-6, IL-10, TNF-alpha, TGF-beta, IFN-gamma) as well as mRNA expression for inducible nitric oxide synthase (NOS) over the 3 days following hemorrhage and resuscitation. Significantly increased levels of mRNA for IL-1 beta, IL-10, and IFN-gamma were found among cells isolated from Peyer's patches 3 days following hemorrhage. Amounts of mRNA for inducible NOS were not significantly altered 24 or 72 h after blood loss. In addition to being increased 72 h following hemorrhage, levels of mRNA for IL-10 also were increased 1 and 4 h posthemorrhage. No alterations in cytokine or NOS expression were found 24 h following blood loss. These results demonstrate that significant increases in proinflammatory and immunoregulatory cytokine mRNA levels among cellular populations in Peyer's patches are present at late posthemorrhage time points. These alterations in cytokine expression may contribute to the morphologic, immunologic, and functional changes in the intestines which are present following blood loss and injury.

  18. Principles of interleukin (IL)-6-type cytokine signalling and its regulation.

    PubMed Central

    Heinrich, Peter C; Behrmann, Iris; Haan, Serge; Hermanns, Heike M; Müller-Newen, Gerhard; Schaper, Fred

    2003-01-01

    The IL (interleukin)-6-type cytokines IL-6, IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor, cardiotrophin-1 and cardiotrophin-like cytokine are an important family of mediators involved in the regulation of the acute-phase response to injury and infection. Besides their functions in inflammation and the immune response, these cytokines play also a crucial role in haematopoiesis, liver and neuronal regeneration, embryonal development and fertility. Dysregulation of IL-6-type cytokine signalling contributes to the onset and maintenance of several diseases, such as rheumatoid arthritis, inflammatory bowel disease, osteoporosis, multiple sclerosis and various types of cancer (e.g. multiple myeloma and prostate cancer). IL-6-type cytokines exert their action via the signal transducers gp (glycoprotein) 130, LIF receptor and OSM receptor leading to the activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) and MAPK (mitogen-activated protein kinase) cascades. This review focuses on recent progress in the understanding of the molecular mechanisms of IL-6-type cytokine signal transduction. Emphasis is put on the termination and modulation of the JAK/STAT signalling pathway mediated by tyrosine phosphatases, the SOCS (suppressor of cytokine signalling) feedback inhibitors and PIAS (protein inhibitor of activated STAT) proteins. Also the cross-talk between the JAK/STAT pathway with other signalling cascades is discussed. PMID:12773095

  19. Polyfunctional responses by human T cells result from sequential release of cytokines

    PubMed Central

    Han, Qing; Bagheri, Neda; Bradshaw, Elizabeth M.; Hafler, David A.; Lauffenburger, Douglas A.; Love, J. Christopher

    2012-01-01

    The release of cytokines by T cells defines a significant part of their functional activity in vivo, and their ability to produce multiple cytokines has been associated with beneficial immune responses. To date, time-integrated end-point measurements have obscured whether these polyfunctional states arise from the simultaneous or successive release of cytokines. Here, we used serial, time-dependent, single-cell analysis of primary human T cells to resolve the temporal dynamics of cytokine secretion from individual cells after activation ex vivo. We show that multifunctional, Th1-skewed cytokine responses (IFN-γ, IL-2, TNFα) are initiated asynchronously, but the ensuing dynamic trajectories of these responses evolve programmatically in a sequential manner. That is, cells predominantly release one of these cytokines at a time rather than maintain active secretion of multiple cytokines simultaneously. Furthermore, these dynamic trajectories are strongly associated with the various states of cell differentiation suggesting that transient programmatic activities of many individual T cells contribute to sustained, population-level responses. The trajectories of responses by single cells may also provide unique, time-dependent signatures for immune monitoring that are less compromised by the timing and duration of integrated measures. PMID:22160692

  20. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness

    PubMed Central

    Furman, David; Jojic, Vladimir; Kidd, Brian; Shen-Orr, Shai; Price, Jordan; Jarrell, Justin; Tse, Tiffany; Huang, Huang; Lund, Peder; Maecker, Holden T; Utz, Paul J; Dekker, Cornelia L; Koller, Daphne; Davis, Mark M

    2013-01-01

    Despite the importance of the immune system in many diseases, there are currently no objective benchmarks of immunological health. In an effort to identifying such markers, we used influenza vaccination in 30 young (20–30 years) and 59 older subjects (60 to >89 years) as models for strong and weak immune responses, respectively, and assayed their serological responses to influenza strains as well as a wide variety of other parameters, including gene expression, antibodies to hemagglutinin peptides, serum cytokines, cell subset phenotypes and in vitro cytokine stimulation. Using machine learning, we identified nine variables that predict the antibody response with 84% accuracy. Two of these variables are involved in apoptosis, which positively associated with the response to vaccination and was confirmed to be a contributor to vaccine responsiveness in mice. The identification of these biomarkers provides new insights into what immune features may be most important for immune health. PMID:23591775

  1. An Integrated Model of Atopic Dermatitis Biomarkers Highlights the Systemic Nature of the Disease.

    PubMed

    Ungar, Benjamin; Garcet, Sandra; Gonzalez, Juana; Dhingra, Nikhil; Correa da Rosa, Joel; Shemer, Avner; Krueger, James G; Suarez-Farinas, Mayte; Guttman-Yassky, Emma

    2017-03-01

    Current atopic dermatitis (AD) models link epidermal abnormalities in lesional skin to cytokine activation. However, there is evolving evidence of systemic immune activation and detectable abnormalities in nonlesional skin. Because some of the best single correlations with severity (Scoring of AD, or SCORAD) are detected not only in lesional but also nonlesional skin and blood, more complex biomarker models of AD are needed. We thus performed extensive biomarker measures in these compartments using univariate and multivariate approaches to correlate disease biomarkers with SCORAD and with a combined hyperplasia score [thickness and keratin 16 (K16) mRNA] at baseline and after cyclosporine A treatment in 25 moderate to severe AD patients. Increases in serum cytokines and chemokines (IL-13, IL-22, CCL17) were found in AD versus healthy individuals and were reduced with treatment. SCORAD correlated with immune (IL-13, IL-22) and epidermal (thickness, K16) measures in lesional and, even more strongly, in nonlesional AD. Serum cytokines also had higher correlations with nonlesional markers at baseline and with treatment. Multivariate U statistics improved baseline and treatment-response SCORAD correlations. Nonlesional models showed the strongest correlations, with further improvement upon integration of serum markers. Even better correlations were obtained between biomarkers and the hyperplasia score. Larger cohorts are needed to confirm these preliminary data.

  2. Cancer biomarker discovery and validation

    PubMed Central

    Goossens, Nicolas; Nakagawa, Shigeki; Sun, Xiaochen; Hoshida, Yujin

    2015-01-01

    With the emergence of genomic profiling technologies and selective molecular targeted therapies, biomarkers play an increasingly important role in the clinical management of cancer patients. Single gene/protein or multi-gene “signature”-based assays have been introduced to measure specific molecular pathway deregulations that guide therapeutic decision-making as predictive biomarkers. Genome-based prognostic biomarkers are also available for several cancer types for potential incorporation into clinical prognostic staging systems or practice guidelines. However, there is still a large gap between initial biomarker discovery studies and their clinical translation due to the challenges in the process of cancer biomarker development. In this review we summarize the steps of biomarker development, highlight key issues in successful validation and implementation, and overview representative examples in the oncology field. We also discuss regulatory issues and future perspectives in the era of big data analysis and precision medicine. PMID:26213686

  3. Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers.

    PubMed

    Liu, Rui; Wang, Xiangdong; Aihara, Kazuyuki; Chen, Luonan

    2014-05-01

    Many studies have been carried out for early diagnosis of complex diseases by finding accurate and robust biomarkers specific to respective diseases. In particular, recent rapid advance of high-throughput technologies provides unprecedented rich information to characterize various disease genotypes and phenotypes in a global and also dynamical manner, which significantly accelerates the study of biomarkers from both theoretical and clinical perspectives. Traditionally, molecular biomarkers that distinguish disease samples from normal samples are widely adopted in clinical practices due to their ease of data measurement. However, many of them suffer from low coverage and high false-positive rates or high false-negative rates, which seriously limit their further clinical applications. To overcome those difficulties, network biomarkers (or module biomarkers) attract much attention and also achieve better performance because a network (or subnetwork) is considered to be a more robust form to characterize diseases than individual molecules. But, both molecular biomarkers and network biomarkers mainly distinguish disease samples from normal samples, and they generally cannot ensure to identify predisease samples due to their static nature, thereby lacking ability to early diagnosis. Based on nonlinear dynamical theory and complex network theory, a new concept of dynamical network biomarkers (DNBs, or a dynamical network of biomarkers) has been developed, which is different from traditional static approaches, and the DNB is able to distinguish a predisease state from normal and disease states by even a small number of samples, and therefore has great potential to achieve "real" early diagnosis of complex diseases. In this paper, we comprehensively review the recent advances and developments on molecular biomarkers, network biomarkers, and DNBs in particular, focusing on the biomarkers for early diagnosis of complex diseases considering a small number of samples and high

  4. Data mining for biomarker development: a review of tissue specificity analysis.

    PubMed

    Klee, Eric W

    2008-03-01

    Novel biomarker development requires a significant resource commitment to translate candidate markers into clinical assays. Consequently, it is imperative high quality candidates are selected early in a biomarker development program. High throughput gene expression data are routinely used to identify transcripts differentially expressed in diseased versus normal samples. Data-mining Expressed Sequence Tag, Serial Analysis of Gene Expression, Massively Parallel Signature Sequencing, and microarray expression databases can provide additional information on the expression of candidate biomarkers across multiple tissues, organs, and disease states. From this information, quantitative measures of tissue-specific gene specificity are computed and used to guide candidate biomarker selection.

  5. Fabrication of Homogeneous High-Density Antibody Microarrays for Cytokine Detection

    PubMed Central

    Hospach, Ingeborg; Joseph, Yvonne; Mai, Michaela Kathrin; Krasteva, Nadejda; Nelles, Gabriele

    2014-01-01

    Cytokine proteins are known as biomarker molecules, characteristic of a disease or specific body condition. Monitoring of the cytokine pattern in body fluids can contribute to the diagnosis of diseases. Here we report on the development of an array comprised of different anti-cytokine antibodies on an activated solid support coupled with a fluorescence readout mechanism. Optimization of the array preparation was done in regard of spot homogeneity and spot size. The proinflammatory cytokines Tumor Necrosis Factor alpha (TNFα) and Interleukin 6 (IL-6) were chosen as the first targets of interest. First, the solid support for covalent antibody immobilization and an adequate fluorescent label were selected. Three differently functionalized glass substrates for spotting were compared: amine and epoxy, both having a two-dimensional structure, and the NHS functionalized hydrogel (NHS-3D). The NHS-hydrogel functionalization of the substrate was best suited to antibody immobilization. Then, the optimization of plotting parameters and geometry as well as buffer media were investigated, considering the ambient analyte theory of Roger Ekins. As a first step towards real sample studies, a proof of principle of cytokine detection has been established. PMID:27600349

  6. Establishment of a multiplex RT-PCR assay for the rapid detection of fish cytokines.

    PubMed

    Kono, Tomoya; Takayama, Hiroaki; Nagamine, Ryusuke; Korenaga, Hiroki; Sakai, Masahiro

    2013-01-15

    To monitor the expression of cytokine genes in Japanese pufferfish, a novel platform for quantitative multiplexed analysis was developed. This custom-designed multiplex RT-PCR assay was used to analyze the expression profiles of 19 cytokine genes, including pro-inflammatory (IL-1β, IL-6, IL-17A/F3, IL-18, TNF-α, TNF-N), anti-inflammatory (IL-4/13A, IL-4/13B, IL-10), T-cell proliferation/differentiation (IL-2, IL-15, IL-21, TGF-β1), B-cell activation/differentiation (IL-7, IL-6, IL-4/13A, IL-4/13B), NK cell stimulation (IL-12p35 and IL-12p40), induction of anti-viral activity (I-IFN-1 and IFN-γ), and monocyte/macrophage progenitor cell proliferation (M-CSF1b) cytokines in head kidney cells under immune stimulatory conditions. The expression profiles were dissimilar in the unstimulated control and immune-stimulated cells. Moreover, increased expression profile was observed due to different stimulations for IL-1β, IL-6, IL-10, IL-12p35, IL-12p40, IL-21, TNF-α, TNF-N, I-IFN-1 and IFN-γ genes. These results suggest that cytokine genes could be used as biomarkers to know the immune status of fish. The constructed multiplex RT-PCR assay will enhance understanding on immune regulation by cytokines in fish.

  7. Pro- and anti-inflammatory cytokines, but not CRP, are inversely correlated with severity and symptoms of major depression.

    PubMed

    Schmidt, Frank M; Schröder, Thomas; Kirkby, Kenneth C; Sander, Christian; Suslow, Thomas; Holdt, Lesca M; Teupser, Daniel; Hegerl, Ulrich; Himmerich, Hubertus

    2016-05-30

    To clarify findings of elevated cytokine levels in major depression (MD), this study aimed to investigate the relationship between serum levels of cytokines, symptoms of MD and antidepressant treatment outcome. At baseline (T0) and 4 weeks following initiation of antidepressant treatment (T1), levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12, IL-13, granulocyte-macrophage-colony-stimulating-factor (GM-CSF), CRP and depression ratings HAMD-17 and BDI-II were assessed in 30 patients with MD and 30 age-and sex-matched controls. At T0, in the patient group, cytokines, but not CRP, negatively correlated with individual BDI-II-items, factors and severities and showed both negative and positive correlations with HAMD-17 items. At T1 and within the controls, no such relationships were observed. At T0 and T1, levels of both pro- and anti-inflammatory cytokines were significantly higher in treatment responders (ΔHAMD-17T0-T1≥50%,n=15) compared to non-responders. When controlled for baseline BDI, differences between groups were only found significant for IL-2 at T0. The results suggest cytokines are not generally pro-depressive but rather relate to more specific regulation of symptoms and severities in MD. Together with the association between cytokines and treatment responder status, these data support cytokines as a promising but still controversial biomarker of depression.

  8. Biomarkers of Irritable Bowel Syndrome

    PubMed Central

    Kim, Jae Hak; Lin, Eugenia; Pimentel, Mark

    2017-01-01

    Traditionally, irritable bowel syndrome (IBS) has not been regarded as an organic disease, and the pathophysiology of IBS is heterogeneous. Currently, the diagnosis of IBS is based upon the Rome diagnostic criteria. The performance of these criteria is only modest in predicting IBS, and moreover their validation is lacking. Additionally, as functional symptoms are common in the general population, healthy controls or volunteers are difficult to define and there is currently no definition of “normal” in the Rome criteria. Due to the weaknesses of the current diagnostic criteria, patients and doctors expect new gold standard diagnostic tools. Various etiologic mechanisms result in potential biomarkers. The focus of this research has been to find non-invasive biomarkers from serum, breath gas, and fecal materials. Though biomarkers should be based on biological and pathogenic processes, most biomarkers for IBS have been developed to identify organic diseases and therefore eliminate IBS. To date, these types of biomarkers for IBS have been disappointing. The purposes of developing biomarkers include improvement of diagnosis, differentiation from other organic diseases, and discrimination of IBS subtypes. A true mechanistic biomarker would make it possible to rule in IBS, rather than to rule out other organic diseases. New serologic biomarkers for diarrhea-predominant IBS have been introduced based on the pathophysiologic findings from a rat model and validation in a large-scale clinical trial. Further investigations of abnormal organic findings from each subtype of IBS would enable the development of new, simple subtype-specific biomarkers. PMID:27817184

  9. Molecular Biomarkers of Knee Pathology.

    PubMed

    Cuellar, Vanessa; Strauss, Eric

    2017-01-01

    The identification of biomarkers has become increasingly important in our fundamental understanding of the molecular basis for disease and subsequently in the advancement of modern medicine. Biomarkers have been identified in a plethora of normal and pathologic conditions and are most often found in blood, tissue, or synovial fluid. Orthopaedic research has more recently focused on biomarkers of cartilage and joint diseases, with an emphasis on understanding the molecular underpinnings of their pathophysiology. This article focuses on the biomarkers identified to date in several select knee pathologies and how further research can contribute to new diagnostic tools and targeted therapeutics.

  10. Chiral Biomarkers in Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  11. Serum Cytokine Profile in Asian Indian Patients with Takayasu Arteritis and its Association with Disease Activity

    PubMed Central

    Goel, Ruchika; Kabeerdoss, Jayakanthan; Ram, Babu; Prakash, John Antony Jude; Babji, Sudhir; Nair, Aswin; Jeyaseelan, Lakshmanan; Jeyaseelan, Visalakshi; Mathew, John; Balaji, Veeraraghavan; Joseph, George; Danda, Debashish

    2017-01-01

    Background: Arterial inflammation Takayasu arteritis (TA) is an outcome of balance between pro- and anti-inflammatory cytokines. Comprehensive assessment of these cytokines is important for understanding pathogenesis and assessing disease activity. Objective: To study pro- and anti-inflammatory cytokines representing different T-helper cell pathway in serum samples of Asian Indian patients with TA and to assess their association with disease activity. Methods: Consecutive Indian patients with TA were assayed for serum interferon-γ, interleukin-6, interleukin-23, interleukin-17, interleukin-10 and transforming growth factor- β levels at baseline and follow up visit. Patients were grouped into active and stable disease based on Indian Takyasu Arteritis clinical Activity Score-2010. Serum levels of these cytokines between active and stable disease and between baseline and follow up visits were compared by non-parametric tests. Results: Among 32 patients enrolled, 15 were classified as active while 17 as stable disease at baseline. IFN-γ levels were significantly higher in active disease than stable disease (p=0.0129) while other cytokines did not differ significantly between 2 groups. Serum levels of none of the cytokines changed significantly over 2 visits in both responders and non-responders. IL23 levels positively correlate with disease duration ((r=0.999; p<0.005). Modest correlation was observed between IFN-γ and IL23 levels at both baseline and follow up and between IFN-γ and IL-6 and CRP at follow up. Conclusion: IFN-γ levels are raised in active disease in TA and correlates well with other biomarkers of disease activity and proinflammatory cytokines. There is also a direct correlation between Il-23 levels and disease duration.

  12. Toxicogenomic identification of biomarkers of acute respiratory exposure sensitizing agents

    EPA Science Inventory

    Allergy induction requires multiple exposures to an agent. Therefore the development of high-throughput or in vitro assays for effective screening of potential sensitizers will require the identification of biomarkers. The goal of this preliminary study was to identify potential ...

  13. Associations among Inflammatory Biomarkers in the Circulating, Plasmatic, Salivary and Intraluminal Anatomical Compartments in Apparently Healthy Preschool Children from the Western Highlands of Guatemala

    PubMed Central

    Soto-Méndez, María José; Romero-Abal, María Eugenia; Aguilera, Concepción María; Rico, María Cruz; Solomons, Noel W.; Schümann, Klaus; Gil, Angel

    2015-01-01

    Background Undernutrition and inflammation are related in many ways; for instance, non-hygienic environments are associated with both poor growth and immunostimulation in children. Objective To describe any existing interaction among different inflammation biomarkers measured in the distinct anatomical compartments of whole blood, feces, plasma and saliva. Methods In this descriptive, cross-sectional study, samples of whole blood, feces, plasma and saliva were collected on the 8th and last week of observation among 87 attendees (42 girls and 45 boys) of 3 daycare centers offering a common 40-day rotating menu in Guatemala’s Western Highlands. Analyses included white blood cell count (WBC), fecal calprotectin, and plasmatic and salivary cytokines including IL-1B, IL-6, IL-8, IL-10 and TNF-α. Associations were assessed using Spearman rank-order and goodness-of-fit correlations, as indicated, followed by backwards-elimination multiple regression analyses to determine predictor variables for IL-10 in both anatomical compartments. Results Of a total of 66 cross-tabulations in the Spearman hemi-matrix, 22 (33%) were significantly associated. All 10 paired associations among the salivary cytokines had a significant r value, whereas 7 of 10 possible associations among plasma cytokines were significant. Associations across anatomical compartments, however, were rarely significant. IL-10 in both biological fluids were higher than corresponding reference values. When a multiple regression model was run in order to determine independent predictors for IL-10 in each anatomical compartment separately, IL-6, IL-8 and TNF-α emerged as predictors in plasma (r2 = 0.514) and IL-1B, IL-8 and TNF-α remained as independent predictors in saliva (r2 = 0.762). Significant cross-interactions were seen with WBC, but not with fecal calprotectin. Conclusion Interactions ranged from robust within the same anatomical compartment to limited to nil across distinct anatomical compartments. The

  14. Impact of cytokine in type 1 narcolepsy: Role of pandemic H1N1 vaccination ?

    PubMed

    Lecendreux, Michel; Libri, Valentina; Jaussent, Isabelle; Mottez, Estelle; Lopez, Régis; Lavault, Sophie; Regnault, Armelle; Arnulf, Isabelle; Dauvilliers, Yves

    2015-06-01

    Recent advances in the identification of susceptibility genes and environmental exposures (pandemic influenza 2009 vaccination) provide strong support that narcolepsy type 1 is an immune-mediated disease. Considering the limited knowledge regarding the immune mechanisms involved in narcolepsy whether related to flu vaccination or not and the recent progresses in cytokine measurement technology, we assessed 30 cytokines, chemokines and growth factors using the Luminex technology in either peripheral (serum) or central (CSF) compartments in a large population of 90 children and adult patients with narcolepsy type 1 in comparison to 58 non-hypocretin deficient hypersomniacs and 41 healthy controls. Furthermore, we compared their levels in patients with narcolepsy whether exposed to pandemic flu vaccine or not, and analyzed the effect of age, duration of disease and symptom severity. Comparison for sera biomarkers between narcolepsy (n = 84, 54 males, median age: 15.5 years old) and healthy controls (n = 41, 13 males, median age: 20 years old) revealed an increased stimulation of the immune system with high release of several pro- and anti-inflammatory serum cytokines and growth factors with interferon-γ, CCL11, epidermal growth factor, and interleukin-2 receptor being independently associated with narcolepsy. Increased levels of interferon-γ, CCL11, and interleukin-12 were found when close to narcolepsy onset. After several adjustments, only one CSF biomarker differed between narcolepsy (n = 44, 26 males, median age: 15 years old) and non-hypocretin deficient hypersomnias (n = 57, 24 males, median age: 36 years old) with higher CCL 3 levels found in narcolepsy. Comparison for sera biomarkers between patients with narcolepsy who developed the disease post-pandemic flu vaccination (n = 36) to those without vaccination (n = 48) revealed an increased stimulation of the immune system with high release of three cytokines, regulated upon activation normal T-cell expressed

  15. Local expression of antiinflammatory cytokines in cancer.

    PubMed Central

    Yamamura, M; Modlin, R L; Ohmen, J D; Moy, R L

    1993-01-01

    To characterize the nature of the local cytokine response to cancer, we chose to investigate cytokine patterns in biopsy specimens of basal cell carcinoma (BCC). We hypothesized that a distinct pattern of local cytokine production may be characteristic of BCC, a neoplasia of epidermis, in comparison to the pattern of seborrheic keratosis (SK), a benign growth of epidermis. We analyzed cytokine mRNAs in BCC versus SK by performing polymerase chain reaction on mRNA derived from biopsy specimens. The mRNAs encoding cytokines for IL-4, IL-5, IL-10, and granulocyte macrophage colony-stimulating factor were strongly expressed in BCC lesions and weakly expressed in SK lesions. Conversely, IL-2, IFN-gamma, and lymphotoxin mRNAs were strongly expressed in SK lesions and weakly expressed in BCC lesions. The response to malignancy, BCC, was typified by cytokines characteristic of murine TH2 cells. This cytokine pattern favors humoral immunity with concomitant immunosuppression of cell-mediated immune responses. In comparison, the response to the benign growth, SK, was typified by cytokines characteristic of murine TH1 cells that favor cell-mediated immune reactions. The findings of a distinct cytokine pattern in skin cancer provide a framework to develop strategies for immunologic intervention. Images PMID:8450029

  16. Cytokines and immune surveillance in humans

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1993-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. Among the parameters shown, by us and others, to be affected is the production of interferons. Interferons are a family of cytokines that are antiviral and play a major role in regulating immune responses that control resistance to infection. Alterations in interferon and other cytokine production and activity could result in changes in immunity and a possible compromise of host defenses against both opportunistic and external infections. The purpose of the present study is to further explore the effects of space flight on cytokines and cytokine-directed immunological function.

  17. Treatment of cytokine-induced depression.

    PubMed

    Capuron, Lucile; Hauser, Peter; Hinze-Selch, Dunja; Miller, Andrew H; Neveu, Pierre J

    2002-10-01

    A high proportion of cancer and hepatitis C patients who receive cytokine immunotherapy develop symptoms of depression that are indistinguishable from those found in major depressive disorders. These symptoms are alleviated by anti-depressant treatment. Moreover, preventive treatment with anti-depressants, in particular selective serotonin reuptake inhibitors (SSRIs) attenuates IFN-alpha-associated symptoms of depression, anxiety, and neurotoxicity. The intermediate mechanisms of these effects are still unclear. Studies suggest that the state of depression is associated with an increase in plasma levels of various cytokines and soluble cytokine receptors. Furthermore, anti-depressants have been shown to shift the cytokine network towards a decreased production of pro-inflammatory cytokines and an increased production of anti-inflammatory cytokines. Other studies suggest that anti-depressants can also modify immune reactivity by acting on neural structures involved in neuroimmunomodulation. It is possible that anti-depressants could help to normalize the serotoninergic neurotransmission that is likely disrupted during immunotherapy due to the potent effects of cytokines on the metabolism of the amino acid precursor tryptophan. Further work is needed to optimize strategies for preventing neuropsychiatric side effects of cytokine immunotherapy, to clarify the mechanisms involved in the alleviating effects of anti-depressants on cytokine-induced depression, as well as to assess the possible consequences of anti-depressant therapy on the efficacy of immunotherapy on the disease process.

  18. Human cervicovaginal fluid biomarkers to predict term and preterm labor

    PubMed Central

    Heng, Yujing J.; Liong, Stella; Permezel, Michael; Rice, Gregory E.; Di Quinzio, Megan K. W.; Georgiou, Harry M.

    2015-01-01

    Preterm birth (PTB; birth before 37 completed weeks of gestation) remains the major cause of neonatal morbidity and mortality. The current generation of biomarkers predictive of PTB have limited utility. In pregnancy, the human cervicovaginal fluid (CVF) proteome is a reflection of the local biochemical milieu and is influenced by the physical changes occurring in the vagina, cervix and adjacent overlying fetal membranes. Term and preterm labor (PTL) share common pathways of cervical ripening, myometrial activation and fetal membranes rupture leading to birth. We therefore hypothesize that CVF biomarkers predictive of labor may be similar in both the term and preterm labor setting. In this review, we summarize some of the existing published literature as well as our team's breadth of work utilizing the CVF for the discovery and validation of putative CVF biomarkers predictive of human labor. Our team established an efficient method for collecting serial CVF samples for optimal 2-dimensional gel electrophoresis resolution and analysis. We first embarked on CVF biomarker discovery for the prediction of spontaneous onset of term labor using 2D-electrophoresis and solution array multiple analyte profiling. 2D-electrophoretic analyses were subsequently performed on CVF samples associated with PTB. Several proteins have been successfully validated and demonstrate that these biomarkers are associated with term and PTL and may be predictive of both term and PTL. In addition, the measurement of these putative biomarkers was found to be robust to the influences of vaginal microflora and/or semen. The future development of a multiple biomarker bed-side test would help improve the prediction of PTB and the clinical management of patients. PMID:26029118

  19. Fast proteomic protocol for biomarker fingerprinting in cancerous cells.

    PubMed

    Armenta, Jenny M; Perez, Milagros; Yang, Xu; Shapiro, Danielle; Reed, Debby; Tuli, Leepika; Finkielstein, Carla V; Lazar, Iulia M

    2010-04-23

    The advance of novel technologies that will enable the detection of large sets of biomarker proteins, to greatly improve the sensitivity and specificity of an assay, represents a major objective in biomedical research. To demonstrate the power of mass spectrometry (MS) detection for large-scale biomarker screening in cancer research, a simple, one-step approach for fast biomarker fingerprinting in complex cellular extracts is described. MCF-7 breast cancer cells were used as a model system. Fast proteomic profiling of whole cellular extracts was achieved on a linear trap quadrupole (LTQ) mass spectrometer by one of the following techniques: (a) data-dependent liquid chromatography (LC)-MS/MS of un-labeled cell extracts, (b) data-dependent LC-MS/MS with pulsed Q dissociation (PQD) detection of iTRAQ labeled samples, and (c) multiple reaction monitoring (MRM)-MS of low abundant proteins that could not be detected with data-dependent MS/MS. The data-dependent LC-MS/MS analysis of MCF-7 cells enabled the identification of 796 proteins (p<0.001) and the simultaneous detection of 156 previously reported putative cancer biomarkers. PQD detection of iTRAQ labeled cells resulted in the detection of 389 proteins and 64 putative biomarkers. MRM-MS analysis enabled the successful monitoring of a panel of low-abundance proteins in one single experiment, highlighting the utility of this technique for targeted analysis in cancer investigations. These results demonstrate that MS-based technologies relying on a one-step separation protocol have the potential to revolutionize biomarker research and screening applications by enabling fast, sensitive and reliable detection of large panels of putative biomarkers. To further stimulate the exploration of proteins that have been previously reported in the literature to be differentially expressed in a variety of cancers, an extensive list of approximately 1100 candidate biomarkers has been compiled and included in the manuscript.

  20. Combining biomarkers for classification with covariate adjustment.

    PubMed

    Kim, Soyoung; Huang, Ying

    2017-03-09

    Combining multiple markers can improve classification accuracy compared with using a single marker. In practice, covariates associated with markers or disease outcome can affect the performance of a biomarker or biomarker combination in the population. The covariate-adjusted receiver operating characteristic (ROC) curve has been proposed as a tool to tease out the covariate effect in the evaluation of a single marker; this curve characterizes the classification accuracy solely because of the marker of interest. However, research on the effect of covariates on the performance of marker combinations and on how to adjust for the covariate effect when combining markers is still lacking. In this article, we examine the effect of covariates on classification performance of linear marker combinations and propose to adjust for covariates in combining markers by maximizing the nonparametric estimate of the area under the covariate-adjusted ROC curve. The proposed method provides a way to estimate the best linear biomarker combination that is robust to risk model assumptions underlying alternative regression-model-based methods. The proposed estimator is shown to be consistent and asymptotically normally distributed. We conduct simulations to evaluate the performance of our estimator in cohort and case/control designs and compare several different weighting strategies during estimation with respect to efficiency. Our estimator is also compared with alternative regression-model-based estimators or estimators that maximize the empirical area under the ROC curve, with respect to bias and efficiency. We apply the proposed method to a biomarker study from an human immunodeficiency virus vaccine trial. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Inflammatory cytokines in pulmonary hypertension

    PubMed Central

    2014-01-01

    Pulmonary hypertension is an “umbrella term” used for a spectrum of entities resulting in an elevation of the pulmonary arterial pressure. Clinical symptoms include dyspnea and fatigue which in the absence of adequate therapeutic intervention may lead to progressive right heart failure and death. The pathogenesis of pulmonary hypertension is characterized by three major processes including vasoconstriction, vascular remodeling and microthrombotic events. In addition accumulating evidence point to a cytokine driven inflammatory process as a major contributor to the development of pulmonary hypertension. This review summarizes the latest clinical and experimental developments in inflammation associated with pulmonary hypertension with special focus on Interleukin-6, and its role in vascular remodeling in pulmonary hypertension. PMID:24739042

  2. Novel biomarkers of mercury-induced autoimmune dysfunction: a Cross-sectional study in Amazonian Brazil

    PubMed Central

    Motts, Jonathan A.; Shirley, Devon L.; Silbergeld, Ellen K.; Nyland, Jennifer F.

    2014-01-01

    ). Mercury exposure was associated with increased titers of several autoantibodies in serum including anti-GSTA1. These proteins play a wide variety of roles, including as antioxidants, in the regulation of pro- and anti-inflammatory cytokines, as well as danger and oxidative stress signaling. Dysregulation of these proteins and pathways is believed to play a role in autoimmune diseases such as rheumatoid arthritis, Sjögren’s syndrome, and multiple sclerosis. Taken together, these results suggest that mercury exposure can induce complex autoimmune dysfunction and the immunotoxic effects of this dysfunction may be measured by serum titers to autoantibodies such as anti-GSTA1. PMID:24742722

  3. Biomarkers of tobacco smoke exposure.

    PubMed

    Mattes, William; Yang, Xi; Orr, Michael S; Richter, Patricia; Mendrick, Donna L

    2014-01-01

    Diseases and death caused by exposure to tobacco smoke have become the single most serious preventable public health concern. Thus, biomarkers that can monitor tobacco exposure and health effects can play a critical role in tobacco product regulation and public health policy. Biomarkers of exposure to tobacco toxicants are well established and have been used in population studies to establish public policy regarding exposure to second-hand smoke, an example being the nicotine metabolite cotinine, which can be measured in urine. Biomarkers of biological response to tobacco smoking range from those indicative of inflammation to mRNA and microRNA patterns related to tobacco use and/or disease state. Biomarkers identifying individuals with an increased risk for a pathological response to tobacco have also been described. The challenge for any novel technology or biomarker is its translation to clinical and/or regulatory application, a process that requires first technical validation of the assay and then careful consideration of the context the biomarker assay may be used in the regulatory setting. Nonetheless, the current efforts to investigate new biomarker of tobacco smoke exposure promise to offer powerful new tools in addressing the health hazards of tobacco product use. This review will examine such biomarkers, albeit with a focus on those related to cigarette smoking.

  4. Evaluating Posttranscriptional Regulation of Cytokine Genes

    PubMed Central

    Rattenbacher, Bernd; Bohjanen, Paul R.

    2014-01-01

    A wide variety of cytokines are necessary for cell–cell communication in multicellular organisms, and cytokine dysregulation has detrimental effects, leading to disease states. Thus, it is a necessity that the expression of cytokines is tightly controlled. Regulation of cytokine gene expression takes place at different levels, including transcriptional and posttranscriptional levels. Ultimately, the steady-state levels of cytokine transcripts are determined by the equilibrium of transcription and degradation of this mRNA. Degradation rates of cytokine mRNAs can be measured in cells by blocking transcription with actinomycin D, harvesting RNA after different time points, and evaluating mRNA levels over time by northern blot. Cis-acting elements that mediate the rapid decay of numerous cytokine transcripts, including AU-rich elements (AREs), are found in the 3′ untranslated region (UTR) of these transcripts. Putative regulatory cis-elements can be cloned into the 3′ UTR of a reporter transcript in order to assess their function in regulating mRNA decay. Cis-elements, such as AREs, regulate cytokine mRNA decay by binding to trans-acting proteins, such as tristetraprolin or HuR. These RNA-binding proteins can be visualized using electromobility shift assays or UV crosslinking assays based on their binding to radioactively labeled RNA sequences. RNA-binding proteins that regulate cytokine mRNA decay can be purified using an RNA affinity method, using their target RNA sequence as the bait. In this chapter, we review the methods for measuring cytokine mRNA decay and methods for characterizing the cis-acting elements and trans-acting factors that regulate cytokine mRNA decay. PMID:22131026

  5. Emerging biomarkers in psoriatic arthritis.

    PubMed

    Paek, So Yeon; Han, Ling; Weiland, Matthew; Lu, Chuan-Jian; McKinnon, Kathleen; Zhou, Li; Lim, Henry W; Elder, James T; Mi, Qing-Sheng

    2015-12-01

    Psoriasis is an immune-mediated skin disease which affects 2-4% of the worldwide population. Approximately 20-30% of patients with psoriasis develop psoriatic arthritis (PsA), a frequently destructive and disabling condition. As skin manifestations precede joint symptoms in nearly all patients with PsA, identification of biomarkers for early prediction of joint damage is an important clinical need. Because not all patients with PsA respond to treatment in the same fashion, identification of biomarkers capable of predicting therapeutic response is also imperative. Here, we review existing literature and discuss current investigations to identify potential biomarkers for PsA disease activity, with particular emphasis on microRNAs as novel markers of interest. Serum (soluble) biomarkers, peripheral osteoclast precursor as cellular biomarkers, and genetic loci associated with skin and joint disease are also reviewed.

  6. Are there early inflammatory biomarkers that affect neurodevelopment in infancy?

    PubMed

    Voltas, Núria; Arija, Victoria; Hernández-Martínez, Carmen; Jiménez-Feijoo, Rosa; Ferré, Natàlia; Canals, Josefa

    2017-04-15

    Few studies have investigated the relationship between post-natal inflammatory biomarkers at early age and child neurodevelopment outcomes. The main aim of this study was to examine the relationship between IL-6, IL-1β, IL-4 cytokines, as well as cortisol at 6 and 12months of age, and neurodevelopment and psychological problems at 30months of age. The study was conducted on a sample of 51 full-term newborns who were followed up at 6, 12, and 30months of age. Infant neurodevelopment was assessed using the Bayley Scales of Infant Development-II, psychological problems were assessed with the Child Behavior Checklist 1.5-5 (CBCL 1.5-5) and the mother's emotional symptoms were assessed with the General Health Questionnaire-28. When the infants were 6 and 12months old, IL-6, IL-1β, IL-4 cytokines, and cortisol were measured in blood samples. The results showed that higher IL-6 at 12months predicted higher scores in internalizing (emotionally reactive, anxious/depressed, withdrawn and attention problems) and externalizing problems (aggressive behavior) at 30months. By contrast, high levels of IL-1β at 6months were related to worse motor skills. Inflammatory biomarkers were not related to mental performance. IL-6 and IL-1β could be early markers of later psychological problems and psychomotor disabilities.

  7. Compartmentalized Cytokine Responses in Hidradenitis Suppurativa

    PubMed Central

    Savva, Athina; Kersten, Brigit; Pistiki, Aikaterini; van de Veerdonk, Frank L.; Netea, Mihai G.; van der Meer, Jos W.; Giamarellos-Bourboulis, Evangelos J.

    2015-01-01

    Background Favorable treatment outcomes with TNF blockade led us to explore cytokine responses in hidradenitis suppurativa (HS). Methods Blood monocytes of 120 patients and 24 healthy volunteers were subtyped by flow cytometry. Isolated blood mononuclear cells (PBMCs) were stimulated for cytokine production; this was repeated in 13 severe patients during treatment with etanercept. Cytokines in pus were measured. Results CD14brightCD16dim inflammatory monocytes and patrolling monocytes were increased in Hurley III patients. Cytokine production by stimulated PBMCs was low compared to controls but the cytokine gene copies did not differ, indicating post-translational inhibition. The low production of IL-17 was restored, when cells were incubated with adalimumab. In pus, high concentrations of pro-inflammatory cytokines were detected. Based on the patterns, six different cytokine profiles were discerned, which are potentially relevant for the choice of treatment. Clinical improvement with etanercept was predicted by increased production of IL-1β and IL-17 by PBMCs at week 8. Conclusions Findings indicate compartmentalized cytokine expression in HS; high in pus but suppressed in PBMCs. This is modulated through blockade of TNF. PMID:26091259

  8. Cancer Salivary Biomarkers for Tumours Distant to the Oral Cavity

    PubMed Central

    Rapado-González, Óscar; Majem, Blanca; Muinelo-Romay, Laura; López-López, Rafa; Suarez-Cunqueiro, María Mercedes

    2016-01-01

    The analysis of saliva as a diagnostic approach for systemic diseases was proposed just two decades ago, but recently great interest in the field has emerged because of its revolutionary potential as a liquid biopsy and its usefulness as a non-invasive sampling method. Multiple molecules isolated in saliva have been proposed as cancer biomarkers for diagnosis, prognosis, drug monitoring and pharmacogenetic studies. In this review, we focus on the current status of the salivary diagnostic biomarkers for different cancers distant to the oral cavity, noting their potential use in the clinic and their applicability in personalising cancer therapies. PMID:27626410

  9. Cytokines and Immune Responses in Murine Atherosclerosis.

    PubMed

    Kusters, Pascal J H; Lutgens, Esther

    2015-01-01

    Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and regulation of inflammation. In recent years, many studies have investigated the role of these molecules in experimental models of atherosclerosis. While some cytokines such as TNF or IFNγ clearly had atherogenic effects, others such as IL-10 were found to be atheroprotective. However, studies investigating the different cytokines in experimental atherosclerosis revealed that the cytokine system is complex with both disease stage-dependent and site-specific effects. In this review, we strive to provide an overview of the main cytokines involved in atherosclerosis and to shed light on their individual role during atherogenesis.

  10. Interactions between Autophagy and Inhibitory Cytokines

    PubMed Central

    Wu, Tian-tian; Li, Wei-Min; Yao, Yong-Ming

    2016-01-01

    Autophagy is a degradative pathway that plays an essential role in maintaining cellular homeostasis. Most early studies of autophagy focused on its involvement in age-associated degeneration and nutrient deprivation. However, the immunological functions of autophagy have become more widely studied in recent years. Autophagy has been shown to be an intrinsic cellular defense mechanism in the innate and adaptive immune responses. Cytokines belong to a broad and loose category of proteins and are crucial for innate and adaptive immunity. Inhibitory cytokines have evolved to permit tolerance to self while also contributing to the eradication of invading pathogens. Interactions between inhibitory cytokines and autophagy have recently been reported, revealing a novel mechanism by which autophagy controls the immune response. In this review, we discuss interactions between autophagy and the regulatory cytokines IL-10, transforming growth factor-β, and IL-27. We also mention possible interactions between two newly discovered cytokines, IL-35 and IL-37, and autophagy. PMID:27313501

  11. Effects of poor hygiene on cytokine phenotypes in children in the tropics.

    PubMed

    Figueiredo, C A; Amorim, L D; Vaca, M; Chico, M E; Campos, A C; Barreto, M L; Cooper, P J

    2016-01-01

    We describe immune phenotypes (innate and adaptive cytokines) according to environmental exposure using latent class analysis. A total of 310 schoolchildren living in Ecuador were assayed for spontaneous cytokine production as well as mitogen (SEB)-stimulated cytokines in whole blood cultures. We collected data on environmental exposures by questionnaire and on intestinal parasites by examination of stool samples. Latent class analysis (LCA) was used to group children according to their innate (IL-6, IL-8, IL-10 and TNF-α) and adaptive (IL-5, IL-13, IL-17, IFN-γ and IL-10) cytokine profile. We also conducted multiple-group LCA and LCA with covariates to evaluate the effect of predictors on profile membership. We identified both hyporesponsive and Th2-modified immune phenotypes produced by peripheral blood leukocytes (PBLs) that were associated with intestinal worms and birth order, providing insights into how poor hygiene mediates immunologic effects on immune-mediated diseases.

  12. Biomarkers for lymphoma

    DOEpatents

    Zangar, Richard C.; Varnum, Susan M.

    2014-09-02

    A biomarker, method, test kit, and diagnostic system for detecting the presence of lymphoma in a person are disclosed. The lymphoma may be Hodgkin's lymphoma or non-Hodgkin's lymphoma. The person may be a high-risk subject. In one embodiment, a plasma sample from a person is obtained. The level of at least one protein listed in Table S3 in the plasma sample is measured. The level of at least one protein in the plasma sample is compared with the level in a normal or healthy subject. The lymphoma is diagnosed based upon the level of the at least one protein in the plasma sample in comparison to the normal or healthy level.

  13. Imaging Biomarkers in Immunotherapy

    PubMed Central

    Juergens, Rosalyn A.; Zukotynski, Katherine A.; Singnurkar, Amit; Snider, Denis P.; Valliant, John F.; Gulenchyn, Karen Y.

    2016-01-01

    Immune-based therapies have been in use for decades but recent work with immune checkpoint inhibitors has now changed the landscape of cancer treatment as a whole. While these advances are encouraging, clinicians still do not have a consistent biomarker they can rely on that can accurately select patients or monitor response. Molecular imaging technology provides a noninvasive mechanism to evaluate tumors and may be an ideal candidate for these purposes. This review provides an overview of the mechanism of action of varied immunotherapies and the current strategies for monitoring patients with imaging. We then describe some of the key researches in the preclinical and clinical literature on the current uses of molecular imaging of the immune system and cancer. PMID:26949344

  14. Expanding Diversity in Molecular Structures and Functions of the IL-6/IL-12 Heterodimeric Cytokine Family

    PubMed Central

    Hasegawa, Hideaki; Mizoguchi, Izuru; Chiba, Yukino; Ohashi, Mio; Xu, Mingli; Yoshimoto, Takayuki

    2016-01-01

    The interleukin (IL)-6/IL-12 family cytokines have pleiotropic functions and play critical roles in multiple immune responses. This cytokine family has very unique characteristics in that they comprise two distinct subunits forming a heterodimer and each cytokine and receptor subunit shares with each other. The members of this cytokine family are increasing; currently, there are more than six cytokines, including the tentatively named cytokines IL-Y (p28/p40), IL-12 (p35/p40), IL-23 (p19/p40), IL-27 [p28/Epstein–Barr virus-induced protein 3 (EBI3)], IL-35 (p35/EBI3), and IL-39 (p19/EBI3). This family of cytokines covers a very broad range of immune responses, including pro-inflammatory responses, such as helper T (Th)1, Th2, and Th17, to anti-inflammatory responses, such as regulatory T (Treg) cells and IL-10-producing Treg cells. IL-12 is the first member of this family, and IL-12, IL-23, and IL-27 are mainly produced by activated antigen-presenting cells, such as dendritic cells and macrophages. IL-12 plays a critical role in the promotion of Th1 immune responses by inducing interferon-γ production to combat pathogens and malignant tumors. IL-23 induces IL-17 production and is necessary to maintain pathogenic Th17 cells that cause inflammatory and autoimmune diseases. IL-27 was initially reported to play a critical role in promotion of Th1 differentiation; however, subsequent studies revealed that IL-27 has broader stimulatory and inhibitory roles by inducing IL-10-producing Treg cells. IL-35 is produced by forkhead box P3+ Treg cells and activated B cells and has immunosuppressive functions to maintain immune tolerance. The most recently identified cytokine, IL-39, is produced by activated B cells and has pro-inflammatory functions. The cytokine tentatively named IL-Y seems to have anti-inflammatory functions by inhibiting Th1 and Th17 differentiation. In addition, individual cytokine subunits were also shown to have self-standing activities. Thus

  15. Translational research and biomarkers in neonatal sepsis.

    PubMed

    Delanghe, Joris R; Speeckaert, Marijn M

    2015-12-07

    As neonatal sepsis is a severe condition, there is a call for reliable biomarkers to differentiate between infected and noninfected newborns. Although blood culture has been considered as the gold standard, this analysis is still too slow and limited by false negative results. Use of CRP is hampered by a physiological 3-day increase, resulting in a low sensitivity to detect sepsis at an early stage. A moderate diagnostic accuracy of other acute phase proteins has been demonstrated (serum amyloid A, procalcitonin, lipopolysaccharide binding protein, mannose binding lectin and hepcidin). In neonatal sepsis, changed chemokine/cytokine levels are observed before those of acute phase reactants. High IL-6, IL-8, IL-10 and TNF-α concentrations are detected in infected infants. Soluble interleukin-2 receptor has been used to identify bacteremia, whereas low plasma RANTES concentrations are characteristic for septicemia. Several cell adhesion molecules contribute to the pathogenesis of sepsis. As an upregulated CD64 expression on granulocytes is found within 1-6h after bacterial invasion, serial CD64 measurements could guide antibiotic therapy. An increased CD11b/CD18 density can improve the diagnosis, and a positive correlation between CD11b and the severity of systemic inflammation has been reported. An early increase in sCD14-ST presepsin is also observed during sepsis, whereas high sTREM-1 values in early-onset neonatal sepsis (EOS) have been associated with mortality. Biomarkers resulting from proteomics are also promising. A 4-biomarker 'mass restricted' score has been validated as diagnostic for intra-amniotic infection and/or inflammation. S100A8 in amniotic fluid is a strong predictor of an increased incidence of EOS. Proteomic analysis of cord blood has revealed altered protein expression patterns. The ApoSAA score is useful for identifying sepsis and could guide prescription of antibiotics. (1)H-NMR and GC-MS metabolomics allow to diagnose septic shock, which is

  16. Multisite Comparison of High-Sensitivity Multiplex Cytokine Assays▿†

    PubMed Central

    Breen, Elizabeth Crabb; Reynolds, Sandra M.; Cox, Christopher; Jacobson, Lisa P.; Magpantay, Larry; Mulder, Candice B.; Dibben, Oliver; Margolick, Joseph B.; Bream, Jay H.; Sambrano, Elise; Martínez-Maza, Otoniel; Sinclair, Elizabeth; Borrow, Persephone; Landay, Alan L.; Rinaldo, Charles R.; Norris, Philip J.

    2011-01-01

    The concentrations of cytokines in human serum and plasma can provide valuable information about in vivo immune status, but low concentrations often require high-sensitivity assays to permit detection. The recent development of multiplex assays, which can measure multiple cytokines in one small sample, holds great promise, especially for studies in which limited volumes of stored serum or plasma are available. Four high-sensitivity cytokine multiplex assays on a Luminex (Bio-Rad, BioSource, Linco) or electrochemiluminescence (Meso Scale Discovery) platform were evaluated for their ability to detect circulating concentrations of 13 cytokines, as well as for laboratory and lot variability. Assays were performed in six different laboratories utilizing archived serum from HIV-uninfected and -infected subjects from the Multicenter AIDS Cohort Study (MACS) and the Women's Interagency HIV Study (WIHS) and commercial plasma samples spanning initial HIV viremia. In a majority of serum samples, interleukin-6 (IL-6), IL-8, IL-10, and tumor necrosis factor alpha were detectable with at least three kits, while IL-1β was clearly detected with only one kit. No single multiplex panel detected all cytokines, and there were highly significant differences (P < 0.001) between laboratories and/or lots with all kits. Nevertheless, the kits generally detected similar patterns of cytokine perturbation during primary HIV viremia. This multisite comparison suggests that current multiplex assays vary in their ability to measure serum and/or plasma concentrations of cytokines and may not be sufficiently reproducible for repeated determinations over a long-term study or in multiple laboratories but may be useful for longitudinal studies in which relative, rather than absolute, changes in cytokines are important. PMID:21697338

  17. Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage

    PubMed Central

    Poil, Simon-Shlomo; de Haan, Willem; van der Flier, Wiesje M.; Mansvelder, Huibert D.; Scheltens, Philip; Linkenkaer-Hansen, Klaus

    2013-01-01

    Alzheimer's disease (AD) is a devastating disorder of increasing prevalence in modern society. Mild cognitive impairment (MCI) is considered a transitional stage between normal aging and AD; however, not all subjects with MCI progress to AD. Prediction of conversion to AD at an early stage would enable an earlier, and potentially more effective, treatment of AD. Electroencephalography (EEG) biomarkers would provide a non-invasive and relatively cheap screening tool to predict conversion to AD; however, traditional EEG biomarkers have not been considered accurate enough to be useful in clinical practice. Here, we aim to combine the information from multiple EEG biomarkers into a diagnostic classification index in order to improve the accuracy of predicting conversion from MCI to AD within a 2-year period. We followed 86 patients initially diagnosed with MCI for 2 years during which 25 patients converted to AD. We show that multiple EEG biomarkers mainly related to activity in the beta-frequency range (13–30 Hz) can predict conversion from MCI to AD. Importantly, by integrating six EEG biomarkers into a diagnostic index using logistic regression the prediction improved compared with the classification using the individual biomarkers, with a sensitivity of 88% and specificity of 82%, compared with a sensitivity of 64% and specificity of 62% of the best individual biomarker in this index. In order to identify this diagnostic index we developed a data mining approach implemented in the Neurophysiological Biomarker Toolbox (http://www.nbtwiki.net/). We suggest that this approach can be used to identify optimal combinations of biomarkers (integrative biomarkers) also in other modalities. Potentially, these integrative biomarkers could be more sensitive to disease progression and response to therapeutic intervention. PMID:24106478

  18. Cytokines profile in hypertensive patients with left ventricular remodeling and dysfunction.

    PubMed

    Kuznetsova, Tatiana; Haddad, Francois; Knez, Judita; Rosenberg-Hasson, Yael; Sung, Janine; Cauwenberghs, Nicholas; Thijs, Lutgarde; Karakikes, Ioannis; Maecker, Holden; Mahaffey, Kenneth W; Wu, Joseph C; Staessen, Jan A

    2015-12-01

    There is strong evidence that inflammatory mediators play a key role in the progression to heart failure in patients with systemic hypertension (HTN). The present study aimed to identify a set of cytokines that are associated with early left ventricular (LV) remodeling and dysfunction as captured by echocardiography in patients with HTN in a cross-sectional case-control study nested within the FLEMish study on ENvironment, Genes and Health Outcome. We identified three groups of participants from the cohort: normotensive subjects (normotension; n = 30), HTN with normal LV structure and function (HTN [LV-]; n = 30), and HTN with evidence of adverse LV remodeling (HTN [LV+]; n = 50). We measured cytokines using a 63-plex Luminex platform. Using partial least squares-discriminant analysis, we constructed three latent variables from the measured cytokines that explained 35%-45% of the variance between groups. We identified five common cytokines (interleukin 18, monokine induced by gamma interferon, hepatocyte growth factor, epithelial neutrophil-activating peptide 78, and vascular endothelial growth factor D) with a stable signal which had a major impact on the construction of the latent variables. Among these cytokines, after adjustment for confounders, interleukin 18 remained significantly different between HTN participants with and without LV involvement (P = .02). Moreover, granulocyte-macrophage colony-stimulating factor and leptin showed a consistent upward trend in all HTN patients compared with normotensive subjects. In conclusion, in HTN patients with LV remodeling or/and dysfunction, we identified a set of cytokines strongly associated with LV maladaptation. We also found a distinct profile of inflammatory biomarkers that characterize HTN.

  19. Development of Parkinson's disease biomarkers.

    PubMed

    Prakash, Kumar M; Tan, Eng-King

    2010-12-01

    Parkinson's disease (PD) is the most common neurodegenerative movement disorder, affecting over 6 million people worldwide. It is anticipated that the number of affected individuals may increase significantly in the most populous nations by 2030. During the past 20 years, much progress has been made in identifying and assessing various potential clinical, biochemical, imaging and genetic biomarkers for PD. Despite the wealth of information, development of a validated biomarker for PD is still ongoing. It is hoped that reliable and well-validated biomarkers will provide critical clues to assist in the diagnosis and management of Parkinson's disease patients in the near future.

  20. Urinary Biomarkers for Prostate Cancer.

    PubMed

    Tosoian, Jeffrey J; Ross, Ashley E; Sokoll, Lori J; Partin, Alan W; Pavlovich, Christian P

    2016-02-01

    In light of the overdiagnosis and overtreatment associated with widespread prostate-specific antigen-based screening, controversy persists surrounding the detection and diagnosis of prostate cancer (PCa). Given its anatomic proximity to the prostate, urine has been proposed as a noninvasive substrate for prostatic biomarkers. With greater understanding of the molecular pathways of carcinogenesis and significant technological advances, the breadth of potential biomarkers is substantial. In this review, the authors aim to provide an evidence-based assessment of current and emerging urinary biomarkers used in the detection and prognostication of PCa and high-grade PCa, with particular attention on clinically relevant findings.

  1. Inflammatory cytokines in newborn infants.

    PubMed Central

    Sarandakou, A; Giannaki, G; Malamitsi-Puchner, A; Rizos, D; Hourdaki, E; Protonotariou, E; Phocas, I

    1998-01-01

    Serum levels of IL-1beta, IL-6 and TNF-alpha were measured in 48 healthy, termed neonates on the 1st (N1), 5th (N5) and 40th (N40) day after birth, compared with those in maternal serum (MS), umbilical cord (UC) and adult controls. Cytokine values in N1 and N5 were significantly elevated, than those in UC and in controls (P<0.0001). IL-1beta and IL-6 declined significantly from N1 to N40 (P<0.0001), while TNF-alpha increased significantly from N1 to N5 and declined thereafter. MS infinity IL-1beta and IL-6, but not MS infinity TNF-alpha, were significantly higher than those of controls (P<0.0001). IL-1beta values depended on the mode of delivery. In conclusion, the increased concentrations of IL-1beta, IL-6 and TNF-alpha during the perinatal period might suggest their involvement in an inflammation-like process during normal parturition, and reflect also a newborn immune response to the stress of delivery and environmental changes. PMID:9883964

  2. Resistin as an Intrahepatic Cytokine

    PubMed Central

    Bertolani, Cristiana; Sancho-Bru, Pau; Failli, Paola; Bataller, Ramon; Aleffi, Sara; DeFranco, Raffaella; Mazzinghi, Benedetta; Romagnani, Paola; Milani, Stefano; Ginés, Pere; Colmenero, Jordi; Parola, Maurizio; Gelmini, Stefania; Tarquini, Roberto; Laffi, Giacomo; Pinzani, Massimo; Marra, Fabio

    2006-01-01

    Obesity and insulin resistance accelerate the progression of fibrosis during chronic liver disease. Resistin antagonizes insulin action in rodents, but its role in humans is still controversial. The aims of this study were to investigate resistin expression in human liver and to evaluate whether resistin may affect the biology of activated human hepatic stellate cells (HSCs), key modulators of hepatic fibrogenesis. Resistin gene expression was low in normal human liver but was increased in conditions of severe fibrosis. Up-regulation of resistin during chronic liver damage was confirmed by immunohistochemistry. In a group of patients with alcoholic hepatitis, resistin expression correlated with inflammation and fibrosis, suggesting a possible action on HSCs. Exposure of cultured HSCs to recombinant resistin resulted in increased expression of the proinflammatory chemokines monocyte chemoattractant protein-1 and interleukin-8, through activation of nuclear factor (NF)-κB. Resistin induced a rapid increase in intracellular calcium concentration, mainly through calcium release from intracellular inositol triphosphate-sensitive pools. The intracellular calcium chelator BAPTA-AM blocked resistin-induced NF-κB activation and monocyte chemoattractant protein-1 expression. In conclusion, this study shows a role for resistin as an intrahepatic cytokine exerting proinflammatory actions in HSCs, via a Ca2+/NF-κB-dependent pathway and suggests involvement of this adipokine in the pathophysiology of liver fibrosis. PMID:17148667

  3. Cells and cytokines in pollinosis.

    PubMed

    Carlos, A G; Carlos, M L; Santos, M A; Melo, A

    1998-09-01

    Pollinosis is a spontaneous model of allergic disease self limited in time. In order to evaluate immune response during pollen exposition cellular populations CD2, CD4, CD8, CD19, CD22, CD23, CD28, CD29, CD45RA, CD45RO have been studied before, during and after pollen season by flux cytometry. Simultaneous assays of soluble CD23 and cytokines IL-2, IL-4 and IL-2 soluble receptor have been done by an ELISA method. A decrease of CD23 PBC was observed during pollen season maintained afterwards without significant changes in sol CD23. The level of CD45RO memory cells decreased during pollen season with an opposed pattern for CD45RA naive cells. PBC expressing integrin chain CD29 were also decreased during the peak of pollen season. These results show that allergen exposition triggers a turnover of CD45 PBC, a decrease of low affinity IgE receptor CD23 in PBC and a consumption or binding of cells presenting the CD29 integrin chain. Cellular mechanisms are deeply implied in the immune response to pollens and cellular changes can be used as allergic inflammation markers in pollinosis.

  4. Stable Isotope Ratios as Biomarkers of Diet for Health Research.

    PubMed

    O'Brien, Diane M

    2015-01-01

    Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently, there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short- and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general US population. Approaches to improve specificity for specific foods are needed; for example, by modeling intake using multiple stable isotope ratios or by isolating and measuring specific molecules linked to foods of interest.

  5. Stable Isotope Ratios as Biomarkers of Diet for Health Research

    PubMed Central

    O’Brien, Diane M.

    2016-01-01

    Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general United States population. Approaches to improve specificity for specific foods are needed, for example, by modeling intake using multiple stable isotope ratios, or by isolating and measuring specific molecules linked to foods of interest. PMID:26048703

  6. Early serum biomarker networks in infants with distinct retinochoroidal lesion status of congenital toxoplasmosis.

    PubMed

    de Araújo, Thádia Evelyn; Coelho-Dos-Reis, Jordana Grazziela; Béla, Samantha Ribeiro; Carneiro, Ana Carolina Aguiar Vasconcelos; Machado, Anderson Silva; Cardoso, Ludmila Melo; Ribeiro, Ágata Lopes; Dias, Michelle Hallais França; Queiroz Andrade, Gláucia Manzan; Vasconcelos-Santos, Daniel Vitor; Januário, José Nélio; Teixeira-Carvalho, Andréa; Vitor, Ricardo Wagner Almeida; Ferro, Eloisa Amália Vieira; Martins-Filho, Olindo Assis

    2017-02-28

    The present study characterized the early changes in the serum chemokines/cytokine signatures and networks in infants with congenital-toxoplasmosis/(TOXO) as compared to non-infected-controls/(NI). TOXO were subgrouped according to the retinochoroidal lesion status as no-lesion/(NL), active-lesion/(ARL), active/cicatricial-lesion/(ACRL) and cicatricial-lesion/(CRL). The results showed that TOXO display prominent chemokine production mediated by IL-8/CXCL8, MIG/CXCL9, IP-10/CXCL10 and RANTES/CCL5. Additionally, TOXO is accompanied by mixed proinflammatory/regulatory cytokine pattern mediated by IL-6, IFN-γ, IL-4, IL-5 and IL-10. While TNF appears as a putative biomarker for NL and IFN-γ/IL-5 as immunological features for ARL, IL-10 emerges as a relevant mediator in ACRL/CRL. IL-8/CXCL8 and IP-10/CXCL10 are broad-spectrum indicators of ocular disease, whereas TNF is a NL biomarker, IFN-γ and MIG/CXCL9 point out to ARL; and IL-10 is highlighted as a genuine serum biomarker of ACRL/CRL. The network analysis demonstrated a broad chemokine/cytokine crosstalk with divergences in the molecular signatures in patients with different ocular lesions during congenital toxoplasmosis.

  7. Use of miRNAs as Biomarkers in Sepsis

    PubMed Central

    Dumache, Raluca; Rogobete, Alexandru Florin; Bedreag, Ovidiu Horea; Sarandan, Mirela; Cradigati, Alina Carmen; Papurica, Marius; Dumbuleu, Corina Maria; Nartita, Radu; Sandesc, Dorel

    2015-01-01

    Sepsis