Sample records for multiple disease outbreak

  1. Distinguishing epidemiological features of the 2013–2016 West Africa Ebola virus disease outbreak

    PubMed Central

    Shultz, James M.; Espinel, Zelde; Espinola, Maria; Rechkemmer, Andreas

    2016-01-01

    ABSTRACT The 2013–2016 West Africa Ebola virus disease epidemic was notable for its scope, scale, and complexity. This briefing presents a series of distinguishing epidemiological features that set this outbreak apart. Compared to one concurrent and 23 previous outbreaks of the disease over 40 years, this was the only occurrence of Ebola virus disease involving multiple nations and qualifying as a pandemic. Across multiple measures of magnitude, the 2013–2016 outbreak was accurately described using superlatives: largest and deadliest in terms of numbers of cases and fatalities; longest in duration; and most widely dispersed geographically, with outbreak-associated cases occurring in 10 nations. In contrast, the case-fatality rate was much lower for the 2013–2016 outbreak compared to the other 24 outbreaks. A population of particular interest for ongoing monitoring and public health surveillance is comprised of more than 17,000 “survivors,” Ebola patients who successfully recovered from their illness. The daunting challenges posed by this outbreak were met by an intensive international public health response. The near-exponential rate of increase of incident Ebola cases during mid-2014 was successfully slowed, reversed, and finally halted through the application of multiple disease containment and intervention strategies. PMID:28229017

  2. Rolling epidemic of Legionnaires' disease outbreaks in small geographic areas.

    PubMed

    MacIntyre, C Raina; Dyda, Amalie; Bui, Chau Minh; Chughtai, Abrar Ahmad

    2018-03-21

    Legionnaires' disease (LD) is reported from many parts of the world, mostly linked to drinking water sources or cooling towers. We reviewed two unusual rolling outbreaks in Sydney and New York, each clustered in time and space. Data on these outbreaks were collected from public sources and compared to previous outbreaks in Australia and the US. While recurrent outbreaks of LD over time linked to an identified single source have been described, multiple unrelated outbreaks clustered in time and geography have not been previously described. We describe unusual geographic and temporal clustering of Legionella outbreaks in two cities, each of which experienced multiple different outbreaks within a small geographic area and within a short timeframe. The explanation for this temporal and spatial clustering of LD outbreaks in two cities is not clear, but climate variation and deteriorating water sanitation are two possible explanations. There is a need to critically analyse LD outbreaks and better understand changing trends to effectively prevent disease.

  3. Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks.

    PubMed

    Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O; Cohn, Emily; Mekaru, Sumiko R; Brownstein, John S; Ramakrishnan, Naren

    2017-01-19

    In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.

  4. Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks

    NASA Astrophysics Data System (ADS)

    Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O.; Cohn, Emily; Mekaru, Sumiko R.; Brownstein, John S.; Ramakrishnan, Naren

    2017-01-01

    In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.

  5. Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks

    PubMed Central

    Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O.; Cohn, Emily; Mekaru, Sumiko R.; Brownstein, John S.; Ramakrishnan, Naren

    2017-01-01

    In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations. PMID:28102319

  6. A Bayesian system to detect and characterize overlapping outbreaks.

    PubMed

    Aronis, John M; Millett, Nicholas E; Wagner, Michael M; Tsui, Fuchiang; Ye, Ye; Ferraro, Jeffrey P; Haug, Peter J; Gesteland, Per H; Cooper, Gregory F

    2017-09-01

    Outbreaks of infectious diseases such as influenza are a significant threat to human health. Because there are different strains of influenza which can cause independent outbreaks, and influenza can affect demographic groups at different rates and times, there is a need to recognize and characterize multiple outbreaks of influenza. This paper describes a Bayesian system that uses data from emergency department patient care reports to create epidemiological models of overlapping outbreaks of influenza. Clinical findings are extracted from patient care reports using natural language processing. These findings are analyzed by a case detection system to create disease likelihoods that are passed to a multiple outbreak detection system. We evaluated the system using real and simulated outbreaks. The results show that this approach can recognize and characterize overlapping outbreaks of influenza. We describe several extensions that appear promising. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Gene flow in environmental Legionella pneumophila leads to genetic and pathogenic heterogeneity within a Legionnaires' disease outbreak.

    PubMed

    McAdam, Paul R; Vander Broek, Charles W; Lindsay, Diane S J; Ward, Melissa J; Hanson, Mary F; Gillies, Michael; Watson, Mick; Stevens, Joanne M; Edwards, Giles F; Fitzgerald, J Ross

    2014-01-01

    Legionnaires' disease is a severe form of pneumonia caused by the environmental bacterium Legionella pneumophila. Outbreaks commonly affect people with known risk factors, but the genetic and pathogenic complexity of L. pneumophila within an outbreak is not well understood. Here, we investigate the etiology of the major Legionnaires' disease outbreak that occurred in Edinburgh, UK, in 2012, by examining the evolutionary history, genome content, and virulence of L. pneumophila clinical isolates. Our high resolution genomic approach reveals that the outbreak was caused by multiple genetic subtypes of L. pneumophila, the majority of which had diversified from a single progenitor through mutation, recombination, and horizontal gene transfer within an environmental reservoir prior to release. In addition, we discover that some patients were infected with multiple L. pneumophila subtypes, a finding which can affect the certainty of source attribution. Importantly, variation in the complement of type IV secretion systems encoded by different genetic subtypes correlates with virulence in a Galleria mellonella model of infection, revealing variation in pathogenic potential among the outbreak source population of L. pneumophila. Taken together, our study indicates previously cryptic levels of pathogen heterogeneity within a Legionnaires' disease outbreak, a discovery that impacts on source attribution for future outbreak investigations. Furthermore, our data suggest that in addition to host immune status, pathogen diversity may be an important influence on the clinical outcome of individual outbreak infections.

  8. Modeling Classical Swine Fever Outbreak-Related Outcomes

    PubMed Central

    Yadav, Shankar; Olynk Widmar, Nicole J.; Weng, Hsin-Yi

    2016-01-01

    The study was carried out to estimate classical swine fever (CSF) outbreak-related outcomes, such as epidemic duration and number of infected, vaccinated, and depopulated premises, using defined most likely CSF outbreak scenarios. Risk metrics were established using empirical data to select the most likely CSF outbreak scenarios in Indiana. These scenarios were simulated using a stochastic between-premises disease spread model to estimate outbreak-related outcomes. A total of 19 single-site (i.e., with one index premises at the onset of an outbreak) and 15 multiple-site (i.e., with more than one index premises at the onset of an outbreak) outbreak scenarios of CSF were selected using the risk metrics. The number of index premises in the multiple-site outbreak scenarios ranged from 4 to 32. The multiple-site outbreak scenarios were further classified into clustered (N = 6) and non-clustered (N = 9) groups. The estimated median (5th, 95th percentiles) epidemic duration (days) was 224 (24, 343) in the single-site and was 190 (157, 251) and 210 (167, 302) in the clustered and non-clustered multiple-site outbreak scenarios, respectively. The median (5th, 95th percentiles) number of infected premises was 323 (0, 488) in the single-site outbreak scenarios and was 529 (395, 662) and 465 (295, 640) in the clustered and non-clustered multiple-site outbreak scenarios, respectively. Both the number and spatial distributions of the index premises affected the outcome estimates. The results also showed the importance of implementing vaccinations to accommodate depopulation in the CSF outbreak controls. The use of routinely collected surveillance data in the risk metrics and disease spread model allows end users to generate timely outbreak-related information based on the initial outbreak’s characteristics. Swine producers can use this information to make an informed decision on the management of swine operations and continuity of business, so that potential losses could be minimized during a CSF outbreak. Government authorities might use the information to make emergency preparedness plans for CSF outbreak control. PMID:26870741

  9. Comparison of Statistical Algorithms for the Detection of Infectious Disease Outbreaks in Large Multiple Surveillance Systems

    PubMed Central

    Farrington, C. Paddy; Noufaily, Angela; Andrews, Nick J.; Charlett, Andre

    2016-01-01

    A large-scale multiple surveillance system for infectious disease outbreaks has been in operation in England and Wales since the early 1990s. Changes to the statistical algorithm at the heart of the system were proposed and the purpose of this paper is to compare two new algorithms with the original algorithm. Test data to evaluate performance are created from weekly counts of the number of cases of each of more than 2000 diseases over a twenty-year period. The time series of each disease is separated into one series giving the baseline (background) disease incidence and a second series giving disease outbreaks. One series is shifted forward by twelve months and the two are then recombined, giving a realistic series in which it is known where outbreaks have been added. The metrics used to evaluate performance include a scoring rule that appropriately balances sensitivity against specificity and is sensitive to variation in probabilities near 1. In the context of disease surveillance, a scoring rule can be adapted to reflect the size of outbreaks and this was done. Results indicate that the two new algorithms are comparable to each other and better than the algorithm they were designed to replace. PMID:27513749

  10. ENGINEERING ASPECTS OF WATERBORNE DISEASE INVESTIGATIONS

    EPA Science Inventory

    As part of a disease outbreak investigation involving drinking water, an engineering investigation may be necessary to determine how or why the pathogen of concern was able to get to the consumer. In many of the US outbreaks, the survival of the pathogen was dependent on multiple...

  11. Best practice assessment of disease modelling for infectious disease outbreaks.

    PubMed

    Dembek, Z F; Chekol, T; Wu, A

    2018-05-08

    During emerging disease outbreaks, public health, emergency management officials and decision-makers increasingly rely on epidemiological models to forecast outbreak progression and determine the best response to health crisis needs. Outbreak response strategies derived from such modelling may include pharmaceutical distribution, immunisation campaigns, social distancing, prophylactic pharmaceuticals, medical care, bed surge, security and other requirements. Infectious disease modelling estimates are unavoidably subject to multiple interpretations, and full understanding of a model's limitations may be lost when provided from the disease modeller to public health practitioner to government policymaker. We review epidemiological models created for diseases which are of greatest concern for public health protection. Such diseases, whether transmitted from person-to-person (Ebola, influenza, smallpox), via direct exposure (anthrax), or food and waterborne exposure (cholera, typhoid) may cause severe illness and death in a large population. We examine disease-specific models to determine best practices characterising infectious disease outbreaks and facilitating emergency response and implementation of public health policy and disease control measures.

  12. Did Zika Virus Mutate to Cause Severe Outbreaks?

    PubMed

    Rossi, Shannan L; Ebel, Gregory D; Shan, Chao; Shi, Pei-Yong; Vasilakis, Nikos

    2018-06-11

    Zika virus (ZIKV) has challenged the assumed knowledge regarding the pathobiology of flaviviruses. Despite causing sporadic and mild disease in the 50 years since its discovery, Zika virus has now caused multiple outbreaks in dozens of countries worldwide. Moreover, the disease severity in recent outbreaks, with neurological disease in adult and devastating congenital malformations in fetuses, was not previously seen. One hypothesis is that the virus has acquired mutations that have increased its virulence. Indeed, mutations in other arboviruses, such as West Nile virus (WNV), chikungunya virus (CHIKV), and Venezuelan equine encephalitis virus (VEEV), have enhanced outbreaks. This possibility, as well as alternative hypotheses, are explored here. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Infectious disease and dermatologic conditions in evacuees and rescue workers after Hurricane Katrina--multiple states, August-September, 2005.

    PubMed

    2005-09-30

    On August 29, 2005, Hurricane Katrina struck states along the Gulf Coast of the United States. In the days after the hurricane struck, approximately 750 evacuation centers were established in at least 18 states to accommodate more than 200,000 evacuees. State and local health departments, with assistance from CDC, initiated enhanced infectious disease surveillance and outbreak response activities, implemented by teams of public health and rescue workers, including military personnel. Outbreak monitoring included direct reporting of conditions of public health significance to public health agencies; daily contact between CDC and local public health officials; canvassing of reports from CDC, public health departments, and news media for potential infectious disease outbreaks; and investigation of reports of infectious disease with outbreak potential. This report summarizes infectious disease and dermatologic conditions reported during the first 3 weeks after the hurricane, before effective local surveillance was fully implemented. One outbreak of norovirus was reported among evacuees in Texas; no other outbreaks requiring unusual mobilization of public health resources were reported among evacuees or rescue workers.

  14. Detection of severe respiratory disease epidemic outbreaks by CUSUM-based overcrowd-severe-respiratory-disease-index model.

    PubMed

    Polanco, Carlos; Castañón-González, Jorge Alberto; Macías, Alejandro E; Samaniego, José Lino; Buhse, Thomas; Villanueva-Martínez, Sebastián

    2013-01-01

    A severe respiratory disease epidemic outbreak correlates with a high demand of specific supplies and specialized personnel to hold it back in a wide region or set of regions; these supplies would be beds, storage areas, hemodynamic monitors, and mechanical ventilators, as well as physicians, respiratory technicians, and specialized nurses. We describe an online cumulative sum based model named Overcrowd-Severe-Respiratory-Disease-Index based on the Modified Overcrowd Index that simultaneously monitors and informs the demand of those supplies and personnel in a healthcare network generating early warnings of severe respiratory disease epidemic outbreaks through the interpretation of such variables. A post hoc historical archive is generated, helping physicians in charge to improve the transit and future allocation of supplies in the entire hospital network during the outbreak. The model was thoroughly verified in a virtual scenario, generating multiple epidemic outbreaks in a 6-year span for a 13-hospital network. When it was superimposed over the H1N1 influenza outbreak census (2008-2010) taken by the National Institute of Medical Sciences and Nutrition Salvador Zubiran in Mexico City, it showed that it is an effective algorithm to notify early warnings of severe respiratory disease epidemic outbreaks with a minimal rate of false alerts.

  15. Detection of Severe Respiratory Disease Epidemic Outbreaks by CUSUM-Based Overcrowd-Severe-Respiratory-Disease-Index Model

    PubMed Central

    Castañón-González, Jorge Alberto; Macías, Alejandro E.; Samaniego, José Lino; Buhse, Thomas; Villanueva-Martínez, Sebastián

    2013-01-01

    A severe respiratory disease epidemic outbreak correlates with a high demand of specific supplies and specialized personnel to hold it back in a wide region or set of regions; these supplies would be beds, storage areas, hemodynamic monitors, and mechanical ventilators, as well as physicians, respiratory technicians, and specialized nurses. We describe an online cumulative sum based model named Overcrowd-Severe-Respiratory-Disease-Index based on the Modified Overcrowd Index that simultaneously monitors and informs the demand of those supplies and personnel in a healthcare network generating early warnings of severe respiratory disease epidemic outbreaks through the interpretation of such variables. A post hoc historical archive is generated, helping physicians in charge to improve the transit and future allocation of supplies in the entire hospital network during the outbreak. The model was thoroughly verified in a virtual scenario, generating multiple epidemic outbreaks in a 6-year span for a 13-hospital network. When it was superimposed over the H1N1 influenza outbreak census (2008–2010) taken by the National Institute of Medical Sciences and Nutrition Salvador Zubiran in Mexico City, it showed that it is an effective algorithm to notify early warnings of severe respiratory disease epidemic outbreaks with a minimal rate of false alerts. PMID:24069063

  16. Decision-making for foot-and-mouth disease control: Objectives matter

    USGS Publications Warehouse

    Probert, William J. M.; Shea, Katriona; Fonnesbeck, Christopher J.; Runge, Michael C.; Carpenter, Tim E.; Durr, Salome; Garner, M. Graeme; Harvey, Neil; Stevenson, Mark A.; Webb, Colleen T.; Werkman, Marleen; Tildesley, Michael J.; Ferrari, Matthew J.

    2016-01-01

    Formal decision-analytic methods can be used to frame disease control problems, the first step of which is to define a clear and specific objective. We demonstrate the imperative of framing clearly-defined management objectives in finding optimal control actions for control of disease outbreaks. We illustrate an analysis that can be applied rapidly at the start of an outbreak when there are multiple stakeholders involved with potentially multiple objectives, and when there are also multiple disease models upon which to compare control actions. The output of our analysis frames subsequent discourse between policy-makers, modellers and other stakeholders, by highlighting areas of discord among different management objectives and also among different models used in the analysis. We illustrate this approach in the context of a hypothetical foot-and-mouth disease (FMD) outbreak in Cumbria, UK using outputs from five rigorously-studied simulation models of FMD spread. We present both relative rankings and relative performance of controls within each model and across a range of objectives. Results illustrate how control actions change across both the base metric used to measure management success and across the statistic used to rank control actions according to said metric. This work represents a first step towards reconciling the extensive modelling work on disease control problems with frameworks for structured decision making.

  17. A Review of Hypothesized Determinants Associated with Bighorn Sheep (Ovis canadensis) Die-Offs

    PubMed Central

    Miller, David S.; Hoberg, Eric; Weiser, Glen; Aune, Keith; Atkinson, Mark; Kimberling, Cleon

    2012-01-01

    Multiple determinants have been hypothesized to cause or favor disease outbreaks among free-ranging bighorn sheep (Ovis canadensis) populations. This paper considered direct and indirect causes of mortality, as well as potential interactions among proposed environmental, host, and agent determinants of disease. A clear, invariant relationship between a single agent and field outbreaks has not yet been documented, in part due to methodological limitations and practical challenges associated with developing rigorous study designs. Therefore, although there is a need to develop predictive models for outbreaks and validated mitigation strategies, uncertainty remains as to whether outbreaks are due to endemic or recently introduced agents. Consequently, absence of established and universal explanations for outbreaks contributes to conflict among wildlife and livestock stakeholders over land use and management practices. This example illustrates the challenge of developing comprehensive models for understanding and managing wildlife diseases in complex biological and sociological environments. PMID:22567546

  18. Strengths and limitations of molecular subtyping in a community outbreak of Legionnaires' disease.

    PubMed

    Kool, J L; Buchholz, U; Peterson, C; Brown, E W; Benson, R F; Pruckler, J M; Fields, B S; Sturgeon, J; Lehnkering, E; Cordova, R; Mascola, L M; Butler, J C

    2000-12-01

    An epidemiological and microbiological investigation of a cluster of eight cases of Legionnaires' disease in Los Angeles County in November 1997 yielded conflicting results. The epidemiological part of the investigation implicated one of several mobile cooling towers used by a film studio in the centre of the outbreak area. However, water sampled from these cooling towers contained L. pneumophila serogroup 1 of another subtype than the strain that was recovered from case-patients in the outbreak. Samples from two cooling towers located downwind from all of the case-patients contained a Legionella strain that was indistinguishable from the outbreak strain by four subtyping techniques (AP-PCR, PFGE, MAb, and MLEE). It is unlikely that these cooling towers were the source of infection for all the case-patients, and they were not associated with risk of disease in the case-control study. The outbreak strain also was not distinguishable, by three subtyping techniques (AP-PCR, PFGE, and MAb), from a L. pneumophila strain that had caused an outbreak in Providence, RI, in 1993. Laboratory cross-contamination was unlikely because the initial subtyping was done in different laboratories. In this investigation, microbiology was helpful for distinguishing the outbreak cluster from unrelated cases of Legionnaires' disease occurring elsewhere. However, multiple subtyping techniques failed to distinguish environmental sources that were probably not associated with the outbreak. Persons investigating Legionnaires' disease outbreaks should be aware that microbiological subtyping does not always identify a source with absolute certainty.

  19. Multiple origins of foot-and-mouth disease virus serotype Asia 1 outbreaks, 2003-2007.

    PubMed

    Valarcher, Jean Francois; Knowles, Nick J; Zakharov, Valery; Scherbakov, Alexey; Zhang, Zhidong; Shang, You Jun; Liu, Zai Xin; Liu, Xiang Tao; Sanyal, Aniket; Hemadri, Divakar; Tosh, Chakradhar; Rasool, Thaha J; Pattnaik, Bramhadev; Schumann, Kate R; Beckham, Tammy R; Linchongsubongkoch, Wilai; Ferris, Nigel P; Roeder, Peter L; Paton, David J

    2009-07-01

    We investigated the molecular epidemiology of foot-and-mouth disease virus (FMDV) serotype Asia 1, which caused outbreaks of disease in Asia during 2003-2007. Since 2004, the region affected by outbreaks of this serotype has increased from disease-endemic countries in southern Asia (Afghanistan, India, Iran, Nepal, Pakistan) northward to encompass Kyrgyzstan, Tajikistan, Uzbekistan, several regions of the People's Republic of China, Mongolia, Eastern Russia, and North Korea. Phylogenetic analysis of complete virus capsid protein 1 (VP1) gene sequences demonstrated that the FMDV isolates responsible for these outbreaks belonged to 6 groups within the Asia 1 serotype. Some contemporary strains were genetically closely related to isolates collected historically from the region as far back as 25 years ago. Our analyses also indicated that some viruses have spread large distances between countries in Asia within a short time.

  20. Chimpanzee adenoviral vectors as vaccines for outbreak pathogens

    PubMed Central

    2017-01-01

    ABSTRACT The 2014–15 Ebola outbreak in West Africa highlighted the potential for large disease outbreaks caused by emerging pathogens and has generated considerable focus on preparedness for future epidemics. Here we discuss drivers, strategies and practical considerations for developing vaccines against outbreak pathogens. Chimpanzee adenoviral (ChAd) vectors have been developed as vaccine candidates for multiple infectious diseases and prostate cancer. ChAd vectors are safe and induce antigen-specific cellular and humoral immunity in all age groups, as well as circumventing the problem of pre-existing immunity encountered with human Ad vectors. For these reasons, such viral vectors provide an attractive platform for stockpiling vaccines for emergency deployment in response to a threatened outbreak of an emerging pathogen. Work is already underway to develop vaccines against a number of other outbreak pathogens and we will also review progress on these approaches here, particularly for Lassa fever, Nipah and MERS. PMID:29083948

  1. Genotyping of Burkholderia mallei from an outbreak of glanders in Bahrain suggests multiple introduction events.

    PubMed

    Scholz, Holger C; Pearson, Talima; Hornstra, Heidie; Projahn, Michaela; Terzioglu, Rahime; Wernery, Renate; Georgi, Enrico; Riehm, Julia M; Wagner, David M; Keim, Paul S; Joseph, Marina; Johnson, Bobby; Kinne, Joerg; Jose, Shanti; Hepp, Crystal M; Witte, Angela; Wernery, Ulrich

    2014-09-01

    Glanders, caused by the gram-negative bacterium Burkholderia mallei, is a highly infectious zoonotic disease of solipeds causing severe disease in animals and men. Although eradicated from many Western countries, it recently emerged in Asia, the Middle-East, Africa, and South America. Due to its rareness, little is known about outbreak dynamics of the disease and its epidemiology. We investigated a recent outbreak of glanders in Bahrain by applying high resolution genotyping (multiple locus variable number of tandem repeats, MLVA) and comparative whole genome sequencing to B. mallei isolated from infected horses and a camel. These results were compared to samples obtained from an outbreak in the United Arab Emirates in 2004, and further placed into a broader phylogeographic context based on previously published B. mallei data. The samples from the outbreak in Bahrain separated into two distinct clusters, suggesting a complex epidemiological background and evidence for the involvement of multiple B. mallei strains. Additionally, the samples from Bahrain were more closely related to B. mallei isolated from horses in the United Arab Emirates in 2004 than other B. mallei which is suggestive of repeated importation to the region from similar geographic sources. High-resolution genotyping and comparative whole genome analysis revealed the same phylogenetic patterns among our samples. The close relationship of the Dubai/UAE B. mallei populations to each other may be indicative of a similar geographic origin that has yet to be identified for the infecting strains. The recent emergence of glanders in combination with worldwide horse trading might pose a new risk for human infections.

  2. Vital Signs: Deficiencies in Environmental Control Identified in Outbreaks of Legionnaires' Disease - North America, 2000-2014.

    PubMed

    Garrison, Laurel E; Kunz, Jasen M; Cooley, Laura A; Moore, Matthew R; Lucas, Claressa; Schrag, Stephanie; Sarisky, John; Whitney, Cynthia G

    2016-06-10

    The number of reported cases of Legionnaires' disease, a severe pneumonia caused by the bacterium Legionella, is increasing in the United States. During 2000-2014, the rate of reported legionellosis cases increased from 0.42 to 1.62 per 100,000 persons; 4% of reported cases were outbreak-associated. Legionella is transmitted through aerosolization of contaminated water. A new industry standard for prevention of Legionella growth and transmission in water systems in buildings was published in 2015. CDC investigated outbreaks of Legionnaires' disease to identify gaps in building water system maintenance and guide prevention efforts. Information from summaries of CDC Legionnaires' disease outbreak investigations during 2000-2014 was systematically abstracted, and water system maintenance deficiencies from land-based investigations were categorized as process failures, human errors, equipment failures, or unmanaged external changes. During 2000-2014, CDC participated in 38 field investigations of Legionnaires' disease. Among 27 land-based outbreaks, the median number of cases was 10 (range = 3-82) and median outbreak case fatality rate was 7% (range = 0%-80%). Sufficient information to evaluate maintenance deficiencies was available for 23 (85%) investigations. Of these, all had at least one deficiency; 11 (48%) had deficiencies in ≥2 categories. Fifteen cases (65%) were linked to process failures, 12 (52%) to human errors, eight (35%) to equipment failures, and eight (35%) to unmanaged external changes. Multiple common preventable maintenance deficiencies were identified in association with disease outbreaks, highlighting the importance of comprehensive water management programs for water systems in buildings. Properly implemented programs, as described in the new industry standard, could reduce Legionella growth and transmission, preventing Legionnaires' disease outbreaks and reducing disease.

  3. Designing and implementing an electronic dashboard for disease outbreaks response - Case study of the 2013-2014 Somalia Polio outbreak response dashboard

    PubMed Central

    Kamadjeu, Raoul; Gathenji, Caroline

    2017-01-01

    In April 2013, a case of wild polio virus (WPV) was detected in the Somalia capital Mogadishu. This inaugurated what is now referred to as the 2013-2014 Horn of Africa Polio outbreak with cases reported in Somalia, Kenya and Ethiopia. By the notification of the last polio case in August 2014, 223 cases of WPV had been reported in Somalia, Kenya and Ethiopia of which 199 in Somalia alone. The outbreak response required timely exchange of information between the outbreak response coordination unit (in Nairobi) and local staff located in multiple locations inside the country. The need to track and timely respond to information requests, to satisfy the information/data needs of polio partners and to track key outbreak response performance indicators dictated the need to urgently set up an online dashboard. The Somalia Polio Room dashboard provided a graphical display of the polio outbreak data to track progress and inform decision making. The system was designed using free and open sources components and seamlessly integrated existing polio surveillance data for real time monitoring of key outbreak response performance indicators. In this article, we describe the design and operation of an electronic dashboard for disease surveillance in an outbreak situation and used the lessons learned to propose key design considerations and functional requirements for online electronic dashboards for disease outbreak response. PMID:29296157

  4. Designing and implementing an electronic dashboard for disease outbreaks response - Case study of the 2013-2014 Somalia Polio outbreak response dashboard.

    PubMed

    Kamadjeu, Raoul; Gathenji, Caroline

    2017-01-01

    In April 2013, a case of wild polio virus (WPV) was detected in the Somalia capital Mogadishu. This inaugurated what is now referred to as the 2013-2014 Horn of Africa Polio outbreak with cases reported in Somalia, Kenya and Ethiopia. By the notification of the last polio case in August 2014, 223 cases of WPV had been reported in Somalia, Kenya and Ethiopia of which 199 in Somalia alone. The outbreak response required timely exchange of information between the outbreak response coordination unit (in Nairobi) and local staff located in multiple locations inside the country. The need to track and timely respond to information requests, to satisfy the information/data needs of polio partners and to track key outbreak response performance indicators dictated the need to urgently set up an online dashboard. The Somalia Polio Room dashboard provided a graphical display of the polio outbreak data to track progress and inform decision making. The system was designed using free and open sources components and seamlessly integrated existing polio surveillance data for real time monitoring of key outbreak response performance indicators. In this article, we describe the design and operation of an electronic dashboard for disease surveillance in an outbreak situation and used the lessons learned to propose key design considerations and functional requirements for online electronic dashboards for disease outbreak response.

  5. Estimation of Flattened Musk Turtle (Sternotherus depressus) survival, recapture, and recovery rate during and after a disease outbreak

    USGS Publications Warehouse

    Fonnesbeck, C.J.; Dodd, C.K.

    2003-01-01

    We estimated survivorship, recapture probabilities and recovery rates in a threatened population of Flattened Musk Turtles (Sternotherus depressus) through a disease outbreak in Alabama in 1985. We evaluated a set of models for the demographic effects of disease by analyzing recaptures and recoveries simultaneously. Multiple-model inference suggested survival was temporally dynamic, whereas recapture probability was sex- and age-specifc. Biweekly survivorship declined from 98-99% before to 82-88% during the outbreak. Live recapture was twice as likely for male turtles relative to juveniles or females, whereas dead recoveries varied only slightly by sex and age. Our results suggest modest reduction in survival over a relatively short time period may severely affect population status.

  6. Genotyping of Burkholderia mallei from an Outbreak of Glanders in Bahrain Suggests Multiple Introduction Events

    PubMed Central

    Hornstra, Heidie; Projahn, Michaela; Terzioglu, Rahime; Wernery, Renate; Georgi, Enrico; Riehm, Julia M.; Wagner, David M.; Keim, Paul S.; Joseph, Marina; Johnson, Bobby; Kinne, Joerg; Jose, Shanti; Hepp, Crystal M.; Witte, Angela; Wernery, Ulrich

    2014-01-01

    Background Glanders, caused by the gram-negative bacterium Burkholderia mallei, is a highly infectious zoonotic disease of solipeds causing severe disease in animals and men. Although eradicated from many Western countries, it recently emerged in Asia, the Middle-East, Africa, and South America. Due to its rareness, little is known about outbreak dynamics of the disease and its epidemiology. Methodology/Principal Findings We investigated a recent outbreak of glanders in Bahrain by applying high resolution genotyping (multiple locus variable number of tandem repeats, MLVA) and comparative whole genome sequencing to B. mallei isolated from infected horses and a camel. These results were compared to samples obtained from an outbreak in the United Arab Emirates in 2004, and further placed into a broader phylogeographic context based on previously published B. mallei data. The samples from the outbreak in Bahrain separated into two distinct clusters, suggesting a complex epidemiological background and evidence for the involvement of multiple B. mallei strains. Additionally, the samples from Bahrain were more closely related to B. mallei isolated from horses in the United Arab Emirates in 2004 than other B. mallei which is suggestive of repeated importation to the region from similar geographic sources. Conclusion/Significance High-resolution genotyping and comparative whole genome analysis revealed the same phylogenetic patterns among our samples. The close relationship of the Dubai/UAE B. mallei populations to each other may be indicative of a similar geographic origin that has yet to be identified for the infecting strains. The recent emergence of glanders in combination with worldwide horse trading might pose a new risk for human infections. PMID:25255232

  7. Genomics-enabled sensor platform for rapid detection of viruses related to disease outbreak.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozik, Susan M; Manginell, Ronald P; Moorman, Matthew W

    2013-09-01

    Bioweapons and emerging infectious diseases pose growing threats to our national security. Both natural disease outbreak and outbreaks due to a bioterrorist attack are a challenge to detect, taking days after the outbreak to identify since most outbreaks are only recognized through reportable diseases by health departments and reports of unusual diseases by clinicians. In recent decades, arthropod-borne viruses (arboviruses) have emerged as some of the most significant threats to human health. They emerge, often unexpectedly, from cryptic transmission foci causing localized outbreaks that can rapidly spread to multiple continents due to increased human travel and trade. Currently, diagnosis ofmore » acute infections requires amplification of viral nucleic acids, which can be costly, highly specific, technically challenging and time consuming. No diagnostic devices suitable for use at the bedside or in an outbreak setting currently exist. The original goals of this project were to 1) develop two highly sensitive and specific diagnostic assays for detecting RNA from a wide range of arboviruses; one based on an electrochemical approach and the other a fluorescent based assay and 2) develop prototype microfluidic diagnostic platforms for preclinical and field testing that utilize the assays developed in goal 1. We generated and characterized suitable primers for West Nile Virus RNA detection. Both optical and electrochemical transduction technologies were developed for DNA-RNA hybridization detection and were implemented in microfluidic diagnostic sensing platforms that were developed in this project.« less

  8. Bayesian Reconstruction of Disease Outbreaks by Combining Epidemiologic and Genomic Data

    PubMed Central

    Jombart, Thibaut; Cori, Anne; Didelot, Xavier; Cauchemez, Simon; Fraser, Christophe; Ferguson, Neil

    2014-01-01

    Recent years have seen progress in the development of statistically rigorous frameworks to infer outbreak transmission trees (“who infected whom”) from epidemiological and genetic data. Making use of pathogen genome sequences in such analyses remains a challenge, however, with a variety of heuristic approaches having been explored to date. We introduce a statistical method exploiting both pathogen sequences and collection dates to unravel the dynamics of densely sampled outbreaks. Our approach identifies likely transmission events and infers dates of infections, unobserved cases and separate introductions of the disease. It also proves useful for inferring numbers of secondary infections and identifying heterogeneous infectivity and super-spreaders. After testing our approach using simulations, we illustrate the method with the analysis of the beginning of the 2003 Singaporean outbreak of Severe Acute Respiratory Syndrome (SARS), providing new insights into the early stage of this epidemic. Our approach is the first tool for disease outbreak reconstruction from genetic data widely available as free software, the R package outbreaker. It is applicable to various densely sampled epidemics, and improves previous approaches by detecting unobserved and imported cases, as well as allowing multiple introductions of the pathogen. Because of its generality, we believe this method will become a tool of choice for the analysis of densely sampled disease outbreaks, and will form a rigorous framework for subsequent methodological developments. PMID:24465202

  9. The use of public health e-learning resources by pharmacists in Wales: a quantitative evaluation.

    PubMed

    Evans, Andrew; Evans, Sian; Roberts, Debra

    2016-08-01

    The aim of this study was to examine how communicable disease e-learning resources were utilised by pharmacy professionals and to identify whether uptake of the resources was influenced by disease outbreaks. Retrospective analysis of routine data regarding the number of individuals completing e-learning resources and statutory notifications of communicable disease. A high proportion of pharmacy professionals in Wales (38.8%, n = 915/2357) accessed the resources; around one in six completed multiple resources (n = 156). The most commonly accessed were those where there had been a disease outbreak during the study period. There was a strong positive correlation between e-learning uptake and number of disease cases; this was observed both for measles and scarlet fever. Communicable disease e-learning appears to be an acceptable method for providing communicable disease information to pharmacy professionals. Study findings suggest that e-learning uptake is positively influenced by disease outbreaks this reflects well both on pharmacy professionals and on the e-learning resources themselves. © 2016 Royal Pharmaceutical Society.

  10. Cryptococcus gattii infections in multiple states outside the US Pacific Northwest.

    PubMed

    Harris, Julie R; Lockhart, Shawn R; Sondermeyer, Gail; Vugia, Duc J; Crist, Matthew B; D'Angelo, Melissa Tobin; Sellers, Brenda; Franco-Paredes, Carlos; Makvandi, Monear; Smelser, Chad; Greene, John; Stanek, Danielle; Signs, Kimberly; Nett, Randall J; Chiller, Tom; Park, Benjamin J

    2013-10-01

    Clonal VGII subtypes (outbreak strains) of Cryptococcus gattii have caused an outbreak in the US Pacific Northwest since 2004. Outbreak-associated infections occur equally in male and female patients (median age 56 years) and usually cause pulmonary disease in persons with underlying medical conditions. Since 2009, a total of 25 C. gattii infections, 23 (92%) caused by non-outbreak strain C. gattii, have been reported from 8 non-Pacific Northwest states. Sixteen (64%) patients were previously healthy, and 21 (84%) were male; median age was 43 years (range 15-83 years). Ten patients who provided information reported no past-year travel to areas where C. gattii is known to be endemic. Nineteen (76%) patients had central nervous system infections; 6 (24%) died. C. gattii infection in persons without exposure to known disease-endemic areas suggests possible endemicity in the United States outside the outbreak-affected region; these infections appear to differ in clinical and demographic characteristics from outbreak-associated C. gattii. Clinicians outside the outbreak-affected areas should be aware of locally acquired C. gattii infection and its varied signs and symptoms.

  11. Cryptococcus gattii Infections in Multiple States Outside the US Pacific Northwest

    PubMed Central

    Lockhart, Shawn R.; Sondermeyer, Gail; Vugia, Duc J.; Crist, Matthew B.; D’Angelo, Melissa Tobin; Sellers, Brenda; Franco-Paredes, Carlos; Makvandi, Monear; Smelser, Chad; Greene, John; Stanek, Danielle; Signs, Kimberly; Nett, Randall J.; Chiller, Tom; Park, Benjamin J.

    2013-01-01

    Clonal VGII subtypes (outbreak strains) of Cryptococcus gattii have caused an outbreak in the US Pacific Northwest since 2004. Outbreak-associated infections occur equally in male and female patients (median age 56 years) and usually cause pulmonary disease in persons with underlying medical conditions. Since 2009, a total of 25 C. gattii infections, 23 (92%) caused by non–outbreak strain C. gattii, have been reported from 8 non–Pacific Northwest states. Sixteen (64%) patients were previously healthy, and 21 (84%) were male; median age was 43 years (range 15–83 years). Ten patients who provided information reported no past-year travel to areas where C. gattii is known to be endemic. Nineteen (76%) patients had central nervous system infections; 6 (24%) died. C. gattii infection in persons without exposure to known disease-endemic areas suggests possible endemicity in the United States outside the outbreak-affected region; these infections appear to differ in clinical and demographic characteristics from outbreak-associated C. gattii. Clinicians outside the outbreak-affected areas should be aware of locally acquired C. gattii infection and its varied signs and symptoms. PMID:24050410

  12. FoodChain-Lab: A Trace-Back and Trace-Forward Tool Developed and Applied during Food-Borne Disease Outbreak Investigations in Germany and Europe.

    PubMed

    Weiser, Armin A; Thöns, Christian; Filter, Matthias; Falenski, Alexander; Appel, Bernd; Käsbohrer, Annemarie

    2016-01-01

    FoodChain-Lab is modular open-source software for trace-back and trace-forward analysis in food-borne disease outbreak investigations. Development of FoodChain-Lab has been driven by a need for appropriate software in several food-related outbreaks in Germany since 2011. The software allows integrated data management, data linkage, enrichment and visualization as well as interactive supply chain analyses. Identification of possible outbreak sources or vehicles is facilitated by calculation of tracing scores for food-handling stations (companies or persons) and food products under investigation. The software also supports consideration of station-specific cross-contamination, analysis of geographical relationships, and topological clustering of the tracing network structure. FoodChain-Lab has been applied successfully in previous outbreak investigations, for example during the 2011 EHEC outbreak and the 2013/14 European hepatitis A outbreak. The software is most useful in complex, multi-area outbreak investigations where epidemiological evidence may be insufficient to discriminate between multiple implicated food products. The automated analysis and visualization components would be of greater value if trading information on food ingredients and compound products was more easily available.

  13. FoodChain-Lab: A Trace-Back and Trace-Forward Tool Developed and Applied during Food-Borne Disease Outbreak Investigations in Germany and Europe

    PubMed Central

    Filter, Matthias; Falenski, Alexander; Appel, Bernd; Käsbohrer, Annemarie

    2016-01-01

    FoodChain-Lab is modular open-source software for trace-back and trace-forward analysis in food-borne disease outbreak investigations. Development of FoodChain-Lab has been driven by a need for appropriate software in several food-related outbreaks in Germany since 2011. The software allows integrated data management, data linkage, enrichment and visualization as well as interactive supply chain analyses. Identification of possible outbreak sources or vehicles is facilitated by calculation of tracing scores for food-handling stations (companies or persons) and food products under investigation. The software also supports consideration of station-specific cross-contamination, analysis of geographical relationships, and topological clustering of the tracing network structure. FoodChain-Lab has been applied successfully in previous outbreak investigations, for example during the 2011 EHEC outbreak and the 2013/14 European hepatitis A outbreak. The software is most useful in complex, multi-area outbreak investigations where epidemiological evidence may be insufficient to discriminate between multiple implicated food products. The automated analysis and visualization components would be of greater value if trading information on food ingredients and compound products was more easily available. PMID:26985673

  14. Multiple-class antimicrobial resistance surveillance in swine Escherichia coli F4, Pasteurella multocida and Streptococcus suis isolates from Ontario and the impact of the 2004-2006 Porcine Circovirus type-2 Associated Disease outbreak.

    PubMed

    Glass-Kaastra, Shiona K; Pearl, David L; Reid-Smith, Richard; McEwen, Beverly; Slavic, Durda; Fairles, Jim; McEwen, Scott A

    2014-02-01

    The objective of this work was to describe trends in multiple-class antimicrobial resistance present in clinical isolates of Escherichia coli F4, Pasteurella multocida and Streptococcus suis from Ontario swine 1998-2010. Temporal changes in multiple-class resistance varied by the pathogens examined; significant yearly changes were apparent for the E. coli and P. multocida data. Although not present in the E. coli data, significant increases in multiple-class resistance within P. multocida isolates occurred from 2003 to 2005, coinciding with the expected increase in antimicrobials used to treat clinical signs of Porcine Circovirus Associated Disease (PCVAD) before it was confirmed. Prospective temporal scan statistics for multiple-class resistance suggest that significant clusters of increased resistance may have been found in the spring of 2004; months before the identification of the PCVAD outbreak in the fall of 2004. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Genetic source tracking of an anthrax outbreak in Shaanxi province, China.

    PubMed

    Liu, Dong-Li; Wei, Jian-Chun; Chen, Qiu-Lan; Guo, Xue-Jun; Zhang, En-Min; He, Li; Liang, Xu-Dong; Ma, Guo-Zhu; Zhou, Ti-Cao; Yin, Wen-Wu; Liu, Wei; Liu, Kai; Shi, Yi; Ji, Jian-Jun; Zhang, Hui-Juan; Ma, Lin; Zhang, Fa-Xin; Zhang, Zhi-Kai; Zhou, Hang; Yu, Hong-Jie; Kan, Biao; Xu, Jian-Guo; Liu, Feng; Li, Wei

    2017-01-17

    Anthrax is an acute zoonotic infectious disease caused by the bacterium known as Bacillus anthracis. From 26 July to 8 August 2015, an outbreak with 20 suspected cutaneous anthrax cases was reported in Ganquan County, Shaanxi province in China. The genetic source tracking analysis of the anthrax outbreak was performed by molecular epidemiological methods in this study. Three molecular typing methods, namely canonical single nucleotide polymorphisms (canSNP), multiple-locus variable-number tandem repeat analysis (MLVA), and single nucleotide repeat (SNR) analysis, were used to investigate the possible source of transmission and identify the genetic relationship among the strains isolated from human cases and diseased animals during the outbreak. Five strains isolated from diseased mules were clustered together with patients' isolates using canSNP typing and MLVA. The causative B. anthracis lineages in this outbreak belonged to the A.Br.001/002 canSNP subgroup and the MLVA15-31 genotype (the 31 genotype in MLVA15 scheme). Because nine isolates from another four provinces in China were clustered together with outbreak-related strains by the canSNP (A.Br.001/002 subgroup) and MLVA15 method (MLVA15-31 genotype), still another SNR analysis (CL10, CL12, CL33, and CL35) was used to source track the outbreak, and the results suggesting that these patients in the anthrax outbreak were probably infected by the same pathogen clone. It was deduced that the anthrax outbreak occurred in Shaanxi province, China in 2015 was a local occurrence.

  16. A Supervised Statistical Learning Approach for Accurate Legionella pneumophila Source Attribution during Outbreaks

    PubMed Central

    Buultjens, Andrew H.; Chua, Kyra Y. L.; Baines, Sarah L.; Kwong, Jason; Gao, Wei; Cutcher, Zoe; Adcock, Stuart; Ballard, Susan; Schultz, Mark B.; Tomita, Takehiro; Subasinghe, Nela; Carter, Glen P.; Pidot, Sacha J.; Franklin, Lucinda; Seemann, Torsten; Gonçalves Da Silva, Anders

    2017-01-01

    ABSTRACT Public health agencies are increasingly relying on genomics during Legionnaires' disease investigations. However, the causative bacterium (Legionella pneumophila) has an unusual population structure, with extreme temporal and spatial genome sequence conservation. Furthermore, Legionnaires' disease outbreaks can be caused by multiple L. pneumophila genotypes in a single source. These factors can confound cluster identification using standard phylogenomic methods. Here, we show that a statistical learning approach based on L. pneumophila core genome single nucleotide polymorphism (SNP) comparisons eliminates ambiguity for defining outbreak clusters and accurately predicts exposure sources for clinical cases. We illustrate the performance of our method by genome comparisons of 234 L. pneumophila isolates obtained from patients and cooling towers in Melbourne, Australia, between 1994 and 2014. This collection included one of the largest reported Legionnaires' disease outbreaks, which involved 125 cases at an aquarium. Using only sequence data from L. pneumophila cooling tower isolates and including all core genome variation, we built a multivariate model using discriminant analysis of principal components (DAPC) to find cooling tower-specific genomic signatures and then used it to predict the origin of clinical isolates. Model assignments were 93% congruent with epidemiological data, including the aquarium Legionnaires' disease outbreak and three other unrelated outbreak investigations. We applied the same approach to a recently described investigation of Legionnaires' disease within a UK hospital and observed a model predictive ability of 86%. We have developed a promising means to breach L. pneumophila genetic diversity extremes and provide objective source attribution data for outbreak investigations. IMPORTANCE Microbial outbreak investigations are moving to a paradigm where whole-genome sequencing and phylogenetic trees are used to support epidemiological investigations. It is critical that outbreak source predictions are accurate, particularly for pathogens, like Legionella pneumophila, which can spread widely and rapidly via cooling system aerosols, causing Legionnaires' disease. Here, by studying hundreds of Legionella pneumophila genomes collected over 21 years around a major Australian city, we uncovered limitations with the phylogenetic approach that could lead to a misidentification of outbreak sources. We implement instead a statistical learning technique that eliminates the ambiguity of inferring disease transmission from phylogenies. Our approach takes geolocation information and core genome variation from environmental L. pneumophila isolates to build statistical models that predict with high confidence the environmental source of clinical L. pneumophila during disease outbreaks. We show the versatility of the technique by applying it to unrelated Legionnaires' disease outbreaks in Australia and the UK. PMID:28821546

  17. Use of Activity Space in a Tuberculosis Outbreak: Bringing Homeless Persons Into Spatial Analyses.

    PubMed

    Worrell, Mary Claire; Kramer, Michael; Yamin, Aliya; Ray, Susan M; Goswami, Neela D

    2017-01-01

    Tuberculosis (TB) causes significant morbidity and mortality in US cities, particularly in poor, transient populations. During a TB outbreak in Fulton County, Atlanta, GA, we aimed to determine whether local maps created from multiple locations of personal activity per case would differ significantly from traditional maps created from single residential address. Data were abstracted for patients with TB disease diagnosed in 2008-2014 and receiving care at the Fulton County Health Department. Clinical and activity location data were abstracted from charts. Kernel density methods, activity space analysis, and overlay with homeless shelter locations were used to characterize case spatial distribution when using single versus multiple addresses. Data were collected for 198 TB cases, with over 30% homeless US-born cases included. Greater spatial dispersion of cases was found when utilizing multiple versus single addresses per case. Activity spaces of homeless and isoniazid (INH)-resistant cases were more spatially congruent with one another than non-homeless and INH-susceptible cases ( P < .0001 and P < .0001, respectively). Innovative spatial methods allowed us to more comprehensively capture the geography of TB-infected homeless persons, who made up a large portion of the Fulton County outbreak. We demonstrate how activity space analysis, prominent in exposure science and chronic disease, supports that routine capture of multiple location TB data may facilitate spatially different public health interventions than traditional surveillance maps. © The Author 2017. Published by Oxford University Press on behalf of Infectious Diseases Society of America.

  18. Fault tree analysis of the causes of waterborne outbreaks.

    PubMed

    Risebro, Helen L; Doria, Miguel F; Andersson, Yvonne; Medema, Gertjan; Osborn, Keith; Schlosser, Olivier; Hunter, Paul R

    2007-01-01

    Prevention and containment of outbreaks requires examination of the contribution and interrelation of outbreak causative events. An outbreak fault tree was developed and applied to 61 enteric outbreaks related to public drinking water supplies in the EU. A mean of 3.25 causative events per outbreak were identified; each event was assigned a score based on percentage contribution per outbreak. Source and treatment system causative events often occurred concurrently (in 34 outbreaks). Distribution system causative events occurred less frequently (19 outbreaks) but were often solitary events contributing heavily towards the outbreak (a mean % score of 87.42). Livestock and rainfall in the catchment with no/inadequate filtration of water sources contributed concurrently to 11 of 31 Cryptosporidium outbreaks. Of the 23 protozoan outbreaks experiencing at least one treatment causative event, 90% of these events were filtration deficiencies; by contrast, for bacterial, viral, gastroenteritis and mixed pathogen outbreaks, 75% of treatment events were disinfection deficiencies. Roughly equal numbers of groundwater and surface water outbreaks experienced at least one treatment causative event (18 and 17 outbreaks, respectively). Retrospective analysis of multiple outbreaks of enteric disease can be used to inform outbreak investigations, facilitate corrective measures, and further develop multi-barrier approaches.

  19. Outbreaks of paralytic poliomyelitis during 1996-2012: the changing epidemiology of a disease in the final stages of eradication.

    PubMed

    Mach, Ondrej; Tangermann, Rudolf H; Wassilak, Steve G; Singh, Simarjit; Sutter, Roland W

    2014-11-01

    Despite substantial progress toward eradication of poliomyelitis, the risk of poliomyelitis outbreaks resulting from virus importations into polio-free areas persists. We reviewed the changing epidemiology of outbreaks in the final stages of the eradication initiative. Available literature on outbreaks of poliomyelitis caused by wild polioviruses between 1996 and 2012 was reviewed. During this period, there were 22 outbreaks involving 39 countries. Outbreaks ranged in size from 1 to 1335 cases. These outbreaks caused 4571 cases, representing 21% of all cases reported during this period. Five outbreaks involved multiple countries. In 76% of outbreaks (16/21) with a known age distribution, cases concentrated among children aged <5 years; in 19% (4/21), most cases were among adolescents and adults. The outbreaks among adolescents and adults were associated with higher case-fatality ratios, ranging from 12% in Albania in 1994 to 41% in the Republic of Congo in 2010. The majority of outbreaks were controlled within 6 months with oral poliovirus vaccine. Importations resulting in epidemic transmission of wild poliovirus caused thousands of cases of paralysis often in countries where poliomyelitis had not occurred for many years. The changing epidemiology, with cases and higher case-fatality ratios among adults, increased the severity of these outbreaks. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Emerging Filoviral Disease in Uganda: Proposed Explanations and Research Directions

    PubMed Central

    Polonsky, Jonathan A.; Wamala, Joseph F.; de Clerck, Hilde; Van Herp, Michel; Sprecher, Armand; Porten, Klaudia; Shoemaker, Trevor

    2014-01-01

    Outbreaks of Ebola and Marburg virus diseases have recently increased in frequency in Uganda. This increase is probably caused by a combination of improved surveillance and laboratory capacity, increased contact between humans and the natural reservoir of the viruses, and fluctuations in viral load and prevalence within this reservoir. The roles of these proposed explanations must be investigated in order to guide appropriate responses to the changing epidemiological profile. Other African settings in which multiple filoviral outbreaks have occurred could also benefit from such information. PMID:24515940

  1. Development, Use, and Impact of a Global Laboratory Database During the 2014 Ebola Outbreak in West Africa.

    PubMed

    Durski, Kara N; Singaravelu, Shalini; Teo, Junxiong; Naidoo, Dhamari; Bawo, Luke; Jambai, Amara; Keita, Sakoba; Yahaya, Ali Ahmed; Muraguri, Beatrice; Ahounou, Brice; Katawera, Victoria; Kuti-George, Fredson; Nebie, Yacouba; Kohar, T Henry; Hardy, Patrick Jowlehpah; Djingarey, Mamoudou Harouna; Kargbo, David; Mahmoud, Nuha; Assefa, Yewondwossen; Condell, Orla; N'Faly, Magassouba; Van Gurp, Leon; Lamanu, Margaret; Ryan, Julia; Diallo, Boubacar; Daffae, Foday; Jackson, Dikena; Malik, Fayyaz Ahmed; Raftery, Philomena; Formenty, Pierre

    2017-06-15

    The international impact, rapid widespread transmission, and reporting delays during the 2014 Ebola outbreak in West Africa highlighted the need for a global, centralized database to inform outbreak response. The World Health Organization and Emerging and Dangerous Pathogens Laboratory Network addressed this need by supporting the development of a global laboratory database. Specimens were collected in the affected countries from patients and dead bodies meeting the case definitions for Ebola virus disease. Test results were entered in nationally standardized spreadsheets and consolidated onto a central server. From March 2014 through August 2016, 256343 specimens tested for Ebola virus disease were captured in the database. Thirty-one specimen types were collected, and a variety of diagnostic tests were performed. Regular analysis of data described the functionality of laboratory and response systems, positivity rates, and the geographic distribution of specimens. With data standardization and end user buy-in, the collection and analysis of large amounts of data with multiple stakeholders and collaborators across various user-access levels was made possible and contributed to outbreak response needs. The usefulness and value of a multifunctional global laboratory database is far reaching, with uses including virtual biobanking, disease forecasting, and adaption to other disease outbreaks. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  2. Epidemiology and population biology of Pseudoperonospora cubensis: a model system for management of downy mildews.

    PubMed

    Ojiambo, Peter S; Gent, David H; Quesada-Ocampo, Lina M; Hausbeck, Mary K; Holmes, Gerald J

    2015-01-01

    The resurgence of cucurbit downy mildew has dramatically influenced production of cucurbits and disease management systems at multiple scales. Long-distance dispersal is a fundamental aspect of epidemic development that influences the timing and extent of outbreaks of cucurbit downy mildew. The dispersal potential of Pseudoperonospora cubensis appears to be limited primarily by sporangia production in source fields and availability of susceptible hosts and less by sporangia survival during transport. Uncertainty remains regarding the role of locally produced inoculum in disease outbreaks, but evidence suggests multiple sources of primary inoculum could be important. Understanding pathogen diversity and population differentiation is a critical aspect of disease management and an active research area. Underpinning advances in our understanding of pathogen biology and disease management has been the research capacity and coordination of stakeholders, scientists, and extension personnel. Concepts and approaches developed in this pathosystem can guide future efforts when responding to incursions of new or reemerging downy mildew pathogens.

  3. Emerging coral diseases in Kāne'ohe Bay, O'ahu, Hawai'i (USA): two major disease outbreaks of acute Montipora white syndrome

    USGS Publications Warehouse

    Aeby, Greta S.; Callahan, Sean; Cox, Evelyn F.; Runyon, Christina M.; Smith, Ashley; Stanton, Frank G.; Ushijima, Blake; Work, Thierry M.

    2016-01-01

    In March 2010 and January 2012, we documented 2 widespread and severe coral disease outbreaks on reefs throughout Kāne‘ohe Bay, Hawai‘i (USA). The disease, acute Montipora white syndrome (aMWS), manifested as acute and progressive tissue loss on the common reef coral M. capitata. Rapid visual surveys in 2010 revealed 338 aMWS-affected M. capitata colonies with a disease abundance of (mean ± SE) 0.02 ± 0.01 affected colonies per m of reef surveyed. In 2012, disease abundance was significantly higher (1232 aMWS-affected colonies) with 0.06 ± 0.02 affected colonies m-1. Prior surveys found few acute tissue loss lesions in M. capitata in Kāne‘ohe Bay; thus, the high number of infected colonies found during these outbreaks would classify this as an emerging disease. Disease abundance was highest in the semi-enclosed region of south Kāne‘ohe Bay, which has a history of nutrient and sediment impacts from terrestrial runoff and stream discharge. In 2010, tagged colonies showed an average tissue loss of 24% after 1 mo, and 92% of the colonies continued to lose tissue in the subsequent month but at a slower rate (chronic tissue loss). The host-specific nature of this disease (affecting only M. capitata) and the apparent spread of lesions between M. capitatacolonies in the field suggest a potential transmissible agent. The synchronous appearance of affected colonies on multiple reefs across Kāne‘ohe Bay suggests a common underlying factor. Both outbreaks occurred during the colder, rainy winter months, and thus it is likely that some parameter(s) associated with winter environmental conditions are linked to the emergence of disease outbreaks on these reefs.

  4. Emerging coral diseases in Kāne'ohe Bay, O'ahu, Hawai'i (USA): two major disease outbreaks of acute Montipora white syndrome.

    PubMed

    Aeby, Greta S; Callahan, Sean; Cox, Evelyn F; Runyon, Christina; Smith, Ashley; Stanton, Frank G; Ushijima, Blake; Work, Thierry M

    2016-05-26

    In March 2010 and January 2012, we documented 2 widespread and severe coral disease outbreaks on reefs throughout Kāne'ohe Bay, Hawai'i (USA). The disease, acute Montipora white syndrome (aMWS), manifested as acute and progressive tissue loss on the common reef coral M. capitata. Rapid visual surveys in 2010 revealed 338 aMWS-affected M. capitata colonies with a disease abundance of (mean ± SE) 0.02 ± 0.01 affected colonies per m of reef surveyed. In 2012, disease abundance was significantly higher (1232 aMWS-affected colonies) with 0.06 ± 0.02 affected colonies m(-1). Prior surveys found few acute tissue loss lesions in M. capitata in Ka¯ne'ohe Bay; thus, the high number of infected colonies found during these outbreaks would classify this as an emerging disease. Disease abundance was highest in the semi-enclosed region of south Kāne'ohe Bay, which has a history of nutrient and sediment impacts from terrestrial runoff and stream discharge. In 2010, tagged colonies showed an average tissue loss of 24% after 1 mo, and 92% of the colonies continued to lose tissue in the subsequent month but at a slower rate (chronic tissue loss). The host-specific nature of this disease (affecting only M. capitata) and the apparent spread of lesions between M. capitata colonies in the field suggest a potential transmissible agent. The synchronous appearance of affected colonies on multiple reefs across Kāne'ohe Bay suggests a common underlying factor. Both outbreaks occurred during the colder, rainy winter months, and thus it is likely that some parameter(s) associated with winter environmental conditions are linked to the emergence of disease outbreaks on these reefs.

  5. Evaluation of Movement Restriction Zone Sizes in Controlling Classical Swine Fever Outbreaks

    PubMed Central

    Yadav, Shankar; Olynk Widmar, Nicole; Lay, Donald C.; Croney, Candace; Weng, Hsin-Yi

    2017-01-01

    The objective of this study was to compare the impacts of movement restriction zone sizes of 3, 5, 9, and 11 km with that of 7 km (the recommended zone size in the United States) in controlling a classical swine fever (CSF) outbreak. In addition to zone size, different compliance assumptions and outbreak types (single site and multiple site) were incorporated in the study. Three assumptions of compliance level were simulated: baseline, baseline ± 10%, and baseline ± 15%. The compliance level was held constant across all zone sizes in the baseline simulation. In the baseline ± 10% and baseline ± 15% simulations, the compliance level was increased for 3 and 5 km and decreased for 9 and 11 km from the baseline by the indicated percentages. The compliance level remained constant in all simulations for the 7-km zone size. Four single-site (i.e., with one index premises at the onset of outbreak) and four multiple-site (i.e., with more than one index premises at the onset of outbreak) CSF outbreak scenarios in Indiana were simulated incorporating various zone sizes and compliance assumptions using a stochastic between-premises disease spread model to estimate epidemic duration, percentage of infected, and preemptively culled swine premises. Furthermore, a risk assessment model that incorporated the results from the disease spread model was developed to estimate the number of swine premises under movement restrictions that would experience animal welfare outcomes of overcrowding or feed interruption during a CSF outbreak in Indiana. Compared with the 7-km zone size, the 3-km zone size resulted in a longer median epidemic duration, larger percentages of infected premises, and preemptively culled premises (P’s < 0.001) across all compliance assumptions and outbreak types. With the assumption of a higher compliance level, the 5-km zone size significantly (P < 0.001) reduced the epidemic duration and percentage of swine premises that would experience animal welfare outcomes in both outbreak types, whereas assumption of a lower compliance level for 9- and 11-km zone sizes significantly (P < 0.001) increased the epidemic duration and percentage of swine premises with animal welfare outcomes compared with the 7-km zone size. The magnitude of impact due to a zone size varied across the outbreak types (single site and multiple site). Overall, the 7-km zone size was found to be most effective in controlling CSF outbreaks, whereas the 5-km zone size was comparable to the 7-km zone size in some circumstances. PMID:28119920

  6. Intensified colonisation screening according to the recommendations of the German Commission for Hospital Hygiene and Infectious Diseases Prevention (KRINKO): identification and containment of a Serratia marcescens outbreak in the neonatal intensive care unit, Jena, Germany, 2013-2014.

    PubMed

    Dawczynski, Kristin; Proquitté, Hans; Roedel, Jürgen; Edel, Brigit; Pfeifer, Yvonne; Hoyer, Heike; Dobermann, Helke; Hagel, Stefan; Pletz, Mathias W

    2016-12-01

    In 2013, the German Commission for Hospital Hygiene and Infectious Disease Prevention (KRINKO) stated that extending weekly colonisation screening from very low birth weight (VLBW) infants (<1500 g) to all patients in the Neonatal Intensive Care Unit (NICU) might be useful. After implementing this recommendation, we detected a previously unnoticed cluster of Serratia marcescens. Strains were typed by Pulsed Field Gel Electrophoresis (PFGE). Over 6 months, 19 out of 159 infants acquired S. marcescens. Twelve of the nineteen patients with S. marcescens were non-VLBW infants, and they were colonised significantly earlier than were VLBW infants (median 17 vs. 28 days; p < 0.01). Molecular typing revealed a polyclonal outbreak with multiple strain types leading to one or two transmissions each and a dominating outbreak strains being involved in an explosive outbreak involving eight neonates. The revised KRINKO recommendation may help identify unnoticed outbreaks. Colonised non-VLBW patients may be an underestimated source of S. marcescens.

  7. Zika virus evolution and spread in the Americas.

    PubMed

    Metsky, Hayden C; Matranga, Christian B; Wohl, Shirlee; Schaffner, Stephen F; Freije, Catherine A; Winnicki, Sarah M; West, Kendra; Qu, James; Baniecki, Mary Lynn; Gladden-Young, Adrianne; Lin, Aaron E; Tomkins-Tinch, Christopher H; Ye, Simon H; Park, Daniel J; Luo, Cynthia Y; Barnes, Kayla G; Shah, Rickey R; Chak, Bridget; Barbosa-Lima, Giselle; Delatorre, Edson; Vieira, Yasmine R; Paul, Lauren M; Tan, Amanda L; Barcellona, Carolyn M; Porcelli, Mario C; Vasquez, Chalmers; Cannons, Andrew C; Cone, Marshall R; Hogan, Kelly N; Kopp, Edgar W; Anzinger, Joshua J; Garcia, Kimberly F; Parham, Leda A; Ramírez, Rosa M Gélvez; Montoya, Maria C Miranda; Rojas, Diana P; Brown, Catherine M; Hennigan, Scott; Sabina, Brandon; Scotland, Sarah; Gangavarapu, Karthik; Grubaugh, Nathan D; Oliveira, Glenn; Robles-Sikisaka, Refugio; Rambaut, Andrew; Gehrke, Lee; Smole, Sandra; Halloran, M Elizabeth; Villar, Luis; Mattar, Salim; Lorenzana, Ivette; Cerbino-Neto, Jose; Valim, Clarissa; Degrave, Wim; Bozza, Patricia T; Gnirke, Andreas; Andersen, Kristian G; Isern, Sharon; Michael, Scott F; Bozza, Fernando A; Souza, Thiago M L; Bosch, Irene; Yozwiak, Nathan L; MacInnis, Bronwyn L; Sabeti, Pardis C

    2017-06-15

    Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests.

  8. Presence of virulent Newcastle disease virus in vaccinated chickens in farms in Pakistan

    USDA-ARS?s Scientific Manuscript database

    The sites where virulent Newcastle disease virus persists in endemic countries are unknown. Evidence presented here shows that the same strain that caused a previous outbreak was present in both apparently healthy and sick vaccinated birds from multiple farms that had high average specific antibody...

  9. Epidemiology and population biology of pseudoperonospora cubensis: a model system for management of downy mildews

    USDA-ARS?s Scientific Manuscript database

    The resurgence of cucurbit downy mildew has dramatically influenced production of cucurbits and disease management systems at multiple scales. Long-distance dispersal is a fundamental aspect of epidemic development that influences the timing and extent of disease outbreaks. Dispersal potential of th...

  10. Closed genomes and phenotypes of seven Histophilus somni isolates from beef calves with bovine respiratory disease complex

    USDA-ARS?s Scientific Manuscript database

    Background: Histophilus somni is a fastidious gram-negative opportunistic pathogenic Pasteurellacea that affects multiple organ systems and is one of three principle bacterial species contributing to bovine respiratory disease complex (BRDC) in North American feed yard cattle. BRDC outbreaks accoun...

  11. Effectively Communicating the Uncertainties Surrounding Ebola Virus Transmission.

    PubMed

    Kilianski, Andy; Evans, Nicholas G

    2015-10-01

    The current Ebola virus outbreak has highlighted the uncertainties surrounding many aspects of Ebola virus virology, including routes of transmission. The scientific community played a leading role during the outbreak-potentially, the largest of its kind-as many of the questions surrounding ebolaviruses have only been interrogated in the laboratory. Scientists provided an invaluable resource for clinicians, public health officials, policy makers, and the lay public in understanding the progress of Ebola virus disease and the continuing outbreak. Not all of the scientific communication, however, was accurate or effective. There were multiple instances of published articles during the height of the outbreak containing potentially misleading scientific language that spurred media overreaction and potentially jeopardized preparedness and policy decisions at critical points. Here, we use articles declaring the potential for airborne transmission of Ebola virus as a case study in the inaccurate reporting of basic science, and we provide recommendations for improving the communication about unknown aspects of disease during public health crises.

  12. Use of multiple molecular subtyping techniques to investigate a Legionnaires' disease outbreak due to identical strains at two tourist lodges.

    PubMed Central

    Mamolen, M; Breiman, R F; Barbaree, J M; Gunn, R A; Stone, K M; Spika, J S; Dennis, D T; Mao, S H; Vogt, R L

    1993-01-01

    A multistate outbreak of Legionnaires' disease occurred among nine tour groups of senior citizens returning from stays at one of two lodges in a Vermont resort in October 1987. Interviews and serologic studies of 383 (85%) of the tour members revealed 17 individuals (attack rate, 4.4%) with radiologically documented pneumonia and laboratory evidence of legionellosis. A survey of tour groups staying at four nearby lodges and of Vermont-area medical facilities revealed no additional cases. Environmental investigation of common tour stops revealed no likely aerosol source of Legionella infection outside the lodges. Legionella pneumophila serogroup 1 was isolated from water sources at both implicated lodges, and the monoclonal antibody subtype matched those of the isolates from six patients from whom clinical isolates were obtained. The cultures reacted with monoclonal antibodies MAB1, MAB2, 33G2, and 144C2 to yield a 1,2,5,7 or a Benidorm 030E pattern. The strains were also identical by alloenzyme electrophoresis and DNA ribotyping techniques. The epidemiologic and laboratory data suggest that concurrent outbreaks occurred following exposures to the same L. pneumophila serogroup 1 strain at two separate lodges. Multiple molecular subtyping techniques can provide essential information for epidemiologic investigations of Legionnaires' disease. PMID:8253953

  13. Use of multiple molecular subtyping techniques to investigate a Legionnaires' disease outbreak due to identical strains at two tourist lodges.

    PubMed

    Mamolen, M; Breiman, R F; Barbaree, J M; Gunn, R A; Stone, K M; Spika, J S; Dennis, D T; Mao, S H; Vogt, R L

    1993-10-01

    A multistate outbreak of Legionnaires' disease occurred among nine tour groups of senior citizens returning from stays at one of two lodges in a Vermont resort in October 1987. Interviews and serologic studies of 383 (85%) of the tour members revealed 17 individuals (attack rate, 4.4%) with radiologically documented pneumonia and laboratory evidence of legionellosis. A survey of tour groups staying at four nearby lodges and of Vermont-area medical facilities revealed no additional cases. Environmental investigation of common tour stops revealed no likely aerosol source of Legionella infection outside the lodges. Legionella pneumophila serogroup 1 was isolated from water sources at both implicated lodges, and the monoclonal antibody subtype matched those of the isolates from six patients from whom clinical isolates were obtained. The cultures reacted with monoclonal antibodies MAB1, MAB2, 33G2, and 144C2 to yield a 1,2,5,7 or a Benidorm 030E pattern. The strains were also identical by alloenzyme electrophoresis and DNA ribotyping techniques. The epidemiologic and laboratory data suggest that concurrent outbreaks occurred following exposures to the same L. pneumophila serogroup 1 strain at two separate lodges. Multiple molecular subtyping techniques can provide essential information for epidemiologic investigations of Legionnaires' disease.

  14. Epidemiologic and molecular trends of "Norwalk-like viruses" associated with outbreaks of gastroenteritis in the United States.

    PubMed

    Fankhauser, Rebecca L; Monroe, Stephan S; Noel, Jacqueline S; Humphrey, Charles D; Bresee, Joseph S; Parashar, Umesh D; Ando, Tamie; Glass, Roger I

    2002-07-01

    Between July 1997 and June 2000, fecal specimens from 284 outbreaks of nonbacterial gastroenteritis were submitted to the Centers for Disease Control and Prevention for testing for "Norwalk-like viruses" (NLVs). Specimens were examined by reverse-transcription polymerase chain reaction and direct electron microscopy for the presence of NLVs. Adequate descriptive data were available from 233 of the outbreaks, and, of these, 217 (93%) were positive for NLVs. Restaurants and events with catered food were the most common settings, and contaminated food was the most common mode of transmission. Genogroup II (GII) strains were the predominant type (73%), with genogroup I strains causing 26% of all NLV-positive outbreaks. Certain GII clusters (GII/1,4,j) were more commonly associated with outbreaks in nursing home settings than with outbreaks in other settings. Strain diversity was great: one potential new sequence cluster was implicated in multiple outbreaks, and strains belonging to a tentative new genogroup were identified.

  15. Phylogeny of pectolytic bacteria associated with recent outbreaks of potato soft rot and blackleg in the United States

    USDA-ARS?s Scientific Manuscript database

    Soft rot diseases of potato are caused by several species of bacteria belonging to the newly described family Pectobacteriaceae. Multiple species of Pectobacterium are known to cause soft rot diseases during field production and storage of potatoes. Recently, the genus Dickeya has been connected wi...

  16. Multiple Crimean-Congo Hemorrhagic Fever Virus Strains Are Associated with Disease Outbreaks in Sudan, 2008–2009

    PubMed Central

    Aradaib, Imadeldin E.; Erickson, Bobbie R.; Karsany, Mubarak S.; Khristova, Marina L.; Elageb, Rehab M.; Mohamed, Mohamed E. H.; Nichol, Stuart T.

    2011-01-01

    Background Crimean-Congo hemorrhagic fever (CCHF) activity has recently been detected in the Kordufan region of Sudan. Since 2008, several sporadic cases and nosocomial outbreaks associated with high case-fatality have been reported in villages and rural hospitals in the region. Principal Findings In the present study, we describe a cluster of cases occurring in June 2009 in Dunkop village, Abyei District, South Kordufan, Sudan. Seven CCHF cases were involved in the outbreak; however, clinical specimens could be collected from only two patients, both of whom were confirmed as acute CCHF cases using CCHF-specific reverse transcriptase polymerase chain reaction (RT-PCR). Phylogenetic analysis of the complete S, M, and L segment sequences places the Abyei strain of CCHF virus in Group III, a virus group containing strains from various countries across Africa, including Sudan, South Africa, Mauritania, and Nigeria. The Abyei strain detected in 2009 is genetically distinct from the recently described 2008 Sudanese CCHF virus strains (Al-fulah 3 and 4), and the Abyei strain S and L segments closely match those of CCHF virus strain ArD39554 from Mauritania. Conclusions The present investigation illustrates that multiple CCHF virus lineages are circulating in the Kordufan region of Sudan and are associated with recent outbreaks of the disease occurring during 2008–2009. PMID:21655310

  17. Public health interventions for epidemics: implications for multiple infection waves.

    PubMed

    Wessel, Lindsay; Hua, Yi; Wu, Jianhong; Moghadas, Seyed M

    2011-02-25

    Epidemics with multiple infection waves have been documented for some human diseases, most notably during past influenza pandemics. While pathogen evolution, co-infection, and behavioural changes have been proposed as possible mechanisms for the occurrence of subsequent outbreaks, the effect of public health interventions remains undetermined. We develop mean-field and stochastic epidemiological models for disease transmission, and perform simulations to show how control measures, such as drug treatment and isolation of ill individuals, can influence the epidemic profile and generate sequences of infection waves with different characteristics. We demonstrate the impact of parameters representing the effectiveness and adverse consequences of intervention measures, such as treatment and emergence of drug resistance, on the spread of a pathogen in the population. If pathogen resistant strains evolve under drug pressure, multiple outbreaks are possible with variability in their characteristics, magnitude, and timing. In this context, the level of drug use and isolation capacity play an important role in the occurrence of subsequent outbreaks. Our simulations for influenza infection as a case study indicate that the intensive use of these interventions during the early stages of the epidemic could delay the spread of disease, but it may also result in later infection waves with possibly larger magnitudes. The findings highlight the importance of intervention parameters in the process of public health decision-making, and in evaluating control measures when facing substantial uncertainty regarding the epidemiological characteristics of an emerging infectious pathogen. Critical factors that influence population health including evolutionary responses of the pathogen under the pressure of different intervention measures during an epidemic should be considered for the design of effective strategies that address short-term targets compatible with long-term disease outcomes.

  18. Molecular subtyping of Clostridium perfringens by pulsed-field gel electrophoresis to facilitate food-borne-disease outbreak investigations.

    PubMed

    Maslanka, S E; Kerr, J G; Williams, G; Barbaree, J M; Carson, L A; Miller, J M; Swaminathan, B

    1999-07-01

    Clostridium perfringens is a common cause of food-borne illness. The illness is characterized by profuse diarrhea and acute abdominal pain. Since the illness is usually self-limiting, many cases are undiagnosed and/or not reported. Investigations are often pursued after an outbreak involving large numbers of people in institutions, at restaurants, or at catered meals. Serotyping has been used in the past to assist epidemiologic investigations of C. perfringens outbreaks. However, serotyping reagents are not widely available, and many isolates are often untypeable with existing reagents. We developed a pulsed-field gel electrophoresis (PFGE) method for molecular subtyping of C. perfringens isolates to aid in epidemiologic investigations of food-borne outbreaks. Six restriction endonucleases (SmaI, ApaI, FspI, MluI, KspI, and XbaI) were evaluated with a select panel of C. perfringens strains. SmaI was chosen for further studies because it produced 11 to 13 well-distributed bands of 40 to approximately 1,100 kb which provided good discrimination between isolates. Seventeen distinct patterns were obtained with 62 isolates from seven outbreak investigations or control strains. In general, multiple isolates from a single individual had indistinguishable PFGE patterns. Epidemiologically unrelated isolates (outbreak or control strains) had unique patterns; isolates from different individuals within an outbreak had similar, if not identical, patterns. PFGE identifies clonal relationships of isolates which will assist epidemiologic investigations of food-borne-disease outbreaks caused by C. perfringens.

  19. How to Minimize the Attack Rate during Multiple Influenza Outbreaks in a Heterogeneous Population

    PubMed Central

    Fung, Isaac Chun-Hai; Antia, Rustom; Handel, Andreas

    2012-01-01

    Background If repeated interventions against multiple outbreaks are not feasible, there is an optimal level of control during the first outbreak. Any control measures above that optimal level will lead to an outcome that may be as sub-optimal as that achieved by an intervention that is too weak. We studied this scenario in more detail. Method An age-stratified ordinary-differential-equation model was constructed to study infectious disease outbreaks and control in a population made up of two groups, adults and children. The model was parameterized using influenza as an example. This model was used to simulate two consecutive outbreaks of the same infectious disease, with an intervention applied only during the first outbreak, and to study how cumulative attack rates were influenced by population composition, strength of inter-group transmission, and different ways of triggering and implementing the interventions. We assumed that recovered individuals are fully immune and the intervention does not confer immunity. Results/Conclusion The optimal intervention depended on coupling between the two population sub-groups, the length, strength and timing of the intervention, and the population composition. Population heterogeneity affected intervention strategies only for very low cross-transmission between groups. At more realistic values, coupling between the groups led to synchronization of outbreaks and therefore intervention strategies that were optimal in reducing the attack rates for each subgroup and the population overall coincided. For a sustained intervention of low efficacy, early intervention was found to be best, while at high efficacies, a delayed start was better. For short interventions, a delayed start was always advantageous, independent of the intervention efficacy. For most scenarios, starting the intervention after a certain cumulative proportion of children were infected seemed more robust in achieving close to optimal outcomes compared to a strategy that used a specified duration after an outbreak’s beginning as the trigger. PMID:22701558

  20. An Updated Scheme for Categorizing Foods Implicated in Foodborne Disease Outbreaks: A Tri-Agency Collaboration.

    PubMed

    Richardson, LaTonia Clay; Bazaco, Michael C; Parker, Cary Chen; Dewey-Mattia, Daniel; Golden, Neal; Jones, Karen; Klontz, Karl; Travis, Curtis; Kufel, Joanna Zablotsky; Cole, Dana

    2017-12-01

    Foodborne disease data collected during outbreak investigations are used to estimate the percentage of foodborne illnesses attributable to specific food categories. Current food categories do not reflect whether or how the food has been processed and exclude many multiple-ingredient foods. Representatives from three federal agencies worked collaboratively in the Interagency Food Safety Analytics Collaboration (IFSAC) to develop a hierarchical scheme for categorizing foods implicated in outbreaks, which accounts for the type of processing and provides more specific food categories for regulatory purposes. IFSAC also developed standard assumptions for assigning foods to specific food categories, including some multiple-ingredient foods. The number and percentage of outbreaks assignable to each level of the hierarchy were summarized. The IFSAC scheme is a five-level hierarchy for categorizing implicated foods with increasingly specific subcategories at each level, resulting in a total of 234 food categories. Subcategories allow distinguishing features of implicated foods to be reported, such as pasteurized versus unpasteurized fluid milk, shell eggs versus liquid egg products, ready-to-eat versus raw meats, and five different varieties of fruit categories. Twenty-four aggregate food categories contained a sufficient number of outbreaks for source attribution analyses. Among 9791 outbreaks reported from 1998 to 2014 with an identified food vehicle, 4607 (47%) were assignable to food categories using this scheme. Among these, 4218 (92%) were assigned to one of the 24 aggregate food categories, and 840 (18%) were assigned to the most specific category possible. Updates to the food categorization scheme and new methods for assigning implicated foods to specific food categories can help increase the number of outbreaks attributed to a single food category. The increased specificity of food categories in this scheme may help improve source attribution analyses, eventually leading to improved foodborne illness source attribution estimates and enhanced food safety and regulatory efforts.

  1. Ascertaining the impact of catastrophic events on dengue outbreak: The 2014 gas explosions in Kaohsiung, Taiwan.

    PubMed

    Hsieh, Ying-Hen

    2017-01-01

    Infectious disease outbreaks often occur in the aftermath of catastrophic events, either natural or man-made. While natural disasters such as typhoons/hurricanes, flooding and earthquakes have been known to increase the risk of infectious disease outbreak, the impact of anthropogenic disasters is less well-understood. Kaohsiung City is located in southern Taiwan, where most dengue outbreaks had occurred in the past two decades. It is also the center of petrochemical industry in Taiwan with pipelines running underneath city streets. Multiple underground gas explosions occurred in Kaohsiung in the evening of July 31, 2014 due to chemical leaks in the pipelines. The explosions caused 32 deaths, including five firefighters and two volunteer firefighters, and injured 321 persons. Historically, dengue outbreaks in southern Taiwan occurred mostly in small numbers of around 2000 cases or less, except in 2002 with over 5000 cases. However, in the months after the gas explosions, the city reported 14528 lab-confirmed dengue cases from August to December. To investigate the possible impact, if any, of the gas explosions on this record-breaking dengue outbreak, a simple mathematical model, the Richards model, is utilized to study the temporal patterns of the spread of dengue in the districts of Kaohsiung in the proximity of the explosion sites and to pinpoint the waves of infections that had occurred in each district in the aftermath of the gas explosions. The reproduction number of each wave in each district is also computed. In the aftermath of the gas explosions, early waves occurred 4-5 days (which coincides with the minimum of human intrinsic incubation period for dengue) later in districts with multiple waves. The gas explosions likely impacted the timing of the waves, but their impact on the magnitude of the 2014 outbreak remains unclear. The modeling suggests the need for public health surveillance and preparedness in the aftermath of future disasters.

  2. Ascertaining the impact of catastrophic events on dengue outbreak: The 2014 gas explosions in Kaohsiung, Taiwan

    PubMed Central

    2017-01-01

    Infectious disease outbreaks often occur in the aftermath of catastrophic events, either natural or man-made. While natural disasters such as typhoons/hurricanes, flooding and earthquakes have been known to increase the risk of infectious disease outbreak, the impact of anthropogenic disasters is less well-understood. Kaohsiung City is located in southern Taiwan, where most dengue outbreaks had occurred in the past two decades. It is also the center of petrochemical industry in Taiwan with pipelines running underneath city streets. Multiple underground gas explosions occurred in Kaohsiung in the evening of July 31, 2014 due to chemical leaks in the pipelines. The explosions caused 32 deaths, including five firefighters and two volunteer firefighters, and injured 321 persons. Historically, dengue outbreaks in southern Taiwan occurred mostly in small numbers of around 2000 cases or less, except in 2002 with over 5000 cases. However, in the months after the gas explosions, the city reported 14528 lab-confirmed dengue cases from August to December. To investigate the possible impact, if any, of the gas explosions on this record-breaking dengue outbreak, a simple mathematical model, the Richards model, is utilized to study the temporal patterns of the spread of dengue in the districts of Kaohsiung in the proximity of the explosion sites and to pinpoint the waves of infections that had occurred in each district in the aftermath of the gas explosions. The reproduction number of each wave in each district is also computed. In the aftermath of the gas explosions, early waves occurred 4–5 days (which coincides with the minimum of human intrinsic incubation period for dengue) later in districts with multiple waves. The gas explosions likely impacted the timing of the waves, but their impact on the magnitude of the 2014 outbreak remains unclear. The modeling suggests the need for public health surveillance and preparedness in the aftermath of future disasters. PMID:28520740

  3. Evolution and spread of Ebola virus in Liberia, 2014–2015

    PubMed Central

    Ladner, Jason T.; Wiley, Michael R.; Mate, Suzanne; Dudas, Gytis; Prieto, Karla; Lovett, Sean; Nagle, Elyse R.; Beitzel, Brett; Gilbert, Merle L.; Fakoli, Lawrence; Diclaro, Joseph W.; Schoepp, Randal J.; Fair, Joseph; Kuhn, Jens H.; Hensley, Lisa E.; Park, Daniel J.; Sabeti, Pardis C.; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Bolay, Fatorma K.; Kugelman, Jeffrey R.; Palacios, Gustavo

    2015-01-01

    SUMMARY The 2013–present Western African Ebola virus disease (EVD) outbreak is the largest ever recorded with >28,000 reported cases. Ebola virus (EBOV) genome sequencing has played an important role throughout this outbreak; however, relatively few sequences have been determined from patients in Liberia, the second worst-affected country. Here, we report 140 EBOV genome sequences from the second wave of the Liberian outbreak and analyze them in combination with 782 previously published sequences from throughout the Western African outbreak. While multiple early introductions of EBOV to Liberia are evident, the majority of Liberian EVD cases are consistent with a single introduction, followed by spread and diversification within the country. Movement of the virus within Liberia was widespread and reintroductions from Liberia served as an important source for the continuation of the already ongoing EVD outbreak in Guinea. Overall, little evidence was found for incremental adaptation of EBOV to the human host. PMID:26651942

  4. Prioritization of Managed Pork Supply Movements during a FMD Outbreak in the US.

    PubMed

    Patterson, Gilbert R; Mohr, Alicia H; Snider, Tim P; Lindsay, Thomas A; Davies, Peter R; Goldsmith, Tim J; Sampedro, Fernando

    2016-01-01

    In the event of a foot-and-mouth disease (FMD) outbreak in the United States, local, state, and federal authorities will implement a foreign animal disease emergency response plan restricting the pork supply chain movements and likely disrupting the continuity of the swine industry business. To minimize disruptions of the food supply while providing an effective response in an outbreak, it is necessary to have proactive measures in place to ensure minimal disease spread and maximum continuation of business. Therefore, it is critical to identify candidate movements for proactive risk assessments: those that are both most likely to contribute to disease spread and most necessary for business continuity. To do this, experts from production, harvest, retail, and allied pork industries assessed 30 common pork supply movements for risk of disease spread and industry criticality. The highest priority movements for conducting a risk assessment included the movement of weaned pigs originating from multiple sow farm sources to an off-site nursery or wean to finish facility, the movement of employees or commercial crews, the movement of vaccination crews, the movement of dedicated livestock hauling trucks, and the movement of commercial crews such as manure haulers and feed trucks onto, off, or between sites. These critical movements, along with several others identified in this study, will provide an initial guide for prioritization of risk management efforts and resources to be better prepared in the event of a FMD outbreak in the United States. By specifically and proactively targeting movements that experts agree are likely to spread the disease and are critical to the continuity of business operations, potentially catastrophic consequences in the event of an outbreak can be limited.

  5. Prioritization of Managed Pork Supply Movements during a FMD Outbreak in the US

    PubMed Central

    Patterson, Gilbert R.; Mohr, Alicia H.; Snider, Tim P.; Lindsay, Thomas A.; Davies, Peter R.; Goldsmith, Tim J.; Sampedro, Fernando

    2016-01-01

    In the event of a foot-and-mouth disease (FMD) outbreak in the United States, local, state, and federal authorities will implement a foreign animal disease emergency response plan restricting the pork supply chain movements and likely disrupting the continuity of the swine industry business. To minimize disruptions of the food supply while providing an effective response in an outbreak, it is necessary to have proactive measures in place to ensure minimal disease spread and maximum continuation of business. Therefore, it is critical to identify candidate movements for proactive risk assessments: those that are both most likely to contribute to disease spread and most necessary for business continuity. To do this, experts from production, harvest, retail, and allied pork industries assessed 30 common pork supply movements for risk of disease spread and industry criticality. The highest priority movements for conducting a risk assessment included the movement of weaned pigs originating from multiple sow farm sources to an off-site nursery or wean to finish facility, the movement of employees or commercial crews, the movement of vaccination crews, the movement of dedicated livestock hauling trucks, and the movement of commercial crews such as manure haulers and feed trucks onto, off, or between sites. These critical movements, along with several others identified in this study, will provide an initial guide for prioritization of risk management efforts and resources to be better prepared in the event of a FMD outbreak in the United States. By specifically and proactively targeting movements that experts agree are likely to spread the disease and are critical to the continuity of business operations, potentially catastrophic consequences in the event of an outbreak can be limited. PMID:27843934

  6. Value of evidence from syndromic surveillance with cumulative evidence from multiple data streams with delayed reporting.

    PubMed

    Struchen, R; Vial, F; Andersson, M G

    2017-04-26

    Delayed reporting of health data may hamper the early detection of infectious diseases in surveillance systems. Furthermore, combining multiple data streams, e.g. aiming at improving a system's sensitivity, can be challenging. In this study, we used a Bayesian framework where the result is presented as the value of evidence, i.e. the likelihood ratio for the evidence under outbreak versus baseline conditions. Based on a historical data set of routinely collected cattle mortality events, we evaluated outbreak detection performance (sensitivity, time to detection, in-control run length) under the Bayesian approach among three scenarios: presence of delayed data reporting, but not accounting for it; presence of delayed data reporting accounted for; and absence of delayed data reporting (i.e. an ideal system). Performance on larger and smaller outbreaks was compared with a classical approach, considering syndromes separately or combined. We found that the Bayesian approach performed better than the classical approach, especially for the smaller outbreaks. Furthermore, the Bayesian approach performed similarly well in the scenario where delayed reporting was accounted for to the scenario where it was absent. We argue that the value of evidence framework may be suitable for surveillance systems with multiple syndromes and delayed reporting of data.

  7. Increase in Multistate Foodborne Disease Outbreaks-United States, 1973-2010.

    PubMed

    Nguyen, Von D; Bennett, Sarah D; Mungai, Elisabeth; Gieraltowski, Laura; Hise, Kelley; Gould, L Hannah

    2015-11-01

    Changes in food production and distribution have increased opportunities for foods contaminated early in the supply chain to be distributed widely, increasing the possibility of multistate outbreaks. In recent decades, surveillance systems for foodborne disease have been improved, allowing officials to more effectively identify related cases and to trace and identify an outbreak's source. We reviewed multistate foodborne disease outbreaks reported to the Centers for Disease Control and Prevention's Foodborne Disease Outbreak Surveillance System during 1973-2010. We calculated the percentage of multistate foodborne disease outbreaks relative to all foodborne disease outbreaks and described characteristics of multistate outbreaks, including the etiologic agents and implicated foods. Multistate outbreaks accounted for 234 (0.8%) of 27,755 foodborne disease outbreaks, 24,003 (3%) of 700,600 outbreak-associated illnesses, 2839 (10%) of 29,756 outbreak-associated hospitalizations, and 99 (16%) of 628 outbreak-associated deaths. The median annual number of multistate outbreaks increased from 2.5 during 1973-1980 to 13.5 during 2001-2010; the number of multistate outbreak-associated illnesses, hospitalizations, and deaths also increased. Most multistate outbreaks were caused by Salmonella (47%) and Shiga toxin-producing Escherichia coli (26%). Foods most commonly implicated were beef (22%), fruits (13%), and leafy vegetables (13%). The number of identified and reported multistate foodborne disease outbreaks has increased. Improvements in detection, investigation, and reporting of foodborne disease outbreaks help explain the increasing number of reported multistate outbreaks and the increasing percentage of outbreaks that were multistate. Knowing the etiologic agents and foods responsible for multistate outbreaks can help to identify sources of food contamination so that the safety of the food supply can be improved.

  8. Epizootic pneumonia of bighorn sheep following experimental exposure to Mycoplasma ovipneumoniae.

    PubMed

    Besser, Thomas E; Cassirer, E Frances; Potter, Kathleen A; Lahmers, Kevin; Oaks, J Lindsay; Shanthalingam, Sudarvili; Srikumaran, Subramaniam; Foreyt, William J

    2014-01-01

    Bronchopneumonia is a population limiting disease of bighorn sheep (Ovis canadensis). The cause of this disease has been a subject of debate. Leukotoxin expressing Mannheimia haemolytica and Bibersteinia trehalosi produce acute pneumonia after experimental challenge but are infrequently isolated from animals in natural outbreaks. Mycoplasma ovipneumoniae, epidemiologically implicated in naturally occurring outbreaks, has received little experimental evaluation as a primary agent of bighorn sheep pneumonia. In two experiments, bighorn sheep housed in multiple pens 7.6 to 12 m apart were exposed to M. ovipneumoniae by introduction of a single infected or challenged animal to a single pen. Respiratory disease was monitored by observation of clinical signs and confirmed by necropsy. Bacterial involvement in the pneumonic lungs was evaluated by conventional aerobic bacteriology and by culture-independent methods. In both experiments the challenge strain of M. ovipneumoniae was transmitted to all animals both within and between pens and all infected bighorn sheep developed bronchopneumonia. In six bighorn sheep in which the disease was allowed to run its course, three died with bronchopneumonia 34, 65, and 109 days after M. ovipneumoniae introduction. Diverse bacterial populations, predominantly including multiple obligate anaerobic species, were present in pneumonic lung tissues at necropsy. Exposure to a single M. ovipneumoniae infected animal resulted in transmission of infection to all bighorn sheep both within the pen and in adjacent pens, and all infected sheep developed bronchopneumonia. The epidemiologic, pathologic and microbiologic findings in these experimental animals resembled those seen in naturally occurring pneumonia outbreaks in free ranging bighorn sheep.

  9. Zika virus evolution and spread in the Americas

    PubMed Central

    Metsky, Hayden C.; Matranga, Christian B.; Wohl, Shirlee; Schaffner, Stephen F.; Freije, Catherine A.; Winnicki, Sarah M.; West, Kendra; Qu, James; Baniecki, Mary Lynn; Gladden-Young, Adrianne; Lin, Aaron E.; Tomkins-Tinch, Christopher H.; Ye, Simon H.; Park, Daniel J.; Luo, Cynthia Y.; Barnes, Kayla G.; Shah, Rickey R.; Chak, Bridget; Barbosa-Lima, Giselle; Delatorre, Edson; Vieira, Yasmine R.; Paul, Lauren M.; Tan, Amanda L.; Barcellona, Carolyn M.; Porcelli, Mario C.; Vasquez, Chalmers; Cannons, Andrew C.; Cone, Marshall R.; Hogan, Kelly N.; Kopp, Edgar W.; Anzinger, Joshua J.; Garcia, Kimberly F.; Parham, Leda A.; Gélvez Ramírez, Rosa M.; Miranda Montoya, Maria C.; Rojas, Diana P.; Brown, Catherine M.; Hennigan, Scott; Sabina, Brandon; Scotland, Sarah; Gangavarapu, Karthik; Grubaugh, Nathan D.; Oliveira, Glenn; Robles-Sikisaka, Refugio; Rambaut, Andrew; Gehrke, Lee; Smole, Sandra; Halloran, M. Elizabeth; Villar, Luis; Mattar, Salim; Lorenzana, Ivette; Cerbino-Neto, Jose; Valim, Clarissa; Degrave, Wim; Bozza, Patricia T.; Gnirke, Andreas; Andersen, Kristian G.; Isern, Sharon; Michael, Scott F.; Bozza, Fernando A.; Souza, Thiago M. L.; Bosch, Irene; Yozwiak, Nathan L.; MacInnis, Bronwyn L.; Sabeti, Pardis C.

    2017-01-01

    Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention1,2, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests. PMID:28538734

  10. Potential for broad-scale transmission of Ebola virus disease during the West Africa crisis: lessons for the Global Health security agenda.

    PubMed

    Undurraga, Eduardo A; Carias, Cristina; Meltzer, Martin I; Kahn, Emily B

    2017-12-01

    The 2014-2016 Ebola crisis in West Africa had approximately eight times as many reported deaths as the sum of all previous Ebola outbreaks. The outbreak magnitude and occurrence of multiple Ebola cases in at least seven countries beyond Liberia, Sierra Leone, and Guinea, hinted at the possibility of broad-scale transmission of Ebola. Using a modeling tool developed by the US Centers for Disease Control and Prevention during the Ebola outbreak, we estimated the number of Ebola cases that might have occurred had the disease spread beyond the three countries in West Africa to cities in other countries at high risk for disease transmission (based on late 2014 air travel patterns). We estimated Ebola cases in three scenarios: a delayed response, a Liberia-like response, and a fast response scenario. Based on our estimates of the number of Ebola cases that could have occurred had Ebola spread to other countries beyond the West African foci, we emphasize the need for improved levels of preparedness and response to public health threats, which is the goal of the Global Health Security Agenda. Our estimates suggest that Ebola could have potentially spread widely beyond the West Africa foci, had local and international health workers and organizations not committed to a major response effort. Our results underscore the importance of rapid detection and initiation of an effective, organized response, and the challenges faced by countries with limited public health systems. Actionable lessons for strengthening local public health systems in countries at high risk of disease transmission include increasing health personnel, bolstering primary and critical healthcare facilities, developing public health infrastructure (e.g. laboratory capacity), and improving disease surveillance. With stronger local public health systems infectious disease outbreaks would still occur, but their rapid escalation would be considerably less likely, minimizing the impact of public health threats such as Ebola. The Ebola outbreak could have potentially spread to other countries, where limited public health surveillance and response capabilities may have resulted in additional foci. Health security requires robust local health systems that can rapidly detect and effectively respond to an infectious disease outbreak.

  11. Salmonella and produce: survival in the plant environment and implications in food safety.

    PubMed

    Fatica, Marianne K; Schneider, Keith R

    2011-01-01

    There has been a continuous rise in the number of produce-based foodborne outbreaks in the recent decades despite the perception that foodborne diseases were primarily linked to animal-based products. The Centers for Disease Control and Prevention (CDC) estimates that 95% of Salmonella-based infections originate from foodborne sources, with multiple produce-based salmonellosis outbreaks occurring since 1990. The contamination of produce in both the pre-harvest and post-harvest produce environments is challenging to eliminate since produce is consumed as a raw, fresh commodity. Salmonella spp. contamination is possible through contact with the produce in the field as well as in the processing facility. The field contamination of produce infers the ability of Salmonella spp. to survive on the plant surface. The fitness of Salmonella spp. in the plant habitat is limited as opposed to naturally plant-associated bacteria, but survival is possible. The use of intensive farming practices, globalization of food products, high demand for convenience food products, and increased foodborne disease surveillance also have unknown ramifications in the ascending trends of produce-based outbreaks. A better understanding of the ecology of Salmonella spp. in the plant environment as well as the processing, food handling, and surveillance factors affecting the incidence of foodborne outbreaks will provide a comprehensive view of the etiology and epidemiology of produce-associated foodborne outbreaks. An understanding of the outbreaks and the factors facilitating produce contamination will allow for the development of intervention procedures and strategies to reduce the risk of produce contamination by Salmonella spp.

  12. Understanding the Relationships Between Inspection Results and Risk of Foodborne Illness in Restaurants.

    PubMed

    Lee, Petrona; Hedberg, Craig W

    2016-10-01

    Restaurants are important settings for foodborne disease outbreaks and consumers are increasingly using restaurant inspection results to guide decisions about where to eat. Although public posting of inspection results may lead to improved sanitary practices in the restaurant, the relationship between inspection results and risk of foodborne illness appears to be pathogen specific. To further examine the relationship between inspection results and the risk of foodborne disease outbreaks, we evaluated results of routine inspections conducted in multiple restaurants in a chain (Chain A) that was associated with a large Salmonella outbreak in Illinois. Inspection results were collected from 106 Chain A establishments in eight counties. Forty-six outbreak-associated cases were linked to 23 of these Chain A restaurants. There were no significant differences between the outbreak and nonoutbreak restaurants for overall demerit points or for the number of demerit points attributed to hand washing or cross-contamination. Our analyses strongly suggest that the outbreak resulted from consumption of a contaminated fresh produce item without further amplification within individual restaurants. Inspections at these facilities would be unlikely to detect or predict the foodborne illness outbreak because there are no Food Code items in place to stop the introduction of contaminated food from an otherwise approved commercial food source. The results of our study suggest that the agent and food item pairing and route of transmission must be taken into consideration to improve our understanding of the relationship between inspection results and the risk of foodborne illness in restaurants.

  13. Dynamic Creation of Social Networks for Syndromic Surveillance Using Information Fusion

    NASA Astrophysics Data System (ADS)

    Holsopple, Jared; Yang, Shanchieh; Sudit, Moises; Stotz, Adam

    To enhance the effectiveness of health care, many medical institutions have started transitioning to electronic health and medical records and sharing these records between institutions. The large amount of complex and diverse data makes it difficult to identify and track relationships and trends, such as disease outbreaks, from the data points. INFERD: Information Fusion Engine for Real-Time Decision-Making is an information fusion tool that dynamically correlates and tracks event progressions. This paper presents a methodology that utilizes the efficient and flexible structure of INFERD to create social networks representing progressions of disease outbreaks. Individual symptoms are treated as features allowing multiple hypothesis being tracked and analyzed for effective and comprehensive syndromic surveillance.

  14. Calculation of incubation period and serial interval from multiple outbreaks of Marburg virus disease.

    PubMed

    Pavlin, Boris I

    2014-12-13

    Marburg viruses have been responsible for a number of outbreaks throughout sub-Saharan Africa, as well as a number of laboratory infections. Despite many years of experience with the viruses, little is known about several important epidemiologic parameters relating to the development of Marburg virus disease. The analysis uses pooled data from all Marburg cases between 1967 and 2008 to develop estimates for the incubation period and the clinical onset serial interval (COSI). Data were obtained from original outbreak investigation forms (n=406) and from published data (n=45). Incubation periods were calculated for person-to-person exposure, for laboratory-acquired infections, and for presumed zoonotic exposures. Similar analysis was conducted for COSI, using only cases with unambiguous person-to-person transmission where both the primary and the secondary case patients had well-defined illness onsets. Seventy-six cases were retained for the incubation period analysis. Incubation periods ranged from a minimum of 2 days in the case of two laboratory workers to a maximum of at least 26 days for a person-to-person household transmission. Thirty-eight cases were retained for COSI analysis. The median COSI was 11 days, with an interquartile range of 8 to 15. This study extends the maximum known incubation period of Marburg virus disease to 26 days. The analysis was severely hampered by a lack of completeness in epidemiologic data. It is necessary to prioritize obtaining more accurate epidemiologic data in future outbreaks; greater use of COSI may facilitate an improved understanding of outbreak dynamics in Marburg and other diseases.

  15. Epidemiological investigation and case-control study: a Legionnaires' disease outbreak associated with cooling towers in Warstein, Germany, August-September 2013.

    PubMed

    Maisa, Anna; Brockmann, Ansgar; Renken, Frank; Lück, Christian; Pleischl, Stefan; Exner, Martin; Daniels-Haardt, Inka; Jurke, Annette

    2015-01-01

    Between 1 August and 6 September 2013, an outbreak of Legionnaires' disease (LD) with 159 suspected cases occurred in Warstein, North Rhine-Westphalia, Germany. The outbreak consisted of 78 laboratory-confirmed cases of LD, including one fatality, with a case fatality rate of 1%. Legionella pneumophila, serogroup 1, subtype Knoxville, sequence type 345, was identified as the epidemic strain. A case-control study was conducted to identify possible sources of infection. In univariable analysis, cases were almost five times more likely to smoke than controls (odds ratio (OR): 4.81; 95% confidence interval (CI): 2.33-9.93; p < 0.0001). Furthermore, cases were twice as likely to live within a 3 km distance from one identified infection source as controls (OR: 2.14; 95% CI: 1.09-4.20; p < 0.027). This is the largest outbreak of LD in Germany to date. Due to a series of uncommon events, this outbreak was most likely caused by multiple sources involving industrial cooling towers. Quick epidemiological assessment, source tracing and shutting down of potential sources as well as rapid laboratory testing and early treatment are necessary to reduce morbidity and mortality. Maintenance of cooling towers must be carried out according to specification to prevent similar LD outbreaks in the future.

  16. Unusual Legionnaires' outbreak in cool, dry Western Canada: an investigation using genomic epidemiology.

    PubMed

    Knox, N C; Weedmark, K A; Conly, J; Ensminger, A W; Hosein, F S; Drews, S J

    2017-01-01

    An outbreak of Legionnaires' disease occurred in an inner city district in Calgary, Canada. This outbreak spanned a 3-week period in November-December 2012, and a total of eight cases were identified. Four of these cases were critically ill requiring intensive care admission but there was no associated mortality. All cases tested positive for Legionella pneumophila serogroup 1 (LP1) by urinary antigen testing. Five of the eight patients were culture positive for LP1 from respiratory specimens. These isolates were further identified as Knoxville monoclonal subtype and sequence subtype ST222. Whole-genome sequencing revealed that the isolates differed by no more than a single vertically acquired single nucleotide variant, supporting a single point-source outbreak. Hypothesis-based environmental investigation and sampling was conducted; however, a definitive source was not identified. Geomapping of case movements within the affected urban sector revealed a 1·0 km common area of potential exposure, which coincided with multiple active construction sites that used water spray to minimize transient dust. This community point-source Legionnaires' disease outbreak is unique due to its ST222 subtype and occurrence in a relatively dry and cold weather setting in Western Canada. This report suggests community outbreaks of Legionella should not be overlooked as a possibility during late autumn and winter months in the Northern Hemisphere.

  17. An application of Mean Escape Time and metapopulation on forestry catastrophe insurance

    NASA Astrophysics Data System (ADS)

    Li, Jiangcheng; Zhang, Chunmin; Liu, Jifa; Li, Zhen; Yang, Xuan

    2018-04-01

    A forestry catastrophe insurance model due to forestry pest infestations and disease epidemics is developed by employing metapopulation dynamics and statistics properties of Mean Escape Time (MET). The probability of outbreak of forestry catastrophe loss and the catastrophe loss payment time with MET are respectively investigated. Forestry loss data in China is used for model simulation. Experimental results are concluded as: (1) The model with analytical results is shown to be a better fit; (2) Within the condition of big area of patches and structure of patches, high system factor, low extinction rate, high multiplicative noises, and additive noises with a high cross-correlated strength range, an outbreak of forestry catastrophe loss or catastrophe loss payment due to forestry pest infestations and disease epidemics could occur; (3) An optimal catastrophe loss payment time MET due to forestry pest infestations and disease epidemics can be identified by taking proper value of multiplicative noises and limits the additive noises on a low range of value, and cross-correlated strength at a high range of value.

  18. Using Combined Diagnostic Test Results to Hindcast Trends of Infection from Cross-Sectional Data

    PubMed Central

    Rydevik, Gustaf; Innocent, Giles T.; Marion, Glenn; White, Piran C. L.; Billinis, Charalambos; Barrow, Paul; Mertens, Peter P. C.; Gavier-Widén, Dolores; Hutchings, Michael R.

    2016-01-01

    Infectious disease surveillance is key to limiting the consequences from infectious pathogens and maintaining animal and public health. Following the detection of a disease outbreak, a response in proportion to the severity of the outbreak is required. It is thus critical to obtain accurate information concerning the origin of the outbreak and its forward trajectory. However, there is often a lack of situational awareness that may lead to over- or under-reaction. There is a widening range of tests available for detecting pathogens, with typically different temporal characteristics, e.g. in terms of when peak test response occurs relative to time of exposure. We have developed a statistical framework that combines response level data from multiple diagnostic tests and is able to ‘hindcast’ (infer the historical trend of) an infectious disease epidemic. Assuming diagnostic test data from a cross-sectional sample of individuals infected with a pathogen during an outbreak, we use a Bayesian Markov Chain Monte Carlo (MCMC) approach to estimate time of exposure, and the overall epidemic trend in the population prior to the time of sampling. We evaluate the performance of this statistical framework on simulated data from epidemic trend curves and show that we can recover the parameter values of those trends. We also apply the framework to epidemic trend curves taken from two historical outbreaks: a bluetongue outbreak in cattle, and a whooping cough outbreak in humans. Together, these results show that hindcasting can estimate the time since infection for individuals and provide accurate estimates of epidemic trends, and can be used to distinguish whether an outbreak is increasing or past its peak. We conclude that if temporal characteristics of diagnostics are known, it is possible to recover epidemic trends of both human and animal pathogens from cross-sectional data collected at a single point in time. PMID:27384712

  19. Effects of atmospheric temperature and humidity on outbreak of diseases.

    PubMed

    Choi, Sung Hyuk; Lee, Sung Woo; Hong, Yun Sik; Kim, Su Jin; Kim, Nak Hoon

    2007-12-01

    The present study aimed to determine the plausibility of forecasting the outbreak of diseases based on the weather by analysing the impact of atmospheric temperature and humidity on the occurrence of different diseases. The subjects of the present study were the 30,434 patients who visited the ED in 1 year from 1 February 2005 to 3 February 2006. The present study analysed the correlation between the daily number of patients who suffered from 22 types of traumatic and non-traumatic diseases and the data on atmospheric temperature and humidity provided by the Korea Meteorological Administration. With traumatic disease, the occurrence tended to increase in proportion to the rise in temperature and humidity; whereas with non-traumatic disease, the occurrence tended to increase according to the rise in temperature, irrespective of humidity changes. The research on the impact of atmospheric temperature and humidity on different diseases revealed a high level of distribution of most diseases in an environment with high temperature and humidity. However, in the case of pulmonary diseases and trauma to multiple body regions, the occurrence increased in environments with low temperature and high humidity for pulmonary diseases, and with low temperature and low humidity for trauma to multiple body regions. Most diseases tend to increase in proportion to the rise in atmospheric temperature whereas being less affected by humidity. However, an increase in humidity in an optimum range of atmospheric temperature (12 degrees C or higher) triggers an increase in the occurrence of diseases.

  20. Serial foodborne norovirus outbreaks associated with multiple genotypes.

    PubMed

    Huang, Jianwei; Xu, Xuerong; Weng, Qinyun; Hong, Huarong; Guo, Zhinan; He, Shuizhen; Niu, Jianjun

    2013-01-01

    Noroviruses (NoV) have been recognized as an important pathogen associated with acute gastroenteritis worldwide during the past three decades. In the spring of 2012, a series of foodborne outbreaks in tourist groups were reported to Xiamen Center for Disease Control and Prevention, Xiamen, Fujian province, China. Among a total of 268 tourists in 7 groups, the prevalence rate of acute gastroenteritis was 16.0% (43/268). Twenty-three feces or anal swabs were collected for laboratory tests of causative agents, no bacterial pathogen was identified, while 22 of them were positive for NoV RNA. In addition, thirteen NoV fragments were recovered from positive specimens and sequenced, belonging to five genotypes such as GI.3, GI.4, GII.4, GII.6, and GII.14, respectively. However, NoV fragments obtained from locally infected patients showed distinct genotypes. Therefore, epidemiological investigation and laboratory analyses demonstrated that the serial foodborne NoV outbreaks in tourists were co-infection of multiple genotypes induced acute gastroenteritis linked to a restaurant.

  1. Serial Foodborne Norovirus Outbreaks Associated with Multiple Genotypes

    PubMed Central

    Huang, Jianwei; Xu, Xuerong; Weng, Qinyun; Hong, Huarong; Guo, Zhinan; He, Shuizhen; Niu, Jianjun

    2013-01-01

    Noroviruses (NoV) have been recognized as an important pathogen associated with acute gastroenteritis worldwide during the past three decades. In the spring of 2012, a series of foodborne outbreaks in tourist groups were reported to Xiamen Center for Disease Control and Prevention, Xiamen, Fujian province, China. Among a total of 268 tourists in 7 groups, the prevalence rate of acute gastroenteritis was 16.0% (43/268). Twenty-three feces or anal swabs were collected for laboratory tests of causative agents, no bacterial pathogen was identified, while 22 of them were positive for NoV RNA. In addition, thirteen NoV fragments were recovered from positive specimens and sequenced, belonging to five genotypes such as GI.3, GI.4, GII.4, GII.6, and GII.14, respectively. However, NoV fragments obtained from locally infected patients showed distinct genotypes. Therefore, epidemiological investigation and laboratory analyses demonstrated that the serial foodborne NoV outbreaks in tourists were co-infection of multiple genotypes induced acute gastroenteritis linked to a restaurant. PMID:23667602

  2. How Will Climate Change Impact Cholera Outbreaks?

    NASA Astrophysics Data System (ADS)

    Nasr Azadani, F.; Jutla, A.; Rahimikolu, J.; Akanda, A. S.; Huq, A.; Colwell, R. R.

    2014-12-01

    Environmental parameters associated with cholera are well documented. However, cholera continues to be a global public health threat. Uncertainty in defining environmental processes affecting growth and multiplication of the cholera bacteria can be affected significantly by changing climate at different temporal and spatial scales, either through amplification of the hydroclimatic cycle or by enhanced variability of large scale geophysical processes. Endemic cholera in the Bengal Delta region of South Asia has a unique pattern of two seasonal peaks and there are associated with asymmetric and episodic variability in river discharge. The first cholera outbreak in spring is related with intrusion of bacteria laden coastal seawater during low river discharge. Cholera occurring during the fall season is hypothesized to be associated with high river discharge related to a cross-contamination of water resources and, therefore, a second wave of disease, a phenomenon characteristic primarily in the inland regions. Because of difficulties in establishing linkage between coarse resolutions of the Global Climate Model (GCM) output and localized disease outbreaks, the impact of climate change on diarrheal disease has not been explored. Here using the downscaling method of Support Vector Machines from HADCM3 and ECHAM models, we show how cholera outbreak patterns are changing in the Bengal Delta. Our preliminary results indicate statistically significant changes in both seasonality and magnitude in the occurrence of cholera over the next century. Endemic cholera is likely to transform into epidemic forms and new geographical areas will be at risk for cholera outbreaks.

  3. Multivariate Bayesian modeling of known and unknown causes of events--an application to biosurveillance.

    PubMed

    Shen, Yanna; Cooper, Gregory F

    2012-09-01

    This paper investigates Bayesian modeling of known and unknown causes of events in the context of disease-outbreak detection. We introduce a multivariate Bayesian approach that models multiple evidential features of every person in the population. This approach models and detects (1) known diseases (e.g., influenza and anthrax) by using informative prior probabilities and (2) unknown diseases (e.g., a new, highly contagious respiratory virus that has never been seen before) by using relatively non-informative prior probabilities. We report the results of simulation experiments which support that this modeling method can improve the detection of new disease outbreaks in a population. A contribution of this paper is that it introduces a multivariate Bayesian approach for jointly modeling both known and unknown causes of events. Such modeling has general applicability in domains where the space of known causes is incomplete. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Epidemiology of restaurant-associated foodborne disease outbreaks, United States, 1998-2013.

    PubMed

    Angelo, K M; Nisler, A L; Hall, A J; Brown, L G; Gould, L H

    2017-02-01

    Although contamination of food can occur at any point from farm to table, restaurant food workers are a common source of foodborne illness. We describe the characteristics of restaurant-associated foodborne disease outbreaks and explore the role of food workers by analysing outbreaks associated with restaurants from 1998 to 2013 reported to the Centers for Disease Control and Prevention's Foodborne Disease Outbreak Surveillance System. We identified 9788 restaurant-associated outbreaks. The median annual number of outbreaks was 620 (interquartile range 618-629). In 3072 outbreaks with a single confirmed aetiology reported, norovirus caused the largest number of outbreaks (1425, 46%). Of outbreaks with a single food reported and a confirmed aetiology, fish (254 outbreaks, 34%) was most commonly implicated, and these outbreaks were commonly caused by scombroid toxin (219 outbreaks, 86% of fish outbreaks). Most outbreaks (79%) occurred at sit-down establishments. The most commonly reported contributing factors were those related to food handling and preparation practices in the restaurant (2955 outbreaks, 61%). Food workers contributed to 2415 (25%) outbreaks. Knowledge of the foods, aetiologies, and contributing factors that result in foodborne disease restaurant outbreaks can help guide efforts to prevent foodborne illness.

  5. Surveillance for waterborne disease outbreaks and other health events associated with recreational water --- United States, 2007--2008.

    PubMed

    Hlavsa, Michele C; Roberts, Virginia A; Anderson, Ayana R; Hill, Vincent R; Kahler, Amy M; Orr, Maureen; Garrison, Laurel E; Hicks, Lauri A; Newton, Anna; Hilborn, Elizabeth D; Wade, Timothy J; Beach, Michael J; Yoder, Jonathan S

    2011-09-23

    Since 1978, CDC, the U.S. Environmental Protection Agency, and the Council of State and Territorial Epidemiologists have collaborated on the Waterborne Disease and Outbreak Surveillance System (WBDOSS) for collecting and reporting data on waterborne disease outbreaks associated with recreational water. This surveillance system is the primary source of data concerning the scope and health effects of waterborne disease outbreaks in the United States. In addition, data are collected on other select recreational water--associated health events, including pool chemical--associated health events and single cases of Vibrio wound infection and primary amebic meningoencephalitis (PAM). Data presented summarize recreational water--associated outbreaks and other health events that occurred during January 2007--December 2008. Previously unreported data on outbreaks that have occurred since 1978 also are presented. The WBDOSS database includes data on outbreaks associated with recreational water, drinking water, water not intended for drinking (excluding recreational water), and water use of unknown intent. Public health agencies in the states, the District of Columbia, U.S. territories, and Freely Associated States are primarily responsible for detecting and investigating waterborne disease outbreaks and voluntarily reporting them to CDC using a standard form. Only data on outbreaks associated with recreational water are summarized in this report. Data on other recreational water--associated health events reported to CDC, the Agency for Toxic Substances and Disease Registry (ATSDR), and the U.S. Consumer Product Safety Commission (CPSC) also are summarized. A total of 134 recreational water--associated outbreaks were reported by 38 states and Puerto Rico for 2007--2008. These outbreaks resulted in at least 13,966 cases. The median outbreak size was 11 cases (range: 2--5,697 cases). A total of 116 (86.6%) outbreaks were associated with treated recreational water (e.g., pools and interactive fountains) and resulted in 13,480 (96.5%) cases. Of the 134 outbreaks, 81 (60.4%) were outbreaks of acute gastrointestinal illness (AGI); 24 (17.9%) were outbreaks of dermatologic illnesses, conditions, or symptoms; and 17 (12.7%) were outbreaks of acute respiratory illness. Outbreaks of AGI resulted in 12,477 (89.3%) cases. The etiology was laboratory-confirmed for 105 (78.4%) of the 134 outbreaks. Of the 105 outbreaks with a laboratory-confirmed etiology, 68 (64.8%) were caused by parasites, 22 (21.0%) by bacteria, five (4.8%) by viruses, nine (8.6%) by chemicals or toxins, and one (1.0%) by multiple etiology types. Cryptosporidium was confirmed as the etiologic agent of 60 (44.8%) of 134 outbreaks, resulting in 12,154 (87.0%) cases; 58 (96.7%) of these outbreaks, resulting in a total of 12,137 (99.9%) cases, were associated with treated recreational water. A total of 32 pool chemical--associated health events that occurred in a public or residential setting were reported to WBDOSS by Maryland and Michigan. These events resulted in 48 cases of illness or injury; 26 (81.3%) events could be attributed at least partially to chemical handling errors (e.g., mixing incompatible chemicals). ATSDR's Hazardous Substance Emergency Events Surveillance System received 92 reports of hazardous substance events that occurred at aquatic facilities. More than half of these events (55 [59.8%]) involved injured persons; the most frequently reported primary contributing factor was human error. Estimates based on CPSC's National Electronic Injury Surveillance System (NEISS) data indicate that 4,574 (95% confidence interval [CI]: 2,703--6,446) emergency department (ED) visits attributable to pool chemical--associated injuries occurred in 2008; the most frequent diagnosis was poisoning (1,784 ED visits [95% CI: 585--2,984]). NEISS data indicate that pool chemical--associated health events occur frequently in residential settings. A total of 236 Vibrio wound infections were reported to be associated with recreational water exposure; 36 (48.6%) of the 74 hospitalized vibriosis patients and six (66.7%) of the nine vibriosis patients who died had V. vulnificus infections. Eight fatal cases of PAM occurred after exposure to warm untreated freshwater. The 134 recreational water--associated outbreaks reported for 2007--2008 represent a substantial increase over the 78 outbreaks reported for 2005--2006 and the largest number of outbreaks ever reported to WBDOSS for a 2-year period. Outbreaks, especially the largest ones, were most frequently associated with treated recreational water and characterized by AGI. Cryptosporidium remains the leading etiologic agent. Pool chemical--associated health events occur frequently but are preventable. Data on other select recreational water--associated health events further elucidate the epidemiology of U.S. waterborne disease by highlighting less frequently implicated types of recreational water (e.g., oceans) and detected types of recreational water--associated illness (i.e., not AGI). CDC uses waterborne disease outbreak surveillance data to 1) identify the types of etiologic agents, recreational water venues, and settings associated with waterborne disease outbreaks; 2) evaluate the adequacy of regulations and public awareness activities to promote healthy and safe swimming; and 3) establish public health priorities to improve prevention efforts, guidelines, and regulations at the local, state, and federal levels.

  6. Epizootic Pneumonia of Bighorn Sheep following Experimental Exposure to Mycoplasma ovipneumoniae

    PubMed Central

    Besser, Thomas E.; Cassirer, E. Frances; Potter, Kathleen A.; Lahmers, Kevin; Oaks, J. Lindsay; Shanthalingam, Sudarvili; Srikumaran, Subramaniam; Foreyt, William J.

    2014-01-01

    Background Bronchopneumonia is a population limiting disease of bighorn sheep (Ovis canadensis). The cause of this disease has been a subject of debate. Leukotoxin expressing Mannheimia haemolytica and Bibersteinia trehalosi produce acute pneumonia after experimental challenge but are infrequently isolated from animals in natural outbreaks. Mycoplasma ovipneumoniae, epidemiologically implicated in naturally occurring outbreaks, has received little experimental evaluation as a primary agent of bighorn sheep pneumonia. Methodology/Principal Findings In two experiments, bighorn sheep housed in multiple pens 7.6 to 12 m apart were exposed to M. ovipneumoniae by introduction of a single infected or challenged animal to a single pen. Respiratory disease was monitored by observation of clinical signs and confirmed by necropsy. Bacterial involvement in the pneumonic lungs was evaluated by conventional aerobic bacteriology and by culture-independent methods. In both experiments the challenge strain of M. ovipneumoniae was transmitted to all animals both within and between pens and all infected bighorn sheep developed bronchopneumonia. In six bighorn sheep in which the disease was allowed to run its course, three died with bronchopneumonia 34, 65, and 109 days after M. ovipneumoniae introduction. Diverse bacterial populations, predominantly including multiple obligate anaerobic species, were present in pneumonic lung tissues at necropsy. Conclusions/Significance Exposure to a single M. ovipneumoniae infected animal resulted in transmission of infection to all bighorn sheep both within the pen and in adjacent pens, and all infected sheep developed bronchopneumonia. The epidemiologic, pathologic and microbiologic findings in these experimental animals resembled those seen in naturally occurring pneumonia outbreaks in free ranging bighorn sheep. PMID:25302992

  7. The risk of sustained sexual transmission of Zika is underestimated

    PubMed Central

    2017-01-01

    Pathogens often follow more than one transmission route during outbreaks—from needle sharing plus sexual transmission of HIV to small droplet aerosol plus fomite transmission of influenza. Thus, controlling an infectious disease outbreak often requires characterizing the risk associated with multiple mechanisms of transmission. For example, during the Ebola virus outbreak in West Africa, weighing the relative importance of funeral versus health care worker transmission was essential to stopping disease spread. As a result, strategic policy decisions regarding interventions must rely on accurately characterizing risks associated with multiple transmission routes. The ongoing Zika virus (ZIKV) outbreak challenges our conventional methodologies for translating case-counts into route-specific transmission risk. Critically, most approaches will fail to accurately estimate the risk of sustained sexual transmission of a pathogen that is primarily vectored by a mosquito—such as the risk of sustained sexual transmission of ZIKV. By computationally investigating a novel mathematical approach for multi-route pathogens, our results suggest that previous epidemic threshold estimates could under-estimate the risk of sustained sexual transmission by at least an order of magnitude. This result, coupled with emerging clinical, epidemiological, and experimental evidence for an increased risk of sexual transmission, would strongly support recent calls to classify ZIKV as a sexually transmitted infection. PMID:28934370

  8. Evolution and Spread of Ebola Virus in Liberia, 2014-2015.

    PubMed

    Ladner, Jason T; Wiley, Michael R; Mate, Suzanne; Dudas, Gytis; Prieto, Karla; Lovett, Sean; Nagle, Elyse R; Beitzel, Brett; Gilbert, Merle L; Fakoli, Lawrence; Diclaro, Joseph W; Schoepp, Randal J; Fair, Joseph; Kuhn, Jens H; Hensley, Lisa E; Park, Daniel J; Sabeti, Pardis C; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Bolay, Fatorma K; Kugelman, Jeffrey R; Palacios, Gustavo

    2015-12-09

    The 2013-present Western African Ebola virus disease (EVD) outbreak is the largest ever recorded with >28,000 reported cases. Ebola virus (EBOV) genome sequencing has played an important role throughout this outbreak; however, relatively few sequences have been determined from patients in Liberia, the second worst-affected country. Here, we report 140 EBOV genome sequences from the second wave of the Liberian outbreak and analyze them in combination with 782 previously published sequences from throughout the Western African outbreak. While multiple early introductions of EBOV to Liberia are evident, the majority of Liberian EVD cases are consistent with a single introduction, followed by spread and diversification within the country. Movement of the virus within Liberia was widespread, and reintroductions from Liberia served as an important source for the continuation of the already ongoing EVD outbreak in Guinea. Overall, little evidence was found for incremental adaptation of EBOV to the human host. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Foodborne (1973-2013) and Waterborne (1971-2013) Disease Outbreaks - United States.

    PubMed

    Dewey-Mattia, Daniel; Roberts, Virginia A; Vieira, Antonio; Fullerton, Kathleen E

    2016-10-14

    CDC collects data on foodborne and waterborne disease outbreaks reported by all U.S. states and territories through the Foodborne Disease Outbreak Surveillance System (FDOSS) (http://www.cdc.gov/foodsafety/fdoss/surveillance/index.html) and the Waterborne Disease and Outbreak Surveillance System (WBDOSS) http://www.cdc.gov/healthywater/surveillance), respectively. These two systems are the primary source of national data describing the number of reported outbreaks; outbreak-associated illnesses, hospitalizations, and deaths; etiologic agents; water source or implicated foods; settings of exposure; and other factors associated with recognized foodborne and waterborne disease outbreaks in the United States.

  10. Using Acute Flaccid Paralysis Surveillance as a Platform for Vaccine-Preventable Disease Surveillance.

    PubMed

    Wassilak, Steven G F; Williams, Cheryl L; Murrill, Christopher S; Dahl, Benjamin A; Ohuabunwo, Chima; Tangermann, Rudolf H

    2017-07-01

    Surveillance for acute flaccid paralysis (AFP) is a fundamental cornerstone of the global polio eradication initiative (GPEI). Active surveillance (with visits to health facilities) is a critical strategy of AFP surveillance systems for highly sensitive and timely detection of cases. Because of the extensive resources devoted to AFP surveillance, multiple opportunities exist for additional diseases to be added using GPEI assets, particularly because there is generally 1 district officer responsible for all disease surveillance. For this reason, integrated surveillance has become a standard practice in many countries, ranging from adding surveillance for measles and rubella to integrated disease surveillance for outbreak-prone diseases (integrated disease surveillance and response). This report outlines the current level of disease surveillance integration in 3 countries (Nepal, India, and Nigeria) and proposes that resources continue for long-term maintenance in resource-poor countries of AFP surveillance as a platform for surveillance of vaccine-preventable diseases and other outbreak-prone diseases. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  11. A past Haff disease outbreak associated with eating freshwater pomfret in South China

    PubMed Central

    2013-01-01

    Background Haff disease is unexplained rhabdomyolysis caused by consumption of fishery products in the previous 24 h. It was first identified in Europe in 1924 but the condition is extremely rare in China. Here we describe a past outbreak of acute food borne muscle poisoning that occurred in Guangdong Province (South China) in 2009. Methods The first full outbreak of Haff disease reported in Jiangsu Province (East China) in 2010, indicated that the incidence of the disease may be increasing in China. We, therefore first retrospectively reviewed epidemiologic, trace-back, environmental studies, and laboratory analyses, including oral toxicity testing to ascertain risk and chemical analysis to identify toxin(s), from the 2009 Guangdong outbreak. Then we compared data from the 2009 outbreak with data from all other Haff disease outbreaks that were available. Results Clinical symptoms and laboratory findings indicated that the 2009 Guangdong outbreak disease was consistent with rhabdomyolysis. Epidemiologic, trace-back, environmental studies and laboratory analyses implied that the disease was caused by freshwater Pomfrets consumed prior to the onset of symptoms. We also identified common factors between the 2009 Guangdong outbreak and previous Haff disease outbreaks reported around the world, while as with other similar outbreaks, the exact etiological factor(s) of the disease remains unknown. Conclusions The 2009 Guangdong outbreak of ‘muscle poisoning’ was retrospectively identified as an outbreak of Haff disease. This comprised the highest number of cases reported in China thus far. Food borne diseases emerging in this unusual form and the irregular pattern of outbreaks present an ongoing public health risk, highlighting the need for improved surveillance and diagnostic methodology. PMID:23642345

  12. [Infectious disease outbreaks in centralized homes for asylum seekers in Germany from 2004-2014].

    PubMed

    Kühne, Anna; Gilsdorf, Andreas

    2016-05-01

    Migration and imported infections are changing the distribution of infectious diseases in Europe. However little is known about the extent of transmission of imported diseases within Europe. Asylum seekers are of increasing importance for infectious disease epidemiology and can be particularly vulnerable for infections and disease progression due to stressful conditions of migration and incomplete vaccination status. The aim is to analyse transmission of infectious diseases in centralized homes for asylum seekers in national infectious disease surveillance data to identify relevant infectious diseases and possible public health measures to reduce transmission. German national notification data was systematically analysed from 2004 to 2014 for outbreaks reported to have occurred within centralized homes for asylum seekers followed by descriptive analysis of outbreak- and case-characteristics. From 2004 to 2014 the number of outbreaks in centralized homes for asylum seekers per year increased, a total of 119 outbreaks with 615 cases were reported. Cases in these outbreaks were caused by chicken pox (30 %), measles (20 %), scabies (19 %), rota-virus-gastroenteritis (8 %) and others (each <5 %). Of 119 outbreaks, two outbreaks of measles in centralized homes were connected to outbreaks outside the centralized homes. For 210 of 311 cases in 2014 the place of infection was reported, 87 % of those with known place of infection were infected in Germany. Infectious disease outbreaks in centralized homes for asylum seekers are reported increasingly often in Germany. Chicken pox, measles and scabies were the most frequent outbreak causing diseases. Spread of such outbreaks outside centralized homes for asylum seekers was rare and infectious diseases are mainly acquired in Germany. The majority of outbreaks in centralized homes for asylum seekers would be preventable with vaccinations at arrival and appropriate hygiene measures.

  13. Sexual networks, surveillance, and geographical space during syphilis outbreaks in rural North Carolina.

    PubMed

    Doherty, Irene A; Serre, Marc L; Gesink, Dionne; Adimora, Adaora A; Muth, Stephen Q; Leone, Peter A; Miller, William C

    2012-11-01

    Sexually transmitted infections (STIs) spread along sexual networks whose structural characteristics promote transmission that routine surveillance may not capture. Cases who have partners from multiple localities may operate as spatial network bridges, thereby facilitating geographical dissemination. We investigated how surveillance, sexual networks, and spatial bridges relate to each other for syphilis outbreaks in rural counties of North Carolina. We selected from the state health department's surveillance database cases diagnosed with primary, secondary, or early latent syphilis during October 1998 to December 2002 and who resided in central and southeastern North Carolina, along with their sex partners and their social contacts irrespective of infection status. We applied matching algorithms to eliminate duplicate names and create a unique roster of partnerships from which networks were compiled and graphed. Network members were differentiated by disease status and county of residence. In the county most affected by the outbreak, densely connected networks indicative of STI outbreaks were consistent with increased incidence and a large case load. In other counties, the case loads were low with fluctuating incidence, but network structures suggested the presence of outbreaks. In a county with stable, low incidence and a high number of cases, the networks were sparse and dendritic, indicative of endemic spread. Outbreak counties exhibited densely connected networks within well-defined geographic boundaries and low connectivity between counties; spatial bridges did not seem to facilitate transmission. Simple visualization of sexual networks can provide key information to identify communities most in need of resources for outbreak investigation and disease control.

  14. The United Nations and One Health: the International Health Regulations (2005) and global health security.

    PubMed

    Nuttall, I; Miyagishima, K; Roth, C; de La Rocque, S

    2014-08-01

    The One Health approach encompasses multiple themes and can be understood from many different perspectives. This paper expresses the viewpoint of those in charge of responding to public health events of international concern and, in particular, to outbreaks of zoonotic disease. Several international organisations are involved in responding to such outbreaks, including the United Nations (UN) and its technical agencies; principally, the Food and Agriculture Organization of the UN (FAO) and the World Health Organization (WHO); UN funds and programmes, such as the United Nations Development Programme, the World Food Programme, the United Nations Environment Programme, the United Nations Children's Fund; the UN-linked multilateral banking system (the World Bank and regional development banks); and partner organisations, such as the World Organisation for Animal Health (OIE). All of these organisations have benefited from the experiences gained during zoonotic disease outbreaks over the last decade, developing common approaches and mechanisms to foster good governance, promote policies that cut across different sectors, target investment more effectively and strengthen global and national capacities for dealing with emerging crises. Coordination among the various UN agencies and creating partnerships with related organisations have helped to improve disease surveillance in all countries, enabling more efficient detection of disease outbreaks and a faster response, greater transparency and stakeholder engagement and improved public health. The need to build more robust national public human and animal health systems, which are based on good governance and comply with the International Health Regulations (2005) and the international standards set by the OIE, prompted FAO, WHO and the OIE to join forces with the World Bank, to provide practical tools to help countries manage their zoonotic disease risks and develop adequate resources to prevent and control disease outbreaks, particularly at the animal source. All these efforts contribute to the One Health agenda.

  15. Systemic Analysis of Foodborne Disease Outbreak in Korea.

    PubMed

    Lee, Jong-Kyung; Kwak, No-Seong; Kim, Hyun Jung

    2016-02-01

    This study systemically analyzed data on the prevalence of foodborne pathogens and foodborne disease outbreaks to identify the priorities of foodborne infection risk management in Korea. Multiple correspondence analysis was applied to three variables: origin of food source, phase of food supply chain, and 12 pathogens using 358 cases from 76 original papers and official reports published in 1998-2012. In addition, correspondence analysis of two variables--place and pathogen--was conducted based on epidemiological data of 2357 foodborne outbreaks in 2002-2011 provided by the Korean Ministry of Food and Drug Safety. The results of this study revealed three distinct areas of food monitoring: (1) livestock-derived raw food contaminated with Campylobacter spp., pathogenic Escherichia coli, Salmonella spp., and Listeria monocytogenes; (2) multi-ingredient and ready-to-eat food related to Staphylococcus aureus; and (3) water associated with norovirus. Our findings emphasize the need to track the sources and contamination pathways of foodborne pathogens for more effective risk management.

  16. Surveillance for Waterborne Disease Outbreaks Associated with Drinking Water, United States 2009-2010

    EPA Science Inventory

    Despite advancements in water management and sanitation, waterborne disease outbreaks continue to occur in the United States. CDC collects data on waterborne disease outbreaks submitted from all states and territories* through the Waterborne Disease and Outbreak Surveillance Syst...

  17. The EpiCanvas infectious disease weather map: an interactive visual exploration of temporal and spatial correlations

    PubMed Central

    Livnat, Yarden; Galli, Nathan; Samore, Matthew H; Gundlapalli, Adi V

    2012-01-01

    Advances in surveillance science have supported public health agencies in tracking and responding to disease outbreaks. Increasingly, epidemiologists have been tasked with interpreting multiple streams of heterogeneous data arising from varied surveillance systems. As a result public health personnel have experienced an overload of plots and charts as information visualization techniques have not kept pace with the rapid expansion in data availability. This study sought to advance the science of public health surveillance data visualization by conceptualizing a visual paradigm that provides an ‘epidemiological canvas’ for detection, monitoring, exploration and discovery of regional infectious disease activity and developing a software prototype of an ‘infectious disease weather map'. Design objectives were elucidated and the conceptual model was developed using cognitive task analysis with public health epidemiologists. The software prototype was pilot tested using retrospective data from a large, regional pediatric hospital, and gastrointestinal and respiratory disease outbreaks were re-created as a proof of concept. PMID:22358039

  18. Chikungunya Detection during Dengue Outbreak in Sumatra, Indonesia: Clinical Manifestations and Virological Profile.

    PubMed

    Sasmono, R Tedjo; Perkasa, Aditya; Yohan, Benediktus; Haryanto, Sotianingsih; Yudhaputri, Frilasita A; Hayati, Rahma F; Ma'roef, Chairin Nisa; Ledermann, Jeremy P; Aye Myint, Khin Saw; Powers, Ann M

    2017-11-01

    Chikungunya fever (CHIK) is an acute viral infection caused by infection with chikungunya virus (CHIKV). The disease affects people in areas where certain Aedes species mosquito vectors are present, especially in tropical and subtropical countries. Indonesia has witnessed CHIK disease since the early 1970s with sporadic outbreaks occurring throughout the year. The CHIK clinical manifestation, characterized by fever, headache, and joint pain, is similar to that of dengue (DEN) disease. During a molecular study of a DEN outbreak in Jambi, Sumatra, in early 2015, DENV-negative samples were evaluated for evidence of CHIKV infection. Among 103 DENV-negative samples, eight samples were confirmed (7.8%) as positive for CHIKV by both molecular detection and virus isolation. The mean age of the CHIK patients was 21.3 ± 9.1 (range 11-35 years). The clinical manifestations of the CHIK patients were mild and mimicked DEN, with fever and headache as the main symptoms. Only three out of eight patients presented with classical joint pain. Sequencing of the envelope glycoprotein E1 gene and phylogenetic analysis identified all CHIKV isolates as belonging to the Asian genotype. Overall, our study confirms sustained endemic CHIKV transmission and the presence of multiple arboviruses circulating during a DEN outbreak in Indonesia. The co-circulation of arboviruses poses a public health threat and is likely to cause misdiagnosis and underreporting of CHIK in DEN-endemic areas such as Indonesia.

  19. Food- and waterborne disease outbreaks in Australian long-term care facilities, 2001-2008.

    PubMed

    Kirk, Martyn D; Lalor, Karin; Raupach, Jane; Combs, Barry; Stafford, Russell; Hall, Gillian V; Becker, Niels

    2011-01-01

    Abstract Food- or waterborne diseases in long-term care facilities (LTCF) can result in serious outcomes, including deaths, and they are potentially preventable. We analyzed data collected by OzFoodNet on food- and waterborne disease outbreaks occurring in LTCF in Australia from 2001 to 2008. We compared outbreaks by the number of persons affected, etiology, and implicated vehicle. During 8 years of surveillance, 5.9% (55/936) of all food- and waterborne outbreaks in Australia occurred in LTCF. These LTCF outbreaks affected a total of 909 people, with 66 hospitalized and 23 deaths. The annual incidence of food- or waterborne outbreaks was 1.9 (95% confidence intervals 1.0-3.7) per 1000 facilities. Salmonella caused 17 outbreaks, Clostridium perfringens 14 outbreaks, Campylobacter 8 outbreaks, and norovirus 1 outbreak. Residents were at higher risk of death during outbreaks of salmonellosis than for all other outbreaks combined (relative risk 7.8, 95% confidence intervals 1.8-33.8). Of 15 outbreaks of unknown etiology, 11 were suspected to be due to C. perfringens intoxication. Food vehicles were only identified in 27% (14/52) of outbreaks, with six outbreak investigations implicating pureed foods. Dishes containing raw eggs were implicated as the cause of four outbreaks. Three outbreaks of suspected waterborne disease were attributed to rainwater collected from facility roofs. To prevent disease outbreaks, facilities need to improve handling of pureed foods, avoid feeding residents raw or undercooked eggs, and ensure that rainwater tanks have a scheduled maintenance and disinfection program.

  20. Surveillance for waterborne disease outbreaks associated with drinking water and other nonrecreational water - United States, 2009-2010.

    PubMed

    2013-09-06

    Despite advances in water management and sanitation, waterborne disease outbreaks continue to occur in the United States. CDC collects data on waterborne disease outbreaks submitted from all states and territories through the Waterborne Disease and Outbreak Surveillance System. During 2009-2010, the most recent years for which finalized data are available, 33 drinking water-associated outbreaks were reported, comprising 1,040 cases of illness, 85 hospitalizations, and nine deaths. Legionella accounted for 58% of outbreaks and 7% of illnesses, and Campylobacter accounted for 12% of outbreaks and 78% of illnesses. The most commonly identified outbreak deficiencies in drinking water-associated outbreaks were Legionella in plumbing systems (57.6%), untreated ground water (24.2%), and distribution system deficiencies (12.1%), suggesting that efforts to identify and correct these deficiencies could prevent many outbreaks and illnesses associated with drinking water. In addition to the drinking water outbreaks, 12 outbreaks associated with other nonrecreational water were reported, comprising 234 cases of illness, 51 hospitalizations, and six deaths. Legionella accounted for 58% of these outbreaks, 42% of illnesses, 96% of hospitalizations, and all deaths. Public health, regulatory, and industry professionals can use this information to target prevention efforts against pathogens, infrastructure problems, and water sources associated with waterborne disease outbreaks.

  1. Mass Gatherings and Respiratory Disease Outbreaks in the United States - Should We Be Worried? Results from a Systematic Literature Review and Analysis of the National Outbreak Reporting System.

    PubMed

    Rainey, Jeanette J; Phelps, Tiffani; Shi, Jianrong

    2016-01-01

    Because mass gatherings create environments conducive for infectious disease transmission, public health officials may recommend postponing or canceling large gatherings during a moderate or severe pandemic. Despite these recommendations, limited empirical information exists on the frequency and characteristics of mass gathering-related respiratory disease outbreaks occurring in the United States. We conducted a systematic literature review to identify articles about mass gathering-related respiratory disease outbreaks occurring in the United States from 2005 to 2014. A standard form was used to abstract information from relevant articles identified from six medical, behavioral and social science literature databases. We also analyzed data from the National Outbreaks Reporting System (NORS), maintained by the Centers for Disease Control and Prevention since 2009, to estimate the frequency of mass gathering-related respiratory disease outbreaks reported to the system. We identified 21 published articles describing 72 mass gathering-related respiratory disease outbreaks. Of these 72, 40 (56%) were associated with agriculture fairs and Influenza A H3N2v following probable swine exposure, and 25 (35%) with youth summer camps and pandemic Influenza A H1N1. Outbreaks of measles (n = 1) and mumps (n = 2) were linked to the international importation of disease. Between 2009 and 2013, 1,114 outbreaks were reported to NORS, including 96 respiratory disease outbreaks due to Legionella. None of these legionellosis outbreaks was linked to a mass gathering according to available data. Mass gathering-related respiratory disease outbreaks may be uncommon in the United States, but have been reported from fairs (zoonotic transmission) as well as at camps where participants have close social contact in communal housing. International importation can also be a contributing factor. NORS collects information on certain respiratory diseases and could serve as a platform to monitor mass gathering-related respiratory outbreaks in the future.

  2. Mass Gatherings and Respiratory Disease Outbreaks in the United States – Should We Be Worried? Results from a Systematic Literature Review and Analysis of the National Outbreak Reporting System

    PubMed Central

    Rainey, Jeanette J.; Phelps, Tiffani; Shi, Jianrong

    2016-01-01

    Background Because mass gatherings create environments conducive for infectious disease transmission, public health officials may recommend postponing or canceling large gatherings during a moderate or severe pandemic. Despite these recommendations, limited empirical information exists on the frequency and characteristics of mass gathering-related respiratory disease outbreaks occurring in the United States. Methods We conducted a systematic literature review to identify articles about mass gathering-related respiratory disease outbreaks occurring in the United States from 2005 to 2014. A standard form was used to abstract information from relevant articles identified from six medical, behavioral and social science literature databases. We also analyzed data from the National Outbreaks Reporting System (NORS), maintained by the Centers for Disease Control and Prevention since 2009, to estimate the frequency of mass gathering-related respiratory disease outbreaks reported to the system. Results We identified 21 published articles describing 72 mass gathering-related respiratory disease outbreaks. Of these 72, 40 (56%) were associated with agriculture fairs and Influenza A H3N2v following probable swine exposure, and 25 (35%) with youth summer camps and pandemic Influenza A H1N1. Outbreaks of measles (n = 1) and mumps (n = 2) were linked to the international importation of disease. Between 2009 and 2013, 1,114 outbreaks were reported to NORS, including 96 respiratory disease outbreaks due to Legionella. None of these legionellosis outbreaks was linked to a mass gathering according to available data. Conclusion Mass gathering-related respiratory disease outbreaks may be uncommon in the United States, but have been reported from fairs (zoonotic transmission) as well as at camps where participants have close social contact in communal housing. International importation can also be a contributing factor. NORS collects information on certain respiratory diseases and could serve as a platform to monitor mass gathering-related respiratory outbreaks in the future. PMID:27536770

  3. PREDICT: A next generation platform for near real-time prediction of cholera

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Aziz, S.; Akanda, A. S.; Alam, M.; Ahsan, G. U.; Huq, A.; Colwell, R. R.

    2017-12-01

    Data on disease prevalence and infectious pathogens is sparingly collected/available in region(s) where climatic variability and extreme natural events intersect with population vulnerability (such as lack of access to water and sanitation infrastructure). Therefore, traditional time series modeling approach of calibration and validation of a model is inadequate. Hence, prediction of diarrheal infections (such as cholera, Shigella etc) remain a challenge even though disease causing pathogens are strongly associated with modalities of regional climate and weather system. Here we present an algorithm that integrates satellite derived data on several hydroclimatic and ecological processes into a framework that can determine high resolution cholera risk on global scales. Cholera outbreaks can be classified in three forms- epidemic (sudden or seasonal outbreaks), endemic (recurrence and persistence of the disease for several consecutive years) and mixed-mode endemic (combination of certain epidemic and endemic conditions) with significant spatial and temporal heterogeneity. Using data from multiple satellites (AVHRR, TRMM, GPM, MODIS, VIIRS, GRACE), we will show examples from Haiti, Yemen, Nepal and several other regions where our algorithm has been successful in capturing risk of outbreak of infection in human population. A spatial model validation algorithm will also be presented that has capabilities to self-calibrate as new hydroclimatic and disease data become available.

  4. Satellite Detection of Ebola River Hemorrhagic Fever Epidemics Trigger Events

    NASA Technical Reports Server (NTRS)

    Tucker, Compton J.; Pinzon, Jorge E.

    2006-01-01

    Ebola hemorrhagic fever, named after the Ebola River in Central Africa, first appeared in June 1976, during an outbreak in Nzara and Maridi, Sudan. In September 1976, a separate outbreak was recognized in Yambuku, Democratic Republic of the Congo (DRC). One fatal case was identified in Tandala, DRC, in June 1977, followed by another outbreak in Nzara, Sudan, in July 1979. Ebola hemorrhagic fever outbreaks results in a very high mortality of patients who contract the disease: from 50 to 80% of infected people perish from this highly virulent disease. Death is gruesome, with those afflicted bleeding to death from massive hemorrhaging of organs and capillaries. The disease was not identified again until the end of 1994, when three outbreaks occurred almost simultaneously in Africa. In October, an outbreak was identified in a chimpanzee community studied by primatologists in Tal, Cote d'lvoire, with one human infection. The following month, multiple cases were reported in northeast Gabon in the gold panning camps of Mekouka, Andock, and Minkebe. Later that same month, the putative index case of the 1995 Kikwit, DRC, outbreak was exposed through an unknown mechanism while working in a charcoal pit. In Gabon, two additional outbreaks were reported in February and JuIy,1996, respectively, in Mayibout II, a village 40 km south of the original outbreak in the gold panning camps, and a logging camp between Ovan and Koumameyong, near Booue. The largest Ebola hemorrhagic fever epidemic occurred in Gulu District, Uganda from August 2000 to January 2001. In December 2001, Ebola reappeared in the Ogooue-lvindo Province, Gabon with extension into Mbomo District, The Republic of the Congo lasting until July 2002. Since 2002 there have been several outbreaks of Ebola hemorrhagic fever in Gabon and adjacent areas of Congo. Of interest is the seasonal context and occasional temporal clustering of Ebola hemorrhagic fever outbreaks. Near simultaneous appearances of Ebola epidemics in Nzara, Sudan and Yambuku, DRC in 1976 occurred within two months of each other in two geographic locations separated by hundreds of kilometers involving two separate viral strains (Sudan and Zaire EBO strains). The outbreaks of Tal, Cote d'lvoire; Mekouka, Gabon; and Kikwit, DRC in late 1994 also occurred within months of each other in three different geographic regions involving two different viral strains (Cote d'lvoire and Zaire EBO strains). Fifteen years passed between the 1976-9 and 1994-6 temporal clusters of Ebola cases without identification of additional cases.

  5. Co-circulation of multiple genotypes of African swine fever viruses among domestic pigs in Zambia (2013-2015).

    PubMed

    Simulundu, E; Chambaro, H M; Sinkala, Y; Kajihara, M; Ogawa, H; Mori, A; Ndebe, J; Dautu, G; Mataa, L; Lubaba, C H; Simuntala, C; Fandamu, P; Simuunza, M; Pandey, G S; Samui, K L; Misinzo, G; Takada, A; Mweene, A S

    2018-02-01

    During 2013-2015, several and severe outbreaks of African swine fever (ASF) affected domestic pigs in six provinces of Zambia. Genetic characterization of ASF viruses (ASFVs) using standardized genotyping procedures revealed that genotypes I, II and XIV were associated with these outbreaks. Molecular and epidemiological data suggest that genotype II ASFV (Georgia 2007/1-like) detected in Northern Province of Zambia may have been introduced from neighbouring Tanzania. Also, a genotype II virus detected in Eastern Province of Zambia showed a p54 phylogenetic relationship that was inconsistent with that of p72, underscoring the genetic variability of ASFVs. While it appears genotype II viruses detected in Zambia arose from a domestic pig cycle, genotypes I and XIV possibly emerged from a sylvatic cycle. Overall, this study demonstrates the co-circulation of multiple genotypes of ASFVs, involvement of both the sylvatic and domestic pig cycle in ASF outbreaks in Zambia and possible trans-boundary spread of the disease in south-eastern Africa. Indeed, while there is need for regional or international concerted efforts in the control of ASF, understanding pig marketing practices, pig population dynamics, pig housing and rearing systems and community engagement will be important considerations when designing future prevention and control strategies of this disease in Zambia. © 2017 Blackwell Verlag GmbH.

  6. Bacteria and poisonous plants were the primary causative hazards of foodborne disease outbreak: a seven-year survey from Guangxi, South China.

    PubMed

    Li, Yongqiang; Huang, Yaling; Yang, Jijun; Liu, Zhanhua; Li, Yanning; Yao, Xueting; Wei, Bo; Tang, Zhenzhu; Chen, Shidong; Liu, Decheng; Hu, Zhen; Liu, Junjun; Meng, Zenghui; Nie, Shaofa; Yang, Xiaobo

    2018-04-18

    Foodborne diseases are a worldwide public health problem. However, data regarding epidemiological characteristics are still lacking in China. We aimed to analyze the characteristics of foodborne diseases outbreak from 2010 to 2016 in Guangxi, South China. A foodborne disease outbreak is the occurrence of two or more cases of a similar foodborne disease resulting from the ingestion of a common food. All data are obtained from reports in the Public Health Emergency Report and Management Information System of the China Information System for Disease Control and Prevention, and also from special investigation reports from Guangxi province. A total of 138 foodborne diseases outbreak occurred in Guangxi in the past 7 years, leading to 3348 cases and 46 deaths. Foodborne disease outbreaks mainly occurred in the second and fourth quarters, and schools and private homes were the most common sites. Ingesting toxic food by mistake, improper cooking and cross contamination were the main routes of poisoning which caused 2169 (64.78%) cases and 37 (80.43%) deaths. Bacteria (62 outbreaks, 44.93%) and poisonous plants (46 outbreaks, 33.33%) were the main etiologies of foodborne diseases in our study. In particular, poisonous plants were the main cause of deaths involved in the foodborne disease outbreaks (26 outbreaks, 56.52%). Bacteria and poisonous plants were the primary causative hazard of foodborne diseases. Some specific measures are needed for ongoing prevention and control against the occurrence of foodborne diseases.

  7. Individualistic values are related to an increase in the outbreaks of infectious diseases and zoonotic diseases.

    PubMed

    Morand, Serge; Walther, Bruno A

    2018-03-01

    Collectivist versus individualistic values are important attributes of intercultural variation. Collectivist values favour in-group members over out-group members and may have evolved to protect in-group members against pathogen transmission. As predicted by the pathogen stress theory of cultural values, more collectivist countries are associated with a higher historical pathogen burden. However, if lifestyles of collectivist countries indeed function as a social defence which decreases pathogen transmission, then these countries should also have experienced fewer disease outbreaks in recent times. We tested this novel hypothesis by correlating the values of collectivism-individualism for 66 countries against their historical pathogen burden, recent number of infectious disease outbreaks and zoonotic disease outbreaks and emerging infectious disease events, and four potentially confounding variables. We confirmed the previously established negative relationship between individualism and historical pathogen burden with new data. While we did not find a correlation for emerging infectious disease events, we found significant positive correlations between individualism and the number of infectious disease outbreaks and zoonotic disease outbreaks. Therefore, one possible cost for individualistic cultures may be their higher susceptibility to disease outbreaks. We support further studies into the exact protective behaviours and mechanisms of collectivist societies which may inhibit disease outbreaks.

  8. DISEASE OUTBREAKS CAUSED BY DRINKING WATER

    EPA Science Inventory

    Thirty-two waterborne disease outbreaks were reported to the Centers for Disease Control (CDC) and the Environmental Protection Agency in 1981. The outbreaks occurred in 17 states and involved 4430 cases. This was only 64% of the number of outbreaks that were reported in 1980 and...

  9. Waterborne disease in Norway: emphasizing outbreaks in groundwater systems.

    PubMed

    Kvitsand, Hanne M L; Fiksdal, Liv

    2010-01-01

    In this study, we compiled and examined available data on waterborne disease outbreaks (1984-2007) in Norway, with emphasis on groundwater systems. A total of 102 waterborne outbreaks and 17,243 disease cases were reported during the period 1984-2007. The proportion of outbreaks related to groundwater reflected the proportion of groundwater works in Norway (40%). The proportion of disease cases corresponded to the proportion of persons supplied by groundwater (15%). Norovirus was identified as the most important disease causing agent in groundwater systems. No clear seasonal correlation was observed for Norovirus outbreaks in groundwater, but the largest outbreaks occurred during winter season. All outbreaks of campylobacteriosis occurred during March to November, with a peak in July-September, which correlates with the occurrence of coliforms in Norwegian groundwater in bedrock wells.

  10. Recreational water-associated disease outbreaks--United States, 2009-2010.

    PubMed

    Hlavsa, Michele C; Roberts, Virginia A; Kahler, Amy M; Hilborn, Elizabeth D; Wade, Timothy J; Backer, Lorraine C; Yoder, Jonathan S

    2014-01-10

    Recreational water-associated disease outbreaks result from exposure to infectious pathogens or chemical agents in treated recreational water venues (e.g., pools and hot tubs or spas) or untreated recreational water venues (e.g., lakes and oceans). For 2009-2010, the most recent years for which finalized data are available, public health officials from 28 states and Puerto Rico electronically reported 81 recreational water-associated disease outbreaks to CDC's Waterborne Disease and Outbreak Surveillance System (WBDOSS) via the National Outbreak Reporting System (NORS). This report summarizes the characteristics of those outbreaks. Among the 57 outbreaks associated with treated recreational water, 24 (42%) were caused by Cryptosporidium. Among the 24 outbreaks associated with untreated recreational water, 11 (46%) were confirmed or suspected to have been caused by cyanobacterial toxins. In total, the 81 outbreaks resulted in at least 1,326 cases of illness and 62 hospitalizations; no deaths were reported. Laboratory and environmental data, in addition to epidemiologic data, can be used to direct and optimize the prevention and control of recreational water-associated disease outbreaks.

  11. Heterogeneity in multiple transmission pathways: modelling the spread of cholera and other waterborne disease in networks with a common water source.

    PubMed

    Robertson, Suzanne L; Eisenberg, Marisa C; Tien, Joseph H

    2013-01-01

    Many factors influencing disease transmission vary throughout and across populations. For diseases spread through multiple transmission pathways, sources of variation may affect each transmission pathway differently. In this paper we consider a disease that can be spread via direct and indirect transmission, such as the waterborne disease cholera. Specifically, we consider a system of multiple patches with direct transmission occurring entirely within patch and indirect transmission via a single shared water source. We investigate the effect of heterogeneity in dual transmission pathways on the spread of the disease. We first present a 2-patch model for which we examine the effect of variation in each pathway separately and propose a measure of heterogeneity that incorporates both transmission mechanisms and is predictive of R(0). We also explore how heterogeneity affects the final outbreak size and the efficacy of intervention measures. We conclude by extending several results to a more general n-patch setting.

  12. Data quality and timeliness of outbreak reporting system among countries in Greater Mekong subregion: Challenges for international data sharing

    PubMed Central

    Kaewkungwal, Jaranit; Khamsiriwatchara, Amnat; Sovann, Ly; Sreng, Bun; Phommasack, Bounlay; Kitthiphong, Viengsavanh; Lwin Nyein, Soe; Win Myint, Nyan; Dang Vung, Nguyen; Hung, Pham; S. Smolinski, Mark; W. Crawley, Adam; Ko Oo, Moe

    2018-01-01

    Cross-border disease transmission is a key challenge for prevention and control of outbreaks. Variation in surveillance structure and national guidelines used in different countries can affect their data quality and the timeliness of outbreak reports. This study aimed to evaluate timeliness and data quality of national outbreak reporting for four countries in the Mekong Basin Disease Surveillance network (MBDS). Data on disease outbreaks occurring from 2010 to 2015 were obtained from the national disease surveillance reports of Cambodia, Lao PDR, Myanmar, and Vietnam. Data included total cases, geographical information, and dates at different timeline milestones in the outbreak detection process. Nine diseases or syndromes with public health importance were selected for the analysis including: dengue, food poisoning & diarrhea, severe diarrhea, diphtheria, measles, H5N1 influenza, H1N1 influenza, rabies, and pertussis. Overall, 2,087 outbreaks were reported from the four countries. The number of outbreaks and number of cases per outbreak varied across countries and diseases, depending in part on the outbreak definition used in each country. Dates on index onset, report, and response were >95% complete in all countries, while laboratory confirmation dates were 10%-100% incomplete in most countries. Inconsistent and out of range date data were observed in 1%-5% of records. The overall timeliness of outbreak report, response, and public communication was within 1–15 days, depending on countries and diseases. Diarrhea and severe diarrhea outbreaks showed the most rapid time to report and response, whereas diseases such as rabies, pertussis and diphtheria required a longer time to report and respond. The hierarchical structure of the reporting system, data collection method, and country’s resources could affect the data quality and timeliness of the national outbreak reporting system. Differences in data quality and timeliness of outbreak reporting system among member countries should be considered when planning data sharing strategies within a regional network. PMID:29694372

  13. Population-level differences in disease transmission: A Bayesian analysis of multiple smallpox epidemics

    PubMed Central

    Elderd, Bret D.; Dwyer, Greg; Dukic, Vanja

    2013-01-01

    Estimates of a disease’s basic reproductive rate R0 play a central role in understanding outbreaks and planning intervention strategies. In many calculations of R0, a simplifying assumption is that different host populations have effectively identical transmission rates. This assumption can lead to an underestimate of the overall uncertainty associated with R0, which, due to the non-linearity of epidemic processes, may result in a mis-estimate of epidemic intensity and miscalculated expenditures associated with public-health interventions. In this paper, we utilize a Bayesian method for quantifying the overall uncertainty arising from differences in population-specific basic reproductive rates. Using this method, we fit spatial and non-spatial susceptible-exposed-infected-recovered (SEIR) models to a series of 13 smallpox outbreaks. Five outbreaks occurred in populations that had been previously exposed to smallpox, while the remaining eight occurred in Native-American populations that were naïve to the disease at the time. The Native-American outbreaks were close in a spatial and temporal sense. Using Bayesian Information Criterion (BIC), we show that the best model includes population-specific R0 values. These differences in R0 values may, in part, be due to differences in genetic background, social structure, or food and water availability. As a result of these inter-population differences, the overall uncertainty associated with the “population average” value of smallpox R0 is larger, a finding that can have important consequences for controlling epidemics. In general, Bayesian hierarchical models are able to properly account for the uncertainty associated with multiple epidemics, provide a clearer understanding of variability in epidemic dynamics, and yield a better assessment of the range of potential risks and consequences that decision makers face. PMID:24021521

  14. Limits to Forecasting Precision for Outbreaks of Directly Transmitted Diseases

    PubMed Central

    Drake, John M

    2006-01-01

    Background Early warning systems for outbreaks of infectious diseases are an important application of the ecological theory of epidemics. A key variable predicted by early warning systems is the final outbreak size. However, for directly transmitted diseases, the stochastic contact process by which outbreaks develop entails fundamental limits to the precision with which the final size can be predicted. Methods and Findings I studied how the expected final outbreak size and the coefficient of variation in the final size of outbreaks scale with control effectiveness and the rate of infectious contacts in the simple stochastic epidemic. As examples, I parameterized this model with data on observed ranges for the basic reproductive ratio (R 0) of nine directly transmitted diseases. I also present results from a new model, the simple stochastic epidemic with delayed-onset intervention, in which an initially supercritical outbreak (R 0 > 1) is brought under control after a delay. Conclusion The coefficient of variation of final outbreak size in the subcritical case (R 0 < 1) will be greater than one for any outbreak in which the removal rate is less than approximately 2.41 times the rate of infectious contacts, implying that for many transmissible diseases precise forecasts of the final outbreak size will be unattainable. In the delayed-onset model, the coefficient of variation (CV) was generally large (CV > 1) and increased with the delay between the start of the epidemic and intervention, and with the average outbreak size. These results suggest that early warning systems for infectious diseases should not focus exclusively on predicting outbreak size but should consider other characteristics of outbreaks such as the timing of disease emergence. PMID:16435887

  15. Large outbreak of Cryptosporidium hominis infection transmitted through the public water supply, Sweden.

    PubMed

    Widerström, Micael; Schönning, Caroline; Lilja, Mikael; Lebbad, Marianne; Ljung, Thomas; Allestam, Görel; Ferm, Martin; Björkholm, Britta; Hansen, Anette; Hiltula, Jari; Långmark, Jonas; Löfdahl, Margareta; Omberg, Maria; Reuterwall, Christina; Samuelsson, Eva; Widgren, Katarina; Wallensten, Anders; Lindh, Johan

    2014-04-01

    In November 2010, ≈27,000 (≈45%) inhabitants of Östersund, Sweden, were affected by a waterborne outbreak of cryptosporidiosis. The outbreak was characterized by a rapid onset and high attack rate, especially among young and middle-aged persons. Young age, number of infected family members, amount of water consumed daily, and gluten intolerance were identified as risk factors for acquiring cryptosporidiosis. Also, chronic intestinal disease and young age were significantly associated with prolonged diarrhea. Identification of Cryptosporidium hominis subtype IbA10G2 in human and environmental samples and consistently low numbers of oocysts in drinking water confirmed insufficient reduction of parasites by the municipal water treatment plant. The current outbreak shows that use of inadequate microbial barriers at water treatment plants can have serious consequences for public health. This risk can be minimized by optimizing control of raw water quality and employing multiple barriers that remove or inactivate all groups of pathogens.

  16. Genomic Epidemiology of a Dengue Virus Epidemic in Urban Singapore▿ †

    PubMed Central

    Schreiber, Mark J.; Holmes, Edward C.; Ong, Swee Hoe; Soh, Harold S. H.; Liu, Wei; Tanner, Lukas; Aw, Pauline P. K.; Tan, Hwee Cheng; Ng, Lee Ching; Leo, Yee Sin; Low, Jenny G. H.; Ong, Adrian; Ooi, Eng Eong; Vasudevan, Subhash G.; Hibberd, Martin L.

    2009-01-01

    Dengue is one of the most important emerging diseases of humans, with no preventative vaccines or antiviral cures available at present. Although one-third of the world's population live at risk of infection, little is known about the pattern and dynamics of dengue virus (DENV) within outbreak situations. By exploiting genomic data from an intensively studied major outbreak, we are able to describe the molecular epidemiology of DENV at a uniquely fine-scaled temporal and spatial resolution. Two DENV serotypes (DENV-1 and DENV-3), and multiple component genotypes, spread concurrently and with similar epidemiological and evolutionary profiles during the initial outbreak phase of a major dengue epidemic that took place in Singapore during 2005. Although DENV-1 and DENV-3 differed in viremia and clinical outcome, there was no evidence for adaptive evolution before, during, or after the outbreak, indicating that ecological or immunological rather than virological factors were the key determinants of epidemic dynamics. PMID:19211734

  17. Large Outbreak of Cryptosporidium hominis Infection Transmitted through the Public Water Supply, Sweden

    PubMed Central

    Schönning, Caroline; Lilja, Mikael; Lebbad, Marianne; Ljung, Thomas; Allestam, Görel; Ferm, Martin; Björkholm, Britta; Hansen, Anette; Hiltula, Jari; Långmark, Jonas; Löfdahl, Margareta; Omberg, Maria; Reuterwall, Christina; Samuelsson, Eva; Widgren, Katarina; Wallensten, Anders; Lindh, Johan

    2014-01-01

    In November 2010, ≈27,000 (≈45%) inhabitants of Östersund, Sweden, were affected by a waterborne outbreak of cryptosporidiosis. The outbreak was characterized by a rapid onset and high attack rate, especially among young and middle-aged persons. Young age, number of infected family members, amount of water consumed daily, and gluten intolerance were identified as risk factors for acquiring cryptosporidiosis. Also, chronic intestinal disease and young age were significantly associated with prolonged diarrhea. Identification of Cryptosporidium hominis subtype IbA10G2 in human and environmental samples and consistently low numbers of oocysts in drinking water confirmed insufficient reduction of parasites by the municipal water treatment plant. The current outbreak shows that use of inadequate microbial barriers at water treatment plants can have serious consequences for public health. This risk can be minimized by optimizing control of raw water quality and employing multiple barriers that remove or inactivate all groups of pathogens. PMID:24655474

  18. Genomic Analysis of Salmonella enterica Serovar Typhimurium DT160 Associated with a 14-Year Outbreak, New Zealand, 1998–2012

    PubMed Central

    Benschop, Jackie; Biggs, Patrick J.; Marshall, Jonathan C.; Hayman, David T.S.; Carter, Philip E.; Midwinter, Anne C.; Mather, Alison E.; French, Nigel P.

    2017-01-01

    During 1998–2012, an extended outbreak of Salmonella enterica serovar Typhimurium definitive type 160 (DT160) affected >3,000 humans and killed wild birds in New Zealand. However, the relationship between DT160 within these 2 host groups and the origin of the outbreak are unknown. Whole-genome sequencing was used to compare 109 Salmonella Typhimurium DT160 isolates from sources throughout New Zealand. We provide evidence that DT160 was introduced into New Zealand around 1997 and rapidly propagated throughout the country, becoming more genetically diverse over time. The genetic heterogeneity was evenly distributed across multiple predicted functional protein groups, and we found no evidence of host group differentiation between isolates collected from human, poultry, bovid, and wild bird sources, indicating ongoing transmission between these host groups. Our findings demonstrate how a comparative genomic approach can be used to gain insight into outbreaks, disease transmission, and the evolution of a multihost pathogen after a probable point-source introduction. PMID:28516864

  19. [Marburg and Ebola hemorrhagic fevers--pathogens, epidemiology and therapy].

    PubMed

    Stock, Ingo

    2014-09-01

    Marburg and Ebola hemorrhagic fevers are severe, systemic viral diseases affecting humans and non-human primates. They are characterized by multiple symptoms such as hemorrhages, fever, headache, muscle and abdominal pain, chills, sore throat, nausea, vomiting and diarrhea. Elevated liver-associated enzyme levels and coagulopathy are also associated with these diseases. Marburg and Ebola hemorrhagic fevers are caused by (Lake victoria) Marburg virus and different species of Ebola viruses, respectively. They are enveloped, single-stranded RNA viruses and belong to the family of filoviridae. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, ranging from 25 to 90% or more. Outbreaks of Marburg and Ebola hemorrhagic fever occur in certain regions of equatorial Africa at irregular intervals. Since 2000, the number of outbreaks has increased. In 2014, the biggest outbreak of a filovirus-induced hemorrhagic fever that has been documented so far occurred from March to July 2014 in Guinea, Sierra Leone, Liberia and Nigeria. The outbreak was caused by a new variant of Zaire Ebola-Virus, affected more than 2600 people (stated 20 August) and was associated with case-fatality rates of up to 67% (Guinea). Treatment of Marburg and Ebola hemorrhagic fevers is symptomatic and supportive, licensed antiviral agents are currently not available. Recently, BCX4430, a promising synthetic adenosine analogue with high in vitro and in vivo activity against filoviruses and other RNA viruses, has been described. BCX4430 inhibits viral RNA polymerase activity and protects cynomolgus macaques from Marburg virus infection when administered as late as 48 hours after infection. Nucleic acid-based products, recombinant vaccines and antibodies appear to be less suitable for the treatment of Marburg and Ebola hemorrhagic fevers.

  20. Impact of delay on disease outbreak in a spatial epidemic model

    NASA Astrophysics Data System (ADS)

    Zhao, Xia-Xia; Wang, Jian-Zhong

    2015-04-01

    One of the central issues in studying epidemic spreading is the mechanism on disease outbreak. In this paper, we investigate the effects of time delay on disease outbreak in spatial epidemics based on a reaction-diffusion model. By mathematical analysis and numerical simulations, we show that when time delay is more than a critical value, the disease outbreaks. The obtained results show that the time delay is an important factor in the spread of the disease, which may provide new insights on disease control.

  1. Establishing a milkborne disease outbreak profile: potential food defense implications.

    PubMed

    Newkirk, Ryan; Hedberg, Craig; Bender, Jeff

    2011-03-01

    The main objectives of this study were to establish baseline characteristics for milkborne outbreaks, establish an expected milkborne outbreak profile, and identify potential indicators of food terrorism. This study used 1990-2006 data from the Centers for Disease Control and Prevention Annual Listings of Disease Outbreaks and the Foodborne Outbreak Database (FOOD) to establish epidemiologic baseline characteristics for disease outbreaks associated with fluid milk. FOOD data from 2007 were used to qualitatively validate the potential of the baseline characteristics and the expected outbreak profile. Eighty-three fluid milkborne outbreaks were reported between 1990 and 2006, resulting in 3621 illnesses. The mean number of illnesses per outbreak was 43.6 (illness range: 2-1644). Consumption of unpasteurized milk was associated with 55.4% of reported outbreaks. Campylobacter spp., Escherichia coli, and Salmonella spp. caused 51.2%, 10.8%, and 9.6% of reported outbreaks, respectively. Private homes accounted for 41.0% of outbreak locations. Number ill, outbreak location, and etiology were the primary characteristics which could signal a potential intentional contamination event. In 2007, one pasteurized milk outbreak caused by Listeria was flagged as aberrative compared with the expected outbreak profile. The creation and dissemination of expected outbreak profiles and epidemiologic baseline characteristics allow public health and Homeland Security officials to quickly assess the potential of intentional food contamination. A faster public health and medical system response can result in decreased morbidity and mortality.

  2. Evidence for multiple sylvatic transmission cycles during the 2016-2017 yellow fever virus outbreak, Brazil.

    PubMed

    Moreira-Soto, A; Torres, M C; Lima de Mendonça, M C; Mares-Guia, M A; Dos Santos Rodrigues, C D; Fabri, A A; Dos Santos, C C; Machado Araújo, E S; Fischer, C; Ribeiro Nogueira, R M; Drosten, C; Sequeira, P Carvalho; Drexler, J F; Bispo de Filippis, A M

    2018-02-07

    Since December 2016, Brazil has experienced an unusually large outbreak of yellow fever (YF). Whether urban transmission may contribute to the extent of the outbreak is unclear. The objective of this study was to characterize YF virus (YFV) genomes and to identify spatial patterns to determine the distribution and origin of YF cases in Minas Gerais, Espírito Santo and Rio de Janeiro, the most affected Brazilian states during the current YFV outbreak. We characterized near-complete YFV genomes from 14 human cases and two nonhuman primates (NHP), sampled from February to April 2017, retrieved epidemiologic data of cases and used a geographic information system to investigate the geospatial spread of YFV. All YFV strains were closely related. On the basis of signature mutations, we identified two cocirculating YFV clusters. One was restricted to the hinterland of Espírito Santo state, and another formed a coastal cluster encompassing several hundred kilometers. Both clusters comprised strains from humans living in rural areas and NHP. Another NHP lineage clustered in a basal relationship. No signs of adaptation of YFV strains to human hosts were detected. Our data suggest sylvatic transmission during the current outbreak. Additionally, cocirculation of two distinct YFV clades occurring in humans and NHP suggests the existence of multiple sylvatic transmission cycles. Increased detection of YFV might be facilitated by raised awareness for arbovirus-mediated disease after Zika and chikungunya virus outbreaks. Further surveillance is required, as reemergence of YFV from NHPs might continue and facilitate the appearance of urban transmission cycles. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease.

    PubMed

    Eisenberg, Marisa C; Robertson, Suzanne L; Tien, Joseph H

    2013-05-07

    Cholera and many waterborne diseases exhibit multiple characteristic timescales or pathways of infection, which can be modeled as direct and indirect transmission. A major public health issue for waterborne diseases involves understanding the modes of transmission in order to improve control and prevention strategies. An important epidemiological question is: given data for an outbreak, can we determine the role and relative importance of direct vs. environmental/waterborne routes of transmission? We examine whether parameters for a differential equation model of waterborne disease transmission dynamics can be identified, both in the ideal setting of noise-free data (structural identifiability) and in the more realistic setting in the presence of noise (practical identifiability). We used a differential algebra approach together with several numerical approaches, with a particular emphasis on identifiability of the transmission rates. To examine these issues in a practical public health context, we apply the model to a recent cholera outbreak in Angola (2006). Our results show that the model parameters-including both water and person-to-person transmission routes-are globally structurally identifiable, although they become unidentifiable when the environmental transmission timescale is fast. Even for water dynamics within the identifiable range, when noisy data are considered, only a combination of the water transmission parameters can practically be estimated. This makes the waterborne transmission parameters difficult to estimate, leading to inaccurate estimates of important epidemiological parameters such as the basic reproduction number (R0). However, measurements of pathogen persistence time in environmental water sources or measurements of pathogen concentration in the water can improve model identifiability and allow for more accurate estimation of waterborne transmission pathway parameters as well as R0. Parameter estimates for the Angola outbreak suggest that both transmission pathways are needed to explain the observed cholera dynamics. These results highlight the importance of incorporating environmental data when examining waterborne disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Carbapenemase-producing Acinetobacter baumannii: An outbreak report with special highlights on economic burden.

    PubMed

    Gagnaire, J; Gagneux-Brunon, A; Pouvaret, A; Grattard, F; Carricajo, A; Favier, H; Mattei, A; Pozzetto, B; Nuti, C; Lucht, F; Berthelot, P; Botelho-Nevers, E

    2017-06-01

    We aimed to describe the management of a carbapenemase-producing Acinetobacter baumannii (CP-AB) outbreak using the Outbreak Reports and Intervention Studies of Nosocomial Infection (ORION) statement. We also aimed to evaluate the cost of the outbreak and simulate costs if a dedicated unit to manage such outbreak had been set-up. We performed a prospective epidemiological study. Multiple interventions were implemented including cohorting measures and limitation of admissions. Cost estimation was performed using administrative local data. Five patients were colonized with CP-AB and hospitalized in the neurosurgery ward. The index case was a patient who had been previously hospitalized in Portugal. Four secondary colonized patients were further observed within the unit. The strains of A. baumannii were shown to belong to the same clone and all of them produced an OXA-23 carbapenemase. The closure of the ward associated with the discharge of the five patients in a cohorting area of the Infectious Diseases Unit with dedicated staff put a stop to the outbreak. The estimated cost of this 17-week outbreak was $474,474. If patients had been managed in a dedicated unit - including specific area for cohorting of patients and dedicated staff - at the beginning of the outbreak, the estimated cost would have been $189,046. Controlling hospital outbreaks involving multidrug-resistant bacteria requires a rapid cohorting of patients. Using simulation, we highlighted cost gain when using a dedicated cohorting unit strategy for such an outbreak. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Disrupting seasonality to control disease outbreaks: the case of koi herpes virus.

    PubMed

    Omori, Ryosuke; Adams, Ben

    2011-02-21

    Common carp accounts for a substantial proportion of global freshwater aquaculture production. Koi herpes virus (KHV), a highly virulent disease affecting carp that emerged in the late 1990s, is a serious threat to this industry. After a fish is infected with KHV, there is a temperature dependent delay before it becomes infectious, and a further delay before mortality. Consequently, KHV epidemiology is driven by seasonal changes in water temperature. Also, it has been proposed that outbreaks could be controlled by responsive management of water temperature in aquaculture setups. We use a mathematical model to analyse the effect of seasonal temperature cycles on KHV epidemiology, and the impact of attempting to control outbreaks by disrupting this cycle. We show that, although disease progression is fast in summer and slow in winter, total mortality over a 2-year period is similar for outbreaks that start in either season. However, for outbreaks that start in late autumn, mortality may be low and immunity high. A single bout of water temperature management can be an effective outbreak control strategy if it is started as soon as dead fish are detected and maintained for a long time. It can also be effective if the frequency of infectious fish is used as an indicator for the beginning of treatment. In this case, however, there is a risk that starting the treatment too soon will increase mortality relative to the case when no treatment is used. This counterproductive effect can be avoided if multiple bouts of temperature management are used. We conclude that disrupting normal seasonal patterns in water temperature can be an effective strategy for controlling koi herpes virus. Exploiting the seasonal patterns, possibly in combination with temperature management, can also induce widespread immunity to KHV in a cohort of fish. However, employing these methods successfully requires careful assessment to ensure that the treatment is started, and finished, at the correct time. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Genotypic diversity of merozoite surface antigen 1 of Babesia bovis within an endemic population.

    PubMed

    Lau, Audrey O T; Cereceres, Karla; Palmer, Guy H; Fretwell, Debbie L; Pedroni, Monica J; Mosqueda, Juan; McElwain, Terry F

    2010-08-01

    Multiple genetically distinct strains of a pathogen circulate and compete for dominance within populations of animal reservoir hosts. Understanding the basis for genotypic strain structure is critical for predicting how pathogens respond to selective pressures and how shifts in pathogen population structure can lead to disease outbreaks. Evidence from related Apicomplexans such as Plasmodium, Toxoplasma, Cryptosporidium and Theileria suggests that various patterns of population dynamics exist, including but not limited to clonal, oligoclonal, panmictic and epidemic genotypic strain structures. In Babesia bovis, genetic diversity of variable merozoite surface antigen (VMSA) genes has been associated with disease outbreaks, including in previously vaccinated animals. However, the extent of VMSA diversity within a defined population in an endemic area has not been examined. We analyzed genotypic diversity and temporal change of MSA-1, a member of the VMSA family, in individual infected animals within a reservoir host population. Twenty-eight distinct MSA-1 genotypes were identified within the herd. All genotypically distinct MSA-1 sequences clustered into three groups based on sequence similarity. Two thirds of the animals tested changed their dominant MSA-1 genotypes during a 6-month period. Five animals within the population contained multiple genotypes. Interestingly, the predominant genotypes within those five animals also changed over the 6-month sampling period, suggesting ongoing transmission or emergence of variant MSA-1 genotypes within the herd. This study demonstrated an unexpected level of diversity for a single copy gene in a haploid genome, and illustrates the dynamic genotype structure of B. bovis within an individual animal in an endemic region. Co-infection with multiple diverse MSA-1 genotypes provides a basis for more extensive genotypic shifts that characterizes outbreak strains.

  7. A Perspective on Multiple Waves of Influenza Pandemics

    PubMed Central

    Mummert, Anna; Weiss, Howard; Long, Li-Ping; Amigó, José M.; Wan, Xiu-Feng

    2013-01-01

    Background A striking characteristic of the past four influenza pandemic outbreaks in the United States has been the multiple waves of infections. However, the mechanisms responsible for the multiple waves of influenza or other acute infectious diseases are uncertain. Understanding these mechanisms could provide knowledge for health authorities to develop and implement prevention and control strategies. Materials and Methods We exhibit five distinct mechanisms, each of which can generate two waves of infections for an acute infectious disease. The first two mechanisms capture changes in virus transmissibility and behavioral changes. The third mechanism involves population heterogeneity (e.g., demography, geography), where each wave spreads through one sub-population. The fourth mechanism is virus mutation which causes delayed susceptibility of individuals. The fifth mechanism is waning immunity. Each mechanism is incorporated into separate mathematical models, and outbreaks are then simulated. We use the models to examine the effects of the initial number of infected individuals (e.g., border control at the beginning of the outbreak) and the timing of and amount of available vaccinations. Results Four models, individually or in any combination, reproduce the two waves of the 2009 H1N1 pandemic in the United States, both qualitatively and quantitatively. One model reproduces the two waves only qualitatively. All models indicate that significantly reducing or delaying the initial numbers of infected individuals would have little impact on the attack rate. Instead, this reduction or delay results in a single wave as opposed to two waves. Furthermore, four of these models also indicate that a vaccination program started earlier than October 2009 (when the H1N1 vaccine was initially distributed) could have eliminated the second wave of infection, while more vaccine available starting in October would not have eliminated the second wave. PMID:23637746

  8. A perspective on multiple waves of influenza pandemics.

    PubMed

    Mummert, Anna; Weiss, Howard; Long, Li-Ping; Amigó, José M; Wan, Xiu-Feng

    2013-01-01

    A striking characteristic of the past four influenza pandemic outbreaks in the United States has been the multiple waves of infections. However, the mechanisms responsible for the multiple waves of influenza or other acute infectious diseases are uncertain. Understanding these mechanisms could provide knowledge for health authorities to develop and implement prevention and control strategies. We exhibit five distinct mechanisms, each of which can generate two waves of infections for an acute infectious disease. The first two mechanisms capture changes in virus transmissibility and behavioral changes. The third mechanism involves population heterogeneity (e.g., demography, geography), where each wave spreads through one sub-population. The fourth mechanism is virus mutation which causes delayed susceptibility of individuals. The fifth mechanism is waning immunity. Each mechanism is incorporated into separate mathematical models, and outbreaks are then simulated. We use the models to examine the effects of the initial number of infected individuals (e.g., border control at the beginning of the outbreak) and the timing of and amount of available vaccinations. Four models, individually or in any combination, reproduce the two waves of the 2009 H1N1 pandemic in the United States, both qualitatively and quantitatively. One model reproduces the two waves only qualitatively. All models indicate that significantly reducing or delaying the initial numbers of infected individuals would have little impact on the attack rate. Instead, this reduction or delay results in a single wave as opposed to two waves. Furthermore, four of these models also indicate that a vaccination program started earlier than October 2009 (when the H1N1 vaccine was initially distributed) could have eliminated the second wave of infection, while more vaccine available starting in October would not have eliminated the second wave.

  9. Tornado outbreak variability follows Taylor's power law of fluctuation scaling and increases dramatically with severity.

    PubMed

    Tippett, Michael K; Cohen, Joel E

    2016-02-29

    Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from 'outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954-2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related.

  10. Tornado outbreak variability follows Taylor's power law of fluctuation scaling and increases dramatically with severity

    PubMed Central

    Tippett, Michael K.; Cohen, Joel E.

    2016-01-01

    Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from ‘outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954–2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related. PMID:26923210

  11. Tornado outbreak variability follows Taylor's power law of fluctuation scaling and increases dramatically with severity

    NASA Astrophysics Data System (ADS)

    Tippett, Michael K.; Cohen, Joel E.

    2016-02-01

    Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from `outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954-2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related.

  12. A methodological framework for the evaluation of syndromic surveillance systems: a case study of England.

    PubMed

    Colón-González, Felipe J; Lake, Iain R; Morbey, Roger A; Elliot, Alex J; Pebody, Richard; Smith, Gillian E

    2018-04-24

    Syndromic surveillance complements traditional public health surveillance by collecting and analysing health indicators in near real time. The rationale of syndromic surveillance is that it may detect health threats faster than traditional surveillance systems permitting more timely, and hence potentially more effective public health action. The effectiveness of syndromic surveillance largely relies on the methods used to detect aberrations. Very few studies have evaluated the performance of syndromic surveillance systems and consequently little is known about the types of events that such systems can and cannot detect. We introduce a framework for the evaluation of syndromic surveillance systems that can be used in any setting based upon the use of simulated scenarios. For a range of scenarios this allows the time and probability of detection to be determined and uncertainty is fully incorporated. In addition, we demonstrate how such a framework can model the benefits of increases in the number of centres reporting syndromic data and also determine the minimum size of outbreaks that can or cannot be detected. Here, we demonstrate its utility using simulations of national influenza outbreaks and localised outbreaks of cryptosporidiosis. Influenza outbreaks are consistently detected with larger outbreaks being detected in a more timely manner. Small cryptosporidiosis outbreaks (<1000 symptomatic individuals) are unlikely to be detected. We also demonstrate the advantages of having multiple syndromic data streams (e.g. emergency attendance data, telephone helpline data, general practice consultation data) as different streams are able to detect different outbreak types with different efficacy (e.g. emergency attendance data are useful for the detection of pandemic influenza but not for outbreaks of cryptosporidiosis). We also highlight that for any one disease, the utility of data streams may vary geographically, and that the detection ability of syndromic surveillance varies seasonally (e.g. an influenza outbreak starting in July is detected sooner than one starting later in the year). We argue that our framework constitutes a useful tool for public health emergency preparedness in multiple settings. The proposed framework allows the exhaustive evaluation of any syndromic surveillance system and constitutes a useful tool for emergency preparedness and response.

  13. Legionnaires' Disease Outbreaks and Cooling Towers, New York City, New York, USA.

    PubMed

    Fitzhenry, Robert; Weiss, Don; Cimini, Dan; Balter, Sharon; Boyd, Christopher; Alleyne, Lisa; Stewart, Renee; McIntosh, Natasha; Econome, Andrea; Lin, Ying; Rubinstein, Inessa; Passaretti, Teresa; Kidney, Anna; Lapierre, Pascal; Kass, Daniel; Varma, Jay K

    2017-11-01

    The incidence of Legionnaires' disease in the United States has been increasing since 2000. Outbreaks and clusters are associated with decorative, recreational, domestic, and industrial water systems, with the largest outbreaks being caused by cooling towers. Since 2006, 6 community-associated Legionnaires' disease outbreaks have occurred in New York City, resulting in 213 cases and 18 deaths. Three outbreaks occurred in 2015, including the largest on record (138 cases). Three outbreaks were linked to cooling towers by molecular comparison of human and environmental Legionella isolates, and the sources for the other 3 outbreaks were undetermined. The evolution of investigation methods and lessons learned from these outbreaks prompted enactment of a new comprehensive law governing the operation and maintenance of New York City cooling towers. Ongoing surveillance and program evaluation will determine if enforcement of the new cooling tower law reduces Legionnaires' disease incidence in New York City.

  14. Legionnaires’ Disease Outbreaks and Cooling Towers, New York City, New York, USA

    PubMed Central

    Fitzhenry, Robert; Cimini, Dan; Balter, Sharon; Boyd, Christopher; Alleyne, Lisa; Stewart, Renee; McIntosh, Natasha; Econome, Andrea; Lin, Ying; Rubinstein, Inessa; Passaretti, Teresa; Kidney, Anna; Lapierre, Pascal; Kass, Daniel; Varma, Jay K.

    2017-01-01

    The incidence of Legionnaires’ disease in the United States has been increasing since 2000. Outbreaks and clusters are associated with decorative, recreational, domestic, and industrial water systems, with the largest outbreaks being caused by cooling towers. Since 2006, 6 community-associated Legionnaires’ disease outbreaks have occurred in New York City, resulting in 213 cases and 18 deaths. Three outbreaks occurred in 2015, including the largest on record (138 cases). Three outbreaks were linked to cooling towers by molecular comparison of human and environmental Legionella isolates, and the sources for the other 3 outbreaks were undetermined. The evolution of investigation methods and lessons learned from these outbreaks prompted enactment of a new comprehensive law governing the operation and maintenance of New York City cooling towers. Ongoing surveillance and program evaluation will determine if enforcement of the new cooling tower law reduces Legionnaires’ disease incidence in New York City. PMID:29049017

  15. [Waterborne diseases outbreaks in the Czech Republic, 1995-2005].

    PubMed

    Kozísek, F; Jeligová, H; Dvoráková, A

    2009-08-01

    Despite considerable advances in drinking water safety assurance and adherence to the public health standards, waterborne diaseases outbreaks have still been observed even in industrialized countries. The study objective was to map such outbreaks in the Czech Republic in 1995-2005. In this study, an outbreak is the occurrence of more cases of disease than normally expected within a specific place over a given period of time and a waterborne disease is a disease where water is the vehicle or source of infection. The data on waterborne outbreaks was obtained from the EPIDAT database (national infectious diseases reporting system) information provided by epidemiologists of all regional public health authorities and the National Reference Laboratory for Legionella. In 1995 - 2005, 33 outbreaks with water indicated as the route of transmission were recorded in the Czech Republic. The leading cause was unsafe drinking water (27 outbreaks), mainly from wells (19 outbreaks); nevertheless, the most serious consequences were observed in two outbreaks caused by microbiologically contaminated hot water. Other sources of waterborne infection were mineral water springs, a swimming pool and a brook. The total of reported cases of waterborne diseases was 1655, 356 hospitalisations and ten deaths due to legionellosis were recorded. The highest number of outbreaks (7) as well as the highest number of cases (841) were reported in 1997. Comparison of two five-year periods, i.e. 1996-2000 and 2001-2005, showed a nearly one third decrease in the total of outbreaks and a half reduction in the total of cases in the latter. In view of the limited length of monitoring, it is not possible to say with certainty whether it is a random distribution or an actual trend. Almost two thirds of cases were diagnosed as acute gastroenteritis of probable infectious origin and other frequent waterborne diseases were viral hepatitis A and bacillary dysentery. When analyzing the described outbreaks, it should be taken into account that only the diagnosed and reported outbreak cases are covered, while the actual number of cases is likely to be underreported. Although no evidence is available that any vast and serious waterborne diseases outbreaks escaped reporting, some small and less serious outbreaks may have occurred unnoticed. In the future, the diagnosis, investigation and evaluation of waterborne diseases outbreaks should be improved, among others by implementing an evidence-based classification system and issuing regular surveys of outbreaks and their causes which would be helpful in preventing failures in other similar water sources.

  16. Increased efficiency in the second-hand tire trade provides opportunity for dengue control.

    PubMed

    Pliego Pliego, Emilene; Velázquez-Castro, Jorge; Eichhorn, Markus P; Fraguela Collar, Andrés

    2018-01-21

    Dengue fever is increasing in geographical range, spread by invasion of its vector mosquitoes. The trade in second-hand tires has been implicated as a factor in this process because they act as mobile reservoirs of mosquito eggs and larvae. Regional transportation of tires can create linkages between rural areas with dengue and disease-free urban areas, potentially giving rise to outbreaks even in areas with strong local control measures. In this work we sought to model the dynamics of mosquito transportation via the tire trade, in particular to predict its role in causing unexpected dengue outbreaks through vertical transmission of the virus across generations of mosquitoes. We also aimed to identify strategies for regulating the trade in second-hand tires, improving disease control. We created a mathematical model which captures the dynamics of dengue between rural and urban areas, taking into account the movement and storage time of tires, and mosquito diapause. We simulate a series of scenarios in which a mosquito population is introduced to a dengue-free area via movement of tires, either as single or multiple events, increasing the likelihood of a dengue outbreak. A persistent disease state can be induced regardless of whether urban conditions for an outbreak are met, and an existing endemic state can be enhanced by vector input. Finally we assess the potential for regulation of tire processing as a means of reducing the transmission of dengue fever using a specific case study from Puerto Rico. Our work demonstrates the importance of the second-hand tire trade in modulating the spread of dengue fever across regions, in particular its role in introducing dengue to disease-free areas. We propose that reduction of tire storage time and control of their movement can play a crucial role in containing dengue outbreaks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Surveillance for Waterborne Disease Outbreaks Associated with Drinking Water - United States, 2011-2012.

    PubMed

    Beer, Karlyn D; Gargano, Julia W; Roberts, Virginia A; Hill, Vincent R; Garrison, Laurel E; Kutty, Preeta K; Hilborn, Elizabeth D; Wade, Timothy J; Fullerton, Kathleen E; Yoder, Jonathan S

    2015-08-14

    Advances in water management and sanitation have substantially reduced waterborne disease in the United States, although outbreaks continue to occur. Public health agencies in the U.S. states and territories* report information on waterborne disease outbreaks to the CDC Waterborne Disease and Outbreak Surveillance System (http://www.cdc.gov/healthywater/surveillance/index.html). For 2011-2012, 32 drinking water-associated outbreaks were reported, accounting for at least 431 cases of illness, 102 hospitalizations, and 14 deaths. Legionella was responsible for 66% of outbreaks and 26% of illnesses, and viruses and non-Legionella bacteria together accounted for 16% of outbreaks and 53% of illnesses. The two most commonly identified deficiencies† leading to drinking water-associated outbreaks were Legionella in building plumbing§ systems (66%) and untreated groundwater (13%). Continued vigilance by public health, regulatory, and industry professionals to identify and correct deficiencies associated with building plumbing systems and groundwater systems could prevent most reported outbreaks and illnesses associated with drinking water systems.

  18. Dynamics of viral hemorrhagic septicemia, viral erythrocytic necrosis and ichthyophoniasis in confined juvenile Pacific herring Clupea pallasii

    USGS Publications Warehouse

    Hershberger, P.; Hart, A.; Gregg, J.; Elder, N.; Winton, J.

    2006-01-01

    Capture of wild, juvenile herring Clupea pallasii from Puget Sound (Washington, USA) and confinement in laboratory tanks resulted in outbreaks of viral hemorrhagic septicemia (VHS), viral erythrocytic necrosis (VEN) and ichthyophoniasis; however, the timing and progression of the 3 diseases differed. The VHS epidemic occurred first, characterized by an initially low infection prevalence that increased quickly with confinement time, peaking at 93 to 98% after confinement for 6 d, then decreasing to negligible levels after 20 d. The VHS outbreak was followed by a VEN epidemic that, within 12 d of confinement, progressed from undetectable levels to 100% infection prevalence with >90% of erythrocytes demonstrating inclusions. The VEN epidemic persisted for 54 d, after which the study was terminated, and was characterized by severe blood dyscrasias including reduction of mean hematocrit from 42 to 6% and replacement of mature erythrocytes with circulating erythroblasts and ghost cells. All fish with ichthyophoniasis at capture died within the first 3 wk of confinement, probably as a result of the multiple stressors associated with capture, transport, confinement, and progression of concomitant viral diseases. The results illustrate the differences in disease ecology and possible synergistic effects of pathogens affecting marine fish and highlight the difficulty in ascribing a single causation to outbreaks of disease among populations of wild fishes. ?? Inter-Research 2006.

  19. A role of high impact weather events in waterborne disease outbreaks in Canada, 1975 - 2001.

    PubMed

    Thomas, Kate M; Charron, Dominique F; Waltner-Toews, David; Schuster, Corinne; Maarouf, Abdel R; Holt, John D

    2006-06-01

    Recent outbreaks of Escherichia coli O157:H7, Campylobacter, and Cryptosporidium have heightened awareness of risks associated with contaminated water supply. The objectives of this research were to describe the incidence and distribution of waterborne disease outbreaks in Canada in relation to preceding weather conditions and to test the association between high impact weather events and waterborne disease outbreaks. We examined extreme rainfall and spring snowmelt in association with 92 Canadian waterborne disease outbreaks between 1975 and 2001, using case-crossover methodology. Explanatory variables including accumulated rainfall, air temperature, and peak stream flow were used to determine the relationship between high impact weather events and the occurrence of waterborne disease outbreaks. Total maximum degree-days above 0 degrees C and accumulated rainfall percentile were associated with outbreak risk. For each degree-day above 0 degrees C the relative odds of an outbreak increased by a factor of 1.007 (95% confidence interval [CI] = 1.002 - 1.012). Accumulated rainfall percentile was dichotomized at the 93rd percentile. For rainfall events greater than the 93rd percentile the relative odds of an outbreak increased by a factor of 2.283 (95% [CI] = 1.216 - 4.285). These results suggest that warmer temperatures and extreme rainfall are contributing factors to waterborne disease outbreaks in Canada. This could have implications for water management and public health initiatives.

  20. How infectious disease outbreaks affect community-based primary care physicians: comparing the SARS and H1N1 epidemics.

    PubMed

    Jaakkimainen, R Liisa; Bondy, Susan J; Parkovnick, Meredith; Barnsley, Jan

    2014-10-01

    To compare how the infectious disease outbreaks H1N1 and severe acute respiratory syndrome (SARS) affected community-based GPs and FPs. A mailed survey sent after the H1N1 outbreak compared with the results of similar survey completed after the SARS outbreak. Greater Toronto area in Ontario. A total of 183 randomly selected GPs and FPs who provided office-based care. The perceptions of GPs and FPs on how serious infectious disease outbreaks affected their clinical work and personal lives; their preparedness for a serious infectious disease outbreak; and the types of information they want to receive and the sources they wanted to receive information from during a serious infectious disease outbreak. The responses from this survey were compared with the responses of GPs and FPs in the greater Toronto area who completed a similar survey in 2003 after the SARS outbreak. After the H1N1 outbreak, GPs and FPs still had substantial concerns about the effects of serious infectious disease outbreaks on the health of their family members. Physicians made changes to various office practices in order to manage and deal with patients with serious infectious diseases. They expressed concerns about the effects of an infectious disease on the provision of health care services. Also, physicians wanted to quickly receive accurate information from the provincial government and their medical associations. Serious community-based infectious diseases are a personal concern for GPs and FPs, and have considerable effects on their clinical practice. Further work examining the timely flow of relevant information through different health care sectors and government agencies still needs to be undertaken. Copyright© the College of Family Physicians of Canada.

  1. An outbreak of respiratory tularemia caused by diverse clones of Francisella tularensis.

    PubMed

    Johansson, Anders; Lärkeryd, Adrian; Widerström, Micael; Mörtberg, Sara; Myrtännäs, Kerstin; Ohrman, Caroline; Birdsell, Dawn; Keim, Paul; Wagner, David M; Forsman, Mats; Larsson, Pär

    2014-12-01

    The bacterium Francisella tularensis is recognized for its virulence, infectivity, genetic homogeneity, and potential as a bioterrorism agent. Outbreaks of respiratory tularemia, caused by inhalation of this bacterium, are poorly understood. Such outbreaks are exceedingly rare, and F. tularensis is seldom recovered from clinical specimens. A localized outbreak of tularemia in Sweden was investigated. Sixty-seven humans contracted laboratory-verified respiratory tularemia. F. tularensis subspecies holarctica was isolated from the blood or pleural fluid of 10 individuals from July to September 2010. Using whole-genome sequencing and analysis of single-nucleotide polymorphisms (SNPs), outbreak isolates were compared with 110 archived global isolates. There were 757 SNPs among the genomes of the 10 outbreak isolates and the 25 most closely related archival isolates (all from Sweden/Finland). Whole genomes of outbreak isolates were >99.9% similar at the nucleotide level and clustered into 3 distinct genetic clades. Unexpectedly, high-sequence similarity grouped some outbreak and archival isolates that originated from patients from different geographic regions and up to 10 years apart. Outbreak and archival genomes frequently differed by only 1-3 of 1 585 229 examined nucleotides. The outbreak was caused by diverse clones of F. tularensis that occurred concomitantly, were widespread, and apparently persisted in the environment. Multiple independent acquisitions of F. tularensis from the environment over a short time period suggest that natural outbreaks of respiratory tularemia are triggered by environmental cues. The findings additionally caution against interpreting genome sequence identity for this pathogen as proof of a direct epidemiological link. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Landscape epidemiology and control of pathogens with cryptic and long-distance dispersal: Sudden oak death in northern Californian forests

    Treesearch

    Joao A. N. Filipe; Richard C. Cobb; Ross K. Meentemeyer; Christopher A. Lee; Yana S. Valachovic; Alex R. Cook; David M. Rizzo; Christopher A. Gilligan

    2012-01-01

    Exotic pathogens and pests threaten ecosystem service, biodiversity, and crop security globally. If an invasive agent can disperse asymptomatically over long distances, multiple spatial and temporal scales interplay, making identification of effective strategies to regulate, monitor, and control disease extremely difficult. The management of outbreaks is also...

  3. Nigerian response to the 2014 Ebola viral disease outbreak: lessons and cautions

    PubMed Central

    Oleribe, Obinna Ositadimma; Crossey, Mary Margaret Elizabeth; Taylor-Robinson, Simon David

    2015-01-01

    The Ebola virus disease outbreak that initially hit Guinea, Liberia and Senegal in 2014 was projected to affect Nigeria very badly when the first case was reported in July 2014. However, the outbreak was effectively and swiftly contained with only eight deaths out of 20 cases, confounding even the most optimistic predictions of the disease modelers. A combination of health worker and public education, a coordinated field epidemiology and laboratory training program (with prior experience in disease outbreak control in other diseases) and effective set-up of emergency operations centers were some of the measures that helped to confound the critics and contain what would have been an otherwise deadly outbreak in a densely populated country with a highly mobile population. This article highlights the measures taken in Nigeria and looks to the translatable lessons learnt for future disease outbreaks, whether that be from the Ebola virus or other infectious agents. PMID:26740841

  4. Surveillance for Waterborne Disease Outbreaks Associated with Drinking Water — United States 2011-2012

    EPA Science Inventory

    Advances in water management and sanitation have reduced waterborne disease in the United States, although outbreaks continue to occur. Public health agencies in the U.S. states and territories* report information on waterborne disease outbreaks to the CDC Waterborne Disease and ...

  5. The Epi Info Viral Hemorrhagic Fever (VHF) Application: A Resource for Outbreak Data Management and Contact Tracing in the 2014-2016 West Africa Ebola Epidemic.

    PubMed

    Schafer, Ilana J; Knudsen, Erik; McNamara, Lucy A; Agnihotri, Sachin; Rollin, Pierre E; Islam, Asad

    2016-10-15

    The Epi Info Viral Hemorrhagic Fever application (Epi Info VHF) was developed in response to challenges managing outbreak data during four 2012 filovirus outbreaks. Development goals included combining case and contact data in a relational database, facilitating data-driven contact tracing, and improving outbreak data consistency and use. The application was first deployed in Guinea, when the West Africa Ebola epidemic was detected, in March 2014, and has been used in 7 African countries and 2 US states. Epi Info VHF enabled reporting of compatible data from multiple countries, contributing to international Ebola knowledge. However, challenges were encountered in accommodating the epidemic's unexpectedly large magnitude, addressing country-specific needs within 1 software product, and using the application in settings with limited Internet access and information technology support. Use of Epi Info VHF in the West Africa Ebola epidemic highlighted the fundamental importance of good data management for effective outbreak response, regardless of the software used. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Surveillance for foodborne disease outbreaks - United States, 1998-2008.

    PubMed

    Gould, L Hannah; Walsh, Kelly A; Vieira, Antonio R; Herman, Karen; Williams, Ian T; Hall, Aron J; Cole, Dana

    2013-06-28

    Foodborne diseases cause an estimated 48 million illnesses each year in the United States, including 9.4 million caused by known pathogens. Foodborne disease outbreak surveillance provides valuable insights into the agents and foods that cause illness and the settings in which transmission occurs. CDC maintains a surveillance program for collection and periodic reporting of data on the occurrence and causes of foodborne disease outbreaks in the United States. This surveillance system is the primary source of national data describing the numbers of illnesses, hospitalizations, and deaths; etiologic agents; implicated foods; contributing factors; and settings of food preparation and consumption associated with recognized foodborne disease outbreaks in the United States. 1998-2008. The Foodborne Disease Outbreak Surveillance System collects data on foodborne disease outbreaks, defined as the occurrence of two or more cases of a similar illness resulting from the ingestion of a common food. Public health agencies in all 50 states, the District of Columbia, U.S. territories, and Freely Associated States have primary responsibility for identifying and investigating outbreaks and use a standard form to report outbreaks voluntarily to CDC. During 1998-2008, reporting was made through the electronic Foodborne Outbreak Reporting System (eFORS). During 1998-2008, CDC received reports of 13,405 foodborne disease outbreaks, which resulted in 273,120 reported cases of illness, 9,109 hospitalizations, and 200 deaths. Of the 7,998 outbreaks with a known etiology, 3,633 (45%) were caused by viruses, 3,613 (45%) were caused by bacteria, 685 (5%) were caused by chemical and toxic agents, and 67 (1%) were caused by parasites. Among the 7,724 (58%) outbreaks with an implicated food or contaminated ingredient reported, 3,264 (42%) could be assigned to one of 17 predefined commodity categories: fish, crustaceans, mollusks, dairy, eggs, beef, game, pork, poultry, grains/beans, oils/sugars, fruits/nuts, fungi, leafy vegetables, root vegetables, sprouts, and vegetables from a vine or stalk. The commodities implicated most commonly were poultry (18.9%; 95% confidence interval [CI] = 17.4-20.3) and fish (18.6%; CI = 17.2-20), followed by beef (11.9%; CI = 10.8-13.1). The pathogen-commodity pairs most commonly responsible for outbreaks were scombroid toxin/histamine and fish (317 outbreaks), ciguatoxin and fish (172 outbreaks), Salmonella and poultry (145 outbreaks), and norovirus and leafy vegetables (141 outbreaks). The pathogen-commodity pairs most commonly responsible for outbreak-related illnesses were norovirus and leafy vegetables (4,011 illnesses), Clostridium perfringens and poultry (3,452 illnesses), Salmonella and vine-stalk vegetables (3,216 illnesses), and Clostridium perfringens and beef (2,963 illnesses). Compared with the first 2 years of the study (1998-1999), the percentage of outbreaks associated with leafy vegetables and dairy increased substantially during 2006-2008, while the percentage of outbreaks associated with eggs decreased. Outbreak reporting rates and implicated foods varied by state and year, respectively; analysis of surveillance data for this 11-year period provides important information regarding changes in sources of illness over time. A substantial percentage of foodborne disease outbreaks were associated with poultry, fish, and beef, whereas many outbreak-related illnesses were associated with poultry, leafy vegetables, beef, and fruits/nuts. The percentage of outbreaks associated with leafy vegetables and dairy increased during the surveillance period, while the percentage associated with eggs decreased. Outbreak surveillance data highlight the etiologic agents, foods, and settings involved most often in foodborne disease outbreaks and can help to identify food commodities and preparation settings in which interventions might be most effective. Analysis of data collected over several years of surveillance provides a means to assess changes in the food commodities associated most frequently with outbreaks that might occur following improvements in food safety or changes in consumption patterns or food preparation practices. Prevention of foodborne disease depends on targeted interventions at appropriate points from food production to food preparation. Efforts to reduce foodborne illness should focus on the pathogens and food commodities causing the most outbreaks and outbreak-associated illnesses, including beef, poultry, fish, and produce.

  7. Rocky Mountain spotted fever in Mexico: past, present, and future.

    PubMed

    Álvarez-Hernández, Gerardo; Roldán, Jesús Felipe González; Milan, Néstor Saúl Hernández; Lash, R Ryan; Behravesh, Casey Barton; Paddock, Christopher D

    2017-06-01

    Rocky Mountain spotted fever, a tick-borne zoonosis caused by Rickettsia rickettsii, is among the most lethal of all infectious diseases in the Americas. In Mexico, the disease was first described during the early 1940s by scientists who carefully documented specific environmental determinants responsible for devastating outbreaks in several communities in the states of Sinaloa, Sonora, Durango, and Coahuila. These investigators also described the pivotal roles of domesticated dogs and Rhipicephalus sanguineus sensu lato (brown dog ticks) as drivers of epidemic levels of Rocky Mountain spotted fever. After several decades of quiescence, the disease re-emerged in Sonora and Baja California during the early 21st century, driven by the same environmental circumstances that perpetuated outbreaks in Mexico during the 1940s. This Review explores the history of Rocky Mountain spotted fever in Mexico, current epidemiology, and the multiple clinical, economic, and social challenges that must be considered in the control and prevention of this life-threatening illness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Polio infrastructure strengthened disease outbreak preparedness and response in the WHO African Region.

    PubMed

    Kouadio, Koffi; Okeibunor, Joseph; Nsubuga, Peter; Mihigo, Richard; Mkanda, Pascal

    2016-10-10

    The continuous deployments of polio resources, infrastructures and systems for responding to other disease outbreaks in many African countries has led to a number of lessons considered as best practice that need to be documented for strengthening preparedness and response activities in future outbreaks. We reviewed and documented the influence of polio best practices in outbreak preparedness and response in Angola, Nigeria and Ethiopia. Data from relevant programmes of the WHO African Region were also analyzed to demonstrate clearly the relative contributions of PEI resources and infrastructure to effective disease outbreak preparedness and response. Polio resources including, human, financial, and logistic, tool and strategies have tremendously contributed to responding to diseases outbreaks across the African region. In Angola, Nigeria and Ethiopia, many disease epidemics including Marburg Hemorrhagic fever, Dengue fever, Ebola Virus Diseases (EVD), Measles, Anthrax and Shigella have been controlled using existing polio Eradication Initiatives resources. Polio staffs are usually deployed in occasions to supports outbreak response activities (coordination, surveillance, contact tracing, case investigation, finance, data management, etc.). Polio logistics such vehicles, laboratories were also used in the response activities to other infectious diseases. Many polio tools including micro planning, dashboard, guidelines, SOPs on preparedness and response have also benefited to other epidemic-prone diseases. The Countries' preparedness and response plan to WPV importation as well as the Polio Emergency Operation Center models were successfully used to develop, strengthen and respond to many other diseases outbreak with the implication of partners and the strong leadership and ownership of governments. This review has important implications for WHO/AFRO initiative to strengthening and improving disease outbreak preparedness and responses in the African Region in respect to the international health regulations core capacities. Copyright © 2016 World Health Organization Regional Office for Africa. Published by Elsevier Ltd.. All rights reserved.

  9. Using structured decision making to manage disease risk for Montana wildlife

    USGS Publications Warehouse

    Mitchell, Michael S.; Gude, Justin A.; Anderson, Neil J.; Ramsey, Jennifer M.; Thompson, Michael J.; Sullivan, Mark G.; Edwards, Victoria L.; Gower, Claire N.; Cochrane, Jean Fitts; Irwin, Elise R.; Walshe, Terry

    2013-01-01

    We used structured decision-making to develop a 2-part framework to assist managers in the proactive management of disease outbreaks in Montana, USA. The first part of the framework is a model to estimate the probability of disease outbreak given field observations available to managers. The second part of the framework is decision analysis that evaluates likely outcomes of management alternatives based on the estimated probability of disease outbreak, and applies managers' values for different objectives to indicate a preferred management strategy. We used pneumonia in bighorn sheep (Ovis canadensis) as a case study for our approach, applying it to 2 populations in Montana that differed in their likelihood of a pneumonia outbreak. The framework provided credible predictions of both probability of disease outbreaks, as well as biological and monetary consequences of management actions. The structured decision-making approach to this problem was valuable for defining the challenges of disease management in a decentralized agency where decisions are generally made at the local level in cooperation with stakeholders. Our approach provides local managers with the ability to tailor management planning for disease outbreaks to local conditions. Further work is needed to refine our disease risk models and decision analysis, including robust prediction of disease outbreaks and improved assessment of management alternatives.

  10. Summary of Notifiable Noninfectious Conditions and Disease Outbreaks: Surveillance Data Published Between April 1, 2016 and January 31, 2017 - United States.

    PubMed

    Thomas, Kimberly; Jajosky, Ruth; Coates, Ralph J; Calvert, Geoffrey M; Dewey-Mattia, Daniel; Raymond, Jaime; Singh, Simple D

    2017-08-11

    The Summary of Notifiable Noninfectious Conditions and Disease Outbreaks: Surveillance Data Published Between April 1, 2016 and January 31, 2017 - United States, herein referred to as the Summary (Noninfectious), contains official statistics for nationally notifiable noninfectious conditions and disease outbreaks. This Summary (Noninfectious) is being published in the same volume of MMWR as the annual Summary of Notifiable Infectious Diseases and Conditions (1). Data on notifiable noninfectious conditions and disease outbreaks from prior years have been published previously (2,3).

  11. Exploratory space-time analysis of dengue incidence in Trinidad: a retrospective study using travel hubs as dispersal points, 1998–2004

    PubMed Central

    2014-01-01

    Background Dengue is an acute arboviral disease responsible for most of the illness and death in tropical and subtropical regions. Over the last 25 years there has been increase epidemic activity of the disease in the Caribbean, with the co-circulation of multiple serotypes. An understanding of the space and time dynamics of dengue could provide health agencies with important clues for reducing its impact. Methods Dengue Haemorrhagic Fever (DHF) cases observed for the period 1998–2004 were georeferenced using Geographic Information System software. Spatial clustering was calculated for individual years and for the entire study period using the Nearest Neighbor Index. Space and time interaction between DHF cases was determined using the Knox Test while the Nearest Neighbor Hierarchical method was used to extract DHF hot spots. All space and time distances calculated were validated using the Pearson r significance test. Results Results shows that (1) a decrease in mean distance between DHF cases correlates with activity leading up to an outbreak, (2) a decrease in temporal distance between DHF cases leads to increased geographic spread of the disease, with an outbreak occurrence about every 2 years, and (3) a general pattern in the movement of dengue incidents from more rural to urban settings leading up to an outbreak with hotspot areas associated with transportation hubs in Trinidad. Conclusion Considering only the spatial dimension of the disease, results suggest that DHF cases become more concentrated leading up to an outbreak. However, with the additional consideration of time, results suggest that when an outbreak occurs incidents occur more rapidly in time leading to a parallel increase in the rate of distribution of the disease across space. The results of this study can be used by public health officers to help visualize and understand the spatial and temporal patterns of dengue, and to prepare warnings for the public. Dengue space-time patterns and hotspot detection will provide useful information to support public health officers in their efforts to control and predict dengue spread over critical hotspots allowing better allocation of resources. PMID:25052242

  12. Exploratory space-time analysis of dengue incidence in Trinidad: a retrospective study using travel hubs as dispersal points, 1998-2004.

    PubMed

    Sharma, Karmesh D; Mahabir, Ron S; Curtin, Kevin M; Sutherland, Joan M; Agard, John B; Chadee, Dave D

    2014-07-22

    Dengue is an acute arboviral disease responsible for most of the illness and death in tropical and subtropical regions. Over the last 25 years there has been increase epidemic activity of the disease in the Caribbean, with the co-circulation of multiple serotypes. An understanding of the space and time dynamics of dengue could provide health agencies with important clues for reducing its impact. Dengue Haemorrhagic Fever (DHF) cases observed for the period 1998-2004 were georeferenced using Geographic Information System software. Spatial clustering was calculated for individual years and for the entire study period using the Nearest Neighbor Index. Space and time interaction between DHF cases was determined using the Knox Test while the Nearest Neighbor Hierarchical method was used to extract DHF hot spots. All space and time distances calculated were validated using the Pearson r significance test. Results shows that (1) a decrease in mean distance between DHF cases correlates with activity leading up to an outbreak, (2) a decrease in temporal distance between DHF cases leads to increased geographic spread of the disease, with an outbreak occurrence about every 2 years, and (3) a general pattern in the movement of dengue incidents from more rural to urban settings leading up to an outbreak with hotspot areas associated with transportation hubs in Trinidad. Considering only the spatial dimension of the disease, results suggest that DHF cases become more concentrated leading up to an outbreak. However, with the additional consideration of time, results suggest that when an outbreak occurs incidents occur more rapidly in time leading to a parallel increase in the rate of distribution of the disease across space. The results of this study can be used by public health officers to help visualize and understand the spatial and temporal patterns of dengue, and to prepare warnings for the public. Dengue space-time patterns and hotspot detection will provide useful information to support public health officers in their efforts to control and predict dengue spread over critical hotspots allowing better allocation of resources.

  13. Infectious diseases and their outbreaks in Asia-Pacific: biodiversity and its regulation loss matter.

    PubMed

    Morand, Serge; Jittapalapong, Sathaporn; Suputtamongkol, Yupin; Abdullah, Mohd Tajuddin; Huan, Tan Boon

    2014-01-01

    Despite increasing control measures, numerous parasitic and infectious diseases are emerging, re-emerging or causing recurrent outbreaks particularly in Asia and the Pacific region, a hot spot of both infectious disease emergence and biodiversity at risk. We investigate how biodiversity affects the distribution of infectious diseases and their outbreaks in this region, taking into account socio-economics (population size, GDP, public health expenditure), geography (latitude and nation size), climate (precipitation, temperature) and biodiversity (bird and mammal species richness, forest cover, mammal and bird species at threat). We show, among countries, that the overall richness of infectious diseases is positively correlated with the richness of birds and mammals, but the number of zoonotic disease outbreaks is positively correlated with the number of threatened mammal and bird species and the number of vector-borne disease outbreaks is negatively correlated with forest cover. These results suggest that, among countries, biodiversity is a source of pathogens, but also that the loss of biodiversity or its regulation, as measured by forest cover or threatened species, seems to be associated with an increase in zoonotic and vector-borne disease outbreaks.

  14. DEFENDER: Detecting and Forecasting Epidemics Using Novel Data-Analytics for Enhanced Response.

    PubMed

    Thapen, Nicholas; Simmie, Donal; Hankin, Chris; Gillard, Joseph

    2016-01-01

    In recent years social and news media have increasingly been used to explain patterns in disease activity and progression. Social media data, principally from the Twitter network, has been shown to correlate well with official disease case counts. This fact has been exploited to provide advance warning of outbreak detection, forecasting of disease levels and the ability to predict the likelihood of individuals developing symptoms. In this paper we introduce DEFENDER, a software system that integrates data from social and news media and incorporates algorithms for outbreak detection, situational awareness and forecasting. As part of this system we have developed a technique for creating a location network for any country or region based purely on Twitter data. We also present a disease nowcasting (forecasting the current but still unknown level) approach which leverages counts from multiple symptoms, which was found to improve the nowcasting accuracy by 37 percent over a model that used only previous case data. Finally we attempt to forecast future levels of symptom activity based on observed user movement on Twitter, finding a moderate gain of 5 percent over a time series forecasting model.

  15. A Participatory System for Preventing Pandemics of Animal Origins: Pilot Study of the Participatory One Health Disease Detection (PODD) System

    PubMed Central

    Yano, Terdsak; Phornwisetsirikun, Somphorn; Susumpow, Patipat; Visrutaratna, Surasing; Chanachai, Karoon; Phetra, Polawat; Chaisowwong, Warangkhana; Trakarnsirinont, Pairat; Hemwan, Phonpat; Kaewpinta, Boontuan; Singhapreecha, Charuk; Kreausukon, Khwanchai; Charoenpanyanet, Arisara ; Robert, Chongchit Sripun; Robert, Lamar; Rodtian, Pranee; Mahasing, Suteerat; Laiya, Ekkachai; Pattamakaew, Sakulrat; Tankitiyanon, Taweesart; Sansamur, Chalutwan

    2018-01-01

    Background Aiming for early disease detection and prompt outbreak control, digital technology with a participatory One Health approach was used to create a novel disease surveillance system called Participatory One Health Disease Detection (PODD). PODD is a community-owned surveillance system that collects data from volunteer reporters; identifies disease outbreak automatically; and notifies the local governments (LGs), surrounding villages, and relevant authorities. This system provides a direct and immediate benefit to the communities by empowering them to protect themselves. Objective The objective of this study was to determine the effectiveness of the PODD system for the rapid detection and control of disease outbreaks. Methods The system was piloted in 74 LGs in Chiang Mai, Thailand, with the participation of 296 volunteer reporters. The volunteers and LGs were key participants in the piloting of the PODD system. Volunteers monitored animal and human diseases, as well as environmental problems, in their communities and reported these events via the PODD mobile phone app. LGs were responsible for outbreak control and provided support to the volunteers. Outcome mapping was used to evaluate the performance of the LGs and volunteers. Results LGs were categorized into one of the 3 groups based on performance: A (good), B (fair), and C (poor), with the majority (46%,34/74) categorized into group B. Volunteers were similarly categorized into 4 performance groups (A-D), again with group A showing the best performance, with the majority categorized into groups B and C. After 16 months of implementation, 1029 abnormal events had been reported and confirmed to be true reports. The majority of abnormal reports were sick or dead animals (404/1029, 39.26%), followed by zoonoses and other human diseases (129/1029, 12.54%). Many potentially devastating animal disease outbreaks were detected and successfully controlled, including 26 chicken high mortality outbreaks, 4 cattle disease outbreaks, 3 pig disease outbreaks, and 3 fish disease outbreaks. In all cases, the communities and animal authorities cooperated to apply community contingency plans to control these outbreaks, and community volunteers continued to monitor the abnormal events for 3 weeks after each outbreak was controlled. Conclusions By design, PODD initially targeted only animal diseases that potentially could emerge into human pandemics (eg, avian influenza) and then, in response to community needs, expanded to cover human health and environmental health issues. PMID:29563079

  16. A Risk Analysis Approach to Prioritizing Epidemics: Ebola Virus Disease in West Africa as a Case Study

    PubMed Central

    Chughtai, Abrar Ahmad; MacIntyre, C. Raina

    2017-01-01

    Abstract The 2014 Ebola virus disease (EVD) outbreak affected several countries worldwide, including six West African countries. It was the largest Ebola epidemic in the history and the first to affect multiple countries simultaneously. Significant national and international delay in response to the epidemic resulted in 28,652 cases and 11,325 deaths. The aim of this study was to develop a risk analysis framework to prioritize rapid response for situations of high risk. Based on findings from the literature, sociodemographic features of the affected countries, and documented epidemic data, a risk scoring framework using 18 criteria was developed. The framework includes measures of socioeconomics, health systems, geographical factors, cultural beliefs, and traditional practices. The three worst affected West African countries (Guinea, Sierra Leone, and Liberia) had the highest risk scores. The scores were much lower in developed countries that experienced Ebola compared to West African countries. A more complex risk analysis framework using 18 measures was compared with a simpler one with 10 measures, and both predicted risk equally well. A simple risk scoring system can incorporate measures of hazard and impact that may otherwise be neglected in prioritizing outbreak response. This framework can be used by public health personnel as a tool to prioritize outbreak investigation and flag outbreaks with potentially catastrophic outcomes for urgent response. Such a tool could mitigate costly delays in epidemic response. PMID:28810081

  17. Dose-response relationships for environmentally mediated infectious disease transmission models

    PubMed Central

    Eisenberg, Joseph N. S.

    2017-01-01

    Environmentally mediated infectious disease transmission models provide a mechanistic approach to examining environmental interventions for outbreaks, such as water treatment or surface decontamination. The shift from the classical SIR framework to one incorporating the environment requires codifying the relationship between exposure to environmental pathogens and infection, i.e. the dose–response relationship. Much of the work characterizing the functional forms of dose–response relationships has used statistical fit to experimental data. However, there has been little research examining the consequences of the choice of functional form in the context of transmission dynamics. To this end, we identify four properties of dose–response functions that should be considered when selecting a functional form: low-dose linearity, scalability, concavity, and whether it is a single-hit model. We find that i) middle- and high-dose data do not constrain the low-dose response, and different dose–response forms that are equally plausible given the data can lead to significant differences in simulated outbreak dynamics; ii) the choice of how to aggregate continuous exposure into discrete doses can impact the modeled force of infection; iii) low-dose linear, concave functions allow the basic reproduction number to control global dynamics; and iv) identifiability analysis offers a way to manage multiple sources of uncertainty and leverage environmental monitoring to make inference about infectivity. By applying an environmentally mediated infectious disease model to the 1993 Milwaukee Cryptosporidium outbreak, we demonstrate that environmental monitoring allows for inference regarding the infectivity of the pathogen and thus improves our ability to identify outbreak characteristics such as pathogen strain. PMID:28388665

  18. Understanding outbreaks of waterborne infectious disease: quantitative microbial risk assessment vs. epidemiology

    USDA-ARS?s Scientific Manuscript database

    Drinking water contaminated with microbial pathogens can cause outbreaks of infectious disease, and these outbreaks are traditionally studied using epidemiologic methods. Quantitative microbial risk assessment (QMRA) can predict – and therefore help prevent – such outbreaks, but it has never been r...

  19. Rapid Diagnosis of Ebola Hemorrhagic Fever by Reverse Transcription-PCR in an Outbreak Setting and Assessment of Patient Viral Load as a Predictor of Outcome

    PubMed Central

    Towner, Jonathan S.; Rollin, Pierre E.; Bausch, Daniel G.; Sanchez, Anthony; Crary, Sharon M.; Vincent, Martin; Lee, William F.; Spiropoulou, Christina F.; Ksiazek, Thomas G.; Lukwiya, Mathew; Kaducu, Felix; Downing, Robert; Nichol, Stuart T.

    2004-01-01

    The largest outbreak on record of Ebola hemorrhagic fever (EHF) occurred in Uganda from August 2000 to January 2001. The outbreak was centered in the Gulu district of northern Uganda, with secondary transmission to other districts. After the initial diagnosis of Sudan ebolavirus by the National Institute for Virology in Johannesburg, South Africa, a temporary diagnostic laboratory was established within the Gulu district at St. Mary's Lacor Hospital. The laboratory used antigen capture and reverse transcription-PCR (RT-PCR) to diagnose Sudan ebolavirus infection in suspect patients. The RT-PCR and antigen-capture diagnostic assays proved very effective for detecting ebolavirus in patient serum, plasma, and whole blood. In samples collected very early in the course of infection, the RT-PCR assay could detect ebolavirus 24 to 48 h prior to detection by antigen capture. More than 1,000 blood samples were collected, with multiple samples obtained from many patients throughout the course of infection. Real-time quantitative RT-PCR was used to determine the viral load in multiple samples from patients with fatal and nonfatal cases, and these data were correlated with the disease outcome. RNA copy levels in patients who died averaged 2 log10 higher than those in patients who survived. Using clinical material from multiple EHF patients, we sequenced the variable region of the glycoprotein. This Sudan ebolavirus strain was not derived from either the earlier Boniface (1976) or Maleo (1979) strain, but it shares a common ancestor with both. Furthermore, both sequence and epidemiologic data are consistent with the outbreak having originated from a single introduction into the human population. PMID:15047846

  20. A review of outbreaks of foodborne disease associated with passenger ships: evidence for risk management.

    PubMed Central

    Rooney, Roisin M.; Cramer, Elaine H.; Mantha, Stacey; Nichols, Gordon; Bartram, Jamie K.; Farber, Jeffrey M.; Benembarek, Peter K.

    2004-01-01

    OBJECTIVE: Foodborne disease outbreaks on ships are of concern because of their potentially serious health consequences for passengers and crew and high costs to the industry. The authors conducted a review of outbreaks of foodborne diseases associated with passenger ships in the framework of a World Health Organization project on setting guidelines for ship sanitation. METHODS: The authors reviewed data on 50 outbreaks of foodborne disease associated with passenger ships. For each outbreak, data on pathogens/toxins, type of ship, factors contributing to outbreaks, mortality and morbidity, and food vehicles were collected. RESULTS: The findings of this review show that the majority of reported outbreaks were associated with cruise ships and that almost 10,000 people were affected. Salmonella spp were most frequently associated with outbreaks. Foodborne outbreaks due to enterotoxigenic E. coli spp, Shigella spp, noroviruses (formally called Norwalk-like viruses), Vibrio spp, Staphylococcus aureus, Clostridium perfringens, Cyclospora sp, and Trichinella sp also occurred on ships. Factors associated with the outbreaks reviewed include inadequate temperature control, infected food handlers, contaminated raw ingredients, cross-contamination, inadequate heat treatment, and onshore excursions. Seafood was the most common food vehicle implicated in outbreaks. CONCLUSIONS: Many ship-associated outbreaks could have been prevented if measures had been taken to ensure adequate temperature control, avoidance of cross-contamination, reliable food sources, adequate heat treatment, and exclusion of infected food handlers from work. PMID:15219800

  1. A review of outbreaks of foodborne disease associated with passenger ships: evidence for risk management.

    PubMed

    Rooney, Roisin M; Cramer, Elaine H; Mantha, Stacey; Nichols, Gordon; Bartram, Jamie K; Farber, Jeffrey M; Benembarek, Peter K

    2004-01-01

    Foodborne disease outbreaks on ships are of concern because of their potentially serious health consequences for passengers and crew and high costs to the industry. The authors conducted a review of outbreaks of foodborne diseases associated with passenger ships in the framework of a World Health Organization project on setting guidelines for ship sanitation. The authors reviewed data on 50 outbreaks of foodborne disease associated with passenger ships. For each outbreak, data on pathogens/toxins, type of ship, factors contributing to outbreaks, mortality and morbidity, and food vehicles were collected. The findings of this review show that the majority of reported outbreaks were associated with cruise ships and that almost 10,000 people were affected. Salmonella spp were most frequently associated with outbreaks. Foodborne outbreaks due to enterotoxigenic E. coli spp, Shigella spp, noroviruses (formally called Norwalk-like viruses), Vibrio spp, Staphylococcus aureus, Clostridium perfringens, Cyclospora sp, and Trichinella sp also occurred on ships. Factors associated with the outbreaks reviewed include inadequate temperature control, infected food handlers, contaminated raw ingredients, cross-contamination, inadequate heat treatment, and onshore excursions. Seafood was the most common food vehicle implicated in outbreaks. Many ship-associated outbreaks could have been prevented if measures had been taken to ensure adequate temperature control, avoidance of cross-contamination, reliable food sources, adequate heat treatment, and exclusion of infected food handlers from work.

  2. A method for detecting and characterizing outbreaks of infectious disease from clinical reports.

    PubMed

    Cooper, Gregory F; Villamarin, Ricardo; Rich Tsui, Fu-Chiang; Millett, Nicholas; Espino, Jeremy U; Wagner, Michael M

    2015-02-01

    Outbreaks of infectious disease can pose a significant threat to human health. Thus, detecting and characterizing outbreaks quickly and accurately remains an important problem. This paper describes a Bayesian framework that links clinical diagnosis of individuals in a population to epidemiological modeling of disease outbreaks in the population. Computer-based diagnosis of individuals who seek healthcare is used to guide the search for epidemiological models of population disease that explain the pattern of diagnoses well. We applied this framework to develop a system that detects influenza outbreaks from emergency department (ED) reports. The system diagnoses influenza in individuals probabilistically from evidence in ED reports that are extracted using natural language processing. These diagnoses guide the search for epidemiological models of influenza that explain the pattern of diagnoses well. Those epidemiological models with a high posterior probability determine the most likely outbreaks of specific diseases; the models are also used to characterize properties of an outbreak, such as its expected peak day and estimated size. We evaluated the method using both simulated data and data from a real influenza outbreak. The results provide support that the approach can detect and characterize outbreaks early and well enough to be valuable. We describe several extensions to the approach that appear promising. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A Method for Detecting and Characterizing Outbreaks of Infectious Disease from Clinical Reports

    PubMed Central

    Cooper, Gregory F.; Villamarin, Ricardo; Tsui, Fu-Chiang (Rich); Millett, Nicholas; Espino, Jeremy U.; Wagner, Michael M.

    2014-01-01

    Outbreaks of infectious disease can pose a significant threat to human health. Thus, detecting and characterizing outbreaks quickly and accurately remains an important problem. This paper describes a Bayesian framework that links clinical diagnosis of individuals in a population to epidemiological modeling of disease outbreaks in the population. Computer-based diagnosis of individuals who seek healthcare is used to guide the search for epidemiological models of population disease that explain the pattern of diagnoses well. We applied this framework to develop a system that detects influenza outbreaks from emergency department (ED) reports. The system diagnoses influenza in individuals probabilistically from evidence in ED reports that are extracted using natural language processing. These diagnoses guide the search for epidemiological models of influenza that explain the pattern of diagnoses well. Those epidemiological models with a high posterior probability determine the most likely outbreaks of specific diseases; the models are also used to characterize properties of an outbreak, such as its expected peak day and estimated size. We evaluated the method using both simulated data and data from a real influenza outbreak. The results provide support that the approach can detect and characterize outbreaks early and well enough to be valuable. We describe several extensions to the approach that appear promising. PMID:25181466

  4. Federal Funding for Health Security in FY2016.

    PubMed

    Boddie, Crystal; Sell, Tara Kirk; Watson, Matthew

    2015-01-01

    This article assesses US government funding in 5 domains critical to strengthening health security: biodefense programs, radiological and nuclear programs, chemical programs, pandemic influenza and emerging infectious disease programs, and multiple-hazard and preparedness programs. This year's article also highlights the emergency funding appropriated in FY2015 to enable the international and domestic response to the Ebola outbreak in West Africa.

  5. Federal Funding for Health Security in FY2016

    PubMed Central

    Sell, Tara Kirk; Watson, Matthew

    2015-01-01

    This article assesses US government funding in 5 domains critical to strengthening health security: biodefense programs, radiological and nuclear programs, chemical programs, pandemic influenza and emerging infectious disease programs, and multiple-hazard and preparedness programs. This year's article also highlights the emergency funding appropriated in FY2015 to enable the international and domestic response to the Ebola outbreak in West Africa. PMID:26042863

  6. Estimating Costs Associated with a Community Outbreak of Meningococcal Disease in a Colombian Caribbean City

    PubMed Central

    Pinzón-Redondo, Hernando; Coronell-Rodriguez, Wilfrido; Díaz-Martinez, Inés; Guzmán-Corena, Ángel; Constenla, Dagna

    2014-01-01

    ABSTRACT Meningococcal disease is a serious and potentially life-threatening infection that is caused by the bacterium Neisseria meningitidis (N. meningitidis), and it can cause meningitis, meningococcaemia outbreaks and epidemics. The disease is fatal in 9-12% of cases and with a death rate of up to 40% among patients with meningococcaemia. The objective of this study was to estimate the costs of a meningococcal outbreak that occurred in a Caribbean city of Colombia. We contacted experts involved in the outbreak and asked them specific questions about the diagnosis and treatment for meningococcal cases during the outbreak. Estimates of costs of the outbreak were also based on extensive review of medical records available during the outbreak. The costs associated with the outbreak were divided into the cost of the disease response phase and the cost of the disease surveillance phase. The costs associated with the outbreak control and surveillance were expressed in US$ (2011) as cost per 1,000 inhabitants. The average age of patients was 4.6 years (SD 3.5); 50% of the cases died; 50% of the cases were reported to have meningitis (3/6); 33% were diagnosed with meningococcaemia and myocarditis (2/6); 50% of the cases had bacteraemia (3/6); 66% of the cases had a culture specimen positive for Neisseria meningitidis; 5 of the 6 cases had RT-PCR positive for N. meningitidis. All N. meningitidis were serogroup B; 50 doses of ceftriaxone were administered as prophylaxis. Vaccine was not available at the time. The costs associated with control of the outbreak were estimated at US$ 0.8 per 1,000 inhabitants, disease surveillance at US$ 4.1 per 1,000 inhabitants, and healthcare costs at US$ 5.1 per 1,000 inhabitants. The costs associated with meningococcal outbreaks are substantial, and the outbreaks should be prevented. The mass chemoprophylaxis implemented helped control the outbreak. PMID:25395916

  7. Estimating costs associated with a community outbreak of meningococcal disease in a colombian Caribbean city.

    PubMed

    Pinzón-Redondo, Hernando; Coronell-Rodriguez, Wilfrido; Díaz-Martinez, Inés; Guzmán-Corena, Angel; Constenla, Dagna; Alvis-Guzmán, Nelson

    2014-09-01

    Meningococcal disease is a serious and potentially life-threatening infection that is caused by the bacterium Neisseria meningitidis (N. meningitidis), and it can cause meningitis, meningococcaemia outbreaks and epidemics. The disease is fatal in 9-12% of cases and with a death rate of up to 40% among patients with meningococcaemia. The objective of this study was to estimate the costs of a meningococcal outbreak that occurred in a Caribbean city of Colombia. We contacted experts involved in the outbreak and asked them specific questions about the diagnosis and treatment for meningococcal cases during the outbreak. Estimates of costs of the outbreak were also based on extensive review of medical records available during the outbreak. The costs associated with the outbreak were divided into the cost of the disease response phase and the cost of the disease surveillance phase. The costs associated with the outbreak control and surveillance were expressed in US$ (2011) as cost per 1,000 inhabitants. The average age of patients was 4.6 years (SD 3.5); 50% of the cases died; 50% of the cases were reported to have meningitis (3/6); 33% were diagnosed with meningococcaemia and myocarditis (2/6); 50% of the cases had bacteraemia (3/6); 66% of the cases had a culture specimen positive for Neisseria meningitidis; 5 of the 6 cases had RT-PCR positive for N. meningitidis. All N. meningitidis were serogroup B; 50 doses of ceftriaxone were administered as prophylaxis. Vaccine was not available at the time. The costs associated with control of the outbreak were estimated at US$ 0.8 per 1,000 inhabitants, disease surveillance at US$ 4.1 per 1,000 inhabitants, and healthcare costs at US$ 5.1 per 1,000 inhabitants. The costs associated with meningococcal outbreaks are substantial, and the outbreaks should be prevented. The mass chemoprophylaxis implemented helped control the outbreak.

  8. Challenges of establishing the correct diagnosis of outbreaks of acute febrile illnesses in Africa: the case of a likely Brucella outbreak among nomadic pastoralists, northeast Kenya, March-July 2005.

    PubMed

    Ari, Mary D; Guracha, Argata; Fadeel, Moustafa Abdel; Njuguna, Charles; Njenga, M Kariuki; Kalani, Rosalia; Abdi, Hassan; Warfu, Osman; Omballa, Victor; Tetteh, Christopher; Breiman, Robert F; Pimentel, Guillermo; Feikin, Daniel R

    2011-11-01

    An outbreak of acute febrile illness was reported among Somali pastoralists in remote, arid Northeast Kenya, where drinking raw milk is common. Blood specimens from 12 patients, collected mostly in the late convalescent phase, were tested for viral, bacterial, and parasitic pathogens. All were negative for viral and typhoid serology. Nine patients had Brucella antibodies present by at least one of the tests, four of whom had evidence suggestive of acute infection by the reference serologic microscopic agglutination test. Three patients were positive for leptospiral antibody by immunoglobulin M enzyme-linked immunosorbent assay, and two were positive for malaria. Although sensitive and specific point-of-care testing methods will improve diagnosis of acute febrile illness in developing countries, challenges of interpretation still remain when the outbreaks are remote, specimens collected too late, and positive results for multiple diseases are obtained. Better diagnostics and tools that can decipher overlapping signs and symptoms in such settings are needed.

  9. Challenges of Establishing the Correct Diagnosis of Outbreaks of Acute Febrile Illnesses in Africa: The Case of a Likely Brucella Outbreak among Nomadic Pastoralists, Northeast Kenya, March–July 2005

    PubMed Central

    Ari, Mary D.; Guracha, Argata; Fadeel, Moustafa Abdel; Njuguna, Charles; Njenga, M. Kariuki; Kalani, Rosalia; Abdi, Hassan; Warfu, Osman; Omballa, Victor; Tetteh, Christopher; Breiman, Robert F.; Pimentel, Guillermo; Feikin, Daniel R.

    2011-01-01

    An outbreak of acute febrile illness was reported among Somali pastoralists in remote, arid Northeast Kenya, where drinking raw milk is common. Blood specimens from 12 patients, collected mostly in the late convalescent phase, were tested for viral, bacterial, and parasitic pathogens. All were negative for viral and typhoid serology. Nine patients had Brucella antibodies present by at least one of the tests, four of whom had evidence suggestive of acute infection by the reference serologic microscopic agglutination test. Three patients were positive for leptospiral antibody by immunoglobulin M enzyme-linked immunosorbent assay, and two were positive for malaria. Although sensitive and specific point-of-care testing methods will improve diagnosis of acute febrile illness in developing countries, challenges of interpretation still remain when the outbreaks are remote, specimens collected too late, and positive results for multiple diseases are obtained. Better diagnostics and tools that can decipher overlapping signs and symptoms in such settings are needed. PMID:22049048

  10. Epidemiology and Pathogenesis of Bolivian Hemorrhagic Fever

    PubMed Central

    Patterson, Michael; Grant, Ashley; Paessler, Slobodan

    2014-01-01

    The etiologic agent of Bolivian hemorrhagic fever (BHF), Machupo virus (MACV) is reported to have a mortality rate of 25 to 35%. First identified in 1959, BHF was the cause of a localized outbreak in San Joaquin until rodent population controls were implemented in 1964. The rodent Calomys collosus was identified as the primary vector and reservoir for the virus. Multiple animal models were considered during the 1970’s with the most human-like disease identified in Rhesus macaques but minimal characterization of the pathogenesis has been published since. A reemergence of reported BHF cases has been reported in recent years, which necessitates the further study and development of a vaccine to prevent future outbreaks. PMID:24636947

  11. Whole genome sequencing identifies circulating Beijing-lineage Mycobacterium tuberculosis strains in Guatemala and an associated urban outbreak

    PubMed Central

    Saelens, Joseph W.; Lau-Bonilla, Dalia; Moller, Anneliese; Medina, Narda; Guzmán, Brenda; Calderón, Maylena; Herrera, Raúl; Sisk, Dana M.; Xet-Mull, Ana M.; Stout, Jason E.; Arathoon, Eduardo; Samayoa, Blanca; Tobin, David M.

    2015-01-01

    Summary Limited data are available regarding the molecular epidemiology of Mycobacterium tuberculosis (Mtb) strains circulating in Guatemala. Beijing-lineage Mtb strains have gained prevalence worldwide and are associated with increased virulence and drug resistance, but there have been only a few cases reported in Central America. Here we report the first whole genome sequencing of Central American Beijing-lineage strains of Mtb. We find that multiple Beijing-lineage strains, derived from independent founding events, are currently circulating in Guatemala, but overall still represent a relatively small proportion of disease burden. Finally, we identify a specific Beijing-lineage outbreak centered on a poor neighborhood in Guatemala City. PMID:26542222

  12. An outbreak of Paederus dermatitis in Thai military personnel.

    PubMed

    Suwannahitatorn, Picha; Jatapai, Anchalee; Rangsin, Ram

    2014-02-01

    An outbreak of Paederus dermatitis in Thai military personnel in 2007 was reported. Approximately ninety-one percent ofmilitary personnel who worked in a battalion located in Bangkok experienced Paederus dermatitis in April-May 2007. The most common clinical manifestations were blisters and erythematous rash. The most affected areas were head, neck, back and groin. "Kissing lesions" were seen in 17.3% of cases and 23.5% had multiple lesions. Compared with other reports, we found a high incidence of lesions in unexposed body parts. This disease should be recognized as a differential diagnosis especially in tropical countries. Awareness of the condition and its clinical features will aid early diagnosis and prompt treatment.

  13. A framework for responding to coral disease outbreaks that facilitates adaptive management.

    PubMed

    Beeden, Roger; Maynard, Jeffrey A; Marshall, Paul A; Heron, Scott F; Willis, Bette L

    2012-01-01

    Predicted increases in coral disease outbreaks associated with climate change have implications for coral reef ecosystems and the people and industries that depend on them. It is critical that coral reef managers understand these implications and have the ability to assess and reduce risk, detect and contain outbreaks, and monitor and minimise impacts. Here, we present a coral disease response framework that has four core components: (1) an early warning system, (2) a tiered impact assessment program, (3) scaled management actions and (4) a communication plan. The early warning system combines predictive tools that monitor the risk of outbreaks of temperature-dependent coral diseases with in situ observations provided by a network of observers who regularly report on coral health and reef state. Verified reports of an increase in disease prevalence trigger a tiered response of more detailed impact assessment, targeted research and/or management actions. The response is scaled to the risk posed by the outbreak, which is a function of the severity and spatial extent of the impacts. We review potential management actions to mitigate coral disease impacts and facilitate recovery, considering emerging strategies unique to coral disease and more established strategies to support reef resilience. We also describe approaches to communicating about coral disease outbreaks that will address common misperceptions and raise awareness of the coral disease threat. By adopting this framework, managers and researchers can establish a community of practice and can develop response plans for the management of coral disease outbreaks based on local needs. The collaborations between managers and researchers we suggest will enable adaptive management of disease impacts following evaluating the cost-effectiveness of emerging response actions and incrementally improving our understanding of outbreak causation.

  14. A Framework for Responding to Coral Disease Outbreaks that Facilitates Adaptive Management

    NASA Astrophysics Data System (ADS)

    Beeden, Roger; Maynard, Jeffrey A.; Marshall, Paul A.; Heron, Scott F.; Willis, Bette L.

    2012-01-01

    Predicted increases in coral disease outbreaks associated with climate change have implications for coral reef ecosystems and the people and industries that depend on them. It is critical that coral reef managers understand these implications and have the ability to assess and reduce risk, detect and contain outbreaks, and monitor and minimise impacts. Here, we present a coral disease response framework that has four core components: (1) an early warning system, (2) a tiered impact assessment program, (3) scaled management actions and (4) a communication plan. The early warning system combines predictive tools that monitor the risk of outbreaks of temperature-dependent coral diseases with in situ observations provided by a network of observers who regularly report on coral health and reef state. Verified reports of an increase in disease prevalence trigger a tiered response of more detailed impact assessment, targeted research and/or management actions. The response is scaled to the risk posed by the outbreak, which is a function of the severity and spatial extent of the impacts. We review potential management actions to mitigate coral disease impacts and facilitate recovery, considering emerging strategies unique to coral disease and more established strategies to support reef resilience. We also describe approaches to communicating about coral disease outbreaks that will address common misperceptions and raise awareness of the coral disease threat. By adopting this framework, managers and researchers can establish a community of practice and can develop response plans for the management of coral disease outbreaks based on local needs. The collaborations between managers and researchers we suggest will enable adaptive management of disease impacts following evaluating the cost-effectiveness of emerging response actions and incrementally improving our understanding of outbreak causation.

  15. Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks

    PubMed Central

    Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer L.; Collins, Kathrine M.; Tucker, Compton J.; Pak, Edwin W.; Britch, Seth C.; Eastman, James Ronald; Pinzon, Jorge E.; Russell, Kevin L.

    2012-01-01

    Background Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. Methods and Findings We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004–2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3–4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Conclusions/Significance Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies. PMID:22292093

  16. Climate teleconnections and recent patterns of human and animal disease outbreaks.

    PubMed

    Anyamba, Assaf; Linthicum, Kenneth J; Small, Jennifer L; Collins, Kathrine M; Tucker, Compton J; Pak, Edwin W; Britch, Seth C; Eastman, James Ronald; Pinzon, Jorge E; Russell, Kevin L

    2012-01-01

    Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004-2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3-4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies.

  17. Climate teleconnections and recent patterns of human and animal disease outbreaks

    USDA-ARS?s Scientific Manuscript database

    Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Extremes in rainfall (drought and flood) during the p...

  18. Ebola Virus Disease--Sierra Leone and Guinea, August 2015.

    PubMed

    Hersey, Sara; Martel, Lise D; Jambai, Amara; Keita, Sakoba; Yoti, Zabulon; Meyer, Erika; Seeman, Sara; Bennett, Sarah; Ratto, Jeffrey; Morgan, Oliver; Akyeampong, Mame Afua; Sainvil, Schabbethai; Worrell, Mary Claire; Fitter, David; Arnold, Kathryn E

    2015-09-11

    The Ebola virus disease (Ebola) outbreak in West Africa began in late 2013 in Guinea (1) and spread unchecked during early 2014. By mid-2014, it had become the first Ebola epidemic ever documented. Transmission was occurring in multiple districts of Guinea, Liberia, and Sierra Leone, and for the first time, in capital cities (2). On August 8, 2014, the World Health Organization (WHO) declared the outbreak to be a Public Health Emergency of International Concern (3). Ministries of Health, with assistance from multinational collaborators, have reduced Ebola transmission, and the number of cases is now declining. While Liberia has not reported a case since July 12, 2015, transmission has continued in Guinea and Sierra Leone, although the numbers of cases reported are at the lowest point in a year. In August 2015, Guinea and Sierra Leone reported 10 and four confirmed cases, respectively, compared with a peak of 526 (Guinea) and 1,997 (Sierra Leone) in November 2014. This report details the current situation in Guinea and Sierra Leone, outlines strategies to interrupt transmission, and highlights the need to maintain public health response capacity and vigilance for new cases at this critical time to end the outbreak.

  19. Spatial epidemiological techniques in cholera mapping and analysis towards a local scale predictive modelling

    NASA Astrophysics Data System (ADS)

    Rasam, A. R. A.; Ghazali, R.; Noor, A. M. M.; Mohd, W. M. N. W.; Hamid, J. R. A.; Bazlan, M. J.; Ahmad, N.

    2014-02-01

    Cholera spatial epidemiology is the study of the spread and control of the disease spatial pattern and epidemics. Previous studies have shown that multi-factorial causation such as human behaviour, ecology and other infectious risk factors influence the disease outbreaks. Thus, understanding spatial pattern and possible interrelationship factors of the outbreaks are crucial to be explored an in-depth study. This study focuses on the integration of geographical information system (GIS) and epidemiological techniques in exploratory analyzing the cholera spatial pattern and distribution in the selected district of Sabah. Spatial Statistic and Pattern tools in ArcGIS and Microsoft Excel software were utilized to map and analyze the reported cholera cases and other data used. Meanwhile, cohort study in epidemiological technique was applied to investigate multiple outcomes of the disease exposure. The general spatial pattern of cholera was highly clustered showed the disease spread easily at a place or person to others especially 1500 meters from the infected person and locations. Although the cholera outbreaks in the districts are not critical, it could be endemic at the crowded areas, unhygienic environment, and close to contaminated water. It was also strongly believed that the coastal water of the study areas has possible relationship with the cholera transmission and phytoplankton bloom since the areas recorded higher cases. GIS demonstrates a vital spatial epidemiological technique in determining the distribution pattern and elucidating the hypotheses generating of the disease. The next research would be applying some advanced geo-analysis methods and other disease risk factors for producing a significant a local scale predictive risk model of the disease in Malaysia.

  20. Current and future vaccines and vaccination strategies against infectious laryngotracheitis (ILT) respiratory disease of poultry.

    PubMed

    García, Maricarmen

    2017-07-01

    Infectious laryngotracheitis (ILT) is an economically important respiratory disease of poultry that affects the industry worldwide. Vaccination is the principal tool in the control of the disease. Two types of vaccines, live attenuated and recombinant viral vector, are commercially available. The first generation of GaHV-1 vaccines available since the early 1960's are live viruses, attenuated by continuous passages in cell culture or embryos. These vaccines significantly reduce mortalities and, in particular, the chicken embryo origin (CEO) vaccines have shown to limit outbreaks of the disease. However, the CEO vaccines can regain virulence and become the source of outbreaks. Recombinant viral vector vaccines, the second generation of GaHV-1 vaccines, were first introduced in the early 2000's. These are Fowl Pox virus (FPV) and Herpes virus of turkeys (HVT) vectors expressing one or multiple GaHV-1 immunogenic proteins. Recombinant viral vector vaccines are considered a much safer alternative because they do not regain virulence. In the face of challenge, they improve bird performance and ameliorate clinical signs of the disease but fail to reduce shedding of the challenge virus increasing the likelihood of outbreaks. At the moment, several new strategies are being evaluated to improve both live attenuated and viral vector vaccines. Potential new live vaccines attenuated by deletion of genes associated with virulence or by selection of CEO viral subpopulations that do not exhibit increased virulence upon passages in birds are being evaluated. Also new vector alternatives to express GaHV-1 glycoproteins in Newcastle diseases virus (NDV) or in modified very virulent (vv) serotype I Marek's disease virus (MDV) were developed and evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Incentives for Reporting Infectious Disease Outbreaks

    ERIC Educational Resources Information Center

    Malani, Anup; Laxminarayan, Ramanan

    2011-01-01

    The global spread of diseases such as swine flu and SARS highlights the difficult decision governments face when presented with evidence of a local outbreak. Reporting the outbreak may bring medical assistance but is also likely to trigger trade sanctions by countries hoping to contain the disease. Suppressing the information may avoid trade…

  2. Surveillance for Waterborne Disease Outbreaks and Other Health Events Associated with Recreational Water -United States, 2007-2008

    EPA Science Inventory

    Background: Since 1978, CDC, EPA, and the Council of State and Territorial Epidemiologists have collaborated on the Waterborne Disease and Outbreak Surveillance System (WBDOSS) to capture data on waterborne disease outbreaks associated with recreational water. WBDOSS is the prima...

  3. Literature Review of Associations among Attributes of Reported Drinking Water Disease Outbreaks

    PubMed Central

    Ligon, Grant; Bartram, Jamie

    2016-01-01

    Waterborne disease outbreaks attributed to various pathogens and drinking water system characteristics have adversely affected public health worldwide throughout recorded history. Data from drinking water disease outbreak (DWDO) reports of widely varying breadth and depth were synthesized to investigate associations between outbreak attributes and human health impacts. Among 1519 outbreaks described in 475 sources identified during review of the primarily peer-reviewed, English language literature, most occurred in the U.S., the U.K. and Canada (in descending order). The outbreaks are most frequently associated with pathogens of unknown etiology, groundwater and untreated systems, and catchment realm-associated deficiencies (i.e., contamination events). Relative frequencies of outbreaks by various attributes are comparable with those within other DWDO reviews, with water system size and treatment type likely driving most of the (often statistically-significant at p < 0.05) differences in outbreak frequency, case count and attack rate. Temporal analysis suggests that while implementation of surface (drinking) water management policies is associated with decreased disease burden, further strengthening of related policies is needed to address the remaining burden attributed to catchment and distribution realm-associated deficiencies and to groundwater viral and disinfection-only system outbreaks. PMID:27240387

  4. Literature Review of Associations among Attributes of Reported Drinking Water Disease Outbreaks.

    PubMed

    Ligon, Grant; Bartram, Jamie

    2016-05-27

    Waterborne disease outbreaks attributed to various pathogens and drinking water system characteristics have adversely affected public health worldwide throughout recorded history. Data from drinking water disease outbreak (DWDO) reports of widely varying breadth and depth were synthesized to investigate associations between outbreak attributes and human health impacts. Among 1519 outbreaks described in 475 sources identified during review of the primarily peer-reviewed, English language literature, most occurred in the U.S., the U.K. and Canada (in descending order). The outbreaks are most frequently associated with pathogens of unknown etiology, groundwater and untreated systems, and catchment realm-associated deficiencies (i.e., contamination events). Relative frequencies of outbreaks by various attributes are comparable with those within other DWDO reviews, with water system size and treatment type likely driving most of the (often statistically-significant at p < 0.05) differences in outbreak frequency, case count and attack rate. Temporal analysis suggests that while implementation of surface (drinking) water management policies is associated with decreased disease burden, further strengthening of related policies is needed to address the remaining burden attributed to catchment and distribution realm-associated deficiencies and to groundwater viral and disinfection-only system outbreaks.

  5. The Association Between Extreme Precipitation and Waterborne Disease Outbreaks in the United States, 1948–1994

    PubMed Central

    Curriero, Frank C.; Patz, Jonathan A.; Rose, Joan B.; Lele, Subhash

    2001-01-01

    Objectives. Rainfall and runoff have been implicated in site-specific waterborne disease outbreaks. Because upward trends in heavy precipitation in the United States are projected to increase with climate change, this study sought to quantify the relationship between precipitation and disease outbreaks. Methods. The US Environmental Protection Agency waterborne disease database, totaling 548 reported outbreaks from 1948 through 1994, and precipitation data of the National Climatic Data Center were used to analyze the relationship between precipitation and waterborne diseases. Analyses were at the watershed level, stratified by groundwater and surface water contamination and controlled for effects due to season and hydrologic region. A Monte Carlo version of the Fisher exact test was used to test for statistical significance. Results. Fifty-one percent of waterborne disease outbreaks were preceded by precipitation events above the 90th percentile (P = .002), and 68% by events above the 80th percentile (P = .001). Outbreaks due to surface water contamination showed the strongest association with extreme precipitation during the month of the outbreak; a 2-month lag applied to groundwater contamination events. Conclusions. The statistically significant association found between rainfall and disease in the United States is important for water managers, public health officials, and risk assessors of future climate change. PMID:11499103

  6. Enteropathogenic Escherichia coli Outbreak and its Incubation Period: Is it Short or Long?

    PubMed

    Lee, Dong-Woo; Gwack, Jin; Youn, Seun-Ki

    2012-03-01

    The aim of this study is to determine the incubation period of enteropathogenic Escherichia coli (EPEC), which creates several outbreaks in a year in South Korea. We reviewed all water and food-borne outbreaks data reported to the Korea Centers for Disease Control and Prevention (KCDC) from 2009 to 2010 and determined their characteristics. Through this process, we can presume the incubation period of EPEC among outbreaks in South Korea. A total of 497 water and food-borne outbreaks were reported to KCDC and 66 (13.28%) are defined as E coli-origin outbreaks. EPEC was the most common subtype of E coli, being confirmed as a causative organism in 26 outbreaks. Overall attack rate was 15.85% (range 0.9-100). The subjects were eight outbreaks that have a clear history of single exposure and we can estimate the incubation time of EPEC as minimum 0.5 hours to maximum 34.0 hours with a mean 12.9 hours (range 4.5-24.0). The cases of those cannot completely rule out the chance of multiple exposure from same source or place have minimum 1.0 hour, to a maximum of 195.5 hours and a mean 30.5 (range 22.7-61.0) hours of incubation period. This serial analysis suggests that EPEC has actually shorter mean incubation period as much as 12 hours. When this period is longer than 1 day or over, then the epidemiologic investigator should consider the chance of repeated or continuous exposure by making it clear whether there is any chance of any other exposure in common.

  7. Global Distribution of Outbreaks of Water-Associated Infectious Diseases

    PubMed Central

    Yang, Kun; LeJeune, Jeffrey; Alsdorf, Doug; Lu, Bo; Shum, C. K.; Liang, Song

    2012-01-01

    Background Water plays an important role in the transmission of many infectious diseases, which pose a great burden on global public health. However, the global distribution of these water-associated infectious diseases and underlying factors remain largely unexplored. Methods and Findings Based on the Global Infectious Disease and Epidemiology Network (GIDEON), a global database including water-associated pathogens and diseases was developed. In this study, reported outbreak events associated with corresponding water-associated infectious diseases from 1991 to 2008 were extracted from the database. The location of each reported outbreak event was identified and geocoded into a GIS database. Also collected in the GIS database included geo-referenced socio-environmental information including population density (2000), annual accumulated temperature, surface water area, and average annual precipitation. Poisson models with Bayesian inference were developed to explore the association between these socio-environmental factors and distribution of the reported outbreak events. Based on model predictions a global relative risk map was generated. A total of 1,428 reported outbreak events were retrieved from the database. The analysis suggested that outbreaks of water-associated diseases are significantly correlated with socio-environmental factors. Population density is a significant risk factor for all categories of reported outbreaks of water-associated diseases; water-related diseases (e.g., vector-borne diseases) are associated with accumulated temperature; water-washed diseases (e.g., conjunctivitis) are inversely related to surface water area; both water-borne and water-related diseases are inversely related to average annual rainfall. Based on the model predictions, “hotspots” of risks for all categories of water-associated diseases were explored. Conclusions At the global scale, water-associated infectious diseases are significantly correlated with socio-environmental factors, impacting all regions which are affected disproportionately by different categories of water-associated infectious diseases. PMID:22348158

  8. Automated biosurveillance data from England and Wales, 1991-2011.

    PubMed

    Enki, Doyo G; Noufaily, Angela; Garthwaite, Paul H; Andrews, Nick J; Charlett, André; Lane, Chris; Farrington, C Paddy

    2013-01-01

    Outbreak detection systems for use with very large multiple surveillance databases must be suited both to the data available and to the requirements of full automation. To inform the development of more effective outbreak detection algorithms, we analyzed 20 years of data (1991-2011) from a large laboratory surveillance database used for outbreak detection in England and Wales. The data relate to 3,303 distinct types of infectious pathogens, with a frequency range spanning 6 orders of magnitude. Several hundred organism types were reported each week. We describe the diversity of seasonal patterns, trends, artifacts, and extra-Poisson variability to which an effective multiple laboratory-based outbreak detection system must adjust. We provide empirical information to guide the selection of simple statistical models for automated surveillance of multiple organisms, in the light of the key requirements of such outbreak detection systems, namely, robustness, flexibility, and sensitivity.

  9. Automated Biosurveillance Data from England and Wales, 1991–2011

    PubMed Central

    Enki, Doyo G.; Noufaily, Angela; Garthwaite, Paul H.; Andrews, Nick J.; Charlett, André; Lane, Chris

    2013-01-01

    Outbreak detection systems for use with very large multiple surveillance databases must be suited both to the data available and to the requirements of full automation. To inform the development of more effective outbreak detection algorithms, we analyzed 20 years of data (1991–2011) from a large laboratory surveillance database used for outbreak detection in England and Wales. The data relate to 3,303 distinct types of infectious pathogens, with a frequency range spanning 6 orders of magnitude. Several hundred organism types were reported each week. We describe the diversity of seasonal patterns, trends, artifacts, and extra-Poisson variability to which an effective multiple laboratory-based outbreak detection system must adjust. We provide empirical information to guide the selection of simple statistical models for automated surveillance of multiple organisms, in the light of the key requirements of such outbreak detection systems, namely, robustness, flexibility, and sensitivity. PMID:23260848

  10. Simulation study of the mechanisms underlying outbreaks of clinical disease caused by Actinobacillus pleuropneumoniae in finishing pigs.

    PubMed

    Klinkenberg, D; Tobias, T J; Bouma, A; van Leengoed, L A M G; Stegeman, J A

    2014-10-01

    Actinobacillus pleuropneumoniae is a major cause of respiratory disease in pigs. Many farms are endemically infected without apparent disease, but occasionally severe outbreaks of pleuropneumonia occur. To prevent and control these outbreaks without antibiotics, the underlying mechanisms of these outbreaks need to be understood. Outbreaks are probably initiated by a trigger (common risk factor) changing the host-pathogen interaction, but it is unclear whether this trigger causes all cases directly (trigger mechanism), or whether the first case starts a transmission chain inducing disease in the infected contacts (transmission mechanism). The aim of this study was to identify conditions under which these mechanisms could cause A. pleuropneumoniae outbreaks, and to assess means for prevention and control. Outbreaks were first characterised by data from a literature review, defining an average outbreak at 12 weeks of age, affecting 50% of animals within 4 days. Simple mathematical models describing the two mechanisms can reproduce average outbreaks, with two observations supporting the trigger mechanism: (1) disease should be transmitted 50 times faster than supported by literature if there is a transmission chain; and (2) the trigger mechanism is consistent with the absence of reported outbreaks in young pigs as they have not yet been colonised by the bacterium. In conclusion, outbreaks of A. pleuropneumoniae on endemic farms are most likely caused by a trigger inducing pneumonia in already infected pigs, but more evidence is needed to identify optimum preventive interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Multiple enteropathogenic viruses in a gastroenteritis outbreak in a military exercise of the Portuguese Army.

    PubMed

    Lopes-João, António; Costa, Inês; Mesquita, João R; Oleastro, Mónica; Penha-Gonçalves, Carlos; Nascimento, Maria S J

    2015-07-01

    Gastroenteritis is one of the most common infectious diseases in the military populations and can diminish operational effectiveness and impede force readiness. The present study investigates the cause and the source of an acute gastroenteritis outbreak that occurred during a military exercise of the Portuguese Army, in February 2013. A retrospective investigation was performed and stool samples, food items and water were screened for common foodborne bacteria and viruses, namely Norovirus GI, Norovirus GII, Astrovirus, Rotavirus, Adenovirus and Sapovirus. From the total of 160 soldiers that participated in the military exercise 20 developed gastroenteritis (attack rate of 12.5%). Symptoms were predominantly vomiting (n=17, 85%) and diarrhoea (n=9, 45%). The first cases occurred 24-48h after drinking water from the creek, the plausible origin of the outbreak. The epidemic peak was registered 2 days after and the last cases 6 days after, upon returning to base. No pathogenic bacteria were found in stools however virological analysis revealed the presence of multiple enteropathogenic viruses, namely Norovirus GI (GI.3), Norovirus GII (GII.4 New Orleans 2009), Astrovirus and Sapovirus, as single or co-infections. Food and water samples were not tested for the presence of viruses due to exhaustion of samples on bacteriological analysis. To the best of our knowledge this is the first report of a viral gastroenteritis outbreak among military personnel in the Portuguese Army. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Estimating the Burden of Disease Associated with Outbreaks Reported to the U.S. Waterborne Disease Outbreak Surveillance System: Identifying Limitations and Improvements (Final Report)

    EPA Science Inventory

    This report demonstrates how data from the Waterborne Disease Outbreak Surveillance System (WBDOSS) can be used to estimate disease burden and presents results using 30 years of data. This systematic analysis does not attempt to provide an estimate of the actual incidence and b...

  13. Identification, virulence, and mass spectrometry of toxic ECP fractions of West Alabama isolates of Aeromonas hydrophila obtained from a 2010 disease outbreak

    USDA-ARS?s Scientific Manuscript database

    In West Alabama, disease outbreaks in 2009 caused by Aeromonas hydrophila have led to an estimated loss of more than $3 million. In 2010, disease outbreak occurred again in West Alabama, causing losses of hundreds of thousands of pounds of market size channel catfish. During the 2010 disease outbrea...

  14. Lessons learnt from a measles outbreak in Madang Province, Papua New Guinea, June 2014 - March 2015.

    PubMed

    Kamac, Karoi; Paterson, Beverley; Flint, James

    2017-01-01

    This study examined measles vaccine wastage during an outbreak response in Madang Province of Papua New Guinea from June 2014 to March 2015. Vaccine wastage was defined as the number of doses received by a health centre minus the total number of doses administered during and returned following the outbreak vaccination campaign. Vaccine data were collected from the Provincial Health Information Office, the Provincial Vaccine Store register and clinic and health centre immunization registers for calculating the vaccine wastage. Interviews were conducted with all 48 health centres involved in the outbreak response using a structured questionnaire to explore the reasons for vaccine wastage. Of the 154 110 doses issued by Madang Province during the outbreak, a total of 85 236 (55%) doses were wasted. The wastage varied by district from 31% to 90%. The total cost of the vaccine wastage was estimated to be 589 810 Kina (US$ 196 604). None of the health centres maintained vaccine stock registers. Most health centres indicated multiple failures in cold chain logistics. Almost 40% of health centres reported incorrectly diluting vaccines. The same percentage of health centres reported using incorrect injection techniques. Regular audits of cold chain logistics, staff training and improved processes for recording vaccine administration and wastage will decrease vaccine wastage during vaccine-preventable disease outbreaks and also benefit routine immunization activities.

  15. Safety of community drinking-water and outbreaks of waterborne enteric disease: Israel, 1976-97.

    PubMed Central

    Tulchinsky, T. H.; Burla, E.; Clayman, M.; Sadik, C.; Brown, A.; Goldberger, S.

    2000-01-01

    Waterborne disease remains a major public health problem in many countries. We report findings on nearly three decades of waterborne disease in Israel and the part these diseases play in the total national burden of enteric disease. During the 1970s and 1980s, Israel's community water supplies were frequently of poor quality according to the microbiological standards at that time, and the country experienced many outbreaks of waterborne enteric disease. New regulations raised water quality standards and made chlorination of community water supplies mandatory, as well as imposing more stringent guidelines on maintaining water sources and distribution systems for both surface water and groundwater. This was followed by improved compliance and water quality, and a marked decline in the number of outbreaks of waterborne disease; no outbreaks were detected between 1992 and 1997. The incidence of waterborne salmonellosis, shigellosis, and typhoid declined markedly as proportions of the total burden of these diseases, but peaked during the time in which there were frequent outbreaks of waterborne disease (1980-85). Long-term trends in the total incidence of reported infectious enteric diseases from all sources, including typhoid, shigellosis, and viral hepatitis (all types) declined, while the total incidence of salmonellosis increased. Mandatory chlorination has had an important impact on improving water quality, in reducing outbreaks of waterborne disease in Israel, and reducing the total burden of enteric disease in the country. PMID:11196499

  16. East Coast fever and multiple El Niño Southern oscillation ranks.

    PubMed

    Fandamu, P; Duchateau, L; Speybroeck, N; Mulumba, M; Berkvens, D

    2006-01-30

    East Coast fever (ECF), a tick-borne disease of cattle, is a major constraint to livestock development in Africa in general and southern Zambia in particular. Understanding the transmission patterns of this disease complex is very difficult as shown by previous studies in southern and eastern Zambia due to the interplay of risk factors. In this long-term study, we investigated whether global weather changes had any influence on disease transmission in traditionally kept cattle in southern Zambia. The results from this study show a strong association between increased Theileria parva contacts in cattle and the presence of El Niño, clearly linking a simple climatic index to disease outbreaks. We therefore propose that in southern Zambia, the simple and readily available multiple El Niño Southern oscillation index (MEI) ranks be used in planning ECF control programmes and early warning.

  17. Outbreaks-of Ebola virus disease in the West African sub-region.

    PubMed

    Osungbade, K O; Oni, A A

    2014-06-01

    Five West African countries, including Nigeria are currently experiencing the largest, most severe, most complex outbreak of Ebola virus disease in history. This paper provided a chronology of outbreaks of Ebola virus disease in the West African sub-region and provided an update on efforts at containing the present outbreak. Literature from Pubmed (MEDLINE), AJOL, Google Scholar and Cochrane database were reviewed. Outbreaks of Ebola, virus disease had frequently occurred mainly in Central and East African countries. Occasional outbreaks reported from outside of Africa were due to laboratory contamination and imported monkeys in quarantine facilities. The ongoing outbreak in West Africa is the largest and first in the sub-region; the number of suspected cases and deaths from this single current outbreak is already about three times the total of all cases and deaths from previous known outbreaks in 40 years. Prevention and control efforts are hindered not only by lack of a known vaccine and virus-specific treatment, but also by weak health systems, poor sanitation, poor personal hygiene and cultural beliefs and practices, including myths and misconceptions about Ebola virus disease--all of which are prevalent in affected countries. Constrained by this situation, the World Health Organisation departed from the global standard and recommended the use of not yet proven treatments to treat or prevent the disease in humans on ethical and evidential grounds. The large number of people affected by the present outbreak in West Africa and the high case-fatality rate calls for accelerated evaluation and development of the investigational medical interventions for life saving and curbing the epidemic. Meanwhile, existing interventions such as early detection and isolation, contact tracing and monitoring, and adherence to rigorous procedures of infection prevention and control should be intensified.

  18. A Cluster of Paralytic Poliomyelitis Cases Due to Transmission of Slightly Diverged Sabin 2 Vaccine Poliovirus

    PubMed Central

    Korotkova, Ekaterina A.; Gmyl, Anatoly P.; Yakovenko, Maria L.; Ivanova, Olga E.; Eremeeva, Tatyana P.; Kozlovskaya, Liubov I.; Shakaryan, Armen K.; Lipskaya, Galina Y.; Parshina, Irina L.; Loginovskikh, Nataliya V.; Morozova, Nadezhda S.

    2016-01-01

    ABSTRACT Four cases of acute flaccid paralysis caused by slightly evolved (Sabin-like) vaccine polioviruses of serotype 2 were registered in July to August 2010 in an orphanage of Biysk (Altai Region, Russia). The Biysk cluster of vaccine-associated paralytic poliomyelitis (VAPP) had several uncommon, if not unique, features. (i) Until this outbreak, Sabin-like viruses (in distinction to more markedly evolved vaccine-derived polioviruses [VDPVs]) were reported to cause only sporadic cases of VAPP. Consequently, VAPP cases were not considered to require outbreak-type responses. However, the Biysk outbreak completely blurred the borderline between Sabin-like viruses and VDPVs in epidemiological terms. (ii) The outbreak demonstrated a very high disease/infection ratio, apparently exceeding even that reported for wild polioviruses. The viral genome structures did not provide any substantial hints as to the underlying reason(s) for such pathogenicity. (iii) The replacement of intestinal poliovirus lineages by other Sabin-like lineages during short intervals after the disease onsets was observed in two patients. Again, the sequences of the respective genomes provided no clues to explain these events. (iv) The polioviruses isolated from the patients and their contacts demonstrated a striking heterogeneity as well as rapid and uneven evolution of the whole genomes and their parts, apparently due to extensive interpersonal contacts in a relatively small closed community, multiple bottlenecking, and recombination. Altogether, the results demonstrate several new aspects of pathogenicity, epidemiology, and evolution of vaccine-related polioviruses and underscore several serious gaps in understanding these problems. IMPORTANCE The oral poliovirus vaccine largely contributed to the nearly complete disappearance of poliovirus-caused poliomyelitis. Being generally safe, it can, in some cases, result in a paralytic disease. Two types of such outcomes are distinguished: those caused by slightly diverged (Sabin-like) viruses on the one hand and those caused by significantly diverged VDPVs on the other. This classification is based on the number of mutations in the viral genome region encoding a viral structural protein. Until now, only sporadic poliomyelitis cases due to Sabin-like polioviruses had been described, and in distinction from the VDPV-triggered outbreaks, they did not require broad-scale epidemiological responses. Here, an unusual outbreak of poliomyelitis caused by a Sabin-like virus is reported, which had an exceptionally high disease/infection ratio. This outbreak blurred the borderline between Sabin-like polioviruses and VDPVs both in pathogenicity and in the kind of responses required, as well as underscoring important gaps in understanding the pathogenicity, epidemiology, and evolution of vaccine-derived polioviruses. PMID:27099315

  19. A Cluster of Paralytic Poliomyelitis Cases Due to Transmission of Slightly Diverged Sabin 2 Vaccine Poliovirus.

    PubMed

    Korotkova, Ekaterina A; Gmyl, Anatoly P; Yakovenko, Maria L; Ivanova, Olga E; Eremeeva, Tatyana P; Kozlovskaya, Liubov I; Shakaryan, Armen K; Lipskaya, Galina Y; Parshina, Irina L; Loginovskikh, Nataliya V; Morozova, Nadezhda S; Agol, Vadim I

    2016-07-01

    Four cases of acute flaccid paralysis caused by slightly evolved (Sabin-like) vaccine polioviruses of serotype 2 were registered in July to August 2010 in an orphanage of Biysk (Altai Region, Russia). The Biysk cluster of vaccine-associated paralytic poliomyelitis (VAPP) had several uncommon, if not unique, features. (i) Until this outbreak, Sabin-like viruses (in distinction to more markedly evolved vaccine-derived polioviruses [VDPVs]) were reported to cause only sporadic cases of VAPP. Consequently, VAPP cases were not considered to require outbreak-type responses. However, the Biysk outbreak completely blurred the borderline between Sabin-like viruses and VDPVs in epidemiological terms. (ii) The outbreak demonstrated a very high disease/infection ratio, apparently exceeding even that reported for wild polioviruses. The viral genome structures did not provide any substantial hints as to the underlying reason(s) for such pathogenicity. (iii) The replacement of intestinal poliovirus lineages by other Sabin-like lineages during short intervals after the disease onsets was observed in two patients. Again, the sequences of the respective genomes provided no clues to explain these events. (iv) The polioviruses isolated from the patients and their contacts demonstrated a striking heterogeneity as well as rapid and uneven evolution of the whole genomes and their parts, apparently due to extensive interpersonal contacts in a relatively small closed community, multiple bottlenecking, and recombination. Altogether, the results demonstrate several new aspects of pathogenicity, epidemiology, and evolution of vaccine-related polioviruses and underscore several serious gaps in understanding these problems. The oral poliovirus vaccine largely contributed to the nearly complete disappearance of poliovirus-caused poliomyelitis. Being generally safe, it can, in some cases, result in a paralytic disease. Two types of such outcomes are distinguished: those caused by slightly diverged (Sabin-like) viruses on the one hand and those caused by significantly diverged VDPVs on the other. This classification is based on the number of mutations in the viral genome region encoding a viral structural protein. Until now, only sporadic poliomyelitis cases due to Sabin-like polioviruses had been described, and in distinction from the VDPV-triggered outbreaks, they did not require broad-scale epidemiological responses. Here, an unusual outbreak of poliomyelitis caused by a Sabin-like virus is reported, which had an exceptionally high disease/infection ratio. This outbreak blurred the borderline between Sabin-like polioviruses and VDPVs both in pathogenicity and in the kind of responses required, as well as underscoring important gaps in understanding the pathogenicity, epidemiology, and evolution of vaccine-derived polioviruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Estimating the frequency and characteristics of respiratory disease outbreaks at mass gatherings in the United States: Findings from a state and local health department assessment

    PubMed Central

    Gulati, Reena K.; Rainey, Jeanette J.

    2017-01-01

    Mass gatherings create environments conducive to the transmission of infectious diseases. Thousands of mass gatherings are held annually in the United States; however, information on the frequency and characteristics of respiratory disease outbreaks and on the use of nonpharmaceutical interventions at these gatherings is scarce. We administered an online assessment to the 50 state health departments and 31 large local health departments in the United States to gather information about mass gathering-related respiratory disease outbreaks occurring between 2009 and 2014. The assessment also captured information on the use of nonpharmaceutical interventions to slow disease transmission in these settings. We downloaded respondent data into a SAS dataset for descriptive analyses. We received responses from 43 (53%) of the 81 health jurisdictions. Among these, 8 reported 18 mass gathering outbreaks. More than half (n = 11) of the outbreaks involved zoonotic transmission of influenza A (H3N2v) at county and state fairs. Other outbreaks occurred at camps (influenza A (H1N1)pdm09 [n = 2] and A (H3) [n = 1]), religious gatherings (influenza A (H1N1)pdm09 [n = 1] and unspecified respiratory virus [n = 1]), at a conference (influenza A (H1N1)pdm09), and a sporting event (influenza A). Outbreaks ranged from 5 to 150 reported cases. Of the 43 respondents, 9 jurisdictions used nonpharmaceutical interventions to slow or prevent disease transmission. Although respiratory disease outbreaks with a large number of cases occur at many types of mass gatherings, our assessment suggests that such outbreaks may be uncommon, even during the 2009 influenza A (H1N1) pandemic, which partially explains the reported, but limited, use of nonpharmaceutical interventions. More research on the characteristics of mass gatherings with respiratory disease outbreaks and effectiveness of nonpharmaceutical interventions would likely be beneficial for decision makers at state and local health departments when responding to future outbreaks and pandemics. PMID:29077750

  1. Timeliness of Nongovernmental versus Governmental Global Outbreak Communications

    PubMed Central

    Mondor, Luke; Brownstein, John S.; Chan, Emily; Madoff, Lawrence C.; Pollack, Marjorie P.; Buckeridge, David L.

    2012-01-01

    To compare the timeliness of nongovernmental and governmental communications of infectious disease outbreaks and evaluate trends for each over time, we investigated the time elapsed from the beginning of an outbreak to public reporting of the event. We found that governmental sources improved the timeliness of public reporting of infectious disease outbreaks during the study period. PMID:22709741

  2. Identifying Future Disease Hot Spots: Infectious Disease Vulnerability Index.

    PubMed

    Moore, Melinda; Gelfeld, Bill; Okunogbe, Adeyemi; Paul, Christopher

    2017-06-01

    Recent high-profile outbreaks, such as Ebola and Zika, have illustrated the transnational nature of infectious diseases. Countries that are most vulnerable to such outbreaks might be higher priorities for technical support. RAND created the Infectious Disease Vulnerability Index to help U.S. government and international agencies identify these countries and thereby inform programming to preemptively help mitigate the spread and effects of potential transnational outbreaks. The authors employed a rigorous methodology to identify the countries most vulnerable to disease outbreaks. They conducted a comprehensive review of relevant literature to identify factors influencing infectious disease vulnerability. Using widely available data, the authors created an index for identifying potentially vulnerable countries and then ranked countries by overall vulnerability score. Policymakers should focus on the 25 most-vulnerable countries with an eye toward a potential "disease belt" in the Sahel region of Africa. The infectious disease vulnerability scores for several countries were better than what would have been predicted on the basis of economic status alone. This suggests that low-income countries can overcome economic challenges and become more resilient to public health challenges, such as infectious disease outbreaks.

  3. Coping with Stress during Infectious Disease Outbreaks

    MedlinePlus

    · Coping With Stress During Infectious Disease Outbreaks What You Should Know When you hear, read, or watch news about an outbreak ... you may feel anxious and show signs of stress. These signs of stress are normal, and may ...

  4. Causes of Outbreaks Associated with Drinking Water in the United States from 1971 to 2006

    PubMed Central

    Craun, Gunther F.; Brunkard, Joan M.; Yoder, Jonathan S.; Roberts, Virginia A.; Carpenter, Joe; Wade, Tim; Calderon, Rebecca L.; Roberts, Jacquelin M.; Beach, Michael J.; Roy, Sharon L.

    2010-01-01

    Summary: Since 1971, the CDC, EPA, and Council of State and Territorial Epidemiologists (CSTE) have maintained the collaborative national Waterborne Disease and Outbreak Surveillance System (WBDOSS) to document waterborne disease outbreaks (WBDOs) reported by local, state, and territorial health departments. WBDOs were recently reclassified to better characterize water system deficiencies and risk factors; data were analyzed for trends in outbreak occurrence, etiologies, and deficiencies during 1971 to 2006. A total of 833 WBDOs, 577,991 cases of illness, and 106 deaths were reported during 1971 to 2006. Trends of public health significance include (i) a decrease in the number of reported outbreaks over time and in the annual proportion of outbreaks reported in public water systems, (ii) an increase in the annual proportion of outbreaks reported in individual water systems and in the proportion of outbreaks associated with premise plumbing deficiencies in public water systems, (iii) no change in the annual proportion of outbreaks associated with distribution system deficiencies or the use of untreated and improperly treated groundwater in public water systems, and (iv) the increasing importance of Legionella since its inclusion in WBDOSS in 2001. Data from WBDOSS have helped inform public health and regulatory responses. Additional resources for waterborne disease surveillance and outbreak detection are essential to improve our ability to monitor, detect, and prevent waterborne disease in the United States. PMID:20610821

  5. How to select a proper early warning threshold to detect infectious disease outbreaks based on the China infectious disease automated alert and response system (CIDARS).

    PubMed

    Wang, Ruiping; Jiang, Yonggen; Michael, Engelgau; Zhao, Genming

    2017-06-12

    China Centre for Diseases Control and Prevention (CDC) developed the China Infectious Disease Automated Alert and Response System (CIDARS) in 2005. The CIDARS was used to strengthen infectious disease surveillance and aid in the early warning of outbreak. The CIDARS has been integrated into the routine outbreak monitoring efforts of the CDC at all levels in China. Early warning threshold is crucial for outbreak detection in the CIDARS, but CDCs at all level are currently using thresholds recommended by the China CDC, and these recommended thresholds have recognized limitations. Our study therefore seeks to explore an operational method to select the proper early warning threshold according to the epidemic features of local infectious diseases. The data used in this study were extracted from the web-based Nationwide Notifiable Infectious Diseases Reporting Information System (NIDRIS), and data for infectious disease cases were organized by calendar week (1-52) and year (2009-2015) in Excel format; Px was calculated using a percentile-based moving window (moving window [5 week*5 year], x), where x represents one of 12 centiles (0.40, 0.45, 0.50….0.95). Outbreak signals for the 12 Px were calculated using the moving percentile method (MPM) based on data from the CIDARS. When the outbreak signals generated by the 'mean + 2SD' gold standard were in line with a Px generated outbreak signal for each week during the year of 2014, this Px was then defined as the proper threshold for the infectious disease. Finally, the performance of new selected thresholds for each infectious disease was evaluated by simulated outbreak signals based on 2015 data. Six infectious diseases were selected in this study (chickenpox, mumps, hand foot and mouth diseases (HFMD), scarlet fever, influenza and rubella). Proper thresholds for chickenpox (P75), mumps (P80), influenza (P75), rubella (P45), HFMD (P75), and scarlet fever (P80) were identified. The selected proper thresholds for these 6 infectious diseases could detect almost all simulated outbreaks within a shorter time period compared to thresholds recommended by the China CDC. It is beneficial to select the proper early warning threshold to detect infectious disease aberrations based on characteristics and epidemic features of local diseases in the CIDARS.

  6. [Foodborne disease outbreaks surveillance in Chile].

    PubMed

    Olea, Andrea; Díaz, Janepsy; Fuentes, Rodrigo; Vaquero, Alejandra; García, Maritza

    2012-10-01

    Foodborne disease outbreaks are one of the main health problems globally, having an extensive impact on human welfare. The World Health Organization considers them as the main cause of morbidity and mortality in developing countries, and responsible for high levels of loss of productivity in developed countries. To describe the epidemiology of foodborne disease outbreaks according to data contained in an automated surveillance system. Descriptive observational study of notified outbreaks from the surveillance system, between 2005 and 2010 in Chile. The information was based on etiology, temporal and spatial distribution, and epidemiologic description of outbreaks during this period. There were 5,689 notified outbreaks. Most of them occurred during 2006 (1,106 outbreaks, rate 6.7 per 100,000 inhabitants) and 2008 (1,316 outbreaks, rate 7.9 per 100, 000 inhabitants) with an increase during summer. Fifty four percent occurred in the Metropolitan region. The group aged 15 to 44 years old, was the most affected one. Sixty four percent of the outbreaks had the food involved registered, of which fish and fishery products reached 42%. An 81% of the outbreaks did not have a precise etiologic diagnosis. Of all patients involved, 97% were outpatients, 3,2% were hospitalized patients, and 0,1% died. Only 49% of the outbreaks had information about the lack of food safety, with a 34,1% related to food handling procedures. Through the information on the epidemiology of foodborne diseases obtained by the Chilean surveillance system, appropriate control measures could be taken.

  7. Heavy rainfall and waterborne disease outbreaks: the Walkerton example.

    PubMed

    Auld, Heather; MacIver, D; Klaassen, J

    Recent research indicates that excessive rainfall has been a significant contributor to historical waterborne disease outbreaks. The Meteorological Service of Canada, Environment Canada, provided an analysis and testimony to the Walkerton Inquiry on the excessive rainfall events, including an assessment of the historical significance and expected return periods of the rainfall amounts. While the onset of the majority of the Walkerton, Ontario, Escherichia coli O157:H7 and Campylobacter outbreak occurred several days after a heavy rainfall on May 12, the accumulated 5-d rainfall amounts from 8-12 May were particularly significant. These 5-d accumulations could, on average, only be expected once every 60 yr or more in Walkerton and once every 100 yr or so in the heaviest rainfall area to the south of Walkerton. The significant link between excess rainfall and waterborne disease outbreaks, in conjunction with other multiple risk factors, indicates that meteorological and climatological conditions need to be considered by water managers, public health officials, and private citizens as a significant risk factor for water contamination. A system to identify and project the impacts of such challenging or extreme weather conditions on water supply systems could be developed using a combination of weather/climate monitoring information and weather prediction or quantitative precipitation forecast information. The use of weather monitoring and forecast information or a "wellhead alert system" could alert water system and water supply managers on the potential response of their systems to challenging weather conditions and additional requirements to protect health. Similar approaches have recently been used by beach managers in parts of the United States to predict day-to-day water quality for beach advisories.

  8. Evaluating a New Online Course in the Epidemiology of Infectious Diseases by Studying Student Learning Styles

    ERIC Educational Resources Information Center

    Rogers, James W.; Cox, James R.

    2008-01-01

    At RMIT University, students may now elect to study infectious diseases through a course called Outbreak--The Detection and Control of Infectious Disease. Outbreak was designed to simulate in an online class the effective teamwork required to bring resolution to outbreak crises and enable frameworks for future prevention. The appropriateness of…

  9. The importance of waterborne disease outbreak surveillance in the United States.

    PubMed

    Craun, Gunther Franz

    2012-01-01

    Analyses of the causes of disease outbreaks associated with contaminated drinking water in the United States have helped inform prevention efforts at the national, state, and local levels. This article describes the changing nature of disease outbreaks in public water systems during 1971-2008 and discusses the importance of a collaborative waterborne outbreak surveillance system established in 1971. Increasing reports of outbreaks throughout the early 1980s emphasized that microbial contaminants remained a health-risk challenge for suppliers of drinking water. Outbreak investigations identified the responsible etiologic agents and deficiencies in the treatment and distribution of drinking water, especially the high risk associated with unfiltered surface water systems. Surveillance information was important in establishing an effective research program that guided government regulations and industry actions to improve drinking water quality. Recent surveillance statistics suggest that prevention efforts based on these research findings have been effective in reducing outbreak risks especially for surface water systems.

  10. Shared Bacterial and Viral Respiratory Agents in Bighorn Sheep (Ovis canadensis), Domestic Sheep (Ovis aries), and Goats (Capra hircus) in Montana

    PubMed Central

    Miller, David S.; Weiser, Glen C.; Aune, Keith; Roeder, Brent; Atkinson, Mark; Anderson, Neil; Roffe, Thomas J.; Keating, Kim A.; Chapman, Phillip L.; Kimberling, Cleon; Rhyan, Jack; Clarke, P. Ryan

    2011-01-01

    Transmission of infectious agents from livestock reservoirs has been hypothesized to cause respiratory disease outbreaks in bighorn sheep (Ovis canadensis), and land management policies intended to limit this transmission have proven controversial. This cross-sectional study compares the infectious agents present in multiple populations of bighorn sheep near to and distant from their interface with domestic sheep (O. aries) and domestic goat (Capra hircus) and provides critical baseline information needed for interpretations of cross-species transmission risks. Bighorn sheep and livestock shared exposure to Pasteurellaceae, viral, and endoparasite agents. In contrast, although the impact is uncertain, Mycoplasma sp. was isolated from livestock but not bighorn sheep. These results may be the result of historic cross-species transmission of agents that has resulted in a mosaic of endemic and exotic agents. Future work using longitudinal and multiple population comparisons is needed to rigorously establish the risk of outbreaks from cross-species transmission of infectious agents. PMID:22195293

  11. Shared Bacterial and Viral Respiratory Agents in Bighorn Sheep (Ovis canadensis), Domestic Sheep (Ovis aries), and Goats (Capra hircus) in Montana.

    PubMed

    Miller, David S; Weiser, Glen C; Aune, Keith; Roeder, Brent; Atkinson, Mark; Anderson, Neil; Roffe, Thomas J; Keating, Kim A; Chapman, Phillip L; Kimberling, Cleon; Rhyan, Jack; Clarke, P Ryan

    2011-01-01

    Transmission of infectious agents from livestock reservoirs has been hypothesized to cause respiratory disease outbreaks in bighorn sheep (Ovis canadensis), and land management policies intended to limit this transmission have proven controversial. This cross-sectional study compares the infectious agents present in multiple populations of bighorn sheep near to and distant from their interface with domestic sheep (O. aries) and domestic goat (Capra hircus) and provides critical baseline information needed for interpretations of cross-species transmission risks. Bighorn sheep and livestock shared exposure to Pasteurellaceae, viral, and endoparasite agents. In contrast, although the impact is uncertain, Mycoplasma sp. was isolated from livestock but not bighorn sheep. These results may be the result of historic cross-species transmission of agents that has resulted in a mosaic of endemic and exotic agents. Future work using longitudinal and multiple population comparisons is needed to rigorously establish the risk of outbreaks from cross-species transmission of infectious agents.

  12. Shared bacterial and viral respiratory agents in bighorn sheep (Ovis canadensis), domestic sheep (Ovis aries), and goats (Capra hircus) in Montana

    USGS Publications Warehouse

    Miller, David S.; Weiser, Glen C.; Aune, Keith; Roeder, Brent; Atkinson, Mark; Anderson, Neil; Roffe, Thomas J.; Keating, Kim A.; Chapman, Phillip L.; Kimberling, Cleon; Rhyan, Jack C.; Clarke, P. Ryan

    2011-01-01

    Transmission of infectious agents from livestock reservoirs has been hypothesized to cause respiratory disease outbreaks in bighorn sheep (Ovis canadensis), and land management policies intended to limit this transmission have proven controversial. This cross-sectional study compares the infectious agents present in multiple populations of bighorn sheep near to and distant from their interface with domestic sheep (O. aries) and domestic goat (Capra hircus) and provides critical baseline information needed for interpretations of cross-species transmission risks. Bighorn sheep and livestock shared exposure to Pasteurellaceae, viral, and endoparasite agents. In contrast, although the impact is uncertain, Mycoplasma sp. was isolated from livestock but not bighorn sheep. These results may be the result of historic cross-species transmission of agents that has resulted in a mosaic of endemic and exotic agents. Future work using longitudinal and multiple population comparisons is needed to rigorously establish the risk of outbreaks from cross-species transmission of infectious agents.

  13. Framework for evaluating public health surveillance systems for early detection of outbreaks: recommendations from the CDC Working Group.

    PubMed

    Buehler, James W; Hopkins, Richard S; Overhage, J Marc; Sosin, Daniel M; Tong, Van

    2004-05-07

    The threat of terrorism and high-profile disease outbreaks has drawn attention to public health surveillance systems for early detection of outbreaks. State and local health departments are enhancing existing surveillance systems and developing new systems to better detect outbreaks through public health surveillance. However, information is limited about the usefulness of surveillance systems for outbreak detection or the best ways to support this function. This report supplements previous guidelines for evaluating public health surveillance systems. Use of this framework is intended to improve decision-making regarding the implementation of surveillance for outbreak detection. Use of a standardized evaluation methodology, including description of system design and operation, also will enhance the exchange of information regarding methods to improve early detection of outbreaks. The framework directs particular attention to the measurement of timeliness and validity for outbreak detection. The evaluation framework is designed to support assessment and description of all surveillance approaches to early detection, whether through traditional disease reporting, specialized analytic routines for aberration detection, or surveillance using early indicators of disease outbreaks, such as syndromic surveillance.

  14. Controlling the last known cluster of Ebola virus disease - Liberia, January-February 2015.

    PubMed

    Nyenswah, Tolbert; Fallah, Mosoka; Sieh, Sonpon; Kollie, Karsor; Badio, Moses; Gray, Alvin; Dilah, Priscilla; Shannon, Marnijina; Duwor, Stanley; Ihekweazu, Chikwe; Cordier-Lassalle, Thierry; Cordier-Lasalle, Thierry; Shinde, Shivam A; Hamblion, Esther; Davies-Wayne, Gloria; Ratnesh, Murugan; Dye, Christopher; Yoder, Jonathan S; McElroy, Peter; Hoots, Brooke; Christie, Athalia; Vertefeuille, John; Olsen, Sonja J; Laney, A Scott; Neal, Joyce J; Yaemsiri, Sirin; Navin, Thomas R; Coulter, Stewart; Pordell, Paran; Lo, Terrence; Kinkade, Carl; Mahoney, Frank

    2015-05-15

    As one of the three West African countries highly affected by the 2014-2015 Ebola virus disease (Ebola) epidemic, Liberia reported approximately 10,000 cases. The Ebola epidemic in Liberia was marked by intense urban transmission, multiple community outbreaks with source cases occurring in patients coming from the urban areas, and outbreaks in health care facilities (HCFs). This report, based on data from routine case investigations and contact tracing, describes efforts to stop the last known chain of Ebola transmission in Liberia. The index patient became ill on December 29, 2014, and the last of 21 associated cases was in a patient admitted into an Ebola treatment unit (ETU) on February 18, 2015. The chain of transmission was stopped because of early detection of new cases; identification, monitoring, and support of contacts in acceptable settings; effective triage within the health care system; and rapid isolation of symptomatic contacts. In addition, a "sector" approach, which divided Montserrado County into geographic units, facilitated the ability of response teams to rapidly respond to community needs. In the final stages of the outbreak, intensive coordination among partners and engagement of community leaders were needed to stop transmission in densely populated Montserrado County. A companion report describes the efforts to enhance infection prevention and control efforts in HCFs. After February 19, no additional clusters of Ebola cases have been detected in Liberia. On May 9, the World Health Organization declared the end of the Ebola outbreak in Liberia.

  15. Positive Network Assortativity of Influenza Vaccination at a High School: Implications for Outbreak Risk and Herd Immunity

    PubMed Central

    He, Jianping; Cao, Guohong; Rainey, Jeanette J.; Gao, Hongjiang; Uzicanin, Amra; Salathé, Marcel

    2014-01-01

    Schools are known to play a significant role in the spread of influenza. High vaccination coverage can reduce infectious disease spread within schools and the wider community through vaccine-induced immunity in vaccinated individuals and through the indirect effects afforded by herd immunity. In general, herd immunity is greatest when vaccination coverage is highest, but clusters of unvaccinated individuals can reduce herd immunity. Here, we empirically assess the extent of such clustering by measuring whether vaccinated individuals are randomly distributed or demonstrate positive assortativity across a United States high school contact network. Using computational models based on these empirical measurements, we further assess the impact of assortativity on influenza disease dynamics. We found that the contact network was positively assortative with respect to influenza vaccination: unvaccinated individuals tended to be in contact more often with other unvaccinated individuals than with vaccinated individuals, and these effects were most pronounced when we analyzed contact data collected over multiple days. Of note, unvaccinated males contributed substantially more than unvaccinated females towards the measured positive vaccination assortativity. Influenza simulation models using a positively assortative network resulted in larger average outbreak size, and outbreaks were more likely, compared to an otherwise identical network where vaccinated individuals were not clustered. These findings highlight the importance of understanding and addressing heterogeneities in seasonal influenza vaccine uptake for prevention of large, protracted school-based outbreaks of influenza, in addition to continued efforts to increase overall vaccine coverage. PMID:24505274

  16. Spatial and temporal structure of typhoid outbreaks in Washington, D.C., 1906–1909: evaluating local clustering with the Gi* statistic

    PubMed Central

    Hinman, Sarah E; Blackburn, Jason K; Curtis, Andrew

    2006-01-01

    Background To better understand the distribution of typhoid outbreaks in Washington, D.C., the U.S. Public Health Service (PHS) conducted four investigations of typhoid fever. These studies included maps of cases reported between 1 May – 31 October 1906 – 1909. These data were entered into a GIS database and analyzed using Ripley's K-function followed by the Gi* statistic in yearly intervals to evaluate spatial clustering, the scale of clustering, and the temporal stability of these clusters. Results The Ripley's K-function indicated no global spatial autocorrelation. The Gi* statistic indicated clustering of typhoid at multiple scales across the four year time period, refuting the conclusions drawn in all four PHS reports concerning the distribution of cases. While the PHS reports suggested an even distribution of the disease, this study quantified both areas of localized disease clustering, as well as mobile larger regions of clustering. Thus, indicating both highly localized and periodic generalized sources of infection within the city. Conclusion The methodology applied in this study was useful for evaluating the spatial distribution and annual-level temporal patterns of typhoid outbreaks in Washington, D.C. from 1906 to 1909. While advanced spatial analyses of historical data sets must be interpreted with caution, this study does suggest that there is utility in these types of analyses and that they provide new insights into the urban patterns of typhoid outbreaks during the early part of the twentieth century. PMID:16566830

  17. Spatial and temporal structure of typhoid outbreaks in Washington, D.C., 1906-1909: evaluating local clustering with the Gi* statistic.

    PubMed

    Hinman, Sarah E; Blackburn, Jason K; Curtis, Andrew

    2006-03-27

    To better understand the distribution of typhoid outbreaks in Washington, D.C., the U.S. Public Health Service (PHS) conducted four investigations of typhoid fever. These studies included maps of cases reported between 1 May - 31 October 1906 - 1909. These data were entered into a GIS database and analyzed using Ripley's K-function followed by the Gi* statistic in yearly intervals to evaluate spatial clustering, the scale of clustering, and the temporal stability of these clusters. The Ripley's K-function indicated no global spatial autocorrelation. The Gi* statistic indicated clustering of typhoid at multiple scales across the four year time period, refuting the conclusions drawn in all four PHS reports concerning the distribution of cases. While the PHS reports suggested an even distribution of the disease, this study quantified both areas of localized disease clustering, as well as mobile larger regions of clustering. Thus, indicating both highly localized and periodic generalized sources of infection within the city. The methodology applied in this study was useful for evaluating the spatial distribution and annual-level temporal patterns of typhoid outbreaks in Washington, D.C. from 1906 to 1909. While advanced spatial analyses of historical data sets must be interpreted with caution, this study does suggest that there is utility in these types of analyses and that they provide new insights into the urban patterns of typhoid outbreaks during the early part of the twentieth century.

  18. A Risk Analysis Approach to Prioritizing Epidemics: Ebola Virus Disease in West Africa as a Case Study.

    PubMed

    Ajisegiri, Whenayon Simeon; Chughtai, Abrar Ahmad; MacIntyre, C Raina

    2018-03-01

    The 2014 Ebola virus disease (EVD) outbreak affected several countries worldwide, including six West African countries. It was the largest Ebola epidemic in the history and the first to affect multiple countries simultaneously. Significant national and international delay in response to the epidemic resulted in 28,652 cases and 11,325 deaths. The aim of this study was to develop a risk analysis framework to prioritize rapid response for situations of high risk. Based on findings from the literature, sociodemographic features of the affected countries, and documented epidemic data, a risk scoring framework using 18 criteria was developed. The framework includes measures of socioeconomics, health systems, geographical factors, cultural beliefs, and traditional practices. The three worst affected West African countries (Guinea, Sierra Leone, and Liberia) had the highest risk scores. The scores were much lower in developed countries that experienced Ebola compared to West African countries. A more complex risk analysis framework using 18 measures was compared with a simpler one with 10 measures, and both predicted risk equally well. A simple risk scoring system can incorporate measures of hazard and impact that may otherwise be neglected in prioritizing outbreak response. This framework can be used by public health personnel as a tool to prioritize outbreak investigation and flag outbreaks with potentially catastrophic outcomes for urgent response. Such a tool could mitigate costly delays in epidemic response. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  19. Using online reviews by restaurant patrons to identify unreported cases of foodborne illness - New York City, 2012-2013.

    PubMed

    Harrison, Cassandra; Jorder, Mohip; Stern, Henri; Stavinsky, Faina; Reddy, Vasudha; Hanson, Heather; Waechter, HaeNa; Lowe, Luther; Gravano, Luis; Balter, Sharon

    2014-05-23

    While investigating an outbreak of gastrointestinal disease associated with a restaurant, the New York City Department of Health and Mental Hygiene (DOHMH) noted that patrons had reported illnesses on the business review website Yelp (http://www.yelp.com) that had not been reported to DOHMH. To explore the potential of using Yelp to identify unreported outbreaks, DOHMH worked with Columbia University and Yelp on a pilot project to prospectively identify restaurant reviews on Yelp that referred to foodborne illness. During July 1, 2012-March 31, 2013, approximately 294,000 Yelp restaurant reviews were analyzed by a software program developed for the project. The program identified 893 reviews that required further evaluation by a foodborne disease epidemiologist. Of the 893 reviews, 499 (56%) described an event consistent with foodborne illness (e.g., patrons reported diarrhea or vomiting after their meal), and 468 of those described an illness within 4 weeks of the review or did not provide a period. Only 3% of the illnesses referred to in the 468 reviews had also been reported directly to DOHMH via telephone and online systems during the same period. Closer examination determined that 129 of the 468 reviews required further investigation, resulting in telephone interviews with 27 reviewers. From those 27 interviews, three previously unreported restaurant-related outbreaks linked to 16 illnesses met DOHMH outbreak investigation criteria; environmental investigation of the three restaurants identified multiple food-handling violations. The results suggest that online restaurant reviews might help to identify unreported outbreaks of foodborne illness and restaurants with deficiencies in food handling. However, investigating reports of illness in this manner might require considerable time and resources.

  20. A Large Community Outbreak of Legionnaires' Disease Associated With a Cooling Tower in New York City, 2015.

    PubMed

    Weiss, Don; Boyd, Christopher; Rakeman, Jennifer L; Greene, Sharon K; Fitzhenry, Robert; McProud, Trevor; Musser, Kimberlee; Huang, Li; Kornblum, John; Nazarian, Elizabeth J; Fine, Annie D; Braunstein, Sarah L; Kass, Daniel; Landman, Keren; Lapierre, Pascal; Hughes, Scott; Tran, Anthony; Taylor, Jill; Baker, Deborah; Jones, Lucretia; Kornstein, Laura; Liu, Boning; Perez, Rodolfo; Lucero, David E; Peterson, Eric; Benowitz, Isaac; Lee, Kristen F; Ngai, Stephanie; Stripling, Mitch; Varma, Jay K

    Infections caused by Legionella are the leading cause of waterborne disease outbreaks in the United States. We investigated a large outbreak of Legionnaires' disease in New York City in summer 2015 to characterize patients, risk factors for mortality, and environmental exposures. We defined cases as patients with pneumonia and laboratory evidence of Legionella infection from July 2 through August 3, 2015, and with a history of residing in or visiting 1 of several South Bronx neighborhoods of New York City. We describe the epidemiologic, environmental, and laboratory investigation that identified the source of the outbreak. We identified 138 patients with outbreak-related Legionnaires' disease, 16 of whom died. The median age of patients was 55. A total of 107 patients had a chronic health condition, including 43 with diabetes, 40 with alcoholism, and 24 with HIV infection. We tested 55 cooling towers for Legionella, and 2 had a strain indistinguishable by pulsed-field gel electrophoresis from 26 patient isolates. Whole-genome sequencing and epidemiologic evidence implicated 1 cooling tower as the source of the outbreak. A large outbreak of Legionnaires' disease caused by a cooling tower occurred in a medically vulnerable community. The outbreak prompted enactment of a new city law on the operation and maintenance of cooling towers. Ongoing surveillance and evaluation of cooling tower process controls will determine if the new law reduces the incidence of Legionnaires' disease in New York City.

  1. A Large Community Outbreak of Legionnaires’ Disease Associated With a Cooling Tower in New York City, 2015

    PubMed Central

    Boyd, Christopher; Rakeman, Jennifer L.; Greene, Sharon K.; Fitzhenry, Robert; McProud, Trevor; Musser, Kimberlee; Huang, Li; Kornblum, John; Nazarian, Elizabeth J.; Fine, Annie D.; Braunstein, Sarah L.; Kass, Daniel; Landman, Keren; Lapierre, Pascal; Hughes, Scott; Tran, Anthony; Taylor, Jill; Baker, Deborah; Jones, Lucretia; Kornstein, Laura; Liu, Boning; Perez, Rodolfo; Lucero, David E.; Peterson, Eric; Benowitz, Isaac; Lee, Kristen F.; Ngai, Stephanie; Stripling, Mitch; Varma, Jay K.

    2017-01-01

    Objectives: Infections caused by Legionella are the leading cause of waterborne disease outbreaks in the United States. We investigated a large outbreak of Legionnaires’ disease in New York City in summer 2015 to characterize patients, risk factors for mortality, and environmental exposures. Methods: We defined cases as patients with pneumonia and laboratory evidence of Legionella infection from July 2 through August 3, 2015, and with a history of residing in or visiting 1 of several South Bronx neighborhoods of New York City. We describe the epidemiologic, environmental, and laboratory investigation that identified the source of the outbreak. Results: We identified 138 patients with outbreak-related Legionnaires’ disease, 16 of whom died. The median age of patients was 55. A total of 107 patients had a chronic health condition, including 43 with diabetes, 40 with alcoholism, and 24 with HIV infection. We tested 55 cooling towers for Legionella, and 2 had a strain indistinguishable by pulsed-field gel electrophoresis from 26 patient isolates. Whole-genome sequencing and epidemiologic evidence implicated 1 cooling tower as the source of the outbreak. Conclusions: A large outbreak of Legionnaires’ disease caused by a cooling tower occurred in a medically vulnerable community. The outbreak prompted enactment of a new city law on the operation and maintenance of cooling towers. Ongoing surveillance and evaluation of cooling tower process controls will determine if the new law reduces the incidence of Legionnaires’ disease in New York City. PMID:28141970

  2. Epidemiology and pathogenesis of Bolivian hemorrhagic fever.

    PubMed

    Patterson, Michael; Grant, Ashley; Paessler, Slobodan

    2014-04-01

    The etiologic agent of Bolivian hemorrhagic fever (BHF), Machupo virus (MACV) is reported to have a mortality rate of 25-35%. First identified in 1959, BHF was the cause of a localized outbreak in San Joaquin until rodent population controls were implemented in 1964. The rodent Calomys collosus was identified as the primary vector and reservoir for the virus. Multiple animal models were considered during the 1970s with the most human-like disease identified in Rhesus macaques but minimal characterization of the pathogenesis has been published since. A reemergence of reported BHF cases has been reported in recent years, which necessitates the further study and development of a vaccine to prevent future outbreaks. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Whole genome sequencing identifies circulating Beijing-lineage Mycobacterium tuberculosis strains in Guatemala and an associated urban outbreak.

    PubMed

    Saelens, Joseph W; Lau-Bonilla, Dalia; Moller, Anneliese; Medina, Narda; Guzmán, Brenda; Calderón, Maylena; Herrera, Raúl; Sisk, Dana M; Xet-Mull, Ana M; Stout, Jason E; Arathoon, Eduardo; Samayoa, Blanca; Tobin, David M

    2015-12-01

    Limited data are available regarding the molecular epidemiology of Mycobacterium tuberculosis (Mtb) strains circulating in Guatemala. Beijing-lineage Mtb strains have gained prevalence worldwide and are associated with increased virulence and drug resistance, but there have been only a few cases reported in Central America. Here we report the first whole genome sequencing of Central American Beijing-lineage strains of Mtb. We find that multiple Beijing-lineage strains, derived from independent founding events, are currently circulating in Guatemala, but overall still represent a relatively small proportion of disease burden. Finally, we identify a specific Beijing-lineage outbreak centered on a poor neighborhood in Guatemala City. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Overcoming barriers in evaluating outbreaks of diarrheal disease in resource poor settings: assessment of recurrent outbreaks in Chobe District, Botswana

    PubMed Central

    2013-01-01

    Background Diarrheal illness remains a leading cause of global morbidity and mortality, with the majority of deaths occurring in children <5 years of age. Lack of resources often prohibits the evaluation of outbreak characteristics and limits progress in managing this important disease syndrome, particularly in Africa. Relying only on existing medical staff and hospital resources, we assess the use of a questionnaire survey tool to identify baseline outbreak characteristics during recurrent diarrheal outbreaks in Chobe, Botswana. Methods Using historical surveillance data (2006–2009), the temporal pattern of recurrent diarrheal outbreaks was evaluated among patients <5 years of age presenting to health facilities in Chobe District. Using a questionnaire survey tool, medical staff from selected health facilities assessed patients (all ages) presenting with diarrheal disease during two diarrheal outbreaks (2011–2012). Cluster analysis and classification and regression trees (CART) were used to evaluate patient attributes by outbreak. Results We identified a bimodal, annual pattern of acute diarrhea in children <5 years of age across years (Wilcox test, W = 456.5, p = 0.052). Historical outbreak periods appeared to coincide with major hydrological phenomena (rainfall/flood recession). Across health facilities, a significant percent of patients in the prospective study were in the ≥5 age class (44%, n = 515 and 35%, n = 333 in the dry and wet season outbreaks, respectively). Cluster analysis of questionnaire data identified two main branches associated with patient age (<5 and ≥5 years of age). Patients did not cluster by outbreak or village. CART examination identified sex and hospitalization as being most predictive of patients <5 years and household diarrhea in patients ≥5 years. Water shortages and water quality deficiencies were identified in both outbreaks. Conclusions Diarrhea is a persistent, seasonally occurring disease in Chobe District, Botswana. Lack of variation in outbreak variables suggests the possibility of environmental drivers influencing outbreak dynamics and the potential importance of human-environmental linkages in this region. Public health strategy should be directed at securing improved water service and correcting water quality deficiencies. Public health education should include increased emphasis on sanitation practices when providing care to household members with diarrhea. While global diarrheal disease surveillance is directed at the under-5 age group, this may not be appropriate in areas of high HIV prevalence such as that found in our study area where a large immune-compromised population may warrant increased surveillance across age groups. The approach used in this study provided the first detailed characterization of diarrheal disease outbreaks in the area, an important starting point for immediate intervention and development of working hypotheses for future disease investigations. While data derived from this approach are necessarily limited, they identify critical information on outbreak characteristics in resource poor settings where data gaps continue and disease incidence is high. PMID:23971427

  5. Ebola virus disease in Africa: epidemiology and nosocomial transmission.

    PubMed

    Shears, P; O'Dempsey, T J D

    2015-05-01

    The 2014 Ebola outbreak in West Africa, primarily affecting Guinea, Sierra Leone, and Liberia, has exceeded all previous Ebola outbreaks in the number of cases and in international response. There have been 20 significant outbreaks of Ebola virus disease in Sub-Saharan Africa prior to the 2014 outbreak, the largest being that in Uganda in 2000, with 425 cases and a mortality of 53%. Since the first outbreaks in Sudan and Zaire in 1976, transmission within health facilities has been of major concern, affecting healthcare workers and acting as amplifiers of spread into the community. The lack of resources for infection control and personal protective equipment are the main reasons for nosocomial transmission. Local strategies to improve infection control, and a greater understanding of local community views on the disease, have helped to bring outbreaks under control. Recommendations from previous outbreaks include improved disease surveillance to enable more rapid health responses, the wider availability of personal protective equipment, and greater international preparedness. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  6. A Participatory System for Preventing Pandemics of Animal Origins: Pilot Study of the Participatory One Health Disease Detection (PODD) System.

    PubMed

    Yano, Terdsak; Phornwisetsirikun, Somphorn; Susumpow, Patipat; Visrutaratna, Surasing; Chanachai, Karoon; Phetra, Polawat; Chaisowwong, Warangkhana; Trakarnsirinont, Pairat; Hemwan, Phonpat; Kaewpinta, Boontuan; Singhapreecha, Charuk; Kreausukon, Khwanchai; Charoenpanyanet, Arisara; Robert, Chongchit Sripun; Robert, Lamar; Rodtian, Pranee; Mahasing, Suteerat; Laiya, Ekkachai; Pattamakaew, Sakulrat; Tankitiyanon, Taweesart; Sansamur, Chalutwan; Srikitjakarn, Lertrak

    2018-03-21

    Aiming for early disease detection and prompt outbreak control, digital technology with a participatory One Health approach was used to create a novel disease surveillance system called Participatory One Health Disease Detection (PODD). PODD is a community-owned surveillance system that collects data from volunteer reporters; identifies disease outbreak automatically; and notifies the local governments (LGs), surrounding villages, and relevant authorities. This system provides a direct and immediate benefit to the communities by empowering them to protect themselves. The objective of this study was to determine the effectiveness of the PODD system for the rapid detection and control of disease outbreaks. The system was piloted in 74 LGs in Chiang Mai, Thailand, with the participation of 296 volunteer reporters. The volunteers and LGs were key participants in the piloting of the PODD system. Volunteers monitored animal and human diseases, as well as environmental problems, in their communities and reported these events via the PODD mobile phone app. LGs were responsible for outbreak control and provided support to the volunteers. Outcome mapping was used to evaluate the performance of the LGs and volunteers. LGs were categorized into one of the 3 groups based on performance: A (good), B (fair), and C (poor), with the majority (46%,34/74) categorized into group B. Volunteers were similarly categorized into 4 performance groups (A-D), again with group A showing the best performance, with the majority categorized into groups B and C. After 16 months of implementation, 1029 abnormal events had been reported and confirmed to be true reports. The majority of abnormal reports were sick or dead animals (404/1029, 39.26%), followed by zoonoses and other human diseases (129/1029, 12.54%). Many potentially devastating animal disease outbreaks were detected and successfully controlled, including 26 chicken high mortality outbreaks, 4 cattle disease outbreaks, 3 pig disease outbreaks, and 3 fish disease outbreaks. In all cases, the communities and animal authorities cooperated to apply community contingency plans to control these outbreaks, and community volunteers continued to monitor the abnormal events for 3 weeks after each outbreak was controlled. By design, PODD initially targeted only animal diseases that potentially could emerge into human pandemics (eg, avian influenza) and then, in response to community needs, expanded to cover human health and environmental health issues. ©Terdsak Yano, Somphorn Phornwisetsirikun, Patipat Susumpow, Surasing Visrutaratna, Karoon Chanachai, Polawat Phetra, Warangkhana Chaisowwong, Pairat Trakarnsirinont, Phonpat Hemwan, Boontuan Kaewpinta, Charuk Singhapreecha, Khwanchai Kreausukon, Arisara  Charoenpanyanet, Chongchit Sripun Robert, Lamar Robert, Pranee Rodtian, Suteerat Mahasing, Ekkachai Laiya, Sakulrat Pattamakaew, Taweesart Tankitiyanon, Chalutwan Sansamur, Lertrak Srikitjakarn. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 21.03.2018.

  7. Disease Outbreaks Caused by Water.

    ERIC Educational Resources Information Center

    Craun, Gunther F.

    1978-01-01

    Presents a literature review of the disease outbreaks caused by drinking polluted water, covering publications of 1976-77. Some of the waterborn outbreaks included are: (1) cholera; (2) gastroenteritis; (3) giardiasis; and (4) typhoid fever and salmonellosis. A list of 66 references is also presented. (HM)

  8. Causes of Outbreaks Associated with Drinking Water in the United States, 1971-2006

    EPA Science Inventory

    Since 1971, the CDC, EPA, and Council of State and Territorial Epidemiologists (CSTE) have maintained the collaborative national Waterborne Disease and Outbreak Surveillance System (WBDOSS) to document waterborne disease outbreaks (WBDOs) reported by local, state, and territorial...

  9. Plague in Iran: its history and current status.

    PubMed

    Hashemi Shahraki, Abdolrazagh; Carniel, Elizabeth; Mostafavi, Ehsan

    2016-01-01

    Plague remains a public health concern worldwide, particularly in old foci. Multiple epidemics of this disease have been recorded throughout the history of Iran. Despite the long-standing history of human plague in Iran, it remains difficult to obtain an accurate overview of the history and current status of plague in Iran. In this review, available data and reports on cases and outbreaks of human plague in the past and present in Iran and in neighboring countries were collected, and information was compiled regarding when, where, and how many cases occurred. This paper considers the history of plague in Persia (the predecessor of today's Iran) and has a brief review of plague in countries in the World Health Organization Eastern Mediterranean Region, including a range of countries in the Middle East and North Africa. Since Iran has experienced outbreaks of plague for several centuries, neighboring countries have reported the disease in recent years, the disease can be silent for decades, and the circulation of Yersinia pestis has been reported among rodents and dogs in western Iran, more attention should be paid to disease monitoring in areas with previously reported human cases and in high-risk regions with previous epizootic and enzootic activity.

  10. DEFENDER: Detecting and Forecasting Epidemics Using Novel Data-Analytics for Enhanced Response

    PubMed Central

    Simmie, Donal; Hankin, Chris; Gillard, Joseph

    2016-01-01

    In recent years social and news media have increasingly been used to explain patterns in disease activity and progression. Social media data, principally from the Twitter network, has been shown to correlate well with official disease case counts. This fact has been exploited to provide advance warning of outbreak detection, forecasting of disease levels and the ability to predict the likelihood of individuals developing symptoms. In this paper we introduce DEFENDER, a software system that integrates data from social and news media and incorporates algorithms for outbreak detection, situational awareness and forecasting. As part of this system we have developed a technique for creating a location network for any country or region based purely on Twitter data. We also present a disease nowcasting (forecasting the current but still unknown level) approach which leverages counts from multiple symptoms, which was found to improve the nowcasting accuracy by 37 percent over a model that used only previous case data. Finally we attempt to forecast future levels of symptom activity based on observed user movement on Twitter, finding a moderate gain of 5 percent over a time series forecasting model. PMID:27192059

  11. History of Meningococcal Outbreaks in the United States: Implications for Vaccination and Disease Prevention.

    PubMed

    Atkinson, Bruce; Gandhi, Ashesh; Balmer, Paul

    2016-08-01

    Invasive meningococcal disease caused by Neisseria meningitidis presents a significant public health concern. Meningococcal disease is rare but potentially fatal within 24 hours of onset of illness, and survivors may experience permanent sequelae. This review presents the epidemiology, incidence, and outbreak data for invasive meningococcal disease in the United States since 1970, and it highlights recent changes in vaccine recommendations to prevent meningococcal disease. Relevant publications were obtained by database searches for articles published between January 1970 and July 2015. The incidence of meningococcal disease has decreased in the United States since 1970, but serogroup B meningococcal disease is responsible for an increasing proportion of disease burden in young adults. Recent serogroup B outbreaks on college campuses warrant broader age-based recommendations for meningococcal group B vaccines, similar to the currently recommended quadrivalent vaccine that protects against serogroups A, C, W, and Y. After the recent approval of two serogroup B vaccines, the Advisory Committee on Immunization Practices first updated its recommendations for routine meningococcal vaccination to cover at-risk populations, including those at risk during serogroup B outbreaks, and later it issued a recommendation for those aged 16-23 years. Meningococcal disease outbreaks remain challenging to predict, making the optimal disease management strategy one of prevention through vaccination rather than containment. How the epidemiology of serogroup B disease and prevention of outbreaks will be affected by the new category B recommendation for serogroup B vaccines remains to be seen. © 2016 Pharmacotherapy Publications, Inc.

  12. Phylogeographic characteristics of vesicular stomatitis New Jersey viruses circulating in Mexico from 2005 to 2011 and their relationship to epidemics in the United States.

    PubMed

    Velazquez-Salinas, Lauro; Pauszek, Steven J; Zarate, Selene; Basurto-Alcantara, Francisco J; Verdugo-Rodriguez, Antonio; Perez, Andres M; Rodriguez, Luis L

    2014-01-20

    We analyzed the phylogenetic and time-space relationships (phylodynamics) of 181 isolates of vesicular stomatitis New Jersey virus (VSNJV) causing disease in Mexico and the United States (US) from 2005 through 2012. We detail the emergence of a genetic lineage in southern Mexico causing outbreaks in central Mexico spreading into northern Mexico and eventually into the US. That emerging lineage showed higher nucleotide sequence identity (99.5%) than that observed for multiple lineages circulating concurrently in southern Mexico (96.8%). Additionally, we identified 58 isolates from Mexico that, unlike previous isolates from Mexico, grouped with northern Central America clade II viruses. This study provides the first direct evidence for the emergence and northward migration of a specific VSNJV genetic lineage from endemic areas in Mexico causing VS outbreaks in the US. In addition we document the emergence of a Central American VSNJV genetic lineage moving northward and causing outbreaks in central Mexico. © 2013 Published by Elsevier Inc.

  13. Investigating the Effects of Mass Media Exposure on the Uptake of Preventive Measures by Hong Kong Residents during the 2015 MERS Outbreak: The Mediating Role of Interpersonal Communication and the Perception of Concern.

    PubMed

    Ludolph, Ramona; Schulz, Peter J; Chen, Ling

    2018-01-01

    In 2015, South Korea experienced the largest outbreak to date of the Middle East Respiratory Syndrome (MERS-CoV) outside the Middle East. Fears related to a potential spread of the disease led to an increased alert level as well as heightened media coverage in the neighboring Hong Kong. A cross-sectional survey (N = 533) among residents of Hong Kong was conducted to assess the relationships between the effects of outbreak-related mass media coverage, interpersonal communication, the perceived level of concern in one's close environment, and the uptake of preventive measures. A serial multiple mediator model finds that interpersonal communication and higher perceived concern indirectly influence the effects of media coverage on the engagement in preventive actions. These results expand previous research on the mediating role of interpersonal communication and support assumptions about a modified two-step flow of communication in the context of a public health emergency.

  14. An outbreak of Bacillus cereus food poisoning--are caterers supervised sufficiently.

    PubMed Central

    Slaten, D D; Oropeza, R I; Werner, S B

    1992-01-01

    Bacillus cereus is an uncommonly reported cause of foodborne illness in the United States. In May 1989, an outbreak of B. cereus gastroenteritis occurred among 140 guests who had attended a catered wedding reception in Napa, CA. Investigation established Cornish game hens served at the event as the vehicle for disease transmission (OR = 29, P = 0.0001). Although the spores of B. cereus are ubiquitous, large numbers of toxin-producing organisms (more than 10(5) per gram of food) are required for illness to occur. In the Napa outbreak, bacterial multiplication was facilitated at several points during the preparation and transportation of the food. While a licensed restaurant kitchen was used, the facilities were clearly inadequate for the event. At present, the California Health and Safety Code does not address the scope of catering operations. As caterers increase in number, there will be a growing need for governmental oversight to ensure that food production on a large scale is conducted safely. PMID:1641447

  15. Molecular Epidemiologic Source Tracking of Orally Transmitted Chagas Disease, Venezuela

    PubMed Central

    Segovia, Maikell; Martínez, Clara E.; Messenger, Louisa A.; Nessi, Anaibeth; Londoño, Juan C.; Espinosa, Raul; Martínez, Cinda; Alfredo, Mijares; Bonfante-Cabarcas, Rafael; Lewis, Michael D.; de Noya, Belkisyolé A.; Miles, Michael A.; Llewellyn, Martin S.

    2013-01-01

    Oral outbreaks of Chagas disease are increasingly reported in Latin America. The transitory presence of Trypanosoma cruzi parasites within contaminated foods, and the rapid consumption of those foods, precludes precise identification of outbreak origin. We report source attribution for 2 peri-urban oral outbreaks of Chagas disease in Venezuela via high resolution microsatellite typing. PMID:23768982

  16. The interconnected and cross-border nature of risks posed by infectious diseases

    PubMed Central

    Suk, Jonathan E.; Van Cangh, Thomas; Beauté, Julien; Bartels, Cornelius; Tsolova, Svetla; Pharris, Anastasia; Ciotti, Massimo; Semenza, Jan C.

    2014-01-01

    Infectious diseases can constitute public health emergencies of international concern when a pathogen arises, acquires new characteristics, or is deliberately released, leading to the potential for loss of human lives as well as societal disruption. A wide range of risk drivers are now known to lead to and/or exacerbate the emergence and spread of infectious disease, including global trade and travel, the overuse of antibiotics, intensive agriculture, climate change, high population densities, and inadequate infrastructures, such as water treatment facilities. Where multiple risk drivers interact, the potential impact of a disease outbreak is amplified. The varying temporal and geographic frequency with which infectious disease events occur adds yet another layer of complexity to the issue. Mitigating the emergence and spread of infectious disease necessitates mapping and prioritising the interdependencies between public health and other sectors. Conversely, during an international public health emergency, significant disruption occurs not only to healthcare systems but also to a potentially wide range of sectors, including trade, tourism, energy, civil protection, transport, agriculture, and so on. At the same time, dealing with a disease outbreak may require a range of critical sectors for support. There is a need to move beyond narrow models of risk to better account for the interdependencies between health and other sectors so as to be able to better mitigate and respond to the risks posed by emerging infectious disease. PMID:25308818

  17. The outbreak of SARS at Tan Tock Seng Hospital--relating epidemiology to control.

    PubMed

    Chen, Mark I C; Leo, Yee-Sin; Ang, Brenda S P; Heng, Bee-Hoon; Choo, Philip

    2006-05-01

    The outbreak of severe acute respiratory syndrome (SARS) began after the index case was admitted on 1 March 2003. We profile the cases suspected to have acquired the infection in Tan Tock Seng Hospital (TTSH), focussing on major transmission foci, and also describe and discuss the impact of our outbreak control measures. Using the World Health Organization (WHO) case definitions for probable SARS adapted to the local context, we studied all cases documented to have passed through TTSH less than 10 days prior to the onset of fever. Key data were collected in liaison with clinicians and through a team of onsite epidemiologists. There were 105 secondary cases in TTSH. Healthcare staff (57.1%) formed the majority, followed by visitors (30.5%) and inpatients (12.4%). The earliest case had onset of fever on 4 March 2003, and the last case, on 5 April 2003. Eighty-nine per cent had exposures to 7 wards which had cases of SARS that were not isolated on admission. In 3 of these wards, major outbreaks resulted, each with more than 20 secondary cases. Attack rates amongst ward-based staff ranged from 0% to 32.5%. Of 13 inpatients infected, only 4 (30.8%) had been in the same room or cubicle as the index case for the ward. The outbreak of SARS at TTSH showed the challenges of dealing with an emerging infectious disease with efficient nosocomial spread. Super-spreading events and initial delays in outbreak response led to widespread dissemination of the outbreak to multiple wards.

  18. Enabling analytical and Modeling Tools for Enhanced Disease Surveillance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawn K. Manley

    2003-04-01

    Early detection, identification, and warning are essential to minimize casualties from a biological attack. For covert attacks, sick people are likely to provide the first indication of an attack. An enhanced medical surveillance system that synthesizes distributed health indicator information and rapidly analyzes the information can dramatically increase the number of lives saved. Current surveillance methods to detect both biological attacks and natural outbreaks are hindered by factors such as distributed ownership of information, incompatible data storage and analysis programs, and patient privacy concerns. Moreover, because data are not widely shared, few data mining algorithms have been tested on andmore » applied to diverse health indicator data. This project addressed both integration of multiple data sources and development and integration of analytical tools for rapid detection of disease outbreaks. As a first prototype, we developed an application to query and display distributed patient records. This application incorporated need-to-know access control and incorporated data from standard commercial databases. We developed and tested two different algorithms for outbreak recognition. The first is a pattern recognition technique that searches for space-time data clusters that may signal a disease outbreak. The second is a genetic algorithm to design and train neural networks (GANN) that we applied toward disease forecasting. We tested these algorithms against influenza, respiratory illness, and Dengue Fever data. Through this LDRD in combination with other internal funding, we delivered a distributed simulation capability to synthesize disparate information and models for earlier recognition and improved decision-making in the event of a biological attack. The architecture incorporates user feedback and control so that a user's decision inputs can impact the scenario outcome as well as integrated security and role-based access-control for communicating between distributed data and analytical tools. This work included construction of interfaces to various commercial database products and to one of the data analysis algorithms developed through this LDRD.« less

  19. A review of outbreaks of waterborne disease associated with ships: evidence for risk management.

    PubMed Central

    Rooney, Roisin M.; Bartram, Jamie K.; Cramer, Elaine H.; Mantha, Stacey; Nichols, Gordon; Suraj, Rohini; Todd, Ewen C. D.

    2004-01-01

    OBJECTIVE: The organization of water supply to and on ships differs considerably from that of water supply on land. Risks of contamination can arise from source water at the port or during loading, storage, or distribution on the ship. The purpose of this article is to review documented outbreaks of waterborne diseases associated with passenger, cargo, fishing, and naval ships to identify contributing factors so that similar outbreaks can be prevented in the future. METHODS: The authors reviewed 21 reported outbreaks of waterborne diseases associated with ships. For each outbreak, data on pathogens/toxins, type of ship, factors contributing to outbreaks, mortality and morbidity, and remedial action are presented. RESULTS: The findings of this review show that the majority of reported outbreaks were associated with passenger ships and that more than 6,400 people were affected. Waterborne outbreaks due to Enterotoxigenic Escherichia coli, noroviruses, Salmonella spp, Shigella sp, Cryptosporidium sp, and Giardia lamblia occurred on ships. Enterotoxigenic E. coli was the pathogen most frequently associated with outbreaks. One outbreak of chemical water poisoning also occurred on a ship. Risk factors included contaminated port water, inadequate treatment, improper loading techniques, poor design and maintenance of storage tanks, ingress of contamination during repair and maintenance, cross-connections, back siphonage, and insufficient residual disinfectant. CONCLUSIONS: Waterborne disease outbreaks on ships can be prevented. The factors contributing to outbreaks emphasize the need for hygienic handling of water along the supply chain from source to consumption. A comprehensive approach to water safety on ships is essential. This may be achieved by the adoption of Water Safety Plans that cover design, construction, operation, and routine inspection and maintenance. PMID:15219801

  20. A review of outbreaks of waterborne disease associated with ships: evidence for risk management.

    PubMed

    Rooney, Roisin M; Bartram, Jamie K; Cramer, Elaine H; Mantha, Stacey; Nichols, Gordon; Suraj, Rohini; Todd, Ewen C D

    2004-01-01

    The organization of water supply to and on ships differs considerably from that of water supply on land. Risks of contamination can arise from source water at the port or during loading, storage, or distribution on the ship. The purpose of this article is to review documented outbreaks of waterborne diseases associated with passenger, cargo, fishing, and naval ships to identify contributing factors so that similar outbreaks can be prevented in the future. The authors reviewed 21 reported outbreaks of waterborne diseases associated with ships. For each outbreak, data on pathogens/toxins, type of ship, factors contributing to outbreaks, mortality and morbidity, and remedial action are presented. The findings of this review show that the majority of reported outbreaks were associated with passenger ships and that more than 6,400 people were affected. Waterborne outbreaks due to Enterotoxigenic Escherichia coli, noroviruses, Salmonella spp, Shigella sp, Cryptosporidium sp, and Giardia lamblia occurred on ships. Enterotoxigenic E. coli was the pathogen most frequently associated with outbreaks. One outbreak of chemical water poisoning also occurred on a ship. Risk factors included contaminated port water, inadequate treatment, improper loading techniques, poor design and maintenance of storage tanks, ingress of contamination during repair and maintenance, cross-connections, back siphonage, and insufficient residual disinfectant. Waterborne disease outbreaks on ships can be prevented. The factors contributing to outbreaks emphasize the need for hygienic handling of water along the supply chain from source to consumption. A comprehensive approach to water safety on ships is essential. This may be achieved by the adoption of Water Safety Plans that cover design, construction, operation, and routine inspection and maintenance.

  1. A systematic review of studies on forecasting the dynamics of influenza outbreaks

    PubMed Central

    Nsoesie, Elaine O; Brownstein, John S; Ramakrishnan, Naren; Marathe, Madhav V

    2014-01-01

    Forecasting the dynamics of influenza outbreaks could be useful for decision-making regarding the allocation of public health resources. Reliable forecasts could also aid in the selection and implementation of interventions to reduce morbidity and mortality due to influenza illness. This paper reviews methods for influenza forecasting proposed during previous influenza outbreaks and those evaluated in hindsight. We discuss the various approaches, in addition to the variability in measures of accuracy and precision of predicted measures. PubMed and Google Scholar searches for articles on influenza forecasting retrieved sixteen studies that matched the study criteria. We focused on studies that aimed at forecasting influenza outbreaks at the local, regional, national, or global level. The selected studies spanned a wide range of regions including USA, Sweden, Hong Kong, Japan, Singapore, United Kingdom, Canada, France, and Cuba. The methods were also applied to forecast a single measure or multiple measures. Typical measures predicted included peak timing, peak height, daily/weekly case counts, and outbreak magnitude. Due to differences in measures used to assess accuracy, a single estimate of predictive error for each of the measures was difficult to obtain. However, collectively, the results suggest that these diverse approaches to influenza forecasting are capable of capturing specific outbreak measures with some degree of accuracy given reliable data and correct disease assumptions. Nonetheless, several of these approaches need to be evaluated and their performance quantified in real-time predictions. PMID:24373466

  2. A systematic review of studies on forecasting the dynamics of influenza outbreaks.

    PubMed

    Nsoesie, Elaine O; Brownstein, John S; Ramakrishnan, Naren; Marathe, Madhav V

    2014-05-01

    Forecasting the dynamics of influenza outbreaks could be useful for decision-making regarding the allocation of public health resources. Reliable forecasts could also aid in the selection and implementation of interventions to reduce morbidity and mortality due to influenza illness. This paper reviews methods for influenza forecasting proposed during previous influenza outbreaks and those evaluated in hindsight. We discuss the various approaches, in addition to the variability in measures of accuracy and precision of predicted measures. PubMed and Google Scholar searches for articles on influenza forecasting retrieved sixteen studies that matched the study criteria. We focused on studies that aimed at forecasting influenza outbreaks at the local, regional, national, or global level. The selected studies spanned a wide range of regions including USA, Sweden, Hong Kong, Japan, Singapore, United Kingdom, Canada, France, and Cuba. The methods were also applied to forecast a single measure or multiple measures. Typical measures predicted included peak timing, peak height, daily/weekly case counts, and outbreak magnitude. Due to differences in measures used to assess accuracy, a single estimate of predictive error for each of the measures was difficult to obtain. However, collectively, the results suggest that these diverse approaches to influenza forecasting are capable of capturing specific outbreak measures with some degree of accuracy given reliable data and correct disease assumptions. Nonetheless, several of these approaches need to be evaluated and their performance quantified in real-time predictions. © 2013 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  3. A Systematic Bayesian Integration of Epidemiological and Genetic Data

    PubMed Central

    Lau, Max S. Y.; Marion, Glenn; Streftaris, George; Gibson, Gavin

    2015-01-01

    Genetic sequence data on pathogens have great potential to inform inference of their transmission dynamics ultimately leading to better disease control. Where genetic change and disease transmission occur on comparable timescales additional information can be inferred via the joint analysis of such genetic sequence data and epidemiological observations based on clinical symptoms and diagnostic tests. Although recently introduced approaches represent substantial progress, for computational reasons they approximate genuine joint inference of disease dynamics and genetic change in the pathogen population, capturing partially the joint epidemiological-evolutionary dynamics. Improved methods are needed to fully integrate such genetic data with epidemiological observations, for achieving a more robust inference of the transmission tree and other key epidemiological parameters such as latent periods. Here, building on current literature, a novel Bayesian framework is proposed that infers simultaneously and explicitly the transmission tree and unobserved transmitted pathogen sequences. Our framework facilitates the use of realistic likelihood functions and enables systematic and genuine joint inference of the epidemiological-evolutionary process from partially observed outbreaks. Using simulated data it is shown that this approach is able to infer accurately joint epidemiological-evolutionary dynamics, even when pathogen sequences and epidemiological data are incomplete, and when sequences are available for only a fraction of exposures. These results also characterise and quantify the value of incomplete and partial sequence data, which has important implications for sampling design, and demonstrate the abilities of the introduced method to identify multiple clusters within an outbreak. The framework is used to analyse an outbreak of foot-and-mouth disease in the UK, enhancing current understanding of its transmission dynamics and evolutionary process. PMID:26599399

  4. Polio Legacy in Action: Using the Polio Eradication Infrastructure for Measles Elimination in Nigeria-The National Stop Transmission of Polio Program.

    PubMed

    Michael, Charles A; Waziri, Ndadilnasiya; Gunnala, Rajni; Biya, Oladayo; Kretsinger, Katrina; Wiesen, Eric; Goodson, James L; Esapa, Lisa; Gidado, Saheed; Uba, Belinda; Nguku, Patrick; Cochi, Stephen

    2017-07-01

    From 2012 to date, Nigeria has been the focus of intensified polio eradication efforts. Large investments made by multiple partner organizations and the federal Ministry of Health to support strategies and resources, including personnel, for increasing vaccination coverage and improved performance monitoring paid off, as the number of wild poliovirus (WPV) cases detected in Nigeria were reduced significantly, from 122 in 2012 to 6 in 2014. No WPV cases were detected in Nigeria in 2015 and as at March 2017, only 4 WPV cases had been detected. Given the momentum gained toward polio eradication, these resources seem well positioned to help advance other priority health agendas in Nigeria, particularly the control of vaccine-preventable diseases, such as measles. Despite implementation of mass measles vaccination campaigns, measles outbreaks continue to occur regularly in Nigeria, leading to high morbidity and mortality rates for children <5 years of age. The National Stop Transmission of Polio (NSTOP) program was collaboratively established in 2012 to create a network of staff working at national, state, and district levels in areas deemed high risk for vaccine-preventable disease outbreaks. As an example of how the polio legacy can create long-lasting improvements to public health beyond polio, the Centers for Disease Control and Prevention will transition >180 NSTOP officers to provide technical experience to improve measles surveillance, routine vaccination coverage, and outbreak investigation and response in high-risk areas. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  5. Listeriosis Outbreaks and Associated Food Vehicles, United States, 1998–2008

    PubMed Central

    Cartwright, Emily J.; Jackson, Kelly A.; Johnson, Shacara D.; Graves, Lewis M.; Mahon, Barbara E.

    2013-01-01

    Listeria monocytogenes, a bacterial foodborne pathogen, can cause meningitis, bacteremia, and complications during pregnancy. This report summarizes listeriosis outbreaks reported to the Foodborne Disease Outbreak Surveillance System of the Centers for Disease Control and Prevention during 1998–2008. The study period includes the advent of PulseNet (a national molecular subtyping network for outbreak detection) in 1998 and the Listeria Initiative (enhanced surveillance for outbreak investigation) in 2004. Twenty-four confirmed listeriosis outbreaks were reported during 1998–2008, resulting in 359 illnesses, 215 hospitalizations, and 38 deaths. Outbreaks earlier in the study period were generally larger and longer. Serotype 4b caused the largest number of outbreaks and outbreak-associated cases. Ready-to-eat meats caused more early outbreaks, and novel vehicles (i.e., sprouts, taco/nacho salad) were associated with outbreaks later in the study period. These changes may reflect the effect of PulseNet and the Listeria Initiative and regulatory initiatives designed to prevent contamination in ready-to-eat meat and poultry products. PMID:23260661

  6. The role of China in the global spread of the current cholera pandemic.

    PubMed

    Didelot, Xavier; Pang, Bo; Zhou, Zhemin; McCann, Angela; Ni, Peixiang; Li, Dongfang; Achtman, Mark; Kan, Biao

    2015-03-01

    Epidemics and pandemics of cholera, a severe diarrheal disease, have occurred since the early 19th century and waves of epidemic disease continue today. Cholera epidemics are caused by individual, genetically monomorphic lineages of Vibrio cholerae: the ongoing seventh pandemic, which has spread globally since 1961, is associated with lineage L2 of biotype El Tor. Previous genomic studies of the epidemiology of the seventh pandemic identified three successive sub-lineages within L2, designated waves 1 to 3, which spread globally from the Bay of Bengal on multiple occasions. However, these studies did not include samples from China, which also experienced multiple epidemics of cholera in recent decades. We sequenced the genomes of 71 strains isolated in China between 1961 and 2010, as well as eight from other sources, and compared them with 181 published genomes. The results indicated that outbreaks in China between 1960 and 1990 were associated with wave 1 whereas later outbreaks were associated with wave 2. However, the previously defined waves overlapped temporally, and are an inadequate representation of the shape of the global genealogy. We therefore suggest replacing them by a series of tightly delineated clades. Between 1960 and 1990 multiple such clades were imported into China, underwent further microevolution there and then spread to other countries. China was thus both a sink and source during the pandemic spread of V. cholerae, and needs to be included in reconstructions of the global patterns of spread of cholera.

  7. Phylogeography and population structure of the biologically invasive phytopathogen Erwinia amylovora inferred using minisatellites.

    PubMed

    Bühlmann, Andreas; Dreo, Tanja; Rezzonico, Fabio; Pothier, Joël F; Smits, Theo H M; Ravnikar, Maja; Frey, Jürg E; Duffy, Brion

    2014-07-01

    Erwinia amylovora causes a major disease of pome fruit trees worldwide, and is regulated as a quarantine organism in many countries. While some diversity of isolates has been observed, molecular epidemiology of this bacterium is hindered by a lack of simple molecular typing techniques with sufficiently high resolution. We report a molecular typing system of E. amylovora based on variable number of tandem repeats (VNTR) analysis. Repeats in the E. amylovora genome were identified with comparative genomic tools, and VNTR markers were developed and validated. A Multiple-Locus VNTR Analysis (MLVA) was applied to E. amylovora isolates from bacterial collections representing global and regional distribution of the pathogen. Based on six repeats, MLVA allowed the distinction of 227 haplotypes among a collection of 833 isolates of worldwide origin. Three geographically separated groups were recognized among global isolates using Bayesian clustering methods. Analysis of regional outbreaks confirmed presence of diverse haplotypes but also high representation of certain haplotypes during outbreaks. MLVA analysis is a practical method for epidemiological studies of E. amylovora, identifying previously unresolved population structure within outbreaks. Knowledge of such structure can increase our understanding on how plant diseases emerge and spread over a given geographical region. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Epidemiology of Foodborne Disease Outbreaks Caused by Clostridium perfringens, United States, 1998–2010

    PubMed Central

    Grass, Julian E.; Gould, L. Hannah; Mahon, Barbara E.

    2015-01-01

    Clostridium perfringens is estimated to be the second most common bacterial cause of foodborne illness in the United States, causing one million illnesses each year. Local, state, and territorial health departments voluntarily report C. perfringens outbreaks to the U.S. Centers for Disease Control and Prevention through the Foodborne Disease Outbreak Surveillance System. Our analysis included outbreaks confirmed by laboratory evidence during 1998–2010. A food item was implicated if C. perfringens was isolated from food or based on epidemiologic evidence. Implicated foods were classified into one of 17 standard food commodities when possible. From 1998 to 2010, 289 confirmed outbreaks of C. perfringens illness were reported with 15,208 illnesses, 83 hospitalizations, and eight deaths. The number of outbreaks reported each year ranged from 16 to 31 with no apparent trend over time. The annual number of outbreak-associated illnesses ranged from 359 to 2,173, and the median outbreak size was 24 illnesses. Outbreaks occurred year round, with the largest number in November and December. Restaurants (43%) were the most common setting of food preparation. Other settings included catering facility (19%), private home (16%), prison or jail (11%), and other (10%). Among the 144 (50%) outbreaks attributed to a single food commodity, beef was the most common commodity (66 outbreaks, 46%), followed by poultry (43 outbreaks, 30%), and pork (23 outbreaks, 16%). Meat and poultry outbreaks accounted for 92% of outbreaks with an identified single food commodity. Outbreaks caused by C. perfringens occur regularly, are often large, and can cause substantial morbidity yet are preventable if contamination of raw meat and poultry products is prevented at the farm or slaughterhouse or, after contamination, if these products are properly handled and prepared, particularly in restaurants and catering facilities. PMID:23379281

  9. Department of Homeland Security Fellowship Internship Experience at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, J

    2006-08-30

    As a DHS intern at Lawrence Livermore National Laboratory (LLNL), I was a member of the Agricultural Domestic Demonstration and Application Program (AgDDAP) under the mentorship of Benjamin Hindson. This group is focused on developing assays for the rapid detection of animal diseases that threaten agriculture in the United States. The introduction of a foreign animal disease to the US could potentially result in devastating economic losses. The 2001 Foot-and-Mouth Disease (FMD) outbreak in the UK cost over 20 billion dollars and resulted in the death of over 6 million animals. FMD virus is considered to be one of greatestmore » threats to agriculture due to its high infectivity, robustness, and broad species range. Thus, export of meat and animal products from FMD endemic countries is strictly regulated. Although the disease is rarely fatal in adult animals, morbidity is close to 100%. FMD also causes overall production (i.e. milk, mass) to decrease dramatically and can reduce it permanently. The rapid and accurate diagnosis of FMD and other foreign animal diseases is essential to prevent these diseases from spreading and becoming endemic to the country. Every hour delay in the detection of FMD is estimated to cost up to 3 million dollars. Diagnosis of FMD is often complicated by other diseases manifesting similar symptoms in the animal, such as vesicular stomatitis, bluetongue, etc. Typically, diagnosis cannot be made by clinical signs alone and samples must be sent away for testing. Depending on the test, such as in virus isolation, this can take several days. AgDDAP had previously developed a high-throughput multiplexed polymerase chain reaction (PCR) assay for the rule-out of Foot-and-Mouth Disease and six other look-alike diseases. This assay is intended for use in FMD surveillance, differential diagnosis in an outbreak scenario, and to establish an FMD-clean state after an outbreak. PCR based assays are favorable for multiple reasons. Viral nucleic acids can be detected in samples several days before clinical signs appear. PCR is quick with results available in a few hours. The ability to multiplex PCR allows many different diseases to be detected. Also multiple signatures can be detected for each disease, decreasing the likelihood of a false negative result due to viral mutation. The virus would have to obtain multiple mutations in the correct areas in the genome to escape detection. PCR can also be easily automated with robotics and made high-throughput, allowing close to a hundred samples to be processed at a time with minimal chance of cross over contamination. This assay panel will be expanded in the future to screen for more diseases and also be separated into specific panels targeted at bovine, ovine, and porcine diseases. The assay is designed to be deeply multiplexed and could potentially screen for as many as 96 different diseases. The assay will also be modified to accept different types of sample matrices, including blood, milk, and tissues. This is necessary because the presence of viral nucleic acids in a particular sample matrix can be dependent on the virus, the stage of infection, and the species infected.« less

  10. Recreational Water–Associated Disease Outbreaks - United States 2009–2010

    EPA Science Inventory

    Recreational water–associated disease outbreaks result from exposure to infectious pathogens or chemical agents in treated recreational–water (e.g., pools and hot tubs or spas) or untreated recreational¬–water (e.g., lakes and oceans) venues. Outbreaks occurring during 2009–2010 ...

  11. Intervention strategies for carcass disposal: pareto analysis of exposures for exotic disease outbreaks.

    PubMed

    Delgado, João; Longhurst, Phil; Hickman, Gordon A W; Gauntlett, Daniel M; Howson, Simon F; Irving, Phil; Hart, Alwyn; Pollard, Simon J T

    2010-06-15

    An enhanced methodology for the policy-level prioritization of intervention options during carcass disposal is presented. Pareto charts provide a semiquantitative analysis of opportunities for multiple exposures to human health, animal health, and the wider environment during carcass disposal; they identify critical control points for risk management and assist in waste technology assessment. Eighty percent of the total availability of more than 1300 potential exposures to human, animal, or environmental receptors is represented by 16 processes, these being dominated by on-farm collection and carcass processing, reinforcing the criticality of effective controls during early stages of animal culling and waste processing. Exposures during mass burials are dominated by ground- and surface-water exposures with noise and odor nuisance prevalent for mass pyres, consistent with U.K. experience. Pareto charts are discussed in the context of other visualization formats for policy officials and promoted as a communication tool for informing the site-specific risk assessments required during the operational phases of exotic disease outbreaks.

  12. Biologically Informed Individual-Based Network Model for Rift Valley Fever in the US and Evaluation of Mitigation Strategies

    PubMed Central

    Scoglio, Caterina M.

    2016-01-01

    Rift Valley fever (RVF) is a zoonotic disease endemic in sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is complex, involving humans, livestock, and multiple species of mosquitoes. The epidemiology of RVFV in endemic areas is strongly affected by climatic conditions and environmental variables. In this research, we adapt and use a network-based modeling framework to simulate the transmission of RVFV among hypothetical cattle operations in Kansas, US. Our model considers geo-located livestock populations at the individual level while incorporating the role of mosquito populations and the environment at a coarse resolution. Extensive simulations show the flexibility of our modeling framework when applied to specific scenarios to quantitatively evaluate the efficacy of mosquito control and livestock movement regulations in reducing the extent and intensity of RVF outbreaks in the United States. PMID:27662585

  13. Biologically Informed Individual-Based Network Model for Rift Valley Fever in the US and Evaluation of Mitigation Strategies.

    PubMed

    Scoglio, Caterina M; Bosca, Claudio; Riad, Mahbubul H; Sahneh, Faryad D; Britch, Seth C; Cohnstaedt, Lee W; Linthicum, Kenneth J

    Rift Valley fever (RVF) is a zoonotic disease endemic in sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is complex, involving humans, livestock, and multiple species of mosquitoes. The epidemiology of RVFV in endemic areas is strongly affected by climatic conditions and environmental variables. In this research, we adapt and use a network-based modeling framework to simulate the transmission of RVFV among hypothetical cattle operations in Kansas, US. Our model considers geo-located livestock populations at the individual level while incorporating the role of mosquito populations and the environment at a coarse resolution. Extensive simulations show the flexibility of our modeling framework when applied to specific scenarios to quantitatively evaluate the efficacy of mosquito control and livestock movement regulations in reducing the extent and intensity of RVF outbreaks in the United States.

  14. Incidences of Waterborne and Foodborne Diseases After Meteorologic Disasters in South Korea.

    PubMed

    Na, Wonwoong; Lee, Kyeong Eun; Myung, Hyung-Nam; Jo, Soo-Nam; Jang, Jae-Yeon

    Climate change could increase the number of regions affected by meteorologic disasters. Meteorologic disasters can increase the risk of infectious disease outbreaks, including waterborne and foodborne diseases. Although many outbreaks of waterborne diseases after single disasters have been analyzed, there have not been sufficient studies reporting comprehensive analyses of cases occurring during long-term surveillance after multiple disasters, which could provide evidence of whether meteorologic disasters cause infectious disease outbreaks. This study aimed to assess the nationwide short-term changes in waterborne and foodborne disease incidences after a meteorologic disaster. We analyzed cases after all 65 floods and typhoons between 2001 and 2009 using the Korean National Emergency Management Agency's reports. Based on these data, we compared the weekly incidences of Vibrio vulnificus septicemia (VVS), shigellosis, typhoid fever, and paratyphoid fever before, during, and after the disasters, using multivariate Poisson regression models. We also analyzed the interactions between disaster characteristics and the relative risk of each disease. Compared with predisaster incidences, the incidences of VVS and shigellosis were 2.49-fold (95% confidence interval, 1.47-4.22) and 3.10-fold (95% confidence interval, 1.21-7.92) higher, respectively, the second week after the disaster. The incidences of VVS and shigellosis peaked the second week postdisaster and subsequently decreased. The risks of typhoid and paratyphoid fever did not significantly increase throughout the 4 weeks postdisaster. The daily average precipitation interacted with VVS and shigellosis incidences, whereas disaster type only interacted with VVS incidence patterns. The incidences of VVS and shigellosis were associated with meteorologic disasters, and disaster characteristics were associated with the disease incidence patterns postdisaster. These findings provide important comprehensive evidence to develop and support policies for managing and protecting public health after meteorologic disasters. Copyright © 2016 Icahn School of Medicine at Mount Sinai. Published by Elsevier Inc. All rights reserved.

  15. Operational practices associated with foodborne disease outbreaks in the catering industry in England and Wales.

    PubMed

    Jones, Sarah L; Parry, Sharon M; O'Brien, Sarah J; Palmer, Stephen R

    2008-08-01

    Catering businesses continue to be the most common setting for foodborne disease outbreaks. In a study of catering businesses in England and Wales, operational practices relating to the supply, preparation, and service of food in 88 businesses associated with outbreaks were compared with those practices at 88 control businesses. Operational practices did not differ significantly between case and control businesses but larger small medium-size enterprise (SME) businesses were more likely to be associated with foodborne disease outbreaks than were micro-SME businesses. Businesses associated with outbreaks of Salmonella infection were less likely to use local or national suppliers but instead used regional suppliers, especially for eggs. This practice was the only significantly independent operational practice associated with outbreaks of Salmonella infection. Regional egg suppliers also were more likely to be used by businesses associated with outbreaks attributed to food vehicles containing eggs. Businesses associated with egg-associated outbreaks were less likely to use eggs produced under an approved quality assurance scheme, suggesting that the underlying risk associated with using regional suppliers may relate to the use of contaminated eggs.

  16. Strategies for Early Outbreak Detection of Malaria in the Amhara Region of Ethiopia

    NASA Astrophysics Data System (ADS)

    Nekorchuk, D.; Gebrehiwot, T.; Mihretie, A.; Awoke, W.; Wimberly, M. C.

    2017-12-01

    Traditional epidemiological approaches to early detection of disease outbreaks are based on relatively straightforward thresholds (e.g. 75th percentile, standard deviations) estimated from historical case data. For diseases with strong seasonality, these can be modified to create separate thresholds for each seasonal time step. However, for disease processes that are non-stationary, more sophisticated techniques are needed to more accurately estimate outbreak threshold values. Early detection for geohealth-related diseases that also have environmental drivers, such as vector-borne diseases, may also benefit from the integration of time-lagged environmental data and disease ecology models into the threshold calculations. The Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessment (EPIDEMIA) project has been integrating malaria case surveillance with remotely-sensed environmental data for early detection, warning, and forecasting of malaria epidemics in the Amhara region of Ethiopia, and has five years of weekly time series data from 47 woredas (districts). Efforts to reduce the burden of malaria in Ethiopia has been met with some notable success in the past two decades with major reduction in cases and deaths. However, malaria remains a significant public health threat as 60% of the population live in malarious areas, and due to the seasonal and unstable transmission patterns with cyclic outbreaks, protective immunity is generally low which could cause high morbidity and mortality during the epidemics. This study compared several approaches for defining outbreak thresholds and for identifying a potential outbreak based on deviations from these thresholds. We found that model-based approaches that accounted for climate-driven seasonality in malaria transmission were most effective, and that incorporating a trend component improved outbreak detection in areas with active malaria elimination efforts. An advantage of these early detection techniques is that they can detect climate-driven outbreaks as well as outbreaks driven by social factors such as human migration.

  17. Best practices to prevent transmission and control outbreaks of hand, foot, and mouth disease in childcare facilities: a systematic review.

    PubMed

    Chan, J Hy; Law, C K; Hamblion, E; Fung, H; Rudge, J

    2017-04-01

    Hand, foot, and mouth disease continues to cause seasonal epidemics in the Asia-Pacific Region. Since the current Enterovirus 71 vaccines do not provide cross-protection for all Enterovirus species that cause hand, foot, and mouth disease, there is an urgent need to identify appropriate detection tools and best practice to prevent its transmission and to effectively control its outbreaks. This systematic review aimed to identify characteristics of outbreak and assess the impact and effectiveness of detection tools and public health preventive measures to interrupt transmission. The findings will be used to recommend policy on the most effective responses and interventions in Hong Kong to effectively minimise and contain the spread of the disease within childcare facilities. We searched the following databases for primary studies written in Chinese or English: MEDLINE, EMBASE, Global Health, WHO Western Pacific Region Index Medicus database, China National Knowledge Infrastructure Databases, and Chinese Scientific Journals Database. Studies conducted during or retrospective to outbreaks of hand, foot, and mouth disease caused by Enterovirus 71 from 1980 to 2012 within childcare facilities and with a study population of 0 to 6 years old were included. Sixteen studies conducted on outbreaks in China showed that hand, foot, and mouth disease spread rapidly within the facility, with an outbreak length of 4 to 46 days, especially in those with delayed notification (after 24 hours) of clustered outbreak (with five or more cases discovered within the facility) to the local Center for Disease Control and Prevention and delayed implementation of a control response. The number of classes affected ranged from 1 to 13, and the attack rate for children ranged from 0.97% to 28.18%. Communication between key stakeholders about outbreak confirmation, risk assessment, and surveillance should be improved. Effective communication facilitates timely notification (within 24 hours) of clustered outbreaks to a local Center for Disease Control and Prevention. Timely implementation of a control response is effective in minimising incidence and length of an outbreak in childcare facilities. The government should provide incentives for childcare facilities to train infection control specialists who can serve as the first contact, knowledge, and communication points, as well as facilitate exchange of information and provision of support across stakeholders during a communicable disease epidemic.

  18. Perceived threat, risk perception, and efficacy beliefs related to SARS and other (emerging) infectious diseases: results of an international survey.

    PubMed

    de Zwart, Onno; Veldhuijzen, Irene K; Elam, Gillian; Aro, Arja R; Abraham, Thomas; Bishop, George D; Voeten, Hélène A C M; Richardus, Jan Hendrik; Brug, Johannes

    2009-01-01

    To study the levels of perceived threat, perceived severity, perceived vulnerability, response efficacy, and self-efficacy for severe acute respiratory syndrome (SARS) and eight other diseases in five European and three Asian countries. A computer-assisted phone survey was conducted among 3,436 respondents. The questionnaire focused on perceived threat, vulnerability, severity, response efficacy, and self-efficacy related to SARS and eight other diseases. Perceived threat of SARS in case of an outbreak in the country was higher than that of other diseases. Perceived vulnerability of SARS was at an intermediate level and perceived severity was high compared to other diseases. Perceived threat for SARS varied between countries in Europe and Asia with a higher perceived severity of SARS in Europe and a higher perceived vulnerability in Asia. Response efficacy and self-efficacy for SARS were higher in Asia compared to Europe. In multiple linear regression analyses, country was strongly associated with perceived threat. The relatively high perceived threat for SARS indicates that it is seen as a public health risk and offers a basis for communication in case of an outbreak. The strong association between perceived threat and country and different regional patterns require further research.

  19. Comparison of Sexual Mixing Patterns for Syphilis in Endemic and Outbreak Settings

    PubMed Central

    Doherty, Irene A; Adimora, Adaora A; Muth, Stephen Q; Serre, Marc L; Leone, Peter A; Miller, William C

    2015-01-01

    Background In a largely rural region of North Carolina during 1998–2002, outbreaks occurred of heterosexually-transmitted syphilis, tied to crack cocaine use and exchange of sex for drugs and money. Sexual partnership mixing patterns are an important characteristic of sexual networks that relate to transmission dynamics of STIs. Methods Using contact tracing data collected by Disease Intervention Specialists, we estimated Newman assortativity coefficients and compared values in counties experiencing syphilis outbreaks to non-outbreak counties, with respect to race/ethnicity, race/ethnicity and age, and the cases' number of social/sexual contacts, infected contacts, sex partners, and infected sex partners, and syphilis disease stage (primary, secondary, early latent). Results Individuals in the outbreak counties had more contacts and mixing by the number of sex partners was disassortative in outbreak counties and assortative non-outbreak counties. Whereas mixing by syphilis disease stage was minimally assortative in outbreak counties, it was disassortative in non-outbreak areas. Partnerships were relatively discordant by age, especially among older White men, who often chose considerably younger female partners. Conclusions Whether assortative mixing exacerbates or attenuates the reach of STIs into different populations depends on the characteristic/attribute and epidemiologic phase. Examination of sexual partnership characteristics and mixing patterns offers insights into the growth of STI outbreaks that complement other research methods. PMID:21217418

  20. Disease Outbreak News

    MedlinePlus

    ... Iraq Nigeria Somalia South Sudan Syrian Arab Republic Yemen All emergencies » Latest » By country By disease Disease ... behavioural impact (COMBI) COMBI toolkit for behavioural and social communication in outbreak response Field workbook for COMBI ...

  1. Outbreaks of diarrhoeal illness on passenger cruise ships, 1975-85.

    PubMed Central

    Addiss, D. G.; Yashuk, J. C.; Clapp, D. E.; Blake, P. A.

    1989-01-01

    We reviewed data from the Vessel Sanitation Program (VSP), established by the US Public Health Service in 1975, to describe the epidemiology of shipboard diarrhoeal outbreaks, determine the risk of outbreak-related illness among cruise ship passengers, and evaluate changes in rates and patterns of shipboard diarrhoeal illness since the VSP was implemented. When the programme began, none of the cruise ships passed periodic VSP sanitation inspections; since 1978, more than 50% of ships have met the standard each year. On cruises lasting 3-15 days and having at least 100 passengers, diarrhoeal disease outbreaks investigated by the Centers for Disease Control decreased from 8.1 to 3.0 per 10 million passenger days between 1975-79 and 1980-85. The proportion of outbreaks due to bacterial pathogens (36%) did not change. Seafood cocktail was implicated in 8 of 13 documented food-borne outbreaks. The risk of diarrhoeal disease outbreaks on cruise ships appears to have decreased since implementation of the VSP but has not been eliminated. PMID:2776853

  2. Infectious disease outbreaks in competitive sports, 2005-2010.

    PubMed

    Collins, Cathal James; O'Connell, Brian

    2012-01-01

    Old, evolving, and new infectious agents continually threaten the participation of competitors in sports. To provide an update of the medical literature on infectious disease outbreaks in sport for the last 5 years (May 2005-November 2010). A total of 21 outbreaks or clusters were identified. Methicillin-resistant Staphylococcus aureus (n = 7, 33%; mainly community acquired) and tinea (trichophytosis: n = 6, 29%) were the most common pathogens responsible for outbreaks. Skin and soft tissue was the most common site of infection (n = 15, 71%). The majority of outbreaks reported occurred in close-contact sports, mainly combat sports (ie, wrestling, judo) and American football. Twelve outbreaks (57%) involved high school or collegiate competitors. Common community outbreak pathogens, such as influenza virus and norovirus, have received little attention.

  3. Shellfish-associated enteric virus illness: virus localization, disease outbreaks and prevention

    USDA-ARS?s Scientific Manuscript database

    Numerous outbreaks of shellfish-borne enteric virus illness have been reported worldwide. Most notable among the outbreaks are those involving norovirus illness and hepatitis A. Lessons learned from outbreak investigations indicate that most outbreaks are preventable. Anthropogenic sources of con...

  4. Post-Ebola Measles Outbreak in Lola, Guinea, January-June 2015(1).

    PubMed

    Suk, Jonathan E; Paez Jimenez, Adela; Kourouma, Mamadou; Derrough, Tarik; Baldé, Mamadou; Honomou, Patric; Kolie, Nestor; Mamadi, Oularé; Tamba, Kaduono; Lamah, Kalaya; Loua, Angelo; Mollet, Thomas; Lamah, Molou; Camara, Amara Nana; Prikazsky, Vladimir

    2016-06-01

    During public health crises such as the recent outbreaks of Ebola virus disease in West Africa, breakdowns in public health systems can lead to epidemics of vaccine-preventable diseases. We report here on an outbreak of measles in the prefecture of Lola, Guinea, which started in January 2015.

  5. [Foodborne disease outbreaks around the urban Chilean areas from 2005 to 2010].

    PubMed

    Alerte, Viller; Cortés A, Sandra; Díaz T, Janepsy; Vollaire Z, Jeannette; Espinoza M, M Eugenia; Solari G, Verónica; Cerda L, Jaime; Torres H, Marisa

    2012-02-01

    Foodborne disease outbreaks are one of the main health problems all over the world, which have an extensive impact on human health. [corrected] To analyze the foodborne disease outbreaks occurred in Chilean urban area from 2005 to 2010. We made a descriptive epidemiologic study. First, criteria were defined and classified according to previous epidemiologic investigations, clinical and environment samples, then. Variables of space, time, place and person were also analyzed. Among 2,806 reported outbreaks, 2434 (86.7%) fulfilled the inclusion criteria. Incidence rate of the period (2005-2010) were 32 cases per 100 inhabitants. A total of 12,196 people were affected, with an average of 5 patients per outbreak. The households (36.2%), restaurants (16.3%), supermarkets (6.3%) free fair (4.4%) have been the most important outbreak areas. The foods involved were seafood (15.4%), fish (15.1%), and fast food (13.5%). The etiologic agents were Salmonella spp, Shigella spp, Vibrio parahaemolyticus. Outbreaks foodborne diseases are frequents in the Chilean urban area, which make vulnerable a lot of people. The largest numbers happened in the households and were due to bad handling and/or inappropriate storage of the foods.

  6. Rapid detection of foodborne botulism outbreaks facilitated by epidemiological linking of cases: implications for food defense and public health response.

    PubMed

    Newkirk, Ryan W; Hedberg, Craig W

    2012-02-01

    The main objective of this study was to develop an understanding of the descriptive epidemiology of foodborne botulism in the context of outbreak detection and food defense. This study used 1993-2008 data from the Centers for Disease Control and Prevention (CDC) Annual Summaries of Notifiable Diseases, 2003-2006 data from the Bacterial Foodborne and Diarrheal Disease National Case Surveillance Annual Reports, and 1993-2008 data from the Annual Listing of Foodborne Disease Outbreaks. Published outbreak investigation reports were identified through a PubMed search of MEDLINE citations for botulism outbreaks. Fifty-eight foodborne botulism outbreaks were reported to CDC between 1993 and 2008. Four hundred sixteen foodborne botulism cases were documented; 205 (49%) were associated with outbreaks. Familial connections and co-hospitalization of initial presenting cases were common in large outbreaks (>5 cases). In these outbreaks, the time from earliest exposure to outbreak recognition varied dramatically (range, 48-216 h). The identification of epidemiologic linkages between foodborne botulism cases is a critical part of diagnostic evaluation and outbreak detection. Investigation of an intentionally contaminated food item with a long shelf life and widespread distribution may be delayed until an astute physician suspects foodborne botulism; suspicion of foodborne botulism occurs more frequently when more than one case is hospitalized concurrently. In an effort to augment national botulism surveillance and antitoxin release systems and to improve food defense and public health preparedness efforts, medical organizations and Homeland Security officials should emphasize the education and training of medical personnel to improve foodborne botulism diagnostic capabilities to recognize single foodborne botulism cases and to look for epidemiologic linkages between suspected cases.

  7. Perspectives on West Africa Ebola Virus Disease Outbreak, 2013–2016

    PubMed Central

    Spengler, Jessica R.; Ervin, Elizabeth D.; Towner, Jonathan S.; Rollin, Pierre E.

    2016-01-01

    The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013–2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community’s insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Continued efforts during the outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research. PMID:27070842

  8. Perspectives on West Africa Ebola Virus Disease Outbreak, 2013-2016

    DOE PAGES

    Spengler, Jessica R.; Ervin, Elizabeth D.; Towner, Jonathan S.; ...

    2016-06-01

    The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013-2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community's insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Finally, continued efforts during themore » outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research.« less

  9. Perspectives on West Africa Ebola Virus Disease Outbreak, 2013-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spengler, Jessica R.; Ervin, Elizabeth D.; Towner, Jonathan S.

    The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013-2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community's insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Finally, continued efforts during themore » outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research.« less

  10. Perspectives on West Africa Ebola Virus Disease Outbreak, 2013-2016.

    PubMed

    Spengler, Jessica R; Ervin, Elizabeth D; Towner, Jonathan S; Rollin, Pierre E; Nichol, Stuart T

    2016-06-01

    The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013-2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community's insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Continued efforts during the outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research.

  11. Effects of Response to 2014-2015 Ebola Outbreak on Deaths from Malaria, HIV/AIDS, and Tuberculosis, West Africa.

    PubMed

    Parpia, Alyssa S; Ndeffo-Mbah, Martial L; Wenzel, Natasha S; Galvani, Alison P

    2016-03-01

    Response to the 2014-2015 Ebola outbreak in West Africa overwhelmed the healthcare systems of Guinea, Liberia, and Sierra Leone, reducing access to health services for diagnosis and treatment for the major diseases that are endemic to the region: malaria, HIV/AIDS, and tuberculosis. To estimate the repercussions of the Ebola outbreak on the populations at risk for these diseases, we developed computational models for disease transmission and infection progression. We estimated that a 50% reduction in access to healthcare services during the Ebola outbreak exacerbated malaria, HIV/AIDS, and tuberculosis mortality rates by additional death counts of 6,269 (2,564-12,407) in Guinea; 1,535 (522-2,8780) in Liberia; and 2,819 (844-4,844) in Sierra Leone. The 2014-2015 Ebola outbreak was catastrophic in these countries, and its indirect impact of increasing the mortality rates of other diseases was also substantial.

  12. Plagues in the ICU: a brief history of community-acquired epidemic and endemic transmissible infections leading to intensive care admission.

    PubMed

    Light, R Bruce

    2009-01-01

    The ability to diagnose and treat infectious diseases and handle infectious disease outbreaks continues to improve. For the most part, the major plagues of antiquity remain historical footnotes, yet, despite many advances, there is clear evidence that major pandemic illness is always just one outbreak away. In addition to the HIV pandemic, the smaller epidemic outbreaks of Legionnaire's disease, hantavirus pulmonary syndrome, and severe acute respiratory syndrome, among many others, points out the potential risk associated with a lack of preplanning and preparedness. Although pandemic influenza is at the top of the list when discussing possible future major infectious disease outbreaks, the truth is that the identity of the next major pandemic pathogen cannot be predicted with any accuracy. We can only hope that general preparedness and the lessons learned from previous outbreaks suffice.

  13. Monoclonal outbreak of catheter-related bacteraemia by Ralstonia mannitolilytica on two haemato-oncology wards.

    PubMed

    Gröbner, Sabine; Heeg, Peter; Autenrieth, Ingo B; Schulte, Berit

    2007-12-01

    Ralstonia mannitolilytica is a non-fermentative, gram-negative bacterium isolated infrequently from clinical samples. However, within a period of 11 weeks five inpatients of the tertiary care hospital of the University of Tübingen developed clinical signs of infection and R. mannitolilytica was cultivated from blood samples of all patients suggesting an outbreak. Blood cultures and one catheter tip were analysed by standard microbiological procedures. Genetic relatedness of the isolates was investigated by pulsed-field gel electrophoresis. To ascertain the possible source of the outbreak, environmental sampling and challenge-recovery experiments to test filters used for multi-dose solution bottles were performed. In the present study a monoclonal outbreak with R. mannitolilytica causing catheter-related infection of five haematological patients is reported. Underlying severe diseases with consecutive immunosuppression, permanent indwelling intravenous devices, multiple intravenous applications, and chemotherapy were possible risk factors promoting the infection. Challenge-recovery experiments revealed that R. mannitolilytica to a high extent even passed through Mini-spike Plus filters of pore size 0.2 microm. Although the source of the outbreak could not be identified, it is possible that solutions given intravenously were contaminated. Since R. mannitolilytica had never been isolated in our laboratory before and environmental testings performed were negative, it cannot be excluded that commercial products like drugs, saline solutions or infusion systems (filters) were contaminated.

  14. Syndromic Surveillance Using Veterinary Laboratory Data: Algorithm Combination and Customization of Alerts

    PubMed Central

    Dórea, Fernanda C.; McEwen, Beverly J.; McNab, W. Bruce; Sanchez, Javier; Revie, Crawford W.

    2013-01-01

    Background Syndromic surveillance research has focused on two main themes: the search for data sources that can provide early disease detection; and the development of efficient algorithms that can detect potential outbreak signals. Methods This work combines three algorithms that have demonstrated solid performance in detecting simulated outbreak signals of varying shapes in time series of laboratory submissions counts. These are: the Shewhart control charts designed to detect sudden spikes in counts; the EWMA control charts developed to detect slow increasing outbreaks; and the Holt-Winters exponential smoothing, which can explicitly account for temporal effects in the data stream monitored. A scoring system to detect and report alarms using these algorithms in a complementary way is proposed. Results The use of multiple algorithms in parallel resulted in increased system sensitivity. Specificity was decreased in simulated data, but the number of false alarms per year when the approach was applied to real data was considered manageable (between 1 and 3 per year for each of ten syndromic groups monitored). The automated implementation of this approach, including a method for on-line filtering of potential outbreak signals is described. Conclusion The developed system provides high sensitivity for detection of potential outbreak signals while also providing robustness and flexibility in establishing what signals constitute an alarm. This flexibility allows an analyst to customize the system for different syndromes. PMID:24349216

  15. Syndromic surveillance using veterinary laboratory data: algorithm combination and customization of alerts.

    PubMed

    Dórea, Fernanda C; McEwen, Beverly J; McNab, W Bruce; Sanchez, Javier; Revie, Crawford W

    2013-01-01

    Syndromic surveillance research has focused on two main themes: the search for data sources that can provide early disease detection; and the development of efficient algorithms that can detect potential outbreak signals. This work combines three algorithms that have demonstrated solid performance in detecting simulated outbreak signals of varying shapes in time series of laboratory submissions counts. These are: the Shewhart control charts designed to detect sudden spikes in counts; the EWMA control charts developed to detect slow increasing outbreaks; and the Holt-Winters exponential smoothing, which can explicitly account for temporal effects in the data stream monitored. A scoring system to detect and report alarms using these algorithms in a complementary way is proposed. The use of multiple algorithms in parallel resulted in increased system sensitivity. Specificity was decreased in simulated data, but the number of false alarms per year when the approach was applied to real data was considered manageable (between 1 and 3 per year for each of ten syndromic groups monitored). The automated implementation of this approach, including a method for on-line filtering of potential outbreak signals is described. The developed system provides high sensitivity for detection of potential outbreak signals while also providing robustness and flexibility in establishing what signals constitute an alarm. This flexibility allows an analyst to customize the system for different syndromes.

  16. Natural Disasters and Cholera Outbreaks: Current Understanding and Future Outlook.

    PubMed

    Jutla, Antarpreet; Khan, Rakibul; Colwell, Rita

    2017-03-01

    Diarrheal diseases remain a serious global public health threat, especially for those populations lacking access to safe water and sanitation infrastructure. Although association of several diarrheal diseases, e.g., cholera, shigellosis, etc., with climatic processes has been documented, the global human population remains at heightened risk of outbreak of diseases after natural disasters, such as earthquakes, floods, or droughts. In this review, cholera was selected as a signature diarrheal disease and the role of natural disasters in triggering and transmitting cholera was analyzed. Key observations include identification of an inherent feedback loop that includes societal structure, prevailing climatic processes, and spatio-temporal seasonal variability of natural disasters. Data obtained from satellite-based remote sensing are concluded to have application, although limited, in predicting risks of a cholera outbreak(s). We argue that with the advent of new high spectral and spatial resolution data, earth observation systems should be seamlessly integrated in a decision support mechanism to be mobilize resources when a region suffers a natural disaster. A framework is proposed that can be used to assess the impact of natural disasters with response to outbreak of cholera, providing assessment of short- and long-term influence of climatic processes on disease outbreaks.

  17. Worry experienced during the 2015 Middle East Respiratory Syndrome (MERS) pandemic in Korea

    PubMed Central

    Ro, Jun-Soo; Lee, Jin-Seok; Kang, Sung-Chan; Jung, Hye-Min

    2017-01-01

    Background Korea failed in its risk communication during the early stage of the Middle East Respiratory Syndrome (MERS) outbreak; consequently, it faced difficulties in managing MERS, while disease-related worry increased. Disease-related worry can help disease prevention and management, but can also have a detrimental effect. This study measured the overall level of disease-related worry during the MERS outbreak period in Korea and the influencing factors and levels of disease-related worry during key outbreak periods. Methods The cross-sectional survey included 1,000 adults who resided in Korea. An ordinal logistic regression was performed for the overall level of MERS-related worry, and influencing factors of worry were analyzed. A reliability test was performed on the levels of MERS-related worry during key outbreak periods. Results The overall level of MERS-related worry was 2.44. Multivariate analysis revealed that women and respondents w very poor subjective health status had higher levels of worry. Respondents with very high stress in daily life had higher levels of worry than those who reported having little stress. The reliability test results on MERS-related worry scores during key outbreak periods showed consistent scores during each period. Conclusion Level of worry increased in cases having higher perceived susceptibility and greater trust in informal information, while initial stage of outbreak was closely associated with that at later stages. These findings suggest the importance of managing the level of worry by providing timely and accurate disease-related information during the initial stage of disease outbreak. PMID:28273131

  18. Review of syndromic surveillance: implications for waterborne disease detection

    PubMed Central

    Berger, Magdalena; Shiau, Rita; Weintraub, June M

    2006-01-01

    Syndromic surveillance is the gathering of data for public health purposes before laboratory or clinically confirmed information is available. Interest in syndromic surveillance has increased because of concerns about bioterrorism. In addition to bioterrorism detection, syndromic surveillance may be suited to detecting waterborne disease outbreaks. Theoretical benefits of syndromic surveillance include potential timeliness, increased response capacity, ability to establish baseline disease burdens, and ability to delineate the geographical reach of an outbreak. This review summarises the evidence gathered from retrospective, prospective, and simulation studies to assess the efficacy of syndromic surveillance for waterborne disease detection. There is little evidence that syndromic surveillance mitigates the effects of disease outbreaks through earlier detection and response. Syndromic surveillance should not be implemented at the expense of traditional disease surveillance, and should not be relied upon as a principal outbreak detection tool. The utility of syndromic surveillance is dependent on alarm thresholds that can be evaluated in practice. Syndromic data sources such as over the counter drug sales for detection of waterborne outbreaks should be further evaluated. PMID:16698988

  19. Public health implications of complex emergencies and natural disasters.

    PubMed

    Culver, Amanda; Rochat, Roger; Cookson, Susan T

    2017-01-01

    During the last decade, conflict or natural disasters have displaced unprecedented numbers of persons. This leads to conditions prone to outbreaks that imperil the health of displaced persons and threaten global health security. Past literature has minimally examined the association of communicable disease outbreaks with complex emergencies (CEs) and natural disasters (NDs). To examine this association, we identified CEs and NDs using publicly available datasets from the Center for Research on the Epidemiology of Disasters and United Nations Flash and Consolidated Appeals archive for 2005-2014. We identified outbreaks from World Health Organization archives. We compared findings to identify overlap of outbreaks, including their types (whether or not of a vaccine-preventable disease), and emergency event types (CE, ND, or Both) by country and year using descriptive statistics and measure of association. There were 167 CEs, 912 NDs, 118 events linked to 'Both' types of emergencies, and 384 outbreaks. Of CEs, 43% were associated with an outbreak; 24% NDs were associated with an outbreak; and 36% of 'Both' types of emergencies were associated with an outbreak. Africa was disproportionately affected, where 67% of total CEs, 67% of 'Both' events (CE and ND), and 46% of all outbreaks occurred for the study period. The odds ratio of a vaccine-preventable outbreak occurring in a CE versus an ND was 4.14 (95% confidence limits 1.9, 9.4). CEs had greater odds of being associated with outbreaks compared with NDs. Moreover, CEs had high odds of a vaccine-preventable disease causing that outbreak. Focusing on better vaccine coverage could reduce CE-associated morbidity and mortality by preventing outbreaks from spreading.

  20. Understanding impacts of climatic extremes on diarrheal disease epidemics: Insights from mechanistic disease propagation models

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Akanda, A. S.; Colwell, R. R.

    2013-12-01

    An epidemic outbreak of diarrheal diseases (primarily cholera) in Haiti in 2010 is a reminder that our understanding on disease triggers, transmission and spreading mechanisms is incomplete. Cholera can occur in two forms - epidemic (defined as sudden outbreak in a historically disease free region) and endemic (recurrence and persistence of the disease for several consecutive years). Examples of countries with epidemic cholera include Pakistan (2008), Congo (2008), and most recently Haiti (2010). A significant difference between endemic and epidemic regions is the mortality rate, i.e., 1% or lower in an endemic regions versus 3-7% during recent epidemic outbreaks. A fundamentally transformational approach - a warning system with several months prediction lead time - is needed to prevent disease outbreak and minimize its impact on population. Lack of information on spatial and temporal variability of disease incidence as well as transmission in human population continues to be significant challenge in the development of early-warning systems for cholera. Using satellite data on regional hydroclimatic processes, water and sanitation infrastructure indices, and biological pathogen growth information, here we present a Simple, Mechanistic, Adaptive, Remote sensing based Regional Transmission or SMART model to (i) identify regions of potential cholera outbreaks and (ii) quantify mechanism of spread of the disease in previously disease free region. Our results indicate that epidemic regions are located near regional rivers and are characterized by sporadic outbreaks, which are likely to be initiated during episodes of prevailing warm air temperature with low river flows, creating favorable environmental conditions for the growth of cholera bacteria. Heavy rainfall, through inundation or breakdown of sanitary infrastructure, accelerates interaction between contaminated water and human activities, resulting in an epidemic. We discuss the above findings in light of increased climatic variability, such as acceleration of hydrological cycle, hydroclimatic hazards, etc on diarrheal disease outbreaks.

  1. Developing a disease outbreak event corpus.

    PubMed

    Conway, Mike; Kawazoe, Ai; Chanlekha, Hutchatai; Collier, Nigel

    2010-09-28

    In recent years, there has been a growth in work on the use of information extraction technologies for tracking disease outbreaks from online news texts, yet publicly available evaluation standards (and associated resources) for this new area of research have been noticeably lacking. This study seeks to create a "gold standard" data set against which to test how accurately disease outbreak information extraction systems can identify the semantics of disease outbreak events. Additionally, we hope that the provision of an annotation scheme (and associated corpus) to the community will encourage open evaluation in this new and growing application area. We developed an annotation scheme for identifying infectious disease outbreak events in news texts. An event--in the context of our annotation scheme--consists minimally of geographical (eg, country and province) and disease name information. However, the scheme also allows for the rich encoding of other domain salient concepts (eg, international travel, species, and food contamination). The work resulted in a 200-document corpus of event-annotated disease outbreak reports that can be used to evaluate the accuracy of event detection algorithms (in this case, for the BioCaster biosurveillance online news information extraction system). In the 200 documents, 394 distinct events were identified (mean 1.97 events per document, range 0-25 events per document). We also provide a download script and graphical user interface (GUI)-based event browsing software to facilitate corpus exploration. In summary, we present an annotation scheme and corpus that can be used in the evaluation of disease outbreak event extraction algorithms. The annotation scheme and corpus were designed both with the particular evaluation requirements of the BioCaster system in mind as well as the wider need for further evaluation resources in this growing research area.

  2. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2.

    PubMed

    Tang, Jiaqi; Wang, Changjun; Feng, Youjun; Yang, Weizhong; Song, Huaidong; Chen, Zhihai; Yu, Hongjie; Pan, Xiuzhen; Zhou, Xiaojun; Wang, Huaru; Wu, Bo; Wang, Haili; Zhao, Huamei; Lin, Ying; Yue, Jianhua; Wu, Zhenqiang; He, Xiaowei; Gao, Feng; Khan, Abdul Hamid; Wang, Jian; Zhao, Guo-Ping; Wang, Yu; Wang, Xiaoning; Chen, Zhu; Gao, George F

    2006-05-01

    Streptococcus suis serotype 2 (S. suis 2, SS2) is a major zoonotic pathogen that causes only sporadic cases of meningitis and sepsis in humans. Most if not all cases of Streptococcal toxic shock syndrome (STSS) that have been well-documented to date were associated with the non-SS2 group A streptococcus (GAS). However, a recent large-scale outbreak of SS2 in Sichuan Province, China, appeared to be caused by more invasive deep-tissue infection with STSS, characterized by acute high fever, vascular collapse, hypotension, shock, and multiple organ failure. We investigated this outbreak of SS2 infections in both human and pigs, which took place from July to August, 2005, through clinical observation and laboratory experiments. Clinical and pathological characterization of the human patients revealed the hallmarks of typical STSS, which to date had only been associated with GAS infection. Retrospectively, we found that this outbreak was very similar to an earlier outbreak in Jiangsu Province, China, in 1998. We isolated and analyzed 37 bacterial strains from human specimens and eight from pig specimens of the recent outbreak, as well as three human isolates and two pig isolates from the 1998 outbreak we had kept in our laboratory. The bacterial isolates were examined using light microscopy observation, pig infection experiments, multiplex-PCR assay, as well as restriction fragment length polymorphisms (RFLP) and multiple sequence alignment analyses. Multiple lines of evidence confirmed that highly virulent strains of SS2 were the causative agents of both outbreaks. We report, to our knowledge for the first time, two outbreaks of STSS caused by SS2, a non-GAS streptococcus. The 2005 outbreak was associated with 38 deaths out of 204 documented human cases; the 1998 outbreak with 14 deaths out of 25 reported human cases. Most of the fatal cases were characterized by STSS; some of them by meningitis or severe septicemia. The molecular mechanisms underlying these human STSS outbreaks in human beings remain unclear and an objective for further study.

  3. Antimicrobial resistance in Salmonella that caused foodborne disease outbreaks: United States, 2003–2012

    PubMed Central

    BROWN, A. C.; GRASS, J. E.; RICHARDSON, L. C.; NISLER, A. L.; BICKNESE, A. S.; GOULD, L. H.

    2016-01-01

    SUMMARY Although most non-typhoidal Salmonella illnesses are self-limiting, antimicrobial treatment is critical for invasive infections. To describe resistance in Salmonella that caused foodborne outbreaks in the United States, we linked outbreaks submitted to the Foodborne Disease Outbreak Surveillance System to isolate susceptibility data in the National Antimicrobial Resistance Monitoring System. Resistant outbreaks were defined as those linked to one or more isolates with resistance to at least one antimicrobial drug. Multidrug resistant (MDR) outbreaks had at least one isolate resistant to three or more antimicrobial classes. Twenty-one per cent (37/176) of linked outbreaks were resistant. In outbreaks attributed to a single food group, 73% (16/22) of resistant outbreaks and 46% (31/68) of non-resistant outbreaks were attributed to foods from land animals (P < 0.05). MDR Salmonella with clinically important resistance caused 29% (14/48) of outbreaks from land animals and 8% (3/40) of outbreaks from plant products (P < 0.01). In our study, resistant Salmonella infections were more common in outbreaks attributed to foods from land animals than outbreaks from foods from plants or aquatic animals. Antimicrobial susceptibility data on isolates from foodborne Salmonella outbreaks can help determine which foods are associated with resistant infections. PMID:27919296

  4. Antimicrobial resistance in Salmonella that caused foodborne disease outbreaks: United States, 2003-2012.

    PubMed

    Brown, A C; Grass, J E; Richardson, L C; Nisler, A L; Bicknese, A S; Gould, L H

    2017-03-01

    Although most non-typhoidal Salmonella illnesses are self-limiting, antimicrobial treatment is critical for invasive infections. To describe resistance in Salmonella that caused foodborne outbreaks in the United States, we linked outbreaks submitted to the Foodborne Disease Outbreak Surveillance System to isolate susceptibility data in the National Antimicrobial Resistance Monitoring System. Resistant outbreaks were defined as those linked to one or more isolates with resistance to at least one antimicrobial drug. Multidrug resistant (MDR) outbreaks had at least one isolate resistant to three or more antimicrobial classes. Twenty-one per cent (37/176) of linked outbreaks were resistant. In outbreaks attributed to a single food group, 73% (16/22) of resistant outbreaks and 46% (31/68) of non-resistant outbreaks were attributed to foods from land animals (P < 0·05). MDR Salmonella with clinically important resistance caused 29% (14/48) of outbreaks from land animals and 8% (3/40) of outbreaks from plant products (P < 0·01). In our study, resistant Salmonella infections were more common in outbreaks attributed to foods from land animals than outbreaks from foods from plants or aquatic animals. Antimicrobial susceptibility data on isolates from foodborne Salmonella outbreaks can help determine which foods are associated with resistant infections.

  5. Outbreaks of infectious intestinal disease associated with person to person spread in hotels and restaurants.

    PubMed

    McDonnell, R J; Wall, P G; Adak, G K; Evans, H S; Cowden, J M; Caul, E O

    1995-09-15

    Twenty-eight outbreaks of infectious intestinal disease, reported as being transmitted mainly by the person to person route, were identified in association with retail catering premises, such as hotels, restaurants, and public houses, in England and Wales between 1992 and 1994. Five thousand and forty-eight people were at risk in these outbreaks and 1234 were affected. Most of the outbreaks (over 90%) occurred in hotels. Small round structured viruses were the most commonly detected pathogens. Diarrhoea and vomiting were common symptoms and most of the outbreaks occurred in the summer months. Control measures to contain infectious individuals and improved hygiene measures are necessary to contain such outbreaks.

  6. Hot spots in a wired world: WHO surveillance of emerging and re-emerging infectious diseases.

    PubMed

    Heymann, D L; Rodier, G R

    2001-12-01

    The resurgence of the microbial threat, rooted in several recent trends, has increased the vulnerability of all nations to the risk of infectious diseases, whether newly emerging, well-established, or deliberately caused. Infectious disease intelligence, gleaned through sensitive surveillance, is the best defence. The epidemiological and laboratory techniques needed to detect, investigate, and contain a deliberate outbreak are the same as those used for natural outbreaks. In April 2000, WHO formalised an infrastructure (the Global Outbreak Alert and Response Network) for responding to the heightened need for early awareness of outbreaks and preparedness to respond. The Network, which unites 110 existing networks, is supported by several new mechanisms and a computer-driven tool for real time gathering of disease intelligence. The procedure for outbreak alert and response has four phases: systematic detection, outbreak verification, real time alerts, and rapid response. For response, the framework uses different strategies for combating known risks and unexpected events, and for improving both global and national preparedness. New forces at work in an electronically interconnected world are beginning to break down the traditional reluctance of countries to report outbreaks due to fear of the negative impact on trade and tourism. About 65% of the world's first news about infectious disease events now comes from informal sources, including press reports and the internet.

  7. Knowledge and attitude towards Ebola and Marburg virus diseases in Uganda using quantitative and participatory epidemiology techniques

    PubMed Central

    Skjerve, Eystein; Nabadda, Daisy; Sitali, Doreen Chilolo; Mumba, Chisoni; Mwiine, Frank N.; Lutwama, Julius J.; Balinandi, Stephen; Shoemaker, Trevor; Kankya, Clovice

    2017-01-01

    Background Uganda has reported five (5) Ebola virus disease outbreaks and three (3) Marburg virus disease outbreaks from 2000 to 2016. Peoples’ knowledge and attitude towards Ebola and Marburg virus disease impact on control and prevention measures especially during outbreaks. We describe knowledge and attitude towards Ebola and Marburg virus outbreaks in two affected communities in Uganda to inform future outbreak responses and help in the design of health education and communication messages. Methods The study was a community survey done in Luweero, Ibanda and Kamwenge districts that have experienced outbreaks of Ebola and Marburg virus diseases. Quantitative data were collected using a structured questionnaire and triangulated with qualitative participatory epidemiology techniques to gain a communities’ knowledge and attitude towards Ebola and Marburg virus disease. Results Out of 740 respondents, 48.5% (359/740) were categorized as being knowledgeable about Ebola and Marburg virus diseases, whereas 60.5% (448/740) were having a positive attitude towards control and prevention of Ebola and Marburg virus diseases. The mean knowledge and attitude percentage scores were 54.3 (SD = 23.5, 95%CI = 52.6–56.0) and 69.9 (SD = 16.9, 95%CI = 68.9–71.1) respectively. People educated beyond primary school were more likely to be knowledgeable about Ebola and Marburg virus disease than those who did not attain any formal education (OR = 3.6, 95%CI = 2.1–6.1). Qualitative data revealed that communities describe Ebola and Marburg virus diseases as very severe diseases with no cure and they believe the diseases spread so fast. Respondents reported fear and stigma suffered by survivors, their families and the broader community due to these diseases. Conclusion Communities in Uganda affected by filovirus outbreaks have moderate knowledge about these diseases and have a positive attitude towards practices to prevent and control Ebola and Marburg viral diseases. The public health sector should enhance this community knowledge gap to empower them more by supplying educational materials for epidemic preparedness in future using appropriate communication channels as proposed by the communities. PMID:28892520

  8. Knowledge and attitude towards Ebola and Marburg virus diseases in Uganda using quantitative and participatory epidemiology techniques.

    PubMed

    Nyakarahuka, Luke; Skjerve, Eystein; Nabadda, Daisy; Sitali, Doreen Chilolo; Mumba, Chisoni; Mwiine, Frank N; Lutwama, Julius J; Balinandi, Stephen; Shoemaker, Trevor; Kankya, Clovice

    2017-09-01

    Uganda has reported five (5) Ebola virus disease outbreaks and three (3) Marburg virus disease outbreaks from 2000 to 2016. Peoples' knowledge and attitude towards Ebola and Marburg virus disease impact on control and prevention measures especially during outbreaks. We describe knowledge and attitude towards Ebola and Marburg virus outbreaks in two affected communities in Uganda to inform future outbreak responses and help in the design of health education and communication messages. The study was a community survey done in Luweero, Ibanda and Kamwenge districts that have experienced outbreaks of Ebola and Marburg virus diseases. Quantitative data were collected using a structured questionnaire and triangulated with qualitative participatory epidemiology techniques to gain a communities' knowledge and attitude towards Ebola and Marburg virus disease. Out of 740 respondents, 48.5% (359/740) were categorized as being knowledgeable about Ebola and Marburg virus diseases, whereas 60.5% (448/740) were having a positive attitude towards control and prevention of Ebola and Marburg virus diseases. The mean knowledge and attitude percentage scores were 54.3 (SD = 23.5, 95%CI = 52.6-56.0) and 69.9 (SD = 16.9, 95%CI = 68.9-71.1) respectively. People educated beyond primary school were more likely to be knowledgeable about Ebola and Marburg virus disease than those who did not attain any formal education (OR = 3.6, 95%CI = 2.1-6.1). Qualitative data revealed that communities describe Ebola and Marburg virus diseases as very severe diseases with no cure and they believe the diseases spread so fast. Respondents reported fear and stigma suffered by survivors, their families and the broader community due to these diseases. Communities in Uganda affected by filovirus outbreaks have moderate knowledge about these diseases and have a positive attitude towards practices to prevent and control Ebola and Marburg viral diseases. The public health sector should enhance this community knowledge gap to empower them more by supplying educational materials for epidemic preparedness in future using appropriate communication channels as proposed by the communities.

  9. Assessment of the Incubation Period for Invasive Listeriosis.

    PubMed

    Angelo, Kristina M; Jackson, Kelly A; Wong, Karen K; Hoekstra, Robert M; Jackson, Brendan R

    2016-12-01

    We characterized incubation periods among outbreak-associated listeriosis cases, using a simulation model to account for patients with multiple exposure dates. The median was 11 days; 90% of cases occurred within 28 days, and incubation periods varied by clinical manifestation. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. Outbreak of Legionnaire's Disease Caused by Legionella pneumophila Serogroups 1 and 13.

    PubMed

    Kuroki, Toshiro; Amemura-Maekawa, Junko; Ohya, Hitomi; Furukawa, Ichiro; Suzuki, Miyuki; Masaoka, Tomoka; Aikawa, Kastuhiro; Hibi, Kazumi; Morita, Masatomo; Lee, Ken-Ichi; Ohnishi, Makoto; Kura, Fumiaki

    2017-02-01

    In Japan, hot springs and public baths are the major sources of legionellosis. In 2015, an outbreak of Legionnaires' disease occurred among 7 patients who had visited a spa house. Laboratory investigation indicated that L. pneumophila serogroup 1 and 13 strains caused the outbreak and that these strains were genetically related.

  11. Waterborne Disease Outbreaks Associated With Environmental and Undetermined Exposures to Water - United States, 2013-2014.

    PubMed

    McClung, R Paul; Roth, David M; Vigar, Marissa; Roberts, Virginia A; Kahler, Amy M; Cooley, Laura A; Hilborn, Elizabeth D; Wade, Timothy J; Fullerton, Kathleen E; Yoder, Jonathan S; Hill, Vincent R

    2017-11-10

    Waterborne disease outbreaks in the United States are associated with a wide variety of water exposures and are reported annually to CDC on a voluntary basis by state and territorial health departments through the National Outbreak Reporting System (NORS). A majority of outbreaks arise from exposure to drinking water (1) or recreational water (2), whereas others are caused by an environmental exposure to water or an undetermined exposure to water. During 2013-2014, 15 outbreaks associated with an environmental exposure to water and 12 outbreaks with an undetermined exposure to water were reported, resulting in at least 289 cases of illness, 108 hospitalizations, and 17 deaths. Legionella was responsible for 63% of the outbreaks, 94% of hospitalizations, and all deaths. Outbreaks were also caused by Cryptosporidium, Pseudomonas, and Giardia, including six outbreaks of giardiasis caused by ingestion of water from a river, stream, or spring. Water management programs can effectively prevent outbreaks caused by environmental exposure to water from human-made water systems, while proper point-of-use treatment of water can prevent outbreaks caused by ingestion of water from natural water systems.

  12. A Distributed Platform for Global-Scale Agent-Based Models of Disease Transmission

    PubMed Central

    Parker, Jon; Epstein, Joshua M.

    2013-01-01

    The Global-Scale Agent Model (GSAM) is presented. The GSAM is a high-performance distributed platform for agent-based epidemic modeling capable of simulating a disease outbreak in a population of several billion agents. It is unprecedented in its scale, its speed, and its use of Java. Solutions to multiple challenges inherent in distributing massive agent-based models are presented. Communication, synchronization, and memory usage are among the topics covered in detail. The memory usage discussion is Java specific. However, the communication and synchronization discussions apply broadly. We provide benchmarks illustrating the GSAM’s speed and scalability. PMID:24465120

  13. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks.

    PubMed

    Rusconi, Brigida; Sanjar, Fatemeh; Koenig, Sara S K; Mammel, Mark K; Tarr, Phillip I; Eppinger, Mark

    2016-01-01

    Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and long-term evolution and can complement currently employed typing schemes for outbreak ex- and inclusion, diagnostics, surveillance, and forensic studies.

  14. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks

    PubMed Central

    Rusconi, Brigida; Sanjar, Fatemeh; Koenig, Sara S. K.; Mammel, Mark K.; Tarr, Phillip I.; Eppinger, Mark

    2016-01-01

    Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and long-term evolution and can complement currently employed typing schemes for outbreak ex- and inclusion, diagnostics, surveillance, and forensic studies. PMID:27446025

  15. International employees' concerns during serious disease outbreaks and the potential impact on business continuity: Lessons identified from the 2014-15 West African Ebola outbreak.

    PubMed

    Cole, Jennifer; Watkins, Chris

    This paper presents the findings of research carried out into the information-seeking behaviour, and information requirements of a small sample of international workers stationed in West Africa during the Zaire Ebola virus outbreak of 2014-15. The research study under which these results were obtained was part of exploratory research for a PhD focused on the use, and potential uses, of social media platforms during serious disease outbreaks that might be used to inform policy planning for public health and emergency response interventions. Thus, the findings from this study may provide valuable insights to business continuity managers and emergency planners in making future decisions about information exchange and crisis decision-making during future serious disease outbreaks.

  16. Multistate Outbreak of Escherichia coli O157:H7 Infections Associated with Consumption of Fresh Spinach: United States, 2006.

    PubMed

    Sharapov, Umid M; Wendel, Arthur M; Davis, Jeffrey P; Keene, William E; Farrar, Jeffrey; Sodha, Samir; Hyytia-Trees, Eija; Leeper, Molly; Gerner-Smidt, Peter; Griffin, Patricia M; Braden, Chris

    2016-12-01

    During September to October, 2006, state and local health departments and the Centers for Disease Control and Prevention investigated a large, multistate outbreak of Escherichia coli O157:H7 infections. Case patients were interviewed regarding specific foods consumed and other possible exposures. E. coli O157:H7 strains isolated from human and food specimens were subtyped using pulsed-field gel electrophoresis and multiple-locus variable-number tandem repeat analyses (MLVA). Two hundred twenty-five cases (191 confirmed and 34 probable) were identified in 27 states; 116 (56%) case patients were hospitalized, 39 (19%) developed hemolytic uremic syndrome, and 5 (2%) died. Among 176 case patients from whom E. coli O157:H7 with the outbreak genotype (MLVA outbreak strain) was isolated and who provided details regarding spinach exposure, 161 (91%) reported fresh spinach consumption during the 10 days before illness began. Among 116 patients who provided spinach brand information, 106 (91%) consumed bagged brand A. E. coli O157:H7 strains were isolated from 13 bags of brand A spinach collected from patients' homes; isolates from 12 bags had the same MLVA pattern. Comprehensive epidemiologic and laboratory investigations associated this large multistate outbreak of E. coli O157:H7 infections with consumption of fresh bagged spinach. MLVA, as a supplement to pulsed-field gel electrophoresis genotyping of case patient isolates, was important to discern outbreak-related cases. This outbreak resulted in enhanced federal and industry guidance to improve the safety of leafy green vegetables and launched an independent collaborative approach to produce safety research in 2007.

  17. Vaccine effectiveness of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccine during a pertussis outbreak in Maine.

    PubMed

    Terranella, Andrew; Rea, Vicki; Griffith, Matthew; Manning, Susan; Sears, Steven; Farmer, Ann; Martin, Stacey; Patel, Manisha

    2016-05-11

    Multiple school-associated pertussis outbreaks were reported in Maine from 2010 to 2011. These outbreaks were associated with an overall increase in pertussis cases statewide. Waning of protection in students recently vaccinated with tetanus, diphtheria, and acellular pertussis (Tdap) has been implicated in the increase in reported rates of pertussis nationally. We conducted a retrospective cohort study to evaluate Tdap vaccine effectiveness (VE) among students aged 11-19 years in two schools reporting outbreaks in 2011. All pertussis cases reported from August through November, 2011 at the two schools were included. Vaccination history was verified using provider information, state vaccine registry data, and parental verification. Attack rates (AR) were calculated. VE and duration of protection was calculated as VE=1-(ARvaccinated/ARunvaccinated)×100% using a log binomial regression model. Of 416 students enrolled, 314 were included in the analyses. Twenty-nine cases collectively in Schools A and B. Tdap coverage was 65% at School A and 42% at School B before the start of the outbreak. Among students enrolled in the study, attack rates were 11.9% and 7.7% at Schools A and B, respectively. Overall VE was 68.5% (95% confidence interval (CI) 37.7-86.2). VE was 70.4% (95% CI 17.5-89.4) for School A and 65.2% (95% CI -19.2 to 89.9) for School B. VE <2 years versus ≥2 years from outbreak onset was not significantly different. Tdap was moderately effective in preventing disease among vaccinated students. Vaccine coverage of 65% or less was suboptimal and might contribute to outbreaks. Waning VE was not demonstrated. Increased vaccination coverage rates as well as further evaluation of the role of acellular vaccine on VE is needed. Published by Elsevier Ltd.

  18. Challenges and Opportunities in Disease Forecasting in Outbreak Settings: A Case Study of Measles in Lola Prefecture, Guinea

    PubMed Central

    Graham, Matthew; Suk, Jonathan E.; Takahashi, Saki; Metcalf, C. Jessica; Jimenez, A. Paez; Prikazsky, Vladimir; Ferrari, Matthew J.; Lessler, Justin

    2018-01-01

    Abstract. We report on and evaluate the process and findings of a real-time modeling exercise in response to an outbreak of measles in Lola prefecture, Guinea, in early 2015 in the wake of the Ebola crisis. Multiple statistical methods for the estimation of the size of the susceptible (i.e., unvaccinated) population were applied to weekly reported measles case data on seven subprefectures throughout Lola. Stochastic compartmental models were used to project future measles incidence in each subprefecture in both an initial and a follow-up iteration of forecasting. Measles susceptibility among 1- to 5-year-olds was estimated to be between 24% and 43% at the beginning of the outbreak. Based on this high baseline susceptibility, initial projections forecasted a large outbreak occurring over approximately 10 weeks and infecting 40 children per 1,000. Subsequent forecasts based on updated data mitigated this initial projection, but still predicted a significant outbreak. A catch-up vaccination campaign took place at the same time as this second forecast and measles cases quickly receded. Of note, case reports used to fit models changed significantly between forecast rounds. Model-based projections of both current population risk and future incidence can help in setting priorities and planning during an outbreak response. A swiftly changing situation on the ground, coupled with data uncertainties and the need to adjust standard analytical approaches to deal with sparse data, presents significant challenges. Appropriate presentation of results as planning scenarios, as well as presentations of uncertainty and two-way communication, is essential to the effective use of modeling studies in outbreak response. PMID:29532773

  19. Challenges and Opportunities in Disease Forecasting in Outbreak Settings: A Case Study of Measles in Lola Prefecture, Guinea.

    PubMed

    Graham, Matthew; Suk, Jonathan E; Takahashi, Saki; Metcalf, C Jessica; Jimenez, A Paez; Prikazsky, Vladimir; Ferrari, Matthew J; Lessler, Justin

    2018-05-01

    We report on and evaluate the process and findings of a real-time modeling exercise in response to an outbreak of measles in Lola prefecture, Guinea, in early 2015 in the wake of the Ebola crisis. Multiple statistical methods for the estimation of the size of the susceptible (i.e., unvaccinated) population were applied to weekly reported measles case data on seven subprefectures throughout Lola. Stochastic compartmental models were used to project future measles incidence in each subprefecture in both an initial and a follow-up iteration of forecasting. Measles susceptibility among 1- to 5-year-olds was estimated to be between 24% and 43% at the beginning of the outbreak. Based on this high baseline susceptibility, initial projections forecasted a large outbreak occurring over approximately 10 weeks and infecting 40 children per 1,000. Subsequent forecasts based on updated data mitigated this initial projection, but still predicted a significant outbreak. A catch-up vaccination campaign took place at the same time as this second forecast and measles cases quickly receded. Of note, case reports used to fit models changed significantly between forecast rounds. Model-based projections of both current population risk and future incidence can help in setting priorities and planning during an outbreak response. A swiftly changing situation on the ground, coupled with data uncertainties and the need to adjust standard analytical approaches to deal with sparse data, presents significant challenges. Appropriate presentation of results as planning scenarios, as well as presentations of uncertainty and two-way communication, is essential to the effective use of modeling studies in outbreak response.

  20. Internet and free press are associated with reduced lags in global outbreak reporting.

    PubMed

    McAlarnen, Lindsey; Smith, Katherine; Brownstein, John S; Jerde, Christopher

    2014-10-30

    Global outbreak detection and reporting have generally improved for a variety of infectious diseases and geographic regions in recent decades. Nevertheless, lags in outbreak reporting remain a threat to the global human health and economy. In the time between first occurrence of a novel disease incident and public notification of an outbreak, infected individuals have a greater possibility of traveling and spreading the pathogen to other nations. Shortening outbreak reporting lags has the potential to improve global health by preventing local outbreaks from escalating into global epidemics. Reporting lags between the first record and the first public report of an event were calculated for 318 outbreaks occurring 1996-2009. The influence of freedom of the press, Internet usage, per capita health expenditure, and cell phone subscriptions, on the timeliness of outbreak reporting was evaluated. Freer presses and increasing Internet usage correlate with reduced time between the first record of an outbreak and the public report. Increasing Internet usage reduced the expected reporting lag from more than one month in nations without Internet users to one day in those where 75 of 100 people use the Internet. Advances in technology and the emergence of more open and free governments are associated with to improved global infectious disease surveillance.

  1. Molecular Evolution and Intraclade Recombination of Enterovirus D68 during the 2014 Outbreak in the United States

    PubMed Central

    Tan, Yi; Hassan, Ferdaus; Schuster, Jennifer E.; Simenauer, Ari; Selvarangan, Rangaraj; Halpin, Rebecca A.; Lin, Xudong; Fedorova, Nadia; Stockwell, Timothy B.; Lam, Tommy Tsan-Yuk; Chappell, James D.; Hartert, Tina V.; Holmes, Edward C.

    2015-01-01

    ABSTRACT In August 2014, an outbreak of enterovirus D68 (EV-D68) occurred in North America, causing severe respiratory disease in children. Due to a lack of complete genome sequence data, there is only a limited understanding of the molecular evolution and epidemiology of EV-D68 during this outbreak, and it is uncertain whether the differing clinical manifestations of EV-D68 infection are associated with specific viral lineages. We developed a high-throughput complete genome sequencing pipeline for EV-D68 that produced a total of 59 complete genomes from respiratory samples with a 95% success rate, including 57 genomes from Kansas City, MO, collected during the 2014 outbreak. With these data in hand, we performed phylogenetic analyses of complete genome and VP1 capsid protein sequences. Notably, we observed considerable genetic diversity among EV-D68 isolates in Kansas City, manifest as phylogenetically distinct lineages, indicative of multiple introductions of this virus into the city. In addition, we identified an intersubclade recombination event within EV-D68, the first recombinant in this virus reported to date. Finally, we found no significant association between EV-D68 genetic variation, either lineages or individual mutations, and a variety of demographic and clinical variables, suggesting that host factors likely play a major role in determining disease severity. Overall, our study revealed the complex pattern of viral evolution within a single geographic locality during a single outbreak, which has implications for the design of effective intervention and prevention strategies. IMPORTANCE Until recently, EV-D68 was considered to be an uncommon human pathogen, associated with mild respiratory illness. However, in 2014 EV-D68 was responsible for more than 1,000 disease cases in North America, including severe respiratory illness in children and acute flaccid myelitis, raising concerns about its potential impact on public health. Despite the emergence of EV-D68, a lack of full-length genome sequences means that little is known about the molecular evolution of this virus within a single geographic locality during a single outbreak. Here, we doubled the number of publicly available complete genome sequences of EV-D68 by performing high-throughput next-generation sequencing, characterized the evolutionary history of this outbreak in detail, identified a recombination event, and investigated whether there was any correlation between the demographic and clinical characteristics of the patients and the viral variant that infected them. Overall, these results will help inform the design of intervention strategies for EV-D68. PMID:26656685

  2. Epidemiology of Foot and Mouth Disease in Ethiopia: a Retrospective Analysis of District Level Outbreaks, 2007-2012.

    PubMed

    Jemberu, W T; Mourits, M C M; Sahle, M; Siraw, B; Vernooij, J C M; Hogeveen, H

    2016-12-01

    This study aimed at determining the incidence, distribution, risk factors, and causal serotypes of foot and mouth disease (FMD) outbreaks in Ethiopia based on 5 years of retrospective outbreak data (September 2007 until August 2012). District level outbreak data were collected from 115 randomly selected districts using a questionnaire administered to district animal health officers. The national incidence of FMD outbreaks during the study period was 1.45 outbreaks per five district years. Outbreaks were geographically widespread affecting all major regional states in the country and were more frequent in the central, southern, and southeastern parts of the country. Neither long-term nor seasonal trends were observed in the incidence of outbreaks. A mixed effects logistic regression analysis revealed that the type of production system (market oriented system versus subsistence systems), presence of a major livestock market and/or route, and adjacency to a national parks or wildlife sanctuary were found to be associated with increased risk of outbreaks in the districts. FMD virus serotypes O, A, SAT 2, and SAT 1 were identified as the causal serotypes of the outbreaks during the study period. Whereas O was the dominant serotype, SAT 2 was the serotype that showed increase in relative frequency of occurrence. The estimated incidence of outbreaks is useful in assessing the economic impacts of the disease, and the identified risk factors provide important knowledge to target a progressive FMD control policy for Ethiopia. © 2015 Blackwell Verlag GmbH.

  3. Meningococcal disease in South African goldmines--epidemiology and strategies for control.

    PubMed

    Sonnenberg, P; Silber, E; Ho, K C; Koornhof, H J

    2000-05-01

    To describe the epidemiology of meningococcal disease in South African goldmines and to suggest strategies for the prevention and control of further outbreaks. We prospectively investigated a meningococcal outbreak that occurred in 1996 and describe the control measures that were implemented. In addition, we conducted a retrospective analysis of routinely collected data on meningococcal disease in these mines from 1972 to 1996. Four goldmines in Gauteng, employing 30,000 workers who live in hostels. All cases of meningococcal disease at the mine hospital. Between 1972 and 1976, 588 cases were diagnosed, with peaks in 1972 (203 cases, 727/100,000) and 1975 (147 cases, 564/100,000). Since 1978 less than 5 cases have been reported in most years, but smaller outbreaks occurred in 1990 (30 cases, 89/100,000) and 1996 (14 cases, 50/100,000). The 1996 outbreak (group A, clone I-1) was part of a larger outbreak in Gauteng that originated in Mozambique and began in one mine in July 1996, after which a mass vaccination campaign was implemented. This was followed by a smaller outbreak among non-vaccinated workers at an adjacent mine. Five patients were new recruits. Despite a dramatic reduction in meningococcal disease over the last 25 years due mainly to changes in the work force, there are still outbreaks in this community. Those most at risk are young men who are new to the industry. Suggestions for prevention include effective surveillance, routine vaccination of new recruits and a rapid response to outbreaks, with mass vaccination and provision of chemoprophylaxis to close contacts.

  4. Wetland environmental conditions associated with the risk of avian cholera outbreaks and the abundance of Pasteurella multocida

    USGS Publications Warehouse

    Blanchong, Julie A.; Samuel, Michael D.; Goldberg, Diana R.; Shadduck, Daniel J.; Creekmore, L.H.

    2006-01-01

    Avian cholera is a significant infectious disease affecting waterfowl across North America and occurs worldwide among various avian species. Despite the importance of this disease, little is known about the factors that cause avian cholera outbreaks and what management strategies might be used to reduce disease mortality. Previous studies indicated that wetland water conditions may affect survival and transmission of Pasteurella multocida, the agent that causes avian cholera. These studies hypothesized that water conditions affect the likelihood that avian cholera outbreaks will occur in specific wetlands. To test these predictions, we collected data from avian cholera outbreak and non-outbreak (control) wetlands throughout North America (wintera??spring 1995a??1996 to 1998a??1999) to evaluate whether water conditions were associated with outbreaks. Conditional logistic regression analysis on paired outbreak and non-outbreak wetlands indicated no significant association between water conditions and the risk of avian cholera outbreaks. For wetlands where avian cholera outbreaks occurred, linear regression showed that increased eutrophic nutrient concentrations (Potassium [K], nitrate [NO3], phosphorus [P], and phosphate [PO3]) were positively related to the abundance of P. multocida recovered from water and sediment samples. Wetland protein concentration and an El Ni??o event were also associated with P. multocida abundance. Our results indicate that wetland water conditions are not strongly associated with the risk of avian cholera outbreaks; however, some variables may play a role in the abundance of P. multocida bacteria and might be important in reducing the severity of avian cholera outbreaks.

  5. Outbreak investigations--a perspective.

    PubMed Central

    Reingold, A. L.

    1998-01-01

    Outbreak investigations, an important and challenging component of epidemiology and public health, can help identify the source of ongoing outbreaks and prevent additional cases. Even when an outbreak is over, a thorough epidemiologic and environmental investigation often can increase our knowledge of a given disease and prevent future outbreaks. Finally, outbreak investigations provide epidemiologic training and foster cooperation between the clinical and public health communities. PMID:9452395

  6. A Systematic Review of Waterborne Disease Outbreaks Associated with Small Non-Community Drinking Water Systems in Canada and the United States.

    PubMed

    Pons, Wendy; Young, Ian; Truong, Jenifer; Jones-Bitton, Andria; McEwen, Scott; Pintar, Katarina; Papadopoulos, Andrew

    2015-01-01

    Reports of outbreaks in Canada and the United States (U.S.) indicate that approximately 50% of all waterborne diseases occur in small non-community drinking water systems (SDWSs). Summarizing these investigations to identify the factors and conditions contributing to outbreaks is needed in order to help prevent future outbreaks. The objectives of this study were to: 1) identify published reports of waterborne disease outbreaks involving SDWSs in Canada and the U.S. since 1970; 2) summarize reported factors contributing to outbreaks, including water system characteristics and events surrounding the outbreaks; and 3) identify terminology used to describe SDWSs in outbreak reports. Three electronic databases and grey literature sources were searched for outbreak reports involving SDWSs throughout Canada and the U.S. from 1970 to 2014. Two reviewers independently screened and extracted data related to water system characteristics and outbreak events. The data were analyzed descriptively with 'outbreak' as the unit of analysis. From a total of 1,995 citations, we identified 50 relevant articles reporting 293 unique outbreaks. Failure of an existing water treatment system (22.7%) and lack of water treatment (20.2%) were the leading causes of waterborne outbreaks in SDWSs. A seasonal trend was observed with 51% of outbreaks occurring in summer months (p<0.001). There was large variation in terminology used to describe SDWSs, and a large number of variables were not reported, including water source and whether water treatment was used (missing in 31% and 66% of reports, respectively). More consistent reporting and descriptions of SDWSs in future outbreak reports are needed to understand the epidemiology of these outbreaks and to inform the development of targeted interventions for SDWSs. Additional monitoring of water systems that are used on a seasonal or infrequent basis would be worthwhile to inform future protection efforts.

  7. Legionella (Legionnaires' Disease and Pontiac Fever): History and Disease Patterns

    MedlinePlus

    ... Outbreaks (URDO) European Legionnaires’ Disease Surveillance Network (ELDSNet) History, Burden, and Trends Language: English (US) Español (Spanish) ... caused by a type of bacteria called Legionella . History Legionella was discovered after an outbreak in 1976 ...

  8. Prediction of gastrointestinal disease with over-the-counter diarrheal remedy sales records in the San Francisco Bay Area.

    PubMed

    Kirian, Michelle L; Weintraub, June M

    2010-07-20

    Water utilities continue to be interested in implementing syndromic surveillance for the enhanced detection of waterborne disease outbreaks. The authors evaluated the ability of sales of over-the-counter diarrheal remedies available from the National Retail Data Monitor to predict endemic and epidemic gastrointestinal disease in the San Francisco Bay Area. Time series models were fit to weekly diarrheal remedy sales and diarrheal illness case counts. Cross-correlations between the pre-whitened residual series were calculated. Diarrheal remedy sales model residuals were regressed on the number of weekly outbreaks and outbreak-associated cases. Diarrheal remedy sales models were used to auto-forecast one week-ahead sales. The sensitivity and specificity of signals, generated by observed diarrheal remedy sales exceeding the upper 95% forecast confidence interval, in predicting weekly outbreaks were calculated. No significant correlations were identified between weekly diarrheal remedy sales and diarrhea illness case counts, outbreak counts, or the number of outbreak-associated cases. Signals generated by forecasting with the diarrheal remedy sales model did not coincide with outbreak weeks more reliably than signals chosen randomly. This work does not support the implementation of syndromic surveillance for gastrointestinal disease with data available though the National Retail Data Monitor.

  9. Teachers' Risk Perception and Needs in Addressing Infectious Disease Outbreak

    ERIC Educational Resources Information Center

    Wong, Emmy M. Y.; Cheng, May M. H.; Lo, S.K.

    2010-01-01

    The outbreak of the Influenza A (H1N1) virus has led to numerous precautionary school closures in several countries. No research is available on the school teachers' perceptions as a health protective resource in controlling communicable disease outbreaks. The purposes of this study were to examine the risk perception, the perceived understanding…

  10. Outbreak of Legionnaire’s Disease Caused by Legionella pneumophila Serogroups 1 and 13

    PubMed Central

    Amemura-Maekawa, Junko; Ohya, Hitomi; Furukawa, Ichiro; Suzuki, Miyuki; Masaoka, Tomoka; Aikawa, Kastuhiro; Hibi, Kazumi; Morita, Masatomo; Lee, Ken-ichi; Ohnishi, Makoto; Kura, Fumiaki

    2017-01-01

    In Japan, hot springs and public baths are the major sources of legionellosis. In 2015, an outbreak of Legionnaires’ disease occurred among 7 patients who had visited a spa house. Laboratory investigation indicated that L. pneumophila serogroup 1 and 13 strains caused the outbreak and that these strains were genetically related. PMID:28098535

  11. Evidence for Emergency Vaccination Having Played a Crucial Role to Control the 1965/66 Foot-and-Mouth Disease Outbreak in Switzerland

    PubMed Central

    Zingg, Dana; Häsler, Stephan; Schuepbach-Regula, Gertraud; Schwermer, Heinzpeter; Dürr, Salome

    2015-01-01

    Foot-and-mouth disease (FMD) is a highly contagious disease that caused several large outbreaks in Europe in the last century. The last important outbreak in Switzerland took place in 1965/66 and affected more than 900 premises and more than 50,000 animals were slaughtered. Large-scale emergency vaccination of the cattle and pig population has been applied to control the epidemic. In recent years, many studies have used infectious disease models to assess the impact of different disease control measures, including models developed for diseases exotic for the specific region of interest. Often, the absence of real outbreak data makes a validation of such models impossible. This study aimed to evaluate whether a spatial, stochastic simulation model (the Davis Animal Disease Simulation model) can predict the course of a Swiss FMD epidemic based on the available historic input data on population structure, contact rates, epidemiology of the virus, and quality of the vaccine. In addition, the potential outcome of the 1965/66 FMD epidemic without application of vaccination was investigated. Comparing the model outcomes to reality, only the largest 10% of the simulated outbreaks approximated the number of animals being culled. However, the simulation model highly overestimated the number of culled premises. While the outbreak duration could not be well reproduced by the model compared to the 1965/66 epidemic, it was able to accurately estimate the size of the area infected. Without application of vaccination, the model predicted a much higher mean number of culled animals than with vaccination, demonstrating that vaccination was likely crucial in disease control for the Swiss FMD outbreak in 1965/66. The study demonstrated the feasibility to analyze historical outbreak data with modern analytical tools. However, it also confirmed that predicted epidemics from a most carefully parameterized model cannot integrate all eventualities of a real epidemic. Therefore, decision makers need to be aware that infectious disease models are useful tools to support the decision-making process but their results are not equal valuable as real observations and should always be interpreted with caution. PMID:26697436

  12. [A review of multiple sclerosis (2). Diagnosis and treatment].

    PubMed

    Martinez-Altarriba, M C; Ramos-Campoy, O; Luna-Calcaño, I M; Arrieta-Antón, E

    2015-09-01

    Multiple sclerosis is a major demyelinating disease of the central nervous system. It has a significant economic and social impact. Its etiology is unclear, although there are several hypotheses, such as infections or genetics. In its pathophysiology, it seems that immune activation attacks the myelin sheath, causing a progressive and irreversible axonal degeneration. The disease produces a variety of symptoms, and diagnosis requires fulfilling a number of criteria and the exclusion of other possible causes. The role of neuroimaging is very important, especially Magnetic Resonance Imaging. Despite the availability of disease-modifying drugs, none of them are able to halt its progress, and the most useful drugs are those designed to alleviate the symptoms of outbreaks. Overall, multiple sclerosis requires a significant effort in research to clarify not only why and how it occurs, as well as the development of new measures to improve quality of life of affected patients. Copyright © 2013 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  13. [A review of multiple sclerosis (1). Presentation of a case].

    PubMed

    Martinez-Altarriba, M C; Ramos-Campoy, O; Luna-Calcaño, I M; Arrieta-Antón, E

    2015-01-01

    Multiple sclerosis is a major demyelinating disease of the central nervous system. It has a significant economic and social impact. Its etiology is unclear, although there are several hypotheses, such as infections or genetics. In its pathophysiology, it seems that immune activation attacks the myelin sheath, causing a progressive and irreversible axonal degeneration. The disease produces a variety of symptoms, and diagnosis requires fulfilling a number of criteria and the exclusion of other possible causes. The role of neuroimaging, especially MRI, is very important. Despite the availability of disease-modifying drugs, none of them are able to halt its progress, and the most useful drugs are those designed to alleviate the symptoms of outbreaks. Overall, multiple sclerosis requires a significant effort in research to clarify not only why and how it occurs, but also to develop of new measures to improve the life of affected patients. Copyright © 2013 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Safe injection practices for administration of propofol.

    PubMed

    King, Cecil A; Ogg, Mary

    2012-03-01

    Sepsis and postoperative infection can occur as a result of unsafe practices in the administration of propofol and other injectable medications. Investigations of infection outbreaks have revealed the causes to be related to bacterial growth in or contamination of propofol and unsafe medication practices, including reuse of syringes on multiple patients, use of single-use medication vials for multiple patients, and failure to practice aseptic technique and adhere to infection control practices. Surveys conducted by AORN and other researchers have provided additional information on perioperative practices related to injectable medications. In 2009, the US Food and Drug Administration and the Centers for Disease Control and Prevention convened a group of clinicians to gain a better understanding of the issues related to infection outbreaks and injectable medications. The meeting participants proposed collecting data to persuade clinicians to adopt new practices, developing guiding principles for propofol use, and describing propofol-specific, site-specific, and practitioner-specific injection techniques. AORN provides resources to help perioperative nurses reduce the incidence of postoperative infection related to medication administration. Copyright © 2012 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  15. Resequencing Pathogen Microarray (RPM) for prospective detection and identification of emergent pathogen strains and variants

    NASA Astrophysics Data System (ADS)

    Tibbetts, Clark; Lichanska, Agnieszka M.; Borsuk, Lisa A.; Weslowski, Brian; Morris, Leah M.; Lorence, Matthew C.; Schafer, Klaus O.; Campos, Joseph; Sene, Mohamadou; Myers, Christopher A.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Metzgar, David

    2010-04-01

    High-density resequencing microarrays support simultaneous detection and identification of multiple viral and bacterial pathogens. Because detection and identification using RPM is based upon multiple specimen-specific target pathogen gene sequences generated in the individual test, the test results enable both a differential diagnostic analysis and epidemiological tracking of detected pathogen strains and variants from one specimen to the next. The RPM assay enables detection and identification of pathogen sequences that share as little as 80% sequence similarity to prototype target gene sequences represented as detector tiles on the array. This capability enables the RPM to detect and identify previously unknown strains and variants of a detected pathogen, as in sentinel cases associated with an infectious disease outbreak. We illustrate this capability using assay results from testing influenza A virus vaccines configured with strains that were first defined years after the design of the RPM microarray. Results are also presented from RPM-Flu testing of three specimens independently confirmed to the positive for the 2009 Novel H1N1 outbreak strain of influenza virus.

  16. Bluetongue in small ruminants: An opinionated review, with a brief appraisal of the 2014 outbreak of the disease in Greece and the south-east Europe.

    PubMed

    Kyriakis, C S; Billinis, C; Papadopoulos, E; Vasileiou, N G C; Athanasiou, L V; Fthenakis, G C

    2015-12-14

    Bluetongue is an arthropod-borne viral disease of ruminants, especially of sheep, caused by Bluetongue virus, which belongs to the genus Orbivirus of the family Reoviridae and is classified into 26 antigenically distinct serotypes. Once thought to be restricted in Africa and parts of the Middle East, bluetongue has now become a concern in sheep-rearing countries around the world. In the past 10 years, severe outbreaks have occurred in Europe with important economic consequences; of these, the 2006-20008 outbreak in Europe was caused by a serotype 8 strain and the 2014 outbreak in Greece and the other countries of south-east Europe was caused by a serotype 4 strain, suggested to be a reassortant strain with genome segments from lineages of serotype 1, 2 and 4. Immunisation campaigns can be implemented for successful control and limiting of the disease. Nevertheless, in both of the above outbreaks, late application of vaccinations led to a wide spread of the disease, which subsequently resulted in significant losses in livestock in the affected regions. In view of that, standardisation of control measures in the future will be beneficial for efficiently limiting outbreaks of the disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Plague in Iran: its history and current status

    PubMed Central

    2016-01-01

    OBJECTIVES: Plague remains a public health concern worldwide, particularly in old foci. Multiple epidemics of this disease have been recorded throughout the history of Iran. Despite the long-standing history of human plague in Iran, it remains difficult to obtain an accurate overview of the history and current status of plague in Iran. METHODS: In this review, available data and reports on cases and outbreaks of human plague in the past and present in Iran and in neighboring countries were collected, and information was compiled regarding when, where, and how many cases occurred. RESULTS: This paper considers the history of plague in Persia (the predecessor of today’s Iran) and has a brief review of plague in countries in the World Health Organization Eastern Mediterranean Region, including a range of countries in the Middle East and North Africa. CONCLUSIONS: Since Iran has experienced outbreaks of plague for several centuries, neighboring countries have reported the disease in recent years, the disease can be silent for decades, and the circulation of Yersinia pestis has been reported among rodents and dogs in western Iran, more attention should be paid to disease monitoring in areas with previously reported human cases and in high-risk regions with previous epizootic and enzootic activity. PMID:27457063

  18. Fish and Shellfish Associated Disease Outbreaks.

    ERIC Educational Resources Information Center

    Levin, M.

    1978-01-01

    Presents a literature review of disease outbreaks related to fish and shellfish, covering publications of 1976-77. This review covers the chemical, bacterial, and viral diseases that are transmitted by fish and shellfish. A list of 50 references is also presented. (HM)

  19. Swimming Associated Disease Outbreaks.

    ERIC Educational Resources Information Center

    Cabelli, V. J.

    1978-01-01

    Presents a literature review of recreational waterborne outbreaks and cases of disease, covering publications of 1976-77. This review includes: (1) retrospective and prospective epidemiological studies; (2) predictive models of the risk of recreational waterborn disease. A list of 35 references is also presented. (HM)

  20. SURVEYING THE RISKS FROM EMERGING DISEASES

    EPA Science Inventory

    Despite advances in sanitation and public health, new waterborne diseases have continued to cause outbreaks in humans. The reason why these organisms can cause disease outbreaks, is that their biology allows them to circumvent the safeguards put in place to prevent transmission ...

  1. Estimating challenge load due to disease outbreaks and other challenges using reproduction records of sows.

    PubMed

    Mathur, P K; Herrero-Medrano, J M; Alexandri, P; Knol, E F; ten Napel, J; Rashidi, H; Mulder, H A

    2014-12-01

    A method was developed and tested to estimate challenge load due to disease outbreaks and other challenges in sows using reproduction records. The method was based on reproduction records from a farm with known disease outbreaks. It was assumed that the reduction in weekly reproductive output within a farm is proportional to the magnitude of the challenge. As the challenge increases beyond certain threshold, it is manifested as an outbreak. The reproduction records were divided into 3 datasets. The first dataset called the Training dataset consisted of 57,135 reproduction records from 10,901 sows from 1 farm in Canada with several outbreaks of porcine reproductive and respiratory syndrome (PRRS). The known disease status of sows was regressed on the traits number born alive, number of losses as a combination of still birth and mummified piglets, and number of weaned piglets. The regression coefficients from this analysis were then used as weighting factors for derivation of an index measure called challenge load indicator. These weighting factors were derived with i) a two-step approach using residuals or year-week solutions estimated from a previous step, and ii) a single-step approach using the trait values directly. Two types of models were used for each approach: a logistic regression model and a general additive model. The estimates of challenge load indicator were then compared based on their ability to detect PRRS outbreaks in a Test dataset consisting of records from 65,826 sows from 15 farms in the Netherlands. These farms differed from the Canadian farm with respect to PRRS virus strains, severity and frequency of outbreaks. The single-step approach using a general additive model was best and detected 14 out of the 15 outbreaks. This approach was then further validated using the third dataset consisting of reproduction records of 831,855 sows in 431 farms located in different countries in Europe and America. A total of 41 out of 48 outbreaks detected using data analysis were confirmed based on diagnostic information received from the farms. Among these, 30 outbreaks were due to PRRS while 11 were due to other diseases and challenging conditions. The results suggest that proposed method could be useful for estimation of challenge load and detection of challenge phases such as disease outbreaks.

  2. Lujo viral hemorrhagic fever: considering diagnostic capacity and preparedness in the wake of recent Ebola and Zika virus outbreaks.

    PubMed

    Simulundu, Edgar; Mweene, Aaron S; Changula, Katendi; Monze, Mwaka; Chizema, Elizabeth; Mwaba, Peter; Takada, Ayato; Ippolito, Guiseppe; Kasolo, Francis; Zumla, Alimuddin; Bates, Matthew

    2016-11-01

    Lujo virus is a novel Old World arenavirus identified in Southern Africa in 2008 as the cause of a viral hemorrhagic fever (VHF) characterized by nosocomial transmission with a high case fatality rate of 80% (4/5 cases). Whereas this outbreak was limited, the unprecedented Ebola virus disease outbreak in West Africa, and recent Zika virus disease epidemic in the Americas, has brought into acute focus the need for preparedness to respond to rare but potentially highly pathogenic outbreaks of zoonotic or arthropod-borne viral infections. A key determinant for effective control of a VHF outbreak is the time between primary infection and diagnosis of the index case. Here, we review the Lujo VHF outbreak of 2008 and discuss how preparatory measures with respect to developing diagnostic capacity might be effectively embedded into existing national disease control networks, such as those for human immunodeficiency virus, tuberculosis, and malaria. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Emergence of Vaccine-Derived Polioviruses during Ebola Virus Disease Outbreak, Guinea, 2014–2015

    PubMed Central

    Majumdar, Manasi; Kebe, Ousmane; Fall, Aichatou D.; Kone, Moussa; Kande, Mouctar; Dabo, Moustapha; Sylla, Mohamed Salif; Sompare, Djenou; Howard, Wayne; Faye, Ousmane; Martin, Javier; Ndiaye, Kader

    2018-01-01

    During the 2014–2015 outbreak of Ebola virus disease in Guinea, 13 type 2 circulating vaccine-derived polioviruses (cVDPVs) were isolated from 6 polio patients and 7 healthy contacts. To clarify the genetic properties of cVDPVs and their emergence, we combined epidemiologic and virologic data for polio cases in Guinea. Deviation of public health resources to the Ebola outbreak disrupted polio vaccination programs and surveillance activities, which fueled the spread of neurovirulent VDPVs in an area of low vaccination coverage and immunity. Genetic properties of cVDPVs were consistent with their capacity to cause paralytic disease in humans and capacity for sustained person-to-person transmission. Circulation ceased when coverage of oral polio vaccine increased. A polio outbreak in the context of the Ebola virus disease outbreak highlights the need to consider risks for polio emergence and spread during complex emergencies and urges awareness of the challenges in polio surveillance, vaccination, and diagnosis. PMID:29260690

  4. Emergence of Vaccine-Derived Polioviruses during Ebola Virus Disease Outbreak, Guinea, 2014-2015.

    PubMed

    Fernandez-Garcia, Maria Dolores; Majumdar, Manasi; Kebe, Ousmane; Fall, Aichatou D; Kone, Moussa; Kande, Mouctar; Dabo, Moustapha; Sylla, Mohamed Salif; Sompare, Djenou; Howard, Wayne; Faye, Ousmane; Martin, Javier; Ndiaye, Kader

    2018-01-01

    During the 2014-2015 outbreak of Ebola virus disease in Guinea, 13 type 2 circulating vaccine-derived polioviruses (cVDPVs) were isolated from 6 polio patients and 7 healthy contacts. To clarify the genetic properties of cVDPVs and their emergence, we combined epidemiologic and virologic data for polio cases in Guinea. Deviation of public health resources to the Ebola outbreak disrupted polio vaccination programs and surveillance activities, which fueled the spread of neurovirulent VDPVs in an area of low vaccination coverage and immunity. Genetic properties of cVDPVs were consistent with their capacity to cause paralytic disease in humans and capacity for sustained person-to-person transmission. Circulation ceased when coverage of oral polio vaccine increased. A polio outbreak in the context of the Ebola virus disease outbreak highlights the need to consider risks for polio emergence and spread during complex emergencies and urges awareness of the challenges in polio surveillance, vaccination, and diagnosis.

  5. A Systematic Review of Waterborne Disease Outbreaks Associated with Small Non-Community Drinking Water Systems in Canada and the United States

    PubMed Central

    Jones-Bitton, Andria; McEwen, Scott; Pintar, Katarina; Papadopoulos, Andrew

    2015-01-01

    Background Reports of outbreaks in Canada and the United States (U.S.) indicate that approximately 50% of all waterborne diseases occur in small non-community drinking water systems (SDWSs). Summarizing these investigations to identify the factors and conditions contributing to outbreaks is needed in order to help prevent future outbreaks. Objectives The objectives of this study were to: 1) identify published reports of waterborne disease outbreaks involving SDWSs in Canada and the U.S. since 1970; 2) summarize reported factors contributing to outbreaks, including water system characteristics and events surrounding the outbreaks; and 3) identify terminology used to describe SDWSs in outbreak reports. Methods Three electronic databases and grey literature sources were searched for outbreak reports involving SDWSs throughout Canada and the U.S. from 1970 to 2014. Two reviewers independently screened and extracted data related to water system characteristics and outbreak events. The data were analyzed descriptively with ‘outbreak’ as the unit of analysis. Results From a total of 1,995 citations, we identified 50 relevant articles reporting 293 unique outbreaks. Failure of an existing water treatment system (22.7%) and lack of water treatment (20.2%) were the leading causes of waterborne outbreaks in SDWSs. A seasonal trend was observed with 51% of outbreaks occurring in summer months (p<0.001). There was large variation in terminology used to describe SDWSs, and a large number of variables were not reported, including water source and whether water treatment was used (missing in 31% and 66% of reports, respectively). Conclusions More consistent reporting and descriptions of SDWSs in future outbreak reports are needed to understand the epidemiology of these outbreaks and to inform the development of targeted interventions for SDWSs. Additional monitoring of water systems that are used on a seasonal or infrequent basis would be worthwhile to inform future protection efforts. PMID:26513152

  6. Field-Deployable Reverse Transcription-Insulated Isothermal PCR (RT-iiPCR) Assay for Rapid and Sensitive Detection of Foot-and-Mouth Disease Virus.

    PubMed

    Ambagala, A; Fisher, M; Goolia, M; Nfon, C; Furukawa-Stoffer, T; Ortega Polo, R; Lung, O

    2017-10-01

    Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals, which can decimate the livestock industry and economy of countries previously free of this disease. Rapid detection of foot-and-mouth disease virus (FMDV) is critical to containing an FMD outbreak. Availability of a rapid, highly sensitive and specific, yet simple and field-deployable assay would support local decision-making during an FMDV outbreak. Here we report validation of a novel reverse transcription-insulated isothermal PCR (RT-iiPCR) assay that can be performed on a commercially available, compact and portable POCKIT ™ analyser that automatically analyses data and displays '+' or '-' results. The FMDV RT-iiPCR assay targets the 3D region of the FMDV genome and was capable of detecting 9 copies of in vitro-transcribed RNA standard with 95% confidence. It accurately identified 63 FMDV strains belonging to all seven serotypes and showed no cross-reactivity with viruses causing similar clinical diseases in cloven-hoofed animals. The assay was able to identify FMDV RNA in multiple sample types including oral, nasal and lesion swabs, epithelial tissue suspensions, vesicular and oral fluid samples, even before the appearance of clinical signs. Clinical sensitivity of the assay was comparable or slightly higher than the laboratory-based real-time RT-PCR assay in use. The assay was able to detect FMDV RNA in vesicular fluid samples without nucleic acid extraction. For RNA extraction from more complex sample types, a commercially available taco ™ mini transportable magnetic bead-based, automated extraction system was used. This assay provides a potentially useful field-deployable diagnostic tool for rapid detection of FMDV in an outbreak in FMD-free countries or for routine diagnostics in endemic countries with less structured laboratory systems. © 2016 Her Majesty the Queen in Right of Canada.

  7. Environmental scan of infection prevention and control practices for containment of hospital-acquired infectious disease outbreaks in acute care hospital settings across Canada.

    PubMed

    Ocampo, Wrechelle; Geransar, Rose; Clayden, Nancy; Jones, Jessica; de Grood, Jill; Joffe, Mark; Taylor, Geoffrey; Missaghi, Bayan; Pearce, Craig; Ghali, William; Conly, John

    2017-10-01

    Ward closure is a method of controlling hospital-acquired infectious diseases outbreaks and is often coupled with other practices. However, the value and efficacy of ward closures remains uncertain. To understand the current practices and perceptions with respect to ward closure for hospital-acquired infectious disease outbreaks in acute care hospital settings across Canada. A Web-based environmental scan survey was developed by a team of infection prevention and control (IPC) experts and distributed to 235 IPC professionals at acute care sites across Canada. Data were analyzed using a mixed-methods approach of descriptive statistics and thematic analysis. A total of 110 completed responses showed that 70% of sites reported at least 1 outbreak during 2013, 44% of these sites reported the use of ward closure. Ward closure was considered an "appropriate," "sometimes appropriate," or "not appropriate" strategy to control outbreaks by 50%, 45%, and 5% of participants, respectively. System capacity issues and overall risk assessment were main factors influencing the decision to close hospital wards following an outbreak. Results suggest the use of ward closure for containment of hospital-acquired infectious disease outbreaks in Canadian acute care health settings is mixed, with outbreak control methods varying. The successful implementation of ward closure was dependent on overall support for the IPC team within hospital administration. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  8. Poultry raising systems and highly pathogenic avian influenza outbreaks in Thailand: the situation, associations, and impacts.

    PubMed

    Chantong, Wasan; Kaneene, John B

    2011-05-01

    Highly pathogenic avian influenza (HPAI), caused by the virus strain H5N1, currently occurs worldwide with the greatest burden in Southeast Asia where the disease was first reported. In Thailand where the disease was first confirmed in January 2004, the virus had been persistent as a major threat to the poultry industry and human health over the past several years. It was generally hypothesized that the main reason for the disease to circulate in Thailand was the existence of traditional backyard chickens and free-range ducks raising systems. Consequently, this study reviewed the structure of poultry raising systems, the recent outbreaks of HPAI H5N1, the disease association to the backyard and free-grazing poultry production, and consequences of the outbreaks in Thailand. Although the major outbreaks in the country had declined, the sustaining disease surveillance and prevention are still strongly recommended.

  9. Porcine abortion outbreak associated with Toxoplasma gondii in Jeju Island, Korea.

    PubMed

    Kim, Jae Hoon; Kang, Kyung Il; Kang, Wan Cheul; Sohn, Hyun Joo; Jean, Young Hwa; Park, Bong Kyun; Kim, Yongbaek; Kim, Dae Yong

    2009-06-01

    This report deals with the acute onset of an abortion outbreak and high sow mortality in one pig herd consisted of 1,200 pigs and 120 sows on Jeju Island, Korea. Affected pregnant sows showed clinical signs, including high fever, gradual anorexia, vomiting, depression, recumbency, prostration, abortion, and a few deaths. Four dead sows, five aborted fetuses from the same litter, and 17 sera collected from sows infected or normal were submitted to the Pathology Division of the National Veterinary Research and Quarantine Service for diagnostic investigation. Grossly, hepatomegaly and splenomegaly were observed in sows. Multiple necrotic foci were scattered in the lungs, liver, spleen, and lymph nodes. Microscopically, multifocal necrotizing lesions and protozoan tachyzoites were present in the lesions. Tachyzoites of Toxoplasma (T.) gondii were detected immunohistochemically. Latex agglutination showed that the sera of 7 of 17 (41.2%) sows were positive for antibody to T. gondii. The disease outbreak in this herd was diagnosed as epizootic toxoplasmosis. To our knowledge, this is the first report of porcine toxoplasmosis with a high abortion rate and sow mortality in Korea.

  10. Zika virus and pregnancy in Brazil: What happened?

    PubMed Central

    Pereira, Alessandra Mendelski; Monteiro, Denise Leite Maia; Werner, Heron; Daltro, Pedro; Fazecas, Tatiana; Guedes, Bianca; Tonni, Gabriele; Peixoto, Alberto Borges; Júnior, Edward Araujo

    2018-01-01

    The recent epidemic of Zika virus (ZIKV) infection in Central and South America is one of the most serious global public health emergencies since the Ebola outbreak in West Africa. In Brazil, especially in the north, northeast, and southeast parts of the country, the ZIKV outbreak is a cause of concern for pregnant women because ZIKV intrauterine infection has been found to be associated with multiple brain malformations and microcephaly. In Brazil, the number of newborns with confirmed microcephaly per year recorded during the ZIKV outbreak, has been approximately 15 times greater than previously reported. Considering that the infection is self-limiting and symptomatic, it is usually diagnosed at the time of routine prenatal scan, especially in the third trimester. In other cases, the disease is detected after childbirth through neuroimaging. This study provides an insight into the history and evolution of ZIKV in Brazil, including current knowledge concerning the transmission, diagnosis, and pathogenesis of the infection. In addition, this review describes the pre- and postnatal neuroimaging findings obtained using ultrasound, magnetic resonance imaging, and computed tomography. PMID:29503261

  11. Super-spreaders and the rate of transmission of the SARS virus

    NASA Astrophysics Data System (ADS)

    Small, Michael; Tse, C. K.; Walker, David M.

    2006-03-01

    We describe a stochastic small-world network model of transmission of the SARS virus. Unlike the standard Susceptible-Infected-Removed models of disease transmission, our model exhibits both geographically localised outbreaks and “super-spreaders”. Moreover, the combination of localised and long range links allows for more accurate modelling of partial isolation and various public health policies. From this model, we derive an expression for the probability of a widespread outbreak and a condition to ensure that the epidemic is controlled. Moreover, multiple simulations are used to make predictions of the likelihood of various eventual scenarios for fixed initial conditions. The main conclusions of this study are: (i) “super-spreaders” may occur even if the infectiousness of all infected individuals is constant; (ii) consistent with previous reports, extended exposure time beyond 3-5 days (i.e. significant nosocomial transmission) was the key factor in the severity of the SARS outbreak in Hong Kong; and, (iii) the spread of SARS can be effectively controlled by either limiting long range links (imposing a partial quarantine) or enforcing rapid hospitalisation and isolation of symptomatic individuals.

  12. Outbreaks and Investigations

    MedlinePlus

    ... on Facebook Tweet Share Compartir Disease detectives collecting soil samples to test for fungus When fungal disease ... a hydroelectric dam Source: related to disruption of soil contaminated with bat droppings Outbreak investigation partners: Dominican ...

  13. Surveillance for Waterborne Disease Outbreaks Associated with Drinking Water United States, 2007-2008

    EPA Science Inventory

    Problem/Condition: Since 1971, the Centers for Disease Control and Prevention (CDC), the U.S. Environmental Protection Agency (EPA), and the Council of State and Territorial Epidemiologists have maintained a collaborative Waterborne Disease and Outbreak Surveillance System (WBDOS...

  14. Get the News Out Loudly and Quickly: The Influence of the Media on Limiting Emerging Infectious Disease Outbreaks

    PubMed Central

    Mummert, Anna; Weiss, Howard

    2013-01-01

    During outbreaks of infectious diseases with high morbidity and mortality, individuals closely follow media reports of the outbreak. Many will attempt to minimize contacts with other individuals in order to protect themselves from infection and possibly death. This process is called social distancing. Social distancing strategies include restricting socializing and travel, and using barrier protections. We use modeling to show that for short-term outbreaks, social distancing can have a large influence on reducing outbreak morbidity and mortality. In particular, public health agencies working together with the media can significantly reduce the severity of an outbreak by providing timely accounts of new infections and deaths. Our models show that the most effective strategy to reduce infections is to provide this information as early as possible, though providing it well into the course of the outbreak can still have a significant effect. However, our models for long-term outbreaks indicate that reporting historic infection data can result in more infections than with no reporting at all. We examine three types of media influence and we illustrate the media influence with a simulated outbreak of a generic emerging infectious disease in a small city. Social distancing can never be complete; however, for a spectrum of outbreaks, we show that leaving isolation (stopping applying social distancing measures) for up to 4 hours each day has modest effect on the overall morbidity and mortality. PMID:23990974

  15. Get the news out loudly and quickly: the influence of the media on limiting emerging infectious disease outbreaks.

    PubMed

    Mummert, Anna; Weiss, Howard

    2013-01-01

    During outbreaks of infectious diseases with high morbidity and mortality, individuals closely follow media reports of the outbreak. Many will attempt to minimize contacts with other individuals in order to protect themselves from infection and possibly death. This process is called social distancing. Social distancing strategies include restricting socializing and travel, and using barrier protections. We use modeling to show that for short-term outbreaks, social distancing can have a large influence on reducing outbreak morbidity and mortality. In particular, public health agencies working together with the media can significantly reduce the severity of an outbreak by providing timely accounts of new infections and deaths. Our models show that the most effective strategy to reduce infections is to provide this information as early as possible, though providing it well into the course of the outbreak can still have a significant effect. However, our models for long-term outbreaks indicate that reporting historic infection data can result in more infections than with no reporting at all. We examine three types of media influence and we illustrate the media influence with a simulated outbreak of a generic emerging infectious disease in a small city. Social distancing can never be complete; however, for a spectrum of outbreaks, we show that leaving isolation (stopping applying social distancing measures) for up to 4 hours each day has modest effect on the overall morbidity and mortality.

  16. Preparing for Serious Communicable Diseases in the United States: What the Ebola Virus Epidemic Has Taught Us.

    PubMed

    Varkey, Jay B; Ribner, Bruce S

    2016-06-01

    Ending the West Africa Ebola virus disease (EVD) outbreak required an unprecedented international response. For the United States, participation in the international response to the West Africa EVD outbreak provided an opportunity to learn important lessons in four key domains critical to preparing for future outbreaks of EVD and other serious communicable diseases: (i) safe and effective patient care, (ii) the role of experimental therapeutics and vaccines, (iii) infection control, and (iv) hospital and community preparedness.

  17. Modeling Estimated Personnel Needs for a Potential Foot and Mouth Disease Outbreak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, K; Hullinger, P

    2008-01-29

    Foot and Mouth disease (FMD) is a highly infectious and contagious viral disease affecting cloven-hoofed livestock that was last detected in the United States (US) in 1929. The prevalence of FMD in other countries, as well as the current potential for this virus to be used as a form of agroterrorism, has made preparations for a potential FMD outbreak a national priority. To assist in the evaluation of national preparedness, all 50 states were surveyed via e-mail, telephone and web search to obtain emergency response plans for FMD or for foreign animal diseases in general. Information from 33 states wasmore » obtained and analyzed for estimates of personnel resources needed to respond to an outbreak. These estimates were consolidated and enhanced to create a tool that could be used by individual states to better understand the personnel that would be needed to complete various tasks over time during an outbreak response. The estimates were then coupled, post-processing, to the output from FMD outbreaks simulated in California using the Multiscale Epidemiological/Economic Simulation and Analysis (MESA) model at Lawrence Livermore National Laboratory to estimate the personnel resource demands, by task, over the course of an outbreak response.« less

  18. Large outbreak of salmonella phage type 1 infection with high infection rate and severe illness associated with fast food premises.

    PubMed

    Giraudon, I; Cathcart, S; Blomqvist, S; Littleton, A; Surman-Lee, S; Mifsud, A; Anaraki, S; Fraser, G

    2009-06-01

    To describe the epidemiology of an outbreak of Salmonella enteritidis phage type 1 (PT1) infection associated with a fast food premises, and to identify the causative factors leading to an acute outbreak with high attack rate and severe illness including hospital admission. Integrated descriptive study of epidemiology, food and environmental microbiology, and professional environmental health assessment, supplemented by a case-case analytical study. Cases were identified through multiple sources and were interviewed to identify food items consumed. Descriptive epidemiology of all cases and a case-case analytical study of risk factors for severe illness were undertaken. Microbiological investigation included analysis and typing of pathogens from stools, blood and environmental surfaces. Professional environmental heath assessment of the premises was undertaken. S. enteritidis PT1 was recovered from two-thirds of faecal samples. Three cases had dual infection with enterotoxin-producing Clostridium perfringens. S. enteritidis PT1 was isolated from 14 of 40 food samples examined and C. perfringens was isolated from eight food samples. Environmental health inspection of the premises revealed multiple deficiencies, including deficits in food preparation and hygiene consistent with multiple cross-contamination, and time-temperature abuse of sauces widely used across menu items. Severe cases were associated with consumption of chips and salad. Outbreaks from fast food premises have been infrequently described. This outbreak demonstrates the potential for fast food premises, with multiple deficiencies in food preparation and hygiene, to produce large, intense community outbreaks with high attack rates and severe illness, highly confined in space and time.

  19. Preventing Community-wide Transmission of Cryptosporidium: A Proactive Public Health Response to a Swimming Pool–Associated Outbreak — Auglaize County, Ohio, USA

    PubMed Central

    Cope, J.R.; Prosser, A.; Nowicki, S.; Roberts, M.W.; Scheer, D.; Anderson, C.; Longsworth, A.; Parsons, C.; Goldschmidt, D.; Johnston, S.; Bishop, H.; Xiao, L.; Hill, V.; Beach, M.; Hlavsa, M.C.

    2015-01-01

    Summary The incidence of recreational water–associated outbreaks in the United States has significantly increased, driven, at least in part, by outbreaks both caused by Cryptosporidium and associated with treated recreational water venues. Because of the parasite's extreme chlorine tolerance, transmission can occur even in well-maintained treated recreational water venues, (e.g., pools) and a focal cryptosporidiosis outbreak can evolve into a community-wide outbreak associated with multiple recreational water venues and settings (e.g., child care facilities). In August 2004 in Auglaize County, Ohio, multiple cryptosporidiosis cases were identified and anecdotally linked to Pool A. Within 5 days of the first case being reported, Pool A was hyperchlorinated to achieve 99.9% Cryptosporidium inactivition. A case-control study was launched to epidemiologically ascertain the outbreak source 11 days later. A total of 150 confirmed and probable cases were identified; the temporal distribution of illness onset was peaked, indicating a point-source exposure. Cryptosporidiosis was significantly associated with swimming in Pool A (matched odds ratio 121.7, 95% confidence interval 27.4–∞) but not with another venue or setting. The findings of this investigation suggest that proactive implementation of control measures, when increased Cryptosporidium transmission is detected but before an outbreak source is epidemiologically ascertained, might prevent a focal cryptosporidiosis outbreak from evolving into a community-wide outbreak. PMID:25907106

  20. Duck plague

    USGS Publications Warehouse

    Friend, M.

    1999-01-01

    Duck plague is caused by a herpesvirus. Infection often results in an acute, contagious, and fatal disease. As with many other herpesviruses, duck plague virus can establish inapparent infections in birds that survive exposure to it, a state referred to as latency. During latency, the virus cannot be detected by standard methods for virus isolation. Studies of domestic species of waterfowl have detected multiple strains of the virus that vary in their ability to cause disease and death. Little is known about the response of wild waterfowl to strain differences.Duck plague outbreaks are thought to be caused when birds that carry the virus shed it through fecal or oral discharge, thus releasing the virus into food and water with which susceptible birds may have contact. Experimental studies have demonstrated spontaneous virus shedding by duck plague carriers during spring. Changes in the duration of daylight and onset of breeding are thought to be physiological stresses that stimulate virus shedding at this time of year. The carriers are immune to the disease, but the virus shed by them causes infection and disease among susceptible waterfowl. Bird-to-bird contact and contact with virus that has contaminated the environment perpetuate an outbreak. Scavenging and decomposition of carcasses of infected birds also contaminate the environment by releasing viruses from tissues and body fluids. Virus transmission through the egg has been reported, but the role of the egg in the disease cycle remains to be resolved.

  1. Networks and tuberculosis: an undetected community outbreak involving public places.

    PubMed

    Klovdahl, A S; Graviss, E A; Yaganehdoost, A; Ross, M W; Wanger, A; Adams, G J; Musser, J M

    2001-03-01

    After decades of decline in developed countries, there was a resurgence of tuberculosis in the mid-1980s accompanied by increased recognition that this infectious disease has long remained a major public health problem at the global level. New methods from molecular biology, in particular DNA 'fingerprinting' (of Mycobacterium tuberculosis), made it clear that current transmission and recent infection (in contrast to reactivation of earlier, latent infection) were much more significant than previously believed. Studies of tuberculosis outbreaks using these new tools pointed to complex networks through which infection was spreading and highlighted the need for new approaches to outbreak investigation and disease control. In the study reported here a new approach--combining methods from molecular biology, epidemiology and network analysis--was used to examine an outbreak of tuberculosis in Houston, Texas. Initial investigation using conventional strategies revealed few contacts among 37 patients with identical (six-band) DNA (IS6110-based) fingerprints but subsequent research uncovered over 40 places (including many gay bars) to which patients in this outbreak could be linked. Network methods were used to reconstruct an outbreak network and to quantify the relative importance (here, 'betweenness' centrality) of different actors (persons and places) playing a role in the outbreak. The multidisciplinary work provides the basis for a new approach to outbreak investigation and disease control.

  2. Recent loss of closed forests is associated with Ebola virus disease outbreaks.

    PubMed

    Olivero, Jesús; Fa, John E; Real, Raimundo; Márquez, Ana L; Farfán, Miguel A; Vargas, J Mario; Gaveau, David; Salim, Mohammad A; Park, Douglas; Suter, Jamison; King, Shona; Leendertz, Siv Aina; Sheil, Douglas; Nasi, Robert

    2017-10-30

    Ebola virus disease (EVD) is a contagious, severe and often lethal form of hemorrhagic fever in humans. The association of EVD outbreaks with forest clearance has been suggested previously but many aspects remained uncharacterized. We used remote sensing techniques to investigate the association between deforestation in time and space, with EVD outbreaks in Central and West Africa. Favorability modeling, centered on 27 EVD outbreak sites and 280 comparable control sites, revealed that outbreaks located along the limits of the rainforest biome were significantly associated with forest losses within the previous 2 years. This association was strongest for closed forests (>83%), both intact and disturbed, of a range of tree heights (5->19 m). Our results suggest that the increased probability of an EVD outbreak occurring in a site is linked to recent deforestation events, and that preventing the loss of forests could reduce the likelihood of future outbreaks.

  3. Selected Insights from Application of Whole Genome Sequencing for Outbreak Investigations

    PubMed Central

    Le, Vien Thi Minh; Diep, Binh An

    2014-01-01

    Purpose of review The advent of high-throughput whole genome sequencing has the potential to revolutionize the conduct of outbreak investigation. Because of its ultimate pathogen strain resolution, whole genome sequencing could augment traditional epidemiologic investigations of infectious disease outbreaks. Recent findings The combination of whole genome sequencing and intensive epidemiologic analysis provided new insights on the sources and transmission dynamics of large-scale epidemics caused by Escherichia coli and Vibrio cholerae, nosocomial outbreaks caused by methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, and Mycobacterium abscessus, community-centered outbreaks caused by Mycobacterium tuberculosis, and natural disaster-associated outbreak caused by environmentally acquired molds. Summary When combined with traditional epidemiologic investigation, whole genome sequencing has proven useful for elucidating sources and transmission dynamics of disease outbreaks. Development of a fully automated bioinformatics pipeline for analysis of whole genome sequence data is much needed to make this powerful tool more widely accessible. PMID:23856896

  4. Characterization of Foot-And-Mouth Disease Viruses (FMDVs) from Ugandan Cattle Outbreaks during 2012-2013: Evidence for Circulation of Multiple Serotypes

    PubMed Central

    Namatovu, Alice; Tjørnehøj, Kirsten; Belsham, Graham J.; Dhikusooka, Moses T.; Wekesa, Sabenzia N.; Muwanika, Vincent B.; Siegismund, Hans R.; Ayebazibwe, Chrisostom

    2015-01-01

    To investigate the foot-and-mouth disease virus (FMDV) serotypes circulating in Uganda’s cattle population, both serological and virological analyses of samples from outbreaks that occurred during 2012–2013 were performed. Altogether, 79 sera and 60 oropharyngeal fluid (OP)/tissue/oral swab samples were collected from herds with reported FMD outbreaks in seven different Ugandan districts. Overall, 61/79 (77%) of the cattle sera were positive for antibodies against FMDV by PrioCHECK FMDV NS ELISA and solid phase blocking ELISA detected titres ≥ 80 for serotypes O, SAT 1, SAT 2 and SAT 3 in 41, 45, 30 and 45 of these 61 seropositive samples, respectively. Virus neutralisation tests detected the highest levels of neutralising antibodies (titres ≥ 45) against serotype O in the herds from Kween and Rakai districts, against SAT 1 in the herd from Nwoya district and against SAT 2 in the herds from Kiruhura, Isingiro and Ntungamo districts. The isolation of a SAT 2 FMDV from Isingiro was consistent with the detection of high levels of neutralising antibodies against SAT 2; sequencing (for the VP1 coding region) indicated that this virus belonged to lineage I within this serotype, like the currently used vaccine strain. From the Wakiso district 11 tissue/swab samples were collected; serotype A FMDV, genotype Africa (G-I), was isolated from the epithelial samples. This study shows that within a period of less than one year, FMD outbreaks in Uganda were caused by four different serotypes namely O, A, SAT 1 and SAT 2. Therefore, to enhance the control of FMD in Uganda, there is need for efficient and timely determination of outbreak virus strains/serotypes and vaccine matching. The value of incorporating serotype A antigen into the imported vaccines along with the current serotype O, SAT 1 and SAT 2 strains should be considered. PMID:25664876

  5. Identifying an outbreak of a novel swine disease using test requests for porcine reproductive and respiratory syndrome as a syndromic surveillance tool

    PubMed Central

    2012-01-01

    Background Animal disease monitoring and surveillance are crucial for ensuring the health of animals, humans and the environment. Many studies have investigated the utility of monitoring syndromes associated with data from veterinary laboratory submissions, but no research has focused on how negative test results from a veterinary diagnostic laboratory data can be used to improve our knowledge of disease outbreaks. For example, if a diagnostic laboratory was seeing a disproportionate number of negative test results for a known disease could this information be an indication of a novel disease outbreak? The objective of this study was to determine the association between the porcine circovirus associated disease (PCVAD) outbreak in Ontario 2004–2006 and the results of porcine reproductive and respiratory syndrome virus (PPRSV) enzyme-linked immunosorbent assay (ELISA) and the results of PRRSV polymerase chain reaction (PCR) diagnostic tests requested by veterinarians. Results Retrospective data were collected from the Animal Health Laboratory (AHL) at the University of Guelph, Guelph, Ontario Canada and were comprised of weekly counts of PRRSV ELISA and PRRSV PCR diagnostic tests requested by swine practitioners from 2000–2007. The results of the PRRSV ELISA and PRRSV PCRs were analysed separately in two models using logistic regression with the dependent variables being: the weekly probability of PRRSV ELISA positivity, and the weekly probability of PRRSV PCR positivity, respectively. The weekly probability of PRRSV PCR positivity decreased during the PVCAD outbreak (OR=0.66, P=0.01). The weekly probability of PRRSV ELISA positivity was not associated with the PCVAD outbreak. Conclusions The results of this study showed that during the PCVAD outbreak in Ontario from December 2004-May 2006, the probability of a positive PRRSV PCR at the AHL decreased. We conclude that when a decrease in test positivity occurs for a known disease, it may suggest that a new disease agent is emerging in the population. Hence, monitoring the test results of commonly used first-order tests for a known disease (e.g. PRRSV) has the potential to be a unique form of syndromic data for the timely identification of novel disease outbreaks in swine populations. PMID:23072647

  6. Risk factors associated with leptospirosis during an outbreak in Middle Andaman, India.

    PubMed

    Sugunan, A P; Vijayachari, P; Sharma, S; Roy, Subarna; Manickam, P; Natarajaseenivasan, K; Gupte, M D; Sehgal, S C

    2009-07-01

    Leptospirosis outbreaks occur frequently in North and South Andaman Islands but not in Middle Andaman. In 2002, an outbreak appeared in Middle Andaman for the first time. Although a study on risk factors was conducted in North Andaman, it used seropositivity to define leptospirosis. Since seropositivity might not indicate current leptospiral infection and as no study on risk factors was conducted in Middle Andaman, we carried out this study to identify the risk factors during the outbreak. A suspected outbreak of leptospirosis occurred in Rangat of Middle Andaman during October - November 2002. Suspected cases were screened for leptospirosis using microscopic agglutination test (MAT). Fifty two patients confirmed to have leptospirosis based on rising titres in MAT on paired sera, and 104 age, sex and neighbourhood seronegative matched controls, were included in the study. A conditional multiple regression by backward elimination process was carried out with acute leptospirosis as the dependent factor and various environmental, occupational and behavioural factors as independent factors. A stratified analysis was also carried out. The presence of cattle in the house, drinking stream water, contact with garbage, walking barefoot and standing in water while working were identified as significant factors associated with leptospirosis. Stratified analysis showed a dose response relationship between number of cattle in the house and the risk of leptospiral infection suugesting that cattle could be a source of infection. Identification of the potential risk factors would help understand the transmission dynamics of the disease and formulate public health interventions.

  7. Contact Tracing during an Outbreak of Ebola Virus Disease in the Western Area Districts of Sierra Leone: Lessons for Future Ebola Outbreak Response.

    PubMed

    Olu, Olushayo Oluseun; Lamunu, Margaret; Nanyunja, Miriam; Dafae, Foday; Samba, Thomas; Sempiira, Noah; Kuti-George, Fredson; Abebe, Fikru Zeleke; Sensasi, Benjamin; Chimbaru, Alexander; Ganda, Louisa; Gausi, Khoti; Gilroy, Sonia; Mugume, James

    2016-01-01

    Contact tracing is a critical strategy required for timely prevention and control of Ebola virus disease (EVD) outbreaks. Available evidence suggests that poor contact tracing was a driver of the EVD outbreak in West Africa, including Sierra Leone. In this article, we answered the question as to whether EVD contact tracing, as practiced in Western Area (WA) districts of Sierra Leone from 2014 to 2015, was effective. The goal is to describe contact tracing and identify obstacles to its effective implementation. Mixed methods comprising secondary data analysis of the EVD case and contact tracing data sets collected from WA during the period from 2014 to 2015, key informant interviews of contact tracers and their supervisors, and a review of available reports on contact tracing were implemented to obtain data for this study. During the study period, 3,838 confirmed cases and 32,706 contacts were listed in the viral hemorrhagic fever and contact databases for the district (mean 8.5 contacts per case). Only 22.1% (852) of the confirmed cases in the study area were listed as contacts at the onset of their illness, which indicates incomplete identification and tracing of contacts. Challenges associated with effective contact tracing included lack of community trust, concealing of exposure information, political interference with recruitment of tracers, inadequate training of contact tracers, and incomplete EVD case and contact database. While the tracers noted the usefulness of community quarantine in facilitating their work, they also reported delayed or irregular supply of basic needs, such as food and water, which created resistance from the communities. Multiple gaps in contact tracing attributed to a variety of factors associated with implementers, and communities were identified as obstacles that impeded timely control of the EVD outbreak in the WA of Sierra Leone. In future outbreaks, early community engagement and participation in contact tracing, establishment of appropriate mechanisms for selection, adequate training and supervision of qualified contact tracers, establishment of a well-managed and complete contact tracing database, and provision of basic needs to quarantined contacts are recommended as measures to enhance effective contact tracing.

  8. Yellow Fever outbreak in Darfur, Sudan in October 2012; the initial outbreak investigation report.

    PubMed

    Soghaier, Mohammed A; Hagar, Ahmed; Abbas, Mohammed A; Elmangory, Mutasim M; Eltahir, Khalid M; Sall, Amadou A

    2013-10-01

    Sudan is subject to repeated outbreaks, including Viral Hemorrhagic Fever (VHF), which is considered to be a very serious illness. Yellow Fever (YF) outbreaks in Sudan have been reported from the 1940s through 2005. In 2012, a new outbreak of YF occurred in the Darfur region. To identify the potential for an outbreak, to diagnose the disease and to be able to recognize its cause among the initial reported cases. >This is a descriptive and investigative field study that applies standard communicable disease outbreak investigation steps. The study involved clinical, serological, entomological and environmental surveys. The field investigation confirmed the outbreak and identified its cause to be YF. National surveillance systems should be strong enough to detect VHFs in a timely manner. Local health facilities should be prepared to promptly treat the initial cases because the case fatality ratios (CFRs) are usually very high among the index cases. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  9. An infectious way to teach students about outbreaks.

    PubMed

    Cremin, Íde; Watson, Oliver; Heffernan, Alastair; Imai, Natsuko; Ahmed, Norin; Bivegete, Sandra; Kimani, Teresia; Kyriacou, Demetris; Mahadevan, Preveina; Mustafa, Rima; Pagoni, Panagiota; Sophiea, Marisa; Whittaker, Charlie; Beacroft, Leo; Riley, Steven; Fisher, Matthew C

    2018-06-01

    The study of infectious disease outbreaks is required to train today's epidemiologists. A typical way to introduce and explain key epidemiological concepts is through the analysis of a historical outbreak. There are, however, few training options that explicitly utilise real-time simulated stochastic outbreaks where the participants themselves comprise the dataset they subsequently analyse. In this paper, we present a teaching exercise in which an infectious disease outbreak is simulated over a five-day period and subsequently analysed. We iteratively developed the teaching exercise to offer additional insight into analysing an outbreak. An R package for visualisation, analysis and simulation of the outbreak data was developed to accompany the practical to reinforce learning outcomes. Computer simulations of the outbreak revealed deviations from observed dynamics, highlighting how simplifying assumptions conventionally made in mathematical models often differ from reality. Here we provide a pedagogical tool for others to use and adapt in their own settings. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. 'Outbreak Gold Standard' selection to provide optimized threshold for infectious diseases early-alert based on China Infectious Disease Automated-alert and Response System.

    PubMed

    Wang, Rui-Ping; Jiang, Yong-Gen; Zhao, Gen-Ming; Guo, Xiao-Qin; Michael, Engelgau

    2017-12-01

    The China Infectious Disease Automated-alert and Response System (CIDARS) was successfully implemented and became operational nationwide in 2008. The CIDARS plays an important role in and has been integrated into the routine outbreak monitoring efforts of the Center for Disease Control (CDC) at all levels in China. In the CIDARS, thresholds are determined using the "Mean+2SD‟ in the early stage which have limitations. This study compared the performance of optimized thresholds defined using the "Mean +2SD‟ method to the performance of 5 novel algorithms to select optimal "Outbreak Gold Standard (OGS)‟ and corresponding thresholds for outbreak detection. Data for infectious disease were organized by calendar week and year. The "Mean+2SD‟, C1, C2, moving average (MA), seasonal model (SM), and cumulative sum (CUSUM) algorithms were applied. Outbreak signals for the predicted value (Px) were calculated using a percentile-based moving window. When the outbreak signals generated by an algorithm were in line with a Px generated outbreak signal for each week, this Px was then defined as the optimized threshold for that algorithm. In this study, six infectious diseases were selected and classified into TYPE A (chickenpox and mumps), TYPE B (influenza and rubella) and TYPE C [hand foot and mouth disease (HFMD) and scarlet fever]. Optimized thresholds for chickenpox (P 55 ), mumps (P 50 ), influenza (P 40 , P 55 , and P 75 ), rubella (P 45 and P 75 ), HFMD (P 65 and P 70 ), and scarlet fever (P 75 and P 80 ) were identified. The C1, C2, CUSUM, SM, and MA algorithms were appropriate for TYPE A. All 6 algorithms were appropriate for TYPE B. C1 and CUSUM algorithms were appropriate for TYPE C. It is critical to incorporate more flexible algorithms as OGS into the CIDRAS and to identify the proper OGS and corresponding recommended optimized threshold by different infectious disease types.

  11. Alignment-free design of highly discriminatory diagnostic primer sets for Escherichia coli O104:H4 outbreak strains.

    PubMed

    Pritchard, Leighton; Holden, Nicola J; Bielaszewska, Martina; Karch, Helge; Toth, Ian K

    2012-01-01

    An Escherichia coli O104:H4 outbreak in Germany in summer 2011 caused 53 deaths, over 4000 individual infections across Europe, and considerable economic, social and political impact. This outbreak was the first in a position to exploit rapid, benchtop high-throughput sequencing (HTS) technologies and crowdsourced data analysis early in its investigation, establishing a new paradigm for rapid response to disease threats. We describe a novel strategy for design of diagnostic PCR primers that exploited this rapid draft bacterial genome sequencing to distinguish between E. coli O104:H4 outbreak isolates and other pathogenic E. coli isolates, including the historical hæmolytic uræmic syndrome (HUSEC) E. coli HUSEC041 O104:H4 strain, which possesses the same serotype as the outbreak isolates. Primers were designed using a novel alignment-free strategy against eleven draft whole genome assemblies of E. coli O104:H4 German outbreak isolates from the E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium website, and a negative sequence set containing 69 E. coli chromosome and plasmid sequences from public databases. Validation in vitro against 21 'positive' E. coli O104:H4 outbreak and 32 'negative' non-outbreak EHEC isolates indicated that individual primer sets exhibited 100% sensitivity for outbreak isolates, with false positive rates of between 9% and 22%. A minimal combination of two primers discriminated between outbreak and non-outbreak E. coli isolates with 100% sensitivity and 100% specificity. Draft genomes of isolates of disease outbreak bacteria enable high throughput primer design and enhanced diagnostic performance in comparison to traditional molecular assays. Future outbreak investigations will be able to harness HTS rapidly to generate draft genome sequences and diagnostic primer sets, greatly facilitating epidemiology and clinical diagnostics. We expect that high throughput primer design strategies will enable faster, more precise responses to future disease outbreaks of bacterial origin, and help to mitigate their societal impact.

  12. Spatio-temporal epidemiology of the cholera outbreak in Papua New Guinea, 2009-2011.

    PubMed

    Horwood, Paul F; Karl, Stephan; Mueller, Ivo; Jonduo, Marinjho H; Pavlin, Boris I; Dagina, Rosheila; Ropa, Berry; Bieb, Sibauk; Rosewell, Alexander; Umezaki, Masahiro; Siba, Peter M; Greenhill, Andrew R

    2014-08-20

    Cholera continues to be a devastating disease in many developing countries where inadequate safe water supply and poor sanitation facilitate spread. From July 2009 until late 2011 Papua New Guinea experienced the first outbreak of cholera recorded in the country, resulting in >15,500 cases and >500 deaths. Using the national cholera database, we analysed the spatio-temporal distribution and clustering of the Papua New Guinea cholera outbreak. The Kulldorff space-time permutation scan statistic, contained in the software package SatScan v9.2 was used to describe the first 8 weeks of the outbreak in Morobe Province before cholera cases spread throughout other regions of the country. Data were aggregated at the provincial level to describe the spread of the disease to other affected provinces. Spatio-temporal and cluster analyses revealed that the outbreak was characterized by three distinct phases punctuated by explosive propagation of cases when the outbreak spread to a new region. The lack of road networks across most of Papua New Guinea is likely to have had a major influence on the slow spread of the disease during this outbreak. Identification of high risk areas and the likely mode of spread can guide government health authorities to formulate public health strategies to mitigate the spread of the disease through education campaigns, vaccination, increased surveillance in targeted areas and interventions to improve water, sanitation and hygiene.

  13. Rodent-borne infectious disease outbreaks after flooding disasters: Epidemiology, management, and prevention.

    PubMed

    Diaz, James H

    2015-01-01

    To alert clinicians to the climatic conditions that can precipitate outbreaks of the rodent-borne infectious diseases most often associated with flooding disasters, leptospirosis (LS), and the Hantavirus-caused diseases, hemorrhagic fever with renal syndrome (HFRS) and Hantavirus pulmonary syndrome (HPS); to describe the epidemiology and presenting clinical manifestations and outcomes of these rodent-borne infectious diseases; and to recommend both prophylactic therapies and effective control and prevention strategies for rodent-borne infectious diseases. Internet search engines, including Google®, Google Scholar®, Pub Med, Medline, and Ovid, were queried with the key words as search terms to examine the latest scientific articles on rodent-borne infectious disease outbreaks in the United States and worldwide to describe the epidemiology and presenting clinical manifestations and outcomes of LS and Hantavirus outbreaks. Not applicable. Not applicable. Not applicable. Rodent-borne infectious disease outbreaks following heavy rainfall and flooding disasters. Heavy rainfall encourages excessive wild grass seed production that supports increased outdoor rodent population densities; and flooding forces rodents from their burrows near water sources into the built environment and closer to humans. Healthcare providers should maintain high levels of suspicion for LS in patients developing febrile illnesses after contaminated freshwater exposures following heavy rainfall, flooding, and even freshwater recreational events; and for Hantavirus-caused infectious diseases in patients with hemorrhagic fevers that progress rapidly to respiratory or renal failure following rodent exposures.

  14. The role of the Biological Weapons Convention in disease surveillance and response.

    PubMed

    Enemark, Christian

    2010-11-01

    This article assesses the role and significance of the Biological Weapons Convention (BWC) with respect to infectious disease surveillance and response to outbreaks. Increasingly, the BWC is being used as a platform for addressing infectious disease threats arising naturally as well as traditional concerns about malicious dissemination of pathogenic microorganisms. The latter have long had a place on the security agenda, but natural disease outbreaks too are now being partially 'securitized' through the use of the BWC as a forum for exchanging information and ideas on disease surveillance and response. The article focuses on two prominent issues discussed at recent meetings of BWC member states: enhancing capacity for disease surveillance and response; and responding to allegations of biological weapons use and investigating outbreaks deemed suspicious. It concludes, firstly, that the BWC supports the efforts of international health organizations to enhance disease surveillance and response capacity worldwide. And secondly, that the BWC, rather than the World Health Organization (WHO), is the appropriate institution to deal with biological weapons allegations and investigations of suspicious outbreaks. The overall message is that securitization in the health sphere cuts both ways. Adding a security dimension (BW) alongside the task of detecting and responding to naturally occurring disease outbreaks is beneficial, but requiring a non-security organization (the WHO) to assume a security role would be counterproductive.

  15. Data-Driven Disease Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Generous, Nicholas

    If disease outbreaks could be forecasted like the weather, communities could set up protective measures to mitigate their impact. At Los Alamos National Laboratory, scientists are improving disease-forecasting mathematical models by using clinical data--as well as internet data sources such as Wikipedia, Twitter, and Google--and coupling it with satellite imagery. The goal is to better understanding how diseases spread and, eventually, forecast disease outbreaks.

  16. Investigating monkeypox in the Wild

    USGS Publications Warehouse

    Brand, Christopher J.; Slota, Paul

    2003-01-01

    A recent monkeypox outbreak in pet prairie dogs led to the first recorded human case of the disease in the U.S. The outbreak has USGS scientists concerned the disease may spread to wild rodent populations.

  17. Risk Factors for Serogroup C Meningococcal Disease during Outbreak among Men who Have Sex with Men, New York City, New York, USA.

    PubMed

    Ridpath, Alison; Greene, Sharon K; Robinson, Byron F; Weiss, Don

    2015-08-01

    Risk factors for illness during a serogroup C meningococcal disease outbreak among men who have sex with men in New York City, New York, USA, in 2012-2013 included methamphetamine and cocaine use and sexually transmitted infections. Outbreak investigations should consider routinely capturing information regarding drug use and sex-related risk factors.

  18. Interagency Coordination in the Case of an Intentional Agroterrorist Incident

    DTIC Science & Technology

    2009-05-11

    and working groups; development of a National Veterinary Stockpile of vaccines needed to respond to animal diseases; and funding of research...outbreak or an intentional incident. They include lack of personnel able to recognize a foreign animal disease outbreak, difficulty with vaccination and... vaccination stockpiling, and difficulty detecting a covert attack and differentiating it from a natural outbreak with the current surveillance and

  19. Impact of the 2001 Foot-and-Mouth Disease Outbreak in Britain: Implications for Rural Studies

    ERIC Educational Resources Information Center

    Scott, Alister; Christie, Michael; Midmore, Peter

    2004-01-01

    This paper assesses the impact of the 2001 foot-and-mouth disease outbreak in terms of its implications for the discipline of rural studies. In particular, it focuses on the position of agriculture in rural economy and society, the standing of the government after its management of the outbreak, and the performance of the new devolved regional…

  20. Rapid Response to a College Outbreak of Meningococcal Serogroup B Disease: Nation's First Widespread Use of Bivalent rLP2086 Vaccine

    ERIC Educational Resources Information Center

    Fiorito, Theresa M.; Bornschein, Suzanne; Mihalakos, Alysia; Kelleher, Catherine M.; Alexander-Scott, Nicole; Kanadanian, Koren V.; Raymond, Patricia; Sicard, Kenneth; Dennehy, Penelope H.

    2017-01-01

    Objective: To outline the reasoning behind use of bivalent rLP2086 in a Rhode Island college meningococcal B disease outbreak, highlighting the timeline from outbreak declaration to vaccination clinic, emphasizing that these two time points are <3 days apart. Participants: Staff, faculty, and students at College X eligible for vaccination.…

  1. An Outbreak of Syphilis in Alabama Prisons: Correctional Health Policy and Communicable Disease Control

    PubMed Central

    Wolfe, Mitchell I.; Xu, Fujie; Patel, Priti; O'Cain, Michael; Schillinger, Julia A.; St. Louis, Michael E.; Finelli, Lyn

    2001-01-01

    Objectives. After syphilis outbreaks were reported at 3 Alabama State men's prisons in early 1999, we conducted an investigation to evaluate risk factors for syphilis infection and describe patterns of syphilis transmission. Methods. We reviewed medical, patient interview, and prison transfer records and documented sexual networks. Presumptive source cases were identified. Odds of exposure to unscreened jail populations and transfer from other prisons were calculated for case patients at 1 prison. Results. Thirty-nine case patients with early syphilis were identified from 3 prisons. Recent jail exposure (odds ratio [OR] = 8.0, 95% confidence interval [CI] = 0.3, 158.7, P = .14) and prison transfer (OR = 32.0, 95% CI = 1.6, 1668.1, P < .01) were associated with being a source case patient. Conclusions. Probable sources of syphilis introduction into and transmission within prisons included mixing of prisoners with unscreened jail populations, transfer of infected inmates between prisons, and multiple concurrent sexual partnerships. Reducing sexual transmission of disease in correctional settings is a public health priority and will require innovative prevention strategies. PMID:11499107

  2. Characterization of Foot-and-Mouth Disease Viruses Collected in Nigeria Between 2007 and 2014: Evidence for Epidemiological Links Between West and East Africa.

    PubMed

    Ularamu, H G; Ibu, J O; Wood, B A; Abenga, J N; Lazarus, D D; Wungak, Y S; Knowles, N J; Wadsworth, J; Mioulet, V; King, D P; Shamaki, D; Adah, M I

    2017-12-01

    This study describes the molecular characterization of 47 foot-and-mouth disease (FMD) viruses recovered from field outbreaks in Nigeria between 2007 and 2014. Antigen ELISA of viral isolates was used to identify FMD virus serotypes O, A and SAT 2. Phylogenetic analyses of VP1 nucleotide sequences provide evidence for the presence of multiple sublineages of serotype SAT 2, and O/EAST AFRICA 3 (EA-3) and O/WEST AFRICA topotypes in the country. In contrast, for serotype A, a single monophyletic cluster of viruses has persisted within Nigeria (2009-2013). These results demonstrate the close genetic relatedness of viruses in Nigeria to those from other African countries, including the first formal characterization of serotype O/EA-3 viruses in Nigeria. The introductions and persistence of certain viral lineages in Nigeria may reflect transmission patterns via nomadic pastoralism and animal trade. Continuous monitoring of field outbreaks is necessary to dissect the complexity of FMD epidemiology in sub-Saharan Africa. © 2016 Blackwell Verlag GmbH.

  3. Are bark beetle outbreaks less synchronous than forest Lepidoptera outbreaks?

    Treesearch

    Bjorn Okland; Andrew M. Liebhold; Ottar N. Bjornstad; Nadir Erbilgin; Paal Krokene; Paal Krokene

    2005-01-01

    Comparisons of intraspecific spatial synchrony across multiple epidemic insect species can be useful for generating hypotheses about major determinants of population patterns at larger scales. The present study compares patterns of spatial synchrony in outbreaks of six epidemic bark beetle species in North America and Europe. Spatial synchrony among populations of the...

  4. Measles re-emergence in Northern Italy: Pathways of measles virus genotype D8, 2013-2014.

    PubMed

    Amendola, Antonella; Bianchi, Silvia; Lai, Alessia; Canuti, Marta; Piralla, Antonio; Baggieri, Melissa; Ranghiero, Alberto; Piatti, Alessandra; Tanzi, Elisabetta; Zehender, Gianguglielmo; Magurano, Fabio; Baldanti, Fausto

    2017-03-01

    Molecular surveillance and advanced phylogenetic methods are important tools to track the pathways of Measles virus (MV) genotypes, provide evidence for the interruption of endemic transmission and verify the elimination of the disease. The aims of this study were to describe the genetic profile of MV genotype D8 (D8-MV) strains circulating in Northern Italy (Lombardy Region) during the 2013-2014 period and to analyze the transmission chains and estimate the introduction time points using a phylogenetic approach. Forty-four strains of D8-MV identified from 12 outbreaks and 28 cases reported as sporadic were analyzed. Molecular analysis was performed by sequencing the highly variable 450nt region of the N gene of MV genome (N-450), as recommended by the WHO. Phylogenetic analyses and tree time-scaled reconstruction were performed with BEAST software. We could trace back the transmission pathways that resulted in three chains of transmission, two introductions with limited spread (two familiar outbreaks), and two single introductions (true sporadic cases). The D8-Taunton transmission chain, which was involved in 7 outbreaks and 13 sporadic cases, was endemic during the studied period. Furthermore, two novel local variants emerged independently in March 2014 and caused two transmission chains linked to at least 3 outbreaks. Overall, viral diversity was high and strains belonging to 5 different variants were identified. The results of this study clearly demonstrate that multiple lineages of D8-MV co-circulated in Northern Italy. Measles can be considered a re-emerging disease in Italy and additional efforts are necessary to achieve measles elimination goal. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A Space–Time Permutation Scan Statistic for Disease Outbreak Detection

    PubMed Central

    Kulldorff, Martin; Heffernan, Richard; Hartman, Jessica; Assunção, Renato; Mostashari, Farzad

    2005-01-01

    Background The ability to detect disease outbreaks early is important in order to minimize morbidity and mortality through timely implementation of disease prevention and control measures. Many national, state, and local health departments are launching disease surveillance systems with daily analyses of hospital emergency department visits, ambulance dispatch calls, or pharmacy sales for which population-at-risk information is unavailable or irrelevant. Methods and Findings We propose a prospective space–time permutation scan statistic for the early detection of disease outbreaks that uses only case numbers, with no need for population-at-risk data. It makes minimal assumptions about the time, geographical location, or size of the outbreak, and it adjusts for natural purely spatial and purely temporal variation. The new method was evaluated using daily analyses of hospital emergency department visits in New York City. Four of the five strongest signals were likely local precursors to citywide outbreaks due to rotavirus, norovirus, and influenza. The number of false signals was at most modest. Conclusion If such results hold up over longer study times and in other locations, the space–time permutation scan statistic will be an important tool for local and national health departments that are setting up early disease detection surveillance systems. PMID:15719066

  6. A Guide to the Investigation of Waterborne Outbreaks

    ERIC Educational Resources Information Center

    Rosenberg, Mark L.

    1977-01-01

    Explained is the process of investigating an alleged waterborne disease outbreak. The information is designed to help water personnel work more effectively with health authorities in tracing, controlling, and preventing waterborne disease. (Author/MA)

  7. Management of the 2014 Enterovirus 68 Outbreak at a Pediatric Tertiary Care Center.

    PubMed

    Schuster, Jennifer E; Newland, Jason G

    2015-11-01

    Enterovirus 68 (EV-D68) is an uncommonly recognized cause of acute respiratory tract infections. During the late summer of 2014, an international EV-D68 outbreak occurred. We review the steps of outbreak recognition and management in the context of 1 hospital's experience with the EV-D68 outbreak. We reviewed the role of Children's Mercy Hospital as one of the first hospitals to recognize the 2014 EV-D68 outbreak in the United States. The steps of outbreak management were applied to real-life examples as the outbreak unfolded at our hospital. Management of the 2014 EV-D68 outbreak was a multifaceted effort requiring close coordination with hospitals, local and state health departments, and the Centers for Disease Control and Prevention. The importance of clear and frequent communication is highlighted both intra- and interinstitutionally. Increased respiratory disease-related pediatric admissions at hospitals nationally were attributed to EV-D68. Outcomes for these children, including the association of EV-D68 with acute flaccid myelitis, remain under investigation. Following the steps of outbreak management is critical to providing optimal patient care and ensuring the health of the public. During the 2014 EV-D68 outbreak, close adherence to outbreak principles led to swift recognition of illness, rapid diagnostic measures, institution of appropriate therapies, and dissemination of information to health care providers and the public. Equally important was the subsequent identification of an increase in acute flaccid myelitis cases against the backdrop of an increase in EV-D68 detections nationally. Future prospective studies are needed to determine the true burden of EV-D68 disease, potential vaccines and therapeutics, and outcomes of children with EV-D68 infection. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  8. Detecting Disease Outbreaks in Mass Gatherings Using Internet Data

    PubMed Central

    Yom-Tov, Elad; Cox, Ingemar J; McKendry, Rachel A

    2014-01-01

    Background Mass gatherings, such as music festivals and religious events, pose a health care challenge because of the risk of transmission of communicable diseases. This is exacerbated by the fact that participants disperse soon after the gathering, potentially spreading disease within their communities. The dispersion of participants also poses a challenge for traditional surveillance methods. The ubiquitous use of the Internet may enable the detection of disease outbreaks through analysis of data generated by users during events and shortly thereafter. Objective The intent of the study was to develop algorithms that can alert to possible outbreaks of communicable diseases from Internet data, specifically Twitter and search engine queries. Methods We extracted all Twitter postings and queries made to the Bing search engine by users who repeatedly mentioned one of nine major music festivals held in the United Kingdom and one religious event (the Hajj in Mecca) during 2012, for a period of 30 days and after each festival. We analyzed these data using three methods, two of which compared words associated with disease symptoms before and after the time of the festival, and one that compared the frequency of these words with those of other users in the United Kingdom in the days following the festivals. Results The data comprised, on average, 7.5 million tweets made by 12,163 users, and 32,143 queries made by 1756 users from each festival. Our methods indicated the statistically significant appearance of a disease symptom in two of the nine festivals. For example, cough was detected at higher than expected levels following the Wakestock festival. Statistically significant agreement (chi-square test, P<.01) between methods and across data sources was found where a statistically significant symptom was detected. Anecdotal evidence suggests that symptoms detected are indeed indicative of a disease that some users attributed to being at the festival. Conclusions Our work shows the feasibility of creating a public health surveillance system for mass gatherings based on Internet data. The use of multiple data sources and analysis methods was found to be advantageous for rejecting false positives. Further studies are required in order to validate our findings with data from public health authorities. PMID:24943128

  9. Detecting disease outbreaks in mass gatherings using Internet data.

    PubMed

    Yom-Tov, Elad; Borsa, Diana; Cox, Ingemar J; McKendry, Rachel A

    2014-06-18

    Mass gatherings, such as music festivals and religious events, pose a health care challenge because of the risk of transmission of communicable diseases. This is exacerbated by the fact that participants disperse soon after the gathering, potentially spreading disease within their communities. The dispersion of participants also poses a challenge for traditional surveillance methods. The ubiquitous use of the Internet may enable the detection of disease outbreaks through analysis of data generated by users during events and shortly thereafter. The intent of the study was to develop algorithms that can alert to possible outbreaks of communicable diseases from Internet data, specifically Twitter and search engine queries. We extracted all Twitter postings and queries made to the Bing search engine by users who repeatedly mentioned one of nine major music festivals held in the United Kingdom and one religious event (the Hajj in Mecca) during 2012, for a period of 30 days and after each festival. We analyzed these data using three methods, two of which compared words associated with disease symptoms before and after the time of the festival, and one that compared the frequency of these words with those of other users in the United Kingdom in the days following the festivals. The data comprised, on average, 7.5 million tweets made by 12,163 users, and 32,143 queries made by 1756 users from each festival. Our methods indicated the statistically significant appearance of a disease symptom in two of the nine festivals. For example, cough was detected at higher than expected levels following the Wakestock festival. Statistically significant agreement (chi-square test, P<.01) between methods and across data sources was found where a statistically significant symptom was detected. Anecdotal evidence suggests that symptoms detected are indeed indicative of a disease that some users attributed to being at the festival. Our work shows the feasibility of creating a public health surveillance system for mass gatherings based on Internet data. The use of multiple data sources and analysis methods was found to be advantageous for rejecting false positives. Further studies are required in order to validate our findings with data from public health authorities.

  10. Pathogenicity and Molecular Characterization of Emerging Porcine Reproductive and Respiratory Syndrome Virus in Vietnam in 2007

    USDA-ARS?s Scientific Manuscript database

    In 2007, Vietnam experienced swine disease outbreaks causing clinical signs similar to the "porcine high fever disease" that occurred in China during 2006. Analysis of diagnostic samples from the disease outbreaks in Vietnam identified porcine reproductive and respiratory syndrome virus (PRRSV) and ...

  11. Historical Compilation and Georeferencing of Dengue and Chikungunya outbreak data for Disease Modeling

    USDA-ARS?s Scientific Manuscript database

    The risk of vector-borne disease spread is increasing due to significant changes and variability in the global climate and increasing global travel and trade. Understanding the relationships between climate variability and disease outbreak patterns are critical to the design and construction of pred...

  12. Genetic characterization of epizootic hemorrhagic disease virus strains isolated from cattle in Israel

    USDA-ARS?s Scientific Manuscript database

    Epizootic hemorrhagic disease virus (EHDV), an Orbivirus not previously reported in Israel, was isolated from Israeli cattle during a “bluetongue like” disease outbreak in 2006. To ascertain the origin of this new virus, three isolates from the outbreak were fully sequenced and compared with availab...

  13. Multiple sclerosis in the Faroe Islands. 8. Notifiable diseases.

    PubMed

    Wallin, M T; Heltberg, A; Kurtzke, J F

    2010-08-01

    To seek evidence for a possible infectious origin of the type 1 epidemic of multiple sclerosis (MS) in the Faroe Islands. This began in 1943 coincident with their British military occupation throughout World War II. Data obtained from the Danish National Health Service were assessed for all notifiable diseases in the Faroe Islands reported from 1900 to 1977. Among 38 disorders, selective increases were found for acute infectious gastroenteritis (AIGE) and paradysentery, with outbreaks in late 1940 and in 1943 shortly after the introduction and later marked influx, respectively, of British troops. Five other infections showed elevated numbers in 1941 and 1942. There is a temporal association of AIGE and paradysentery in the Faroe Islands with the first arrival and later marked augmentation of British forces stationed there during the war. Rises in the incidence of other diseases in 1941-1942 seem more likely a consequence of increased foreign commercial travel by Faroese at that time. (c) 2009 The Authors Journal compilation (c) 2009 Blackwell Munksgaard.

  14. [The journey of Legionella pneumophila from amoebae to macrophage. Reflections on the largest outbreak of legionnaire's disease].

    PubMed

    Segovia Hernández, Manuel

    2005-01-01

    Legionella, the causative agent of legionnaire's disease (LD), can survive and grow in amoebic cells. Free-living amoebae may play a role in the selection of virulence traits and in adaptation to survival in macrophages, and represent an important reservoir of Legionella. These amoebae may act as a Trojan horse bringing hidden bacteria within the human environments. The community outbreak of LD that occurred in Murcia in July 2001, the largest such outbreak ever reported, afforded an unusual opportunity to improve the knowledge of this disease.

  15. Concomitant outbreaks of yellow fever and hepatitis E virus in Darfur States, Sudan, 2012.

    PubMed

    Ahmed, Sarah S; Soghaier, Mohammed A; Mohammed, Sozan; Khogali, Hayat S; Osman, Muntasir M; Abdalla, Abdalla M

    2016-01-31

    Yellow fever (YF) is a vector-borne disease transmitted to humans by infected Aedes mosquitoes, while hepatitis E virus (HEV) is a waterborne disease that is transmitted through the fecal-oral route. Both diseases have very close clinical presentation, namely fever, jaundice, malaise, and dark urine; they differ in severity and outcome. In this cross-sectional, laboratory-based study, an attempt was made to measure the correlation of concomitant YF and HEV infection in Darfur States during the previous YF outbreak in 2012. Results found concomitant outbreaks of YF and HEV at the same time with very weak statistical correlation between the two infections during the outbreak period, with Cramer's V correlation 0.05 and insignificant p value of 0.86. This correlation indicates that clinicians and care providers in tropical areas have to deal with clinical case definitions used for disease surveillance very carefully since prevalence of HEV infection is relatively common and this increases the possibility of misclassification and missing YF cases, particularly initial index cases, in a season or outbreak.

  16. Outbreak of Sudden Death with Acute Encephalitis Syndrome Among Children Associated with Exposure to Lychee Orchards in Northern Bangladesh, 2012.

    PubMed

    Islam, Mohammed Saiful; Sharif, Ahmad Raihan; Sazzad, Hossain M S; Khan, A K M Dawlat; Hasan, Murshid; Akter, Shirina; Rahman, Mahmudur; Luby, Stephen P; Heffelfinger, James D; Gurley, Emily S

    2017-09-01

    Recurrent outbreaks of acute encephalitis syndrome (AES) among children in lychee growing areas in Asia highlight the need to better understand the etiology and the context. We conducted a mixed-methods study to identify risk factors for disease, and behaviors and practices around lychee cultivation in an AES outbreak community in northern Bangladesh in 2012. The outbreak affected 14 children; 13 died. The major symptoms included unconsciousness, convulsion, excessive sweating, and frothy discharge. The median time from illness onset to unconsciousness was 2.5 hours. The outbreak corresponded with lychee harvesting season. Multiple pesticides including some banned in Bangladesh were frequently used in the orchards. Visiting a lychee orchard within 24 hours before onset (age-adjusted odds ratio [aOR] = 11.6 [1.02-109.8]) and 3 days (aOR = 7.2 [1.4-37.6]), and family members working in a lychee orchard (aOR = 7.2 [1.7-29.4]) and visiting any garden while pesticides were being applied (aOR = 4.9 [1.0-19.4]) in 3 days preceding illness onset were associated with illness in nearby village analysis. In neighborhood analysis, visiting an orchard that used pesticides (aOR = 8.4 [1.4-49.9]) within 3 days preceding illness onset was associated with illness. Eating lychees was not associated with illness in the case-control study. The outbreak was linked to lychee orchard exposures where agrochemicals were routinely used, but not to consumption of lychees. Lack of acute specimens was a major limitation. Future studies should target collection of environmental and food samples, acute specimens, and rigorous assessment of community use of pesticides to determine etiology.

  17. Molecular and cellular characterization of a Salmonella enterica serovar Paratyphi a outbreak strain and the human immune response to infection.

    PubMed

    Gal-Mor, Ohad; Suez, Jotham; Elhadad, Dana; Porwollik, Steffen; Leshem, Eyal; Valinsky, Lea; McClelland, Michael; Schwartz, Eliezer; Rahav, Galia

    2012-02-01

    Enteric fever is an invasive life-threatening systemic disease caused by the Salmonella enterica human-adapted serovars Typhi and Paratyphi. Increasing incidence of infections with Salmonella enterica serovar Paratyphi A and the spreading of its antibiotic-resistant derivates pose a significant health concern in some areas of the world. Herein, we describe a molecular and phenotypic characterization of an S. Paratyphi A strain accounted for a recent paratyphoid outbreak in Nepal that affected at least 37 travelers. Pulsed-field gel electrophoresis analysis of the outbreak isolates revealed one genetic clone (pulsotype), confirming a single infecting source. Genetic profiling of the outbreak strain demonstrated the contribution of specific bacteriophages as a prime source of genetic diversity among clinical isolates of S. Paratyphi A. Phenotypic characterization in comparison with the S. Paratyphi A ATCC 9150 reference sequenced strain showed differences in flagellar morphology and increased abilities of the outbreak strain with respect to its motility, invasion into nonphagocytic cells, intracellular multiplication, survival within macrophages, and higher induction of interleukin-8 (IL-8) secreted by host cells. Collectively, these differences suggest an enhanced virulence potential of this strain and demonstrate an interesting phenotypic variation among S. Paratyphi A isolates. In vivo profiling of 16 inflammatory cytokines in patients infected with the outbreak strain revealed a common profile of a remarkable gamma interferon (IFN-γ) induction together with elevated concentrations of tumor necrosis factor alpha (TNF-α), IL-6, IL-8, IL-10, and IL-15, but not IL-12, which was previously demonstrated as elevated in nontyphoidal Salmonella infections. This apparent profile implies a distinct immune response to paratyphoid infections.

  18. Outbreak of Sudden Death with Acute Encephalitis Syndrome Among Children Associated with Exposure to Lychee Orchards in Northern Bangladesh, 2012

    PubMed Central

    Islam, Mohammed Saiful; Sharif, Ahmad Raihan; Sazzad, Hossain M. S.; Khan, A. K. M. Dawlat; Hasan, Murshid; Akter, Shirina; Rahman, Mahmudur; Luby, Stephen P.; Heffelfinger, James D.; Gurley, Emily S.

    2017-01-01

    Abstract. Recurrent outbreaks of acute encephalitis syndrome (AES) among children in lychee growing areas in Asia highlight the need to better understand the etiology and the context. We conducted a mixed-methods study to identify risk factors for disease, and behaviors and practices around lychee cultivation in an AES outbreak community in northern Bangladesh in 2012. The outbreak affected 14 children; 13 died. The major symptoms included unconsciousness, convulsion, excessive sweating, and frothy discharge. The median time from illness onset to unconsciousness was 2.5 hours. The outbreak corresponded with lychee harvesting season. Multiple pesticides including some banned in Bangladesh were frequently used in the orchards. Visiting a lychee orchard within 24 hours before onset (age-adjusted odds ratio [aOR] = 11.6 [1.02–109.8]) and 3 days (aOR = 7.2 [1.4–37.6]), and family members working in a lychee orchard (aOR = 7.2 [1.7–29.4]) and visiting any garden while pesticides were being applied (aOR = 4.9 [1.0–19.4]) in 3 days preceding illness onset were associated with illness in nearby village analysis. In neighborhood analysis, visiting an orchard that used pesticides (aOR = 8.4 [1.4–49.9]) within 3 days preceding illness onset was associated with illness. Eating lychees was not associated with illness in the case–control study. The outbreak was linked to lychee orchard exposures where agrochemicals were routinely used, but not to consumption of lychees. Lack of acute specimens was a major limitation. Future studies should target collection of environmental and food samples, acute specimens, and rigorous assessment of community use of pesticides to determine etiology. PMID:28749763

  19. Laboratory, Environmental, and Epidemiologic Investigation and Regulatory Enforcement Actions in Response to an Outbreak of Salmonella Bredeney Infections Linked to Peanut Butter

    PubMed Central

    Viazis, Stelios; Beal, Jennifer K.; Monahan, Caitlin; Lanier, William A.; Kreil, Katherine R.; Melka, David C.; Boden, William D.; Dion, Jamie L.; Miller, Zachary A.; Nguyen, Thai-An; Gieraltowski, Laura B.; Zink, Donald L.

    2015-01-01

    Background. In September 2012, the Centers for Disease Control and Prevention (CDC), U.S. Food and Drug Administration (FDA), and state and local partners investigated an outbreak of Salmonella enterica serovar Bredeney linked to peanut butter (PB). Methods. A case was defined as infection with the outbreak strain of Salmonella Bredeney between June 1, 2012 and October 31, 2012. Food exposure questionnaires were analyzed by the CDC to determine the food vehicle. The FDA reviewed production information from Retail Chain A's sole supplier of PB, Company A. The PB samples collected from case-patients and Company A were tested for Salmonella. Results. Forty-two case-patients from 20 states were identified. Of 33 case-patients from whom food exposure information was obtained, 25 (76%) shopped at Retail Chain A and 25 (100%) purchased Company A PB. Three state health departments isolated the outbreak strain from opened jars of PB collected from case-patients. The FDA investigators identified multiple deficiencies in current Good Manufacturing Practices (cGMPs) in Company A's manufacturing facility and determined that internal controls were insufficient to prevent shipment of contaminated product. The FDA isolated the outbreak strain of Salmonella Bredeney from implicated product collected at the firm and the environment of the firm's food production facility. Conclusions. Timely laboratory, investigational, and epidemiologic data led to the voluntary recall of PB by Company A. The FDA suspended Company A's food facility registration, prohibiting the firm from introducing food into interstate commerce. This outbreak underscores the need for effective preventive controls, including robust internal environmental monitoring programs, appropriate action in response to contamination findings, and an improved understanding of food safety at the managerial and corporate levels. PMID:26389125

  20. Update on oral Chagas disease outbreaks in Venezuela: epidemiological, clinical and diagnostic approaches

    PubMed Central

    de Noya, Belkisyolé Alarcón; Díaz-Bello, Zoraida; Colmenares, Cecilia; Ruiz-Guevara, Raiza; Mauriello, Luciano; Muñoz-Calderón, Arturo; Noya, Oscar

    2015-01-01

    Orally transmitted Chagas disease has become a matter of concern due to outbreaks reported in four Latin American countries. Although several mechanisms for orally transmitted Chagas disease transmission have been proposed, food and beverages contaminated with whole infected triatomines or their faeces, which contain metacyclic trypomastigotes of Trypanosoma cruzi, seems to be the primary vehicle. In 2007, the first recognised outbreak of orally transmitted Chagas disease occurred in Venezuela and largest recorded outbreak at that time. Since then, 10 outbreaks (four in Caracas) with 249 cases (73.5% children) and 4% mortality have occurred. The absence of contact with the vector and of traditional cutaneous and Romana’s signs, together with a florid spectrum of clinical manifestations during the acute phase, confuse the diagnosis of orally transmitted Chagas disease with other infectious diseases. The simultaneous detection of IgG and IgM by ELISA and the search for parasites in all individuals at risk have been valuable diagnostic tools for detecting acute cases. Follow-up studies regarding the microepidemics primarily affecting children has resulted in 70% infection persistence six years after anti-parasitic treatment. Panstrongylus geniculatus has been the incriminating vector in most cases. As a food-borne disease, this entity requires epidemiological, clinical, diagnostic and therapeutic approaches that differ from those approaches used for traditional direct or cutaneous vector transmission. PMID:25946155

  1. Estimating the risk of communicable diseases aboard cargo ships.

    PubMed

    Schlaich, Clara C; Oldenburg, Marcus; Lamshöft, Maike M

    2009-01-01

    International travel and trade are known to be associated with the risk of spreading communicable diseases across borders. No international surveillance system for infectious diseases on ships exists. Outbreak reports and systematic studies mainly focus on disease activity on cruise ships. The study aims to assess the relevance of communicable disease occurrence on cargo ships. Retrospective analysis of all documented entries to 49 medical log books from seagoing cargo ships under German flag between 2000 and 2008. Incidence rates were calculated per 100 person-years at sea. Case series of acute respiratory illness, influenza-like illness, and infectious gastrointestinal illness affecting more than two persons within 1 successive week were classified as an outbreak. Attack rates were calculated based on number of entries to the medical log book in comparison to the average shipboard population during outbreak periods. During more than 1.5 million person-days of observation, 21% of the visits to the ship's infirmary were due to presumably communicable diseases (45.8 consultations per 100 person-years). As many as 33.9 patients per 100 person-years sought medical attention for acute respiratory symptoms. Of the 68 outbreaks that met predefined criteria, 66 were caused by acute respiratory illness with a subset of 12 outbreaks caused by influenza-like illness. Attack rates ranged between 3 and 10 affected seafarers per ship (12.5&-41.6% of the crew). Two outbreaks of gastrointestinal illness were detected. Respiratory illness is the most common cause of presumably communicable diseases aboard cargo ships and may cause outbreaks of considerable morbidity. Although the validity of the data is limited due to the use of nonprofessional diagnoses, missing or illegible entries, and restriction of the study population to German ships, the results provide guidance to ship owners and to Port Health Authorities to allocate resources and build capacities under International Health Regulations 2005.

  2. Whole genome sequencing analyses of Listeria monocytogenes that persisted in a milkshake machine for a year and caused illnesses in Washington State.

    PubMed

    Li, Zhen; Pérez-Osorio, Ailyn; Wang, Yu; Eckmann, Kaye; Glover, William A; Allard, Marc W; Brown, Eric W; Chen, Yi

    2017-06-15

    In 2015, in addition to a United States multistate outbreak linked to contaminated ice cream, another outbreak linked to ice cream was reported in the Pacific Northwest of the United States. It was a hospital-acquired outbreak linked to milkshakes, made from contaminated ice cream mixes and milkshake maker, served to patients. Here we performed multiple analyses on isolates associated with this outbreak: pulsed-field gel electrophoresis (PFGE), whole genome single nucleotide polymorphism (SNP) analysis, species-specific core genome multilocus sequence typing (cgMLST), lineage-specific cgMLST and whole genome-specific MLST (wgsMLST)/outbreak-specific cgMLST. We also analyzed the prophages and virulence genes. The outbreak isolates belonged to sequence type 1038, clonal complex 101, genetic lineage II. There were no pre-mature stop codons in inlA. Isolates contained Listeria Pathogenicity Island 1 and multiple internalins. PFGE and multiple whole genome sequencing (WGS) analyses all clustered together food, environmental and clinical isolates when compared to outgroup from the same clonal complex, which supported the finding that L. monocytogenes likely persisted in the soft serve ice cream/milkshake maker from November 2014 to November 2015 and caused 3 illnesses, and that the outbreak strain was transmitted between two ice cream production facilities. The whole genome SNP analysis, one of the two species-specific cgMLST, the lineage II-specific cgMLST and the wgsMLST/outbreak-specific cgMLST showed that L. monocytogenes cells persistent in the milkshake maker for a year formed a unique clade inside the outbreak cluster. This clustering was consistent with the cleaning practice after the outbreak was initially recognized in late 2014 and early 2015. Putative prophages were conserved among prophage-containing isolates. The loss of a putative prophage in two isolates resulted in the loss of the AscI restriction site in the prophage, which contributed to their AscI-PFGE banding pattern differences from other isolates. The high resolution of WGS analyses allowed the differentiation of epidemiologically unrelated isolates, as well as the elucidation of the microevolution and persistence of isolates within the scope of one outbreak. We applied a wgsMLST scheme which is essentially the outbreak-specific cgMLST. This scheme can be combined with lineage-specific cgMLST and species-specific cgMLST to maximize the resolution of WGS.

  3. Simulation of between-farm transmission of porcine reproductive and respiratory syndrome virus in Ontario, Canada using the North American Animal Disease Spread Model.

    PubMed

    Thakur, Krishna K; Revie, Crawford W; Hurnik, Daniel; Poljak, Zvonimir; Sanchez, Javier

    2015-03-01

    Porcine reproductive and respiratory syndrome (PRRS), a viral disease of swine, has major economic impacts on the swine industry. The North American Animal Disease Spread Model (NAADSM) is a spatial, stochastic, farm level state-transition modeling framework originally developed to simulate highly contagious and foreign livestock diseases. The objectives of this study were to develop a model to simulate between-farm spread of a homologous strain of PRRS virus in Ontario swine farms via direct (animal movement) and indirect (sharing of trucks between farms) contacts using the NAADSM and to compare the patterns and extent of outbreak under different simulated conditions. A total of 2552 swine farms in Ontario province were allocated to each census division of Ontario and geo-locations of the farms were randomly generated within the agriculture land of each Census Division. Contact rates among different production types were obtained using pig movement information from four regions in Canada. A total of 24 scenarios were developed involving various direct (movement of infected animals) and indirect (pig transportation trucks) contact parameters in combination with alternating the production type of the farm in which the infection was seeded. Outbreaks were simulated for one year with 1000 replications. The median number of farms infected, proportion of farms with multiple outbreaks and time to reach the peak epidemic were used to compare the size, progression and extent of outbreaks. Scenarios involving spread only by direct contact between farms resulted in outbreaks where the median percentage of infected farms ranged from 31.5 to 37% of all farms. In scenarios with both direct and indirect contact, the median percentage of infected farms increased to a range from 41.6 to 48.6%. Furthermore, scenarios with both direct and indirect contact resulted in a 44% increase in median epidemic size when compared to the direct contact scenarios. Incorporation of both animal movements and the sharing of trucks within the model indicated that the effect of direct and indirect contact may be nonlinear on outbreak progression. The increase of 44% in epidemic size when indirect contact, via sharing of trucks, was incorporated into the model highlights the importance of proper biosecurity measures in preventing transmission of the PRRS virus. Simulation of between-farm spread of the PRRS virus in swine farms has highlighted the relative importance of direct and indirect contact and provides important insights regarding the possible patterns and extent of spread of the PRRS virus in a completely susceptible population with herd demographics similar to those found in Ontario, Canada. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A sheeppox outbreak in Morocco: isolation and identification of virus responsible for the new clinical form of disease.

    PubMed

    Zro, Khalil; Zakham, Fathiah; Melloul, Marouane; El Fahime, Elmostafa; Ennaji, Moulay Mustapha

    2014-01-27

    Sheeppoxvirus (SPPV) is a member of the Capripoxvirus genus of the Poxviridae family, which causes significant economic losses in Morocco. The resurgence of the sheeppox disease during 2010 was characterized by an emergence of a classical nodular form for the first time in Morocco. However, little is known about the virus strain responsible for nodular form. In this study, thirty three sheep, from the eastern region of Morocco, clinically infected were examined and dead animals were autopsied.A rapid diagnostic assay for SPPV using different type of clinical samples would be useful for outbreak management. The aim of this work was to isolate the virus strain responsible for nodular form and we identified and compared by phylogenetic analysis the field strain with Moroccan vaccine strain targeting the thymidine kinase (TK) gene and the chemokine analogue receptor of interleukin (IL8) gene. Further, it was important to investigate and validate a real-time PCR using different clinical and post-mortem samples to manage epidemic sheeppox disease. The nodular form of sheeppox disease observed in Morocco was clinically characterized by fever, depression, lacrimation, diarrhea in lambs and nodule. At necropsy, the most affected organ was the lung. The etiological strain was successfully isolated from lung nodule in a dead lamb and was identified by using real-time PCR that has been tested and validated on different types of clinical and post mortem samples from naturally infected animals. Sequence and phylogenetic analysis of TK and IL8 gene showed that there was a very close relationship between field and vaccine strain. They were clustered within other SPPV strains. In the current study, we show for the first time the nodular form of sheeppox in Morocco. We demonstrate a robust real-time PCR-based diagnostic assay to detect the sheeppox virus in multiple sample that can be implemented to efficiently manage the disease outbreak. Our study also offers the prospect for future molecular studies to understand the clinical forms.

  5. Sentinel surveillance for human enterovirus 71 in Sarawak, Malaysia: lessons from the first 7 years.

    PubMed

    Podin, Yuwana; Gias, Edna L M; Ong, Flora; Leong, Yee-Wei; Yee, Siew-Fung; Yusof, Mohd Apandi; Perera, David; Teo, Bibiana; Wee, Thian-Yew; Yao, Sik-Chi; Yao, Sik-King; Kiyu, Andrew; Arif, Mohd Taha; Cardosa, Mary Jane

    2006-07-07

    A major outbreak of human enterovirus 71-associated hand, foot and mouth disease in Sarawak in 1997 marked the beginning of a series of outbreaks in the Asia Pacific region. Some of these outbreaks had unusually high numbers of fatalities and this generated much fear and anxiety in the region. We established a sentinel surveillance programme for hand, foot and mouth disease in Sarawak, Malaysia, in March 1998, and the observations of the first 7 years are described here. Virus isolation, serotyping and genotyping were performed on throat, rectal, vesicle and other swabs. During this period Sarawak had two outbreaks of human enterovirus 71, in 2000 and 2003. The predominant strains circulating in the outbreaks of 1997, 2000 and 2003 were all from genogroup B, but the strains isolated during each outbreak were genetically distinct from each other. Human enterovirus 71 outbreaks occurred in a cyclical pattern every three years and Coxsackievirus A16 co-circulated with human enterovirus 71. Although vesicles were most likely to yield an isolate, this sample was not generally available from most cases and obtaining throat swabs was thus found to be the most efficient way to obtain virological information. Knowledge of the epidemiology of human enterovirus 71 transmission will allow public health personnel to predict when outbreaks might occur and to plan interventions in an effective manner in order to reduce the burden of disease.

  6. An outbreak of Salmonella Typhimurium infections in Denmark, Norway and Sweden, 2008.

    PubMed

    Bruun, T; Sørensen, G; Forshell, L P; Jensen, T; Nygard, K; Kapperud, G; Lindstedt, B A; Berglund, T; Wingstrand, A; Petersen, R F; Müller, L; Kjelsø, C; Ivarsson, S; Hjertqvist, M; Löfdahl, S; Ethelberg, S

    2009-03-12

    In November-December 2008, Norway and Denmark independently identified outbreaks of Salmonella Typhimurium infections characterised in the multiple-locus variable number of tandem repeats analysis (MLVA) by a distinct profile. Outbreak investigations were initiated independently in the two countries. In Denmark, a total of 37 cases were identified, and multiple findings of the outbreak strain in pork and pigs within the same supply chain led to the identification of pork in various forms as the source. In Norway, ten cases were identified, and the outbreak investigation quickly indicated meat bought in Sweden as the probable source and the Swedish authorities were alerted. Investigations in Sweden identified four human cases and two isolates from minced meat with the distinct profile. Subsequent trace-back of the meat showed that it most likely originated from Denmark. Through international alert from Norway on 19 December, it became clear that the Danish and Norwegian outbreak strains were identical and, later on, that the source of the outbreaks in all three countries could be traced back to Danish pork. MLVA was instrumental in linking the outbreaks in the different countries and tracing the source. This outbreak illustrates that good international communication channels, early alerting mechanisms, inter-sectoral collaboration between public health and food safety authorities and harmonised molecular typing tools are important for effective identification and management of cross-border outbreaks. Differences in legal requirements for food safety in neighbouring countries may be a challenge in terms of communication with consumers in areas where cross-border shopping is common.

  7. Cost-Analysis of Seven Nosocomial Outbreaks in an Academic Hospital.

    PubMed

    Dik, Jan-Willem H; Dinkelacker, Ariane G; Vemer, Pepijn; Lo-Ten-Foe, Jerome R; Lokate, Mariëtte; Sinha, Bhanu; Friedrich, Alex W; Postma, Maarten J

    2016-01-01

    Nosocomial outbreaks, especially with (multi-)resistant microorganisms, are a major problem for health care institutions. They can cause morbidity and mortality for patients and controlling these costs substantial amounts of funds and resources. However, how much is unclear. This study sets out to provide a comparable overview of the costs of multiple outbreaks in a single academic hospital in the Netherlands. Based on interviews with the involved staff, multiple databases and stored records from the Infection Prevention Division all actions undertaken, extra staff employment, use of resources, bed-occupancy rates, and other miscellaneous cost drivers during different outbreaks were scored and quantified into Euros. This led to total costs per outbreak and an estimated average cost per positive patient per outbreak day. Seven outbreaks that occurred between 2012 and 2014 in the hospital were evaluated. Total costs for the hospital ranged between €10,778 and €356,754. Costs per positive patient per outbreak day, ranged between €10 and €1,369 (95% CI: €49-€1,042), with a mean of €546 and a median of €519. Majority of the costs (50%) were made because of closed beds. This analysis is the first to give a comparable overview of various outbreaks, caused by different microorganisms, in the same hospital and all analyzed with the same method. It shows a large variation within the average costs due to different factors (e.g. closure of wards, type of ward). All outbreaks however cost considerable amounts of efforts and money (up to €356,754), including missed revenue and control measures.

  8. A review of outbreaks of infectious disease in schools in England and Wales 1979-88.

    PubMed Central

    Joseph, C.; Noah, N.; White, J.; Hoskins, T.

    1990-01-01

    In this review of 66 outbreaks of infectious disease in schools in England and Wales between 1979-88, 27 were reported from independent and 39 from maintained schools. Altogether, over 8000 children and nearly 500 adults were affected. Most of the outbreaks investigated were due to gastrointestinal infections which affected about 5000 children: respiratory infections affected a further 2000 children. Fifty-two children and seven adults were admitted to hospital and one child with measles died. Vaccination policies and use of immunoglobulin for control and prevention of outbreaks in schools have been discussed. PMID:2209745

  9. International outbreak of multiple Salmonella serotype infections linked to sprouted chia seed powder - USA and Canada, 2013-2014.

    PubMed

    Harvey, R R; Heiman Marshall, K E; Burnworth, L; Hamel, M; Tataryn, J; Cutler, J; Meghnath, K; Wellman, A; Irvin, K; Isaac, L; Chau, K; Locas, A; Kohl, J; Huth, P A; Nicholas, D; Traphagen, E; Soto, K; Mank, L; Holmes-Talbot, K; Needham, M; Barnes, A; Adcock, B; Honish, L; Chui, L; Taylor, M; Gaulin, C; Bekal, S; Warshawsky, B; Hobbs, L; Tschetter, L R; Surin, A; Lance, S; Wise, M E; Williams, I; Gieraltowski, L

    2017-06-01

    Salmonella is a leading cause of bacterial foodborne illness. We report the collaborative investigative efforts of US and Canadian public health officials during the 2013-2014 international outbreak of multiple Salmonella serotype infections linked to sprouted chia seed powder. The investigation included open-ended interviews of ill persons, traceback, product testing, facility inspections, and trace forward. Ninety-four persons infected with outbreak strains from 16 states and four provinces were identified; 21% were hospitalized and none died. Fifty-four (96%) of 56 persons who consumed chia seed powder, reported 13 different brands that traced back to a single Canadian firm, distributed by four US and eight Canadian companies. Laboratory testing yielded outbreak strains from leftover and intact product. Contaminated product was recalled. Although chia seed powder is a novel outbreak vehicle, sprouted seeds are recognized as an important cause of foodborne illness; firms should follow available guidance to reduce the risk of bacterial contamination during sprouting.

  10. Epidemiological characterization of lumpy skin disease outbreaks in Russia in 2016.

    PubMed

    Sprygin, A; Artyuchova, E; Babin, Y; Prutnikov, P; Kostrova, E; Byadovskaya, O; Kononov, A

    2018-05-10

    In 2015, the lumpy skin disease virus spread throughout the Russian Federation. Following a modified stamping-out campaign, the disease re-emerged with a greater incidence across 16 regions of Southern and Central Russia. A total of 313 outbreaks were reported to OIE. The highest outbreak frequency was observed in the republics of Chechnya (108), Kalmykiya (57), and Ingushetiya (35). The disease cases predominantly occurred in June and July 2016, starting from May to December; however, no association between outbreaks and altitudes was identified (p > .05). Samples taken from infected cattle were subjected to PCR analysis, which identified the genome of the virus most frequently in skin nodules (78%), nasal swabs (23.4%), blood (13%) and sera (14.5%). Interestingly, LSDV genome was occasionally identified in lung and milk samples. Based on the PRO30 sequence analysis, lumpy skin disease virus (LSDV) strains circulating in Russia were all identical and fell within the cluster of field LSDV found worldwide. © 2018 Blackwell Verlag GmbH.

  11. Modelling the propagation of social response during a disease outbreak.

    PubMed

    Fast, Shannon M; González, Marta C; Wilson, James M; Markuzon, Natasha

    2015-03-06

    Epidemic trajectories and associated social responses vary widely between populations, with severe reactions sometimes observed. When confronted with fatal or novel pathogens, people exhibit a variety of behaviours from anxiety to hoarding of medical supplies, overwhelming medical infrastructure and rioting. We developed a coupled network approach to understanding and predicting social response. We couple the disease spread and panic spread processes and model them through local interactions between agents. The social contagion process depends on the prevalence of the disease, its perceived risk and a global media signal. We verify the model by analysing the spread of disease and social response during the 2009 H1N1 outbreak in Mexico City and 2003 severe acute respiratory syndrome and 2009 H1N1 outbreaks in Hong Kong, accurately predicting population-level behaviour. This kind of empirically validated model is critical to exploring strategies for public health intervention, increasing our ability to anticipate the response to infectious disease outbreaks. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Modelling the propagation of social response during a disease outbreak

    PubMed Central

    Fast, Shannon M.; González, Marta C.; Wilson, James M.; Markuzon, Natasha

    2015-01-01

    Epidemic trajectories and associated social responses vary widely between populations, with severe reactions sometimes observed. When confronted with fatal or novel pathogens, people exhibit a variety of behaviours from anxiety to hoarding of medical supplies, overwhelming medical infrastructure and rioting. We developed a coupled network approach to understanding and predicting social response. We couple the disease spread and panic spread processes and model them through local interactions between agents. The social contagion process depends on the prevalence of the disease, its perceived risk and a global media signal. We verify the model by analysing the spread of disease and social response during the 2009 H1N1 outbreak in Mexico City and 2003 severe acute respiratory syndrome and 2009 H1N1 outbreaks in Hong Kong, accurately predicting population-level behaviour. This kind of empirically validated model is critical to exploring strategies for public health intervention, increasing our ability to anticipate the response to infectious disease outbreaks. PMID:25589575

  13. Update on Multistate Outbreak of Fungal Infections Associated with Contaminated Methylprednisolone Injections, 2012-2014.

    PubMed

    McCotter, Orion Z; Smith, Rachel M; Westercamp, Mathew; Kerkering, Thomas M; Malani, Anurag N; Latham, Robert; Peglow, Sheree L; Mody, Rajal K; Pappas, Peter G; Chiller, Tom M

    2015-10-30

    During September 2012, CDC, in collaboration with state and local health departments and the Food and Drug Administration (FDA), investigated a multistate outbreak of fungal meningitis and other infections caused by injections of contaminated methylprednisolone acetate solution (MPA). After this unprecedented outbreak, scientists in the CDC Mycotic Diseases Branch, along with infectious diseases specialists who cared for patients from the outbreak, clinical experts, and public health officials from affected states, have continued to monitor the recovery of affected patients. A long-term follow-up study involving these patients was initiated and is being conducted by the Mycoses Study Group Education and Research Consortium (MSGERC). This update summarizes subsequent information about the current state of the outbreak.

  14. Forecasting high-priority infectious disease surveillance regions: a socioeconomic model.

    PubMed

    Chan, Emily H; Scales, David A; Brewer, Timothy F; Madoff, Lawrence C; Pollack, Marjorie P; Hoen, Anne G; Choden, Tenzin; Brownstein, John S

    2013-02-01

    Few researchers have assessed the relationships between socioeconomic inequality and infectious disease outbreaks at the population level globally. We use a socioeconomic model to forecast national annual rates of infectious disease outbreaks. We constructed a multivariate mixed-effects Poisson model of the number of times a given country was the origin of an outbreak in a given year. The dataset included 389 outbreaks of international concern reported in the World Health Organization's Disease Outbreak News from 1996 to 2008. The initial full model included 9 socioeconomic variables related to education, poverty, population health, urbanization, health infrastructure, gender equality, communication, transportation, and democracy, and 1 composite index. Population, latitude, and elevation were included as potential confounders. The initial model was pared down to a final model by a backwards elimination procedure. The dependent and independent variables were lagged by 2 years to allow for forecasting future rates. Among the socioeconomic variables tested, the final model included child measles immunization rate and telephone line density. The Democratic Republic of Congo, China, and Brazil were predicted to be at the highest risk for outbreaks in 2010, and Colombia and Indonesia were predicted to have the highest percentage of increase in their risk compared to their average over 1996-2008. Understanding socioeconomic factors could help improve the understanding of outbreak risk. The inclusion of the measles immunization variable suggests that there is a fundamental basis in ensuring adequate public health capacity. Increased vigilance and expanding public health capacity should be prioritized in the projected high-risk regions.

  15. A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring.

    PubMed

    Takahashi, Kunihiko; Kulldorff, Martin; Tango, Toshiro; Yih, Katherine

    2008-04-11

    Early detection of disease outbreaks enables public health officials to implement disease control and prevention measures at the earliest possible time. A time periodic geographical disease surveillance system based on a cylindrical space-time scan statistic has been used extensively for disease surveillance along with the SaTScan software. In the purely spatial setting, many different methods have been proposed to detect spatial disease clusters. In particular, some spatial scan statistics are aimed at detecting irregularly shaped clusters which may not be detected by the circular spatial scan statistic. Based on the flexible purely spatial scan statistic, we propose a flexibly shaped space-time scan statistic for early detection of disease outbreaks. The performance of the proposed space-time scan statistic is compared with that of the cylindrical scan statistic using benchmark data. In order to compare their performances, we have developed a space-time power distribution by extending the purely spatial bivariate power distribution. Daily syndromic surveillance data in Massachusetts, USA, are used to illustrate the proposed test statistic. The flexible space-time scan statistic is well suited for detecting and monitoring disease outbreaks in irregularly shaped areas.

  16. African Swine Fever in Uganda: Qualitative Evaluation of Three Surveillance Methods with Implications for Other Resource-Poor Settings.

    PubMed

    Chenais, Erika; Sternberg-Lewerin, Susanna; Boqvist, Sofia; Emanuelson, Ulf; Aliro, Tonny; Tejler, Emma; Cocca, Giampaolo; Masembe, Charles; Ståhl, Karl

    2015-01-01

    Animal diseases impact negatively on households and on national economies. In low-income countries, this pertains especially to socio-economic effects on household level. To control animal diseases and mitigate their impact, it is necessary to understand the epidemiology of the disease in its local context. Such understanding, gained through disease surveillance, is often lacking in resource-poor settings. Alternative surveillance methods have been developed to overcome some of the hurdles obstructing surveillance. The objective of this study was to evaluate and qualitatively compare three methods for surveillance of acute infectious diseases using African swine fever in northern Uganda as an example. Report-driven outbreak investigations, participatory rural appraisals (PRAs), and a household survey using a smartphone application were evaluated. All three methods had good disease-detecting capacity, and each of them detected many more outbreaks compared to those reported to the World Organization for Animal Health during the same time period. Apparent mortality rates were similar for the three methods although highest for the report-driven outbreak investigations, followed by the PRAs, and then the household survey. The three methods have different characteristics and the method of choice will depend on the surveillance objective. The optimal situation might be achieved by a combination of the methods: outbreak detection via smartphone-based real-time surveillance, outbreak investigation for collection of biological samples, and a PRA for a better understanding of the epidemiology of the specific outbreak. All three methods require initial investments and continuous efforts. The sustainability of the surveillance system should, therefore, be carefully evaluated before making such investments.

  17. Software to Facilitate Remote Sensing Data Access for Disease Early Warning Systems

    PubMed Central

    Liu, Yi; Hu, Jiameng; Snell-Feikema, Isaiah; VanBemmel, Michael S.; Lamsal, Aashis; Wimberly, Michael C.

    2015-01-01

    Satellite remote sensing produces an abundance of environmental data that can be used in the study of human health. To support the development of early warning systems for mosquito-borne diseases, we developed an open-source, client based software application to enable the Epidemiological Applications of Spatial Technologies (EASTWeb). Two major design decisions were full automation of the discovery, retrieval and processing of remote sensing data from multiple sources, and making the system easily modifiable in response to changes in data availability and user needs. Key innovations that helped to achieve these goals were the implementation of a software framework for data downloading and the design of a scheduler that tracks the complex dependencies among multiple data processing tasks and makes the system resilient to external errors. EASTWeb has been successfully applied to support forecasting of West Nile virus outbreaks in the United States and malaria epidemics in the Ethiopian highlands. PMID:26644779

  18. Development of an Immunochromatography Assay (QuickNavi-Ebola) to Detect Multiple Species of Ebolaviruses

    PubMed Central

    Yoshida, Reiko; Muramatsu, Shino; Akita, Hiroshi; Saito, Yuji; Kuwahara, Miwa; Kato, Daisuke; Changula, Katendi; Miyamoto, Hiroko; Kajihara, Masahiro; Manzoor, Rashid; Furuyama, Wakako; Marzi, Andrea; Feldmann, Heinz; Mweene, Aaron; Masumu, Justin; Kapeteshi, Jimmy; Muyembe-Tamfum, Jean-Jacques; Takada, Ayato

    2016-01-01

    The latest outbreak of Ebola virus disease (EVD) in West Africa has highlighted the urgent need for the development of rapid and reliable diagnostic assays. We used monoclonal antibodies specific to the ebolavirus nucleoprotein to develop an immunochromatography (IC) assay (QuickNavi-Ebola) for rapid diagnosis of EVD. The IC assay was first evaluated with tissue culture supernatants of infected Vero E6 cells and found to be capable of detecting 103–104 focus-forming units/mL of ebolaviruses. Using serum samples from experimentally infected nonhuman primates, we confirmed that the assay could detect the viral antigen shortly after disease onset. It was also noted that multiple species of ebolaviruses could be detected by the IC assay. Owing to the simplicity of the assay procedure and absence of requirements for special equipment and training, QuickNavi-Ebola is expected to be a useful tool for rapid diagnosis of EVD. PMID:27462094

  19. Are staff management practices and inspection risk ratings associated with foodborne disease outbreaks in the catering industry in England and Wales?

    PubMed

    Jones, Sarah L; Parry, Sharon M; O'Brien, Sarah J; Palmer, Stephen R

    2008-03-01

    Despite structured enforcement of food hygiene requirements known to prevent foodborne disease outbreaks, catering businesses continue to be the most common setting for outbreaks in the United Kingdom. In a matched case control study of catering businesses, 148 businesses associated with outbreaks were compared with 148 control businesses. Hazard analysis critical control point systems and/or formal food hygiene training qualifications were not protective. Food hygiene inspection scores were not useful in predicting which catering businesses were associated with outbreaks. Businesses associated with outbreaks were more likely to be larger small and medium-sized enterprises (SMEs) or to serve Chinese cuisine and less likely to have the owner or manager working in the kitchen, but when size of the SME was taken into account these two differences were no longer significant. In larger businesses, case businesses were more likely to be hotels and were more commonly associated with viral foodborne outbreaks, but there was no explanation within the data for this association.

  20. Bio-ALIRT biosurveillance detection algorithm evaluation.

    PubMed

    Siegrist, David; Pavlin, J

    2004-09-24

    Early detection of disease outbreaks by a medical biosurveillance system relies on two major components: 1) the contribution of early and reliable data sources and 2) the sensitivity, specificity, and timeliness of biosurveillance detection algorithms. This paper describes an effort to assess leading detection algorithms by arranging a common challenge problem and providing a common data set. The objectives of this study were to determine whether automated detection algorithms can reliably and quickly identify the onset of natural disease outbreaks that are surrogates for possible terrorist pathogen releases, and do so at acceptable false-alert rates (e.g., once every 2-6 weeks). Historic de-identified data were obtained from five metropolitan areas over 23 months; these data included International Classification of Diseases, Ninth Revision (ICD-9) codes related to respiratory and gastrointestinal illness syndromes. An outbreak detection group identified and labeled two natural disease outbreaks in these data and provided them to analysts for training of detection algorithms. All outbreaks in the remaining test data were identified but not revealed to the detection groups until after their analyses. The algorithms established a probability of outbreak for each day's counts. The probability of outbreak was assessed as an "actual" alert for different false-alert rates. The best algorithms were able to detect all of the outbreaks at false-alert rates of one every 2-6 weeks. They were often able to detect for the same day human investigators had identified as the true start of the outbreak. Because minimal data exists for an actual biologic attack, determining how quickly an algorithm might detect such an attack is difficult. However, application of these algorithms in combination with other data-analysis methods to historic outbreak data indicates that biosurveillance techniques for analyzing syndrome counts can rapidly detect seasonal respiratory and gastrointestinal illness outbreaks. Further research is needed to assess the value of electronic data sources for predictive detection. In addition, simulations need to be developed and implemented to better characterize the size and type of biologic attack that can be detected by current methods by challenging them under different projected operational conditions.

  1. Measles outbreak response decision-making under uncertainty: a retrospective analysis.

    PubMed

    Fonnesbeck, Christopher J; Shea, Katriona; Carran, Spencer; Cassio de Moraes, Jose; Gregory, Christopher; Goodson, James L; Ferrari, Matthew J

    2018-03-01

    Resurgent outbreaks of vaccine-preventable diseases that have previously been controlled or eliminated have been observed in many settings. Reactive vaccination campaigns may successfully control outbreaks but must necessarily be implemented in the face of considerable uncertainty. Real-time surveillance may provide critical information about at-risk population and optimal vaccination targets, but may itself be limited by the specificity of disease confirmation. We propose an integrated modelling approach that synthesizes historical demographic and vaccination data with real-time outbreak surveillance via a dynamic transmission model and an age-specific disease confirmation model. We apply this framework to data from the 1996-1997 measles outbreak in São Paulo, Brazil. To simulate the information available to decision-makers, we truncated the surveillance data to what would have been available at 1 or 2 months prior to the realized interventions. We use the model, fitted to real-time observations, to evaluate the likelihood that candidate age-targeted interventions could control the outbreak. Using only data available prior to the interventions, we estimate that a significant excess of susceptible adults would prevent child-targeted campaigns from controlling the outbreak and that failing to account for age-specific confirmation rates would underestimate the importance of adult-targeted vaccination. © 2018 The Author(s).

  2. Comparison of sexual mixing patterns for syphilis in endemic and outbreak settings.

    PubMed

    Doherty, Irene A; Adimora, Adaora A; Muth, Stephen Q; Serre, Marc L; Leone, Peter A; Miller, William C

    2011-05-01

    In a largely rural region of North Carolina during 1998-2002, outbreaks of heterosexually transmitted syphilis occurred, tied to crack cocaine use and exchange of sex for drugs and money. Sexual partnership mixing patterns are an important characteristic of sexual networks that relate to transmission dynamics of sexually transmitted infections (STIs). Using contact tracing data collected by disease intervention specialists, we estimated Newman assortativity coefficients and compared values in counties experiencing syphilis outbreaks to nonoutbreak counties, with respect to race/ethnicity, race/ethnicity and age, and the cases' number of social/sexual contacts, infected contacts, sex partners, and infected sex partners, and syphilis disease stage (primary, secondary, early latent). Individuals in the outbreak counties had more contacts and mixing by the number of sex partners was disassortative in outbreak counties and assortative nonoutbreak counties. Although mixing by syphilis disease stage was minimally assortative in outbreak counties, it was disassortative in nonoutbreak areas. Partnerships were relatively discordant by age, especially among older white men, who often chose considerably younger female partners. Whether assortative mixing exacerbates or attenuates the reach of STIs into different populations depends on the characteristic/attribute and epidemiologic phase. Examination of sexual partnership characteristics and mixing patterns offers insights into the growth of STI outbreaks that complement other research methods.

  3. Fine-temporal forecasting of outbreak probability and severity: Ross River virus in Western Australia.

    PubMed

    Koolhof, I S; Bettiol, S; Carver, S

    2017-10-01

    Health warnings of mosquito-borne disease risk require forecasts that are accurate at fine-temporal resolutions (weekly scales); however, most forecasting is coarse (monthly). We use environmental and Ross River virus (RRV) surveillance to predict weekly outbreak probabilities and incidence spanning tropical, semi-arid, and Mediterranean regions of Western Australia (1991-2014). Hurdle and linear models were used to predict outbreak probabilities and incidence respectively, using time-lagged environmental variables. Forecast accuracy was assessed by model fit and cross-validation. Residual RRV notification data were also examined against mitigation expenditure for one site, Mandurah 2007-2014. Models were predictive of RRV activity, except at one site (Capel). Minimum temperature was an important predictor of RRV outbreaks and incidence at all predicted sites. Precipitation was more likely to cause outbreaks and greater incidence among tropical and semi-arid sites. While variable, mitigation expenditure coincided positively with increased RRV incidence (r 2 = 0·21). Our research demonstrates capacity to accurately predict mosquito-borne disease outbreaks and incidence at fine-temporal resolutions. We apply our findings, developing a user-friendly tool enabling managers to easily adopt this research to forecast region-specific RRV outbreaks and incidence. Approaches here may be of value to fine-scale forecasting of RRV in other areas of Australia, and other mosquito-borne diseases.

  4. SURVEILLANCE FOR WATERBORNE-DISEASE OUTBREAKS-UNITED STATES, 1997-1998

    EPA Science Inventory

    PROBLEM/CONDITION: Since 1971, CDC and the U.S. Environmental Protection Agency (EPA) have maintained a collaborative surveillance system for collecting and periodically reporting data relating to occurrences and causes of waterborne-disease outbreaks (WBDOs). REPORTING PERIOD CO...

  5. Impact of Network Activity on the Spread of Infectious Diseases through the German Pig Trade Network.

    PubMed

    Lebl, Karin; Lentz, Hartmut H K; Pinior, Beate; Selhorst, Thomas

    2016-01-01

    The trade of livestock is an important and growing economic sector, but it is also a major factor in the spread of diseases. The spreading of diseases in a trade network is likely to be influenced by how often existing trade connections are active. The activity α is defined as the mean frequency of occurrences of existing trade links, thus 0 < α ≤ 1. The observed German pig trade network had an activity of α = 0.11, thus each existing trade connection between two farms was, on average, active at about 10% of the time during the observation period 2008-2009. The aim of this study is to analyze how changes in the activity level of the German pig trade network influence the probability of disease outbreaks, size, and duration of epidemics for different disease transmission probabilities. Thus, we want to investigate the question, whether it makes a difference for a hypothetical spread of an animal disease to transport many animals at the same time or few animals at many times. A SIR model was used to simulate the spread of a disease within the German pig trade network. Our results show that for transmission probabilities <1, the outbreak probability increases in the case of a decreased frequency of animal transports, peaking range of α from 0.05 to 0.1. However, for the final outbreak size, we find that a threshold exists such that finite outbreaks occur only above a critical value of α, which is ~0.1, and therefore in proximity of the observed activity level. Thus, although the outbreak probability increased when decreasing α, these outbreaks affect only a small number of farms. The duration of the epidemic peaks at an activity level in the range of α = 0.2-0.3. Additionally, the results of our simulations show that even small changes in the activity level of the German pig trade network would have dramatic effects on outbreak probability, outbreak size, and epidemic duration. Thus, we can conclude and recommend that the network activity is an important aspect, which should be taken into account when modeling the spread of diseases within trade networks.

  6. Unprecedented Disease-Related Coral Mortality in Southeastern Florida

    NASA Astrophysics Data System (ADS)

    Precht, William F.; Gintert, Brooke E.; Robbart, Martha L.; Fura, Ryan; van Woesik, Robert

    2016-08-01

    Anomalously high water temperatures, associated with climate change, are increasing the global prevalence of coral bleaching, coral diseases, and coral-mortality events. Coral bleaching and disease outbreaks are often inter-related phenomena, since many coral diseases are a consequence of opportunistic pathogens that further compromise thermally stressed colonies. Yet, most coral diseases have low prevalence (<5%), and are not considered contagious. By contrast, we document the impact of an extremely high-prevalence outbreak (61%) of white-plague disease at 14 sites off southeastern Florida. White-plague disease was observed near Virginia Key, Florida, in September 2014, and after 12 months had spread 100 km north and 30 km south. The disease outbreak directly followed a high temperature coral-bleaching event and affected at least 13 coral species. Eusmilia fastigiata, Meandrina meandrites, and Dichocoenia stokesi were the most heavily impacted coral species, and were reduced to <3% of their initial population densities. A number of other coral species, including Colpophyllia natans, Pseudodiploria strigosa, Diploria labyrinthiformis, and Orbicella annularis were reduced to <25% of their initial densities. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this disease outbreak is arguably one of the most lethal ever recorded on a contemporary coral reef.

  7. Unprecedented Disease-Related Coral Mortality in Southeastern Florida.

    PubMed

    Precht, William F; Gintert, Brooke E; Robbart, Martha L; Fura, Ryan; van Woesik, Robert

    2016-08-10

    Anomalously high water temperatures, associated with climate change, are increasing the global prevalence of coral bleaching, coral diseases, and coral-mortality events. Coral bleaching and disease outbreaks are often inter-related phenomena, since many coral diseases are a consequence of opportunistic pathogens that further compromise thermally stressed colonies. Yet, most coral diseases have low prevalence (<5%), and are not considered contagious. By contrast, we document the impact of an extremely high-prevalence outbreak (61%) of white-plague disease at 14 sites off southeastern Florida. White-plague disease was observed near Virginia Key, Florida, in September 2014, and after 12 months had spread 100 km north and 30 km south. The disease outbreak directly followed a high temperature coral-bleaching event and affected at least 13 coral species. Eusmilia fastigiata, Meandrina meandrites, and Dichocoenia stokesi were the most heavily impacted coral species, and were reduced to <3% of their initial population densities. A number of other coral species, including Colpophyllia natans, Pseudodiploria strigosa, Diploria labyrinthiformis, and Orbicella annularis were reduced to <25% of their initial densities. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this disease outbreak is arguably one of the most lethal ever recorded on a contemporary coral reef.

  8. Legionnaires' Disease Outbreak Caused by Endemic Strain of Legionella pneumophila, New York, New York, USA, 2015.

    PubMed

    Lapierre, Pascal; Nazarian, Elizabeth; Zhu, Yan; Wroblewski, Danielle; Saylors, Amy; Passaretti, Teresa; Hughes, Scott; Tran, Anthony; Lin, Ying; Kornblum, John; Morrison, Shatavia S; Mercante, Jeffrey W; Fitzhenry, Robert; Weiss, Don; Raphael, Brian H; Varma, Jay K; Zucker, Howard A; Rakeman, Jennifer L; Musser, Kimberlee A

    2017-11-01

    During the summer of 2015, New York, New York, USA, had one of the largest and deadliest outbreaks of Legionnaires' disease in the history of the United States. A total of 138 cases and 16 deaths were linked to a single cooling tower in the South Bronx. Analysis of environmental samples and clinical isolates showed that sporadic cases of legionellosis before, during, and after the outbreak could be traced to a slowly evolving, single-ancestor strain. Detection of an ostensibly virulent Legionella strain endemic to the Bronx community suggests potential risk for future cases of legionellosis in the area. The genetic homogeneity of the Legionella population in this area might complicate investigations and interpretations of future outbreaks of Legionnaires' disease.

  9. Legionnaires’ Disease Outbreak Caused by Endemic Strain of Legionella pneumophila, New York, New York, USA, 2015

    PubMed Central

    Nazarian, Elizabeth; Zhu, Yan; Wroblewski, Danielle; Saylors, Amy; Passaretti, Teresa; Hughes, Scott; Tran, Anthony; Lin, Ying; Kornblum, John; Morrison, Shatavia S.; Mercante, Jeffrey W.; Fitzhenry, Robert; Weiss, Don; Raphael, Brian H.; Varma, Jay K.; Zucker, Howard A.; Rakeman, Jennifer L.; Musser, Kimberlee A.

    2017-01-01

    During the summer of 2015, New York, New York, USA, had one of the largest and deadliest outbreaks of Legionnaires’ disease in the history of the United States. A total of 138 cases and 16 deaths were linked to a single cooling tower in the South Bronx. Analysis of environmental samples and clinical isolates showed that sporadic cases of legionellosis before, during, and after the outbreak could be traced to a slowly evolving, single-ancestor strain. Detection of an ostensibly virulent Legionella strain endemic to the Bronx community suggests potential risk for future cases of legionellosis in the area. The genetic homogeneity of the Legionella population in this area might complicate investigations and interpretations of future outbreaks of Legionnaires’ disease. PMID:29047425

  10. The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina; Santini, Monia; Hayman, David T. S.; D'Odorico, Paolo

    2017-02-01

    Tropical forests are undergoing land use change in many regions of the world, including the African continent. Human populations living close to forest margins fragmented and disturbed by deforestation may be particularly exposed to zoonotic infections because of the higher likelihood for humans to be in contact with disease reservoirs. Quantitative analysis of the nexus between deforestation and the emergence of Ebola virus disease (EVD), however, is still missing. Here we use land cover change data in conjunction with EVD outbreak records to investigate the association between recent (2004-2014) outbreaks in West and Central Africa, and patterns of land use change in the region. We show how in these EVD outbreaks the index cases in humans (i.e. spillover from wildlife reservoirs) occurred mostly in hotspots of forest fragmentation.

  11. Evolution of Cocirculating Varicella-Zoster Virus Genotypes during a Chickenpox Outbreak in Guinea-Bissau

    PubMed Central

    Gray, Eleanor R.; Kundu, Samit; Cooray, Samantha; Poulsen, Anja; Aaby, Peter; Breuer, Judith

    2014-01-01

    ABSTRACT Varicella-zoster virus (VZV), a double-stranded DNA alphaherpesvirus, is associated with seasonal outbreaks of varicella in nonimmunized populations. Little is known about whether these outbreaks are associated with a single or multiple viral genotypes and whether new mutations rapidly accumulate during transmission. Here, we take advantage of a well-characterized population cohort in Guinea-Bissau and produce a unique set of 23 full-length genome sequences, collected over 7 months from eight households. Comparative sequence analysis reveals that four distinct genotypes cocirculated among the population, three of which were present during the first week of the outbreak, although no patients were coinfected, which indicates that exposure to infectious virus from multiple sources is common during VZV outbreaks. Transmission of VZV was associated with length polymorphisms in the R1 repeat region and the origin of DNA replication. In two cases, these were associated with the formation of distinct lineages and point to the possible coevolution of these loci, despite the lack of any known functional link in VZV or related herpesviruses. We show that these and all other sequenced clade 5 viruses possess a distinct R1 repeat motif that increases the acidity of an ORF11p protein domain and postulate that this has either arisen or been lost following divergence of the major clades. Thus, sequencing of whole VZV genomes collected during an outbreak has provided novel insights into VZV biology, transmission patterns, and (recent) natural history. IMPORTANCE VZV is a highly infectious virus and the causative agent of chickenpox and shingles, the latter being particularly associated with the risk of painful complications. Seasonal outbreaks of chickenpox are very common among young children, yet little is known about the dynamics of the virus during person-to-person to transmission or whether multiple distinct viruses seed and/or cocirculate during an outbreak. In this study, we have sequenced chickenpox viruses from an outbreak in Guinea-Bissau that are supported by detailed epidemiological data. Our data show that multiple different virus strains seeded and were maintained throughout the 6-month outbreak period and that viruses transmitted between individuals accumulated new mutations in specific genomic regions. Of particular interest is the potential coevolution of two distinct parts of the genomes and our calculations of the rate of viral mutation, both of which increase our understanding of how VZV evolves over short periods of time in human populations. PMID:25275123

  12. Evolution of cocirculating varicella-zoster virus genotypes during a chickenpox outbreak in Guinea-Bissau.

    PubMed

    Depledge, Daniel P; Gray, Eleanor R; Kundu, Samit; Cooray, Samantha; Poulsen, Anja; Aaby, Peter; Breuer, Judith

    2014-12-01

    Varicella-zoster virus (VZV), a double-stranded DNA alphaherpesvirus, is associated with seasonal outbreaks of varicella in nonimmunized populations. Little is known about whether these outbreaks are associated with a single or multiple viral genotypes and whether new mutations rapidly accumulate during transmission. Here, we take advantage of a well-characterized population cohort in Guinea-Bissau and produce a unique set of 23 full-length genome sequences, collected over 7 months from eight households. Comparative sequence analysis reveals that four distinct genotypes cocirculated among the population, three of which were present during the first week of the outbreak, although no patients were coinfected, which indicates that exposure to infectious virus from multiple sources is common during VZV outbreaks. Transmission of VZV was associated with length polymorphisms in the R1 repeat region and the origin of DNA replication. In two cases, these were associated with the formation of distinct lineages and point to the possible coevolution of these loci, despite the lack of any known functional link in VZV or related herpesviruses. We show that these and all other sequenced clade 5 viruses possess a distinct R1 repeat motif that increases the acidity of an ORF11p protein domain and postulate that this has either arisen or been lost following divergence of the major clades. Thus, sequencing of whole VZV genomes collected during an outbreak has provided novel insights into VZV biology, transmission patterns, and (recent) natural history. VZV is a highly infectious virus and the causative agent of chickenpox and shingles, the latter being particularly associated with the risk of painful complications. Seasonal outbreaks of chickenpox are very common among young children, yet little is known about the dynamics of the virus during person-to-person to transmission or whether multiple distinct viruses seed and/or cocirculate during an outbreak. In this study, we have sequenced chickenpox viruses from an outbreak in Guinea-Bissau that are supported by detailed epidemiological data. Our data show that multiple different virus strains seeded and were maintained throughout the 6-month outbreak period and that viruses transmitted between individuals accumulated new mutations in specific genomic regions. Of particular interest is the potential coevolution of two distinct parts of the genomes and our calculations of the rate of viral mutation, both of which increase our understanding of how VZV evolves over short periods of time in human populations. Copyright © 2014 Depledge et al.

  13. Infectious respiratory disease outbreaks and pregnancy: occupational health and safety concerns of Canadian nurses.

    PubMed

    Phillips, Karen P; O'Sullivan, Tracey L; Dow, Darcie; Amaratunga, Carol A

    2011-04-01

    This paper is a report of a qualitative study of emergency and critical care nurses' perceptions of occupational response and preparedness during infectious respiratory disease outbreaks including severe acute respiratory syndrome (SARS) and influenza. Healthcare workers, predominantly female, face occupational and personal challenges in their roles as first responders/first receivers. Exposure to SARS or other respiratory pathogens during pregnancy represents additional occupational risk for healthcare workers. Perceptions of occupational reproductive risk during response to infectious respiratory disease outbreaks were assessed qualitatively by five focus groups comprised of 100 Canadian nurses conducted between 2005 and 2006. Occupational health and safety issues anticipated by Canadian nurses for future infectious respiratory disease outbreaks were grouped into four major themes: (1) apprehension about occupational risks to pregnant nurses; (2) unknown pregnancy risks of anti-infective therapy/prophylaxis; (3) occupational risk communication for pregnant nurses; and (4) human resource strategies required for pregnant nurses during outbreaks. The reproductive risk perceptions voiced by Canadian nurses generally were consistent with reported case reports of pregnant women infected with SARS or emerging influenza strains. Nurses' fears of fertility risks posed by exposure to infectious agents or anti-infective therapy and prophylaxis are not well supported by the literature, with the former not biologically plausible and the latter lacking sufficient data. Reproductive risk assessments should be performed for each infectious respiratory disease outbreak to provide female healthcare workers and in particular pregnant women with guidelines regarding infection control and use of anti-infective therapy and prophylaxis.

  14. Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer L.; Collins, Katherine M.; Tucker, Compton J.; Pak, Edwin W.; Britch, Seth C.; Eastman, James Ronald; Pinzon, Jorge E.; Russell, Kevin L.

    2011-01-01

    Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Extremes in rainfall (drought and flood) during the period 2004 - 2009 have privileged different disease vectors. Chikungunya outbreaks occurred during the severe drought from late 2004 to 2006 over coastal East Africa and the western Indian Ocean islands and in the later years India and Southeast Asia. The chikungunya pandemic was caused by a Central/East African genotype that appears to have been precipitated and then enhanced by global-scale and regional climate conditions in these regions. Outbreaks of Rift Valley fever occurred following excessive rainfall period from late 2006 to late 2007 in East Africa and Sudan, and then in 2008 - 2009 in Southern Africa. The shift in the outbreak patterns of Rift Valley fever from East Africa to Southern Africa followed a transition of the El Nino/Southern Oscillation (ENSO) phenomena from the warm El Nino phase (2006-2007) to the cold La Nina phase (2007-2009) and associated patterns of variability in the greater Indian Ocean basin that result in the displacement of the centres of above normal rainfall from Eastern to Southern Africa. Understanding the background patterns of climate variability both at global and regional scale and their impacts on ecological drivers of vector borne-diseases is critical in long-range planning of appropriate response and mitigation measures.

  15. A large outbreak of mumps in the postvaccine era.

    PubMed

    Wharton, M; Cochi, S L; Hutcheson, R H; Bistowish, J M; Schaffner, W

    1988-12-01

    During a county-wide mumps outbreak in Nashville, Tennessee, 332 cases of mumps were identified at a public high school (attack rate, 18.8%). A pep rally 17 d before the peak of the outbreak at a single public high school may have provided an opportunity for point-source exposure. A case-control study demonstrated that vaccine efficacy was 75% (we used provider-verified records and excluded students with a history of mumps disease). Although school records were nonuniform, mumps immunization status was correct, compared with provider-verified records, in at least 85% of both cases and controls. Parental reports were much less reliable. The cost of the outbreak was estimated at $154/case. Receiving mumps vaccine at a vaccine clinic held after the outbreak had peaked was associated with a decrease in risk of mumps disease. Thus, these clinics may have a role in the control of such outbreaks.

  16. Large outbreak of Legionnaires' disease and Pontiac fever at a military base.

    PubMed

    Ambrose, J; Hampton, L M; Fleming-Dutra, K E; Marten, C; McClusky, C; Perry, C; Clemmons, N A; McCormic, Z; Peik, S; Mancuso, J; Brown, E; Kozak, N; Travis, T; Lucas, C; Fields, B; Hicks, L; Cersovsky, S B

    2014-11-01

    We investigated a mixed outbreak of Legionnaires' disease (LD) and Pontiac fever (PF) at a military base to identify the outbreak's environmental source as well as known legionellosis risk factors. Base workers with possible legionellosis were interviewed and, if consenting, underwent testing for legionellosis. A retrospective cohort study collected information on occupants of the buildings closest to the outbreak source. We identified 29 confirmed and probable LD and 38 PF cases. All cases were exposed to airborne pathogens from a cooling tower. Occupants of the building closest to the cooling tower were 6·9 [95% confidence interval (CI) 2·2-22·0] and 5·5 (95% CI 2·1-14·5) times more likely to develop LD and PF, respectively, than occupants of the next closest building. Thorough preventive measures and aggressive responses to outbreaks, including searching for PF cases in mixed legionellosis outbreaks, are essential for legionellosis control.

  17. Anomalous High Rainfall and Soil Saturation as Combined Risk Indicator of Rift Valley Fever Outbreaks, South Africa, 2008-2011.

    PubMed

    Williams, Roy; Malherbe, Johan; Weepener, Harold; Majiwa, Phelix; Swanepoel, Robert

    2016-12-01

    Rift Valley fever (RVF), a zoonotic vectorborne viral disease, causes loss of life among humans and livestock and an adverse effect on the economy of affected countries. Vaccination is the most effective way to protect livestock; however, during protracted interepidemic periods, farmers discontinue vaccination, which leads to loss of herd immunity and heavy losses of livestock when subsequent outbreaks occur. Retrospective analysis of the 2008-2011 RVF epidemics in South Africa revealed a pattern of continuous and widespread seasonal rainfall causing substantial soil saturation followed by explicit rainfall events that flooded dambos (seasonally flooded depressions), triggering outbreaks of disease. Incorporation of rainfall and soil saturation data into a prediction model for major outbreaks of RVF resulted in the correctly identified risk in nearly 90% of instances at least 1 month before outbreaks occurred; all indications are that irrigation is of major importance in the remaining 10% of outbreaks.

  18. in silico Surveillance: evaluating outbreak detection with simulation models

    PubMed Central

    2013-01-01

    Background Detecting outbreaks is a crucial task for public health officials, yet gaps remain in the systematic evaluation of outbreak detection protocols. The authors’ objectives were to design, implement, and test a flexible methodology for generating detailed synthetic surveillance data that provides realistic geographical and temporal clustering of cases and use to evaluate outbreak detection protocols. Methods A detailed representation of the Boston area was constructed, based on data about individuals, locations, and activity patterns. Influenza-like illness (ILI) transmission was simulated, producing 100 years of in silico ILI data. Six different surveillance systems were designed and developed using gathered cases from the simulated disease data. Performance was measured by inserting test outbreaks into the surveillance streams and analyzing the likelihood and timeliness of detection. Results Detection of outbreaks varied from 21% to 95%. Increased coverage did not linearly improve detection probability for all surveillance systems. Relaxing the decision threshold for signaling outbreaks greatly increased false-positives, improved outbreak detection slightly, and led to earlier outbreak detection. Conclusions Geographical distribution can be more important than coverage level. Detailed simulations of infectious disease transmission can be configured to represent nearly any conceivable scenario. They are a powerful tool for evaluating the performance of surveillance systems and methods used for outbreak detection. PMID:23343523

  19. Turtle-Associated Salmonellosis, United States, 2006–2014

    PubMed Central

    Tauxe, Robert V.; Behravesh, Casey Barton

    2016-01-01

    During 2006–2014, a total of 15 multistate outbreaks of turtle-associated salmonellosis in humans were reported in the United States. Exposure to small pet turtles has long been recognized as a source of human salmonellosis. The risk to public health has persisted and may be increasing. Turtles are a popular reptilian pet among children, and numerous risky behaviors for the zoonotic transmission of Salmonella bacteria to children have been reported in recent outbreaks. Despite a long-standing federal ban against the sale and distribution of turtles <4 in (<10.16 cm) long, these small reptiles can be readily acquired through multiple venues and continue to be the main source of turtle-associated salmonellosis in children. Enhanced efforts are needed to minimize the disease risk associated with small turtle exposure. Prevention will require novel partnerships and a comprehensive One Health approach involving human, animal, and environmental health. PMID:27315584

  20. Backward Bifurcation in a Cholera Model: A Case Study of Outbreak in Zimbabwe and Haiti

    NASA Astrophysics Data System (ADS)

    Sharma, Sandeep; Kumari, Nitu

    In this paper, a nonlinear deterministic model is proposed with a saturated treatment function. The expression of the basic reproduction number for the proposed model was obtained. The global dynamics of the proposed model was studied using the basic reproduction number and theory of dynamical systems. It is observed that proposed model exhibits backward bifurcation as multiple endemic equilibrium points exist when R0 < 1. The existence of backward bifurcation implies that making R0 < 1 is not enough for disease eradication. This, in turn, makes it difficult to control the spread of cholera in the community. We also obtain a unique endemic equilibria when R0 > 1. The global stability of unique endemic equilibria is performed using the geometric approach. An extensive numerical study is performed to support our analytical results. Finally, we investigate two major cholera outbreaks, Zimbabwe (2008-09) and Haiti (2010), with the help of the present study.

  1. Turtle-Associated Salmonellosis, United States, 2006-2014.

    PubMed

    Bosch, Stacey; Tauxe, Robert V; Behravesh, Casey Barton

    2016-07-01

    During 2006-2014, a total of 15 multistate outbreaks of turtle-associated salmonellosis in humans were reported in the United States. Exposure to small pet turtles has long been recognized as a source of human salmonellosis. The risk to public health has persisted and may be increasing. Turtles are a popular reptilian pet among children, and numerous risky behaviors for the zoonotic transmission of Salmonella bacteria to children have been reported in recent outbreaks. Despite a long-standing federal ban against the sale and distribution of turtles <4 in (<10.16 cm) long, these small reptiles can be readily acquired through multiple venues and continue to be the main source of turtle-associated salmonellosis in children. Enhanced efforts are needed to minimize the disease risk associated with small turtle exposure. Prevention will require novel partnerships and a comprehensive One Health approach involving human, animal, and environmental health.

  2. Characterization of influenza outbreaks in Lebanon during the 2013/14 and 2014/15 seasons.

    PubMed

    Saito, R; Akinobu, H; Shaker, R A; Akel, I S; Assaf-Casals, A; Lteif, M; Odagiri, T; Inaba, R; Soudani, N; Khafaja, S; Ghanem, S T; Rajab, M; Shobugawa, Y; Dbaibo, G S; Zaraket, H

    2016-10-02

    Despite the significant burden of influenza outbreaks, active disease monitoring has been largely absent in the Middle East, including Lebanon. In this study we characterized influenza virus in 440 nasopharyngeal swabs collected from patients with acute respiratory infections during two influenza seasons in Lebanon. Influenza A(H3N2) was dominant in the 2013/14 season while the A(H1N1)pdm09 and B/Yamagata strains were most prevalent in the 2014/15 season. All tested isolates were susceptible to 4 neuraminidase inhibitors (oseltamivir, zanamivir, peramivir and laninamivir). Genetic analysis of the haemagglutinin gene revealed multiple introductions of influenza viruses into Lebanon from different geographic sources during each season. Additionally, large data gaps were identified in the Middle East region, as indicated by the lack of current influenza sequences in the database from many countries in the region.

  3. Riding the Wave: Reconciling the Roles of Disease and Climate Change in Amphibian Declines

    PubMed Central

    Lips, Karen R; Diffendorfer, Jay; Mendelson, Joseph R; Sears, Michael W

    2008-01-01

    We review the evidence for the role of climate change in triggering disease outbreaks of chytridiomycosis, an emerging infectious disease of amphibians. Both climatic anomalies and disease-related extirpations are recent phenomena, and effects of both are especially noticeable at high elevations in tropical areas, making it difficult to determine whether they are operating separately or synergistically. We compiled reports of amphibian declines from Lower Central America and Andean South America to create maps and statistical models to test our hypothesis of spatiotemporal spread of the pathogen Batrachochytrium dendrobatidis (Bd), and to update the elevational patterns of decline in frogs belonging to the genus Atelopus. We evaluated claims of climate change influencing the spread of Bd by including error into estimates of the relationship between air temperature and last year observed. Available data support the hypothesis of multiple introductions of this invasive pathogen into South America and subsequent spread along the primary Andean cordilleras. Additional analyses found no evidence to support the hypothesis that climate change has been driving outbreaks of amphibian chytridiomycosis, as has been posited in the climate-linked epidemic hypothesis. Future studies should increase retrospective surveys of museum specimens from throughout the Andes and should study the landscape genetics of Bd to map fine-scale patterns of geographic spread to identify transmission routes and processes. PMID:18366257

  4. Riding the wave: reconciling the roles of disease and climate change in amphibian declines.

    PubMed

    Lips, Karen R; Diffendorfer, Jay; Mendelson, Joseph R; Sears, Michael W

    2008-03-25

    We review the evidence for the role of climate change in triggering disease outbreaks of chytridiomycosis, an emerging infectious disease of amphibians. Both climatic anomalies and disease-related extirpations are recent phenomena, and effects of both are especially noticeable at high elevations in tropical areas, making it difficult to determine whether they are operating separately or synergistically. We compiled reports of amphibian declines from Lower Central America and Andean South America to create maps and statistical models to test our hypothesis of spatiotemporal spread of the pathogen Batrachochytrium dendrobatidis (Bd), and to update the elevational patterns of decline in frogs belonging to the genus Atelopus. We evaluated claims of climate change influencing the spread of Bd by including error into estimates of the relationship between air temperature and last year observed. Available data support the hypothesis of multiple introductions of this invasive pathogen into South America and subsequent spread along the primary Andean cordilleras. Additional analyses found no evidence to support the hypothesis that climate change has been driving outbreaks of amphibian chytridiomycosis, as has been posited in the climate-linked epidemic hypothesis. Future studies should increase retrospective surveys of museum specimens from throughout the Andes and should study the landscape genetics of Bd to map fine-scale patterns of geographic spread to identify transmission routes and processes.

  5. Alignment-Free Design of Highly Discriminatory Diagnostic Primer Sets for Escherichia coli O104:H4 Outbreak Strains

    PubMed Central

    Bielaszewska, Martina; Karch, Helge; Toth, Ian K.

    2012-01-01

    Background An Escherichia coli O104:H4 outbreak in Germany in summer 2011 caused 53 deaths, over 4000 individual infections across Europe, and considerable economic, social and political impact. This outbreak was the first in a position to exploit rapid, benchtop high-throughput sequencing (HTS) technologies and crowdsourced data analysis early in its investigation, establishing a new paradigm for rapid response to disease threats. We describe a novel strategy for design of diagnostic PCR primers that exploited this rapid draft bacterial genome sequencing to distinguish between E. coli O104:H4 outbreak isolates and other pathogenic E. coli isolates, including the historical hæmolytic uræmic syndrome (HUSEC) E. coli HUSEC041 O104:H4 strain, which possesses the same serotype as the outbreak isolates. Methodology/Principal Findings Primers were designed using a novel alignment-free strategy against eleven draft whole genome assemblies of E. coli O104:H4 German outbreak isolates from the E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium website, and a negative sequence set containing 69 E. coli chromosome and plasmid sequences from public databases. Validation in vitro against 21 ‘positive’ E. coli O104:H4 outbreak and 32 ‘negative’ non-outbreak EHEC isolates indicated that individual primer sets exhibited 100% sensitivity for outbreak isolates, with false positive rates of between 9% and 22%. A minimal combination of two primers discriminated between outbreak and non-outbreak E. coli isolates with 100% sensitivity and 100% specificity. Conclusions/Significance Draft genomes of isolates of disease outbreak bacteria enable high throughput primer design and enhanced diagnostic performance in comparison to traditional molecular assays. Future outbreak investigations will be able to harness HTS rapidly to generate draft genome sequences and diagnostic primer sets, greatly facilitating epidemiology and clinical diagnostics. We expect that high throughput primer design strategies will enable faster, more precise responses to future disease outbreaks of bacterial origin, and help to mitigate their societal impact. PMID:22496820

  6. Modelling dengue epidemic spreading with human mobility

    NASA Astrophysics Data System (ADS)

    Barmak, D. H.; Dorso, C. O.; Otero, M.

    2016-04-01

    We explored the effect of human mobility on the spatio-temporal dynamics of Dengue with a stochastic model that takes into account the epidemiological dynamics of the infected mosquitoes and humans, with different mobility patterns of the human population. We observed that human mobility strongly affects the spread of infection by increasing the final size and by changing the morphology of the epidemic outbreaks. When the spreading of the disease is driven only by mosquito dispersal (flight), a main central focus expands diffusively. On the contrary, when human mobility is taken into account, multiple foci appear throughout the evolution of the outbreaks. These secondary foci generated throughout the outbreaks could be of little importance according to their mass or size compared with the largest main focus. However, the coalescence of these foci with the main one generates an effect, through which the latter develops a size greater than the one obtained in the case driven only by mosquito dispersal. This increase in growth rate due to human mobility and the coalescence of the foci are particularly relevant in temperate cities such as the city of Buenos Aires, since they give more possibilities to the outbreak to grow before the arrival of the low-temperature season. The findings of this work indicate that human mobility could be the main driving force in the dynamics of vector epidemics.

  7. Outcomes, Approaches, and Challenges to Developing and Passing a Countywide Mandatory Vaccination Policy: St. Louis County's Experience with Hepatitis A Vaccine for Food Service Personnel.

    PubMed

    Rebmann, Terri; Wilson, Kristin D; Loux, Travis; Iqbal, Ayesha Z; Peters, Eleanor B; Peavler, Olivia

    2016-01-01

    In the early 1990s, St. Louis County had multiple foodservice worker-related hepatitis A outbreaks uncontrolled by standard outbreak interventions. Restaurant interest groups and the general public applied political pressure to local public health officials for more stringent interventions, including a mandatory vaccination policy. Local health departments can enact mandatory vaccination policies, but this has rarely been done. The study objectives were to describe the approach used to pass a mandatory vaccination policy at the local jurisdiction level and illustrate the outcome from this ordinance 15 years later. A case study design was used. In-depth, semi-structured interviews using guided questions were conducted in spring, 2015, with six key informants who had direct knowledge of the mandatory vaccination policy process. Meeting minutes and/or reports were also analyzed. A Poisson distribution analysis was used to calculate the rate of outbreaks before and after mandatory vaccination policy implementation. The policy appears to have reduced the number of hepatitis A outbreaks, lowering the morbidity and economic burden in St. Louis County. The lessons learned by local public health officials in passing a mandatory hepatitis A vaccination policy are important and relevant in today's environment. The experience and lessons learned may assist other local health departments when faced with the potential need for mandatory policies for any vaccine preventable disease.

  8. A large outbreak of salmonellosis associated with sandwiches contaminated with multiple bacterial pathogens purchased via an online shopping service.

    PubMed

    Wei, Sung-Hsi; Huang, Angela S; Liao, Ying-Shu; Liu, Yu-Lun; Chiou, Chien-Shun

    2014-03-01

    Food sold over the internet is an emerging business that also presents a concern with regard to food safety. A nationwide foodborne disease outbreak associated with sandwiches purchased from an online shop in July 2010 is reported. Consumers were telephone interviewed with a structured questionnaire and specimens were collected for etiological examination. A total of 886 consumers were successfully contacted and completed the questionnaires; 36.6% had become ill, with a median incubation period of 18 h (range, 6-66 h). The major symptoms included diarrhea (89.2%), abdominal pain (69.8%), fever (47.5%), headache (32.7%), and vomiting (17.3%). Microbiological laboratories isolated Salmonella enterica serovar Enteritidis, Salmonella Virchow, Staphylococcus aureus, Bacillus cereus, and enterotoxigenic Escherichia coli from the contaminated sandwiches, Salmonella Enteritidis and Salmonella Virchow from the patients, and Salmonella Enteritidis and Staphylococcus aureus from food handlers. Pulsed-field gel electrophoresis genotyping suggested a common origin of Salmonella bacteria recovered from the patients, food, and a food handler. Among the pathogens detected, the symptoms and incubation period indicated that Salmonella, likely of egg origin, was the probable causative agent of the outbreak. This outbreak illustrates the importance of meticulous hygiene practices during food preparation and temperature control during food shipment and the food safety challenges posed by online food-shopping services.

  9. A Large Outbreak of Salmonellosis Associated with Sandwiches Contaminated with Multiple Bacterial Pathogens Purchased via an Online Shopping Service

    PubMed Central

    Wei, Sung-Hsi; Huang, Angela S.; Liao, Ying-Shu; Liu, Yu-Lun

    2014-01-01

    Abstract Food sold over the internet is an emerging business that also presents a concern with regard to food safety. A nationwide foodborne disease outbreak associated with sandwiches purchased from an online shop in July 2010 is reported. Consumers were telephone interviewed with a structured questionnaire and specimens were collected for etiological examination. A total of 886 consumers were successfully contacted and completed the questionnaires; 36.6% had become ill, with a median incubation period of 18 h (range, 6–66 h). The major symptoms included diarrhea (89.2%), abdominal pain (69.8%), fever (47.5%), headache (32.7%), and vomiting (17.3%). Microbiological laboratories isolated Salmonella enterica serovar Enteritidis, Salmonella Virchow, Staphylococcus aureus, Bacillus cereus, and enterotoxigenic Escherichia coli from the contaminated sandwiches, Salmonella Enteritidis and Salmonella Virchow from the patients, and Salmonella Enteritidis and Staphylococcus aureus from food handlers. Pulsed-field gel electrophoresis genotyping suggested a common origin of Salmonella bacteria recovered from the patients, food, and a food handler. Among the pathogens detected, the symptoms and incubation period indicated that Salmonella, likely of egg origin, was the probable causative agent of the outbreak. This outbreak illustrates the importance of meticulous hygiene practices during food preparation and temperature control during food shipment and the food safety challenges posed by online food–shopping services. PMID:24313786

  10. Animal Leptospirosis in Latin America and the Caribbean Countries: Reported Outbreaks and Literature Review (2002–2014)

    PubMed Central

    Petrakovsky, Jessica; Bianchi, Alejandra; Fisun, Helen; Nájera-Aguilar, Patricia; Pereira, Martha Maria

    2014-01-01

    Leptospirosis is a worldwide zoonotic disease whose transmission is linked through multiple factors in the animal-human-ecosystem interface. The data on leptospirosis reported to the World Organization for Animal Health (OIE) for Latin America and Caribbean (LAC) countries/sovereign territories from 2005–2011 were mapped, showing a wide distribution of outbreaks in the region. Tropical terrestrial biomes are the predominate ecosystems showing reports of outbreaks. Climatic and ecological factors were relevant to the occurrence of epidemic outbreaks. The available scientific information from 2002–2014 was summarized to obtain a general overview and identify key issues related to the One Health approach. The primary serological test used for diagnosis and for conducting surveys was the microscopic agglutination test (MAT). Reports regarding the isolation and typing of leptospires were scattered and limited to data from a few countries, but their results revealed considerable biodiversity at the species and serovar levels. A total of six out of 11 currently named pathogenic species were found in the region. There was also high diversity of animal species showing evidence of infection by leptospires, including rodents, pets, livestock and wild animals. Prevention and control measures for leptospirosis should consider issues of animal and human health in the context of ecosystems, the territorial land borders of countries and trade. PMID:25325360

  11. Transmission and molecular characterisation of wild measles virus in Romania, 2008 to 2012.

    PubMed

    Necula, G; Lazar, M; Stanescu, A; Pistol, A; Santibanez, S; Mankertz, A; Lupulescu, E

    2013-12-12

    Molecular characterisation of measles virus is a powerful tool for tracing transmission. Genotyping may prove the absence of endemic circulation of measles virus, i.e. transmission for more than 12 months, which is one of the criteria for verifying elimination of the disease. We have genetically characterised measles viruses detected in Romania from 2008 to 2012, focusing on the recent outbreaks from 2010 to 2012 that affected mainly groups with limited access to healthcare and schools. The findings emphasise the importance of genotyping during the different phases of an outbreak. A total of 8,170 cases were notified, and 5,093 (62%) of the 7,559 possible cases were serologically confirmed. RT-PCR was performed for 104 samples: from the 101 positive samples obtained from sporadic measles cases or clusters from different counties, 73 were genotyped. Sporadic measles cases associated with D4 and D5 viruses were observed from2008 to 2009. Genotype D4-Manchester was predominant in 2011 and 2012. In addition, the related variant D4-Maramures and MVs/Limoges.FRA/17.10[D4] and a few D4-Hamburg strains were detected. The detection of several distinct MV-D4 genotypes suggests multiple virus importations to Romania. The outbreak associated with D4 genotype is the second largest outbreak in Romania in less than 10 years.

  12. Outcomes, Approaches, and Challenges to Developing and Passing a Countywide Mandatory Vaccination Policy: St. Louis County's Experience with Hepatitis A Vaccine for Food Service Personnel

    PubMed Central

    Rebmann, Terri; Wilson, Kristin D.; Loux, Travis; Iqbal, Ayesha Z.; Peters, Eleanor B.; Peavler, Olivia

    2016-01-01

    In the early 1990s, St. Louis County had multiple foodservice worker-related hepatitis A outbreaks uncontrolled by standard outbreak interventions. Restaurant interest groups and the general public applied political pressure to local public health officials for more stringent interventions, including a mandatory vaccination policy. Local health departments can enact mandatory vaccination policies, but this has rarely been done. The study objectives were to describe the approach used to pass a mandatory vaccination policy at the local jurisdiction level and illustrate the outcome from this ordinance 15 years later. A case study design was used. In-depth, semi-structured interviews using guided questions were conducted in spring, 2015, with six key informants who had direct knowledge of the mandatory vaccination policy process. Meeting minutes and/or reports were also analyzed. A Poisson distribution analysis was used to calculate the rate of outbreaks before and after mandatory vaccination policy implementation. The policy appears to have reduced the number of hepatitis A outbreaks, lowering the morbidity and economic burden in St. Louis County. The lessons learned by local public health officials in passing a mandatory hepatitis A vaccination policy are important and relevant in today's environment. The experience and lessons learned may assist other local health departments when faced with the potential need for mandatory policies for any vaccine preventable disease. PMID:29546151

  13. [Legionella pneumophila pneumonia community epidemic outbreak in Barcelona: "The Barceloneta outbreak". Effect on the early diagnosis and treatment].

    PubMed

    Jericó Alba, C; Nogués Solán, X; Santos Martínez, M J; Félez Flor, M; Garcés Jarque, J M; Mariñosa Marré, M; Sanz Salvador, X

    2004-02-01

    Clinical and microbiological descriptive analysis of the outbreak of community legionnaire's disease recorded in the Barcelona's Barcelonesa neighborhood in November 2000. Retrospective review of the epidemiological and clinical manifestations, as well as the evolution of the cases of Legionella pneumophila pneumonia associated with the outbreak and cared of in the Hospital del Mar. The 48 patients evaluated, all of them with confirmed diagnoses, represent 89% of the cases communicated. Seventy-five percent of patients showed some underlying disease, 54% had some criterion for severity, and mortality was 4%. In 81% of cases the detection of the antigen of Legionella pneumophila in urine was the diagnostic method. The detection in urine of the Legionella pneumophila antigen makes possible the early diagnosis of legionnaire's disease, particularly in epidemic outbreaks, which that facilitates the fast establishment of the adequate treatment and contributes to the reduction in mortality even in patients of high risk.

  14. Epidemic Typhoid in Vietnam: Molecular Typing of Multiple-Antibiotic-Resistant Salmonella enterica Serotype Typhi from Four Outbreaks

    PubMed Central

    Connerton, Phillippa; Wain, John; Hien, Tran T.; Ali, Tahir; Parry, Christopher; Chinh, Nguyen T.; Vinh, Ha; Ho, Vo A.; Diep, To S.; Day, Nicholas P. J.; White, Nicholas J.; Dougan, Gordon; Farrar, Jeremy J.

    2000-01-01

    Multidrug-resistant Salmonella enterica serotype Typhi isolates from four outbreaks of typhoid fever in southern Vietnam between 1993 and 1997 were compared. Pulsed-field gel electrophoresis, bacteriophage and plasmid typing, and antibiotic susceptibilities showed that independent outbreaks of multidrug-resistant typhoid fever in southern Vietnam are caused by single bacterial strains. However, different outbreaks do not derive from the clonal expansion of a single multidrug-resistant serotype Typhi strain. PMID:10655411

  15. A modified chain binomial model to analyse the ongoing measles epidemic in Greece, July 2017 to February 2018

    PubMed Central

    Lytras, Theodore; Georgakopoulou, Theano; Tsiodras, Sotirios

    2018-01-01

    Greece is currently experiencing a large measles outbreak, in the context of multiple similar outbreaks across Europe. We devised and applied a modified chain-binomial epidemic model, requiring very simple data, to estimate the transmission parameters of this outbreak. Model results indicate sustained measles transmission among the Greek Roma population, necessitating a targeted mass vaccination campaign to halt further spread of the epidemic. Our model may be useful for other countries facing similar measles outbreaks. PMID:29717695

  16. A modified chain binomial model to analyse the ongoing measles epidemic in Greece, July 2017 to February 2018.

    PubMed

    Lytras, Theodore; Georgakopoulou, Theano; Tsiodras, Sotirios

    2018-04-01

    Greece is currently experiencing a large measles outbreak, in the context of multiple similar outbreaks across Europe. We devised and applied a modified chain-binomial epidemic model, requiring very simple data, to estimate the transmission parameters of this outbreak. Model results indicate sustained measles transmission among the Greek Roma population, necessitating a targeted mass vaccination campaign to halt further spread of the epidemic. Our model may be useful for other countries facing similar measles outbreaks.

  17. Predicting Rift Valley Fever Inter-epidemic Activities and Outbreak Patterns: Insights from a Stochastic Host-Vector Model

    PubMed Central

    Pedro, Sansao A.; Abelman, Shirley; Tonnang, Henri E. Z.

    2016-01-01

    Rift Valley fever (RVF) outbreaks are recurrent, occurring at irregular intervals of up to 15 years at least in East Africa. Between outbreaks disease inter-epidemic activities exist and occur at low levels and are maintained by female Aedes mcintoshi mosquitoes which transmit the virus to their eggs leading to disease persistence during unfavourable seasons. Here we formulate and analyse a full stochastic host-vector model with two routes of transmission: vertical and horizontal. By applying branching process theory we establish novel relationships between the basic reproduction number, R0, vertical transmission and the invasion and extinction probabilities. Optimum climatic conditions and presence of mosquitoes have not fully explained the irregular oscillatory behaviour of RVF outbreaks. Using our model without seasonality and applying van Kampen system-size expansion techniques, we provide an analytical expression for the spectrum of stochastic fluctuations, revealing how outbreaks multi-year periodicity varies with the vertical transmission. Our theory predicts complex fluctuations with a dominant period of 1 to 10 years which essentially depends on the efficiency of vertical transmission. Our predictions are then compared to temporal patterns of disease outbreaks in Tanzania, Kenya and South Africa. Our analyses show that interaction between nonlinearity, stochasticity and vertical transmission provides a simple but plausible explanation for the irregular oscillatory nature of RVF outbreaks. Therefore, we argue that while rainfall might be the major determinant for the onset and switch-off of an outbreak, the occurrence of a particular outbreak is also a result of a build up phenomena that is correlated to vertical transmission efficiency. PMID:28002417

  18. Predicting Rift Valley Fever Inter-epidemic Activities and Outbreak Patterns: Insights from a Stochastic Host-Vector Model.

    PubMed

    Pedro, Sansao A; Abelman, Shirley; Tonnang, Henri E Z

    2016-12-01

    Rift Valley fever (RVF) outbreaks are recurrent, occurring at irregular intervals of up to 15 years at least in East Africa. Between outbreaks disease inter-epidemic activities exist and occur at low levels and are maintained by female Aedes mcintoshi mosquitoes which transmit the virus to their eggs leading to disease persistence during unfavourable seasons. Here we formulate and analyse a full stochastic host-vector model with two routes of transmission: vertical and horizontal. By applying branching process theory we establish novel relationships between the basic reproduction number, R0, vertical transmission and the invasion and extinction probabilities. Optimum climatic conditions and presence of mosquitoes have not fully explained the irregular oscillatory behaviour of RVF outbreaks. Using our model without seasonality and applying van Kampen system-size expansion techniques, we provide an analytical expression for the spectrum of stochastic fluctuations, revealing how outbreaks multi-year periodicity varies with the vertical transmission. Our theory predicts complex fluctuations with a dominant period of 1 to 10 years which essentially depends on the efficiency of vertical transmission. Our predictions are then compared to temporal patterns of disease outbreaks in Tanzania, Kenya and South Africa. Our analyses show that interaction between nonlinearity, stochasticity and vertical transmission provides a simple but plausible explanation for the irregular oscillatory nature of RVF outbreaks. Therefore, we argue that while rainfall might be the major determinant for the onset and switch-off of an outbreak, the occurrence of a particular outbreak is also a result of a build up phenomena that is correlated to vertical transmission efficiency.

  19. Review: Evaluation of Foot-and-Mouth Disease Control Using Fault Tree Analysis.

    PubMed

    Isoda, N; Kadohira, M; Sekiguchi, S; Schuppers, M; Stärk, K D C

    2015-06-01

    An outbreak of foot-and-mouth disease (FMD) causes huge economic losses and animal welfare problems. Although much can be learnt from past FMD outbreaks, several countries are not satisfied with their degree of contingency planning and aiming at more assurance that their control measures will be effective. The purpose of the present article was to develop a generic fault tree framework for the control of an FMD outbreak as a basis for systematic improvement and refinement of control activities and general preparedness. Fault trees are typically used in engineering to document pathways that can lead to an undesired event, that is, ineffective FMD control. The fault tree method allows risk managers to identify immature parts of the control system and to analyse the events or steps that will most probably delay rapid and effective disease control during a real outbreak. The present developed fault tree is generic and can be tailored to fit the specific needs of countries. For instance, the specific fault tree for the 2001 FMD outbreak in the UK was refined based on control weaknesses discussed in peer-reviewed articles. Furthermore, the specific fault tree based on the 2001 outbreak was applied to the subsequent FMD outbreak in 2007 to assess the refinement of control measures following the earlier, major outbreak. The FMD fault tree can assist risk managers to develop more refined and adequate control activities against FMD outbreaks and to find optimum strategies for rapid control. Further application using the current tree will be one of the basic measures for FMD control worldwide. © 2013 Blackwell Verlag GmbH.

  20. An outbreak of Legionnaires disease associated with a decorative water wall fountain in a hospital.

    PubMed

    Haupt, Thomas E; Heffernan, Richard T; Kazmierczak, James J; Nehls-Lowe, Henry; Rheineck, Bruce; Powell, Christine; Leonhardt, Kathryn K; Chitnis, Amit S; Davis, Jeffrey P

    2012-02-01

    To detect an outbreak-related source of Legionella, control the outbreak, and prevent additional Legionella infections from occurring. Epidemiologic investigation of an acute outbreak of hospital-associated Legionnaires disease among outpatients and visitors to a Wisconsin hospital. Patients with laboratory-confirmed Legionnaires disease who resided in southeastern Wisconsin and had illness onsets during February and March 2010. Patients with Legionnaires disease were interviewed using a hypothesis-generating questionnaire. On-site investigation included sampling of water and other potential environmental sources for Legionella testing. Case-finding measures included extensive notification of individuals potentially exposed at the hospital and alerts to area healthcare and laboratory personnel. Laboratory-confirmed Legionnaires disease was diagnosed in 8 patients, all of whom were present at the same hospital during the 10 days prior to their illness onsets. Six patients had known exposure to a water wall-type decorative fountain near the main hospital entrance. Although the decorative fountain underwent routine cleaning and maintenance, high counts of Legionella pneumophila serogroup 1 were isolated from cultures of a foam material found above the fountain trough. This outbreak of Legionnaires disease was associated with exposure to a decorative fountain located in a hospital public area. Routine cleaning and maintenance of fountains does not eliminate the risk of bacterial contamination. Our findings highlight the need to evaluate the safety of water fountains installed in any area of a healthcare facility.

  1. SURVEILLANCE FOR WATERBORNE-DISEASE OUTBREAKS - UNITED STATES, 1999-2000

    EPA Science Inventory

    PROBLEM/CONDITION: Since 1971, CDC, the U.S. Environmental Protection Agency (EPA), and the Council of State and Territorial Epidemiologists (CSTE) have maintained a collaborative surveillance system for the occurrences and causes of waterborne-disease outbreaks (WBDOs).This surv...

  2. Learning from history, predicting the future: the UK Dutch elm disease outbreak in relation to contemporary tree disease threats

    PubMed Central

    Potter, Clive; Harwood, Tom; Knight, Jon; Tomlinson, Isobel

    2011-01-01

    Expanding international trade and increased transportation are heavily implicated in the growing threat posed by invasive pathogens to biodiversity and landscapes. With trees and woodland in the UK now facing threats from a number of disease systems, this paper looks to historical experience with the Dutch elm disease (DED) epidemic of the 1970s to see what can be learned about an outbreak and attempts to prevent, manage and control it. The paper draws on an interdisciplinary investigation into the history, biology and policy of the epidemic. It presents a reconstruction based on a spatial modelling exercise underpinned by archival research and interviews with individuals involved in the attempted management of the epidemic at the time. The paper explores what, if anything, might have been done to contain the outbreak and discusses the wider lessons for plant protection. Reading across to present-day biosecurity concerns, the paper looks at the current outbreak of ramorum blight in the UK and presents an analysis of the unfolding epidemiology and policy of this more recent, and potentially very serious, disease outbreak. The paper concludes by reflecting on the continuing contemporary relevance of the DED experience at an important juncture in the evolution of plant protection policy. PMID:21624917

  3. Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks

    PubMed Central

    Thompson, Robin N.; Gilligan, Christopher A.; Cunniffe, Nik J.

    2016-01-01

    We assess how presymptomatic infection affects predictability of infectious disease epidemics. We focus on whether or not a major outbreak (i.e. an epidemic that will go on to infect a large number of individuals) can be predicted reliably soon after initial cases of disease have appeared within a population. For emerging epidemics, significant time and effort is spent recording symptomatic cases. Scientific attention has often focused on improving statistical methodologies to estimate disease transmission parameters from these data. Here we show that, even if symptomatic cases are recorded perfectly, and disease spread parameters are estimated exactly, it is impossible to estimate the probability of a major outbreak without ambiguity. Our results therefore provide an upper bound on the accuracy of forecasts of major outbreaks that are constructed using data on symptomatic cases alone. Accurate prediction of whether or not an epidemic will occur requires records of symptomatic individuals to be supplemented with data concerning the true infection status of apparently uninfected individuals. To forecast likely future behavior in the earliest stages of an emerging outbreak, it is therefore vital to develop and deploy accurate diagnostic tests that can determine whether asymptomatic individuals are actually uninfected, or instead are infected but just do not yet show detectable symptoms. PMID:27046030

  4. Emergence of influenza A (H1N1) PDM09 in the remote Islands of India--a molecular approach.

    PubMed

    Muruganandam, N; Bhattacharya, D; Chaaithanya, I K; Bhattacharya, H; Reesu, R; Maile, A; Bharathi, G S J; Sugunan, A P; Vijayachari, P

    2015-01-01

    A disease outbreak of A (H1N1) PDM09 was reported in Andaman and Nicobar islands in 2009 with an attack rate of 33.5% among settler population and 26.3% among the aboriginal Nicobarese tribe. During the ongoing outbreak of A (H1N1) PDM09 disease in different parts of the world, a subject working in Dubai city of Saudi Arabia, came to Port Blair, following which the pandemic triggered for the first time in these Islands. During the period August 2009 to January 2011, 30 confirmed cases of Influenza A (H1N1) PDM09 virus infection was detected. To understand the genetic relationship, the NA gene sequences of the viruses were phylogenetically analysed together along with the virus sequence isolated from other parts of the world. Formation of multiple clusters were observed, with the sequences of Andaman Islands, mainland India, Mexico, Saudi Arabia and few other counties clustering together. The sequence analysis data revealed that there was no specific mutation conferring resistance to oseltamivir among the Andaman A (H1N1) PDM09 virus isolates. The result of phylogenetic analysis have also revealed that the A (H1N1) PDM09 virus might have spread in these remote Islands of India via the subject from Saudi Arabia/Dubai. A (H1N1) PDM09 Influenza outbreak have highlighted the need to strengthen the region-specific pandemic preparedness plans and surveillance strategies.

  5. Acute Post-Streptococcal Glomerulonephritis in the Northern Territory of Australia: A Review of 16 Years Data and Comparison with the Literature

    PubMed Central

    Marshall, Catherine S.; Cheng, Allen C.; Markey, Peter G.; Towers, Rebecca J.; Richardson, Leisha J.; Fagan, Peter K.; Scott, Lesley; Krause, Vicki L.; Currie, Bart J.

    2011-01-01

    Data relating to acute post-streptococcal glomerulonephritis (APSGN) from the notifiable diseases surveillance system in the Northern Territory of Australia was extracted and analyzed. Isolates of Streptococcus pyogenes from confirmed cases were emm sequence typed. From 1991 to July 2008, there were 415 confirmed cases and 23 probable cases of APSGN notified. Four hundred fifteen (94.7%) of these were Indigenous Australians and 428 (97.7%) were people living in remote or very remote locations. The median age of cases was 7 years (range 0–54). The incidence of confirmed cases was 12.5/100,000 person-years, with an incidence in Indigenous Australian children younger than 15 years of age of 94.3 cases/100,000 person-years. The overall rate ratio of confirmed cases in Indigenous Australians to non-Indigenous Australians was 53.6 (95% confidence interval 32.6–94.8). Outbreaks of disease across multiple communities occurred in 1995 (N = 68), 2000 (N = 55), and 2005 (N = 87 [confirmed cases]). Various emm types of S. pyogenes were isolated from cases of APSGN including some types not previously recognized to be nephritogenic. The widespread outbreak in 2005 was caused by emm55.0 S. pyogenes. Acute post-streptococcal glomerulonephritis continues to occur in remote Indigenous communities in Australia at rates comparable to or higher than those estimated in developing countries. Improvements in preventative and outbreak control strategies are needed. PMID:21976576

  6. Acute post-streptococcal glomerulonephritis in the Northern Territory of Australia: a review of 16 years data and comparison with the literature.

    PubMed

    Marshall, Catherine S; Cheng, Allen C; Markey, Peter G; Towers, Rebecca J; Richardson, Leisha J; Fagan, Peter K; Scott, Lesley; Krause, Vicki L; Currie, Bart J

    2011-10-01

    Data relating to acute post-streptococcal glomerulonephritis (APSGN) from the notifiable diseases surveillance system in the Northern Territory of Australia was extracted and analyzed. Isolates of Streptococcus pyogenes from confirmed cases were emm sequence typed. From 1991 to July 2008, there were 415 confirmed cases and 23 probable cases of APSGN notified. Four hundred fifteen (94.7%) of these were Indigenous Australians and 428 (97.7%) were people living in remote or very remote locations. The median age of cases was 7 years (range 0-54). The incidence of confirmed cases was 12.5/100,000 person-years, with an incidence in Indigenous Australian children younger than 15 years of age of 94.3 cases/100,000 person-years. The overall rate ratio of confirmed cases in Indigenous Australians to non-Indigenous Australians was 53.6 (95% confidence interval 32.6-94.8). Outbreaks of disease across multiple communities occurred in 1995 (N = 68), 2000 (N = 55), and 2005 (N = 87 [confirmed cases]). Various emm types of S. pyogenes were isolated from cases of APSGN including some types not previously recognized to be nephritogenic. The widespread outbreak in 2005 was caused by emm55.0 S. pyogenes. Acute post-streptococcal glomerulonephritis continues to occur in remote Indigenous communities in Australia at rates comparable to or higher than those estimated in developing countries. Improvements in preventative and outbreak control strategies are needed.

  7. Validation of inverse seasonal peak mortality in medieval plagues, including the Black Death, in comparison to modern Yersinia pestis-variant diseases.

    PubMed

    Welford, Mark R; Bossak, Brian H

    2009-12-22

    Recent studies have noted myriad qualitative and quantitative inconsistencies between the medieval Black Death (and subsequent "plagues") and modern empirical Y. pestis plague data, most of which is derived from the Indian and Chinese plague outbreaks of A.D. 1900+/-15 years. Previous works have noted apparent differences in seasonal mortality peaks during Black Death outbreaks versus peaks of bubonic and pneumonic plagues attributed to Y. pestis infection, but have not provided spatiotemporal statistical support. Our objective here was to validate individual observations of this seasonal discrepancy in peak mortality between historical epidemics and modern empirical data. We compiled and aggregated multiple daily, weekly and monthly datasets of both Y. pestis plague epidemics and suspected Black Death epidemics to compare seasonal differences in mortality peaks at a monthly resolution. Statistical and time series analyses of the epidemic data indicate that a seasonal inversion in peak mortality does exist between known Y. pestis plague and suspected Black Death epidemics. We provide possible explanations for this seasonal inversion. These results add further evidence of inconsistency between historical plagues, including the Black Death, and our current understanding of Y. pestis-variant disease. We expect that the line of inquiry into the disputed cause of the greatest recorded epidemic will continue to intensify. Given the rapid pace of environmental change in the modern world, it is crucial that we understand past lethal outbreaks as fully as possible in order to prepare for future deadly pandemics.

  8. Seasonal recurrence of cowpox virus outbreaks in captive cheetahs (Acinonyx jubatus).

    PubMed

    Stagegaard, Julia; Kurth, Andreas; Stern, Daniel; Dabrowski, Piotr Wojciech; Pocknell, Ann; Nitsche, Andreas; Schrick, Livia

    2017-01-01

    Cowpox virus infections in captive cheetahs (Acinonyx jubatus) with high morbidity and mortality have already been reported in the UK and Russia in the 1970s. However, most of the reported cases have been singular events. Here, we report a total of five cowpox virus outbreaks in cheetahs in the same safari park in Denmark between 2010 and 2014. Nine cheetahs showed varying severity of clinical disease; two of them died (22%). All episodes occurred between August and October of the respective year. No other carnivores kept at the same institution nor the keepers taking care of the animals were clinically affected. The clinical picture of cowpox was confirmed by extensive laboratory investigations including histopathological and molecular analyses as well as cell culture isolation of a cowpox virus. High anti-orthopoxvirus antibody titers were detected in all 9 diseased cheetahs compared to seven contact cheetahs without clinical signs and 13 cheetahs not in direct contact. Additionally, whole genome sequencing from one sample of each cluster with subsequent phylogenetic analysis showed that the viruses from different outbreaks have individual sequences but clearly form a clade distinct from other cowpox viruses. However, the intra-clade distances are still larger than those usually observed within clades of one event. These findings indicate multiple and separate introductions of cowpox virus, probably from wild rodent populations, where the virus keeps circulating naturally and is only sporadically introduced into the cheetahs. Sero-positivity of voles (Arvicola amphibious) caught in zoo grounds strengthens this hypothesis. As a consequence, recommendations are given for medical and physical management of diseased cheetahs, for hygienic measures as well as for pre-shipment isolation before cheetah export from zoo grounds.

  9. Seasonal recurrence of cowpox virus outbreaks in captive cheetahs (Acinonyx jubatus)

    PubMed Central

    Stagegaard, Julia; Kurth, Andreas; Stern, Daniel; Dabrowski, Piotr Wojciech; Pocknell, Ann; Schrick, Livia

    2017-01-01

    Cowpox virus infections in captive cheetahs (Acinonyx jubatus) with high morbidity and mortality have already been reported in the UK and Russia in the 1970s. However, most of the reported cases have been singular events. Here, we report a total of five cowpox virus outbreaks in cheetahs in the same safari park in Denmark between 2010 and 2014. Nine cheetahs showed varying severity of clinical disease; two of them died (22%). All episodes occurred between August and October of the respective year. No other carnivores kept at the same institution nor the keepers taking care of the animals were clinically affected. The clinical picture of cowpox was confirmed by extensive laboratory investigations including histopathological and molecular analyses as well as cell culture isolation of a cowpox virus. High anti-orthopoxvirus antibody titers were detected in all 9 diseased cheetahs compared to seven contact cheetahs without clinical signs and 13 cheetahs not in direct contact. Additionally, whole genome sequencing from one sample of each cluster with subsequent phylogenetic analysis showed that the viruses from different outbreaks have individual sequences but clearly form a clade distinct from other cowpox viruses. However, the intra-clade distances are still larger than those usually observed within clades of one event. These findings indicate multiple and separate introductions of cowpox virus, probably from wild rodent populations, where the virus keeps circulating naturally and is only sporadically introduced into the cheetahs. Sero-positivity of voles (Arvicola amphibious) caught in zoo grounds strengthens this hypothesis. As a consequence, recommendations are given for medical and physical management of diseased cheetahs, for hygienic measures as well as for pre-shipment isolation before cheetah export from zoo grounds. PMID:29121668

  10. Probabilistic risk models for multiple disturbances: an example of forest insects and wildfires

    Treesearch

    Haiganoush K. Preisler; Alan A. Ager; Jane L. Hayes

    2010-01-01

    Building probabilistic risk models for highly random forest disturbances like wildfire and forest insect outbreaks is a challenging. Modeling the interactions among natural disturbances is even more difficult. In the case of wildfire and forest insects, we looked at the probability of a large fire given an insect outbreak and also the incidence of insect outbreaks...

  11. Multiple exposures during a norovirus outbreak on a river-cruise sailing through Europe, 2006.

    PubMed

    Verhoef, L; Boxman, I L; Duizer, E; Rutjes, S A; Vennema, H; Friesema, I H M; de Roda Husman, A M; Koopmans, M

    2008-06-12

    In the summer of 2006, several cruise-related viral gastroenteritis outbreaks were reported in Europe. One report came from a river-cruise, belonging to a ship-owner who had two other ships with outbreaks. This situation warranted onsite investigation in order to identify a potential common source of infection. A retrospective cohort study was performed among 137 people on board. Epidemiological questionnaire data were analysed using logistic regression. Stool, food, water and surface samples were collected for norovirus detection. Norovirus GGII.4-2006b was responsible for 48 gastroenteritis cases on this ship as confirmed in six patients. Identical norovirus sequences were detected in stool samples, on surfaces and in tap water. Epidemiological and microbiological data indicated multiple exposures contributing to the outbreak. Microbiological results demonstrated person-to-person transmission to be clearly present. Epidemiological results indicated that consuming tap water was a risk factor; however, this could not be concluded definitively on the basis of the available data. A common source for all cruise-related outbreaks was unlikely. The ongoing outbreaks on this ship demonstrated that evidence based guidelines on effective disinfection strategies are needed.

  12. Should health organizations use web 2.0 media in times of an infectious disease crisis? An in-depth qualitative study of citizens' information behavior during an EHEC outbreak.

    PubMed

    van Velsen, Lex; van Gemert-Pijnen, Julia E W C; Beaujean, Desirée J M A; Wentzel, Jobke; van Steenbergen, Jim E

    2012-12-20

    Web 2.0 media (eg, Facebook, Wikipedia) are considered very valuable for communicating with citizens in times of crisis. However, in the case of infectious disease outbreaks, their value has not been determined empirically. In order to be able to take full advantage of Web 2.0 media in such a situation, the link between these media, citizens' information behavior, and citizens' information needs has to be investigated. The goal of our study was to assess citizens' Web 2.0 media use during an infectious disease outbreak and to determine which Web 2.0 medium is used for which goal. With this information, we wanted to formulate recommendations for health organizations that consider using Web 2.0 media as part of their communication strategy during an infectious disease outbreak. A total of 18 student participants kept an information diary for 4 weeks during the 2011 enterohemorrhagic E. coli (EHEC) outbreak in Germany. Of them, 9 lived at the epicenter of the outbreak and 9 of them at some distance. The diaries were supplemented by a qualitative pre-survey (demographics) and postsurvey (questioning their satisfaction with information provision during the outbreak). The Internet appeared to be the most popular medium for passively receiving EHEC-related information, with news websites and websites of newspapers as the most consulted sources. Twitter was used for receiving information to a small degree, while Facebook played virtually no role. Participants indicated that they thought information posted on Twitter or Facebook was not reliable or was out of place. When actively seeking information, online newspapers and wikis were important sources. Several causes for (dis)satisfaction with information provision were uncovered: source credibility, contradicting messages, and a need for closure. During an infectious disease outbreak, our small sample of students did not see social media (like Facebook and Twitter) as suitable or reliable sources for communicating information, but primarily viewed them as a tool for communicating with friends. Wikis, however, did fill several information needs, especially when citizens are actively searching for information. For many, source credibility is an important asset of information usefulness. Finally, we provide several general recommendations for communicating with citizens during an infectious disease outbreak.

  13. Should Health Organizations Use Web 2.0 Media in Times of an Infectious Disease Crisis? An In-depth Qualitative Study of Citizens’ Information Behavior During an EHEC Outbreak

    PubMed Central

    van Gemert-Pijnen, Julia E.W.C; Beaujean, Desirée J.M.A; Wentzel, Jobke; van Steenbergen, Jim E

    2012-01-01

    Background Web 2.0 media (eg, Facebook, Wikipedia) are considered very valuable for communicating with citizens in times of crisis. However, in the case of infectious disease outbreaks, their value has not been determined empirically. In order to be able to take full advantage of Web 2.0 media in such a situation, the link between these media, citizens’ information behavior, and citizens’ information needs has to be investigated. Objective The goal of our study was to assess citizens’ Web 2.0 media use during an infectious disease outbreak and to determine which Web 2.0 medium is used for which goal. With this information, we wanted to formulate recommendations for health organizations that consider using Web 2.0 media as part of their communication strategy during an infectious disease outbreak. Methods A total of 18 student participants kept an information diary for 4 weeks during the 2011 enterohemorrhagic E. coli (EHEC) outbreak in Germany. Of them, 9 lived at the epicenter of the outbreak and 9 of them at some distance. The diaries were supplemented by a qualitative pre-survey (demographics) and postsurvey (questioning their satisfaction with information provision during the outbreak). Results The Internet appeared to be the most popular medium for passively receiving EHEC-related information, with news websites and websites of newspapers as the most consulted sources. Twitter was used for receiving information to a small degree, while Facebook played virtually no role. Participants indicated that they thought information posted on Twitter or Facebook was not reliable or was out of place. When actively seeking information, online newspapers and wikis were important sources. Several causes for (dis)satisfaction with information provision were uncovered: source credibility, contradicting messages, and a need for closure. Conclusions During an infectious disease outbreak, our small sample of students did not see social media (like Facebook and Twitter) as suitable or reliable sources for communicating information, but primarily viewed them as a tool for communicating with friends. Wikis, however, did fill several information needs, especially when citizens are actively searching for information. For many, source credibility is an important asset of information usefulness. Finally, we provide several general recommendations for communicating with citizens during an infectious disease outbreak. PMID:23257066

  14. A large rubella outbreak with spread from the workplace to the community.

    PubMed

    Danovaro-Holliday, M C; LeBaron, C W; Allensworth, C; Raymond, R; Borden, T G; Murray, A B; Icenogle, J P; Reef, S E

    2000-12-06

    Childhood vaccination has reduced rubella disease to low levels in the United States, but outbreaks continue to occur. The largest outbreak in the past 5 years occurred in Nebraska in 1999. To examine risk factors for disease, susceptibility of the risk population, role of vaccine failure, and the need for new vaccination strategies in response to the Nebraska rubella outbreak. Investigation of 83 confirmed rubella cases occurring in Douglas County, Nebraska, between March 23 and August 24, 1999; serosurvey of 413 pregnant women in the outbreak locale between October 1998 and March 1999 (prior to outbreak) and April and November 1999 (during and after outbreak). Case characteristics, compared with that of the general county population; area childhood rubella vaccination rates; and susceptibility among pregnant women before vs during and after the outbreak. All 83 rubella cases were unvaccinated or had unknown vaccination status and fell into 3 groups: (1) 52 (63%) were young adults (median age, 26 years), 83% of whom were born in Latin American countries where rubella vaccination was not routine. They were either employed in meatpacking plants or were their household contacts. Attack rates in the plants were high (14.4 per 1000 vs 0. 19 per 1000 for general county population); (2) 16 (19%), including 14 children (9 of whom were aged <12 months) and 2 parents, were US-born and non-Hispanic, who acquired the disease through contacts at 2 day care facilities (attack rate, 88.1 per 1000); and (3) 15 (18%) were young adults (median age, 22 years) whose major disease risk was residence in population-dense census tracts where meatpacking-related cases resided (R(2) = 0.343; P<.001); 87% of these persons were born in Latin America. Among pregnant women, susceptibility rates were 13% before the outbreak and 11% during and after the outbreak. Six (25%) of 24 susceptible women tested were seropositive for rubella IgM. Rubella vaccination rates were 90.2% for preschool children and 99.8% for school-aged children. A large rubella outbreak occurred among unvaccinated persons in a community with high immunity levels. Crowded working and living conditions facilitated transmission, but vaccine failure did not. Workplace vaccination could be considered to prevent similar outbreaks. JAMA. 2000;284:2733-2739.

  15. A local outbreak of dengue caused by an imported case in Dongguan China

    PubMed Central

    2012-01-01

    Background Dengue, a mosquito-borne febrile viral disease, is found in tropical and sub-tropical regions around the world. Since the first occurrence of dengue was confirmed in Guangdong, China in 1978, dengue outbreaks have been reported sequentially in different provinces in South China transmitted by.peridomestic Ae. albopictus mosquitoes, diplaying Ae. aegypti, a fully domestic vector that transmits dengue worldwide. Rapid and uncontrolled urbanization is a characteristic change in developing countries, which impacts greatly on vector habitat, human lifestyle and transmission dynamics on dengue epidemics. In September 2010, an outbreak of dengue was detected in Dongguan, a city in Guangdong province characterized by its fast urbanization. An investigation was initiated to identify the cause, to describe the epidemical characteristics of the outbreak, and to implement control measures to stop the outbreak. This is the first report of dengue outbreak in Dongguan, even though dengue cases were documented before in this city. Methods Epidemiological data were obtained from local Center of Disease Control and prevention (CDC). Laboratory tests such as real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR), the virus cDNA sequencing, and Enzyme-Linked immunosorbent assay (ELISA) were employed to identify the virus infection and molecular phylogenetic analysis was performed with MEGA5. The febrile cases were reported every day by the fever surveillance system. Vector control measures including insecticidal fogging and elimination of habitats of Ae. albopictus were used to control the dengue outbreak. Results The epidemiological studies results showed that this dengue outbreak was initiated by an imported case from Southeast Asia. The outbreak was characterized by 31 cases reported with an attack rate of 50.63 out of a population of 100,000. Ae. albopictus was the only vector species responsible for the outbreak. The virus cDNA sequencing analysis showed that the virus responsible for the outbreak was Dengue Virus serotype-1 (DENV-1). Conclusions Several characterized points of urbanization contributed to this outbreak of dengue in Dongguan: the residents are highly concentrated; the residents' life habits helped to form the habitats of Ae. albopictus and contributed to the high Breteau Index; the self-constructed houses lacks of mosquito prevention facilities. This report has reaffirmed the importance of a surveillance system for infectious diseases control and aroused the awareness of an imported case causing the epidemic of an infectious disease in urbanized region. PMID:22276682

  16. Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool.

    PubMed

    Hoenen, Thomas; Groseth, Allison; Rosenke, Kyle; Fischer, Robert J; Hoenen, Andreas; Judson, Seth D; Martellaro, Cynthia; Falzarano, Darryl; Marzi, Andrea; Squires, R Burke; Wollenberg, Kurt R; de Wit, Emmie; Prescott, Joseph; Safronetz, David; van Doremalen, Neeltje; Bushmaker, Trenton; Feldmann, Friederike; McNally, Kristin; Bolay, Fatorma K; Fields, Barry; Sealy, Tara; Rayfield, Mark; Nichol, Stuart T; Zoon, Kathryn C; Massaquoi, Moses; Munster, Vincent J; Feldmann, Heinz

    2016-02-01

    Rapid sequencing of RNA/DNA from pathogen samples obtained during disease outbreaks provides critical scientific and public health information. However, challenges exist for exporting samples to laboratories or establishing conventional sequencers in remote outbreak regions. We successfully used a novel, pocket-sized nanopore sequencer at a field diagnostic laboratory in Liberia during the current Ebola virus outbreak.

  17. Simulating Nationwide Pandemics: Applying the Multi-scale Epidemiologic Simulation and Analysis System to Human Infectious Diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dombroski, M; Melius, C; Edmunds, T

    2008-09-24

    This study uses the Multi-scale Epidemiologic Simulation and Analysis (MESA) system developed for foreign animal diseases to assess consequences of nationwide human infectious disease outbreaks. A literature review identified the state of the art in both small-scale regional models and large-scale nationwide models and characterized key aspects of a nationwide epidemiological model. The MESA system offers computational advantages over existing epidemiological models and enables a broader array of stochastic analyses of model runs to be conducted because of those computational advantages. However, it has only been demonstrated on foreign animal diseases. This paper applied the MESA modeling methodology to humanmore » epidemiology. The methodology divided 2000 US Census data at the census tract level into school-bound children, work-bound workers, elderly, and stay at home individuals. The model simulated mixing among these groups by incorporating schools, workplaces, households, and long-distance travel via airports. A baseline scenario with fixed input parameters was run for a nationwide influenza outbreak using relatively simple social distancing countermeasures. Analysis from the baseline scenario showed one of three possible results: (1) the outbreak burned itself out before it had a chance to spread regionally, (2) the outbreak spread regionally and lasted a relatively long time, although constrained geography enabled it to eventually be contained without affecting a disproportionately large number of people, or (3) the outbreak spread through air travel and lasted a long time with unconstrained geography, becoming a nationwide pandemic. These results are consistent with empirical influenza outbreak data. The results showed that simply scaling up a regional small-scale model is unlikely to account for all the complex variables and their interactions involved in a nationwide outbreak. There are several limitations of the methodology that should be explored in future work including validating the model against reliable historical disease data, improving contact rates, spread methods, and disease parameters through discussions with epidemiological experts, and incorporating realistic behavioral assumptions.« less

  18. Delays in Global Disease Outbreak Responses: Lessons from H1N1, Ebola, and Zika

    PubMed Central

    Silverberg, Sarah L.

    2018-01-01

    In global disease outbreaks, there are significant time delays between the source of an outbreak and collective action. Some delay is necessary, but recent delays have been extended by insufficient surveillance capacity and time-consuming efforts to mobilize action. Three public health emergencies of international concern (PHEICs)—H1N1, Ebola, and Zika—allow us to identify and compare sources of delays and consider seven hypotheses about what influences the length of delays. These hypotheses can then motivate further research that empirically tests them. The three PHEICs suggest that deferred global mobilization is a greater source of delay than is poor surveillance capacity. These case study outbreaks support hypotheses that we see quicker responses for novel diseases when outbreaks do not coincide with holidays and when US citizens are infected. They do not support hypotheses that we see quicker responses for more severe outbreaks or those that threaten larger numbers of people. Better understanding the reason for delays can help target policy interventions and identify the kind of global institutional changes needed to reduce the spread and severity of future PHEICs. PMID:29345996

  19. Explaining rapid reinfections in multiple-wave influenza outbreaks: Tristan da Cunha 1971 epidemic as a case study

    PubMed Central

    Camacho, Anton; Ballesteros, Sébastien; Graham, Andrea L.; Carrat, Fabrice; Ratmann, Oliver; Cazelles, Bernard

    2011-01-01

    Influenza usually spreads through the human population in multiple-wave outbreaks. Successive reinfection of individuals over a short time interval has been explicitly reported during past pandemics. However, the causes of rapid reinfection and the role of reinfection in driving multiple-wave outbreaks remain poorly understood. To investigate these issues, we focus on a two-wave influenza A/H3N2 epidemic that occurred on the remote island of Tristan da Cunha in 1971. Over 59 days, 273 (96%) of 284 islanders experienced at least one attack and 92 (32%) experienced two attacks. We formulate six mathematical models invoking a variety of antigenic and immunological reinfection mechanisms. Using a maximum-likelihood analysis to confront model predictions with the reported incidence time series, we demonstrate that only two mechanisms can be retained: some hosts with either a delayed or deficient humoral immune response to the primary influenza infection were reinfected by the same strain, thus initiating the second epidemic wave. Both mechanisms are supported by previous empirical studies and may arise from a combination of genetic and ecological causes. We advocate that a better understanding and account of heterogeneity in the human immune response are essential to analysis of multiple-wave influenza outbreaks and pandemic planning. PMID:21525058

  20. Surveillance and Outbreak Response Management System (SORMAS) to support the control of the Ebola virus disease outbreak in West Africa.

    PubMed

    Fähnrich, C; Denecke, K; Adeoye, O O; Benzler, J; Claus, H; Kirchner, G; Mall, S; Richter, R; Schapranow, M P; Schwarz, N; Tom-Aba, D; Uflacker, M; Poggensee, G; Krause, G

    2015-03-26

    In the context of controlling the current outbreak of Ebola virus disease (EVD), the World Health Organization claimed that 'critical determinant of epidemic size appears to be the speed of implementation of rigorous control measures', i.e. immediate follow-up of contact persons during 21 days after exposure, isolation and treatment of cases, decontamination, and safe burials. We developed the Surveillance and Outbreak Response Management System (SORMAS) to improve efficiency and timeliness of these measures. We used the Design Thinking methodology to systematically analyse experiences from field workers and the Ebola Emergency Operations Centre (EOC) after successful control of the EVD outbreak in Nigeria. We developed a process model with seven personas representing the procedures of EVD outbreak control. The SORMAS system architecture combines latest In-Memory Database (IMDB) technology via SAP HANA (in-memory, relational database management system), enabling interactive data analyses, and established SAP cloud tools, such as SAP Afaria (a mobile device management software). The user interface consists of specific front-ends for smartphones and tablet devices, which are independent from physical configurations. SORMAS allows real-time, bidirectional information exchange between field workers and the EOC, ensures supervision of contact follow-up, automated status reports, and GPS tracking. SORMAS may become a platform for outbreak management and improved routine surveillance of any infectious disease. Furthermore, the SORMAS process model may serve as framework for EVD outbreak modeling.

  1. Sentinel surveillance for human enterovirus 71 in Sarawak, Malaysia: lessons from the first 7 years

    PubMed Central

    Podin, Yuwana; Gias, Edna LM; Ong, Flora; Leong, Yee-Wei; Yee, Siew-Fung; Yusof, Mohd Apandi; Perera, David; Teo, Bibiana; Wee, Thian-Yew; Yao, Sik-Chi; Yao, Sik-King; Kiyu, Andrew; Arif, Mohd Taha; Cardosa, Mary Jane

    2006-01-01

    Background A major outbreak of human enterovirus 71-associated hand, foot and mouth disease in Sarawak in 1997 marked the beginning of a series of outbreaks in the Asia Pacific region. Some of these outbreaks had unusually high numbers of fatalities and this generated much fear and anxiety in the region. Methods We established a sentinel surveillance programme for hand, foot and mouth disease in Sarawak, Malaysia, in March 1998, and the observations of the first 7 years are described here. Virus isolation, serotyping and genotyping were performed on throat, rectal, vesicle and other swabs. Results During this period Sarawak had two outbreaks of human enterovirus 71, in 2000 and 2003. The predominant strains circulating in the outbreaks of 1997, 2000 and 2003 were all from genogroup B, but the strains isolated during each outbreak were genetically distinct from each other. Human enterovirus 71 outbreaks occurred in a cyclical pattern every three years and Coxsackievirus A16 co-circulated with human enterovirus 71. Although vesicles were most likely to yield an isolate, this sample was not generally available from most cases and obtaining throat swabs was thus found to be the most efficient way to obtain virological information. Conclusion Knowledge of the epidemiology of human enterovirus 71 transmission will allow public health personnel to predict when outbreaks might occur and to plan interventions in an effective manner in order to reduce the burden of disease. PMID:16827926

  2. Tracking Viral Evolution during a Disease Outbreak: the Rapid and Complete Selective Sweep of a Circovirus in the Endangered Echo Parakeet

    PubMed Central

    Faulkes, Christopher G.; Greenwood, Andrew G.; Jones, Carl G.; Kaiser, Pete; Lyne, Owen D.; Black, Simon A.; Chowrimootoo, Aurelie; Groombridge, Jim J.

    2012-01-01

    Circoviruses are among the smallest and simplest of all viruses, but they are relatively poorly characterized. Here, we intensively sampled two sympatric parrot populations from Mauritius over a period of 11 years and screened for the circovirus Beak and feather disease virus (BFDV). During the sampling period, a severe outbreak of psittacine beak and feather disease, which is caused by BFDV, occurred in Echo parakeets. Consequently, this data set presents an ideal system for studying the evolution of a pathogen in a natural population and to understand the adaptive changes that cause outbreaks. Unexpectedly, we discovered that the outbreak was most likely caused by changes in functionally important regions of the normally conserved replication-associated protein gene and not the immunogenic capsid. Moreover, these mutations were completely fixed in the Echo parakeet host population very shortly after the outbreak. Several capsid alleles were linked to the replication-associated protein outbreak allele, suggesting that whereas the key changes occurred in the latter, the scope of the outbreak and the selective sweep may have been influenced by positive selection in the capsid. We found evidence for viral transmission between the two host populations though evidence for the invasive species as the source of the outbreak was equivocal. Finally, the high evolutionary rate that we estimated shows how rapidly new variation can arise in BFDV and is consistent with recent results from other small single-stranded DNA viruses. PMID:22345474

  3. Physiological performance of an Alaskan shrub (Alnus fruticosa) in response to disease (Valsa melanodiscus) and water stress

    Treesearch

    Jennifer K. Rohrs-Richey; Christa P.H. Mulder; Loretta M. Winton; Glen Stanosz

    2011-01-01

    Following the decades-long warming and drying trend in Alaska, there is mounting evidence that temperature-induced drought stress is associated with disease outbreaks in the boreal forest. Recent evidence of this trend is an outbreak of Cytospora canker disease (fungal pathogen Valsa melanodiscus [anamorph = Cytospora umbrina...

  4. Using multitype branching processes to quantify statistics of disease outbreaks in zoonotic epidemics

    NASA Astrophysics Data System (ADS)

    Singh, Sarabjeet; Schneider, David J.; Myers, Christopher R.

    2014-03-01

    Branching processes have served as a model for chemical reactions, biological growth processes, and contagion (of disease, information, or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this work we focus on coupled branching processes as a model of infectious diseases spreading from one population to another. An exceedingly important example of such coupled outbreaks are zoonotic infections that spill over from animal populations to humans. We derive several statistical quantities characterizing the first spillover event from animals to humans, including the probability of spillover, the first passage time distribution for human infection, and disease prevalence in the animal population at spillover. Large stochastic fluctuations in those quantities can make inference of the state of the system at the time of spillover difficult. Focusing on outbreaks in the human population, we then characterize the critical threshold for a large outbreak, the distribution of outbreak sizes, and associated scaling laws. These all show a strong dependence on the basic reproduction number in the animal population and indicate the existence of a novel multicritical point with altered scaling behavior. The coupling of animal and human infection dynamics has crucial implications, most importantly allowing for the possibility of large human outbreaks even when human-to-human transmission is subcritical.

  5. Media impact switching surface during an infectious disease outbreak

    NASA Astrophysics Data System (ADS)

    Xiao, Yanni; Tang, Sanyi; Wu, Jianhong

    2015-01-01

    There are many challenges to quantifying and evaluating the media impact on the control of emerging infectious diseases. We modeled such media impacts using a piecewise smooth function depending on both the case number and its rate of change. The proposed model was then converted into a switching system, with the switching surface determined by a functional relationship between susceptible populations and different subgroups of infectives. By parameterizing the proposed model with the 2009 A/H1N1 influenza outbreak data in the Shaanxi province of China, we observed that media impact switched off almost as the epidemic peaked. Our analysis implies that media coverage significantly delayed the epidemic's peak and decreased the severity of the outbreak. Moreover, media impacts are not always effective in lowering the disease transmission during the entire outbreak, but switch on and off in a highly nonlinear fashion with the greatest effect during the early stage of the outbreak. The finding draws the attention to the important role of informing the public about `the rate of change of case numbers' rather than `the absolute number of cases' to alter behavioral changes, through a self-adaptive media impact switching on and off, for better control of disease transmission.

  6. Degree of host susceptibility in the initial disease outbreak influences subsequent epidemic spread

    PubMed Central

    Severns, Paul M.; Estep, Laura K.; Sackett, Kathryn E.; Mundt, Christopher C.

    2014-01-01

    Summary Disease epidemics typically begin as an outbreak of a relatively small, spatially explicit population of infected individuals (focus), in which disease prevalence increases and rapidly spreads into the uninfected, at-risk population. Studies of epidemic spread typically address factors influencing disease spread through the at-risk population, but the initial outbreak may strongly influence spread of the subsequent epidemic.We initiated wheat stripe rust Puccinia striiformis f. sp. tritici epidemics to assess the influence of the focus on final disease prevalence when the degree of disease susceptibility differed between the at-risk and focus populations.When the focus/at-risk plantings consisted of partially genetic resistant and susceptible cultivars, final disease prevalence was statistically indistinguishable from epidemics produced by the focus cultivar in monoculture. In these experimental epidemics, disease prevalence was not influenced by the transition into an at-risk population that differed in disease susceptibility. Instead, the focus appeared to exert a dominant influence on the subsequent epidemic.Final disease prevalence was not consistently attributable to either the focus or the at-risk population when focus/at-risk populations were planted in a factorial set-up with a mixture (~28% susceptible and 72% resistant) and susceptible individuals. In these experimental epidemics, spatial heterogeneity in disease susceptibility within the at-risk population appeared to counter the dominant influence of the focus.Cessation of spore production from the focus (through fungicide/glyphosate application) after 1.3 generations of stripe rust spread did not reduce final disease prevalence, indicating that the focus influence on disease spread is established early in the epidemic.Synthesis and applications. Our experiments indicated that outbreak conditions can be highly influential on epidemic spread, even when disease resistance in the at-risk population is greater than that of the focus. Disease control treatments administered shortly after the initial outbreak within the focus may either prevent an epidemic from occurring or reduce its severity. PMID:25512677

  7. Forecasting High-Priority Infectious Disease Surveillance Regions: A Socioeconomic Model

    PubMed Central

    Chan, Emily H.; Scales, David A.; Brewer, Timothy F.; Madoff, Lawrence C.; Pollack, Marjorie P.; Hoen, Anne G.; Choden, Tenzin; Brownstein, John S.

    2013-01-01

    Background. Few researchers have assessed the relationships between socioeconomic inequality and infectious disease outbreaks at the population level globally. We use a socioeconomic model to forecast national annual rates of infectious disease outbreaks. Methods. We constructed a multivariate mixed-effects Poisson model of the number of times a given country was the origin of an outbreak in a given year. The dataset included 389 outbreaks of international concern reported in the World Health Organization's Disease Outbreak News from 1996 to 2008. The initial full model included 9 socioeconomic variables related to education, poverty, population health, urbanization, health infrastructure, gender equality, communication, transportation, and democracy, and 1 composite index. Population, latitude, and elevation were included as potential confounders. The initial model was pared down to a final model by a backwards elimination procedure. The dependent and independent variables were lagged by 2 years to allow for forecasting future rates. Results. Among the socioeconomic variables tested, the final model included child measles immunization rate and telephone line density. The Democratic Republic of Congo, China, and Brazil were predicted to be at the highest risk for outbreaks in 2010, and Colombia and Indonesia were predicted to have the highest percentage of increase in their risk compared to their average over 1996–2008. Conclusions. Understanding socioeconomic factors could help improve the understanding of outbreak risk. The inclusion of the measles immunization variable suggests that there is a fundamental basis in ensuring adequate public health capacity. Increased vigilance and expanding public health capacity should be prioritized in the projected high-risk regions. PMID:23118271

  8. Using demographic characteristics of populations to detect spatial fragmentation following suspected ebola outbreaks in great apes.

    PubMed

    Genton, Céline; Cristescu, Romane; Gatti, Sylvain; Levréro, Florence; Bigot, Elodie; Motsch, Peggy; Le Gouar, Pascaline; Pierre, Jean-Sébastien; Ménard, Nelly

    2017-09-01

    Demographic crashes due to emerging diseases can contribute to population fragmentation and increase extinction risk of small populations. Ebola outbreaks in 2002-2004 are suspected to have caused a decline of more than 80% in some Western lowland gorilla (Gorilla gorilla gorilla) populations. We investigated whether demographic indicators of this event allowed for the detection of spatial fragmentation in gorilla populations. We collected demographic data from two neighbouring populations: the Lokoué population, suspected to have been affected by an Ebola outbreak (followed from 2001 to 2014), and the Romani population, of unknown demographic status before Ebola outbreaks (followed from 2005 to 2014). Ten years after the outbreak, the Lokoué population is slowly recovering and the short-term demographic indicators of a population crash were no longer detectable. The Lokoué population has not experienced any additional demographic perturbation over the past decade. The Romani population did not show any of the demographic indicators of a population crash over the past decade. Its demographic structure remained similar to that of unaffected populations. Our results highlighted that the Ebola disease could contribute to fragmentation of gorilla populations due to the spatially heterogeneous impact of its outbreaks. The demographic structure of populations (i.e., age-sex and group structure) can be useful indicators of a possible occurrence of recent Ebola outbreaks in populations without known history, and may be more broadly used in other emerging disease/species systems. Longitudinal data are critical to our understanding of the impact of emerging diseases on wild populations and their conservation. © 2017 Wiley Periodicals, Inc.

  9. Consequences of non-intervention for infectious disease in African great apes.

    PubMed

    Ryan, Sadie J; Walsh, Peter D

    2011-01-01

    Infectious disease has recently joined poaching and habitat loss as a major threat to African apes. Both "naturally" occurring pathogens, such as Ebola and Simian Immunodeficiency Virus (SIV), and respiratory pathogens transmitted from humans, have been confirmed as important sources of mortality in wild gorillas and chimpanzees. While awareness of the threat has increased, interventions such as vaccination and treatment remain controversial. Here we explore both the risk of disease to African apes, and the status of potential responses. Through synthesis of published data, we summarize prior disease impact on African apes. We then use a simple demographic model to illustrate the resilience of a well-known gorilla population to disease, modeled on prior documented outbreaks. We found that the predicted recovery time for this specific gorilla population from a single outbreak ranged from 5 years for a low mortality (4%) respiratory outbreak, to 131 years for an Ebola outbreak that killed 96% of the population. This shows that mortality rates comparable to those recently reported for disease outbreaks in wild populations are not sustainable. This is particularly troubling given the rising pathogen risk created by increasing habituation of wild apes for tourism, and the growth of human populations surrounding protected areas. We assess potential future disease spillover risk in terms of vaccination rates amongst humans that may come into contact with wild apes, and the availability of vaccines against potentially threatening diseases. We discuss and evaluate non-interventionist responses such as limiting tourist access to apes, community health programs, and safety, logistic, and cost issues that constrain the potential of vaccination. © 2011 Ryan and Walsh.

  10. Consequences of Non-Intervention for Infectious Disease in African Great Apes

    PubMed Central

    Ryan, Sadie J.; Walsh, Peter D.

    2011-01-01

    Infectious disease has recently joined poaching and habitat loss as a major threat to African apes. Both “naturally” occurring pathogens, such as Ebola and Simian Immunodeficiency Virus (SIV), and respiratory pathogens transmitted from humans, have been confirmed as important sources of mortality in wild gorillas and chimpanzees. While awareness of the threat has increased, interventions such as vaccination and treatment remain controversial. Here we explore both the risk of disease to African apes, and the status of potential responses. Through synthesis of published data, we summarize prior disease impact on African apes. We then use a simple demographic model to illustrate the resilience of a well-known gorilla population to disease, modeled on prior documented outbreaks. We found that the predicted recovery time for this specific gorilla population from a single outbreak ranged from 5 years for a low mortality (4%) respiratory outbreak, to 131 years for an Ebola outbreak that killed 96% of the population. This shows that mortality rates comparable to those recently reported for disease outbreaks in wild populations are not sustainable. This is particularly troubling given the rising pathogen risk created by increasing habituation of wild apes for tourism, and the growth of human populations surrounding protected areas. We assess potential future disease spillover risk in terms of vaccination rates amongst humans that may come into contact with wild apes, and the availability of vaccines against potentially threatening diseases. We discuss and evaluate non-interventionist responses such as limiting tourist access to apes, community health programs, and safety, logistic, and cost issues that constrain the potential of vaccination. PMID:22216162

  11. The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks

    PubMed Central

    Rulli, Maria Cristina; Santini, Monia; Hayman, David T. S.; D’Odorico, Paolo

    2017-01-01

    Tropical forests are undergoing land use change in many regions of the world, including the African continent. Human populations living close to forest margins fragmented and disturbed by deforestation may be particularly exposed to zoonotic infections because of the higher likelihood for humans to be in contact with disease reservoirs. Quantitative analysis of the nexus between deforestation and the emergence of Ebola virus disease (EVD), however, is still missing. Here we use land cover change data in conjunction with EVD outbreak records to investigate the association between recent (2004–2014) outbreaks in West and Central Africa, and patterns of land use change in the region. We show how in these EVD outbreaks the index cases in humans (i.e. spillover from wildlife reservoirs) occurred mostly in hotspots of forest fragmentation. PMID:28195145

  12. Chicken pox outbreak in the Intensive Care Unit of a tertiary care hospital: Lessons learnt the hard way.

    PubMed

    Sarit, Sharma; Shruti, Sharma; Deepinder, Chhina; Chhina, R S

    2015-12-01

    Varicella-zoster virus (VZV) causes 2 clinically and epidemiologically distinct forms of diseases. Chickenpox (varicella) is the disease that results from primary infection with the VZV. Herpes zoster (HZ) results from the reactivation of VZV latently infecting the dorsal root ganglia. We are reporting an outbreak of varicella infection among the health care workers (HCWs) in the Intensive Care Unit (ICU) of a tertiary care hospital. We found transmission of varicella among eight HCWs of pulmonary ICU. They had a history of contact with a patient having HZ infection. Investigation of the outbreak was conducted as per guidelines. Better dissemination of information on disease transmission, isolation of infected patients inside the hospital, and adequate protection (including vaccination) for susceptible employees are important to prevent such outbreaks.

  13. Hydroclimatic drivers, Water-borne Diseases, and Population Vulnerability in Bengal Delta

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Jutla, A. S.

    2012-04-01

    Water-borne diarrheal disease outbreaks in the Bengal Delta region, such as cholera, rotavirus, and dysentery, show distinct seasonal peaks and spatial signatures in their origin and progression. However, the mechanisms behind these seasonal phenomena, especially the role of regional climatic and hydrologic processes behind the disease outbreaks, are not fully understood. Overall diarrheal disease prevalence and the population vulnerability to transmission mechanisms thus remain severely underestimated. Recent findings suggest that diarrheal incidence in the spring is strongly associated with scarcity of freshwater flow volumes, while the abundance of water in monsoon show strong positive correlation with autumn diarrheal burden. The role of large-scale ocean-atmospheric processes that tend to modulate meteorological, hydrological, and environmental conditions over large regions and the effects on the ecological states conducive to the vectors and triggers of diarrheal outbreaks over large geographic regions are not well understood. We take a large scale approach to conduct detailed diagnostic analyses of a range of climate, hydrological, and ecosystem variables to investigate their links to outbreaks, occurrence, and transmission of the most prevalent water-borne diarrheal diseases. We employ satellite remote sensing data products to track coastal ecosystems and plankton processes related to cholera outbreaks. In addition, we investigate the effect of large scale hydroclimatic extremes (e.g., droughts and floods, El Nino) to identify how diarrheal transmission and epidemic outbreaks are most likely to respond to shifts in climatic, hydrologic, and ecological changes over coming decades. We argue that controlling diarrheal disease burden will require an integrated predictive surveillance approach - a combination of prediction and prevention - with recent advances in climate-based predictive capabilities and demonstrated successes in primary and tertiary prevention in endemic regions.

  14. Complex social contagion makes networks more vulnerable to disease outbreaks.

    PubMed

    Campbell, Ellsworth; Salathé, Marcel

    2013-01-01

    Social network analysis is now widely used to investigate the dynamics of infectious disease spread. Vaccination dramatically disrupts disease transmission on a contact network, and indeed, high vaccination rates can potentially halt disease transmission altogether. Here, we build on mounting evidence that health behaviors - such as vaccination, and refusal thereof - can spread across social networks through a process of complex contagion that requires social reinforcement. Using network simulations that model health behavior and infectious disease spread, we find that under otherwise identical conditions, the process by which the health behavior spreads has a very strong effect on disease outbreak dynamics. This dynamic variability results from differences in the topology within susceptible communities that arise during the health behavior spreading process, which in turn depends on the topology of the overall social network. Our findings point to the importance of health behavior spread in predicting and controlling disease outbreaks.

  15. Epidemics after Natural Disasters

    PubMed Central

    Gayer, Michelle; Connolly, Maire A.

    2007-01-01

    The relationship between natural disasters and communicable diseases is frequently misconstrued. The risk for outbreaks is often presumed to be very high in the chaos that follows natural disasters, a fear likely derived from a perceived association between dead bodies and epidemics. However, the risk factors for outbreaks after disasters are associated primarily with population displacement. The availability of safe water and sanitation facilities, the degree of crowding, the underlying health status of the population, and the availability of healthcare services all interact within the context of the local disease ecology to influence the risk for communicable diseases and death in the affected population. We outline the risk factors for outbreaks after a disaster, review the communicable diseases likely to be important, and establish priorities to address communicable diseases in disaster settings. PMID:17370508

  16. Post Outbreak Review: Dengue Preparedness and Response in Key West, Florida

    PubMed Central

    Hayden, Mary H.; Cavanaugh, Jamie L.; Tittel, Christopher; Butterworth, Melinda; Haenchen, Steven; Dickinson, Katherine; Monaghan, Andrew J.; Ernst, Kacey C.

    2015-01-01

    Dengue is the most prevalent mosquito-borne viral infection. Recent outbreaks in the southern United States illustrate the risk of reemergence. The first autochthonous cases since 1934 in Key West, FL, occurred in 2009–2010. We conducted a survey in 2012 with decision makers instrumental to the control of the outbreak to 1) determine their awareness of the multiple strategies used to control the outbreak and 2) assess their perceptions of the relative effectiveness of these strategies. An online survey was delivered to a predefined list of decision makers from multiple sectors to better understand dengue preparedness and response. Thirty-six out of 45 surveys were returned for an 80% response rate. Results indicate the need to focus prevention strategies on educational campaigns designed to increase population awareness of transmission risk. Respondents remain concerned about future dengue transmission risk in Key West and lack of resources to respond. PMID:26078319

  17. Australian abalone (Haliotis laevigata, H. rubra and H. conicopora) are susceptible to infection by multiple abalone herpesvirus genotypes.

    PubMed

    Corbeil, Serge; Williams, Lynette M; McColl, Kenneth A; Crane, Mark St J

    2016-05-03

    From 2006 to 2012, acute mortalities occurred in farmed and wild abalone (Haliotis spp.) along the coast of Victoria, Australia. The disease (abalone viral ganglioneuritis; AVG) is associated with infection by an abalone herpesvirus (AbHV). The relative pathogenicity of 5 known variants of AbHV was evaluated on abalone stocks from different states in Australia. Results indicated that all virus variants (Vic1, Tas1, Tas2, Tas3 and Tas4) cause disease and mortality in all abalone stocks tested (greenlip, blacklip and brownlip). In order to avoid further AVG outbreaks in Australian wild abalone, strict regulations on the transfer of abalone stocks must be implemented.

  18. Satellite SST-Based Coral Disease Outbreak Predictions for the Hawaiian Archipelago.

    PubMed

    Caldwell, Jamie M; Heron, Scott F; Eakin, C Mark; Donahue, Megan J

    2016-02-01

    Predicting wildlife disease risk is essential for effective monitoring and management, especially for geographically expansive ecosystems such as coral reefs in the Hawaiian archipelago. Warming ocean temperature has increased coral disease outbreaks contributing to declines in coral cover worldwide. In this study we investigated seasonal effects of thermal stress on the prevalence of the three most widespread coral diseases in Hawai'i: Montipora white syndrome, Porites growth anomalies and Porites tissue loss syndrome. To predict outbreak likelihood we compared disease prevalence from surveys conducted between 2004 and 2015 from 18 Hawaiian Islands and atolls with biotic (e.g., coral density) and abiotic (satellite-derived sea surface temperature metrics) variables using boosted regression trees. To date, the only coral disease forecast models available were developed for Acropora white syndrome on the Great Barrier Reef (GBR). Given the complexities of disease etiology, differences in host demography and environmental conditions across reef regions, it is important to refine and adapt such models for different diseases and geographic regions of interest. Similar to the Acropora white syndrome models, anomalously warm conditions were important for predicting Montipora white syndrome, possibly due to a relationship between thermal stress and a compromised host immune system. However, coral density and winter conditions were the most important predictors of all three coral diseases in this study, enabling development of a forecasting system that can predict regions of elevated disease risk up to six months before an expected outbreak. Our research indicates satellite-derived systems for forecasting disease outbreaks can be appropriately adapted from the GBR tools and applied for a variety of diseases in a new region. These models can be used to enhance management capacity to prepare for and respond to emerging coral diseases throughout Hawai'i and can be modified for other diseases and regions around the world.

  19. Satellite SST-Based Coral Disease Outbreak Predictions for the Hawaiian Archipelago

    PubMed Central

    Caldwell, Jamie M.; Heron, Scott F.; Eakin, C. Mark; Donahue, Megan J.

    2017-01-01

    Predicting wildlife disease risk is essential for effective monitoring and management, especially for geographically expansive ecosystems such as coral reefs in the Hawaiian archipelago. Warming ocean temperature has increased coral disease outbreaks contributing to declines in coral cover worldwide. In this study we investigated seasonal effects of thermal stress on the prevalence of the three most widespread coral diseases in Hawai’i: Montipora white syndrome, Porites growth anomalies and Porites tissue loss syndrome. To predict outbreak likelihood we compared disease prevalence from surveys conducted between 2004 and 2015 from 18 Hawaiian Islands and atolls with biotic (e.g., coral density) and abiotic (satellite-derived sea surface temperature metrics) variables using boosted regression trees. To date, the only coral disease forecast models available were developed for Acropora white syndrome on the Great Barrier Reef (GBR). Given the complexities of disease etiology, differences in host demography and environmental conditions across reef regions, it is important to refine and adapt such models for different diseases and geographic regions of interest. Similar to the Acropora white syndrome models, anomalously warm conditions were important for predicting Montipora white syndrome, possibly due to a relationship between thermal stress and a compromised host immune system. However, coral density and winter conditions were the most important predictors of all three coral diseases in this study, enabling development of a forecasting system that can predict regions of elevated disease risk up to six months before an expected outbreak. Our research indicates satellite-derived systems for forecasting disease outbreaks can be appropriately adapted from the GBR tools and applied for a variety of diseases in a new region. These models can be used to enhance management capacity to prepare for and respond to emerging coral diseases throughout Hawai’i and can be modified for other diseases and regions around the world. PMID:29071133

  20. Preventing the preventable through effective surveillance: the case of diphtheria in a rural district of Maharashtra, India

    PubMed Central

    2013-01-01

    Background Epidemic diphtheria is still poorly understood and continues to challenge both developing and developed countries. In the backdrop of poor immunization coverage, non-existent adult boosters, weak case based surveillance and persistence of multiple foci, there is a heightened risk of re-emergence of the disease in epidemic forms in India. Investigating each outbreak to understand the epidemiology of the disease and its current status in the country is therefore necessary. Dhule a predominantly tribal and rural district in Northern Maharashtra has consistently recorded low vaccination coverages alongside sporaidic cases of diphtheria over the last years. Methods This study reports the findings of an onsite survey conducted to assess a recent outbreak of diphtheria in Dhule district and the response mounted to it. Secondary data regarding outbreak detection and response were obtained from the district surveillance office. Clinical data were extracted from hospital records of eleven lab confirmed cases including one death case. Frequency distributions were calculated for each identified clinical and non- clinical variable using Microsoft™ Excel® 2010. Results Our findings suggest a shift in the median age of disease to adolescents (10-15 years) without gender differences. Two cases (18%) reported disease despite immunization. Clinical symptoms included cough (82%), fever (73%), and throat congestion (64%). About 64% and 36% of the 11 confirmed cases presented with a well defined pseudomembrane and a tonsillar patch respectively. Drug resistance was observed in all three culture positive cases. One death occurred despite the administration of Anti-Diphtheric Serum in a partially immunized case (CFR 9%). Genotyping and toxigenicity of strain was not possible due to specimen contamination during transport as testing facilities were unavailable in the district. Conclusions The outbreak raises several concerns regarding the epidemiology of diphtheria in Dhule. The reason for shift in the median age despite consistently poor immunization coverage (below 50%) remains unclear. Concomitant efforts should now focus on improving and monitoring primary immunization and booster coverages across all age groups. Gradually introducing adult immunization at ten year intervals may become necessary to prevent future vulnerabilities. Laboratory networks for genotyping and toxigenicity testing are urgently mandated at district level given the endemicity of the disease in the surrounding region and its recent introduction in remote Dhule. Contingency funds with pre- agreements to obtain ADS and DT/Td vaccines at short notice and developing standard case management protocols at district level are necessary. Monitoring the disease, emerging strains and mutations, alongside drug resistance through robust and effective surveillance is a pragmatic way forward. PMID:23566309

  1. Review of the trends and causes of food borne outbreaks in Malaysia from 1988 to 1997.

    PubMed

    Meftahuddin, T

    2002-03-01

    This paper examines the trend and possible contributing factors for the occurrence of the food borne diseases outbreaks in Malaysia. These diseases mainly are cholera, typhoid fever, hepatitis A, dysentery and food poisoning. The outbreaks still occur sporadically in certain high risk areas throughout the country. The incidence rate of all the other three major food borne diseases steadily declined from the year 1988 to 1997 except for food poisoning and cholera. Statistic of food poisoning from the year 1996 to 1997 showed that 66.5% of the outbreak occurred in schools whereas only 0.4% originated from the contaminated food sold at various public food outlets. The school age group is always more affected than the general population. Amongst the contributing factors identified are related to unhygienic food handling practices followed by inadequate safe water supply and poor environmental sanitation. A multisectoral approach between Ministry of Health and other government agencies or private agents needs to be undertaken in the management of the food borne diseases in order to curb the incidences of food borne diseases in Malaysia.

  2. Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool

    PubMed Central

    Groseth, Allison; Rosenke, Kyle; Fischer, Robert J.; Hoenen, Andreas; Judson, Seth D.; Martellaro, Cynthia; Falzarano, Darryl; Marzi, Andrea; Squires, R. Burke; Wollenberg, Kurt R.; de Wit, Emmie; Prescott, Joseph; Safronetz, David; van Doremalen, Neeltje; Bushmaker, Trenton; Feldmann, Friederike; McNally, Kristin; Bolay, Fatorma K.; Fields, Barry; Sealy, Tara; Rayfield, Mark; Nichol, Stuart T.; Zoon, Kathryn C.; Massaquoi, Moses; Munster, Vincent J.; Feldmann, Heinz

    2016-01-01

    Rapid sequencing of RNA/DNA from pathogen samples obtained during disease outbreaks provides critical scientific and public health information. However, challenges exist for exporting samples to laboratories or establishing conventional sequencers in remote outbreak regions. We successfully used a novel, pocket-sized nanopore sequencer at a field diagnostic laboratory in Liberia during the current Ebola virus outbreak. PMID:26812583

  3. Foodborne outbreaks of campylobacteriosis: the United States experience, 1980-1982.

    PubMed

    Finch, M J; Blake, P A

    1985-08-01

    During 1980-1982, 23 foodborne outbreaks of diseases caused by Campylobacter were reported to the Centers for Diseases Control through the National Foodborne Surveillance Program, which collects reports from state and territorial epidemiologists throughout the United States. These outbreaks involved 748 ill persons, of whom 4% were hospitalized. For outbreaks with six or more ill persons, the median attack rate was 41%, the mean or median incubation periods ranged from 66 to 120 hours, and the mean duration of symptoms ranged from three to seven days. Raw milk was implicated or suspected in 14 outbreaks. In four of the other outbreaks, food handling errors were identified, and in five outbreaks, poultry, eggs, or beef were implicated or suspected. In three of four outbreaks in which Campylobacter was recovered from cows at the implicated dairies, some isolates from cows were serotypically identical to isolates from ill persons. In one egg-associated outbreak, one of the isolates of Campylobacter recovered from hens at the implicated egg farm was serotypically identical to an isolate recovered from an ill person. These findings underscore the hazard of eating undercooked or raw foods of animal origin such as raw milk. Raw milk contaminated by infected cows is a major cause of foodborne campylobacteriosis in the United States.

  4. Giardiasis outbreaks in the United States, 1971–2011

    PubMed Central

    Adam, E. A.; Yoder, J. S.; Gould, L. H.; Hlavsa, M. C.; Gargano, J. W.

    2016-01-01

    Summary Giardia intestinalis is the leading parasitic aetiology of human enteric infections in the United States, with an estimated 1.2 million cases occurring annually. To better understand transmission, we analysed data on all giardiasis outbreaks reported to the Centers for Disease Control and Prevention for 1971–2011. The 242 outbreaks, affecting ∼41 000 persons, resulted from waterborne (74.8%), foodborne (15.7%), person-to-person (2.5%), and animal contact (1.2%) transmission. Most (74.6%) waterborne outbreaks were associated with drinking water, followed by recreational water (18.2%). Problems with water treatment, untreated groundwater, and distribution systems were identified most often during drinking water-associated outbreak investigations; problems with water treatment declined after the 1980s. Most recreational water-associated outbreaks were linked to treated swimming venues, with pools and wading pools implicated most often. Produce was implicated most often in foodborne outbreaks. Additionally, foods were most commonly prepared in a restaurant and contaminated by a food handler. Lessons learned from examining patterns in outbreaks over time can help prevent future disease. Groundwater and distribution system vulnerabilities, inadequate pool disinfection, fruit and vegetable contamination, and poor food handler hygiene are promising targets for giardiasis prevention measures. PMID:26750152

  5. Enterotoxigenic Escherichia coli strains are highly prevalent in Ugandan piggeries but disease outbreaks are masked by antibiotic prophylaxis.

    PubMed

    Okello, Emmanuel; Moonens, Kristof; Erume, Joseph; De Greve, Henri

    2015-01-01

    Post-weaning diarrhea (PWD) caused by enterotoxigenic Escherichia coli (ETEC) is an important disease of newly weaned piglets. ETEC strains commonly express F4 and/or F18 fimbriae that attach to carbohydrate receptors present on the intestinal epithelium during colonization. The disease status in the Ugandan piggeries had previously not been studied. In this cross-sectional sero-survey and clinical outbreak monitoring, we found very high sero-prevalence levels of both anti-F4 (70.5%) and anti-F18 (73.7%) antibodies, despite limited cases of clinical outbreaks. Strains isolated from these cases were typically F18(+) ETEC. High antibiotic resistance and multi-drug resistance were characteristics of the isolates, with highest resistance level of over 95% to commonly used antibiotics such as penicillin and tetracycline. We conclude that ETEC infections are widely spread on farms in Central Uganda but clinical disease outbreaks were masked by the management practices on these farms, like the use of extensive antibiotic prophylaxis.

  6. An exploration of how perceptions of the risk of avian influenza in poultry relate to urbanization in Vietnam.

    PubMed

    Finucane, Melissa L; Nghiem, Tuyen; Saksena, Sumeet; Nguyen, Lam; Fox, Jefferson; Spencer, James H; Thau, Trinh Dinh

    2014-01-01

    This research examined how perceptions of outbreaks of highly pathogenic avian influenza (HPAI) subtype H5N1 in poultry are related to urbanization. Via in-depth interviews with village leaders, household farmers, and large farm operators in modern, transitional, and traditional communes in the north of Vietnam, we explored behaviors, attitudes, cultural values, and traditions that might amplify or attenuate HPAI outbreaks. We also explored conceptualizations of urbanization and its impacts on animal husbandry and disease outbreaks. Qualitative theme analyses identified the key impacts, factors related to HPAI outbreaks, and disease prevention and management strategies. The analyses also highlighted how urbanization improves some aspects of life (e.g., food security, family wealth and health, more employment opportunities, and improved infrastructure), but simultaneously poses significant challenges for poultry farming and disease management. Awareness of qualitative aspects of HPAI risk perceptions and behaviors and how they vary with urbanization processes may help to improve the prevention and management of emerging infectious diseases.

  7. Transmission Pathways of Foot-and-Mouth Disease Virus in the United Kingdom in 2007

    PubMed Central

    Cottam, Eleanor M.; Wadsworth, Jemma; Shaw, Andrew E.; Rowlands, Rebecca J.; Goatley, Lynnette; Maan, Sushila; Maan, Narender S.; Mertens, Peter P. C.; Ebert, Katja; Li, Yanmin; Ryan, Eoin D.; Juleff, Nicholas; Ferris, Nigel P.; Wilesmith, John W.; Haydon, Daniel T.; King, Donald P.; Paton, David J.; Knowles, Nick J.

    2008-01-01

    Foot-and-mouth disease (FMD) virus causes an acute vesicular disease of domesticated and wild ruminants and pigs. Identifying sources of FMD outbreaks is often confounded by incomplete epidemiological evidence and the numerous routes by which virus can spread (movements of infected animals or their products, contaminated persons, objects, and aerosols). Here, we show that the outbreaks of FMD in the United Kingdom in August 2007 were caused by a derivative of FMDV O1 BFS 1860, a virus strain handled at two FMD laboratories located on a single site at Pirbright in Surrey. Genetic analysis of complete viral genomes generated in real-time reveals a probable chain of transmission events, predicting undisclosed infected premises, and connecting the second cluster of outbreaks in September to those in August. Complete genome sequence analysis of FMD viruses conducted in real-time have identified the initial and intermediate sources of these outbreaks and demonstrate the value of such techniques in providing information useful to contemporary disease control programmes. PMID:18421380

  8. Whole-Genome Sequencing in Outbreak Analysis

    PubMed Central

    Turner, Stephen D.; Riley, Margaret F.; Petri, William A.; Hewlett, Erik L.

    2015-01-01

    SUMMARY In addition to the ever-present concern of medical professionals about epidemics of infectious diseases, the relative ease of access and low cost of obtaining, producing, and disseminating pathogenic organisms or biological toxins mean that bioterrorism activity should also be considered when facing a disease outbreak. Utilization of whole-genome sequencing (WGS) in outbreak analysis facilitates the rapid and accurate identification of virulence factors of the pathogen and can be used to identify the path of disease transmission within a population and provide information on the probable source. Molecular tools such as WGS are being refined and advanced at a rapid pace to provide robust and higher-resolution methods for identifying, comparing, and classifying pathogenic organisms. If these methods of pathogen characterization are properly applied, they will enable an improved public health response whether a disease outbreak was initiated by natural events or by accidental or deliberate human activity. The current application of next-generation sequencing (NGS) technology to microbial WGS and microbial forensics is reviewed. PMID:25876885

  9. Entomologic investigations during an outbreak of West Nile virus disease in Maricopa County, Arizona, 2010.

    PubMed

    Godsey, Marvin S; Burkhalter, Kristen; Young, Ginger; Delorey, Mark; Smith, Kirk; Townsend, John; Levy, Craig; Mutebi, John-Paul

    2012-12-01

    Entomologic investigations were conducted during an intense outbreak of West Nile virus (WNV) disease in Maricopa County, Arizona during July 31-August 9, 2010. The investigations compared the East Valley outbreak area, and a demographically similar control area in northwestern metropolitan Phoenix where no human cases were reported. Five mosquito species were identified in each area, and species composition was similar in both areas. Significantly more Culex quinquefasciatus females were collected by gravid traps at Outbreak sites (22.2 per trap night) than at control sites (8.9 per trap night), indicating higher Cx. quinquefasciatus abundance in the outbreak area. Twenty-eight WNV TaqMan reverse transcription-polymerase chain reaction-positive mosquito pools were identified, including 24 of Cx. quinquefasciatus, 3 of Psorophora columbiae, and 1 of Culex sp. However, Cx. quinquefasciatus WNV infection rates did not differ between outbreak and control sites. At outbreak sites, 30 of 39 engorged Cx. quinquefasciatus had fed on birds, 8 of 39 on humans, and 1 of 39 on a lizard. At control sites, 20 of 20 identified blood meals were from birds. Data suggest that Cx. quinquefasciatus was the primary enzootic and epidemic vector of this outbreak. The most important parameters in the outbreak were vector abundance and blood meal analysis, which suggested more frequent contact between Cx. quinquefasciatus and human hosts in the outbreak area compared with the control area.

  10. Entomologic Investigations during an Outbreak of West Nile Virus Disease in Maricopa County, Arizona, 2010

    PubMed Central

    Godsey, Marvin S.; Burkhalter, Kristen; Young, Ginger; Delorey, Mark; Smith, Kirk; Townsend, John; Levy, Craig; Mutebi, John-Paul

    2012-01-01

    Entomologic investigations were conducted during an intense outbreak of West Nile virus (WNV) disease in Maricopa County, Arizona during July 31–August 9, 2010. The investigations compared the East Valley outbreak area, and a demographically similar control area in northwestern metropolitan Phoenix where no human cases were reported. Five mosquito species were identified in each area, and species composition was similar in both areas. Significantly more Culex quinquefasciatus females were collected by gravid traps at Outbreak sites (22.2 per trap night) than at control sites (8.9 per trap night), indicating higher Cx. quinquefasciatus abundance in the outbreak area. Twenty-eight WNV TaqMan reverse transcription-polymerase chain reaction–positive mosquito pools were identified, including 24 of Cx. quinquefasciatus, 3 of Psorophora columbiae, and 1 of Culex sp. However, Cx. quinquefasciatus WNV infection rates did not differ between outbreak and control sites. At outbreak sites, 30 of 39 engorged Cx. quinquefasciatus had fed on birds, 8 of 39 on humans, and 1 of 39 on a lizard. At control sites, 20 of 20 identified blood meals were from birds. Data suggest that Cx. quinquefasciatus was the primary enzootic and epidemic vector of this outbreak. The most important parameters in the outbreak were vector abundance and blood meal analysis, which suggested more frequent contact between Cx. quinquefasciatus and human hosts in the outbreak area compared with the control area. PMID:23109372

  11. Dynamics of a Tularemia Outbreak in a Closely Monitored Free-Roaming Population of Wild House Mice.

    PubMed

    Dobay, Akos; Pilo, Paola; Lindholm, Anna K; Origgi, Francesco; Bagheri, Homayoun C; König, Barbara

    2015-01-01

    Infectious disease outbreaks can be devastating because of their sudden occurrence, as well as the complexity of monitoring and controlling them. Outbreaks in wildlife are even more challenging to observe and describe, especially when small animals or secretive species are involved. Modeling such infectious disease events is relevant to investigating their dynamics and is critical for decision makers to accomplish outbreak management. Tularemia, caused by the bacterium Francisella tularensis, is a potentially lethal zoonosis. Of the few animal outbreaks that have been reported in the literature, only those affecting zoo animals have been closely monitored. Here, we report the first estimation of the basic reproduction number R0 of an outbreak in wildlife caused by F. tularensis using quantitative modeling based on a susceptible-infected-recovered framework. We applied that model to data collected during an extensive investigation of an outbreak of tularemia caused by F. tularensis subsp. holarctica (also designated as type B) in a closely monitored, free-roaming house mouse (Mus musculus domesticus) population in Switzerland. Based on our model and assumptions, the best estimated basic reproduction number R0 of the current outbreak is 1.33. Our results suggest that tularemia can cause severe outbreaks in small rodents. We also concluded that the outbreak self-exhausted in approximately three months without administrating antibiotics.

  12. Dynamics of a Tularemia Outbreak in a Closely Monitored Free-Roaming Population of Wild House Mice

    PubMed Central

    Dobay, Akos; Pilo, Paola; Lindholm, Anna K.; Origgi, Francesco; Bagheri, Homayoun C.; König, Barbara

    2015-01-01

    Infectious disease outbreaks can be devastating because of their sudden occurrence, as well as the complexity of monitoring and controlling them. Outbreaks in wildlife are even more challenging to observe and describe, especially when small animals or secretive species are involved. Modeling such infectious disease events is relevant to investigating their dynamics and is critical for decision makers to accomplish outbreak management. Tularemia, caused by the bacterium Francisella tularensis, is a potentially lethal zoonosis. Of the few animal outbreaks that have been reported in the literature, only those affecting zoo animals have been closely monitored. Here, we report the first estimation of the basic reproduction number R 0 of an outbreak in wildlife caused by F. tularensis using quantitative modeling based on a susceptible-infected-recovered framework. We applied that model to data collected during an extensive investigation of an outbreak of tularemia caused by F. tularensis subsp. holarctica (also designated as type B) in a closely monitored, free-roaming house mouse (Mus musculus domesticus) population in Switzerland. Based on our model and assumptions, the best estimated basic reproduction number R 0 of the current outbreak is 1.33. Our results suggest that tularemia can cause severe outbreaks in small rodents. We also concluded that the outbreak self-exhausted in approximately three months without administrating antibiotics. PMID:26536232

  13. An IDEA for Short Term Outbreak Projection: Nearcasting Using the Basic Reproduction Number

    PubMed Central

    Fisman, David N.; Hauck, Tanya S.; Tuite, Ashleigh R.; Greer, Amy L.

    2013-01-01

    Background Communicable disease outbreaks of novel or existing pathogens threaten human health around the globe. It would be desirable to rapidly characterize such outbreaks and develop accurate projections of their duration and cumulative size even when limited preliminary data are available. Here we develop a mathematical model to aid public health authorities in tracking the expansion and contraction of outbreaks with explicit representation of factors (other than population immunity) that may slow epidemic growth. Methodology The Incidence Decay and Exponential Adjustment (IDEA) model is a parsimonious function that uses the basic reproduction number R0, along with a discounting factor to project the growth of outbreaks using only basic epidemiological information (e.g., daily incidence counts). Principal Findings Compared to simulated data, IDEA provides highly accurate estimates of total size and duration for a given outbreak when R0 is low or moderate, and also identifies turning points or new waves. When tested with an outbreak of pandemic influenza A (H1N1), the model generates estimated incidence at the i+1th serial interval using data from the ith serial interval within an average of 20% of actual incidence. Conclusions and Significance This model for communicable disease outbreaks provides rapid assessments of outbreak growth and public health interventions. Further evaluation in the context of real-world outbreaks will establish the utility of IDEA as a tool for front-line epidemiologists. PMID:24391797

  14. An IDEA for short term outbreak projection: nearcasting using the basic reproduction number.

    PubMed

    Fisman, David N; Hauck, Tanya S; Tuite, Ashleigh R; Greer, Amy L

    2013-01-01

    Communicable disease outbreaks of novel or existing pathogens threaten human health around the globe. It would be desirable to rapidly characterize such outbreaks and develop accurate projections of their duration and cumulative size even when limited preliminary data are available. Here we develop a mathematical model to aid public health authorities in tracking the expansion and contraction of outbreaks with explicit representation of factors (other than population immunity) that may slow epidemic growth. The Incidence Decay and Exponential Adjustment (IDEA) model is a parsimonious function that uses the basic reproduction number R0, along with a discounting factor to project the growth of outbreaks using only basic epidemiological information (e.g., daily incidence counts). Compared to simulated data, IDEA provides highly accurate estimates of total size and duration for a given outbreak when R0 is low or moderate, and also identifies turning points or new waves. When tested with an outbreak of pandemic influenza A (H1N1), the model generates estimated incidence at the i+1(th) serial interval using data from the i(th) serial interval within an average of 20% of actual incidence. This model for communicable disease outbreaks provides rapid assessments of outbreak growth and public health interventions. Further evaluation in the context of real-world outbreaks will establish the utility of IDEA as a tool for front-line epidemiologists.

  15. Emerging flavobacterial infections in fish: A review

    PubMed Central

    Loch, Thomas P.; Faisal, Mohamed

    2014-01-01

    Flavobacterial diseases in fish are caused by multiple bacterial species within the family Flavobacteriaceae and are responsible for devastating losses in wild and farmed fish stocks around the world. In addition to directly imposing negative economic and ecological effects, flavobacterial disease outbreaks are also notoriously difficult to prevent and control despite nearly 100 years of scientific research. The emergence of recent reports linking previously uncharacterized flavobacteria to systemic infections and mortality events in fish stocks of Europe, South America, Asia, Africa, and North America is also of major concern and has highlighted some of the difficulties surrounding the diagnosis and chemotherapeutic treatment of flavobacterial fish diseases. Herein, we provide a review of the literature that focuses on Flavobacterium and Chryseobacterium spp. and emphasizes those associated with fish. PMID:26257926

  16. ID-Viewer: a visual analytics architecture for infectious diseases surveillance and response management in Pakistan.

    PubMed

    Ali, M A; Ahsan, Z; Amin, M; Latif, S; Ayyaz, A; Ayyaz, M N

    2016-05-01

    Globally, disease surveillance systems are playing a significant role in outbreak detection and response management of Infectious Diseases (IDs). However, in developing countries like Pakistan, epidemic outbreaks are difficult to detect due to scarcity of public health data and absence of automated surveillance systems. Our research is intended to formulate an integrated service-oriented visual analytics architecture for ID surveillance, identify key constituents and set up a baseline for easy reproducibility of such systems in the future. This research focuses on development of ID-Viewer, which is a visual analytics decision support system for ID surveillance. It is a blend of intelligent approaches to make use of real-time streaming data from Emergency Departments (EDs) for early outbreak detection, health care resource allocation and epidemic response management. We have developed a robust service-oriented visual analytics architecture for ID surveillance, which provides automated mechanisms for ID data acquisition, outbreak detection and epidemic response management. Classification of chief-complaints is accomplished using dynamic classification module, which employs neural networks and fuzzy-logic to categorize syndromes. Standard routines by Center for Disease Control (CDC), i.e. c1-c3 (c1-mild, c2-medium and c3-ultra), and spatial scan statistics are employed for detection of temporal and spatio-temporal disease outbreaks respectively. Prediction of imminent disease threats is accomplished using support vector regression for early warnings and response planning. Geographical visual analytics displays are developed that allow interactive visualization of syndromic clusters, monitoring disease spread patterns, and identification of spatio-temporal risk zones. We analysed performance of surveillance framework using ID data for year 2011-2015. Dynamic syndromic classifier is able to classify chief-complaints to appropriate syndromes with high classification accuracy. Outbreak detection methods are able to detect the ID outbreaks in start of epidemic time zones. Prediction model is able to forecast dengue trend for 20 weeks ahead with nominal normalized root mean square error of 0.29. Interactive geo-spatiotemporal displays, i.e. heat-maps, and choropleth are shown in respective sections. The proposed framework will set a standard and provide necessary details for future implementation of such a system for resource-constrained regions. It will improve early outbreak detection attributable to natural and man-made biological threats, monitor spatio-temporal epidemic trends and provide assurance that an outbreak has, or has not occurred. Advanced analytics features will be beneficial in timely organization/formulation of health management policies, disease control activities and efficient health care resource allocation. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  17. The utility of multiple molecular methods including whole genome sequencing as tools to differentiate Escherichia coli O157:H7 outbreaks.

    PubMed

    Berenger, Byron M; Berry, Chrystal; Peterson, Trevor; Fach, Patrick; Delannoy, Sabine; Li, Vincent; Tschetter, Lorelee; Nadon, Celine; Honish, Lance; Louie, Marie; Chui, Linda

    2015-01-01

    A standardised method for determining Escherichia coli O157:H7 strain relatedness using whole genome sequencing or virulence gene profiling is not yet established. We sought to assess the capacity of either high-throughput polymerase chain reaction (PCR) of 49 virulence genes, core-genome single nt variants (SNVs) or k-mer clustering to discriminate between outbreak-associated and sporadic E. coli O157:H7 isolates. Three outbreaks and multiple sporadic isolates from the province of Alberta, Canada were included in the study. Two of the outbreaks occurred concurrently in 2014 and one occurred in 2012. Pulsed-field gel electrophoresis (PFGE) and multilocus variable-number tandem repeat analysis (MLVA) were employed as comparator typing methods. The virulence gene profiles of isolates from the 2012 and 2014 Alberta outbreak events and contemporary sporadic isolates were mostly identical; therefore the set of virulence genes chosen in this study were not discriminatory enough to distinguish between outbreak clusters. Concordant with PFGE and MLVA results, core genome SNV and k-mer phylogenies clustered isolates from the 2012 and 2014 outbreaks as distinct events. k-mer phylogenies demonstrated increased discriminatory power compared with core SNV phylogenies. Prior to the widespread implementation of whole genome sequencing for routine public health use, issues surrounding cost, technical expertise, software standardisation, and data sharing/comparisons must be addressed.

  18. Newcastle disease outbreaks in Kazakhstan and Kyrgystan during 1998, 2000, 2001, 2003, 2004 and 2005 were caused by viruses of the genotypes VIIb and VIId

    USDA-ARS?s Scientific Manuscript database

    Newcastle disease virus (NDV) infects domesticated and wild birds throughout the world and infections with virulent NDV strains continue to cause disease outbreaks in poultry and wild birds. To assess the evolutionary characteristics of 28 NDV strains isolated from chickens in Kazakhstan and Kyrgyz...

  19. Effectiveness of a Mobile Short-Message-Service–Based Disease Outbreak Alert System in Kenya

    PubMed Central

    Njeru, Ian; Zurovac, Dejan; Tipo, Shikanga O; Kareko, David; Mwau, Matilu; Morita, Kouichi

    2016-01-01

    We conducted a randomized, controlled trial to test the effectiveness of a text-messaging system used for notification of disease outbreaks in Kenya. Health facilities that used the system had more timely notifications than those that did not (19.2% vs. 2.6%), indicating that technology can enhance disease surveillance in resource-limited settings. PMID:26981628

  20. Recent Outbreaks of Rift Valley Fever in East Africa and the Middle East

    PubMed Central

    Himeidan, Yousif E.; Kweka, Eliningaya J.; Mahgoub, Mostafa M.; El Rayah, El Amin; Ouma, Johnson O.

    2014-01-01

    Rift Valley fever (RVF) is an important neglected, emerging, mosquito-borne disease with severe negative impact on human and animal health. Mosquitoes in the Aedes genus have been considered as the reservoir, as well as vectors, since their transovarially infected eggs withstand desiccation and larvae hatch when in contact with water. However, different mosquito species serve as epizootic/epidemic vectors of RVF, creating a complex epidemiologic pattern in East Africa. The recent RVF outbreaks in Somalia (2006–2007), Kenya (2006–2007), Tanzania (2007), and Sudan (2007–2008) showed extension to districts, which were not involved before. These outbreaks also demonstrated the changing epidemiology of the disease from being originally associated with livestock, to a seemingly highly virulent form infecting humans and causing considerably high-fatality rates. The amount of rainfall is considered to be the main factor initiating RVF outbreaks. The interaction between rainfall and local environment, i.e., type of soil, livestock, and human determine the space-time clustering of RVF outbreaks. Contact with animals or their products was the most dominant risk factor to transfer the infection to humans. Uncontrolled movement of livestock during an outbreak is responsible for introducing RVF to new areas. For example, the virus that caused the Saudi Arabia outbreak in 2000 was found to be the same strain that caused the 1997–98 outbreaks in East Africa. A strategy that involves active surveillance with effective case management and diagnosis for humans and identifying target areas for animal vaccination, restriction on animal movements outside the affected areas, identifying breeding sites, and targeted intensive mosquito control programs has been shown to succeed in limiting the effect of RVF outbreak and curb the spread of the disease from the onset. PMID:25340047

Top