Science.gov

Sample records for multiple drug resistant

  1. Expression of cytokeratin confers multiple drug resistance.

    PubMed Central

    Bauman, P A; Dalton, W S; Anderson, J M; Cress, A E

    1994-01-01

    The cytokeratin network is an extensive filamentous structure in the cytoplasm whose biological function(s) is unknown. Based upon previous data showing the modification of cytokeratin by mitoxantrone, we investigated the ability of cytokeratin networks to influence the survival response of cells to chemotherapeutic agents. We have compared the survival of mouse L fibroblasts lacking cytokeratins with that of L cells transfected with cytokeratins 8 and 18 in the presence of chemotherapeutic drugs. The expression of cytokeratins 8 and 18 conferred a multiple drug resistance phenotype on cells exposed to mitoxantrone, doxorubicin, methotrexate, melphalan, Colcemid, and vincristine. The degree of drug resistance was 5-454 times that of parental cells, depending upon the agent used. Drug resistance could not be attributed to altered growth characteristics, altered drug accumulation, or an altered drug efflux in the transfected cells. Cytokeratin does not confer resistance to ionizing radiation, which damages DNA independently of intracellular transport mechanisms. These data suggest a role for cytokeratin networks in conferring a drug resistance phenotype. Images PMID:7515497

  2. Molecular mechanisms in multiple myeloma drug resistance

    PubMed Central

    Nikesitch, Nicholas; Ling, Silvia C W

    2016-01-01

    Multiple myeloma (MM) is predominantly an incurable malignancy despite high-dose chemotherapy, autologous stem cell transplant and novel agents. MM is a genetically heterogeneous disease and the complexity increases as the disease progresses to a more aggressive stage. MM arises from a plasma cell, which produces and secretes non-functioning immunoglobulins. Most MM cells are sensitive to proteasome inhibitors (PIs), which have become the main drug in the treatment of newly diagnosed and relapsed MM. However, not all MM is sensitive to PIs. This review summarises the literature regarding molecular biology of MM with a focus on the unfolded protein response and explores how this could affect drug sensitivity and progression of disease. PMID:26598624

  3. Mechanisms of Drug Resistance in Relapse and Refractory Multiple Myeloma.

    PubMed

    Yang, Wen-Chi; Lin, Sheng-Fung

    2015-01-01

    Multiple myeloma (MM) is a hematological malignancy that remains incurable because most patients eventually relapse or become refractory to current treatments. Although the treatments have improved, the major problem in MM is resistance to therapy. Clonal evolution of MM cells and bone marrow microenvironment changes contribute to drug resistance. Some mechanisms affect both MM cells and microenvironment, including the up- and downregulation of microRNAs and programmed death factor 1 (PD-1)/PD-L1 interaction. Here, we review the pathogenesis of MM cells and bone marrow microenvironment and highlight possible drug resistance mechanisms. We also review a potential molecular targeting treatment and immunotherapy for patients with refractory or relapse MM.

  4. Mechanisms of Drug Resistance in Relapse and Refractory Multiple Myeloma

    PubMed Central

    Yang, Wen-Chi; Lin, Sheng-Fung

    2015-01-01

    Multiple myeloma (MM) is a hematological malignancy that remains incurable because most patients eventually relapse or become refractory to current treatments. Although the treatments have improved, the major problem in MM is resistance to therapy. Clonal evolution of MM cells and bone marrow microenvironment changes contribute to drug resistance. Some mechanisms affect both MM cells and microenvironment, including the up- and downregulation of microRNAs and programmed death factor 1 (PD-1)/PD-L1 interaction. Here, we review the pathogenesis of MM cells and bone marrow microenvironment and highlight possible drug resistance mechanisms. We also review a potential molecular targeting treatment and immunotherapy for patients with refractory or relapse MM. PMID:26649299

  5. Troglitazone reverses the multiple drug resistance phenotype in cancer cells

    PubMed Central

    Davies, Gerald F; Juurlink, Bernhard HJ; Harkness, Troy AA

    2009-01-01

    A major problem in treating cancer is the development of drug resistance. We previously demonstrated doxorubicin (DOX) resistance in K562 human leukemia cells that was associated with upregulation of glyoxalase 1 (GLO-1) and histone H3 expression. The thiazolidinedione troglitazone (TRG) downregulated GLO-1 expression and further upregulated histone H3 expression and post-translational modifications in these cells, leading to a regained sensitivity to DOX. Given the pleiotropic effects of epigenetic changes in cancer development, we hypothesized that TRG may downregulate the multiple drug resistance (MDR) phenotype in a variety of cancer cells. To test this, MCF7 human breast cancer cells and K562 cells were cultured in the presence of low-dose DOX to establish DOX-resistant cell lines (K562/DOX and MCF7/DOX). The MDR phenotype was confirmed by Western blot analysis of the 170 kDa P-glycoprotein (Pgp) drug efflux pump multiple drug resistance protein 1 (MDR-1), and the breast cancer resistance protein (BCRP). TRG markedly decreased expression of both MDR-1 and BCRP in these cells, resulting in sensitivity to DOX. Silencing of MDR-1 expression also sensitized MCF7/DOX cells to DOX. Use of the specific and irreversible peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor GW9662 in the nanomolar range not only demonstrated that the action of TRG on MCF/DOX was PPARγ-independent, but indicated that PPARγ may play a role in the MDR phenotype, which is antagonized by TRG. We conclude that TRG is potentially a useful adjunct therapy in chemoresistant cancers. PMID:19920924

  6. Rapid evolution of drug resistance of multiple myeloma in the microenvironment with drug gradients

    NASA Astrophysics Data System (ADS)

    Wu, Amy; Zhang, Qiucen; Lambert, Guillaume; Khin, Zayar; Silva, Ariosto; Gatenby, Robert; Kim, John; Pourmand, Nader; Austin, Robert; Sturm, James

    2013-03-01

    Drug resistance in cancer is usually caused by the spatial drug gradients in tumor environment. Here, we culture multiple myeloma in a gradient from 0 to 20 nM of doxorubicin (genotoxic drug) across 2 mm wide region for 12 days. The myeloma cells grew rapidly and formed 3D colonies in the regions with less drug concentration. However, we have seen emergent colonies forming in regions with drug concentration above the minimal inhibitory concentration in less than one week. Once the cells have occupied the regions with less drug concentration, they tend to migrate toward the regions with higher drug concentration in a collective behavior. To characterize their resistance, we collect them from this microfluidic system, for further analysis of the dose response. We find that the IC50 (drug concentration that inhibits 50% of controlled population) of the cells, undergone a drug gradient, increase 16-fold of the wildtype cells. We further discover that these resistant cells express more Multidrug Resistance (mdr) protein, which pumps out the drugs and causes drug resistance, than the wildtype. Our current works on RNA-sequencing analysis may discover other biomolecular mechanisms that may confer the drug resistance.

  7. The multiple facets of drug resistance: one history, different approaches

    PubMed Central

    2014-01-01

    Some cancers like melanoma and pancreatic and ovarian cancers, for example, commonly display resistance to chemotherapy, and this is the major obstacle to a better prognosis of patients. Frequently, literature presents studies in monolayer cell cultures, 3D cell cultures or in vivo studies, but rarely the same work compares results of drug resistance in different models. Several of these works are presented in this review and show that usually cells in 3D culture are more resistant to drugs than monolayer cultured cells due to different mechanisms. Searching for new strategies to sensitize different tumors to chemotherapy, many methods have been studied to understand the mechanisms whereby cancer cells acquire drug resistance. These methods have been strongly advanced along the years and therapies using different drugs have been increasingly proposed to induce cell death in resistant cells of different cancers. Recently, cancer stem cells (CSCs) have been extensively studied because they would be the only cells capable of sustaining tumorigenesis. It is believed that the resistance of CSCs to currently used chemotherapeutics is a major contributing factor in cancer recurrence and later metastasis development. This review aims to appraise the experimental progress in the study of acquired drug resistance of cancer cells in different models as well as to understand the role of CSCs as the major contributing factor in cancer recurrence and metastasis development, describing how CSCs can be identified and isolated. PMID:24775603

  8. Drug Resistance

    MedlinePlus

    HIV Treatment Drug Resistance (Last updated 3/1/2016; last reviewed 3/1/2016) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  9. Metabolic signature identifies novel targets for drug resistance in Multiple Myeloma

    PubMed Central

    Maiso, Patricia; Huynh, Daisy; Moschetta, Michele; Sacco, Antonio; Aljawai, Yosra; Mishima, Yuji; Asara, John M.; Roccaro, Aldo M.; Kimmelman, Alec C.; Ghobrial, Irene M.

    2015-01-01

    Drug resistance remains a major clinical challenge for cancer treatment. Multiple myeloma (MM) is an incurable plasma cell cancer selectively localized in the bone marrow (BM). The main cause of resistance in myeloma is the minimal residual disease (MRD) cells that are resistant to the original therapy including bortezomib treatment and high dose melphalan in stem cell transplant. In this study, we demonstrate that altered tumor cell metabolism is essential for the regulation of drug resistance in MM cells. We show the unprecedented role of the metabolic phenotype in inducing drug resistance through LDHA and HIF1A in MM; and that specific inhibition of LDHA and HIF1A can restore sensitivity to therapeutic agents such as bortezomib and can also inhibit tumor growth induced by altered metabolism. Knockdown of LDHA can restore sensitivity of bortezomib resistance cell lines while gain of function studies using LDHA or HIF1A induced resistance in bortezomib sensitive cell lines. Taken together, these data suggest that HIF1A and LDHA are important targets for hypoxia-driven drug resistance. Novel drugs that regulate metabolic pathways in MM, specifically targeting LDHA, can be beneficial to inhibit tumor growth and overcome drug resistance. PMID:25769724

  10. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma.

    PubMed

    Müller, Judith; Krijgsman, Oscar; Tsoi, Jennifer; Robert, Lidia; Hugo, Willy; Song, Chunying; Kong, Xiangju; Possik, Patricia A; Cornelissen-Steijger, Paulien D M; Geukes Foppen, Marnix H; Kemper, Kristel; Goding, Colin R; McDermott, Ultan; Blank, Christian; Haanen, John; Graeber, Thomas G; Ribas, Antoni; Lo, Roger S; Peeper, Daniel S

    2014-12-15

    Increased expression of the Microphthalmia-associated transcription factor (MITF) contributes to melanoma progression and resistance to BRAF pathway inhibition. Here we show that the lack of MITF is associated with more severe resistance to a range of inhibitors, while its presence is required for robust drug responses. Both in primary and acquired resistance, MITF levels inversely correlate with the expression of several activated receptor tyrosine kinases, most frequently AXL. The MITF-low/AXL-high/drug-resistance phenotype is common among mutant BRAF and NRAS melanoma cell lines. The dichotomous behaviour of MITF in drug response is corroborated in vemurafenib-resistant biopsies, including MITF-high and -low clones in a relapsed patient. Furthermore, drug cocktails containing AXL inhibitor enhance melanoma cell elimination by BRAF or ERK inhibition. Our results demonstrate that a low MITF/AXL ratio predicts early resistance to multiple targeted drugs, and warrant clinical validation of AXL inhibitors to combat resistance of BRAF and NRAS mutant MITF-low melanomas.

  11. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma

    PubMed Central

    Müller, Judith; Krijgsman, Oscar; Tsoi, Jennifer; Robert, Lidia; Hugo, Willy; Song, Chunying; Kong, Xiangju; Possik, Patricia A.; Cornelissen-Steijger, Paulien D.M.; Foppen, Marnix H. Geukes; Kemper, Kristel; Goding, Colin R.; McDermott, Ultan; Blank, Christian; Haanen, John; Graeber, Thomas G.; Ribas, Antoni; Lo, Roger S.; Peeper, Daniel S.

    2015-01-01

    Increased expression of the Microphthalmia-associated transcription factor (MITF) contributes to melanoma progression and resistance to BRAF pathway inhibition. Here we show that the lack of MITF is associated with more severe resistance to a range of inhibitors, while its presence is required for robust drug responses. Both in primary and acquired resistance, MITF levels inversely correlate with the expression of several activated receptor tyrosine kinases, most frequently AXL. The MITF-low/AXL-high/drug-resistance phenotype is common among mutant BRAF and NRAS melanoma cell lines. The dichotomous behaviour of MITF in drug response is corroborated in vemurafenib-resistant biopsies, including MITF-high and -low clones in a relapsed patient. Furthermore, drug cocktails containing AXL inhibitor enhance melanoma cell elimination by BRAF or ERK inhibition. Our results demonstrate that a low MITF/AXL ratio predicts early resistance to multiple targeted drugs, and warrant clinical validation of AXL inhibitors to combat resistance of BRAF and NRAS mutant MITF-low melanomas. PMID:25502142

  12. Phosphorylation-mediated EZH2 inactivation promotes drug resistance in multiple myeloma.

    PubMed

    Kikuchi, Jiro; Koyama, Daisuke; Wada, Taeko; Izumi, Tohru; Hofgaard, Peter O; Bogen, Bjarne; Furukawa, Yusuke

    2015-12-01

    Alterations in chromatin modifications, such as histone methylation, have been suggested as mediating chemotherapy resistance in several cancer types; therefore, elucidation of the epigenetic mechanisms that underlie drug resistance may greatly contribute to the advancement of cancer therapies. In the present study, we identified histone H3-lysine 27 (H3K27) as a critical residue for epigenetic modification in multiple myeloma. We determined that abrogation of drug-induced H3K27 hypermethylation is associated with cell adhesion-mediated drug resistance (CAM-DR), which is the most important form of drug resistance, using a coculture system to evaluate stroma cell adhesion-dependent alterations in multiple myeloma cells. Cell adhesion counteracted anticancer drug-induced hypermethylation of H3K27 via inactivating phosphorylation of the transcription regulator EZH2 at serine 21, leading to the sustained expression of antiapoptotic genes, including IGF1, B cell CLL/lymphoma 2 (BCL2), and hypoxia inducible factor 1, α subunit (HIF1A). Pharmacological and genetic inhibition of the IGF-1R/PI3K/AKT pathway reversed CAM-DR by promoting EZH2 dephosphorylation and H3K27 hypermethylation both in vitro and in refractory murine myeloma models. Together, our findings identify and characterize an epigenetic mechanism that underlies CAM-DR and suggest that kinase inhibitors to counteract EZH2 phosphorylation should be included in combination chemotherapy to increase therapeutic index. PMID:26517694

  13. NEK2 mediates ALDH1A1-dependent drug resistance in multiple myeloma

    PubMed Central

    Xia, Jiliang; Gu, Zhimin; Wendlandt, Erik; Zhan, Xin; Janz, Siegfried; Tricot, Guido; Zhan, Fenghuang

    2014-01-01

    We reported previously that increased expression of aldehyde dehydrogenase 1 (ALDH1) in multiple myeloma (MM) is a marker of tumor-initiating cells (TICs) that is further associated with chromosomal instability (CIN). Here we demonstrate that member A1 of the ALDH1 family of proteins, ALDH1A1, is most abundantly expressed in myeloma. Enforced expression of ALDH1A1 in myeloma cells led to increased clonogenicity, tumor formation in mice, and resistance to myeloma drugs in vitro and in vivo. The mechanism underlying these phenotypes included the ALDH1A1-dependent activation of drug-efflux pump, ABCB1, and survival proteins, AKT and BCL2. Over expression of ALDH1A1 in myeloma cells led to increased mRNA and protein levels of NIMA-related kinase 2 (NEK2), whereas shRNA-mediated knock down of NEK2 decreased drug efflux pump activity and drug resistance. The activation of NEK2 in myeloma cells relied on the ALDH1A1-dependent generation of the retinoid X receptor α (RXRα) ligand, 9-cis retinoic acid (9CRA) – not the retinoic acid receptor α (RARα) ligand, all-trans retinoic acid (ATRA). These findings implicate the ALDH1A1-RXRα-NEK2 pathway in drug resistance and disease relapse in myeloma and suggest that specific inhibitors of ALDH1A1 are worthy of consideration for clinical development of new approaches to overcome drug resistance in myeloma. PMID:25230277

  14. Phosphorylation-mediated EZH2 inactivation promotes drug resistance in multiple myeloma

    PubMed Central

    Kikuchi, Jiro; Koyama, Daisuke; Wada, Taeko; Izumi, Tohru; Hofgaard, Peter O.; Bogen, Bjarne; Furukawa, Yusuke

    2015-01-01

    Alterations in chromatin modifications, such as histone methylation, have been suggested as mediating chemotherapy resistance in several cancer types; therefore, elucidation of the epigenetic mechanisms that underlie drug resistance may greatly contribute to the advancement of cancer therapies. In the present study, we identified histone H3–lysine 27 (H3K27) as a critical residue for epigenetic modification in multiple myeloma. We determined that abrogation of drug-induced H3K27 hypermethylation is associated with cell adhesion–mediated drug resistance (CAM-DR), which is the most important form of drug resistance, using a coculture system to evaluate stroma cell adhesion–dependent alterations in multiple myeloma cells. Cell adhesion counteracted anticancer drug–induced hypermethylation of H3K27 via inactivating phosphorylation of the transcription regulator EZH2 at serine 21, leading to the sustained expression of antiapoptotic genes, including IGF1, B cell CLL/lymphoma 2 (BCL2), and hypoxia inducible factor 1, α subunit (HIF1A). Pharmacological and genetic inhibition of the IGF-1R/PI3K/AKT pathway reversed CAM-DR by promoting EZH2 dephosphorylation and H3K27 hypermethylation both in vitro and in refractory murine myeloma models. Together, our findings identify and characterize an epigenetic mechanism that underlies CAM-DR and suggest that kinase inhibitors to counteract EZH2 phosphorylation should be included in combination chemotherapy to increase therapeutic index. PMID:26517694

  15. Public Health Risks of Multiple-Drug-Resistant Enterococcus spp. in Southeast Asia

    PubMed Central

    Lee, Sui Mae; Dykes, Gary A.; Rahman, Sadequr

    2015-01-01

    Enterococci rank as one of the leading causes of nosocomial infections, such as urinary tract infections, surgical wound infections, and endocarditis, in humans. These infections can be hard to treat because of the rising incidence of antibiotic resistance. Enterococci inhabiting nonhuman reservoirs appear to play a critical role in the acquisition and dissemination of antibiotic resistance determinants. The spread of antibiotic resistance has become a major concern in both human and veterinary medicine, especially in Southeast Asia, where many developing countries have poor legislation and regulations to control the supply and excessive use of antimicrobials. This review addresses the occurrence of antibiotic-resistant enterococci in Association of Southeast Asian Nations countries and proposes infection control measures that should be applied to limit the spread of multiple-drug-resistant enterococci. PMID:26150452

  16. Public Health Risks of Multiple-Drug-Resistant Enterococcus spp. in Southeast Asia.

    PubMed

    Daniel, Diane Sunira; Lee, Sui Mae; Dykes, Gary A; Rahman, Sadequr

    2015-09-01

    Enterococci rank as one of the leading causes of nosocomial infections, such as urinary tract infections, surgical wound infections, and endocarditis, in humans. These infections can be hard to treat because of the rising incidence of antibiotic resistance. Enterococci inhabiting nonhuman reservoirs appear to play a critical role in the acquisition and dissemination of antibiotic resistance determinants. The spread of antibiotic resistance has become a major concern in both human and veterinary medicine, especially in Southeast Asia, where many developing countries have poor legislation and regulations to control the supply and excessive use of antimicrobials. This review addresses the occurrence of antibiotic-resistant enterococci in Association of Southeast Asian Nations countries and proposes infection control measures that should be applied to limit the spread of multiple-drug-resistant enterococci.

  17. Analysis on the infections change and measures for the multiple drug-resistant bacteria of neurology.

    PubMed

    Zang, Wenju

    2016-05-01

    To analyze the bacterial infection situations and the separation situations of multiple drug-resistant bacteria of the neurology of Zhengzhou People's hospital from Feb. 2012 to Dec. 2014. The patients data of neurology were retrieved by means of the doctor workstation system. The infection sites, the classification and drug-resistant feature of bacteria were classified and summarized in Excel. Finally, Compared with the infection sites, the classification and drug-resistant feature of bacteria at different year. The data obtained use SPSS 19.0 software to do statistical analysis. The infection rate of bacteria in neurology from Year 2012 to 2014 declined from 4.99% to 3.41%. But the constitution of the infection sites of bacteria had no significant changes. Staphylococcus aureus still was the majority in the infections of gram-positive bacteria, and Escherichia coli was the majority in the infections of gram-negative bacteria, and there were no significant changes in the ranking of the past three years. The separation rate of Acihetobacter baumanii and Pseudomonas aeruginosa in gram-negative bacteria gradually escalated. There were definite efficiencies in the prevention and control of the bacterial infections in neurology in the past three years. But the situation of prevention and control was still severe at the same time. PMID:27383494

  18. Multiple drug resistant mechanisms against darunavir, amprenavir, and nelfinavir of HIV-1 PR

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqing; Dai, Qi; Xiu, Zhilong

    2013-02-01

    Acquired immune deficiency syndrome (AIDS) is a disease of the human immune system caused by the human immunodeficiency virus (HIV), which is infecting more humans and is expanding faster in the world. The illness interferes with the immune system, making people with AIDS much more likely to get infections, including opportunistic infections and tumors that do not affect people with working immune systems. HIV-1 PR is one of the major targets of anti-AIDS drug discovery. It is, therefore, necessary to develop some inhibitors against HIV-1 PR. In this work, we executed molecular dynamics (MDs) simulation of HIV-1 PR with drugs darunavir (DRV), amprenavir (APV), nelfinavir (NFV), and examined the resistant mechanism of L10I, G48V, I54V, and L90M mutations of this PR, aiming at designing promising drugs. The comparative analysis suggests that the existences of dodecahydroisoquinoline ring at P1' subsite, 4-aminophenylsulfonamide at P2' subsite, and bis-tetrahydrofuranylurethane at P2 subsite are helpful for maintaining the high affinity of the inhibitor for the protease and exhibiting high potency against multiple drug resistance (MDR) mutant protease.

  19. Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction?

    PubMed Central

    Janz, Siegfried; Zhan, Fenghuang; Tricot, Guido

    2015-01-01

    Multiple myeloma (MM) remains a largely incurable, genetically heterogeneous plasma-cell malignancy that contains – just like many other cancers – a small fraction of clonogenic stem cell-like cells that exhibit pronounced self-renewal and differentiation capacities, but also pronounced drug resistance. These MM stem cells (MMSCs) are a controversial but highly significant issue in myeloma research because, in our opinion, they are at the root of the failure of anti-neoplastic chemotherapies to transform myeloma to a manageable chronic disease. Several markers including CD138−, ALDH1+ and SP have been used to identify MMSCs; however, no single marker is reliable for the isolation of MMSC. Nonetheless, it is now known that MMSCs depend on self-renewal and pro-survival pathways, such as AKT, Wnt/β-catenin, Notch and Hedgehog, which can be targeted with novel drugs that have shown promise in pre-clinical and clinical trials. Here, we review the pathways of myeloma “stemness”, the interactions with the bone marrow microenvironment that promote drug resistance, and the obstacles that must be overcome to eradicate MMSCs and make myeloma a curable disease. PMID:26415231

  20. Antimicrobial (Drug) Resistance

    MedlinePlus

    ... Antimicrobial (Drug) Resistance Antibiotic-Resistant Mycobacterium tuberculosis (TB) Methicillin-Resistant Staphylococcus aureus (MRSA) Vancomycin-Resistant Enterococci (VRE) Multidrug-Resistant Neisseria ...

  1. Studies of acid resistance characteristics in multiple drug resistant Salmonella species isolated from tomatoes.

    PubMed

    Naushad, Z; Mishra, S H; Musaddiq, M; Ali, Y A

    2013-04-01

    Salmonella species found to have a great potential of causing a variety of diseases ranging from gastroenteritis to enteric fever. Salmonella have been isolated from all food, animals and also found in the vegetables such as tomatoes, spinach etc. Several out breaks of Salmonellosis have been associated with the consumption of raw tomatoes. This is because of the fact that Salmonella attaches to the surface of tomatoes and also present in the interior part due to geotropic transmission via contaminated soil irrigated with contaminated water. .During the life cycle, Salmonella encounters the various environments such as acidic environment (low pH). To overcome such factors, Salmonella has certain adaptable mechanisms. In present 'study total 200 samples of tomatoes were analyzed out of which 10 samples were found to contain Salmonella. All the 10 isolates were then subjected to the antibiotic susceptibility testing and were found to be resistant against several antibiotics. These were subjected to acid resistant tolerance study.

  2. Isolation of multiple drug-resistant enteric bacteria from feces of wild Western Lowland Gorilla (Gorilla gorilla gorilla) in Gabon.

    PubMed

    Mbehang Nguema, Pierre Philippe; Okubo, Torahiko; Tsuchida, Sayaka; Fujita, Shiho; Yamagiwa, Juichi; Tamura, Yutaka; Ushida, Kazunari

    2015-05-01

    Prevalence of drug-resistant bacteria in wildlife can reveal the actual level of anthropological burden on the wildlife. In this study, we isolated two multiple drug-resistant strains, GG6-2 and GG6-1-1, from 27 fresh feces of wild western lowland gorillas in Moukalaba-Doudou National Park, Gabon. Isolates were identified as Achromobacter xylosoxidans and Providencia sp., respectively. Minimum inhibitory concentrations of the following 12 drugs-ampicillin (ABPC), cefazolin (CEZ), cefotaxime (CTX), streptomycin (SM), gentamicin (GM), kanamycin (KM), tetracycline (TC), nalidixic acid (NA), ciprofloxacin (CPFX), colistin (CL), chloramphenicol (CP) and trimethoprim (TMP)-were determined. Isolate GG6-2 was resistant to all antimicrobials tested and highly resistant to CTX, SM, TC, NA and TMP. Isolate GG6-1-1 was resistant to ABPC, CEZ, TC, CL, CP and TMP.

  3. Anthracycline Nano-Delivery Systems to Overcome Multiple Drug Resistance: A Comprehensive Review

    PubMed Central

    Ma, Ping; Mumper, Russell J.

    2013-01-01

    Anthracyclines (doxorubicin, daunorubicin, and idarubicin) are very effective chemotherapeutic drugs to treat many cancers; however, the development of multiple drug resistance (MDR) is one of the major limitations for their clinical applications. Nano-delivery systems have emerged as the novel cancer therapeutics to overcome MDR. Up until now, many anthracycline nano-delivery systems have been developed and reported to effectively circumvent MDR both in-vitro and in-vivo, and some of these systems have even advanced to clinical trials, such as the HPMA-doxorubicin (HPMA-DOX) conjugate. Doxil, a DOX PEGylated liposome formulation, was developed and approved by FDA in 1995. Unfortunately, this formulation does not address the MDR problem. In this comprehensive review, more than ten types of developed anthracycline nano-delivery systems to overcome MDR and their proposed mechanisms are covered and discussed, including liposomes; polymeric micelles, conjugate and nanoparticles; peptide/protein conjugates; solid-lipid, magnetic, gold, silica, and cyclodextrin nanoparticles; and carbon nanotubes. PMID:23888183

  4. Anthracycline Nano-Delivery Systems to Overcome Multiple Drug Resistance: A Comprehensive Review.

    PubMed

    Ma, Ping; Mumper, Russell J

    2013-06-01

    Anthracyclines (doxorubicin, daunorubicin, and idarubicin) are very effective chemotherapeutic drugs to treat many cancers; however, the development of multiple drug resistance (MDR) is one of the major limitations for their clinical applications. Nano-delivery systems have emerged as the novel cancer therapeutics to overcome MDR. Up until now, many anthracycline nano-delivery systems have been developed and reported to effectively circumvent MDR both in-vitro and in-vivo, and some of these systems have even advanced to clinical trials, such as the HPMA-doxorubicin (HPMA-DOX) conjugate. Doxil, a DOX PEGylated liposome formulation, was developed and approved by FDA in 1995. Unfortunately, this formulation does not address the MDR problem. In this comprehensive review, more than ten types of developed anthracycline nano-delivery systems to overcome MDR and their proposed mechanisms are covered and discussed, including liposomes; polymeric micelles, conjugate and nanoparticles; peptide/protein conjugates; solid-lipid, magnetic, gold, silica, and cyclodextrin nanoparticles; and carbon nanotubes.

  5. Inhibition of thioredoxin 1 leads to apoptosis in drug-resistant multiple myeloma.

    PubMed

    Raninga, Prahlad V; Di Trapani, Giovanna; Vuckovic, Slavica; Bhatia, Maneet; Tonissen, Kathryn F

    2015-06-20

    Multiple myeloma (MM) is a hematological malignancy characterized by the aberrant accumulation of clonal plasma cells in the bone marrow. Despite recent advancement in anti-myeloma treatment, MM remains an incurable disease. This study showed higher intrinsic oxidative stress and higher Trx1 and TrxR1 protein levels in MM cells compared to normal cells. Drug-induced Trx1 (PX-12) and TrxR1 (Auranofin) inhibition disrupted redox homeostasis resulting in ROS-induced apoptosis in MM cells and a reduction in clonogenic activity. Knockdown of either Trx1 or TrxR1 reduced MM cell viability. Trx1 inhibition by PX-12 sensitized MM cells to undergo apoptosis in response to the NF-κβ inhibitors, BAY 11-7082 and curcumin. PX-12 treatment decreased the expression of the NF-κβ subunit p65 in MM cells. Bortezomib-resistant MM cells contained higher Trx1 protein levels compared to the parental cells and PX-12 treatment resulted in apoptosis. Thus, increased Trx1 enhances MM cell growth and survival and exerts resistance to NF-κβ inhibitors. Therefore inhibiting the thioredoxin system may be an effective therapeutic strategy to treat newly diagnosed as well as relapsed/refractory MM. PMID:25945832

  6. Inhibition of thioredoxin 1 leads to apoptosis in drug-resistant multiple myeloma

    PubMed Central

    Raninga, Prahlad V.; Di Trapani, Giovanna; Vuckovic, Slavica; Bhatia, Maneet; Tonissen, Kathryn F.

    2015-01-01

    Multiple myeloma (MM) is a hematological malignancy characterized by the aberrant accumulation of clonal plasma cells in the bone marrow. Despite recent advancement in anti-myeloma treatment, MM remains an incurable disease. This study showed higher intrinsic oxidative stress and higher Trx1 and TrxR1 protein levels in MM cells compared to normal cells. Drug-induced Trx1 (PX-12) and TrxR1 (Auranofin) inhibition disrupted redox homeostasis resulting in ROS-induced apoptosis in MM cells and a reduction in clonogenic activity. Knockdown of either Trx1 or TrxR1 reduced MM cell viability. Trx1 inhibition by PX-12 sensitized MM cells to undergo apoptosis in response to the NF-кβ inhibitors, BAY 11-7082 and curcumin. PX-12 treatment decreased the expression of the NF-кβ subunit p65 in MM cells. Bortezomib-resistant MM cells contained higher Trx1 protein levels compared to the parental cells and PX-12 treatment resulted in apoptosis. Thus, increased Trx1 enhances MM cell growth and survival and exerts resistance to NF-кβ inhibitors. Therefore inhibiting the thioredoxin system may be an effective therapeutic strategy to treat newly diagnosed as well as relapsed/refractory MM. PMID:25945832

  7. Inhibition of thioredoxin 1 leads to apoptosis in drug-resistant multiple myeloma.

    PubMed

    Raninga, Prahlad V; Di Trapani, Giovanna; Vuckovic, Slavica; Bhatia, Maneet; Tonissen, Kathryn F

    2015-06-20

    Multiple myeloma (MM) is a hematological malignancy characterized by the aberrant accumulation of clonal plasma cells in the bone marrow. Despite recent advancement in anti-myeloma treatment, MM remains an incurable disease. This study showed higher intrinsic oxidative stress and higher Trx1 and TrxR1 protein levels in MM cells compared to normal cells. Drug-induced Trx1 (PX-12) and TrxR1 (Auranofin) inhibition disrupted redox homeostasis resulting in ROS-induced apoptosis in MM cells and a reduction in clonogenic activity. Knockdown of either Trx1 or TrxR1 reduced MM cell viability. Trx1 inhibition by PX-12 sensitized MM cells to undergo apoptosis in response to the NF-κβ inhibitors, BAY 11-7082 and curcumin. PX-12 treatment decreased the expression of the NF-κβ subunit p65 in MM cells. Bortezomib-resistant MM cells contained higher Trx1 protein levels compared to the parental cells and PX-12 treatment resulted in apoptosis. Thus, increased Trx1 enhances MM cell growth and survival and exerts resistance to NF-κβ inhibitors. Therefore inhibiting the thioredoxin system may be an effective therapeutic strategy to treat newly diagnosed as well as relapsed/refractory MM.

  8. SoxRS-Mediated Lipopolysaccharide Modification Enhances Resistance against Multiple Drugs in Escherichia coli▿

    PubMed Central

    Lee, Joon-Hee; Lee, Kang-Lok; Yeo, Won-Sik; Park, Su-Jin; Roe, Jung-Hye

    2009-01-01

    Lipopolysaccharide (LPS) is a major constituent of the outer membrane of gram-negative bacteria that serves as a barrier against harmful molecules, including antibiotics. The waaYZ locus that encodes the LPS core biosynthetic function in Escherichia coli was found to be induced strongly by superoxide generators but not by H2O2, ethanol, or heat shock. This induction was dependent on SoxRS, a superoxide and nitric oxide sensing system, through a soxbox in the waaY promoter that binds SoxS. A ΔwaaYZ mutant became more sensitive to some superoxide generators, and the activation of SoxR by these drugs became more sensitized in the mutant. Through phenotypic microarray analysis, we found that the mutant became sensitive to a wide variety of chemicals not restricted to oxidizing agents. We found that the mutant is under envelope stress and is altered in LPS composition, as monitored by the level of σE activation and changes in the electrophoretic mobility of LPS, respectively. waaY expression was also regulated by MarA (multiple-antibiotic resistance regulator), which shares a binding site (soxbox) with SoxS, and was induced by salicylate, a nonoxidative compound. These results demonstrate a novel way of protecting gram-negative bacteria against various compounds by modifying LPS, possibly through phosphorylation. Since either oxidant or nonoxidant compounds elicit resistance toward themselves and other toxic drugs, this mechanism could serve as an efficient way for pathogenic bacteria to enhance survival during antibiotic treatment within an oxidant-rich host immune environment. PMID:19376854

  9. [Resistance to antituberculous drugs].

    PubMed

    Veziris, N; Cambau, E; Sougakoff, W; Robert, J; Jarlier, V

    2005-08-01

    Mycobacteria responsible for tuberculosis (M. tuberculosis, M. bovis, M. africanum) are susceptible to a very small number of antibiotics. As soon as these drugs were used in humans all gave rise to the selection of resistant mycobacteria. Study of the mechanisms of acquired resistance, with the help of the genetics of mycobacteria, led to a more accurate understanding of the mode of action of antituberculous drugs. The antibiotics isoniazid, pyrazinamide, ethionamide and ethambutol are mycobacteria-specific because they inhibit the synthesis of mycolic acids, which are specific constituants of the bacterial wall. Mutations responsible for resistance to these drugs affect genes coding for activator enzymes (katg for isoniazid, pncA for pyrazinamide) or genes coding for their target (inhA for isoniazid/ethionamide, embB for ethambutol). With rifamycins, aminosides and quinolones, mechanisms of action and resistance are the same for mycobacteria as for non-mycobacterial organisms. No plasmid or resistance transposon has been described in M. tuberculosis. Currently a test for the quick detection of resistance to rifampicin is widely available but in the future DNA chips may allow the simultaneous detection of multiple resistances. Monitoring of antituberculous drugs shows that in France the prevalence of multiresistance ( resistance to both isoniazid and rifampicin) is 0.5%, primary resistance (before treatment) is 9%, and secondary resistance (after treatment) is 16%.

  10. In vitro additive effect of imipenem combined with vancomycin against multiple-drug resistant, coagulase-negative Staphylococci.

    PubMed

    Traub, W H; Spohr, M; Bauer, D

    1986-09-01

    Imipenem combined with vancomycin resulted in a marked additive effect in vitro against 9 clinical isolates of multiple-drug resistant (MDR), coagulase-negative staphylococci, including strains resistant against imipenem. The additive effect was documented with the aid of checkerboard MIC determinations and with time kill curve experiments. In contrast, imipenem combined with vancomycin merely yielded weak additive or indifferent effects against 10 MDR isolates of Staphylococcus aureus, all of which were susceptible to imipenem.

  11. Isolation of multiple drug-resistant enteric bacteria from feces of wild Western Lowland Gorilla (Gorilla gorilla gorilla) in Gabon

    PubMed Central

    MBEHANG NGUEMA, Pierre Philippe; OKUBO, Torahiko; TSUCHIDA, Sayaka; FUJITA, Shiho; YAMAGIWA, Juichi; TAMURA, Yutaka; USHIDA, Kazunari

    2015-01-01

    Prevalence of drug-resistant bacteria in wildlife can reveal the actual level of anthropological burden on the wildlife. In this study, we isolated two multiple drug-resistant strains, GG6-2 and GG6-1-1, from 27 fresh feces of wild western lowland gorillas in Moukalaba-Doudou National Park, Gabon. Isolates were identified as Achromobacter xylosoxidans and Providencia sp., respectively. Minimum inhibitory concentrations of the following 12 drugs—ampicillin (ABPC), cefazolin (CEZ), cefotaxime (CTX), streptomycin (SM), gentamicin (GM), kanamycin (KM), tetracycline (TC), nalidixic acid (NA), ciprofloxacin (CPFX), colistin (CL), chloramphenicol (CP) and trimethoprim (TMP)—were determined. Isolate GG6-2 was resistant to all antimicrobials tested and highly resistant to CTX, SM, TC, NA and TMP. Isolate GG6-1-1 was resistant to ABPC, CEZ, TC, CL, CP and TMP. PMID:25649412

  12. Improving cancer treatment with cyclotron produced radionuclides. [Multiple Drug Resistance (MDR)

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1990-10-15

    The overall objective of this work was to promote nuclear medicine applications in oncology. This is being done by improving the scientific basis of diagnosis, treatment and treatment follow-up with cyclotron-produced tracers. For diagnostic use, positron-emitting isotopes such as Ga-66 and I-124 are being used. Initial studies on the characterization of He-4 particle energies required for Ga-66 production have been completed. Parameters for I-124 radiolabelling of monoclonal antibodies have been determined; the labelled antibodies have been used in animal studies using positron emission tomography (PET) to quantify antibody concentration within tumors in vivo. Imaging physics studies have demonstrated that I-124 can be quantitatively imaged by PET, even in the presence of 100-told greater concentrations of I-131. Measurement of concentrations of label in vivo has been accomplished in nuclei mice bearing neuroblastoma tumors and nude rats bearing human ovarian cancer cells. These studies have major implications for both the quantification of dosimetry and quantification kinetic assessment of anti-tumor antibody localization in vivo. For treatment of tumors, F-18 has been incorporated in 2-fluoro-2-deoxy glucose and 5-fluoro uridine, and O-15 labelled water has been produced. Reagents incorporating C-11 and N-13 are under development. In a related area, C-14 labelled colchicine is being studied as a means of assaying cells for multiple drug resistance (MDR). Cells expressing MDR are shown to retain significantly less C-14 colchiene. This suggest that colchiene retention may be of useful probe in modelling and studying MDR development in human tumors. The precursor required for producing C-11 colchicine has also been synthesized. 11 refs. (MHB)

  13. Bitter melon extracts enhance the activity of chemotherapeutic agents through the modulation of multiple drug resistance.

    PubMed

    Kwatra, Deep; Venugopal, Anand; Standing, David; Ponnurangam, Sivapriya; Dhar, Animesh; Mitra, Ashim; Anant, Shrikant

    2013-12-01

    Recently, we demonstrated that extracts of bitter melon (BME) can be used as a preventive/therapeutic agent in colon cancers. Here, we determined BME effects on anticancer activity and bioavailability of doxorubicin (DOX) in colon cancer cells. BME enhanced the effect of DOX on cell proliferation and sensitized the cells toward DOX upon pretreatment. Furthermore, there was both increased drug uptake and reduced drug efflux. We also observed a reduction in the expression of multidrug resistance conferring proteins (MDRCP) P-glycoprotein, MRP-2, and BCRP. Further BME suppressed DOX efflux in MDCK cells overexpressing the three efflux proteins individually, suggesting that BME is a potent inhibitor of MDR function. Next, we determined the effect of BME on PXR, a xenobiotic sensing nuclear receptor and a transcription factor that controls the expression of the three MDR genes. BME suppressed PXR promoter activity thereby suppressing its expression. Finally, we determined the effect of AMPK pathway on drug efflux because we have previously demonstrated that BME affects the pathway. However, inhibiting AMPK did not affect drug resistance, suggesting that BME may use different pathways for the anticancer and MDR modulating activities. Together, these results suggest that BME can enhance the bioavailability and efficacy of conventional chemotherapy.

  14. NANOMEDICINE: will it offer possibilities to overcome multiple drug resistance in cancer?

    PubMed

    Friberg, Sten; Nyström, Andreas M

    2016-03-09

    This review is written with the purpose to review the current nanomedicine literature and provide an outlook on the developments in utilizing nanoscale drug constructs in treatment of solid cancers as well as in the potential treatment of multi-drug resistant cancers. No specific design principles for this review have been utilized apart from our active choice to avoid results only based on in vitro studies. Few drugs based on nanotechnology have progressed to clinical trials, since most are based only on in vitro experiments which do not give the necessary data for the research to progress towards pre-clinical studies. The area of nanomedicine has indeed spark much attention and holds promise for improved future therapeutics in the treatment of solid cancers. However, despite much investment few targeted therapeutics have successfully progressed to early clinical trials, indicating yet again that the human body is complicated and that much more understanding of the fundamentals of receptor interactions, physics of nanomedical constructs and their circulation in the body is indeed needed. We believe that nanomedical therapeutics can allow for more efficient treatments of resistant cancers, and may well be a cornerstone for RNA based therapeutics in the future given their general need for shielding from the harsh environment in the blood stream.

  15. NANOMEDICINE: will it offer possibilities to overcome multiple drug resistance in cancer?

    PubMed

    Friberg, Sten; Nyström, Andreas M

    2016-01-01

    This review is written with the purpose to review the current nanomedicine literature and provide an outlook on the developments in utilizing nanoscale drug constructs in treatment of solid cancers as well as in the potential treatment of multi-drug resistant cancers. No specific design principles for this review have been utilized apart from our active choice to avoid results only based on in vitro studies. Few drugs based on nanotechnology have progressed to clinical trials, since most are based only on in vitro experiments which do not give the necessary data for the research to progress towards pre-clinical studies. The area of nanomedicine has indeed spark much attention and holds promise for improved future therapeutics in the treatment of solid cancers. However, despite much investment few targeted therapeutics have successfully progressed to early clinical trials, indicating yet again that the human body is complicated and that much more understanding of the fundamentals of receptor interactions, physics of nanomedical constructs and their circulation in the body is indeed needed. We believe that nanomedical therapeutics can allow for more efficient treatments of resistant cancers, and may well be a cornerstone for RNA based therapeutics in the future given their general need for shielding from the harsh environment in the blood stream. PMID:26955956

  16. Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens

    PubMed Central

    Chang, Hsiao-Han; Cohen, Ted; Grad, Yonatan H.; Hanage, William P.; O'Brien, Thomas F.

    2015-01-01

    SUMMARY Many studies report the high prevalence of multiply drug-resistant (MDR) strains. Because MDR infections are often significantly harder and more expensive to treat, they represent a growing public health threat. However, for different pathogens, different underlying mechanisms are traditionally used to explain these observations, and it is unclear whether each bacterial taxon has its own mechanism(s) for multidrug resistance or whether there are common mechanisms between distantly related pathogens. In this review, we provide a systematic overview of the causes of the excess of MDR infections and define testable predictions made by each hypothetical mechanism, including experimental, epidemiological, population genomic, and other tests of these hypotheses. Better understanding the cause(s) of the excess of MDR is the first step to rational design of more effective interventions to prevent the origin and/or proliferation of MDR. PMID:25652543

  17. Multiple drug resistance patterns and plasmid profiles of non-typhi salmonellae in Turkey.

    PubMed Central

    Yildirmak, T.; Yazgan, A.; Ozcengiz, G.

    1998-01-01

    A total of 259 clinical isolates of nonrepetitive non-typhi salmonellae (NTS) were examined for antibiotic resistance patterns and plasmid content. The antibiotics used were amoxicillin-clavulanic acid (AMC), ampicillin (AM), aztreonam (ATM), carbenicillin (CB), cefixime (CFM), cefotaxime (CTX), cefoxitin (FOX), ceftazidime (CAZ), ceftriaxone (CRO), chloramphenicol (C), ciprofloxacin (CIP), gentamicin (GM), imipenem (IPM), ofloxacin (OFX), tetracycline (TE), trimethoprim-sulfomethoxazole (SXT). Multi-drug resistant (MDR) strains comprised 19.3% of the total isolates (50/259) and almost all were S. typhimurium (49/50). Fifteen different patterns of resistance was observed, AM/CB/C/AMC/TE and AM/CB/C/AMC/SXT/GM/CTX/CRO/CAZ/CFM/ATM being the most frequent patterns. Twenty-eight out of 50 multiresistant isolates were found to contain at least one plasmid (mean five) and the size of the plasmids ranged between 1.7 and 158 kb. Plasmid profiles of multiresistant NTS strains were heterogenous as 21 different profiles were detected in a total of 28 plasmid-bearing isolates. No direct correlation was established between antibiotic resistance patterns and plasmid profiles. PMID:9825781

  18. Co-amplification of double minute chromosomes, multiple drug resistance, and cell surface P-glycoprotein in DNA-mediated transformants of mouse cells.

    PubMed Central

    Robertson, S M; Ling, V; Stanners, C P

    1984-01-01

    A genetic system comprised of mammalian cell mutants which demonstrate concomitant resistance to a number of unrelated drugs has been described previously. The resistance is due to reduced cell membrane permeability and is correlated with the presence of large amounts of a plasma membrane glycoprotein termed P-glycoprotein. This system could represent a model for multiple drug resistance which develops in cancer patients treated with chemotherapeutic drugs. We demonstrate here that the multiple drug resistance phenotype can be transferred to mouse cells with DNA from a drug-resistant mutant and then amplified quantitatively by culture in media containing increasing concentrations of drug. The amount of P-glycoprotein was correlated directly with the degree of drug resistance in the transformants and amplified transformants. In addition, the drug resistance and expression of P-glycoprotein of the transformants were unstable and associated quantitatively with the number of double minute chromosomes. We suggest that the gene for multiple drug resistance and P-glycoprotein is contained in these extrachromosomal particles and is amplified by increases in double minute chromosome number. The potential use of this system for manipulation of mammalian genes in general is discussed. Images PMID:6144041

  19. Development, Maintenance, and Reversal of Multiple Drug Resistance: At the Crossroads of TFPI1, ABC Transporters, and HIF1α

    PubMed Central

    Arnason, Terra; Harkness, Troy

    2015-01-01

    Early detection and improved therapies for many cancers are enhancing survival rates. Although many cytotoxic therapies are approved for aggressive or metastatic cancer; response rates are low and acquisition of de novo resistance is virtually universal. For decades; chemotherapeutic treatments for cancer have included anthracyclines such as Doxorubicin (DOX); and its use in aggressive tumors appears to remain a viable option; but drug resistance arises against DOX; as for all other classes of compounds. Our recent work suggests the anticoagulant protein Tissue Factor Pathway Inhibitor 1α (TFPI1α) plays a role in driving the development of multiple drug resistance (MDR); but not maintenance; of the MDR state. Other factors; such as the ABC transporter drug efflux pumps MDR-1/P-gp (ABCB1) and BCRP (ABCG2); are required for MDR maintenance; as well as development. The patient population struggling with therapeutic resistance specifically requires novel treatment options to resensitize these tumor cells to therapy. In this review we discuss the development, maintenance, and reversal of MDR as three distinct phases of cancer biology. Possible means to exploit these stages to reverse MDR will be explored. Early molecular detection of MDR cancers before clinical failure has the potential to offer new approaches to fighting MDR cancer. PMID:26501324

  20. Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria

    NASA Astrophysics Data System (ADS)

    Chaurasia, Akhilesh K.; Thorat, Nanasaheb D.; Tandon, Anshula; Kim, Jin-Hahn; Park, Sung Ha; Kim, Kyeong Kyu

    2016-09-01

    Antibiotic resistant bacteria not only affect human health and but also threatens the safety in hospitals and among communities. However, the emergence of drug resistant bacteria is inevitable due to evolutionary selection as a consequence of indiscriminate antibiotic usage. Therefore, it is necessary to develop a novel strategy by which pathogenic bacteria can be eliminated without triggering resistance. We propose a novel magnetic nanoparticle-based physical treatment against pathogenic bacteria, which blocks biofilm formation and kills bacteria. In this approach, multiple drug resistant Staphylococcus aureus USA300 and uropathogenic Escherichia coli CFT073 are trapped to the positively charged magnetic core-shell nanoparticles (MCSNPs) by electrostatic interaction. All the trapped bacteria can be completely killed within 30 min owing to the loss of membrane potential and dysfunction of membrane-associated complexes when exposed to the radiofrequency current. These results indicate that MCSNP-based physical treatment can be an alternative antibacterial strategy without leading to antibiotic resistance, and can be used for many purposes including environmental and therapeutic applications.

  1. Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria

    PubMed Central

    Chaurasia, Akhilesh K.; Thorat, Nanasaheb D.; Tandon, Anshula; Kim, Jin-Hahn; Park, Sung Ha; Kim, Kyeong Kyu

    2016-01-01

    Antibiotic resistant bacteria not only affect human health and but also threatens the safety in hospitals and among communities. However, the emergence of drug resistant bacteria is inevitable due to evolutionary selection as a consequence of indiscriminate antibiotic usage. Therefore, it is necessary to develop a novel strategy by which pathogenic bacteria can be eliminated without triggering resistance. We propose a novel magnetic nanoparticle-based physical treatment against pathogenic bacteria, which blocks biofilm formation and kills bacteria. In this approach, multiple drug resistant Staphylococcus aureus USA300 and uropathogenic Escherichia coli CFT073 are trapped to the positively charged magnetic core-shell nanoparticles (MCSNPs) by electrostatic interaction. All the trapped bacteria can be completely killed within 30 min owing to the loss of membrane potential and dysfunction of membrane-associated complexes when exposed to the radiofrequency current. These results indicate that MCSNP-based physical treatment can be an alternative antibacterial strategy without leading to antibiotic resistance, and can be used for many purposes including environmental and therapeutic applications. PMID:27670157

  2. Hemibody irradiation. An effective second-line therapy in drug-resistance multiple myeloma

    SciTech Connect

    Singer, C.R.; Tobias, J.S.; Giles, F.; Rudd, G.N.; Blackman, G.M.; Richards, J.D.

    1989-06-15

    The authors report the results of treatment of 41 patients with melphalan-resistant multiple myeloma using single half-body irradiation (HBI) or double half-body irradiation (DHBI). Patients were grouped using prognostic classification reported by the Medical Research Council. Patients in group I and II showed the best response to therapy with reduction in serum of urinary paraprotein and improvement in symptoms, most notably a marked reduction in bone pain. In these groups five patients have survived over 2 years after therapy. The therapeutic response appeared better in those patients who received DHBI as opposed to those whom treated with single HBI. Patients in group III did not achieve prolonged survival but effective relief of bone pain was a consistent finding in these patients also. Thus HBI represents an alternative to combination chemotherapy as second-line treatment of patients with melphalan-resistant multiple myeloma. A comparative study of HBI versus combination chemotherapy is now indicated to establish which therapeutic approach is most effective.

  3. Emergence of Staphylococcus aureus carrying multiple drug resistance genes on a plasmid encoding exfoliative toxin B.

    PubMed

    Hisatsune, Junzo; Hirakawa, Hideki; Yamaguchi, Takayuki; Fudaba, Yasuyuki; Oshima, Kenshiro; Hattori, Masahira; Kato, Fuminori; Kayama, Shizuo; Sugai, Motoyuki

    2013-12-01

    We report the complete nucleotide sequence and analysis of pETBTY825, a Staphylococcus aureus TY825 plasmid encoding exfoliative toxin B (ETB). S. aureus TY825 is a clinical isolate obtained from an impetigo patient in 2002. The size of pETBTY825, 60.6 kbp, was unexpectedly larger than that of the archetype pETBTY4 (∼30 kbp). Genomic comparison of the plasmids shows that pETBTY825 has the archetype pETBTY4 as the backbone and has a single large extra DNA region of 22.4 kbp. The extra DNA region contains genes for resistance to aminoglycoside [aac(6')/aph(2″)], macrolide (msrA), and penicillin (blaZ). A plasmid deletion experiment indicated that these three resistance elements were functionally active. We retrospectively examined the resistance profile of the clinical ETB-producing S. aureus strains isolated in 1977 to 2007 using a MIC determination with gentamicin (GM), arbekacin (ABK), and erythromycin (EM) and by PCR analyses for aac(6')/aph(2″) and msrA using purified plasmid preparations. The ETB-producing S. aureus strains began to display high resistance to GM, which was parallel with the detection of aac(6')/aph(2″) and mecA, after 1990. Conversely, there was no significant change in the ABK MIC during the testing period, although it had a tendency to slightly increase. After 2001, isolates resistant to EM significantly increased; however, msrA was hardly detected in ETB-producing S. aureus strains, and only five isolates were positive for both aac(6')/aph(2″) and msrA. In this study, we report the emergence of a fusion plasmid carrying the toxin gene etb and drug resistance genes. Prevalence of the pETBTY825 carrier may further increase the clinical threat, since ETB-producing S. aureus is closely related to more severe impetigo or staphylococcal scalded-skin syndrome (SSSS), which requires a general antimicrobial treatment. PMID:24080652

  4. Emergence of Staphylococcus aureus Carrying Multiple Drug Resistance Genes on a Plasmid Encoding Exfoliative Toxin B

    PubMed Central

    Hisatsune, Junzo; Hirakawa, Hideki; Yamaguchi, Takayuki; Fudaba, Yasuyuki; Oshima, Kenshiro; Hattori, Masahira; Kato, Fuminori; Kayama, Shizuo

    2013-01-01

    We report the complete nucleotide sequence and analysis of pETBTY825, a Staphylococcus aureus TY825 plasmid encoding exfoliative toxin B (ETB). S. aureus TY825 is a clinical isolate obtained from an impetigo patient in 2002. The size of pETBTY825, 60.6 kbp, was unexpectedly larger than that of the archetype pETBTY4 (∼30 kbp). Genomic comparison of the plasmids shows that pETBTY825 has the archetype pETBTY4 as the backbone and has a single large extra DNA region of 22.4 kbp. The extra DNA region contains genes for resistance to aminoglycoside [aac(6′)/aph(2″)], macrolide (msrA), and penicillin (blaZ). A plasmid deletion experiment indicated that these three resistance elements were functionally active. We retrospectively examined the resistance profile of the clinical ETB-producing S. aureus strains isolated in 1977 to 2007 using a MIC determination with gentamicin (GM), arbekacin (ABK), and erythromycin (EM) and by PCR analyses for aac(6′)/aph(2″) and msrA using purified plasmid preparations. The ETB-producing S. aureus strains began to display high resistance to GM, which was parallel with the detection of aac(6′)/aph(2″) and mecA, after 1990. Conversely, there was no significant change in the ABK MIC during the testing period, although it had a tendency to slightly increase. After 2001, isolates resistant to EM significantly increased; however, msrA was hardly detected in ETB-producing S. aureus strains, and only five isolates were positive for both aac(6′)/aph(2″) and msrA. In this study, we report the emergence of a fusion plasmid carrying the toxin gene etb and drug resistance genes. Prevalence of the pETBTY825 carrier may further increase the clinical threat, since ETB-producing S. aureus is closely related to more severe impetigo or staphylococcal scalded-skin syndrome (SSSS), which requires a general antimicrobial treatment. PMID:24080652

  5. Emergence of Staphylococcus aureus carrying multiple drug resistance genes on a plasmid encoding exfoliative toxin B.

    PubMed

    Hisatsune, Junzo; Hirakawa, Hideki; Yamaguchi, Takayuki; Fudaba, Yasuyuki; Oshima, Kenshiro; Hattori, Masahira; Kato, Fuminori; Kayama, Shizuo; Sugai, Motoyuki

    2013-12-01

    We report the complete nucleotide sequence and analysis of pETBTY825, a Staphylococcus aureus TY825 plasmid encoding exfoliative toxin B (ETB). S. aureus TY825 is a clinical isolate obtained from an impetigo patient in 2002. The size of pETBTY825, 60.6 kbp, was unexpectedly larger than that of the archetype pETBTY4 (∼30 kbp). Genomic comparison of the plasmids shows that pETBTY825 has the archetype pETBTY4 as the backbone and has a single large extra DNA region of 22.4 kbp. The extra DNA region contains genes for resistance to aminoglycoside [aac(6')/aph(2″)], macrolide (msrA), and penicillin (blaZ). A plasmid deletion experiment indicated that these three resistance elements were functionally active. We retrospectively examined the resistance profile of the clinical ETB-producing S. aureus strains isolated in 1977 to 2007 using a MIC determination with gentamicin (GM), arbekacin (ABK), and erythromycin (EM) and by PCR analyses for aac(6')/aph(2″) and msrA using purified plasmid preparations. The ETB-producing S. aureus strains began to display high resistance to GM, which was parallel with the detection of aac(6')/aph(2″) and mecA, after 1990. Conversely, there was no significant change in the ABK MIC during the testing period, although it had a tendency to slightly increase. After 2001, isolates resistant to EM significantly increased; however, msrA was hardly detected in ETB-producing S. aureus strains, and only five isolates were positive for both aac(6')/aph(2″) and msrA. In this study, we report the emergence of a fusion plasmid carrying the toxin gene etb and drug resistance genes. Prevalence of the pETBTY825 carrier may further increase the clinical threat, since ETB-producing S. aureus is closely related to more severe impetigo or staphylococcal scalded-skin syndrome (SSSS), which requires a general antimicrobial treatment.

  6. A Novel Hypoxia-Selective Epigenetic Agent RRx-001 Triggers Apoptosis and Overcomes Drug Resistance in Multiple Myeloma Cells

    PubMed Central

    Das, Deepika Sharma; Ray, Arghya; Das, Abhishek; Song, Yan; Oronsky, Bryan; Richardson, Paul; Scicinski, Jan; Chauhan, Dharminder; Anderson, Kenneth C.

    2016-01-01

    The hypoxic bone-marrow (BM) microenvironment confers growth/survival and drug-resistance in multiple myeloma (MM) cells. Novel therapies targeting the MM cell in its hypoxic-BM milieu may overcome drug resistance. Recent studies led to the development of a novel molecule RRx-001 with hypoxia-selective epigenetic and Nitric Oxide-donating properties. Here we demonstrate that RRx-001 decreases the viability of MM cell lines and primary patient cells, as well as overcomes drug-resistance. RRx-001 inhibits MM cell growth in the presence of BM stromal cells. RRx-001 induced apoptosis is associated with: 1) activation of caspases; 2) release of ROS and nitrogen-species; 3) induction of DNA damage via ATM/γ-H2AX; and 4) decrease in DNA methytransferase (DNMT) and global methylation. RNA interference study shows a predominant role of DNMT1 in MM cell survival versus DNMT3a or DNMT3b. Deubiquitylating enzyme USP7 stimulates DNMT1 activity; and conversely, USP7-siRNA reduced DNMT1 activity and decreased MM cell viability. RRx-001 plus USP7 inhibitor P5091 triggered synergistic anti-MM activity. MM xenograft studies show that RRx-001 is well tolerated, inhibits tumor growth, and enhances survival. Combining RRx-001 with pomalidomide, bortezomib or SAHA induces synergistic anti-MM activity. Our results provide the rationale for translation of RRx-001, either alone or in combination, to clinical evaluation in MM. PMID:27118403

  7. Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh

    PubMed Central

    2011-01-01

    Background Spices traditionally have been used as coloring agents, flavoring agents, preservatives, food additives and medicine in Bangladesh. The present work aimed to find out the antimicrobial activity of natural spices on multi-drug resistant Escherichia coli isolates. Methods Anti-bacterial potentials of six crude plant extracts (Allium sativum, Zingiber officinale, Allium cepa, Coriandrum sativum, Piper nigrum and Citrus aurantifolia) were tested against five Escherichia coli isolated from potable water sources at kushtia, Bangladesh. Results All the bacterial isolates were susceptible to undiluted lime-juice. None of them were found to be susceptible against the aqueous extracts of garlic, onion, coriander, pepper and ginger alone. However, all the isolates were susceptible when subjected to 1:1:1 aqueous extract of lime, garlic and ginger. The highest inhibition zone was observed with lime (11 mm). Conclusion Natural spices might have anti-bacterial activity against enteric pathogens and could be used for prevention of diarrheal diseases. Further evaluation is necessary. PMID:21406097

  8. Nelfinavir targets multiple drug resistance mechanisms to increase the efficacy of doxorubicin in MCF-7/Dox breast cancer cells.

    PubMed

    Chakravarty, Geetika; Mathur, Aditi; Mallade, Pallavi; Gerlach, Samantha; Willis, Joniece; Datta, Amrita; Srivastav, Sudesh; Abdel-Mageed, Asim B; Mondal, Debasis

    2016-05-01

    Development of multidrug resistance (MDR) remains a significant problem in cancer chemotherapy and underscores the importance of using chemosensitizers. Well known MDR mechanisms include: (i) upregulation of drug-efflux; (ii) increased signaling via AKT; and (iii) decreased apoptosis. Therefore, chemosensitizers should target multiple resistance mechanisms. We investigated the efficacy of nelfinavir (NFV), a clinically approved anti-HIV drug, in increasing doxorubicin (DOX) toxicity in a MDR breast cancer cell line, MCF-7/Dox. As compared to parental MCF-7 cells, the MCF-7/Dox were 15-20 fold more resistant to DOX-induced cytotoxicity at 48 h post-exposure (DOX IC50 = 1.8 μM vs. 32.4 μM). Coexposures to NFV could significantly (p < 0.05) decrease DOX-IC50 in MCF-7/Dox cells. Multiple exposures to physiologic concentrations of NFV (2.25 μM or 6.75 μM) decreased DOX-IC50 by 21-fold and 50-fold, respectively. Interestingly, although single exposure to NFV transiently induced P-glycoprotein (P-gp) levels, multiple treatments with NFV inhibited both P-gp expression and efflux function, which increased intracellular DOX concentrations. Single exposure to NFV augmented the markers of cell-survival (AKT) and autophagy (LC3-II), whereas multiple exposures enabled suppression of both total AKT (t-AKT) and insulin like growth factor-1 (IGF-1)-induced phosphorylated AKT (p-AKT) levels. Multiple exposures to NFV also resulted in increased unfolded protein response (UPR) transducers, e.g. Grp78, p-PERK, p-eIF2α, and ATF-4; and endoplasmic reticulum (ER) stress induced death sensors, e.g. CHOP & TRIB-3. Multiple exposures to NFV also abrogated the mitogenic effects of IGF-1. In mice carrying MCF-7/Dox tumor xenografts, intraperitoneal (i.p.) injection of NFV (20 mg/kg/day) and DOX (2 mg/kg/twice/wk) decreased tumor growth more significantly (p < 0.01) than either agent alone. Immunohistochemical (IHC) analysis revealed decreased p-AKT and Ki-67 levels. Thus

  9. Treatment of post-burns bacterial infections by Fenton reagent, particularly the ubiquitous multiple drug resistant Pseudomonas spp.

    PubMed

    Ahmad, S I; Iranzo, O G

    2003-10-01

    Post-burn microbial infections are a major problem in burns, and in cases of third degree burns, the survival of patients can depend not only upon the severity but also upon the extent and the type of infections. If proper measures are not employed, patients may suffer from opportunistic bacterial attacks, which can vary from simple infection, such as those easily treatable by antibiotics, to more complicated types, which may have natural or acquired resistance to drugs. Infection by multiple drug resistant (MDR) bacteria can create further complexity to the treatment. It is proposed that a combination of diluted hydrogen peroxide (H(2)O(2)) and ferrous sulphate (FeSO(4)), which generates hydroxyl radicals (*OH) via Fenton reaction, can effectively be used for the treatment of post-burns bacterial infections. It should be particularly useful for the ubiquitous opportunistic pathogen, Pseudomonas aeruginosa, known to be notoriously resistant to various antibiotics. This reactive oxygen species (ROS)-induced inactivation of the bacterial skin infections may be of particular importance in Third World countries where the incidence of burns and post-burns infections by MDR bacteria (due to the indiscriminate use of antibiotics, lack of stringent safety regulations and proper hygiene) may be more prevalent and where cocktails of antibiotics may be less affordable. Also, since the putative lack of development of bacterial resistance to *OH is not known, it provides an added advantage to the treatment. Finally, although this work addresses the control of bacterial infections in burns cases, it is envisaged that this ROS-induced chemotherapy may also be useful in combating other kinds of skin infections particularly those resisting antibiotic treatment.

  10. Circumvention of Mcl-1-Dependent Drug Resistance by Simultaneous Chk1 and MEK1/2 Inhibition in Human Multiple Myeloma Cells

    PubMed Central

    Pei, Xin-Yan; Dai, Yun; Felthousen, Jessica; Chen, Shuang; Takabatake, Yukie; Zhou, Liang; Youssefian, Leena E.; Sanderson, Michael W.; Bodie, Wesley W.; Kramer, Lora B.; Orlowski, Robert Z.; Grant, Steven

    2014-01-01

    The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM. PMID:24594907

  11. Multiple drug resistance-related messenger RNA expression in archival formalin-fixed paraffin-embedded human breast tumour tissue.

    PubMed

    O'Driscoll, L; Kennedy, S; McDermott, E; Kelehan, P; Clynes, M

    1996-01-01

    A method is described by which RNA, suitable for reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, can be extracted from formalin-fixed paraffin-embedded (FFPE) tissues and subsequently used for detecting the expression of several genes. Using this technique, RNA can be extracted from specimens, quantified, reverse transcribed and regions of interest amplified and analysed within 36 h. The tissue specimens included in this study were from human breast carcinoma, investigating a range of genes associated with the development and/or maintenance of multiple drug resistance (MDR). This technique, applied to archival tissues, offers great potential for increasing our understanding of alterations in expression levels of genes associated with MDR. The method developed is also applicable to studies on expression of other genes in paraffin-embedded tissues.

  12. Molecular diagnostics of a single drug-resistant multiple myeloma case using targeted next-generation sequencing

    PubMed Central

    Ikeda, Hiroshi; Ishiguro, Kazuya; Igarashi, Tetsuyuki; Aoki, Yuka; Hayashi, Toshiaki; Ishida, Tadao; Sasaki, Yasushi; Tokino, Takashi; Shinomura, Yasuhisa

    2015-01-01

    A 69-year-old man was diagnosed with IgG λ-type multiple myeloma (MM), Stage II in October 2010. He was treated with one cycle of high-dose dexamethasone. After three cycles of bortezomib, the patient exhibited slow elevations in the free light-chain levels and developed a significant new increase of serum M protein. Bone marrow cytogenetic analysis revealed a complex karyotype characteristic of malignant plasma cells. To better understand the molecular pathogenesis of this patient, we sequenced for mutations in the entire coding regions of 409 cancer-related genes using a semiconductor-based sequencing platform. Sequencing analysis revealed eight nonsynonymous somatic mutations in addition to several copy number variants, including CCND1 and RB1. These alterations may play roles in the pathobiology of this disease. This targeted next-generation sequencing can allow for the prediction of drug resistance and facilitate improvements in the treatment of MM patients. PMID:26491355

  13. The Transmission and Antibiotic Resistance Variation in a Multiple Drug Resistance Clade of Vibrio cholerae Circulating in Multiple Countries in Asia.

    PubMed

    Pang, Bo; Du, Pengcheng; Zhou, Zhemin; Diao, Baowei; Cui, Zhigang; Zhou, Haijian; Kan, Biao

    2016-01-01

    Vibrio cholerae has caused massive outbreaks and even trans-continental epidemics. In 2008 and 2010, at least 3 remarkable cholera outbreaks occurred in Hainan, Anhui and Jiangsu provinces of China. To address the possible transmissions and the relationships to the 7th pandemic strains of those 3 outbreaks, we sequenced the whole genomes of the outbreak isolates and compared with the global isolates from the 7th pandemic. The three outbreaks in this study were caused by a cluster of V. cholerae in clade 3.B which is parallel to the clade 3.C that was transmitted from Nepal to Haiti and caused an outbreak in 2010. Pan-genome analysis provided additional evolution information on the mobile element and acquired multiple antibiotic resistance genes. We suggested that clade 3.B should be monitored because the multiple antibiotic resistant characteristics of this clade and the 'amplifier' function of China in the global transmission of current Cholera pandemic. We also show that dedicated whole genome sequencing analysis provided more information than the previous techniques and should be applied in the disease surveillance networks. PMID:26930352

  14. The Transmission and Antibiotic Resistance Variation in a Multiple Drug Resistance Clade of Vibrio cholerae Circulating in Multiple Countries in Asia

    PubMed Central

    Zhou, Zhemin; Diao, Baowei; Cui, Zhigang; Zhou, Haijian; Kan, Biao

    2016-01-01

    Vibrio cholerae has caused massive outbreaks and even trans-continental epidemics. In 2008 and 2010, at least 3 remarkable cholera outbreaks occurred in Hainan, Anhui and Jiangsu provinces of China. To address the possible transmissions and the relationships to the 7th pandemic strains of those 3 outbreaks, we sequenced the whole genomes of the outbreak isolates and compared with the global isolates from the 7th pandemic. The three outbreaks in this study were caused by a cluster of V. cholerae in clade 3.B which is parallel to the clade 3.C that was transmitted from Nepal to Haiti and caused an outbreak in 2010. Pan-genome analysis provided additional evolution information on the mobile element and acquired multiple antibiotic resistance genes. We suggested that clade 3.B should be monitored because the multiple antibiotic resistant characteristics of this clade and the ‘amplifier’ function of China in the global transmission of current Cholera pandemic. We also show that dedicated whole genome sequencing analysis provided more information than the previous techniques and should be applied in the disease surveillance networks. PMID:26930352

  15. The Transmission and Antibiotic Resistance Variation in a Multiple Drug Resistance Clade of Vibrio cholerae Circulating in Multiple Countries in Asia.

    PubMed

    Pang, Bo; Du, Pengcheng; Zhou, Zhemin; Diao, Baowei; Cui, Zhigang; Zhou, Haijian; Kan, Biao

    2016-01-01

    Vibrio cholerae has caused massive outbreaks and even trans-continental epidemics. In 2008 and 2010, at least 3 remarkable cholera outbreaks occurred in Hainan, Anhui and Jiangsu provinces of China. To address the possible transmissions and the relationships to the 7th pandemic strains of those 3 outbreaks, we sequenced the whole genomes of the outbreak isolates and compared with the global isolates from the 7th pandemic. The three outbreaks in this study were caused by a cluster of V. cholerae in clade 3.B which is parallel to the clade 3.C that was transmitted from Nepal to Haiti and caused an outbreak in 2010. Pan-genome analysis provided additional evolution information on the mobile element and acquired multiple antibiotic resistance genes. We suggested that clade 3.B should be monitored because the multiple antibiotic resistant characteristics of this clade and the 'amplifier' function of China in the global transmission of current Cholera pandemic. We also show that dedicated whole genome sequencing analysis provided more information than the previous techniques and should be applied in the disease surveillance networks.

  16. Drug Resistance in Leishmaniasis

    PubMed Central

    Chakravarty, Jaya; Sundar, Shyam

    2010-01-01

    The treatment options of leishmaniasis are limited and far from satisfactory. For more than 60 years, treatment of leishmaniasis has centered around pentavalent antimonials (Sbv). Widespread misuse has led to the emergence of Sbv resistance in the hyperendemic areas of North Bihar. Other antileishmanials could also face the same fate, especially in the anthroponotic cycle. The HIV/ visceral leishmaniasis (VL) coinfected patients are another potential source for the emergence of drug resistance. At present no molecular markers of resistance are available and the only reliable method for monitoring resistance of isolates is the technically demanding in vitro amastigote-macrophage model. As the armametrium of drugs for leishmaniasis is limited, it is important that effective monitoring of drug use and response should be done to prevent the spread of resistance. Regimens of simultaneous or sequential combinations should be seriously considered to limit the emergence of resistance. PMID:20606973

  17. Multiple antibiotic resistance in Rhizobium japonicum.

    PubMed

    Cole, M A; Elkan, G H

    1979-05-01

    A total of 48 strains of the soil bacterium Rhizobium japonicum were screened for their response to several widely used antibiotics. Over 60% of the strains were resistant to chloramphenicol, polymyxin B, and erythromycin, and 47% or more of the strains were resistant to neomycin and penicillin G, when tested by disk assay procedures. The most common grouping of resistances in strains was simultaneous resistance to tetracycline, penicillin G, neomycin, chloramphenicol, and streptomycin (25% of all strains tested). The occurrence of multiple drug resistance in a soil bacterium that is not a vertebrate pathogen suggests that chemotherapeutic use of antibiotics is not required for the development of multiple drug resistance. PMID:485137

  18. Antibiotic Resistance, RAPD- PCR Typing of Multiple Drug Resistant Strains of Escherichia Coli From Urinary Tract Infection (UTI)

    PubMed Central

    Marialouis, Xavier Alexander

    2016-01-01

    Introduction Global spreading of multidrug resistant strains of Escherichia coli is responsible for Urinary Tract Infection (UTI) which is a major health problem in of concern. Among the gram negative bacteria, the major contributors for UTI belongs to the family Enterobacteriaceae, which includes E. coli, Klebsiella, Citrobacter and Proteus. However, E. coli accounts for the major cause of Urinary tract infections (UTIs) and accounts for 75% to 90% of UTI isolates. Aim The main aim of this study is to analyse the phylogenetic grouping of clinical isolates of UTI E. coli. Materials and Methods In this study nearly 58 E. coli strains were isolated and confirmed through microbiological, biochemical characterization. The urine samples were collected from outpatients having symptoms of UTI, irrespective of age and sex in Tamil Nadu, India. The isolates were subjected to analyse for ESBL and AmpC β-lactamase production. To understand its genetic correlation, molecular typing was carried out using RAPD-PCR method. Results Here we noted phenotypically twenty seven isolates were positive for ESBL and seven for AmpC β-lactamase production. However, among the ESBL isolates higher sensitivity was noted for Nitrofurantoin and Cefoxitin. It is worth to note that the prevalence of UTIs was more common among female and elderly male. Phylogenetic grouping revealed the presence of 24 isolates belonged to B2 group followed by 19 isolates to group A, eight isolates to group B1 and Seven isolates to group D. Conclusion Phenotypically most of the strains were positive for ESBL and showed high sensitivity for Nitrofurantoin and cefoxitin. PMID:27134870

  19. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens

    PubMed Central

    Karuppiah, Ponmurugan; Rajaram, Shyamkumar

    2012-01-01

    Objective To evaluate the antibacterial properties of Allium sativum (garlic) cloves and Zingiber officinale (ginger) rhizomes against multi-drug resistant clinical pathogens causing nosocomial infection. Methods The cloves of garlic and rhizomes of ginger were extracted with 95% (v/v) ethanol. The ethanolic extracts were subjected to antibacterial sensitivity test against clinical pathogens. Results Anti-bacterial potentials of the extracts of two crude garlic cloves and ginger rhizomes were tested against five gram negative and two gram positive multi-drug resistant bacteria isolates. All the bacterial isolates were susceptible to crude extracts of both plants extracts. Except Enterobacter sp. and Klebsiella sp., all other isolates were susceptible when subjected to ethanolic extracts of garlic and ginger. The highest inhibition zone was observed with garlic (19.45 mm) against Pseudomonas aeruginosa (P. aeruginosa). The minimal inhibitory concentration was as low as 67.00 µg/mL against P. aeruginosa. Conclusions Natural spices of garlic and ginger possess effective anti-bacterial activity against multi-drug clinical pathogens and can be used for prevention of drug resistant microbial diseases and further evaluation is necessary. PMID:23569978

  20. Drugs Approved for Multiple Myeloma

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for multiple myeloma and other plasma cell neoplasms. The list includes generic names, brand names, and common drug combinations, which are shown in capital letters. The drug names link to NCI's Cancer Drug Information summaries.

  1. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria.

    PubMed

    Marathe, Nachiket P; Regina, Viduthalai R; Walujkar, Sandeep A; Charan, Shakti Singh; Moore, Edward R B; Larsson, D G Joakim; Shouche, Yogesh S

    2013-01-01

    The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into

  2. A Treatment Plant Receiving Waste Water from Multiple Bulk Drug Manufacturers Is a Reservoir for Highly Multi-Drug Resistant Integron-Bearing Bacteria

    PubMed Central

    Walujkar, Sandeep A.; Charan, Shakti Singh; Moore, Edward R. B.; Larsson, D. G. Joakim; Shouche, Yogesh S.

    2013-01-01

    The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into

  3. Old drugs, novel ways out: Drug resistance toward cytotoxic chemotherapeutics.

    PubMed

    Wijdeven, Ruud H; Pang, Baoxu; Assaraf, Yehuda G; Neefjes, Jacques

    2016-09-01

    Efficacy of chemotherapy in the treatment of distinct malignancies is often hampered by drug resistance arising in the tumor. Understanding the molecular basis of drug resistance and translating this knowledge into personalized treatment decisions can enhance therapeutic efficacy and even curative outcome. Over the years, multiple drug resistance mechanisms have been identified that enable tumors to cope with the damage instigated by a specific drug or group of anti-tumor agents. Here we provide an overview of the molecular pathways leading to resistance against conventional anti-cancer drugs, with emphasis on the utility of these pathways for rational selection of treatments for individual cancer patients. We further complement the review by discussing the pitfalls and difficulties in translating these findings into novel treatment strategies for cancer patients. PMID:27620955

  4. Efficacy of commonly used anthelmintics: first report of multiple drug resistance in gastrointestinal nematodes of sheep in Trinidad.

    PubMed

    George, N; Persad, K; Sagam, R; Offiah, V N; Adesiyun, A A; Harewood, W; Lambie, N; Basu, A K

    2011-12-29

    In Trinidad, small ruminant farms are semi-intensively managed under tropical conditions which support the development and survival of the infective stages of the helminths. Local farmers use anthelmintics to control gastrointestinal nematodes frequently. Frequent use of anthelmintics has the potential to select for populations of nematodes resistance to those chemicals. Hence, an attempt was made to study the efficacy of commonly used drugs on gastrointestinal nematodes of sheep. Three farms situated in different counties in Trinidad were selected. Sheep aged 6-15 months and not treated with anthelmintics for a minimum of six months previous and with faecal egg count (FEC)>150 eggs per gram were selected for study. They were allocated into 5 groups, each consisting 10 animals. The Group TA animals were treated once with albendazole (5mg/kg. b.wt.), group TF with fenbendazole (5mg/kg.b.wt.), group TI animals with ivermectin (200 μg/kg b.wt.), group TL with levamisol (7.5mg/kg b.wt.). The group NTC animals were not given any drug and served as control. The number of nematode eggs per gram of faeces from each animal was determined before treatment and at 14 days after treatment. The anthelmintic susceptibility to different drugs was detected by FECRT (in vivo) with EPG recorded at 14 day post-treatment. The data analysis using FECRT revealed that efficacy of albendazole (46-62%), fenbendazole (44-61%) and levamisol (53-81%) were reduced compared to ivermectin (95-97%). An attempt has also been made to find a suitable method for calculation of FECR (%).

  5. Antimalarial drug resistance: An overview

    PubMed Central

    Antony, Hiasindh Ashmi; Parija, Subhash Chandra

    2016-01-01

    Malaria is a major public health burden throughout the world. Resistance to the antimalarial drugs has increased the mortality and morbidity rate that is achieved so far through the malaria control program. Monitoring the drug resistance to the available antimalarial drugs helps to implement effective drug policy, through the in vivo efficacy studies, in vitro drug susceptibility tests and detection of molecular markers. It is important to understand the mechanism of the antimalarial drugs, as it is one of the key factors in the emergence and spread of drug resistance. This review summarizes the commonly used antimalarial drugs, their mechanism of action and the genetic markers validated so far for the detection of drug-resistant parasites. PMID:26998432

  6. Multiple Introduction and Naturally Occuring Drug Resistance of HCV among HIV-Infected Intravenous Drug Users in Yunnan: An Origin of China’s HIV/HCV Epidemics

    PubMed Central

    Chen, Min; Ma, Yanling; Chen, Huichao; Luo, Hongbing; Dai, Jie; Song, Lijun; Yang, Chaojun; Mei, Jingyuan; Yang, Li; Dong, Lijuan; Jia, Manhong; Lu, Lin

    2015-01-01

    Background The human immunodeficiency virus 1 (HIV-1) epidemic in China historically stemmed from intravenous drug users (IDUs) in Yunnan. Due to a shared transmission route, hepatitis C virus (HCV)/HIV-1 co-infection is common. Here, we investigated HCV genetic characteristics and baseline drug resistance among HIV-infected IDUs in Yunnan. Methods Blood samples of 432 HIV-1/HCV co-infected IDUs were collected from January to June 2014 in six prefectures of Yunnan Province. Partial E1E2 and NS5B genes were sequenced. Phylogenetic, evolutionary and genotypic drug resistance analyses were performed. Results Among the 293 specimens successfully genotyped, seven subtypes were identified, including subtypes 3b (37.9%, 111/293), 3a (21.8%, 64/293), 6n (14.0%, 41/293), 1b (10.6%, 31/293), 1a (8.2%, 24/293), 6a (5.1%, 15/293) and 6u (2.4%, 7/293). The distribution of HCV subtypes was mostly related to geographic location. Subtypes 3b, 3a, and 6n were detected in all six prefectures, however, the other four subtypes were detected only in parts of the six prefectures. Phylogeographic analyses indicated that 6n, 1a and 6u originated in the western prefecture (Dehong) and spread eastward and showed genetic relatedness with those detected in Burmese. However, 6a originated in the southeast prefectures (Honghe and Wenshan) bordering Vietnam and was transmitted westward. These subtypes exhibited different evolutionary rates (between 4.35×10−4 and 2.38×10−3 substitutions site-1 year-1) and times of most recent common ancestor (tMRCA, between 1790.3 and 1994.6), suggesting that HCV was multiply introduced into Yunnan. Naturally occurring resistance-associated mutations (C316N, A421V, C445F, I482L, V494A, and V499A) to NS5B polymerase inhibitors were detected in direct-acting antivirals (DAAs)-naïve IDUs. Conclusion This work reveals the temporal-spatial distribution of HCV subtypes and baseline HCV drug resistance among HIV-infected IDUs in Yunnan. The findings enhance our

  7. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid

    PubMed Central

    Ro, Dae-Kyun; Ouellet, Mario; Paradise, Eric M; Burd, Helcio; Eng, Diana; Paddon, Chris J; Newman, Jack D; Keasling, Jay D

    2008-01-01

    Background Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Results Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 μg mL-1 in shake-flask cultures and 1 g L-1 in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by

  8. Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3

    PubMed Central

    Lv, Meng; Liang, Xiaodong; Dai, Hui; Qin, Xiaodan; Zhang, Yan; Hao, Jie; Sun, Xiuyuan; Yin, Yanhui; Huang, Xiaojun; Zhang, Jun; Lu, Jin; Ge, Qing

    2016-01-01

    Reelin is an extracellular matrix (ECM) protein that is essential for neuron migration and positioning. The expression of reelin in multiple myeloma (MM) cells and its association with cell adhesion and survival were investigated. Overexpression, siRNA knockdown, and the addition of recombinant protein of reelin were used to examine the function of reelin in MM cells. Clinically, high expression of reelin was negatively associated with progression-free survival and overall survival. Functionally, reelin promoted the adhesion of MM cells to fibronectin via activation of α5β1 integrin. The resulting phosphorylation of Focal Adhesion Kinase (FAK) led to the activation of Src/Syk/STAT3 and Akt, crucial signaling molecules involved in enhancing cell adhesion and protecting cells from drug-induced cell apoptosis. These findings indicate reelin's important role in the activation of integrin-β1 and STAT3/Akt pathways in multiple myeloma and highlight the therapeutic potential of targeting reelin/integrin/FAK axis. PMID:26848618

  9. A new system for parallel drug screening against multiple-resistant HIV mutants based on lentiviral self-inactivating (SIN) vectors and multi-colour analyses

    PubMed Central

    2013-01-01

    Background Despite progress in the development of combined antiretroviral therapies (cART), HIV infection remains a significant challenge for human health. Current problems of cART include multi-drug-resistant virus variants, long-term toxicity and enormous treatment costs. Therefore, the identification of novel effective drugs is urgently needed. Methods We developed a straightforward screening approach for simultaneously evaluating the sensitivity of multiple HIV gag-pol mutants to antiviral drugs in one assay. Our technique is based on multi-colour lentiviral self-inactivating (SIN) LeGO vector technology. Results We demonstrated the successful use of this approach for screening compounds against up to four HIV gag-pol variants (wild-type and three mutants) simultaneously. Importantly, the technique was adapted to Biosafety Level 1 conditions by utilising ecotropic pseudotypes. This allowed upscaling to a large-scale screening protocol exploited by pharmaceutical companies in a successful proof-of-concept experiment. Conclusions The technology developed here facilitates fast screening for anti-HIV activity of individual agents from large compound libraries. Although drugs targeting gag-pol variants were used here, our approach permits screening compounds that target several different, key cellular and viral functions of the HIV life-cycle. The modular principle of the method also allows the easy exchange of various mutations in HIV sequences. In conclusion, the methodology presented here provides a valuable new approach for the identification of novel anti-HIV drugs. PMID:23286882

  10. Mechanisms of drug resistance: quinolone resistance

    PubMed Central

    Hooper, David C.; Jacoby, George A.

    2015-01-01

    Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged with clinical use and became common in some bacterial pathogens. Mechanisms of resistance include two categories of mutation and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include quinolones as well as other antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, one mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone resistance armamentarium is large. PMID:26190223

  11. Dissemination of Multiple Drug Resistance Genes by Class 1 Integrons in Klebsiella pneumoniae Isolates from Four Countries: a Comparative Study ▿

    PubMed Central

    Roy Chowdhury, Piklu; Ingold, Ana; Vanegas, Natasha; Martínez, Elena; Merlino, John; Merkier, Andrea Karina; Castro, Mercedes; González Rocha, Gerardo; Borthagaray, Graciela; Centrón, Daniela; Bello Toledo, Helia; Márquez, Carolina M.; Stokes, H. W.

    2011-01-01

    A comparative genetic analysis of 42 clinical Klebsiella pneumoniae isolates, resistant to two or more antibiotics belonging to the broad-spectrum β-lactam group, sourced from Sydney, Australia, and three South American countries is presented. The study focuses on the genetic contexts of class 1 integrons, mobilizable genetic elements best known for their role in the rapid evolution of antibiotic resistance among Gram-negative pathogens. It was found that the class 1 integrons in this cohort were located in a number of different genetic contexts with clear regional differences. In Sydney, IS26-associated Tn21-like transposons on IncL/M plasmids contribute greatly to the dispersal of integron-associated multiple-drug-resistant (MDR) loci. In contrast, in the South American countries, Tn1696-like transposons on an IncA/C plasmid(s) appeared to be disseminating a characteristic MDR region. A range of mobile genetic elements is clearly being recruited by clinically important mobile class 1 integrons, and these elements appear to be becoming more common with time. This in turn is driving the evolution of complex and laterally mobile MDR units and may further complicate antibiotic therapy. PMID:21518841

  12. [Resistance to the antimalarial drugs].

    PubMed

    Venanzi, E; López-Vélez, R

    2016-09-01

    Malaria is one of the most widespread infectious diseases around the world with 214 million cases and 438,000 deaths in 2015. In the early twentieth century it was described for the first time the resistance to quinine and, since then, drug resistance to antimalarial drugs has spread up to represent a global challenge in the fight and control of malaria. Understanding the mechanisms, geography and monitoring tools that we can act against resistance to antimalarial drugs is critical to prevent its expansion. PMID:27608319

  13. Potential role of exosome-associated microRNA panels and in vivo environment to predict drug resistance for patients with multiple myeloma.

    PubMed

    Zhang, Li; Pan, Ling; Xiang, Bing; Zhu, Huanling; Wu, Yu; Chen, Meng; Guan, Pujun; Zou, Xingli; Valencia, C Alexander; Dong, Biao; Li, Jianjun; Xie, Liping; Ma, Hongbing; Wang, Fangfang; Dong, Tian; Shuai, Xiao; Niu, Ting; Liu, Ting

    2016-05-24

    Multiple myeloma (MM) is the second most common hematologic neoplasms and an appropriate in vivo environment for myeloma cells has potential implications for initiation, progression, and metastasis of MM. Exosomes, entities carrying microRNAs (miRNAs) to target locations, participate in the cross-talk between myeloma cells and nonmalignant components of the in vivo environment. This study disclosed the emerging roles of circulating exosome-associated miRNAs in drug resistance (DR) of MM. To this end, the medical records of consecutively hospitalized MM patients, who received novel agents-based therapies, were analyzed. Then, an optimized procedure was established for exosome isolation and exosomal RNA analysis. The exosome-associated miRNA expression patterns for predicting bortezomib (Bz) resistance of MM were further examined using a microarray. In total, 204 patients were enrolled with DR rates of 36.5%, 73.1% and 81.8% in the bortezomib (Bz), thalidomide and lenalidomide containing groups. The serum total light chain ratio ≥ 100, CRP ≥ 20 mg/L, and the second-line usage increased risks of acquired Bz-resistance. Among 68 cases having genetic tests, a high risk factor for predicting de novo DR was 1q21 amplification, which also correlated with lower levels of cholesterol and LDL-C. Moreover, nano-sized exosomes were isolated with significantly increasing internal RNAs and down-regulation of exosomal miR-16-5p, miR-15a-5p and miR-20a-5p, miR-17-5p was revealed in the patients resistant to Bz. The routine workup of MM hardly suggested a value for DR prediction. The circulating exosomes carrying miRNAs provided a window that permits a better understanding of the in vivo intercellular crosstalk in MM patients. PMID:27129167

  14. [Drug resistant epilepsy. Clinical and neurobiological concepts].

    PubMed

    Espinosa-Jovel, Camilo A; Sobrino-Mejía, Fidel E

    2015-08-16

    Drug-resistant epilepsy, is a condition defined by the International League Against Epilepsy as persistent seizures despite having used at least two appropriate and adequate antiepileptic drug treatments. Approximately 20-30% of patients with epilepsy are going to be resistant to antiepileptic drugs, with different patterns of clinical presentation, which are related to the biological basis of this disease (de novo resistance, relapsing-remitting and progressive). Drug resistant epilepsy, impacts negatively the quality of life and significantly increases the risk of premature death. From the neurobiological point of view, this medical condition is the result of the interaction of multiple variables related to the underlying disease, drug interactions and proper genetic aspects of each patient. Thanks to advances in pharmacogenetics and molecular biology research, currently some hypotheses may explain the cause of this condition and promote the study of new therapeutic options. Currently, overexpression of membrane transporters such as P-glycoprotein, appears to be one of the most important mechanisms in the development of drug resistant epilepsy. The objective of this review is to deepen the general aspects of this clinical condition, addressing the definition, epidemiology, differential diagnosis and the pathophysiological bases.

  15. [Drug resistant epilepsy. Clinical and neurobiological concepts].

    PubMed

    Espinosa-Jovel, Camilo A; Sobrino-Mejía, Fidel E

    2015-08-16

    Drug-resistant epilepsy, is a condition defined by the International League Against Epilepsy as persistent seizures despite having used at least two appropriate and adequate antiepileptic drug treatments. Approximately 20-30% of patients with epilepsy are going to be resistant to antiepileptic drugs, with different patterns of clinical presentation, which are related to the biological basis of this disease (de novo resistance, relapsing-remitting and progressive). Drug resistant epilepsy, impacts negatively the quality of life and significantly increases the risk of premature death. From the neurobiological point of view, this medical condition is the result of the interaction of multiple variables related to the underlying disease, drug interactions and proper genetic aspects of each patient. Thanks to advances in pharmacogenetics and molecular biology research, currently some hypotheses may explain the cause of this condition and promote the study of new therapeutic options. Currently, overexpression of membrane transporters such as P-glycoprotein, appears to be one of the most important mechanisms in the development of drug resistant epilepsy. The objective of this review is to deepen the general aspects of this clinical condition, addressing the definition, epidemiology, differential diagnosis and the pathophysiological bases. PMID:26204087

  16. Drug resistance in eukaryotic microorganisms.

    PubMed

    Fairlamb, Alan H; Gow, Neil A R; Matthews, Keith R; Waters, Andrew P

    2016-06-24

    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies.

  17. Drug resistance in eukaryotic microorganisms.

    PubMed

    Fairlamb, Alan H; Gow, Neil A R; Matthews, Keith R; Waters, Andrew P

    2016-01-01

    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies. PMID:27572976

  18. Multiple Disease Resistance in Plants.

    PubMed

    Wiesner-Hanks, Tyr; Nelson, Rebecca

    2016-08-01

    Many plants, both in nature and in agriculture, are resistant to multiple diseases. Although much of the plant innate immunity system provides highly specific resistance, there is emerging evidence to support the hypothesis that some components of plant defense are relatively nonspecific, providing multiple disease resistance (MDR). Understanding MDR is of fundamental and practical interest to plant biologists, pathologists, and breeders. This review takes stock of the available evidence related to the MDR hypothesis. Questions about MDR are considered primarily through the lens of forward genetics, starting at the organismal level and proceeding to the locus level and, finally, to the gene level. At the organismal level, MDR may be controlled by clusters of R genes that evolve under diversifying selection, by dispersed, pathogen-specific genes, and/or by individual genes providing MDR. Based on the few MDR loci that are well-understood, MDR is conditioned by diverse mechanisms at the locus and gene levels. PMID:27296142

  19. Exploiting Nanotechnology to Overcome Tumor Drug Resistance: Challenges and Opportunities

    PubMed Central

    Kirtane, Ameya; Kalscheuer, Stephen; Panyam, Jayanth

    2013-01-01

    Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors. PMID:24036273

  20. Antimicrobial (Drug) Resistance Prevention

    MedlinePlus

    ... Action Plan for Combating Antibiotic-Resistant Bacteria (PDF) ​​​​​​ Javascript Error Your browser JavaScript is turned off causing certain features of the ... incorrectly. Please visit your browser settings and turn JavaScript on. Read more information on enabling JavaScript. Skip ...

  1. Ribavirin: a drug active against many viruses with multiple effects on virus replication and propagation. Molecular basis of ribavirin resistance.

    PubMed

    Beaucourt, Stéphanie; Vignuzzi, Marco

    2014-10-01

    Ribavirin has proven to be effective against several viruses in the clinical setting and a multitude of viruses in vitro. With up to five different proposed mechanisms of action, recent advances have begun to discern the hierarchy of antiviral effects at play depending on the virus and the host conditions under scrutiny. Studies reveal that for many viruses, antiviral mechanisms may differ depending on cell type in vitro and in vivo. Further analyses are thus required to accurately identify mechanisms to more optimally determine clinical treatments. In recent years, a growing number of ribavirin resistant and sensitive variants have been identified. These variants not only inform on the specific mechanisms by which ribavirin enfeebles the virus, but also can themselves be tools to identify new antiviral compounds.

  2. In vitro resistance selections for Plasmodium falciparum dihydroorotate dehydrogenase inhibitors give mutants with multiple point mutations in the drug-binding site and altered growth.

    PubMed

    Ross, Leila S; Gamo, Francisco Javier; Lafuente-Monasterio, Maria José; Singh, Onkar M P; Rowland, Paul; Wiegand, Roger C; Wirth, Dyann F

    2014-06-27

    Malaria is a preventable and treatable disease; yet half of the world's population lives at risk of infection, and an estimated 660,000 people die of malaria-related causes every year. Rising drug resistance threatens to make malaria untreatable, necessitating both the discovery of new antimalarial agents and the development of strategies to identify and suppress the emergence and spread of drug resistance. We focused on in-development dihydroorotate dehydrogenase (DHODH) inhibitors. Characterizing resistance pathways for antimalarial agents not yet in clinical use will increase our understanding of the potential for resistance. We identified resistance mechanisms of Plasmodium falciparum (Pf) DHODH inhibitors via in vitro resistance selections. We found 11 point mutations in the PfDHODH target. Target gene amplification and unknown mechanisms also contributed to resistance, albeit to a lesser extent. These mutant parasites were often hypersensitive to other PfDHODH inhibitors, which immediately suggested a novel combination therapy approach to preventing resistance. Indeed, a combination of wild-type and mutant-type selective inhibitors led to resistance far less often than either drug alone. The effects of point mutations in PfDHODH were corroborated with purified recombinant wild-type and mutant-type PfDHODH proteins, which showed the same trends in drug response as the cognate cell lines. Comparative growth assays demonstrated that two mutant parasites grew less robustly than their wild-type parent, and the purified protein of those mutants showed a decrease in catalytic efficiency, thereby suggesting a reason for the diminished growth rate. Co-crystallography of PfDHODH with three inhibitors suggested that hydrophobic interactions are important for drug binding and selectivity.

  3. Antiviral Drug Resistance: Mechanisms and Clinical Implications

    PubMed Central

    Chou, Sunwen

    2010-01-01

    Summary Antiviral drug resistance is an increasing concern in immunocompromised patient populations, where ongoing viral replication and prolonged drug exposure lead to the selection of resistant strains. Rapid diagnosis of resistance can be made by associating characteristic viral mutations with resistance to various drugs as determined by phenotypic assays. Management of drug resistance includes optimization of host factors and drug delivery, selection of alternative therapies based on knowledge of mechanisms of resistance, and the development of new antivirals. This article discusses drug resistance in herpesviruses and hepatitis B. PMID:20466277

  4. Overcoming drug resistance in multi-drug resistant cancers and microorganisms: a conceptual framework.

    PubMed

    Avner, Benjamin S; Fialho, Arsenio M; Chakrabarty, Ananda M

    2012-01-01

    Resistance development against multiple drugs is a common feature among many pathogens--including bacteria such as Pseudomonas aeruginosa, viruses, and parasites--and also among cancers. The reasons are two-fold. Most commonly-used rationally-designed small molecule drugs or monoclonal antibodies, as well as antibiotics, strongly inhibit a key single step in the growth and proliferation of the pathogen or cancer cells. The disease agents quickly change or switch off this single target, or activate the efflux mechanisms to pump out the drug, thereby becoming resistant to the drug. A second problem is the way drugs are designed. The pharmaceutical industry chooses to use, by high-throughput screening, compounds that are maximally inhibitory to the key single step in the growth of the pathogen or cancer, thereby promoting selective pressure. An ideal drug would be one that inhibits multiple steps in the disease progression pathways with less stringency in these steps. Low levels of inhibition at multiple steps provide cumulative strong inhibitory effect, but little incentives or ability on the part of the pathogen/cancer to develop resistance. Such intelligent drug design involving multiple less stringent inhibitory steps is beyond the scope of the drug industry and requires evolutionary wisdom commonly possessed by bacteria. This review surveys assessments of the current clinical situation with regard to drug resistance in P. aeruginosa, and examines tools currently employed to limit this trend. We then provide a conceptual framework in which we explore the similarities between multi-drug resistance in pathogens and in cancers. We summarize promising work on anti-cancer drugs derived from the evolutionary wisdom of bacteria such as P. aeruginosa, and how such strategies can be the basis for how to look for candidate protein/peptide antibiotic drugs from bioengineered bugs. Such multi-domain proteins, unlike diffusible antibiotics, are not diffusible because of their

  5. Overcoming drug resistance in multi-drug resistant cancers and microorganisms

    PubMed Central

    Avner, Benjamin S.; Fialho, Arsenio M.; Chakrabarty, Ananda M.

    2012-01-01

    Resistance development against multiple drugs is a common feature among many pathogens—including bacteria such as Pseudomonas aeruginosa, viruses, and parasites—and also among cancers. The reasons are two-fold. Most commonly-used rationally-designed small molecule drugs or monoclonal antibodies, as well as antibiotics, strongly inhibit a key single step in the growth and proliferation of the pathogen or cancer cells. The disease agents quickly change or switch off this single target, or activate the efflux mechanisms to pump out the drug, thereby becoming resistant to the drug. A second problem is the way drugs are designed. The pharmaceutical industry chooses to use, by high-throughput screening, compounds that are maximally inhibitory to the key single step in the growth of the pathogen or cancer, thereby promoting selective pressure. An ideal drug would be one that inhibits multiple steps in the disease progression pathways with less stringency in these steps. Low levels of inhibition at multiple steps provide cumulative strong inhibitory effect, but little incentives or ability on the part of the pathogen/cancer to develop resistance. Such intelligent drug design involving multiple less stringent inhibitory steps is beyond the scope of the drug industry and requires evolutionary wisdom commonly possessed by bacteria. This review surveys assessments of the current clinical situation with regard to drug resistance in P. aeruginosa, and examines tools currently employed to limit this trend. We then provide a conceptual framework in which we explore the similarities between multi-drug resistance in pathogens and in cancers. We summarize promising work on anti-cancer drugs derived from the evolutionary wisdom of bacteria such as P. aeruginosa, and how such strategies can be the basis for how to look for candidate protein/peptide antibiotic drugs from bioengineered bugs. Such multi-domain proteins, unlike diffusible antibiotics, are not diffusible because of

  6. Mechanisms of Candida biofilm drug resistance

    PubMed Central

    Taff, Heather T; Mitchell, Kaitlin F; Edward, Jessica A; Andes, David R

    2013-01-01

    Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involving both mechanisms similar to conventional, planktonic antifungal resistance, such as increased efflux pump activity, as well as mechanisms specific to the biofilm lifestyle. A unique biofilm property is the production of an extracellular matrix. Two components of this material, β-glucan and extracellular DNA, promote biofilm resistance to multiple antifungals. Biofilm formation also engages several stress response pathways that impair the activity of azole drugs. Resistance within a biofilm is often heterogeneous, with the development of a subpopulation of resistant persister cells. In this article we review the molecular mechanisms underlying Candida biofilm antifungal resistance and their relative contributions during various growth phases. PMID:24059922

  7. Resistant TB: Newer Drugs and Community Approach.

    PubMed

    Gothi, Dipti; Joshi, Jyotsna M

    2011-01-01

    Drug resistance in tuberculosis (TB) is a serious problem compromising both the treatment and control programs. Poor usage of the available anti TB drugs has led to progressive drug resistance-multi drug resistance (MDR), extensively drug-resistance (XDR) and even total drug resistance (TDR). While drug sensitive TB is completely curable, MDR-TB is difficult to treat, XDR and TDR are often fatal. Non availability of new drugs to treat drug resistant cases further complicates the problem. The Global Alliance for Tuberculosis Drug Developments, a non-profit organization with the World Health Organization (WHO) as a partner was formed in February 2000 for the development of new drugs. In the last decade this venture has resulted in several promising new antituberculosis drugs like TMC207 (diaryquinoline), PA-824 (nitroimidazo-oxazine), OPC-67683 (nitroimidazo-oxazole) and SQ 109 (diamine compound). Drug resistance in TB is a man made problem. Therefore, while global efforts towards new drug development must continue it is equally important to have a well defined community approach to prevent the emergence of drug resistance to the existing and newer drugs. The present review article discusses some recent drug patents for the treatment of tuberculosis and the appropriate community approach to prevent and treat drug resistant TB.

  8. Mutational Pathway Determines Whether Drug Gradients Accelerate Evolution of Drug-Resistant Cells

    NASA Astrophysics Data System (ADS)

    Greulich, Philip; Waclaw, Bartłomiej; Allen, Rosalind J.

    2012-08-01

    Drug gradients are believed to play an important role in the evolution of bacteria resistant to antibiotics and tumors resistant to anticancer drugs. We use a statistical physics model to study the evolution of a population of malignant cells exposed to drug gradients, where drug resistance emerges via a mutational pathway involving multiple mutations. We show that a nonuniform drug distribution has the potential to accelerate the emergence of resistance when the mutational pathway involves a long sequence of mutants with increasing resistance, but if the pathway is short or crosses a fitness valley, the evolution of resistance may actually be slowed down by drug gradients. These predictions can be verified experimentally, and may help to improve strategies for combating the emergence of resistance.

  9. Drug Resistance in Cancer: An Overview

    PubMed Central

    Housman, Genevieve; Byler, Shannon; Heerboth, Sarah; Lapinska, Karolina; Longacre, Mckenna; Snyder, Nicole; Sarkar, Sibaji

    2014-01-01

    Cancers have the ability to develop resistance to traditional therapies, and the increasing prevalence of these drug resistant cancers necessitates further research and treatment development. This paper outlines the current knowledge of mechanisms that promote or enable drug resistance, such as drug inactivation, drug target alteration, drug efflux, DNA damage repair, cell death inhibition, and the epithelial-mesenchymal transition, as well as how inherent tumor cell heterogeneity plays a role in drug resistance. It also describes the epigenetic modifications that can induce drug resistance and considers how such epigenetic factors may contribute to the development of cancer progenitor cells, which are not killed by conventional cancer therapies. Lastly, this review concludes with a discussion on the best treatment options for existing drug resistant cancers, ways to prevent the formation of drug resistant cancers and cancer progenitor cells, and future directions of study. PMID:25198391

  10. Drug Resistance Mechanisms in Mycobacterium tuberculosis

    PubMed Central

    Palomino, Juan Carlos; Martin, Anandi

    2014-01-01

    Tuberculosis (TB) is a serious public health problem worldwide. Its situation is worsened by the presence of multidrug resistant (MDR) strains of Mycobacterium tuberculosis, the causative agent of the disease. In recent years, even more serious forms of drug resistance have been reported. A better knowledge of the mechanisms of drug resistance of M. tuberculosis and the relevant molecular mechanisms involved will improve the available techniques for rapid drug resistance detection and will help to explore new targets for drug activity and development. This review article discusses the mechanisms of action of anti-tuberculosis drugs and the molecular basis of drug resistance in M. tuberculosis. PMID:27025748

  11. Drug Resistance Mechanisms in Mycobacterium tuberculosis.

    PubMed

    Palomino, Juan Carlos; Martin, Anandi

    2014-01-01

    Tuberculosis (TB) is a serious public health problem worldwide. Its situation is worsened by the presence of multidrug resistant (MDR) strains of Mycobacterium tuberculosis, the causative agent of the disease. In recent years, even more serious forms of drug resistance have been reported. A better knowledge of the mechanisms of drug resistance of M. tuberculosis and the relevant molecular mechanisms involved will improve the available techniques for rapid drug resistance detection and will help to explore new targets for drug activity and development. This review article discusses the mechanisms of action of anti-tuberculosis drugs and the molecular basis of drug resistance in M. tuberculosis. PMID:27025748

  12. Targeted cancer therapy; nanotechnology approaches for overcoming drug resistance.

    PubMed

    Gao, Yan; Shen, Jacson K; Milane, Lara; Hornicek, Francis J; Amiji, Mansoor M; Duan, Zhenfeng

    2015-01-01

    Recent advances in cancer molecular biology have resulted in parallel and unprecedented progress in the development of targeted cancer therapy. Targeted therapy can provide higher efficacy and lower toxicity than conventional chemotherapy for cancer. However, like traditional chemotherapy, molecularly targeted cancer therapy also faces the challenge of drug resistance. Multiple mechanisms are responsible for chemotherapy resistance in tumors, including over-expression of efflux transporters, somatic alterations of drug targets, deregulation of apoptosis, and numerous pharmacokinetic issues. Nanotechnology based approaches are proving to be efficacious in overcoming drug resistance in cancer. Combination of targeted therapies with nanotechnology approaches is a promising strategy to overcome targeted therapy drug resistance in cancer treatment. This review discusses the mechanisms of targeted drug resistance in cancer and discusses nanotechnology approaches to circumvent this resistance.

  13. Molecular characterization of multiple-drug-resistant Mycobacterium tuberculosis isolates from northwestern Russia and analysis of rifampin resistance using RNA/RNA mismatch analysis as compared to the line probe assay and sequencing of the rpoB gene.

    PubMed

    Mokrousov, Igor; Filliol, Ingrid; Legrand, Eric; Sola, Christophe; Otten, Tatiana; Vyshnevskaya, Elena; Limeschenko, Elena; Vyshnevskiy, Boris; Narvskaya, Olga; Rastogi, Nalin

    2002-05-01

    This investigation evaluated the potential of RNA/RNA mismatch analysis for the detection of rifampin resistance among 38 multiple-drug-resistant (MDR) isolates of Mycobacterium tuberculosis from northwestern Russia. The results obtained were compared with a commercialized line probe assay and rpoB sequencing, and the genetic diversity of the isolates was also investigated in parallel using spoligotyping and variable number of tandem DNA repeats (VNTR). The mismatch analysis revealed 3 distinct RNA cleavage profiles permitting the subdivision of the strains into mutation groups 1 to 3, the most common being group 1 (28 of 38 isolates) that contained a majority of strains with a TCG531>TTG (Ser->Leu) mutation, followed by group 2 (6 of 38 isolates) characterized by different mutations in the codon CAC526 (His), and group 3 (4 of 38 isolates), all characterized by a GAC516(Asp) mutation. Spoligotyping revealed the Beijing type to be the most prevalent among mismatch group 1 (24 out of 28 strains), suggesting that the most frequent rpoB mutation among the Beijing family in our setting was TCG531 >TTG (Ser->Leu). All the Beijing type isolates were also characterized by a unique VNTR pattern made up of exact tandem repeats (ETR)-A to E of 42435. We conclude that the Beijing genotype constitutes the major family of MDR-TB isolates currently circulating in northwestern Russia, and that the in-house RNA/RNA mismatch analysis may be successfully used for rapid and reliable diagnosis of rifampin-resistant tuberculosis in this setting. PMID:12066892

  14. Cancer Metabolism and Drug Resistance

    PubMed Central

    Rahman, Mahbuba; Hasan, Mohammad Rubayet

    2015-01-01

    Metabolic alterations, driven by genetic and epigenetic factors, have long been known to be associated with the etiology of cancer. Furthermore, accumulating evidence suggest that cancer metabolism is intimately linked to drug resistance, which is currently one of the most important challenges in cancer treatment. Altered metabolic pathways help cancer cells to proliferate at a rate higher than normal, adapt to nutrient limited conditions, and develop drug resistance phenotypes. Application of systems biology, boosted by recent advancement of novel high-throughput technologies to obtain cancer-associated, transcriptomic, proteomic and metabolomic data, is expected to make a significant contribution to our understanding of metabolic properties related to malignancy. Indeed, despite being at a very early stage, quantitative data obtained from the omics platforms and through applications of 13C metabolic flux analysis (MFA) in in vitro studies, researchers have already began to gain insight into the complex metabolic mechanisms of cancer, paving the way for selection of molecular targets for therapeutic interventions. In this review, we discuss some of the major findings associated with the metabolic pathways in cancer cells and also discuss new evidences and achievements on specific metabolic enzyme targets and target-directed small molecules that can potentially be used as anti-cancer drugs. PMID:26437434

  15. A pleiotropic drug resistance transporter is involved in reduced sensitivity to multiple fungicide classes in Sclerotinia homoeocarpa (F.T. Bennett).

    PubMed

    Sang, Hyunkyu; Hulvey, Jon; Popko, James T; Lopes, John; Swaminathan, Aishwarya; Chang, Taehyun; Jung, Geunhwa

    2015-04-01

    Dollar spot, caused by Sclerotinia homoeocarpa, is a prevalent turfgrass disease, and the fungus exhibits widespread fungicide resistance in North America. In a previous study, an ABC-G transporter, ShatrD, was associated with practical field resistance to demethylation inhibitor (DMI) fungicides. Mining of ABC-G transporters, also known as pleiotropic drug resistance (PDR) transporters, from RNA-Seq data gave an assortment of transcripts, several with high sequence similarity to functionally characterized transporters from Botrytis cinerea, and others with closest blastx hits from Aspergillus and Monilinia. In addition to ShatrD, another PDR transporter showed significant over-expression in replicated RNA-Seq data, and in a collection of field-resistant isolates, as measured by quantitative polymerase chain reaction. These isolates also showed reduced sensitivity to unrelated fungicide classes. Using a yeast complementation system, we sought to test the hypothesis that this PDR transporter effluxes DMI as well as chemically unrelated fungicides. The transporter (ShPDR1) was cloned into the Gal1 expression vector and transformed into a yeast PDR transporter deletion mutant, AD12345678. Complementation assays indicated that ShPDR1 complemented the mutant in the presence of propiconazole (DMI), iprodione (dicarboximide) and boscalid (SDHI, succinate dehydrogenase inhibitor). Our results indicate that the over-expression of ShPDR1 is correlated with practical field resistance to DMI fungicides and reduced sensitivity to dicarboximide and SDHI fungicides. These findings highlight the potential for the eventual development of a multidrug resistance phenotype in this pathogen. In addition, this study presents a pipeline for the discovery and validation of fungicide resistance genes using de novo next-generation sequencing and molecular biology techniques in an unsequenced plant pathogenic fungus.

  16. Superinfection and the evolution of resistance to antimalarial drugs.

    PubMed

    Klein, Eili Y; Smith, David L; Laxminarayan, Ramanan; Levin, Simon

    2012-09-22

    A major issue in the control of malaria is the evolution of drug resistance. Ecological theory has demonstrated that pathogen superinfection and the resulting within-host competition influences the evolution of specific traits. Individuals infected with Plasmodium falciparum are consistently infected by multiple parasites; however, while this probably alters the dynamics of resistance evolution, there are few robust mathematical models examining this issue. We developed a general theory for modelling the evolution of resistance with host superinfection and examine: (i) the effect of transmission intensity on the rate of resistance evolution; (ii) the importance of different biological costs of resistance; and (iii) the best measure of the frequency of resistance. We find that within-host competition retards the ability and slows the rate at which drug-resistant parasites invade, particularly as the transmission rate increases. We also find that biological costs of resistance that reduce transmission are less important than reductions in the duration of drug-resistant infections. Lastly, we find that random sampling of the population for resistant parasites is likely to significantly underestimate the frequency of resistance. Considering superinfection in mathematical models of antimalarial drug resistance may thus be important for generating accurate predictions of interventions to contain resistance.

  17. Superinfection and the evolution of resistance to antimalarial drugs

    PubMed Central

    Klein, Eili Y.; Smith, David L.; Laxminarayan, Ramanan; Levin, Simon

    2012-01-01

    A major issue in the control of malaria is the evolution of drug resistance. Ecological theory has demonstrated that pathogen superinfection and the resulting within-host competition influences the evolution of specific traits. Individuals infected with Plasmodium falciparum are consistently infected by multiple parasites; however, while this probably alters the dynamics of resistance evolution, there are few robust mathematical models examining this issue. We developed a general theory for modelling the evolution of resistance with host superinfection and examine: (i) the effect of transmission intensity on the rate of resistance evolution; (ii) the importance of different biological costs of resistance; and (iii) the best measure of the frequency of resistance. We find that within-host competition retards the ability and slows the rate at which drug-resistant parasites invade, particularly as the transmission rate increases. We also find that biological costs of resistance that reduce transmission are less important than reductions in the duration of drug-resistant infections. Lastly, we find that random sampling of the population for resistant parasites is likely to significantly underestimate the frequency of resistance. Considering superinfection in mathematical models of antimalarial drug resistance may thus be important for generating accurate predictions of interventions to contain resistance. PMID:22787024

  18. Amplification of a Gene Related to Mammalian mdr Genes in Drug-Resistant Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Wilson, Craig M.; Serrano, Adelfa E.; Wasley, Annemarie; Bogenschutz, Michael P.; Shankar, Anuraj H.; Wirth, Dyann F.

    1989-06-01

    The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.

  19. Understanding drug resistance in human intestinal protozoa.

    PubMed

    El-Taweel, Hend Aly

    2015-05-01

    Infections with intestinal protozoa continue to be a major health problem in many areas of the world. The widespread use of a limited number of therapeutic agents for their management and control raises concerns about development of drug resistance. Generally, the use of any antimicrobial agent should be accompanied by meticulous monitoring of its efficacy and measures to minimize resistance formation. Evidence for the occurrence of drug resistance in different intestinal protozoa comes from case studies and clinical trials, sometimes with a limited number of patients. Large-scale field-based assessment of drug resistance and drug sensitivity testing of clinical isolates are needed. Furthermore, the association of drug resistance with certain geographic isolates or genotypes deserves consideration. Drug resistance has been triggered in vitro and has been linked to modification of pyruvate:ferredoxin oxidoreductase, nitroreductases, antioxidant defense, or cytoskeletal system. Further mechanistic studies will have important implications in the development of second generation therapeutic agents.

  20. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    PubMed

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID

  1. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    PubMed

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.

  2. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance

    PubMed Central

    Valle, Demetrio L.; Cabrera, Esperanza C.; Puzon, Juliana Janet M.; Rivera, Windell L.

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID

  3. Distribution of virulence genes and multiple drug-resistant patterns amongst different phylogenetic groups of uropathogenic Escherichia coli isolated from patients with urinary tract infection.

    PubMed

    Derakhshandeh, A; Firouzi, R; Motamedifar, M; Motamedi Boroojeni, A; Bahadori, M; Arabshahi, S; Novinrooz, A; Heidari, S

    2015-02-01

    A total of 85 Uropathogenic Escherichia coli (UPEC) isolates were screened against ceftiofur, oxacillin, nitrofurantoin and lincospectin using Kirby-Bauer disc diffusion method, following CLSI guidelines. Prevalence of virulent factor genes amongst the isolates was determined by PCR, using gene-specific primers against the different virulent factors. Statistical analysis of the data was performed using SPSS software. The prevalence of traT, ompT, Iss, malX and ibeA genes was 47.1%, 38.8%, 20%, 16.5% and 9.4%, respectively. The most prevalent gene in group A and D was traT, whilst in group B2 was Iss. The highest resistance has been shown against oxacillin (98.8%), followed by ceftiofur (77.6%), whilst resistance to lincospectin (2.4%) and nitrofurantoin (12.9%) had the lowest frequencies. Multidrug resistance was shown in 82.35% of the isolates, whilst this study recommend lincospectin and nitrofurantoin as choice drugs for treatment, but more investigation of the bacterial pathogenicity associated with urinary tract infection (UTI) may contribute to a better medical intervention.

  4. Efflux-Mediated Drug Resistance in Bacteria: an Update

    PubMed Central

    Li, Xian-Zhi; Nikaido, Hiroshi

    2010-01-01

    Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome although they can also be plasmid-encoded. A previous article (Li X-Z and Nikaido H, Drugs, 2004; 64[2]: 159–204) had provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past five years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria. PMID:19678712

  5. Clinical Management of HIV Drug Resistance

    PubMed Central

    Cortez, Karoll J.; Maldarelli, Frank

    2011-01-01

    Combination antiretroviral therapy for HIV-1 infection has resulted in profound reductions in viremia and is associated with marked improvements in morbidity and mortality. Therapy is not curative, however, and prolonged therapy is complicated by drug toxicity and the emergence of drug resistance. Management of clinical drug resistance requires in depth evaluation, and includes extensive history, physical examination and laboratory studies. Appropriate use of resistance testing provides valuable information useful in constructing regimens for treatment-experienced individuals with viremia during therapy. This review outlines the emergence of drug resistance in vivo, and describes clinical evaluation and therapeutic options of the individual with rebound viremia during therapy. PMID:21994737

  6. Drug-Resistant Tuberculosis: Challenges and Progress.

    PubMed

    Kurz, Sebastian G; Furin, Jennifer J; Bark, Charles M

    2016-06-01

    Antimicrobial resistance is a natural evolutionary process, which in the case of Mycobacterium tuberculosis is based on spontaneous chromosomal mutations, meaning that well-designed combination drug regimens provided under supervised therapy will prevent the emergence of drug-resistant strains. Unfortunately, limited resources, poverty, and neglect have led to the emergence of drug-resistant tuberculosis throughout the world. The international community has responded with financial and scientific support, leading to new rapid diagnostics, new drugs and regimens in advanced clinical development, and an increasingly sophisticated understanding of resistance mechanisms and their application to all aspects of TB control and treatment. PMID:27208770

  7. Mycobacterium tuberculosis resistance to antituberculosis drugs in Mozambique*, **

    PubMed Central

    Pires, Germano Manuel; Folgosa, Elena; Nquobile, Ndlovu; Gitta, Sheba; Cadir, Nureisha

    2014-01-01

    OBJECTIVE: To determine the drug resistance profile of Mycobacterium tuberculosis in Mozambique. METHODS: We analyzed secondary data from the National Tuberculosis Referral Laboratory, in the city of Maputo, Mozambique, and from the Beira Regional Tuberculosis Referral Laboratory, in the city of Beira, Mozambique. The data were based on culture-positive samples submitted to first-line drug susceptibility testing (DST) between January and December of 2011. We attempted to determine whether the frequency of DST positivity was associated with patient type or provenance. RESULTS: During the study period, 641 strains were isolated in culture and submitted to DST. We found that 374 (58.3%) were resistant to at least one antituberculosis drug and 280 (43.7%) were resistant to multiple antituberculosis drugs. Of the 280 multidrug-resistant tuberculosis cases, 184 (65.7%) were in previously treated patients, most of whom were from southern Mozambique. Two (0.71%) of the cases of multidrug-resistant tuberculosis were confirmed to be cases of extensively drug-resistant tuberculosis. Multidrug-resistant tuberculosis was most common in males, particularly those in the 21-40 year age bracket. CONCLUSIONS: M. tuberculosis resistance to antituberculosis drugs is high in Mozambique, especially in previously treated patients. The frequency of M. tuberculosis strains that were resistant to isoniazid, rifampin, and streptomycin in combination was found to be high, particularly in samples from previously treated patients. PMID:24831398

  8. A functional variomics tool for discovering drug resistance genes and drug targets

    PubMed Central

    Huang, Zhiwei; Chen, Kaifu; Zhang, Jianhuai; Li, Yongxiang; Wang, Hui; Cui, Dandan; Tang, Jiangwu; Liu, Yong; Shi, Xiaomin; Li, Wei; Liu, Dan; Chen, Rui; Sucgang, Richard S.; Pan, Xuewen

    2013-01-01

    Comprehensive discovery of genetic mechanisms of drug resistance and identification of in vivo drug targets represent significant challenges. Here we present a functional variomics technology in the model organism Saccharomyces cerevisiae. This tool analyzes numerous genetic variants and effectively tackles both problems simultaneously. Using this tool, we discovered almost all genes that, due to mutations or modest overexpression, confer resistance to rapamycin, cycloheximide, and amphotericin B. Most significant among the resistance genes were drug targets, including multiple targets of a given drug. With amphotericin B, we discovered the highly conserved membrane protein Pmp3 as a potent resistance factor and a possible novel target. Widespread application of this tool should allow rapid identification of conserved resistance mechanisms and targets of many more compounds. New genes and alleles that confer resistance to other stresses can also be discovered. Similar tools in other systems such as human cell lines will also be useful. PMID:23416056

  9. Emergence of therapy resistance in multiple myeloma in heterogeneous microenvironment

    NASA Astrophysics Data System (ADS)

    Wu, Amy; Zhang, Qiucen; Lambert, Guillaume; Khin, Zayar; Silva, Ariosto; Gatenby, Robert; Kim, Hyungsung; Pourmand, Nader; Austin, Robert; Sturm, James

    2014-03-01

    Cancer chemotherapy resistance is always a problem that is not clear considering spatial heterogeneity in the tumor microenvironment. We culture multiple myeloma in a gradient from 0 to 20 nM of doxorubicin (genotoxic drug) across 2 mm wide region in a microfluidic device which mimics the tumor microenvironment with a chemotherapy drug gradient and microhabitats. Resistance of the multiple myeloma cells to doxorubicin emerged within two weeks. For the resistant cells evolved from the devices, the doxorubicin concentration that inhibits 50% of the controlled population increased by 16-fold than the parental cells. Whole transcriptome sequencing revealed that 39% of newly acquired mutational hotspots (the genes with more than 3 non-synonymous point mutation) of the resistant cells are involved in apoptosis and DNA repair. On the other hand, 40% of the non-mutated genes that are abnormally regulated in the resistant cells, are involved in metabolism, biosynthesis, and biomolecular transport. Among them, metabolic drug efflux pumps and oxidative stress scavengers are up-regulated to reduce the cytotoxicity of doxorubicin and further result in the resistance. The roles of the spatial drug gradients and microhabitats in rapid emergence of cancer resistance will be discussed. The project described was supported by the National Science Foundation and the National Cancer Institute.

  10. Medical Management of Drug-Resistant Tuberculosis

    PubMed Central

    2015-01-01

    Drug-resistant tuberculosis (TB) is still a major threat worldwide. However, recent scientific advances in diagnostic and therapeutic tools have improved the management of drug-resistant TB. The development of rapid molecular testing methods allows for the early detection of drug resistance and prompt initiation of an appropriate treatment. In addition, there has been growing supportive evidence for shorter treatment regimens in multidrug-resistant TB; and for the first time in over 50 years, new anti-TB drugs have been developed. The World Health Organization has recently revised their guidelines, primarily based on evidence from a meta-analysis of individual patient data (n=9,153) derived from 32 observational studies, and outlined the recommended combination and correct use of available anti-TB drugs. This review summarizes the updated guidelines with a focus on the medical management of drug-resistant TB. PMID:26175768

  11. Preventing drug resistance in severe influenza

    NASA Astrophysics Data System (ADS)

    Dobrovolny, Hana; Deecke, Lucas

    2015-03-01

    Severe, long-lasting influenza infections are often caused by new strains of influenza. The long duration of these infections leads to an increased opportunity for the emergence of drug resistant mutants. This is particularly problematic for new strains of influenza since there is often no vaccine, so drug treatment is the first line of defense. One strategy for trying to minimize drug resistance is to apply periodic treatment. During treatment the wild-type virus decreases, but resistant virus might increase; when there is no treatment, wild-type virus will hopefully out-compete the resistant virus, driving down the number of resistant virus. We combine a mathematical model of severe influenza with a model of drug resistance to study emergence of drug resistance during a long-lasting infection. We apply periodic treatment with two types of antivirals: neuraminidase inhibitors, which block release of virions; and adamantanes, which block replication of virions. We compare the efficacy of the two drugs in reducing emergence of drug resistant mutants and examine the effect of treatment frequency on the emergence of drug resistant mutants.

  12. Augmentation of Human Immunodeficiency Virus Type 1 Subtype E (CRF01_AE) Multiple-Drug Resistance by Insertion of a Foreign 11-Amino-Acid Fragment into the Reverse Transcriptase

    PubMed Central

    Sato, Hironori; Tomita, Yasuhiro; Ebisawa, Kazuyoshi; Hachiya, Atsuko; Shibamura, Kayo; Shiino, Teiichiro; Yang, Rongge; Tatsumi, Masashi; Gushi, Kazuo; Umeyama, Hideaki; Oka, Shinichi; Takebe, Yutaka; Nagai, Yoshiyuki

    2001-01-01

    A human immunodeficiency virus type 1 (HIV-1) subtype E (CRF01_AE) variant (99JP-NH3-II) possessing an in-frame 33-nucleotide insertion mutation in the β3-β4 loop coding region of the reverse transcriptase (RT) gene was isolated from a patient who had not responded to nucleoside analogue RT inhibitors. This virus exhibited an extremely high level of multiple nucleoside analog resistance (MNR). Neighbor-joining tree analysis of the pol sequences indicated that the 99JP-NH3-II variant had originated from the swarm of drug-sensitive predecessors in the patient. Population-based sequence analyses of 82 independently cloned RT segments from the patient suggested that the variants with the insertion, three or four 3′-azido-3′-deoxythymidine resistance mutations, and a T69I mutation in combination had strong selective advantages during chemotherapy. Consistently, in vitro mutagenesis of a drug-sensitive predecessor virus clone demonstrated that this mutation set functions cooperatively to confer a high level of MNR without deleterious effects on viral replication capability. Homology modeling of the parental RT and its MNR mutant showed that extension of the β3-β4 loop by an insertion caused reductions in the distances between the loop and the other subdomains, narrowing the template-primer binding cleft and deoxynucleoside triphosphate-binding pocket in a highly flexible manner. The origin of the insert is elusive, as every effort to find a homologue has been unsuccessful. Taken together, these data suggest that (i) HIV-1 tolerates in vivo insertions as long as 33 nucleotides into the highly conserved enzyme gene to survive multiple anti-HIV-1 inhibitors and (ii) the insertion mutation augments multiple-drug resistance, possibly by reducing the biochemical inaccuracy of substrate-enzyme interactions in the active center. PMID:11356968

  13. [New drugs in the treatment of multiple myeloma].

    PubMed

    Oriol, Albert; Motlló, Cristina

    2014-09-15

    Progress in the treatment of multiple myeloma in the last decade has been able to delay, but ultimately not to prevent, the development of resistances and most patients still die of the disease or its related complications. New drugs have been developed including new alkylating agents, proteasome inhibitors and immunomodulators but also monoclonal antibodies and drugs with new mechanisms of action. Hopefully, this new generation of targeted agents will improve the results of the initial therapy, avoid relapses and development of resistances and provide better and less toxic options for the relapsed and refractory patient. PMID:24342015

  14. Lactonase-expressing Lactobacillus plantarum NC8 attenuates the virulence factors of multiple drug resistant Pseudomonas aeruginosa in co-culturing environment.

    PubMed

    Joshi, Sudha; Kaur, Amanjot; Sharma, Prince; Harjai, Kusum; Capalash, Neena

    2014-08-01

    Pseudomonas aeruginosa possesses an arcade of both cell-associated and extracellular cytotoxic virulence factors which are regulated by a multi-component quorum sensing system. Many research studies report success of lactonase in combating the pathogenicity of P. aeruginosa but delivery of lactonase remains a challenge. The present study aims at developing a delivery vehicle for lactonase. Lactobacillus plantarum NC8 was used as host for aiiA (Bacillus thuringiensis 4A3 lactonase gene) using pSIP409 expression vector. pSIP409: aiiA construct was stably maintained in L. plantarum NC8. Co-culturing of multi-drug resistant (MDR) clinical isolates of P. aeruginosa and PAO1 with recombinant L. plantarum NC8 led to significant reduction (p < 0.001) in extracellular virulence factors like pyocyanin, protease, elastase and rhamnolipids in P. aeruginosa and also showed significant reduction in adhesion of P. aeruginosa strains to uroepithelial cells in vitro. This study shows the heterologous expression of AiiA lactonase in L. plantarum NC8. Co-culturing of lactonase expressing L. plantarum NC8 with MDR P. aeruginosa strains led to attenuation of their virulence significantly. These results underscore the potential application of recombinant L. plantarum NC8 with anti-quorum sensing properties to control infections caused by multidrug resistant P. aeruginosa.

  15. Clinical implications of resistance to antiretroviral drugs.

    PubMed

    Vella, S

    1997-06-01

    New virological concepts are emerging and results from trials using potent combinations have demonstrated that drug resistance in AIDS therapy can be delayed, if not completely overcome, by appropriate treatment strategies. The definition and measures of resistance are explained, including the general mechanisms of resistance. Resistance patterns with nucleoside analogues, non-nucleoside reverse transcriptase inhibitors, and protease inhibitors are examined, followed by a discussion of the clinical implications. It is suggested that, based on HIV-1 replication in vivo, early and aggressive antiretroviral therapy is needed to minimize the negative consequences of its replication. Recommended clinical guidelines for avoiding drug resistance are listed. PMID:11364354

  16. Effects of the W153L Substitution in HIV Reverse Transcriptase on Viral Replication and Drug Resistance to Multiple Categories of Reverse Transcriptase Inhibitors

    PubMed Central

    Xu, Hong-Tao; Colby-Germinario, Susan P.; Oliveira, Maureen; Rajotte, Daniel; Bethell, Richard

    2014-01-01

    A W153L substitution in HIV-1 reverse transcriptase (RT) was recently identified by selection with a novel nucleotide-competing RT inhibitor (NcRTI) termed compound A that is a member of the benzo[4,5]furo[3,2,d]pyrimidin-2-one NcRTI family of drugs. To investigate the impact of W153L, alone or in combination with the clinically relevant RT resistance substitutions K65R (change of Lys to Arg at position 65), M184I, K101E, K103N, E138K, and Y181C, on HIV-1 phenotypic susceptibility, viral replication, and RT enzymatic function, we generated recombinant RT enzymes and viruses containing each of these substitutions or various combinations of them. We found that W153L-containing viruses were impaired in viral replicative capacity and were hypersusceptible to tenofovir (TFV) while retaining susceptibility to most nonnucleoside RT inhibitors. The nucleoside 3TC retained potency against W153L-containing viruses but not when the M184I substitution was also present. W153L was also able to reverse the effects of the K65R substitution on resistance to TFV, and K65R conferred hypersusceptibility to compound A. Biochemical assays demonstrated that W153L alone or in combination with K65R, M184I, K101E, K103N, E138K, and Y181C impaired enzyme processivity and polymerization efficiency but did not diminish RNase H activity, providing mechanistic insights into the low replicative fitness associated with these substitutions. We show that the mechanism of the TFV hypersusceptibility conferred by W153L is mainly due to increased efficiency of TFV-diphosphate incorporation. These results demonstrate that compound A and/or derivatives thereof have the potential to be important antiretroviral agents that may be combined with tenofovir to achieve synergistic results. PMID:24867966

  17. A novel asymmetric-loop molecular beacon-based two-phase hybridization assay for accurate and high-throughput detection of multiple drug resistance-conferring point mutations in Mycobacterium tuberculosis.

    PubMed

    Chen, Qinghai; Wu, Nan; Xie, Meng; Zhang, Bo; Chen, Ming; Li, Jianjun; Zhuo, Lisha; Kuang, Hong; Fu, Weiling

    2012-04-01

    The accurate and high-throughput detection of drug resistance-related multiple point mutations remains a challenge. Although the combination of molecular beacons with bio-immobilization technology, such as microarray, is promising, its application is difficult due to the ineffective immobilization of molecular beacons on the chip surface. Here, we propose a novel asymmetric-loop molecular beacon in which the loop consists of 2 parts. One is complementary to a target, while the other is complementary to an oligonucleotide probe immobilized on the chip surface. With this novel probe, a two-phase hybridization assay can be used for simultaneously detecting multiple point mutations. This assay will have advantages, such as easy probe availability, multiplex detection, low background, and high-efficiency hybridization, and may provide a new avenue for the immobilization of molecular beacons and high-throughput detection of point mutations.

  18. Mechanisms of Drug Resistance: Daptomycin Resistance

    PubMed Central

    Tran, Truc T.; Munita, Jose M.; Arias, Cesar A.

    2016-01-01

    Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram-positive pathogens, including multidrug-resistant organisms. Since its introduction in clinical practice in 2003, DAP has become an important key front-line antibiotic for severe or deep-seated infections caused by Gram-positive organisms. Unfortunately, DAP-resistance (R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp, and Streptococcus spp. Studies on the mechanisms of DAP-R in Bacillus subtilis and other Gram-positive bacteria indicate that the genetic pathways of DAP resistance are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP-R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have offered novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram-positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram-positive pathogens and discuss the clinical implications for therapy against these important bacteria. PMID:26495887

  19. Antibiotic preparations contain DNA: a source of drug resistance genes?

    PubMed Central

    Webb, V; Davies, J

    1993-01-01

    Fluorescence measurements and polymerase chain reaction amplification of streptomycete 16S ribosomal DNA sequences were used to show that a number of antibiotic preparations employed for human and animal use are contaminated with chromosomal DNA of the antibiotic-producing organism. The DNA contains identifiable antibiotic resistance gene sequences; the uptake of this DNA by bacteria and its functional incorporation into bacterial replicons would lead to the generation of antibiotic resistance determinants. We propose that the presence of DNA encoding drug resistance in antibiotic preparations has been a factor in the rapid development of multiple antibiotic resistance in bacteria. Images PMID:8285621

  20. A national study of clinical and laboratory factors affecting the survival of patients with multiple drug resistant tuberculosis in the UK

    PubMed Central

    Drobniewski, F; Eltringham, I; Graham, C; Magee, J; Smith, E; Watt, B

    2002-01-01

    Background: This study aimed to describe the clinical, microbiological, molecular epidemiology and treatment of multidrug resistant tuberculosis (MDRTB) cases in the UK and to determine factors associated with survival. Methods: Ninety MDRTB cases were identified from 1 January 1996 to 30 June 1997; 69 were DNA fingerprinted. Date of diagnosis was determined and data were collated on key demographic factors, clinical, radiological and treatment details. Variables associated with survival were included in a Cox proportional hazards model. Results: Most of the patients (72.4%) were male, born outside the UK (57.1%), were sputum smear positive (82.2%), and had entered the UK more than 5 years previously (61.9%). Thirty eight of 78 cases (48.7%) had prior TB. Sufficient data on 82 patients were available for survival analysis; 20/27 (74.1%) known to be dead at the end of the observation period had died of tuberculosis. Median survival time overall was 1379 days (95% CI 1336 to 2515) or 3.78 (95% CI 3.66 to 6.89) years (858 days (95% CI 530 to 2515) in immunocompromised individuals (n=32) and 1554 (95% CI 1336 to 2066) days in immunocompetent cases (n=48)). Median survival in patients treated with three drugs to which the bacterium was susceptible on in vitro testing (n=62) was 2066 days (95% CI 1336 to 2515) or 5.66 years, whereas in those not so treated (n=13) survival was 599 days (95% CI 190 to 969) or 1.64 years. Conclusions: Immunocompromised status, failure to culture the bacterium in 30 days or to apply appropriate three drug treatment, and age were significant factors in mortality. An immunocompromised patient was nearly nine times more likely to die, while application of appropriate treatment reduced the risk (risk ratio 0.06). Increasing age was associated with increasing risk of death (risk ratio 2.079; 95% CI 1.269 to 3.402)—that is, for every 10 year increase in age the risk almost doubled. Overall survival was lower than that reported in previous

  1. Emerging pathogens: Dynamics, mutation and drug resistance

    SciTech Connect

    Perelson, A.S.; Goldstein, B.; Korber, B.T.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were to develop models of the spread of pathogens, such as HIV-1 and influenza, in humans, and then to use the models to address the possibility of designing appropriate drug therapies that may limit the ability of the pathogen to escape treatment by mutating into a drug resistant form. We have developed a model of drug-resistance to amantidine and rimantadine, the two major antiviral drugs used to treat influenza, and have used the model to suggest treatment strategies during an epidemic.

  2. Antimicrobial (Drug) Resistance: Methicillin-Resistant Staphylococcus aureus (MRSA)

    MedlinePlus

    ... NIAID invests in basic research to understand the biology of microbes, their behavior, and how drug resistance ... Nucleotide Polymorphism Phylogenetics & Ontology Proteomics & Protein Analysis Systems Biology Data Portals Software Applications BCBB Mobyle Interface Designer ( ...

  3. Mechanisms of echinocandin antifungal drug resistance

    PubMed Central

    Perlin, David S.

    2015-01-01

    Fungal infections due to Candida and Aspergillus species cause extensive morbidity and mortality, especially among immunosuppressed patients, and antifungal therapy is critical to patient management. Yet only a few drug classes are available to treat invasive fungal diseases, and this problem is compounded by the emergence of antifungal resistance. Echinocandin drugs are the preferred choice to treat candidiasis. They are the first cell wall–active agents and target the fungal-specific enzyme glucan synthase, which catalyzes the biosynthesis of β-1,3-glucan, a key cell wall polymer. Therapeutic failures occur rarely among common Candida species, with the exception of Candida glabrata, which are frequently multidrug resistant. Echinocandin resistance in susceptible species is always acquired during therapy. The mechanism of resistance involves amino acid changes in hot-spot regions of Fks subunits of glucan synthase, which decrease the sensitivity of the enzyme to drug. Cellular stress response pathways lead to drug adaptation, which promote the formation of resistant fks strains. Clinical factors promoting echinocandin resistance include empiric therapy, prophylaxis, gastrointestinal reservoirs, and intra-abdominal infections. A better understanding of the echinocandin resistance mechanism, along with cellular and clinical factors promoting resistance, will promote more effective strategies to overcome and prevent echinocandin resistance. PMID:26190298

  4. Impact of treatment heterogeneity on drug resistance and supply chain costs☆

    PubMed Central

    Spiliotopoulou, Eirini; Boni, Maciej F.; Yadav, Prashant

    2013-01-01

    The efficacy of scarce drugs for many infectious diseases is threatened by the emergence and spread of resistance. Multiple studies show that available drugs should be used in a socially optimal way to contain drug resistance. This paper studies the tradeoff between risk of drug resistance and operational costs when using multiple drugs for a specific disease. Using a model for disease transmission and resistance spread, we show that treatment with multiple drugs, on a population level, results in better resistance-related health outcomes, but more interestingly, the marginal benefit decreases as the number of drugs used increases. We compare this benefit with the corresponding change in procurement and safety stock holding costs that result from higher drug variety in the supply chain. Using a large-scale simulation based on malaria transmission dynamics, we show that disease prevalence seems to be a less important factor when deciding the optimal width of drug assortment, compared to the duration of one episode of the disease and the price of the drug(s) used. Our analysis shows that under a wide variety of scenarios for disease prevalence and drug cost, it is optimal to simultaneously deploy multiple drugs in the population. If the drug price is high, large volume purchasing discounts are available, and disease prevalence is high, it may be optimal to use only one drug. Our model lends insights to policy makers into the socially optimal size of drug assortment for a given context. PMID:25843982

  5. Learning the ABC of oral fungal drug resistance.

    PubMed

    Cannon, R D; Holmes, A R

    2015-12-01

    ATP-binding cassette (ABC) proteins are ubiquitous in prokaryotes and eukaryotes. They are involved in energy-dependent transport of molecules across membranes. ABC proteins are often promiscuous transporters that can translocate a variety of substrates. In oral fungi, especially in Candida species, they have been implicated as major contributors to the high-level azole resistance of clinical isolates from infections that do not respond to drug therapy. Although this is predominantly due to efflux of azoles from the cells, ABC proteins can contribute to fungal drug resistance in other ways as well. Cells in biofilms are notoriously resistant to antifungal agents. ABC proteins can contribute to this resistance through the efflux of drugs. Biofilms are complex communities of myriad microorganisms which, to survive in such a milieu, need to communicate with, and respond to, other microorganisms and their products. ABC proteins are involved in the secretion of fungal mating factors and quorum sensing molecules. These molecules affect biofilm structure and behavior that can result in increased drug resistance. Hence, ABC proteins make multiple contributions to oral fungal drug resistance through a variety of responses to environmental signals. PMID:26042641

  6. Learning the ABC of oral fungal drug resistance.

    PubMed

    Cannon, R D; Holmes, A R

    2015-12-01

    ATP-binding cassette (ABC) proteins are ubiquitous in prokaryotes and eukaryotes. They are involved in energy-dependent transport of molecules across membranes. ABC proteins are often promiscuous transporters that can translocate a variety of substrates. In oral fungi, especially in Candida species, they have been implicated as major contributors to the high-level azole resistance of clinical isolates from infections that do not respond to drug therapy. Although this is predominantly due to efflux of azoles from the cells, ABC proteins can contribute to fungal drug resistance in other ways as well. Cells in biofilms are notoriously resistant to antifungal agents. ABC proteins can contribute to this resistance through the efflux of drugs. Biofilms are complex communities of myriad microorganisms which, to survive in such a milieu, need to communicate with, and respond to, other microorganisms and their products. ABC proteins are involved in the secretion of fungal mating factors and quorum sensing molecules. These molecules affect biofilm structure and behavior that can result in increased drug resistance. Hence, ABC proteins make multiple contributions to oral fungal drug resistance through a variety of responses to environmental signals.

  7. Legal issues associated with antimicrobial drug resistance.

    PubMed Central

    Fidler, D. P.

    1998-01-01

    An effective public health strategy against the development of antimicrobial drug resistance needs to be informed by legal as well as scientific analysis. This article describes some legal issues arising from current efforts against antimicrobial resistance and underscores the interdependence between law and public health in these efforts. PMID:9621187

  8. Evolution of Drug Resistance in Bacteria.

    PubMed

    Waclaw, B

    2016-01-01

    Resistance to antibiotics is an important and timely problem of contemporary medicine. Rapid evolution of resistant bacteria calls for new preventive measures to slow down this process, and a longer-term progress cannot be achieved without a good understanding of the mechanisms through which drug resistance is acquired and spreads in microbial populations. Here, we discuss recent experimental and theoretical advances in our knowledge how the dynamics of microbial populations affects the evolution of antibiotic resistance . We focus on the role of spatial and temporal drug gradients and show that in certain situations bacteria can evolve de novo resistance within hours. We identify factors that lead to such rapid onset of resistance and discuss their relevance for bacterial infections. PMID:27193537

  9. Evolution of Drug Resistance in Bacteria.

    PubMed

    Waclaw, B

    2016-01-01

    Resistance to antibiotics is an important and timely problem of contemporary medicine. Rapid evolution of resistant bacteria calls for new preventive measures to slow down this process, and a longer-term progress cannot be achieved without a good understanding of the mechanisms through which drug resistance is acquired and spreads in microbial populations. Here, we discuss recent experimental and theoretical advances in our knowledge how the dynamics of microbial populations affects the evolution of antibiotic resistance . We focus on the role of spatial and temporal drug gradients and show that in certain situations bacteria can evolve de novo resistance within hours. We identify factors that lead to such rapid onset of resistance and discuss their relevance for bacterial infections.

  10. Antimicrobial (Drug) Resistance: Vancomycin-Resistant Enterococci (VRE) Frequently Asked Questions

    MedlinePlus

    ... Understanding Antimicrobial (Drug) Resistance Examples of Antimicrobial Resistance Methicillin-Resistant Staphylococcus aureus (MRSA) Vancomycin-Resistant Enterococci (VRE) Overview Transmission Diagnosis ...

  11. Nitroheterocyclic drug resistance mechanisms in Trypanosoma brucei

    PubMed Central

    Wyllie, Susan; Foth, Bernardo J.; Kelner, Anna; Sokolova, Antoaneta Y.; Berriman, Matthew; Fairlamb, Alan H.

    2016-01-01

    Objectives The objective of this study was to identify the mechanisms of resistance to nifurtimox and fexinidazole in African trypanosomes. Methods Bloodstream-form Trypanosoma brucei were selected for resistance to nifurtimox and fexinidazole by stepwise exposure to increasing drug concentrations. Clones were subjected to WGS to identify putative resistance genes. Transgenic parasites modulating expression of genes of interest were generated and drug susceptibility phenotypes determined. Results Nifurtimox-resistant (NfxR) and fexinidazole-resistant (FxR) parasites shared reciprocal cross-resistance suggestive of a common mechanism of action. Previously, a type I nitroreductase (NTR) has been implicated in nitro drug activation. WGS of resistant clones revealed that NfxR parasites had lost >100 kb from one copy of chromosome 7, rendering them hemizygous for NTR as well as over 30 other genes. FxR parasites retained both copies of NTR, but lost >70 kb downstream of one NTR allele, decreasing NTR transcription by half. A single knockout line of NTR displayed 1.6- and 1.9-fold resistance to nifurtimox and fexinidazole, respectively. Since NfxR and FxR parasites are ∼6- and 20-fold resistant to nifurtimox and fexinidazole, respectively, additional factors must be involved. Overexpression and knockout studies ruled out a role for a putative oxidoreductase (Tb927.7.7410) and a hypothetical gene (Tb927.1.1050), previously identified in a genome-scale RNAi screen. Conclusions NTR was confirmed as a key resistance determinant, either by loss of one gene copy or loss of gene expression. Further work is required to identify which of the many dozens of SNPs identified in the drug-resistant cell lines contribute to the overall resistance phenotype. PMID:26581221

  12. First Report of blaIMP-14 on a Plasmid Harboring Multiple Drug Resistance Genes in Escherichia coli Sequence Type 131

    PubMed Central

    Sheppard, Anna E.; Peirano, Gisele; Sebra, Robert P.; Lynch, Tarah; Anson, Luke W.; Kasarskis, Andrew; Motyl, Mary R.; Crook, Derrick W.; Pitout, Johann D.

    2016-01-01

    The blaIMP-14 carbapenem resistance gene has largely previously been observed in Pseudomonas aeruginosa and Acinetobacter spp. As part of global surveillance and sequencing of carbapenem-resistant Escherichia coli, we identified a sequence type 131 strain harboring blaIMP-14 within a class 1 integron, itself nested within an ∼54-kb multidrug resistance region on an epidemic IncA/C2 plasmid. The emergence of blaIMP-14 in this context in the ST131 lineage is of potential clinical concern. PMID:27246777

  13. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    PubMed Central

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants), the community level resistance (i.e., bilofilms and persisters) is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals. PMID:27092125

  14. Antimicrobial Drugs in Fighting against Antimicrobial Resistance.

    PubMed

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants), the community level resistance (i.e., bilofilms and persisters) is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals. PMID:27092125

  15. Coinfection and the evolution of drug resistance.

    PubMed

    Hansen, J; Day, T

    2014-12-01

    Recent experimental work in the rodent malaria model has shown that when two or more strains share a host, there is competitive release of drug-resistant strains upon treatment. In other words, the propagule output of a particular strain is repressed when competing with other strains and increases upon the removal of this competition. This within-host effect is predicted to have an important impact on the evolution and growth of resistant strains. However, how this effect translates to epidemiological parameters at the between-host level, the level at which disease and resistance spread, has yet to be determined. Here we present a general, between-host epidemiological model that explicitly takes into account the effect of coinfection and competitive release. Although our model does show that when there is coinfection competitive release may contribute to the emergence of resistance, it also highlights an additional between-host effect. It is the combination of these two effects, the between-host effect and the within-host effect, that determines the overall influence of coinfection on the emergence of resistance. Therefore, even when competitive release of drug-resistant strains occurs, within an infected individual, it is not necessarily true that coinfection will result in the increased emergence of resistance. These results have important implications for the control of the emergence and spread of drug resistance. PMID:25417787

  16. Drug targeting of leptin resistance.

    PubMed

    Santoro, Anna; Mattace Raso, Giuseppina; Meli, Rosaria

    2015-11-01

    Leptin regulates glucose, lipid and energy homeostasis as well as feeding behavior, serving as a bridge between peripheral metabolically active tissues and the central nervous system (CNS). Indeed, this adipocyte-derived hormone, whose circulating levels mirror fat mass, not only exerts its anti-obesity effects mainly modulating the activity of specific hypothalamic neurons expressing the long form of the leptin receptor (Ob-Rb), but it also shows pleiotropic functions due to the activation of Ob-Rb in peripheral tissues. Nevertheless, several mechanisms have been suggested to mediate leptin resistance, including obesity-associated hyperleptinemia, impairment of leptin access to CNS and the reduction in Ob-Rb signal transduction effectiveness, among others. During the onset and progression of obesity, the dampening of leptin sensitivity often occurs, preventing the efficacy of leptin replacement therapy from overcoming obesity and/or its comorbidities. This review focuses on obesity-associated leptin resistance and the mechanisms underpinning this condition, to highlight the relevance of leptin sensitivity restoration as a useful therapeutic strategy to treat common obesity and its complications. Interestingly, although promising strategies to counteract leptin resistance have been proposed, these pharmacological approaches have shown limited efficacy or even relevant adverse effects in preclinical and clinical studies. Therefore, the numerous findings from this review clearly indicate a lack of a single and efficacious treatment for leptin resistance, highlighting the necessity to find new therapeutic tools to improve leptin sensitivity, especially in patients with most severe disease profiles.

  17. Antibacterial drug discovery in the resistance era.

    PubMed

    Brown, Eric D; Wright, Gerard D

    2016-01-21

    The looming antibiotic-resistance crisis has penetrated the consciousness of clinicians, researchers, policymakers, politicians and the public at large. The evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens has made diseases that were once easily treatable deadly again. Unfortunately, accompanying the rise in global resistance is a failure in antibacterial drug discovery. Lessons from the history of antibiotic discovery and fresh understanding of antibiotic action and the cell biology of microorganisms have the potential to deliver twenty-first century medicines that are able to control infection in the resistance era. PMID:26791724

  18. Antibacterial drug discovery in the resistance era.

    PubMed

    Brown, Eric D; Wright, Gerard D

    2016-01-21

    The looming antibiotic-resistance crisis has penetrated the consciousness of clinicians, researchers, policymakers, politicians and the public at large. The evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens has made diseases that were once easily treatable deadly again. Unfortunately, accompanying the rise in global resistance is a failure in antibacterial drug discovery. Lessons from the history of antibiotic discovery and fresh understanding of antibiotic action and the cell biology of microorganisms have the potential to deliver twenty-first century medicines that are able to control infection in the resistance era.

  19. Drug resistance genomics of the antimalarial drug artemisinin.

    PubMed

    Winzeler, Elizabeth A; Manary, Micah J

    2014-01-01

    Across the globe, over 200 million annual malaria infections result in up to 660,000 deaths, 77% of which occur in children under the age of five years. Although prevention is important, malaria deaths are typically prevented by using antimalarial drugs that eliminate symptoms and clear parasites from the blood. Artemisinins are one of the few remaining compound classes that can be used to cure multidrug-resistant Plasmodium falciparum infections. Unfortunately, clinical trials from Southeast Asia are showing that artemisinin-based treatments are beginning to lose their effectiveness, adding renewed urgency to the search for the genetic determinants of parasite resistance to this important drug class. We review the genetic and genomic approaches that have led to an improved understanding of artemisinin resistance, including the identification of resistance-conferring mutations in the P. falciparum kelch13 gene. PMID:25470531

  20. Detection of Low Frequency Multi-Drug Resistance and Novel Putative Maribavir Resistance in Immunocompromised Pediatric Patients with Cytomegalovirus

    PubMed Central

    Houldcroft, Charlotte J.; Bryant, Josephine M.; Depledge, Daniel P.; Margetts, Ben K.; Simmonds, Jacob; Nicolaou, Stephanos; Tutill, Helena J.; Williams, Rachel; Worth, Austen J. J.; Marks, Stephen D.; Veys, Paul; Whittaker, Elizabeth; Breuer, Judith

    2016-01-01

    Human cytomegalovirus (HCMV) is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed pediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1–27 weeks. Changes in consensus sequence and resistance mutations were analyzed for three ORFs targeted by anti-HCMV drugs and the frequencies of drug resistance mutations monitored. Targeted-enriched sequencing of clinical material detected mutations occurring at frequencies of 2%. Seven patients showed no evidence of drug resistance mutations. Four patients developed drug resistance mutations a mean of 16 weeks after starting treatment. In two patients, multiple resistance mutations accumulated at frequencies of 20% or less, including putative maribavir and ganciclovir resistance mutations P522Q (UL54) and C480F (UL97). In one patient, resistance was detected 14 days earlier than by PCR. Phylogenetic analysis suggested recombination or superinfection in one patient. Deep sequencing of HCMV enriched from clinical samples excluded resistance in 7 of 11 subjects and identified resistance mutations earlier than conventional PCR-based resistance testing in 2 patients. Detection of multiple low level resistance mutations was associated with poor outcome.

  1. Antimalarial drug resistance and combination chemotherapy.

    PubMed Central

    White, N

    1999-01-01

    Antimarial drug resistance develops when spontaneously occurring parasite mutants with reduced susceptibility are selected, and are then transmitted. Drugs for which a single point mutation confers a marked reduction in susceptibility are particularly vulnerable. Low clearance and a shallow concentration-effect relationship increase the chance of selection. Use of combinations of antimalarials that do not share the same resistance mechanisms will reduce the chance of selection because the chance of a resistant mutant surviving is the product of the per parasite mutation rates for the individual drugs, multiplied by the number of parasites in an infection that are exposed to the drugs. Artemisinin derivatives are particularly effective combination partners because (i) they are very active antimalarials, producing up to 10,000-fold reductions in parasite biomass per asexual cycle; (ii) they reduce malaria transmissibility; and (iii) no resistance to these drugs has been reported yet. There are good arguments for no longer using antimalarial drugs alone in treatment, and instead always using a combination with artemisinin or one of its derivatives. PMID:10365399

  2. [Investigation of extensive drug resistance in multidrug resistance tuberculosis isolates].

    PubMed

    Bektöre, Bayhan; Haznedaroğlu, Tunçer; Baylan, Orhan; Ozyurt, Mustafa; Ozkütük, Nuri; Satana, Dilek; Cavuşoğlu, Cengiz; Seber, Engin

    2013-01-01

    Increasing number of drug resistant tuberculosis (TB) cases, observed in recent years, is an important public health problem. Extensively drug resistant TB (XDR-TB) is the development of resistance against any fluoroquinolones and at least one of the injectable second line anti-TB drugs in addition to resistance against isoniazide and rifampicin which are the first line anti-TB drugs [definition of multidrug resistant TB (MDR-TB)]. Anti-TB therapy failed with first-line anti-TB drugs due to MDR-TB cases is being planned according to second-line anti-TB drug susceptibility test results if available and if not, standart treatment protocols are used. Although it is recommended that individual anti-TB therapy should be designed according to the isolate's susceptibility test results, standart therapeutic protocols are always needed since second-line anti-TB drug susceptibility testing generally could not be performed in developing countries like Turkey. For this reason, nationwide and regional surveillance studies to determine the resistance patterns are always needed to make decisions about the standard therapy algorithms. In this study, it was aimed to investigate the presence of extensive drug resistance among 81 MDR-TB isolates obtained from various health care facilities from Istanbul, Izmir and Manisa and to determine the XDR-TB incidence in Marmara and Aegean regions. Furthermore, we aimed to provide epidemiological data to clinicians to support their choice of second-line anti-TB drugs for MDR-TB infections. Susceptibility testing of isolates for the first and the second-line anti-TB drugs were performed by using modified Middlebrook 7H9 broth in fluorometric BACTEC MGIT 960 system (Becton Dickinson, USA). Eighty-one MDR-TB isolates included in this study were isolated from 43 (53.1%) patients residing in Istanbul, 26 (32.1%) in Izmir and 12 (14.8%) in Manisa provinces. We could not find any isolate consistent with XDR-TB definition in this study. Second

  3. Drug-resistant tuberculosis: emerging treatment options

    PubMed Central

    Adhvaryu, Meghna; Vakharia, Bhasker

    2011-01-01

    Multidrug-resistant tuberculosis has emerged worldwide, with an increasing incidence due to failure of implementation of apparently effective first-line antituberculous therapy as well as primary infection with drug-resistant strains. Failure of current therapy is attributed to a long duration of treatment leading to nonadherence and irregular therapy, lack of patient education about the disease, poverty, irregular supply by care providers, drug–drug interactions in patients coinfected with human immunodeficiency virus (HIV), inadequate regulations causing market overlap and irresponsible drug usage in the private sector, and lack of research, with no addition of new drugs in the last four decades. Present standards of care for the treatment of drugsusceptible tuberculosis, multidrug-resistant tuberculosis, tuberculosis-HIV coinfection, and latent tuberculosis infection are all unsatisfactory. Since 2000, the World Health Organization (WHO) has focused on drug development for tuberculosis, as well as research in all relevant aspects to discover new regimens by 2015 and to eliminate tuberculosis as a public health concern by 2050. As a result, some 20 promising compounds from 14 groups of drugs have been discovered. Twelve candidates from eight classes are currently being evaluated in clinical trials. Ongoing research should prioritize identification of novel targets and newer application of existing drugs, discovery of multitargeted drugs from natural compounds, strengthening host factors by immunopotentiation with herbal immunomodulators, as well as protective vaccines before and after exposure, consideration of surgical measures when indicated, development of tools for rapid diagnosis, early identification of resistant strains, and markers for adequacy of treatment and an integrative approach to fulfill WHO goals. However, regulatory control over the drug market, as well as public-private partnership to use health program facilities to track patients and ensure

  4. Drugs Approved for Multiple Myeloma and Other Plasma Cell Neoplasms

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Multiple Myeloma and Other Plasma Cell ... plasma cell neoplasms that are not listed here. Drugs Approved for Multiple Myeloma and Other Plasma Cell ...

  5. Antibiotic Restriction Might Facilitate the Emergence of Multi-drug Resistance.

    PubMed

    Obolski, Uri; Stein, Gideon Y; Hadany, Lilach

    2015-06-01

    High antibiotic resistance frequencies have become a major public health issue. The decrease in new antibiotics' production, combined with increasing frequencies of multi-drug resistant (MDR) bacteria, cause substantial limitations in treatment options for some bacterial infections. To diminish overall resistance, and especially the occurrence of bacteria that are resistant to all antibiotics, certain drugs are deliberately scarcely used--mainly when other options are exhausted. We use a mathematical model to explore the efficiency of such antibiotic restrictions. We assume two commonly used drugs and one restricted drug. The model is examined for the mixing strategy of antibiotic prescription, in which one of the drugs is randomly assigned to each incoming patient. Data obtained from Rabin medical center, Israel, is used to estimate realistic single and double antibiotic resistance frequencies in incoming patients. We find that broad usage of the hitherto restricted drug can reduce the number of incorrectly treated patients, and reduce the spread of bacteria resistant to both common antibiotics. Such double resistant infections are often eventually treated with the restricted drug, and therefore are prone to become resistant to all three antibiotics. Thus, counterintuitively, a broader usage of a formerly restricted drug can sometimes lead to a decrease in the emergence of bacteria resistant to all drugs. We recommend re-examining restriction of specific drugs, when multiple resistance to the relevant alternative drugs already exists.

  6. The outer membrane TolC-like channel HgdD is part of tripartite resistance-nodulation-cell division (RND) efflux systems conferring multiple-drug resistance in the Cyanobacterium Anabaena sp. PCC7120.

    PubMed

    Hahn, Alexander; Stevanovic, Mara; Mirus, Oliver; Lytvynenko, Iryna; Pos, Klaas Martinus; Schleiff, Enrico

    2013-10-25

    The TolC-like protein HgdD of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 is part of multiple three-component "AB-D" systems spanning the inner and outer membranes and is involved in secretion of various compounds, including lipids, metabolites, antibiotics, and proteins. Several components of HgdD-dependent tripartite transport systems have been identified, but the diversity of inner membrane energizing systems is still unknown. Here we identified six putative resistance-nodulation-cell division (RND) type factors. Four of them are expressed during late exponential and stationary growth phase under normal growth conditions, whereas the other two are induced upon incubation with erythromycin or ethidium bromide. The constitutively expressed RND component Alr4267 has an atypical predicted topology, and a mutant strain (I-alr4267) shows a reduction in the content of monogalactosyldiacylglycerol as well as an altered filament shape. An insertion mutant of the ethidium bromide-induced all7631 did not show any significant phenotypic alteration under the conditions tested. Mutants of the constitutively expressed all3143 and alr1656 exhibited a Fox(-) phenotype. The phenotype of the insertion mutant I-all3143 parallels that of the I-hgdD mutant with respect to antibiotic sensitivity, lipid profile, and ethidium efflux. In addition, expression of the RND genes all3143 and all3144 partially complements the capability of Escherichia coli ΔacrAB to transport ethidium. We postulate that the RND transporter All3143 and the predicted membrane fusion protein All3144, as homologs of E. coli AcrB and AcrA, respectively, are major players for antibiotic resistance in Anabaena sp. PCC 7120. PMID:24014018

  7. The Outer Membrane TolC-like Channel HgdD Is Part of Tripartite Resistance-Nodulation-Cell Division (RND) Efflux Systems Conferring Multiple-drug Resistance in the Cyanobacterium Anabaena sp. PCC7120*

    PubMed Central

    Hahn, Alexander; Stevanovic, Mara; Mirus, Oliver; Lytvynenko, Iryna; Pos, Klaas Martinus; Schleiff, Enrico

    2013-01-01

    The TolC-like protein HgdD of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 is part of multiple three-component “AB-D” systems spanning the inner and outer membranes and is involved in secretion of various compounds, including lipids, metabolites, antibiotics, and proteins. Several components of HgdD-dependent tripartite transport systems have been identified, but the diversity of inner membrane energizing systems is still unknown. Here we identified six putative resistance-nodulation-cell division (RND) type factors. Four of them are expressed during late exponential and stationary growth phase under normal growth conditions, whereas the other two are induced upon incubation with erythromycin or ethidium bromide. The constitutively expressed RND component Alr4267 has an atypical predicted topology, and a mutant strain (I-alr4267) shows a reduction in the content of monogalactosyldiacylglycerol as well as an altered filament shape. An insertion mutant of the ethidium bromide-induced all7631 did not show any significant phenotypic alteration under the conditions tested. Mutants of the constitutively expressed all3143 and alr1656 exhibited a Fox− phenotype. The phenotype of the insertion mutant I-all3143 parallels that of the I-hgdD mutant with respect to antibiotic sensitivity, lipid profile, and ethidium efflux. In addition, expression of the RND genes all3143 and all3144 partially complements the capability of Escherichia coli ΔacrAB to transport ethidium. We postulate that the RND transporter All3143 and the predicted membrane fusion protein All3144, as homologs of E. coli AcrB and AcrA, respectively, are major players for antibiotic resistance in Anabaena sp. PCC 7120. PMID:24014018

  8. [Travellers and multi-drug resistance bacteria].

    PubMed

    Takeshita, Nozomi

    2012-02-01

    The number of international travellers has increased. There is enormous diversity in medical backgrounds, purposes of travel, and travelling styles among travellers. Travellers are hospitalized abroad because of exotic and common diseases via medical tourism. This is one way of transporting and importing human bacteria between countries, including multi-drug resistant organisms. In developing countries, the antimicrobial resistance in Shigella sp. and Salmonella sp. have been a problem, because of this trend, the first choice of antibiotics has changed in some countries. Community acquired infections as well as hospital acquired infections with MRSA, multi-drug resistance (MDR) Pseudomonas aeruginosa, and ESBL have been a problem. This review will discuss the risk of MDR bacterial infectious diseases for travellers. PMID:22413540

  9. [Estimation of Probiotic Lactobacilli Drug Resistance].

    PubMed

    Bruslik, N L; Akhatova, D R; Toimentseva, A A; Abdulkhakov, S R; Ilyinskaya, O N; Yarullina, D R

    2015-01-01

    An actual problem of analysis of probiotic lactobacilli resistance to antibiotics and other drugs used in the treatment of gastro-intestinal disturbances has been for the first time solved. The levels of resistance of 19 strains of Lactobacillus (14 strains of L. fermentum, 4 strains of L.plantarum and 1 strain of L.rhamnosus) isolated from commercial probiotics and sour milk products to 14 antibiotics of various nature, i.e. β-lactams, aminoglycosides, macrolides, clindamycin, vancomycin, rifampicin, ciprofloxacin, tetracycline and chloramphenicol were determined. All the isolates were practically susceptible to the drugs of the first line antihelicobacterial therapy, i.e. amoxicillin and clarithromycin, that makes inexpedient the parallel use of the probiotics containing the above lactobacilli in the treatment of gastritis and gastric ulcer, despite the lactobacilli antagonism with respect to Helicobacter pylory. Lactobacilli are as well resistant to mesalazin and can be used for correction of dysbiosis in inflammatory affections of the intestine.

  10. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors

    PubMed Central

    Zhang, Gao; Frederick, Dennie T.; Wu, Lawrence; Wei, Zhi; Krepler, Clemens; Srinivasan, Satish; Chae, Young Chan; Xu, Xiaowei; Choi, Harry; Dimwamwa, Elaida; Shannan, Batool; Basu, Devraj; Zhang, Dongmei; Guha, Manti; Xiao, Min; Randell, Sergio; Sproesser, Katrin; Xu, Wei; Liu, Jephrey; Karakousis, Giorgos C.; Schuchter, Lynn M.; Gangadhar, Tara C.; Amaravadi, Ravi K.; Gu, Mengnan; Xu, Caiyue; Ghosh, Abheek; Xu, Weiting; Tian, Tian; Zhang, Jie; Zha, Shijie; Brafford, Patricia; Weeraratna, Ashani; Davies, Michael A.; Wargo, Jennifer A.; Avadhani, Narayan G.; Lu, Yiling; Mills, Gordon B.; Altieri, Dario C.; Flaherty, Keith T.

    2016-01-01

    Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi. PMID:27043285

  11. Update on tamper-resistant drug formulations.

    PubMed

    Romach, M K; Schoedel, K A; Sellers, E M

    2013-06-01

    An expert panel convened in 2005 by the College on Problems of Drug Dependence (CPDD) to consider strategies to reduce the risk of prescription medication abuse concluded that drug formulation plays a significant role in determining risk of abuse. Efforts on the part of the pharmaceutical industry to develop drugs that deter abuse have focused primarily on opioid formulations resistant to common forms of tampering, most notably crushing or dissolving the tablet to accelerate release. Several opioid formulations developed to be tamper resistant have been approved, but the US Food and Drug Administration has not approved explicit label claims of abuse deterrence and has stated that any such claim will require substantial postmarketing data. Drug development efforts in this area raise questions about the relative impact of abuse-deterrent formulations, not only on individuals who might abuse a medication, but also on patients who are compliant with therapy. This review discusses progress since the 2005 CPDD meeting with an emphasis on opioids. Articles cited in the review were identified via a PubMed search covering the period between January 1, 2000, and October 5, 2011. Scientific work presented by the authors and their colleagues at meetings held through May 2012 also was included. Published literature suggests that development of abuse-deterrent products will require broad public health support and continued encouragement from regulatory authorities so that such products will become the expected standard of care for certain drug classes.

  12. Challenges of drug-resistant malaria.

    PubMed

    Sinha, Shweta; Medhi, Bikash; Sehgal, Rakesh

    2014-01-01

    Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia-Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria. PMID:25402734

  13. Emergence and natural selection of drug-resistant prions.

    PubMed

    Shorter, James

    2010-07-01

    Drug resistance is a refractory barrier in the battle against many fatal diseases caused by rapidly evolving agents, including HIV, apicomplexans and specific cancers. Emerging evidence suggests that drug resistance might extend to lethal prion disorders and related neurodegenerative amyloidoses. Prions are self-replicating protein conformers, usually 'cross-beta' amyloid polymers, which are naturally transmitted between individuals and promote phenotypic change. Prion conformers are catalytic templates that specifically convert other copies of the same protein to the prion form. Once in motion, this chain reaction of conformational replication can deplete all non-prion copies of a protein. Typically, prions exist as ensembles of multiple structurally distinct, self-replicating forms or 'strains'. Each strain confers a distinct phenotype and replicates at different rates depending on the environment. As replicators, prions are units of selection. Thus, natural selection inescapably enriches or depletes various prion strains from populations depending on their conformational fitness (ability to self-replicate) in the prevailing environment. The most successful prions confer advantages to their host as with numerous yeast prions. Here, I review recent evidence that drug-like small molecules can antagonize some prion strains but simultaneously select for drug-resistant prions composed of mammalian PrP or the yeast prion protein, Sup35. For Sup35, the drug-resistant strain configures original intermolecular amyloid contacts that are not ordinarily detected. Importantly, a synergistic small-molecule cocktail counters prion diversity by eliminating multiple Sup35 prion strains. Collectively, these advances illuminate the plasticity of prionogenesis and suggest that synergistic combinatorial therapies might circumvent this pathological vicissitude. PMID:20422111

  14. Genetic dissection of drug resistance in trypanosomes.

    PubMed

    Alsford, Sam; Kelly, John M; Baker, Nicola; Horn, David

    2013-10-01

    The trypanosomes cause two neglected tropical diseases, Chagas disease in the Americas and African trypanosomiasis in sub-Saharan Africa. Over recent years a raft of molecular tools have been developed enabling the genetic dissection of many aspects of trypanosome biology, including the mechanisms underlying resistance to some of the current clinical and veterinary drugs. This has led to the identification and characterization of key resistance determinants, including transporters for the anti-Trypanosoma brucei drugs, melarsoprol, pentamidine and eflornithine, and the activator of nifurtimox-benznidazole, the anti-Trypanosoma cruzi drugs. More recently, advances in sequencing technology, combined with the development of RNA interference libraries in the clinically relevant bloodstream form of T. brucei have led to an exponential increase in the number of proteins known to interact either directly or indirectly with the anti-trypanosomal drugs. In this review, we discuss these findings and the technological developments that are set to further revolutionise our understanding of drug-trypanosome interactions. The new knowledge gained should inform the development of novel interventions against the devastating diseases caused by these parasites.

  15. Ceftaroline desensitization procedure in a pregnant patient with multiple drug allergies.

    PubMed

    Kuhlen, James L; Blumenthal, Kimberly G; Sokol, Caroline L; Balekian, Diana S; Weil, Ana A; Varughese, Christy A; Shenoy, Erica S; Banerji, Aleena

    2015-01-01

    Validated skin testing is lacking for many drugs, including ceftaroline. The cross-reactivity between ceftaroline and other β-lactam antibiotics is unknown. We report a case of a pregnant patient with cystic fibrosis and multiple drug allergies who required ceftaroline for methicillin-resistant Staphylococcus aureus pneumonia and underwent an uncomplicated empiric desensitization procedure.

  16. Ceftaroline Desensitization Procedure in a Pregnant Patient With Multiple Drug Allergies

    PubMed Central

    Kuhlen, James L.; Blumenthal, Kimberly G.; Sokol, Caroline L.; Balekian, Diana S.; Weil, Ana A.; Varughese, Christy A.; Shenoy, Erica S.; Banerji, Aleena

    2015-01-01

    Validated skin testing is lacking for many drugs, including ceftaroline. The cross-reactivity between ceftaroline and other β-lactam antibiotics is unknown. We report a case of a pregnant patient with cystic fibrosis and multiple drug allergies who required ceftaroline for methicillin-resistant Staphylococcus aureus pneumonia and underwent an uncomplicated empiric desensitization procedure. PMID:26034776

  17. Fungal Biofilms, Drug Resistance, and Recurrent Infection

    PubMed Central

    Desai, Jigar V.; Mitchell, Aaron P.; Andes, David R.

    2014-01-01

    A biofilm is a surface-associated microbial community. Diverse fungi are capable of biofilm growth. The significance of this growth form for infection biology is that biofilm formation on implanted devices is a major cause of recurrent infection. Biofilms also have limited drug susceptibility, making device-associated infection extremely difficult to treat. Biofilm-like growth can occur during many kinds of infection, even when an implanted device is not present. Here we summarize the current understanding of fungal biofilm formation, its genetic control, and the basis for biofilm drug resistance. PMID:25274758

  18. Drug Resistant Fetal Arrhythmia in Obstetric Cholestasis

    PubMed Central

    Altug, Nahide; Kirbas, Ayse; Daglar, Korkut; Biberoglu, Ebru; Uygur, Dilek; Danisman, Nuri

    2015-01-01

    Obstetric cholestasis (OC) is a pregnancy specific liver disease characterized by increased levels of bile acid (BA) and pruritus. Raised maternal BA levels could be associated with intrauterine death, fetal distress, and preterm labor and also alter the rate and rhythm of cardiomyocyte contraction and may cause fetal arrhythmic events. We report a case of drug resistant fetal supraventricular tachycardia and concomitant OC. Conclusion. If there are maternal OC and concomitant fetal arrhythmia, possibility of the resistance to antiarrhythmic treatment should be kept in mind. PMID:25821617

  19. Drug-resistant tuberculosis in Africa.

    PubMed

    Mwinga, A

    2001-12-01

    Africa has the highest incidence rate per capita of tuberculosis, although the rate varies among the African countries from 17.8% in Cameroon to 70% in Botswana, Zambia, and Zimbabwe. Nevertheless, the levels of drug resistance are relatively low, compared to countries like Russia and Estonia. Because treatment of MDR TB is beyond the reach of most African countries, prevention of the development of resistance should be a major priority. Establishment of programs to ensure prompt diagnosis of TB and adequate treatment with supervision should be undertaken by national governments with cooperating partners. PMID:11795401

  20. Upregulation of Cyclooxygenase-2/Prostaglandin E2 (COX-2/PGE2) Pathway Member Multiple Drug Resistance-Associated Protein 4 (MRP4) and Downregulation of Prostaglandin Transporter (PGT) and 15-Prostaglandin Dehydrogenase (15-PGDH) in Triple-Negative Breast Cancer

    PubMed Central

    Kochel, Tyler J.; Goloubeva, Olga G.; Fulton, Amy M.

    2016-01-01

    Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) are indicators of a poor prognosis in breast cancer. Using several independent publicly available breast cancer gene expression databases, we investigated other members of the PGE2 pathway. PGE2 is produced by COX-2 and actively exported by multiple drug resistance-associated protein 4 (MRP4) into the extracellular microenvironment, where PGE2 can bind four cognate EP receptors (EP1–EP4) and initiate diverse biological signaling pathways. Alternatively, PGE2 is imported via the prostaglandin transporter (PGT) and metabolized by 15-prostaglandin dehydrogenase (15-PGDH/HPGD). We made the novel observation that MRP4, PGT, and 15-PGDH are differentially expressed among distinct breast cancer molecular subtypes; this finding was confirmed in independent datasets. In triple-negative breast cancer, the observed gene expression pattern (high COX-2, high MRP4, low PGT, and low 15-PGDH) would favor high levels of tumor-promoting PGE2 in the tumor microenvironment that may contribute to the overall poor prognosis of triple-negative breast cancer. PMID:27257388

  1. Upregulation of Cyclooxygenase-2/Prostaglandin E2 (COX-2/PGE2) Pathway Member Multiple Drug Resistance-Associated Protein 4 (MRP4) and Downregulation of Prostaglandin Transporter (PGT) and 15-Prostaglandin Dehydrogenase (15-PGDH) in Triple-Negative Breast Cancer.

    PubMed

    Kochel, Tyler J; Goloubeva, Olga G; Fulton, Amy M

    2016-01-01

    Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) are indicators of a poor prognosis in breast cancer. Using several independent publicly available breast cancer gene expression databases, we investigated other members of the PGE2 pathway. PGE2 is produced by COX-2 and actively exported by multiple drug resistance-associated protein 4 (MRP4) into the extracellular microenvironment, where PGE2 can bind four cognate EP receptors (EP1-EP4) and initiate diverse biological signaling pathways. Alternatively, PGE2 is imported via the prostaglandin transporter (PGT) and metabolized by 15-prostaglandin dehydrogenase (15-PGDH/HPGD). We made the novel observation that MRP4, PGT, and 15-PGDH are differentially expressed among distinct breast cancer molecular subtypes; this finding was confirmed in independent datasets. In triple-negative breast cancer, the observed gene expression pattern (high COX-2, high MRP4, low PGT, and low 15-PGDH) would favor high levels of tumor-promoting PGE2 in the tumor microenvironment that may contribute to the overall poor prognosis of triple-negative breast cancer. PMID:27257388

  2. Drugs in development for relapsing multiple sclerosis.

    PubMed

    Ali, Rehiana; Nicholas, Richard St John; Muraro, Paolo Antonio

    2013-05-01

    Drug development for multiple sclerosis (MS), as with any other neurological disease, faces numerous challenges, with many drugs failing at various stages of development. The disease-modifying therapies (DMTs) first introduced for MS are only moderately effective, but given the lack of competition, they have been widely accepted in clinical practice. Although safety and efficacy continue to be the two main metrics by which drugs will be judged, the newer agents in the market also face challenges of a more comparative nature-are they more efficacious than the currently available drugs on the market? Are they safer or better tolerated? Do they offer any practical advantages over current treatments? Fingolimod represented a milestone following its approval as an oral drug for MS in 2010, offering patients a far more convenient administration route. However, association with cardiovascular complications has led to a more cautious approach in its initial prescribing, now requiring cardiac monitoring for the first 6 h as well as subsequent monitoring of blood pressure and for macular oedema. Natalizumab, amongst licensed drugs, represents the current benchmark for efficacy. The risk of progressive multifocal leukoencephalopathy during natalizumab treatment is now more quantifiable. Other monoclonal antibodies are in various phases of development. Marketing authorisation for alemtuzumab has been filed, and whilst trial data suggest that its efficacy outperforms both licensed drugs and others in development, there is a significant risk of secondary autoimmunity. Its once-yearly administration, however, seems particularly advantageous. Rituximab is unlikely to be developed further as its license will expire, but ocrelizumab, another monoclonal antibody directly targeting B cells, is currently in phase 2 development and looks promising. Daclizumab is also moderately efficacious but may struggle to establish itself given its monthly subcutaneous dosing. There are new oral

  3. Drugs in development for relapsing multiple sclerosis.

    PubMed

    Ali, Rehiana; Nicholas, Richard St John; Muraro, Paolo Antonio

    2013-05-01

    Drug development for multiple sclerosis (MS), as with any other neurological disease, faces numerous challenges, with many drugs failing at various stages of development. The disease-modifying therapies (DMTs) first introduced for MS are only moderately effective, but given the lack of competition, they have been widely accepted in clinical practice. Although safety and efficacy continue to be the two main metrics by which drugs will be judged, the newer agents in the market also face challenges of a more comparative nature-are they more efficacious than the currently available drugs on the market? Are they safer or better tolerated? Do they offer any practical advantages over current treatments? Fingolimod represented a milestone following its approval as an oral drug for MS in 2010, offering patients a far more convenient administration route. However, association with cardiovascular complications has led to a more cautious approach in its initial prescribing, now requiring cardiac monitoring for the first 6 h as well as subsequent monitoring of blood pressure and for macular oedema. Natalizumab, amongst licensed drugs, represents the current benchmark for efficacy. The risk of progressive multifocal leukoencephalopathy during natalizumab treatment is now more quantifiable. Other monoclonal antibodies are in various phases of development. Marketing authorisation for alemtuzumab has been filed, and whilst trial data suggest that its efficacy outperforms both licensed drugs and others in development, there is a significant risk of secondary autoimmunity. Its once-yearly administration, however, seems particularly advantageous. Rituximab is unlikely to be developed further as its license will expire, but ocrelizumab, another monoclonal antibody directly targeting B cells, is currently in phase 2 development and looks promising. Daclizumab is also moderately efficacious but may struggle to establish itself given its monthly subcutaneous dosing. There are new oral

  4. An insight into the drug resistance profile & mechanism of drug resistance in Neisseria gonorrhoeae.

    PubMed

    Patel, Achchhe Lal; Chaudhry, Uma; Sachdev, Divya; Sachdeva, Poonam Nagpal; Bala, Manju; Saluja, Daman

    2011-10-01

    Among the aetiological agents of treatable sexually transmitted diseases (STDs), Neissseria gonorrhoeae is considered to be most important because of emerging antibiotic resistant strains that compromise the effectiveness of treatment of the disease - gonorrhoea. In most of the developing countries, treatment of gonorrhoea relies mainly on syndromic management rather than the aetiological based therapy. Gonococcal infections are usually treated with single-dose therapy with an agent found to cure > 95 per cent of cases. Unfortunately during the last few decades, N. gonorrhoeae has developed resistance not only to less expensive antimicrobials such as sulphonamides, penicillin and tetracyclines but also to fluoroquinolones. The resistance trend of N. gonorrhoeae towards these antimicrobials can be categorised into pre-quinolone, quinolone and post-quinolone era. Among the antimicrobials available so far, only the third-generation cephalosporins could be safely recommended as first-line therapy for gonorrhoea globally. However, resistance to oral third-generation cephalosporins has also started emerging in some countries. Therefore, it has become imperative to initiate sustained national and international efforts to reduce infection and misuse of antibiotics so as to prevent further emergence and spread of antimicrobial resistance. It is necessary not only to monitor drug resistance and optimise treatment regimens, but also to gain insight into how gonococcus develops drug resistance. Knowledge of mechanism of resistance would help us to devise methods to prevent the occurrence of drug resistance against existing and new drugs. Such studies could also help in finding out new drug targets in N. gonorrhoeae and also a possibility of identification of new drugs for treating gonorrhoea. PMID:22089602

  5. Emerging Technologies for Monitoring Drug-Resistant Tuberculosis at the Point-of-Care

    PubMed Central

    Mani, Vigneshwaran; Wang, ShuQi; Inci, Fatih; De Libero, Gennaro; Singhal, Amit; Demirci, Utkan

    2014-01-01

    Infectious diseases are the leading cause of death worldwide. Among them, tuberculosis (TB) remains a major threat to public health, exacerbated by the emergence of multiple drug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (Mtb). MDR-Mtb strains are resistant to first-line anti-TB drugs such as isoniazid and rifampicin; whereas XDR-Mtb strains are resistant to additional drugs including at least to any fluoroquinolone and at least one of the second-line anti-TB injectable drugs such as kanamycin, capreomycin, or amikacin. Clinically, these strains have significantly impacted the management of TB in high-incidence developing countries, where systemic surveillance of TB drug resistance is lacking. For effective management of TB on-site, early detection of drug resistance is critical to initiate treatment, to reduce mortality, and to thwart drug-resistant TB transmission. In this review, we discuss the diagnostic challenges to detect drug-resistant TB at the point-of-care (POC). Moreover, we present the latest advances in nano/microscale technologies that can potentially detect TB drug resistance to improve on-site patient care. PMID:24882226

  6. [Drug-resistant tropical malaria in Angola].

    PubMed

    Suleĭmanov, S D

    1994-01-01

    Three antimalarial treatment regimens by the complete standard WHO tests were examined in 105 Plasmodium falciparum-infected patients who were nonimmune newcomers treated at the Russian hospital in Luanda in 1991-1992, 61% showed chloroquine resistance and 40% fansidar resistance. All 59 patients with high rates of parasitemia were successfully cured with quinine in combination with tetracycline. Thick, if required thin, blood smears were microscopically examined. The findings suggest that Fansidar should be a drug of first-line therapy in Angola, though in the neighbouring countries quinine continues preserving its efficacy, but there is a delayed elimination of the parasites within 7 days of initiation of the therapy, making it necessary to prolong therapy with this drug up to 10 days.

  7. Current Perspectives on HIV-1 Antiretroviral Drug Resistance

    PubMed Central

    Iyidogan, Pinar; Anderson, Karen S.

    2014-01-01

    Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis as an alternative therapy. The development of resistance to the different classes of approved drugs and the importance of monitoring antiretroviral drug resistance are also summarized briefly. PMID:25341668

  8. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance.

    PubMed

    Healey, Kelley R; Zhao, Yanan; Perez, Winder B; Lockhart, Shawn R; Sobel, Jack D; Farmakiotis, Dimitrios; Kontoyiannis, Dimitrios P; Sanglard, Dominique; Taj-Aldeen, Saad J; Alexander, Barbara D; Jimenez-Ortigosa, Cristina; Shor, Erika; Perlin, David S

    2016-03-29

    The fungal pathogen Candida glabrata has emerged as a major health threat since it readily acquires resistance to multiple drug classes, including triazoles and/or echinocandins. Thus far, cellular mechanisms promoting the emergence of resistance to multiple drug classes have not been described in this organism. Here we demonstrate that a mutator phenotype caused by a mismatch repair defect is prevalent in C. glabrata clinical isolates. Strains carrying alterations in mismatch repair gene MSH2 exhibit a higher propensity to breakthrough antifungal treatment in vitro and in mouse models of colonization, and are recovered at a high rate (55% of all C. glabrata recovered) from patients. This genetic mechanism promotes the acquisition of resistance to multiple antifungals, at least partially explaining the elevated rates of triazole and multi-drug resistance associated with C. glabrata. We anticipate that identifying MSH2 defects in infecting strains may influence the management of patients on antifungal drug therapy.

  9. HIV antiviral drug resistance: patient comprehension.

    PubMed

    Racey, C Sarai; Zhang, Wendy; Brandson, Eirikka K; Fernandes, Kimberly A; Tzemis, Despina; Harrigan, P Richard; Montaner, Julio S G; Barrios, Rolando; Toy, Junine; Hogg, Robert S

    2010-07-01

    A patient's understanding and use of healthcare information can affect their decisions regarding treatment. Better patient understanding about HIV resistance may improve adherence to therapy, decrease population viral load and extend the use of first-line HIV therapies. We examined knowledge of developing HIV resistance and explored treatment outcomes in a cohort of HIV+ persons on highly active antiretroviral therapy (HAART). The longitudinal investigations into supportive and ancillary health services (LISA) cohort is a prospective study of HIV+ persons on HAART. A comprehensive interviewer-administrated survey collected socio-demographic variables. Drug resistance knowledge was determined using a three-part definition. Clinical markers were collected through linkage with the Drug Treatment Program (DTP) at the British Columbia Centre for Excellence in HIV/AIDS. Categorical variables were compared using Fisher's Exact Test and continuous variables using the Wilcoxon rank-sum test. Proportional odds logistic regression was performed for the adjusted multivariable analysis. Of 457 LISA participants, less than 4% completely defined HIV resistance and 20% reported that they had not discussed resistance with their physician. Overall, 61% of the cohort is >or=95% adherent based on prescription refills. Owing to small numbers pooling was preformed for analyses. The model showed that being younger (OR=0.97, 95% CI: 0.95-0.99), having greater than high school education (OR=1.64, 95% CI: 1.07-2.51), discussing medication with physicians (OR=3.67, 95% CI: 1.76-7.64), having high provider trust (OR=1.02, 95% CI: 1.01-1.03), and receiving one-to-one counseling by a pharmacist (OR=2.14, 95% CI: 1.41-3.24) are predictive of a complete or partial definition of HIV resistance. The probability of completely defining HIV resistance increased from 15.8 to 63.9% if respondents had discussed HIV medication with both a physician and a pharmacist. Although the understanding of HIV

  10. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study

    PubMed Central

    Basak, Silpi; Singh, Priyanka; Rajurkar, Monali

    2016-01-01

    Background and Objective. Antimicrobial resistance is now a major challenge to clinicians for treating patients. Hence, this short term study was undertaken to detect the incidence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) bacterial isolates in a tertiary care hospital. Material and Methods. The clinical samples were cultured and bacterial strains were identified in the department of microbiology. The antibiotic susceptibility profile of different bacterial isolates was studied to detect MDR, XDR, and PDR bacteria. Results. The antibiotic susceptibility profile of 1060 bacterial strains was studied. 393 (37.1%) bacterial strains were MDR, 146 (13.8%) strains were XDR, and no PDR was isolated. All (100%) Gram negative bacterial strains were sensitive to colistin whereas all (100%) Gram positive bacterial strains were sensitive to vancomycin. Conclusion. Close monitoring of MDR, XDR, or even PDR must be done by all clinical microbiology laboratories to implement effective measures to reduce the menace of antimicrobial resistance. PMID:26942013

  11. Rate and Amplification of Drug Resistance among Previously-Treated Patients with Tuberculosis in Kampala, Uganda

    PubMed Central

    Temple, Beth; Ayakaka, Irene; Ogwang, Sam; Nabanjja, Helen; Kayes, Susan; Nakubulwa, Susan; Worodria, William; Levin, Jonathan; Joloba, Moses; Okwera, Alphonse; Eisenach, Kathleen D.; McNerney, Ruth; Elliott, Alison M.; Smith, Peter G.; Mugerwa, Roy D.; Ellner, Jerrold J.; Jones-López, Edward C.

    2010-01-01

    Background Drug-resistant Mycobacterium tuberculosis has emerged as a global threat. In resource-constrained settings, patients with a history of tuberculosis (TB) treatment may have drug-resistant disease and may experience poor outcomes. There is a need to measure the extent of and risk factors for drug resistance in such patients. Methods From July 2003 through November 2006, we enrolled 410 previously treated patients with TB in Kampala, Uganda. We measured the prevalence of resistance to first- and second-line drugs and analyzed risk factors associated with baseline and acquired drug resistance. Results The prevalence of multidrug-resistant TB was 12.7% (95% confidence interval [95% CI], 9.6%–16.3%). Resistance to second-line drugs was low. Factors associated with multidrug-resistant TB at enrollment included a history of treatment failure (odds ratio, 23.6; 95% CI, 7.7–72.4), multiple previous TB episodes (odds ratio, 15.6; 95% CI, 5.0–49.1), and cavities present on chest radiograph (odds ratio, 5.9; 95% CI, 1.2–29.5). Among a cohort of 250 patients, 5.2% (95% CI, 2.8%–8.7%) were infected with M. tuberculosis that developed additional drug resistance. Amplification of drug resistance was associated with existing drug resistance at baseline (P<.01) and delayed sputum culture conversion (P<.01). Conclusions The burden of drug resistance in previously treated patients with TB in Uganda is sizeable, and the risk of generating additional drug resistance is significant. There is an urgent need to improve the treatment for such patients in low-income countries. PMID:18808360

  12. Biophysics of Cell Membrane Lipids in Cancer Drug Resistance: Implications for Drug Transport and Drug Delivery with Nanoparticles

    PubMed Central

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-01-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcoming drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance. PMID:24055719

  13. Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles.

    PubMed

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-11-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcome drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance.

  14. Detection of Low Frequency Multi-Drug Resistance and Novel Putative Maribavir Resistance in Immunocompromised Pediatric Patients with Cytomegalovirus.

    PubMed

    Houldcroft, Charlotte J; Bryant, Josephine M; Depledge, Daniel P; Margetts, Ben K; Simmonds, Jacob; Nicolaou, Stephanos; Tutill, Helena J; Williams, Rachel; Worth, Austen J J; Marks, Stephen D; Veys, Paul; Whittaker, Elizabeth; Breuer, Judith

    2016-01-01

    Human cytomegalovirus (HCMV) is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed pediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1-27 weeks. Changes in consensus sequence and resistance mutations were analyzed for three ORFs targeted by anti-HCMV drugs and the frequencies of drug resistance mutations monitored. Targeted-enriched sequencing of clinical material detected mutations occurring at frequencies of 2%. Seven patients showed no evidence of drug resistance mutations. Four patients developed drug resistance mutations a mean of 16 weeks after starting treatment. In two patients, multiple resistance mutations accumulated at frequencies of 20% or less, including putative maribavir and ganciclovir resistance mutations P522Q (UL54) and C480F (UL97). In one patient, resistance was detected 14 days earlier than by PCR. Phylogenetic analysis suggested recombination or superinfection in one patient. Deep sequencing of HCMV enriched from clinical samples excluded resistance in 7 of 11 subjects and identified resistance mutations earlier than conventional PCR-based resistance testing in 2 patients. Detection of multiple low level resistance mutations was associated with poor outcome. PMID:27667983

  15. Detection of Low Frequency Multi-Drug Resistance and Novel Putative Maribavir Resistance in Immunocompromised Pediatric Patients with Cytomegalovirus

    PubMed Central

    Houldcroft, Charlotte J.; Bryant, Josephine M.; Depledge, Daniel P.; Margetts, Ben K.; Simmonds, Jacob; Nicolaou, Stephanos; Tutill, Helena J.; Williams, Rachel; Worth, Austen J. J.; Marks, Stephen D.; Veys, Paul; Whittaker, Elizabeth; Breuer, Judith

    2016-01-01

    Human cytomegalovirus (HCMV) is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed pediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1–27 weeks. Changes in consensus sequence and resistance mutations were analyzed for three ORFs targeted by anti-HCMV drugs and the frequencies of drug resistance mutations monitored. Targeted-enriched sequencing of clinical material detected mutations occurring at frequencies of 2%. Seven patients showed no evidence of drug resistance mutations. Four patients developed drug resistance mutations a mean of 16 weeks after starting treatment. In two patients, multiple resistance mutations accumulated at frequencies of 20% or less, including putative maribavir and ganciclovir resistance mutations P522Q (UL54) and C480F (UL97). In one patient, resistance was detected 14 days earlier than by PCR. Phylogenetic analysis suggested recombination or superinfection in one patient. Deep sequencing of HCMV enriched from clinical samples excluded resistance in 7 of 11 subjects and identified resistance mutations earlier than conventional PCR-based resistance testing in 2 patients. Detection of multiple low level resistance mutations was associated with poor outcome. PMID:27667983

  16. Gene expression analysis of two extensively drug-resistant tuberculosis isolates show that two-component response systems enhance drug resistance.

    PubMed

    Yu, Guohua; Cui, Zhenling; Sun, Xian; Peng, Jinfu; Jiang, Jun; Wu, Wei; Huang, Wenhua; Chu, Kaili; Zhang, Lu; Ge, Baoxue; Li, Yao

    2015-05-01

    Global analysis of expression profiles using DNA microarrays was performed between a reference strain H37Rv and two clinical extensively drug-resistant isolates in response to three anti-tuberculosis drug exposures (isoniazid, capreomycin, and rifampicin). A deep analysis was then conducted using a combination of genome sequences of the resistant isolates, resistance information, and related public microarray data. Certain known resistance-associated gene sets were significantly overrepresented in upregulated genes in the resistant isolates relative to that observed in H37Rv, which suggested a link between resistance and expression levels of particular genes. In addition, isoniazid and capreomycin response genes, but not rifampicin, either obtained from published works or our data, were highly consistent with the differentially expressed genes of resistant isolates compared to those of H37Rv, indicating a strong association between drug resistance of the isolates and genes differentially regulated by isoniazid and capreomycin exposures. Based on these results, 92 genes of the studied isolates were identified as candidate resistance genes, 10 of which are known resistance-related genes. Regulatory network analysis of candidate resistance genes using published networks and literature mining showed that three two-component regulatory systems and regulator CRP play significant roles in the resistance of the isolates by mediating the production of essential envelope components. Finally, drug sensitivity testing indicated strong correlations between expression levels of these regulatory genes and sensitivity to multiple anti-tuberculosis drugs in Mycobacterium tuberculosis. These findings may provide novel insights into the mechanism underlying the emergence and development of drug resistance in resistant tuberculosis isolates and useful clues for further studies on this issue.

  17. [Initial drug resistance as a threat for tuberculosis control: the case of Buenaventura, Colombia].

    PubMed

    Moreira, César A; Hernández, Héctor L; Arias, Nhora L; Castaño, Martha C; Ferro, Beatriz E; Jaramillos, Ernesto

    2004-06-01

    In 2001, Buenaventura, Colombia, the rate of smear-positive pulmonary tuberculosis was of 66 per 100,000 inhabitants. The poor control of the tuberculosis in this city during the last 10 years and the inadequate use of first-line anti-tuberculosis drugs was an opportune situation for the development of high resistance to these drugs. Two surveys of initial resistance to first-line antituberculosis drugs were conducted in new cases of pulmonary TB, in the city of Buenaventura--the first from August 1, of 1997 to January 31 of 1998 and the second from November 15, of 2000 to November 15, 2001. The method of multiple proportions was used to determine drug susceptibility. Mycobacterium tuberculosis was isolated in 93% and 55% of the new cases of lung TB during each respective period. The initial resistance to at least one drug was 25% (9/36) and 32% (23/72), respectively. The initial multi-drug resistance (defined as resistance to at least isoniazid and rifampicin) was 6% for both surveys. This demonstrates the dissemination of multidrug-resistant bacilli and shows the need for surveillance of resistance to antituberculosis drugs in control of the disease, particularly in those areas where the TB control program has been erratically applied. In areas where multi-drug resistant TB occurs, the control strategy should be enhanced with the careful introduction of second-line drugs.

  18. Frequency of Natural Resistance within NS5a Replication Complex Domain in Hepatitis C Genotypes 1a, 1b: Possible Implication of Subtype-Specific Resistance Selection in Multiple Direct Acting Antivirals Drugs Combination Treatment.

    PubMed

    Bagaglio, Sabrina; Andolina, Andrea; Merli, Marco; Uberti-Foppa, Caterina; Morsica, Giulia

    2016-04-01

    Different HCV subtypes may naturally harbor different resistance selection to anti-NS5a inhibitors. 2761 sequences retrieved from the Los Alamos HCV database were analyzed in the NS5a domain 1, the target of NS5a inhibitors. The NS5a resistance-associated polymorphisms (RAPs) were more frequently detected in HCV G1b compared to G1a. The prevalence of polymorphisms associated with cross-resistance to compounds in clinical use (daclatasvir, DCV, ledipasvir, LDV, ombitasvir, and OMV) or scheduled to come into clinical use in the near future (IDX719, elbasvir, and ELV) was higher in G1b compared to G1a (37/1552 (2.4%) in 1b sequences and 15/1209 (1.2%) in 1a isolates, p = 0.040). Interestingly, on the basis of the genotype-specific resistance pattern, 95 (6.1%) G1b sequences had L31M RAP to DCV/IDX719, while 6 sequences of G1a (0.5%) harbored L31M RAP, conferring resistance to DCV/LDV/IDX719/ELV (p < 0.0001). Finally, 28 (2.3%) G1a and none of G1b isolates harbored M28V RAP to OMV (p < 0.0001). In conclusion, the pattern of subtype-specific resistance selection in the naturally occurring strains may guide the treatment option in association with direct acting antivirals (DAAs) targeting different regions, particularly in patients that are difficult to cure, such as those with advanced liver disease or individuals who have failed previous DAAs. PMID:27023593

  19. Aberrant splicing and drug resistance in AML.

    PubMed

    de Necochea-Campion, Rosalia; Shouse, Geoffrey P; Zhou, Qi; Mirshahidi, Saied; Chen, Chien-Shing

    2016-01-01

    The advent of next-generation sequencing technologies has unveiled a new window into the heterogeneity of acute myeloid leukemia (AML). In particular, recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events have been recognized as a prominent component of this disease. This review will focus on how these factors influence drug resistance through altered splicing of tumor suppressor and oncogenes and dysregulation of the apoptotic signaling network. A better understanding of these factors in disease progression is necessary to design appropriate therapeutic strategies recognizing specific alternatively spliced or mutated oncogenic targets. PMID:27613060

  20. Young Women's Experiences of Resisting Invitations to Use Illicit Drugs

    ERIC Educational Resources Information Center

    Koehn, Corinne V.; O'Neill, Linda K.

    2011-01-01

    Ten young women were interviewed regarding their experiences of resisting invitations to use illicit drugs. Hermeneutic phenomenology was used to gather and analyze information. One key theme was the motivations that inspired women to refuse drug offers. Young women resisted drug invitations because of their desires to be authentic, protect their…

  1. Bioinformatics Identification of Drug Resistance-Associated Gene Pairs in Mycobacterium tuberculosis

    PubMed Central

    Cui, Ze-Jia; Yang, Qing-Yong; Zhang, Hong-Yu; Zhu, Qiang; Zhang, Qing-Ye

    2016-01-01

    Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb). Due to the extensive use of anti-tuberculosis drugs and the development of mutations, the emergence and spread of multidrug-resistant tuberculosis is recognized as one of the most dangerous threats to global tuberculosis control. Some single mutations have been identified to be significantly linked with drug resistance. However, the prior research did not take gene-gene interactions into account, and the emergence of transmissible drug resistance is connected with multiple genetic mutations. In this study we use the bioinformatics software GBOOST (The Hong Kong University, Clear Water Bay, Kowloon, Hong Kong, China) to calculate the interactions of Single Nucleotide Polymorphism (SNP) pairs and identify gene pairs associated with drug resistance. A large part of the non-synonymous mutations in the drug target genes that were included in the screened gene pairs were confirmed by previous reports, which lent sound solid credits to the effectiveness of our method. Notably, most of the identified gene pairs containing drug targets also comprise Pro-Pro-Glu (PPE) family proteins, suggesting that PPE family proteins play important roles in the drug resistance of Mtb. Therefore, this study provides deeper insights into the mechanisms underlying anti-tuberculosis drug resistance, and the present method is useful for exploring the drug resistance mechanisms for other microorganisms. PMID:27618895

  2. Bioinformatics Identification of Drug Resistance-Associated Gene Pairs in Mycobacterium tuberculosis.

    PubMed

    Cui, Ze-Jia; Yang, Qing-Yong; Zhang, Hong-Yu; Zhu, Qiang; Zhang, Qing-Ye

    2016-01-01

    Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb). Due to the extensive use of anti-tuberculosis drugs and the development of mutations, the emergence and spread of multidrug-resistant tuberculosis is recognized as one of the most dangerous threats to global tuberculosis control. Some single mutations have been identified to be significantly linked with drug resistance. However, the prior research did not take gene-gene interactions into account, and the emergence of transmissible drug resistance is connected with multiple genetic mutations. In this study we use the bioinformatics software GBOOST (The Hong Kong University, Clear Water Bay, Kowloon, Hong Kong, China) to calculate the interactions of Single Nucleotide Polymorphism (SNP) pairs and identify gene pairs associated with drug resistance. A large part of the non-synonymous mutations in the drug target genes that were included in the screened gene pairs were confirmed by previous reports, which lent sound solid credits to the effectiveness of our method. Notably, most of the identified gene pairs containing drug targets also comprise Pro-Pro-Glu (PPE) family proteins, suggesting that PPE family proteins play important roles in the drug resistance of Mtb. Therefore, this study provides deeper insights into the mechanisms underlying anti-tuberculosis drug resistance, and the present method is useful for exploring the drug resistance mechanisms for other microorganisms. PMID:27618895

  3. Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network

    PubMed Central

    Cui, Liwang; Mharakurwa, Sungano; Ndiaye, Daouda; Rathod, Pradipsinh K.; Rosenthal, Philip J.

    2015-01-01

    Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emergence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates, and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the ICEMR programs. PMID:26259943

  4. Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network.

    PubMed

    Cui, Liwang; Mharakurwa, Sungano; Ndiaye, Daouda; Rathod, Pradipsinh K; Rosenthal, Philip J

    2015-09-01

    Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emergence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates, and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the ICEMR programs. PMID:26259943

  5. [Factors of multiple resistance to antibiotics in nodule bacteria].

    PubMed

    Pariĭskaia, A N; Gorelova, O P

    1976-01-01

    Multiple resistance to antibiotics (penicillin, levomycetin, neomycin, tetracycline) was found in 15% of collection strains of nodule bacteria and in strains isolated from natural environment. PMID:1050635

  6. Polymeric micelles and nanoemulsions as drug carriers: Therapeutic efficacy, toxicity, and drug resistance.

    PubMed

    Gupta, Roohi; Shea, Jill; Scafe, Courtney; Shurlygina, Anna; Rapoport, Natalya

    2015-08-28

    The manuscript reports the side-by-side comparison of therapeutic properties of polymeric micelles and nanoemulsions generated from micelles. The effect of the structure of a hydrophobic block of block copolymer on the therapeutic efficacy, tumor recurrence, and development of drug resistance was studied in pancreatic tumor bearing mice. Mice were treated with paclitaxel (PTX) loaded poly(ethylene oxide)-co-polylactide micelles or corresponding perfluorocarbon nanoemulsions. Two structures of the polylactide block differing in a physical state of micelle cores or corresponding nanodroplet shells were compared. Poly(ethylene oxide)-co-poly(d,l-lactide) (PEG-PDLA) formed micelles with elastic amorphous cores while poly(ethylene oxide)-co-poly(l-lactide) (PEG-PLLA) formed micelles with solid crystalline cores. Micelles and nanoemulsions stabilized with PEG-PDLA copolymer manifested higher therapeutic efficacy than those formed with PEG-PLLA copolymer studied earlier. Better performance of PEG-PDLA micelles and nanodroplets was attributed to the elastic physical state of micelle cores (or droplet shells) allowing adequate rate of drug release via drug diffusion and/or copolymer biodegradation. The biodegradation of PEG-PDLA stabilized nanoemulsions was monitored by the ultrasonography of nanodroplets injected directly into the tumor; the PEG-PDLA stabilized nanodroplets disappeared from the injection site within 48h. In contrast, nanodroplets stabilized with PEG-PLLA copolymer were preserved at the injection site for weeks and months indicating extremely slow biodegradation of solid PLLA blocks. Multiple injections of PTX-loaded PEG-PDLA micelles or nanoemulsions to pancreatic tumor bearing mice resulted in complete tumor resolution. Two of ten tumors treated with either PEG-PDLA micellar or nanoemulsion formulation recurred after the completion of treatment but proved sensitive to the second treatment cycle indicating that drug resistance has not been developed. This

  7. Drug Resistance of Coliform Bacteria in Hospital and City Sewage

    PubMed Central

    Grabow, W. O. K.; Prozesky, O. W.

    1973-01-01

    The number and properties of drug-resistant coliform bacteria in hospital and city sewage were compared. There was little difference in the counts of organisms with nontransferable resistance to one or more of 13 commonly used drugs. An average of 26% of coliforms in hospital waste water had transferable resistance to at least one of the drugs ampicillin, chloramphenicol, streptomycin, sulfonamide, or tetracycline as compared to an average of 4% in city sewage. R+ bacteria in the hospital discharge were also resistant to a broader spectrum of drugs than those in city sewage. In both effluents, the occurrence of fecal Escherichia coli among R+ coliforms was twice as high as among coliforms with nontransferable resistance. Resistance was transferable to Salmonella typhi, and such drug-resistant pathogens in the water environment could be of particular concern. The significance of the results with regard to environmental pollution with R+ bacteria and the dissemination of these organisms is discussed. PMID:4597713

  8. Cost-effectiveness analysis of using antiretroviral drug resistance testing.

    PubMed

    Lauria, Francesco Nicola; Angeletti, Claudio

    2003-01-01

    Human immunodeficiency virus (HIV)-infected patients failing highly active antiretroviral therapy (HAART) have a substantially lower chance of clinical success than naive patients given their first antiretroviral therapy. This suggests that HAART failure is a determinant for an increase in the cost of treatment. A review of the literature regarding cost and impact of antiretroviral drug-resistance testing was performed. Examination of existing methods to execute a cost-effectiveness analysis on the use of these tests in clinical practice was also undertaken. The cost of treatment failure in HIV-infected patients has been quantified in several retrospective studies. The cost of care for patients with virological suppression was significantly lower than those with a single virological failure. Moreover, the latter group had lower costs than patients with multiple failures. The result of the cost-effective analysis based on a specific model application using genotypic resistance assays to guide the choice of a subsequent therapy in HIV disease, is cost-effective under a wide range of assumptions regarding effectiveness and costs. The available studies on the cost-effective evaluation of genotypic tests are limited, and the respective studies supply important indications on cost-effective evaluations. Despite its demonstrated benefits, antiretroviral drug resistance testing presents features and limitations that also restrict the cost-effectiveness analysis. PMID:15000585

  9. Stop the Spread of Superbugs: Help Fight Drug Resistant Bacteria

    MedlinePlus

    ... the Spread of Superbugs Help Fight Drug-Resistant Bacteria For nearly a century, bacteria-fighting drugs known as antibiotics have helped to control and destroy many of the harmful bacteria that can make us sick. But in recent ...

  10. Engineered reversal of drug resistance in cancer cells—metastases suppressor factors as change agents

    PubMed Central

    Yadav, Vinod Kumar; Kumar, Akinchan; Mann, Anita; Aggarwal, Suruchi; Kumar, Maneesh; Roy, Sumitabho Deb; Pore, Subrata Kumar; Banerjee, Rajkumar; Mahesh Kumar, Jerald; Thakur, Ram Krishna; Chowdhury, Shantanu

    2014-01-01

    Building molecular correlates of drug resistance in cancer and exploiting them for therapeutic intervention remains a pressing clinical need. To identify factors that impact drug resistance herein we built a model that couples inherent cell-based response toward drugs with transcriptomes of resistant/sensitive cells. To test this model, we focused on a group of genes called metastasis suppressor genes (MSGs) that influence aggressiveness and metastatic potential of cancers. Interestingly, modeling of 84 000 drug response transcriptome combinations predicted multiple MSGs to be associated with resistance of different cell types and drugs. As a case study, on inducing MSG levels in a drug resistant breast cancer line resistance to anticancer drugs caerulomycin, camptothecin and topotecan decreased by more than 50–60%, in both culture conditions and also in tumors generated in mice, in contrast to control un-induced cells. To our knowledge, this is the first demonstration of engineered reversal of drug resistance in cancer cells based on a model that exploits inherent cellular response profiles. PMID:24157835

  11. In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies.

    PubMed

    McDermott, Martina; Eustace, Alex J; Busschots, Steven; Breen, Laura; Crown, John; Clynes, Martin; O'Donovan, Norma; Stordal, Britta

    2014-01-01

    The development of a drug-resistant cell line can take from 3 to 18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between two- and eight-fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer cell line (HCC1954). Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical

  12. In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies

    PubMed Central

    McDermott, Martina; Eustace, Alex J.; Busschots, Steven; Breen, Laura; Crown, John; Clynes, Martin; O’Donovan, Norma; Stordal, Britta

    2014-01-01

    The development of a drug-resistant cell line can take from 3 to 18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between two- and eight-fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer cell line (HCC1954). Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical

  13. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology.

    PubMed

    Xue, Xue; Liang, Xing-Jie

    2012-02-01

    Multidrug resistance (MDR), which significantly decreases the efficacy of anticancer drugs and causes tumor recurrence, has been a major challenge in clinical cancer treatment with chemotherapeutic drugs for decades. Several mechanisms of overcoming drug resistance have been postulated. Well known P-glycoprotein (P-gp) and other drug efflux transporters are considered to be critical in pumping anticancer drugs out of cells and causing chemotherapy failure. Innovative theranostic (therapeutic and diagnostic) strategies with nanoparticles are rapidly evolving and are anticipated to offer opportunities to overcome these limits. In this review, we discuss the mechanisms of drug efflux-mediated resistance and the application of multiple nanoparticle-based platforms to overcome chemoresistance and improve therapeutic outcome.

  14. Nanobiotechnological Approaches to Overcome Drug Resistance in Breast Cancer.

    PubMed

    Ranji, Peyman; Heydari, Zahra; Alizadeh, Ali Mohammad

    2015-01-01

    Drug resistance primarily appears where there is altered drug metabolism or target modification. It is a major challenge in cancer therapy which affects treatment process, and limits chemotherapeutics. Recently, nanotechnological approaches were shown to be capable of lowering drug side effects and protecting from enzymatic degradation. Therefore, patient's compliance and survival rate have dramatically increased. This review elaborates on the structures and functions of the factors involved in cancer drug resistance together with nanobiotechnological approaches for overcoming the obstacles in breast cancer research and therapy. The present paper provides information and suggestions to both basic and clinical researchers to develop new nanobiotechnological methods to improve breast cancer modalities especially in drug resistance.

  15. Phenotypic and genotypic characterisation of drug-resistant Plasmodium vivax.

    PubMed

    Price, Ric N; Auburn, Sarah; Marfurt, Jutta; Cheng, Qin

    2012-11-01

    In this review we present recent developments in the analysis of Plasmodium vivax clinical trials and ex vivo drug-susceptibility assays, as well approaches currently being used to identify molecular markers of drug resistance. Clinical trials incorporating the measurement of in vivo drug concentrations and parasite clearance times are needed to detect early signs of resistance. Analysis of P. vivax growth dynamics ex vivo have defined the criteria for acceptable assay thresholds for drug susceptibility testing, and their subsequent interpretation. Genotyping and next-generation sequencing studies in P. vivax field isolates are set to transform our understanding of the molecular mechanisms of drug resistance.

  16. Prevalence of drug resistant Mycobacterium tuberculosis among children in China.

    PubMed

    Jiao, Wei-wei; Liu, Zhi-guang; Han, Rui; Zhao, Xiu-qin; Dong, Fang; Dong, Hai-yan; Huang, Hai-rong; Li, Qin-jing; Lin, Nan; Song, Wen-qi; Wan, Kang-lin; Shen, A-dong

    2015-05-01

    The available data on the epidemic of drug resistant tuberculosis (TB) among children in China is limited. This study attempted to clarify the drug resistance profiles of clinical strains isolated from children and estimate risk factors related to acquisition of drug resistance. All Mycobacterium tuberculosis strains from children (age <15 years) and adolescent (age 15-18 years) TB patients received in the strain library of Chinese Center for Disease Control and Prevention between January 2005 and December 2012 were included in the study. A study collection included 450 clinical isolates (100 from children, 159 from adolescents, and 191 from adults) from all over China. Drug susceptibility testing was performed by a proportion method. As a result, the drug resistance and multi-drug resistance (MDR) rates in children were 55% (55/100) and 22% (22/100), respectively. In children with MDR-TB, new cases accounted for 40.9% (9/22). Compared with adults, the drug resistance rates were similar in all subgroups (new cases, previously treated cases and all cases) of children (P > 0.05), except for the lower resistance rate to isoniazid in total cases of children (P = 0.011). Patient related information was included in the MDR-TB association analysis. The treatment history was found to be strongly associated with MDR-TB in all three age groups (P < 0.05). Our results demonstrate that the prevalence of drug resistant TB in children in China is alarmingly high and similar to that seen in adults. In contrast, in adolescents, the drug resistance rate to most tested drugs was lower than in adults. Primary transmission and inadequate treatment are two equally important factors for the high MDR-TB rate in children. Thus, major efforts in the TB control in children should focus on decreasing the transmission of drug resistant TB and early testing of drug resistance.

  17. Targeting efflux pumps to overcome antifungal drug resistance.

    PubMed

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-08-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps. PMID:27463566

  18. Factors affecting the reversal of antimicrobial-drug resistance.

    PubMed

    Johnsen, Pål J; Townsend, Jeffrey P; Bøhn, Thomas; Simonsen, Gunnar S; Sundsfjord, Arnfinn; Nielsen, Kaare M

    2009-06-01

    The persistence or loss of acquired antimicrobial-drug resistance in bacterial populations previously exposed to drug-selective pressure depends on several biological processes. We review mechanisms promoting or preventing the loss of resistance, including rates of reacquisition, effects of resistance traits on bacterial fitness, linked selection, and segregational stability of resistance determinants. As a case study, we discuss the persistence of glycopeptide-resistant enterococci in Norwegian and Danish poultry farms 12 years after the ban of the animal growth promoter avoparcin. We conclude that complete eradication of antimicrobial resistance in bacterial populations following relaxed drug-selective pressures is not straightforward. Resistance determinants may persist at low, but detectable, levels for many years in the absence of the corresponding drugs. PMID:19467475

  19. Comparative proteomics to evaluate multi drug resistance in Escherichia coli.

    PubMed

    Piras, Cristian; Soggiu, Alessio; Bonizzi, Luigi; Gaviraghi, Alessandro; Deriu, Francesca; De Martino, Luisa; Iovane, Giuseppe; Amoresano, Angela; Roncada, Paola

    2012-04-01

    Drug resistance in food-borne bacterial pathogens is an almost inevitable consequence of the use of antimicrobial drugs, used either therapeutically or to avoid infections in food-producing animals. In the past decades, the spread and inappropriate use of antibiotics have caused a considerable increase of antibiotics to which bacteria have developed resistance and, moreover, bacteria are becoming resistant to more than one antibiotic simultaneously. Understanding mechanisms at the molecular level is extremely important to control multi-resistant strains and to develop new therapeutic strategies. In the present study, comparative proteomics was applied to characterize membrane and cytosolic proteome in order to investigate the regulation of protein expression in multi-resistance E. coli isolated from young never vaccinated water buffalo. Results highlighted differentially expressed proteins under multi drug resistance conditions giving new insights about mechanisms involved in resistance, as quorum sensing mechanisms, and suggesting possible novel bacterial targets to develop alternative antibiotic drugs.

  20. Multiple Myeloma Gets Three New Drugs.

    PubMed

    Poh, Alissa

    2016-01-01

    In the last few weeks, the FDA approved three new therapies for multiple myeloma: ixazomib, the first oral proteasome inhibitor; and daratumumab and elotuzumab, two monoclonal antibodies that target CD38 and SLAMF7, respectively.

  1. Presenting Multiple Drug Alerts in an Ambulatory Electronic Prescribing System

    PubMed Central

    Weinger, M.B.; Gregg, W.M.; Johnson, K.B.

    2014-01-01

    Summary Objective This study explores alternative approaches to the display of drug alerts, and examines whether and how human-factors based interface design can be used to improve the prescriber’s perception about drug alert presentation, signal detection from noisy alert data, and their comprehension of clinical decision support during electronic prescribing. Methods We reviewed issues with presenting multiple drug alerts in electronic prescribing systems. User-centered design, consisting of iterative usability and prototype testing was applied. After an iterative design phase, we proposed several novel drug alert presentation interfaces; expert evaluation and formal usability testing were applied to access physician prescribers’ perceptions of the tools. We mapped drug alert attributes to different interface constructs. We examined four different interfaces for presenting multiple drug alerts. Results A TreeDashboard View was better perceived than a text-based ScrollText View with respect to the ability to detect critical information, the ability to accomplish tasks, and the perceptional efficacy of finding information. Conclusion A robust model for studying multiple drug-alert presentations was developed. Several drug alert presentation interfaces were proposed. The TreeDashboard View was better perceived than the text-based ScrollText View in delivering multiple drug alerts during a simulation of electronic prescribing. PMID:25024753

  2. Emergence of a Potent Multidrug Efflux Pump Variant That Enhances Campylobacter Resistance to Multiple Antibiotics

    PubMed Central

    Yao, Hong; Shen, Zhangqi; Wang, Yang; Deng, Fengru; Liu, Dejun; Naren, Gaowa; Dai, Lei; Su, Chih-Chia; Wang, Bing; Wang, Shaolin; Wu, Congming; Yu, Edward W.

    2016-01-01

    ABSTRACT Bacterial antibiotic efflux pumps are key players in antibiotic resistance. Although their role in conferring multidrug resistance is well documented, the emergence of “super” efflux pump variants that enhance bacterial resistance to multiple drugs has not been reported. Here, we describe the emergence of a resistance-enhancing variant (named RE-CmeABC) of the predominant efflux pump CmeABC in Campylobacter, a major zoonotic pathogen whose resistance to antibiotics is considered a serious antibiotic resistance threat in the United States. Compared to the previously characterized CmeABC transporters, RE-CmeABC is much more potent in conferring Campylobacter resistance to antibiotics, which was shown by increased MICs and reduced intracellular accumulation of antibiotics. Structural modeling suggests that sequence variations in the drug-binding pocket of CmeB possibly contribute to the enhanced efflux function. Additionally, RE-CmeABC expands the mutant selection window of ciprofloxacin, enhances the emergence of antibiotic-resistant mutants, and confers exceedingly high-level resistance to fluoroquinolones, an important class of antibiotics for clinical therapy of campylobacteriosis. Furthermore, RE-CmeABC is horizontally transferable, shifts antibiotic MIC distribution among clinical isolates, and is increasingly prevalent in Campylobacter jejuni isolates, suggesting that it confers a fitness advantage under antimicrobial selection. These findings reveal a new mechanism for enhanced multidrug resistance and an effective strategy utilized by bacteria for adaptation to selection from multiple antibiotics. PMID:27651364

  3. The Drug Resistance Strategies Project as Translational Research

    ERIC Educational Resources Information Center

    Hecht, Michael L.; Miller-Day, Michelle

    2007-01-01

    This paper tells the story of the multi-layered translational process of the Drug Resistance Strategies Project. The Drug Resistance Strategies Project provides an exemplar of translational scholarship, translating adolescent narratives about their substance use experiences into an efficacious, substance abuse prevention middle school curriculum.…

  4. HIV resistance to antiviral drugs: public health implications.

    PubMed

    Wainberg, M A; Cameron, D W

    1998-01-01

    The widespread occurrence of HIV strains resistant to antiviral drugs has given rise to a number of important concerns distinct from the obvious question of the relationship between drug resistance and treatment failure. A major issue is the extent to which drug-resistant viruses may be transmitted in primary infection via sexual or intravenous routes and how this relates to the relative fitness of such strains. It is also important to understand the potential role of effective antiviral therapy in the decrease of viral burden in both blood and sexual secretions, and the extent to which this may be compromised in individuals harboring resistant viruses. A related subject is the important role of patient adherence to antiviral therapy in achieving sustained reduction in viral load and preventing the emergence of drug resistance. These linked topics are tied to the central role of antiviral agents in the selection of mutant forms that can attain a replication advantage in the presence of drug.

  5. Nanoparticle delivery of anti-tuberculosis chemotherapy as a potential mediator against drug-resistant tuberculosis.

    PubMed

    Smith, Jonathan Paul

    2011-12-01

    Drug-resistant tuberculosis is quickly emerging as one of the largest threats to the global health community. Current chemotherapy for tuberculosis dates back to the 1950s and is arduous, lengthy, and remains extremely difficult to complete in many of the highest burdened areas. This causes inadequate or incomplete treatment, resulting in genetic selection of drug-resistant strains. With a dearth of novel anti-TB drug candidates in the development pipeline, nanoparticle technology allows us to take current chemotherapies and deliver them more efficaciously, reducing the frequency and duration of treatment and increasing bioavailability. This approach can improve patient adherence, reduce pill burden, and shorten time to completion, all which are at the heart of drug resistance. This review examines the multiple advantages of nanoparticle drug delivery of tuberculosis chemotherapy and summarizes the challenges in implementation.

  6. Acquired Drug Resistance in Mycobacterium tuberculosis and Poor Outcomes among Patients with Multidrug-Resistant Tuberculosis

    PubMed Central

    Kipiani, Maia; Mirtskhulava, Veriko; Tukvadze, Nestani; Magee, Matthew J.; Blumberg, Henry M.

    2015-01-01

    Rates and risk factors for acquired drug resistance and association with outcomes among patients with multidrug-resistant tuberculosis (MDR TB) are not well defined. In an MDR TB cohort from the country of Georgia, drug susceptibility testing for second-line drugs (SLDs) was performed at baseline and every third month. Acquired resistance was defined as any SLD whose status changed from susceptible at baseline to resistant at follow-up. Among 141 patients, acquired resistance in Mycobacterium tuberculosis was observed in 19 (14%); prevalence was 9.1% for ofloxacin and 9.8% for capreomycin or kanamycin. Baseline cavitary disease and resistance to >6 drugs were associated with acquired resistance. Patients with M. tuberculosis that had acquired resistance were at significantly increased risk for poor treatment outcome compared with patients without these isolates (89% vs. 36%; p<0.01). Acquired resistance occurs commonly among patients with MDR TB and impedes successful treatment outcomes. PMID:25993036

  7. Yeast cells with impaired drug resistance accumulate glycerol and glucose.

    PubMed

    Dikicioglu, Duygu; Oc, Sebnem; Rash, Bharat M; Dunn, Warwick B; Pir, Pınar; Kell, Douglas B; Kirdar, Betul; Oliver, Stephen G

    2014-01-01

    Multiple drug resistance (MDR) in yeast is effected by two major superfamilies of membrane transporters: the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) superfamily. In the present work, we investigated the cellular responses to disruptions in both MFS (by deleting the transporter gene, QDR3) and ABC (by deleting the gene for the Pdr3 transcription factor) transporter systems by growing diploid homozygous deletion yeast strains in glucose- or ammonium-limited continuous cultures. The transcriptome and the metabolome profiles of these strains, as well as the flux distributions in the optimal solution space, reveal novel insights into the underlying mechanisms of action of QDR3 and PDR3. Our results show how cells rearrange their metabolism to cope with the problems that arise from the loss of these drug-resistance genes, which likely evolved to combat chemical attack from bacterial or fungal competitors. This is achieved through the accumulation of intracellular glucose, glycerol, and inorganic phosphate, as well as by repurposing genes that are known to function in other parts of metabolism in order to minimise the effects of toxic compounds. PMID:24157722

  8. Improving Viral Protease Inhibitors to Counter Drug Resistance.

    PubMed

    Kurt Yilmaz, Nese; Swanstrom, Ronald; Schiffer, Celia A

    2016-07-01

    Drug resistance is a major problem in health care, undermining therapy outcomes and necessitating novel approaches to drug design. Extensive studies on resistance to viral protease inhibitors, particularly those of HIV-1 and hepatitis C virus (HCV) protease, revealed a plethora of information on the structural and molecular mechanisms underlying resistance. These insights led to several strategies to improve viral protease inhibitors to counter resistance, such as exploiting the essential biological function and leveraging evolutionary constraints. Incorporation of these strategies into structure-based drug design can minimize vulnerability to resistance, not only for viral proteases but for other quickly evolving drug targets as well, toward designing inhibitors one step ahead of evolution to counter resistance with more intelligent and rational design. PMID:27090931

  9. Epidemiological control of drug resistance and compensatory mutation under resistance testing and second-line therapy.

    PubMed

    Saddler, Clare A; Wu, Yue; Valckenborgh, Frank; Tanaka, Mark M

    2013-12-01

    The fitness cost of antibiotic resistance in the absence of treatment raises the possibility that prudent use of drugs may slow or reverse the rise of resistance. Unfortunately, compensatory mutations that lower this cost may lead to entrenched resistance. Here, we develop a mathematical model of resistance evolution and compensatory mutation to determine whether reversion to sensitivity can occur, and how disease control might be facilitated by a second-line therapy. When only a single antibiotic is available, sensitive bacteria reach fixation only under treatment rates so low that hardly any cases are treated. We model a scenario in which drug sensitivity can be accurately tested so that a second-line therapy is administered to resistant cases. Before the rise of resistance to the second drug, disease eradication is possible if resistance testing and second-line treatment are conducted at a high enough rate. However, if double drug resistance arises, the possibility of disease eradication is greatly reduced and compensated resistance prevails in most of the parameter space. The boundary separating eradication from fixation of compensated resistance is strongly influenced by the underlying basic reproductive number of the pathogen and drug efficacy in sensitive cases, but depends less on the resistance cost and compensation. When double resistance is possible, the boundary is affected by the relative strengths of resistance against the two drugs in the double-resistant-compensated strain.

  10. Drug-Resistant Malaria: The Era of ACT

    PubMed Central

    Lin, Jessica T.; Juliano, Jonathan J.

    2010-01-01

    As drug-resistant falciparum malaria has continued to evolve and spread worldwide, artemisinin-based combination therapies (ACT) have become the centerpiece of global malaria control over the past decade. This review discusses how advances in antimalarial drug resistance monitoring and rational use of the array of ACTs now available can maximize the impact of this highly efficacious therapy, even as resistance to artemisinins is emerging in Southeast Asia. PMID:21308525

  11. Overcome Cancer Cell Drug Resistance Using Natural Products

    PubMed Central

    Wang, Pu; Yang, Hua Li; Yang, Ying Juan; Wang, Lan; Lee, Shao Chin

    2015-01-01

    Chemotherapy is one of the major treatment methods for cancer. However, failure in chemotherapy is not uncommon, mainly due to dose-limiting toxicity associated with drug resistance. Management of drug resistance is important towards successful chemotherapy. There are many reports in the Chinese literature that natural products can overcome cancer cell drug resistance, which deserve sharing with scientific and industrial communities. We summarized the reports into four categories: (1) in vitro studies using cell line models; (2) serum pharmacology; (3) in vivo studies using animal models; and (4) clinical studies. Fourteen single compounds were reported to have antidrug resistance activity for the first time. In vitro, compounds were able to overcome drug resistance at nontoxic or subtoxic concentrations, in a dose-dependent manner, by inhibiting drug transporters, cell detoxification capacity, or cell apoptosis sensitivity. Studies in vivo showed that single compounds, herbal extract, and formulas had potent antidrug resistance activities. Importantly, many single compounds, herbal extracts, and formulas have been used clinically to treat various diseases including cancer. The review provides comprehensive data on use of natural compounds to overcome cancer cell drug resistance in China, which may facilitate the therapeutic development of natural products for clinical management of cancer drug resistance. PMID:26421052

  12. Dynamical Network of HIV-1 Protease Mutants Reveals the Mechanism of Drug Resistance and Unhindered Activity.

    PubMed

    Appadurai, Rajeswari; Senapati, Sanjib

    2016-03-15

    HIV-1 protease variants resist drugs by active and non-active-site mutations. The active-site mutations, which are the primary or first set of mutations, hamper the stability of the enzyme and resist the drugs minimally. As a result, secondary mutations that not only increase protein stability for unhindered catalytic activity but also resist drugs very effectively arise. While the mechanism of drug resistance of the active-site mutations is through modulating the active-site pocket volume, the mechanism of drug resistance of the non-active-site mutations is unclear. Moreover, how these allosteric mutations, which are 8-21 Å distant, communicate to the active site for drug efflux is completely unexplored. Results from molecular dynamics simulations suggest that the primary mechanism of drug resistance of the secondary mutations involves opening of the flexible protease flaps. Results from both residue- and community-based network analyses reveal that this precise action of protease is accomplished by the presence of robust communication paths between the mutational sites and the functionally relevant regions: active site and flaps. While the communication is more direct in the wild type, it traverses across multiple intermediate residues in mutants, leading to weak signaling and unregulated motions of flaps. The global integrity of the protease network is, however, maintained through the neighboring residues, which exhibit high degrees of conservation, consistent with clinical data and mutagenesis studies. PMID:26892689

  13. Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB

    SciTech Connect

    Chen, Wenjing; Biswas, Tapan; Porter, Vanessa R.; Tsodikov, Oleg V.; Garneau-Tsodikova, Sylvie

    2011-09-06

    The emergence of multidrug-resistant and extensively drug-resistant (XDR) tuberculosis (TB) is a serious global threat. Aminoglycoside antibiotics are used as a last resort to treat XDR-TB. Resistance to the aminoglycoside kanamycin is a hallmark of XDR-TB. Here, we reveal the function and structure of the mycobacterial protein Eis responsible for resistance to kanamycin in a significant fraction of kanamycin-resistant Mycobacterium tuberculosis clinical isolates. We demonstrate that Eis has an unprecedented ability to acetylate multiple amines of many aminoglycosides. Structural and mutagenesis studies of Eis indicate that its acetylation mechanism is enabled by a complex tripartite fold that includes two general control non-derepressible 5 (GCN5)-related N-acetyltransferase regions. An intricate negatively charged substrate-binding pocket of Eis is a potential target of new antitubercular drugs expected to overcome aminoglycoside resistance.

  14. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance.

    PubMed

    Wei, Tuo; Chen, Chao; Liu, Juan; Liu, Cheng; Posocco, Paola; Liu, Xiaoxuan; Cheng, Qiang; Huo, Shuaidong; Liang, Zicai; Fermeglia, Maurizio; Pricl, Sabrina; Liang, Xing-Jie; Rocchi, Palma; Peng, Ling

    2015-03-10

    Drug resistance and toxicity constitute challenging hurdles for cancer therapy. The application of nanotechnology for anticancer drug delivery is expected to address these issues and bring new hope for cancer treatment. In this context, we established an original nanomicellar drug delivery system based on an amphiphilic dendrimer (AmDM), which could generate supramolecular micelles to effectively encapsulate the anticancer drug doxorubicin (DOX) with high drug-loading capacity (>40%), thanks to the unique dendritic structure creating large void space for drug accommodation. The resulting AmDM/DOX nanomicelles were able to enhance drug potency and combat doxorubicin resistance in breast cancer models by significantly enhancing cellular uptake while considerably decreasing efflux of the drug. In addition, the AmDM/DOX nanoparticles abolished significantly the toxicity related to the free drug. Collectively, our studies demonstrate that the drug delivery system based on nanomicelles formed with the self-assembling amphiphilic dendrimer constitutes a promising and effective drug carrier in cancer therapy.

  15. Prevalence of pyrazinamide resistance across the spectrum of drug resistant phenotypes of Mycobacterium tuberculosis.

    PubMed

    Whitfield, Michael G; Streicher, Elizabeth M; Dolby, Tania; Simpson, John A; Sampson, Samantha L; Van Helden, Paul D; Van Rie, Annelies; Warren, Robin M

    2016-07-01

    Pyrazinamide resistance is largely unknown in the spectrum of drug resistant phenotypes. We summarize data on PZA resistance in clinical isolates from South Africa. PZA DST should be performed when considering its inclusion in treatment of patients with rifampicin-resistant TB or MDR-TB. PMID:27450014

  16. Structure and function of efflux pumps that confer resistance to drugs.

    PubMed Central

    Borges-Walmsley, M Ines; McKeegan, Kenneth S; Walmsley, Adrian R

    2003-01-01

    Resistance to therapeutic drugs encompasses a diverse range of biological systems, which all have a human impact. From the relative simplicity of bacterial cells, fungi and protozoa to the complexity of human cancer cells, resistance has become problematic. Stated in its simplest terms, drug resistance decreases the chance of providing successful treatment against a plethora of diseases. Worryingly, it is a problem that is increasing, and consequently there is a pressing need to develop new and effective classes of drugs. This has provided a powerful stimulus in promoting research on drug resistance and, ultimately, it is hoped that this research will provide novel approaches that will allow the deliberate circumvention of well understood resistance mechanisms. A major mechanism of resistance in both microbes and cancer cells is the membrane protein-catalysed extrusion of drugs from the cell. Resistant cells exploit proton-driven antiporters and/or ATP-driven ABC (ATP-binding cassette) transporters to extrude cytotoxic drugs that usually enter the cell by passive diffusion. Although some of these drug efflux pumps transport specific substrates, many are transporters of multiple substrates. These multidrug pumps can often transport a variety of structurally unrelated hydrophobic compounds, ranging from dyes to lipids. If we are to nullify the effects of efflux-mediated drug resistance, we must first of all understand how these efflux pumps can accommodate a diverse range of compounds and, secondly, how conformational changes in these proteins are coupled to substrate translocation. These are key questions that must be addressed. In this review we report on the advances that have been made in understanding the structure and function of drug efflux pumps. PMID:13678421

  17. The mechanism of resistance to sulfa drugs in Plasmodium falciparum.

    PubMed

    Triglia, Tony; Cowman, Alan F.

    1999-02-01

    The sulfonamide and sulfone (sulfa) group of antimalarials has been used extensively throughout malaria endemic regions of the world to control this important infectious disease of humans. Sulfadoxine is the most extensively used drug of this group of drugs and is usually combined with pyrimethamine (Fansidar), particularly for the control of Plasmodium falciparum, the causative agent of the most lethal form of malaria. Resistance to the sulfadoxine/pyrimethamine combination is widespread. Analysis using molecular, genetic and biochemical approaches has shown that the mechanism of resistance to sulfadoxine involves mutation of dihydropteroate synthase, the enzyme target of this group of drugs. Understanding the mechanism of resistance of P. falciparum to sulfa drugs has allowed detailed analysis of the epidemiology of the spread of drug resistance alleles in the field(1)and, in the future, opens the way to the development of novel antimalarials to this target enzyme. Copyright 1999 Harcourt Publishers Ltd.

  18. Drug resistance among TB cases and its clinical implications.

    PubMed

    Chopra, K K

    2015-07-01

    The emergence of M. tuberculosis strains resistant to at least, Isoniazid (INH) and Rifampicin (RIF), the two most potent drugs of first-line anti-TB therapy is termed multidrug drug-resistant TB (MDR-TB). This is a cause of concern to TB Control Programmes worldwide. When MDR-TB strains become resistant to the major second-line drugs, one of the fluouroquinolones and one of the three injectable drugs (Amikacin, Kanamycin and Capreomycin), it is defined as extensively drug resistant TB.(1,2) MDR-TB is a manmade, costly and deadly problem. Rapid diagnosis of MDR-TB is essential for the prompt initiation of effective second-line therapy to improve treatment outcome and limit transmission of the disease.

  19. Bayesian analysis of complex interacting mutations in HIV drug resistance and cross-resistance.

    PubMed

    Kozyryev, Ivan; Zhang, Jing

    2015-01-01

    A successful treatment of AIDS world-wide is severely hindered by the HIV virus' drug resistance capability resulting from complicated mutation patterns of viral proteins. Such a system of mutations enables the virus to survive and reproduce despite the presence of various antiretroviral drugs by disrupting their binding capability. Although these interacting mutation patterns are extremely difficult to efficiently uncover and interpret, they contribute valuable information to personalized therapeutic regimen design. The use of Bayesian statistical modeling provides an unprecedented opportunity in the field of anti-HIV therapy to understand detailed interaction structures of drug resistant mutations. Multiple Bayesian models equipped with Markov Chain Monte Carlo (MCMC) methods have been recently proposed in this field (Zhang et al. in PNAS 107:1321, 2010 [1]; Zhang et al. in J Proteome Sci Comput Biol 1:2, 2012 [2]; Svicher et al. in Antiviral Res 93(1):86-93, 2012 [3]; Svicher et al. in Antiviral Therapy 16(7):1035-1045, 2011 [4]; Svicher et al. in Antiviral Ther 16(4):A14-A14, 2011 [5]; Svicher et al. in Antiviral Ther 16(4):A85-A85, 2011 [6]; Alteri et al. in Signature mutations in V3 and bridging sheet domain of HIV-1 gp120 HIV-1 are specifically associated with dual tropism and modulate the interaction with CCR5 N-Terminus, 2011 [7]). Probabilistically modeling mutations in the HIV-1 protease or reverse transcriptase (RT) isolated from drug-treated patients provides a powerful statistical procedure that first detects mutation combinations associated with single or multiple-drug resistance, and then infers detailed dependence structures among the interacting mutations in viral proteins (Zhang et al. in PNAS 107:1321, 2010 [1]; Zhang et al. in J Proteome Sci Comput Biol 1:2, 2012 [2]). Combined with molecular dynamics simulations and free energy calculations, Bayesian analysis predictions help to uncover genetic and structural mechanisms in the HIV treatment

  20. Drug Resistance among Pulmonary Tuberculosis Patients in Calabar, Nigeria

    PubMed Central

    Otu, Akaninyene; Umoh, Victor; Habib, Abdulrazak; Ameh, Soter; Lawson, Lovett

    2013-01-01

    Background. This study aimed to determine the pattern of drug susceptibility to first-line drugs among pulmonary TB patients in two hospitals in Calabar, Nigeria. Methods. This was a descriptive cross-sectional study carried out between February 2011 and April 2012. Sputum samples from consecutive TB patients in Calabar were subjected to culture on Lowenstein-Jensen (LJ) slopes followed by drug susceptibility testing (DST). The DST was performed on LJ medium by the proportion method. Results. Forty-two of the 100 Mycobacterium tuberculosis strains were found to be resistant to at least one drug. Resistance to only one drug (monoresistance) was found in 17 patients. No strains with monoresistance to rifampicin were found. Resistance to two drugs was found in 22 patients, while one patient was resistant to both three and four drugs. MDR TB was seen in 4% (4/100). The independent variables of HIV serology and sex were not significantly associated with resistance (P > 0.05). Conclusion. There was a high prevalence of anti-TB drug resistance in Calabar. PMID:24078872

  1. Mechanism of cancer drug resistance and the involvement of noncoding RNAs.

    PubMed

    Xia, Hongping; Hui, Kam M

    2014-01-01

    Drug resistance is one of the major reasons for the failure of cancer therapies. Although our understanding of resistance to targeted cancer drugs remains incomplete, new and more creative approaches are being exploited to intercept this phenomenon. Considerable advances have been made in our understanding that cancer drug resistance can be caused by alterations of drug efflux, increases in drug metabolism, mutations of drug targets, alterations in DNA repair and cell cycle, changes in cell apoptosis and autophagy, induction of epithelial-mesenchymal transition (EMT) and the generation of cancer stem cells (CSCs). Furthermore, intracellular signalling pathways have been shown to play key physiological roles and the abnormal activation of signalling pathways may be correlated with drug resistance. Recently, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have emerged as important regulators of gene expression and alternative splicing, which provides cells with yet another mode to greatly increase regulatory complexity and fine-tune their transcriptome and can rapidly adjust their proteome in response to stimuli. Consequently, a wide variety of biological functions have been shown to depend on the coordinated interactions between noncoding RNAs and cellular signalling networks to achieve a concerted desired physiological outcome, whereas mutations and dysregulation of ncRNAs have been linked to diverse human diseases, including cancer drug resistance. In this review, we will discuss recent findings on the multiple molecular roles of regulatory ncRNAs on the signalling pathways involved in cancer drug resistance and the therapeutic potential of reverse drug resistance.

  2. Defeating pathogen drug resistance: guidance from evolutionary theory.

    PubMed

    Pepper, John W

    2008-12-01

    Many of the greatest challenges in medicine and public health involve the evolution of drug resistance by pathogens. Recent advances in the theory of natural selection suggest that there are two broad classes of pathogen traits that can be targeted by drugs or vaccines. The first class, consisting of traits that benefit the individual organisms bearing them, causes a strong evolutionary response and the rapid emergence of drug resistance. The second class, consisting of traits that benefit groups of pathogen organisms including the individual provider, causes a weaker evolutionary response and less drug resistance. Although most previous drug development has targeted the first class, it would be advantageous to focus on the second class as targets for drug and vaccine development. Specific examples and test cases are discussed.

  3. Identification of Long Non-Coding RNAs Deregulated in Multiple Myeloma Cells Resistant to Proteasome Inhibitors

    PubMed Central

    Malek, Ehsan; Kim, Byung-Gyu; Driscoll, James J.

    2016-01-01

    While the clinical benefit of proteasome inhibitors (PIs) for multiple myeloma (MM) treatment remains unchallenged, dose-limiting toxicities and the inevitable emergence of drug resistance limit their long-term utility. Disease eradication is compromised by drug resistance that is either present de novo or therapy-induced, which accounts for the majority of tumor relapses and MM-related deaths. Non-coding RNAs (ncRNAs) are a broad class of RNA molecules, including long non-coding RNAs (lncRNAs), that do not encode proteins but play a major role in regulating the fundamental cellular processes that control cancer initiation, metastasis, and therapeutic resistance. While lncRNAs have recently attracted significant attention as therapeutic targets to potentially improve cancer treatment, identification of lncRNAs that are deregulated in cells resistant to PIs has not been previously addressed. We have modeled drug resistance by generating three MM cell lines with acquired resistance to either bortezomib, carfilzomib, or ixazomib. Genome-wide profiling identified lncRNAs that were significantly deregulated in all three PI-resistant cell lines relative to the drug-sensitive parental cell line. Strikingly, certain lncRNAs deregulated in the three PI-resistant cell lines were also deregulated in MM plasma cells isolated from newly diagnosed patients compared to healthy plasma cells. Taken together, these preliminary studies strongly suggest that lncRNAs represent potential therapeutic targets to prevent or overcome drug resistance. More investigations are ongoing to expand these initial studies in a greater number of MM patients to better define lncRNAs signatures that contribute to PI resistance in MM. PMID:27782060

  4. The pharmacogenomics of drug resistance to protein kinase inhibitors.

    PubMed

    Gillis, Nancy K; McLeod, Howard L

    2016-09-01

    Dysregulation of growth factor cell signaling is a major driver of most human cancers. This has led to development of numerous drugs targeting protein kinases, with demonstrated efficacy in the treatment of a wide spectrum of cancers. Despite their high initial response rates and survival benefits, the majority of patients eventually develop resistance to these targeted therapies. This review article discusses examples of established mechanisms of drug resistance to anticancer therapies, including drug target mutations or gene amplifications, emergence of alternate signaling pathways, and pharmacokinetic variation. This reveals a role for pharmacogenomic analysis to identify and monitor for resistance, with possible therapeutic strategies to combat chemoresistance. PMID:27620953

  5. The pharmacogenomics of drug resistance to protein kinase inhibitors.

    PubMed

    Gillis, Nancy K; McLeod, Howard L

    2016-09-01

    Dysregulation of growth factor cell signaling is a major driver of most human cancers. This has led to development of numerous drugs targeting protein kinases, with demonstrated efficacy in the treatment of a wide spectrum of cancers. Despite their high initial response rates and survival benefits, the majority of patients eventually develop resistance to these targeted therapies. This review article discusses examples of established mechanisms of drug resistance to anticancer therapies, including drug target mutations or gene amplifications, emergence of alternate signaling pathways, and pharmacokinetic variation. This reveals a role for pharmacogenomic analysis to identify and monitor for resistance, with possible therapeutic strategies to combat chemoresistance.

  6. Prediction of Cancer Drug Resistance and Implications for Personalized Medicine

    PubMed Central

    Volm, Manfred; Efferth, Thomas

    2015-01-01

    Drug resistance still impedes successful cancer chemotherapy. A major goal of early concepts in individualized therapy was to develop in vitro tests to predict tumors’ drug responsiveness. We have developed an in vitro short-term test based on nucleic acid precursor incorporation to determine clinical drug resistance. This test detects inherent and acquired resistance in vitro and transplantable syngeneic and xenografted tumors in vivo. In several clinical trials, clinical resistance was predictable with more than 90% accuracy, while drug sensitivity was detected with less accuracy (~60%). Remarkably, clinical cross-resistance to numerous drugs (multidrug resistance, broad spectrum resistance) was detectable by a single compound, doxorubicin, due to its multifactorial modes of action. The results of this predictive test were in good agreement with predictive assays of other authors. As no predictive test has been established as yet for clinical diagnostics, the identification of sensitive drugs may not reach sufficiently high reliability for clinical routine. A meta-analysis of the literature published during the past four decades considering test results of more than 15,000 tumor patients unambiguously demonstrated that, in the majority of studies, resistance was correctly predicted with an accuracy between 80 and 100%, while drug sensitivity could only be predicted with an accuracy of 50–80%. This synopsis of the published literature impressively illustrates that prediction of drug resistance could be validated. The determination of drug resistance was reliable independent of tumor type, test assay, and drug used in these in vitro tests. By contrast, chemosensitivity could not be predicted with high reliability. Therefore, we propose a rethinking of the “chemosensitivity” concept. Instead, predictive in vitro tests may reliably identify drug-resistant tumors. The clinical consequence imply to subject resistant tumors not to chemotherapy, but to other new

  7. Multiple insect resistance in 53 commmercial corn hybrids - 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial corn hybrids were screened for ear- and kernel-feeding insect resistance under field conditions at Tifton, GA. Fifteen hybrids were rated Very Good (VG), the highest rating for multiple insect resistance in 2015 (Table 1). Sixteen were Good (G), 9 were Fair (F), and 13 were Poor (P). Two...

  8. Multiple insect resistance in 53 commercial corn hybrids - 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial corn hybrids were screened for ear- and kernel-feeding insect resistance under field conditions at Tifton, GA. Fifteen hybrids were rated Very Good (VG), the highest rating for multiple insect resistance in 2015 (Table 1). Sixteen were Good (G), 9 were Fair (F), and 13 were Poor (P). Two...

  9. Fucoxanthin Attenuates Rifampin-Induced Cytochrome P450 3A4 (CYP3A4) and Multiple Drug Resistance 1 (MDR1) Gene Expression Through Pregnane X Receptor (PXR)-Mediated Pathways in Human Hepatoma HepG2 and Colon Adenocarcinoma LS174T Cells

    PubMed Central

    Liu, Cheng-Ling; Lim, Yun-Ping; Hu, Miao-Lin

    2012-01-01

    Pregnane X receptor (PXR) has been reported to regulate the expression of drug-metabolizing enzymes, such as the cytochrome P450 3A (CYP3A) family and transporters, such as multiple drug resistance 1 (MDR1). Fucoxanthin, the major carotenoid in brown sea algae, is a putative chemopreventive agent. In this study, we determined whether fucoxanthin could overcome drug resistance through attenuation of rifampin-induced CYP3A4 and MDR1 gene expression by PXR-mediated pathways in HepG2 hepatoma cells. We found that fucoxanthin (1–10 μM) significantly attenuated rifampin (20 μM)-induced CYP3A4, MDR1 mRNA and CYP3A4 protein expression at 24 h of incubation. Mechanistically, fucoxanthin strongly attenuated the PXR-mediated CYP3A4 promoter activity in HepG2 cells. In addition, fucoxanthin attenuated constitutive androstane receptor (CAR)- and rPXR-mediated CYP3A4 promoter activity in this cell line. Using the mammalian two-hybrid assay, we found that fucoxanthin significantly decreased the interaction between PXR and SRC-1, a PXR co-activator. Thus, fucoxanthin can decrease rifampin-induced CYP3A4 and MDR1 expression through attenuation of PXR-mediated CYP3A4 promoter activation and interaction between PXR and co-activator. These findings could lead to potentially important new therapeutic and dietary approaches to reduce the frequency of adverse drug reactions. PMID:22363234

  10. Bioerodible System for Sequential Release of Multiple Drugs

    PubMed Central

    Sundararaj, Sharath C.; Thomas, Mark V.; Dziubla, Thomas D.; Puleo, David A.

    2013-01-01

    Because many complex physiological processes are controlled by multiple biomolecules, comprehensive treatment of certain disease conditions may be more effectively achieved by administration of more than one type of drug. Thus, the objective of the present research was to develop a multilayered, polymer-based system for sequential delivery of multiple drugs. The polymers used were cellulose acetate phthalate (CAP) complexed with Pluronic F-127 (P). After evaluating morphology of the resulting CAPP system, in vitro release of small molecule drugs and a model protein was studied from both single and multilayered devices. Drug release from single-layered CAPP films followed zero-order kinetics related to surface erosion of the association polymer. Release studies from multilayered CAPP devices showed the possibility of achieving intermittent release of one type of drug as well as sequential release of more than one type of drug. Mathematical modeling accurately predicted the release profiles for both single layer and multilayered devices. The present CAPP association polymer-based multilayer devices can be used for localized, sequential delivery of multiple drugs for the possible treatment of complex disease conditions, and perhaps for tissue engineering applications, that require delivery of more than one type of biomolecule. PMID:24096151

  11. Bioerodible system for sequential release of multiple drugs.

    PubMed

    Sundararaj, Sharath C; Thomas, Mark V; Dziubla, Thomas D; Puleo, David A

    2014-01-01

    Because many complex physiological processes are controlled by multiple biomolecules, comprehensive treatment of certain disease conditions may be more effectively achieved by administration of more than one type of drug. Thus, the objective of the present research was to develop a multilayered, polymer-based system for sequential delivery of multiple drugs. The polymers used were cellulose acetate phthalate (CAP) complexed with Pluronic F-127 (P). After evaluating morphology of the resulting CAPP system, in vitro release of small molecule drugs and a model protein was studied from both single and multilayered devices. Drug release from single-layered CAPP films followed zero-order kinetics related to surface erosion of the association polymer. Release studies from multilayered CAPP devices showed the possibility of achieving intermittent release of one type of drug as well as sequential release of more than one type of drug. Mathematical modeling accurately predicted the release profiles for both single layer and multilayered devices. The present CAPP association polymer-based multilayer devices can be used for localized, sequential delivery of multiple drugs for the possible treatment of complex disease conditions, and perhaps for tissue engineering applications, that require delivery of more than one type of biomolecule. PMID:24096151

  12. Draft Genome Sequence of an Extensively Drug-Resistant Acinetobacter baumannii Indigo-Pigmented Strain.

    PubMed

    Traglia, German; Vilacoba, Elisabet; Almuzara, Marisa; Diana, Leticia; Iriarte, Andres; Centrón, Daniela; Ramírez, María Soledad

    2014-11-13

    Last year in 2013, we reported an outbreak due to indigo-pigmented Acinetobacter baumannii strains in a hospital from Buenos Aires, Argentina. Here, we present the draft genome sequence of one of the strains (A. baumannii A33405) involved in the outbreak. This isolate was categorized as extensively drug-resistant (XDR) and harbors different genetic elements associated with horizontal genetic transfer and multiple antibiotic resistances.

  13. Draft Genome Sequence of an Extensively Drug-Resistant Acinetobacter baumannii Indigo-Pigmented Strain

    PubMed Central

    Traglia, German; Vilacoba, Elisabet; Almuzara, Marisa; Diana, Leticia; Iriarte, Andres; Centrón, Daniela

    2014-01-01

    Last year in 2013, we reported an outbreak due to indigo-pigmented Acinetobacter baumannii strains in a hospital from Buenos Aires, Argentina. Here, we present the draft genome sequence of one of the strains (A. baumannii A33405) involved in the outbreak. This isolate was categorized as extensively drug-resistant (XDR) and harbors different genetic elements associated with horizontal genetic transfer and multiple antibiotic resistances. PMID:25395633

  14. Longitudinal Detection and Persistence of Minority Drug-Resistant Populations and Their Effect on Salvage Therapy

    PubMed Central

    Nishizawa, Masako; Matsuda, Masakazu; Hattori, Junko; Shiino, Teiichiro; Matano, Tetsuro; Heneine, Walid; Johnson, Jeffrey A.; Sugiura, Wataru

    2015-01-01

    Background Drug-resistant HIV are more prevalent and persist longer than previously demonstrated by bulk sequencing due to the ability to detect low-frequency variants. To clarify a clinical benefit to monitoring minority-level drug resistance populations as a guide to select active drugs for salvage therapy, we retrospectively analyzed the dynamics of low-frequency drug-resistant population in antiretroviral (ARV)-exposed drug resistant individuals. Materials and Methods Six HIV-infected individuals treated with ARV for more than five years were analyzed. These individuals had difficulty in controlling viremia, and treatment regimens were switched multiple times guided by standard drug resistance testing using bulk sequencing. To detect minority variant populations with drug resistance, we used a highly sensitive allele-specific PCR (AS-PCR) with detection thresholds of 0.3–2%. According to ARV used in these individuals, we focused on the following seven reverse transcriptase inhibitor-resistant mutations: M41L, K65R, K70R, K103N, Y181C, M184V, and T215F/Y. Results of AS-PCR were compared with bulk sequencing data for concordance and presence of additional mutations. To clarify the genetic relationship between low-frequency and high-frequency populations, AS-PCR amplicon sequences were compared with bulk sequences in phylogenetic analysis. Results The use of AS-PCR enabled detection of the drug-resistant mutations, M41L, K103N, Y181C, M184V and T215Y, present as low-frequency populations in five of the six individuals. These drug resistant variants persisted for several years without ARV pressure. Phylogenetic analysis indicated that pre-existing K103N and T215I variants had close genetic relationships with high-frequency K103N and T215I observed during treatment. Discussion and Conclusion Our results demonstrate the long-term persistence of drug-resistant viruses in the absence of drug pressure. The rapid virologic failures with pre-existing mutant viruses

  15. Origin of robustness in generating drug-resistant malaria parasites.

    PubMed

    Kümpornsin, Krittikorn; Modchang, Charin; Heinberg, Adina; Ekland, Eric H; Jirawatcharadech, Piyaporn; Chobson, Pornpimol; Suwanakitti, Nattida; Chaotheing, Sastra; Wilairat, Prapon; Deitsch, Kirk W; Kamchonwongpaisan, Sumalee; Fidock, David A; Kirkman, Laura A; Yuthavong, Yongyuth; Chookajorn, Thanat

    2014-07-01

    Biological robustness allows mutations to accumulate while maintaining functional phenotypes. Despite its crucial role in evolutionary processes, the mechanistic details of how robustness originates remain elusive. Using an evolutionary trajectory analysis approach, we demonstrate how robustness evolved in malaria parasites under selective pressure from an antimalarial drug inhibiting the folate synthesis pathway. A series of four nonsynonymous amino acid substitutions at the targeted enzyme, dihydrofolate reductase (DHFR), render the parasites highly resistant to the antifolate drug pyrimethamine. Nevertheless, the stepwise gain of these four dhfr mutations results in tradeoffs between pyrimethamine resistance and parasite fitness. Here, we report the epistatic interaction between dhfr mutations and amplification of the gene encoding the first upstream enzyme in the folate pathway, GTP cyclohydrolase I (GCH1). gch1 amplification confers low level pyrimethamine resistance and would thus be selected for by pyrimethamine treatment. Interestingly, the gch1 amplification can then be co-opted by the parasites because it reduces the cost of acquiring drug-resistant dhfr mutations downstream in the same metabolic pathway. The compensation of compromised fitness by extra GCH1 is an example of how robustness can evolve in a system and thus expand the accessibility of evolutionary trajectories leading toward highly resistant alleles. The evolution of robustness during the gain of drug-resistant mutations has broad implications for both the development of new drugs and molecular surveillance for resistance to existing drugs.

  16. Origin of Robustness in Generating Drug-Resistant Malaria Parasites

    PubMed Central

    Kümpornsin, Krittikorn; Modchang, Charin; Heinberg, Adina; Ekland, Eric H.; Jirawatcharadech, Piyaporn; Chobson, Pornpimol; Suwanakitti, Nattida; Chaotheing, Sastra; Wilairat, Prapon; Deitsch, Kirk W.; Kamchonwongpaisan, Sumalee; Fidock, David A.; Kirkman, Laura A.; Yuthavong, Yongyuth; Chookajorn, Thanat

    2014-01-01

    Biological robustness allows mutations to accumulate while maintaining functional phenotypes. Despite its crucial role in evolutionary processes, the mechanistic details of how robustness originates remain elusive. Using an evolutionary trajectory analysis approach, we demonstrate how robustness evolved in malaria parasites under selective pressure from an antimalarial drug inhibiting the folate synthesis pathway. A series of four nonsynonymous amino acid substitutions at the targeted enzyme, dihydrofolate reductase (DHFR), render the parasites highly resistant to the antifolate drug pyrimethamine. Nevertheless, the stepwise gain of these four dhfr mutations results in tradeoffs between pyrimethamine resistance and parasite fitness. Here, we report the epistatic interaction between dhfr mutations and amplification of the gene encoding the first upstream enzyme in the folate pathway, GTP cyclohydrolase I (GCH1). gch1 amplification confers low level pyrimethamine resistance and would thus be selected for by pyrimethamine treatment. Interestingly, the gch1 amplification can then be co-opted by the parasites because it reduces the cost of acquiring drug-resistant dhfr mutations downstream in the same metabolic pathway. The compensation of compromised fitness by extra GCH1 is an example of how robustness can evolve in a system and thus expand the accessibility of evolutionary trajectories leading toward highly resistant alleles. The evolution of robustness during the gain of drug-resistant mutations has broad implications for both the development of new drugs and molecular surveillance for resistance to existing drugs. PMID:24739308

  17. [Resistance to antiplatelet drugs in patients with cerebrovascular disorders].

    PubMed

    Suslina, Z A; Tanashian, M M; Domashenko, M A

    2011-01-01

    This review concerns clinical and laboratory resistance to antiplatelet drugs (aspirin and clopidogrel) in patients with cerebrovascular disorders. Results of certain clinical trials showed that laboratory resistance to antiaggregants is associated with recurrent thromboembolic vascular events. The commonest causes of aspirin resistance are production of arachidonic acid metabolites via the lipoxygenase pathway, poor compliance with the treatment, polymorphism of the genes encoding for cyclooxygenase and glycoprotein (GP) IIb/IIIa, endothelial dysfunction. The causes of clopidogrel resistance include inadequate doses of the drug, its low absorption, poor compliance with the treatment, polymorphism of ADP receptors, GP IIb/IIIa and cytochrome P450 genes, acute coronary syndrome and stroke, metabolic syndrome. Therapeutic efficacy of antiaggregants can be improved by increasing their doses, using membranotropic agents, correcting endothelial dysfunction, etc. Because the apparent variability of antiplatelet drug resistance is currently due to the use of different test-systems by different authors, the evaluation of individual sensitivity to a given drug showing laboratory resistance and the choice of alternative therapy are thus far possible only in the framework of clinical studies. Large-scale prospective multicenter trials of antiplatelet drug resistance are needed along with research for better understanding mechanisms of individual platelet sensitivity and resistance to antiaggregants and developing efficacious methods for their correction. PMID:21901881

  18. Systematic identification of signaling pathways with potential to confer anticancer drug resistance.

    PubMed

    Martz, Colin A; Ottina, Kathleen A; Singleton, Katherine R; Jasper, Jeff S; Wardell, Suzanne E; Peraza-Penton, Ashley; Anderson, Grace R; Winter, Peter S; Wang, Tim; Alley, Holly M; Kwong, Lawrence N; Cooper, Zachary A; Tetzlaff, Michael; Chen, Pei-Ling; Rathmell, Jeffrey C; Flaherty, Keith T; Wargo, Jennifer A; McDonnell, Donald P; Sabatini, David M; Wood, Kris C

    2014-12-23

    Cancer cells can activate diverse signaling pathways to evade the cytotoxic action of drugs. We created and screened a library of barcoded pathway-activating mutant complementary DNAs to identify those that enhanced the survival of cancer cells in the presence of 13 clinically relevant, targeted therapies. We found that activation of the RAS-MAPK (mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)-mTOR (mechanistic target of rapamycin), and ER (estrogen receptor) signaling pathways often conferred resistance to this selection of drugs. Activation of the Notch1 pathway promoted acquired resistance to tamoxifen (an ER-targeted therapy) in serially passaged breast cancer xenografts in mice, and treating mice with a γ-secretase inhibitor to inhibit Notch signaling restored tamoxifen sensitivity. Markers of Notch1 activity in tumor tissue correlated with resistance to tamoxifen in breast cancer patients. Similarly, activation of Notch1 signaling promoted acquired resistance to MAPK inhibitors in BRAF(V600E) melanoma cells in culture, and the abundance of Notch1 pathway markers was increased in tumors from a subset of melanoma patients. Thus, Notch1 signaling may be a therapeutic target in some drug-resistant breast cancers and melanomas. Additionally, multiple resistance pathways were activated in melanoma cell lines with intrinsic resistance to MAPK inhibitors, and simultaneous inhibition of these pathways synergistically induced drug sensitivity. These data illustrate the potential for systematic identification of the signaling pathways controlling drug resistance that could inform clinical strategies and drug development for multiple types of cancer. This approach may also be used to advance clinical options in other disease contexts. PMID:25538079

  19. Classical and Targeted Anticancer Drugs: An Appraisal of Mechanisms of Multidrug Resistance.

    PubMed

    Baguley, Bruce C

    2016-01-01

    The mechanisms by which tumor cells resist the action of multiple anticancer drugs, often with widely different chemical structures, have been pursued for more than 30 years. The identification of P-glycoprotein (P-gp), a drug efflux transporter protein with affinity for multiple therapeutic drugs, provided an important potential mechanism and further work, which identified other members of ATP-binding cassette (ABC) family that act as drug transporters. Several observations, including results of clinical trials with pharmacological inhibitors of P-gp, have suggested that mechanisms other than efflux transporters should be considered as contributors to resistance, and in this review mechanisms of anticancer drug resistance are considered more broadly. Cells in human tumors exist is a state of continuous turnover, allowing ongoing selection and "survival of the fittest." Tumor cells die not only as a consequence of drug therapy but also by apoptosis induced by their microenvironment. Cell death can be mediated by host immune mechanisms and by nonimmune cells acting on so-called death receptors. The tumor cell proliferation rate is also important because it controls tumor regeneration. Resistance to therapy might therefore be considered to arise from a reduction of several distinct cell death mechanisms, as well as from an increased ability to regenerate. This review provides a perspective on these mechanisms, together with brief descriptions of some of the methods that can be used to investigate them in a clinical situation. PMID:26910066

  20. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    NASA Astrophysics Data System (ADS)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  1. Electrical Stimulation for Drug-Resistant Epilepsy

    PubMed Central

    Chambers, A; Bowen, JM

    2013-01-01

    Objective The objective of this analysis was to evaluate the effectiveness of deep brain stimulation (DBS) and vagus nerve stimulation (VNS) for the treatment of drug-resistant epilepsy in adults and children. Data Sources A literature search was performed using MEDLINE, EMBASE, the Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published from January 2007 until December 2012. Review Methods Systematic reviews, meta-analyses, randomized controlled trials (RCTs), and observational studies (in the absence of RCTs) of adults or children were included. DBS studies were included if they specified that the anterior nucleus of thalamus was the area of the brain stimulated. Outcomes of interest were seizure frequency, health resource utilization, and safety. A cost analysis was also performed. Results The search identified 6 studies that assessed changes in seizure frequency after electrical stimulation: 1 RCT on DBS in adults, 4 RCTs on VNS in adults, and 1 RCT on VNS in children. The studies of DBS and VNS in adults found significantly improved rates of seizure frequency, but the study of VNS in children did not find a significant difference in seizure frequency between the high and low stimulation groups. Significant reductions in hospitalizations and emergency department visits were found for adults and children who received VNS. No studies addressed the use of health resources for patients undergoing DBS. Five studies reported on adverse events, which ranged from serious to transient for both procedures in adults and were mostly transient in the 1 study of VNS in children. Limitations We found no evidence on DBS in children or on health care use related to DBS. The measurement of seizure frequency is self-reported and is therefore subject to bias and issues of compliance. Conclusions Based on evidence of low to moderate quality, both DBS and VNS seemed to reduce seizure frequency in adults. In children, VNS did not appear to be as

  2. Aggressive chemotherapy and the selection of drug resistant pathogens.

    PubMed

    Huijben, Silvie; Bell, Andrew S; Sim, Derek G; Tomasello, Danielle; Mideo, Nicole; Day, Troy; Read, Andrew F

    2013-09-01

    Drug resistant pathogens are one of the key public health challenges of the 21st century. There is a widespread belief that resistance is best managed by using drugs to rapidly eliminate target pathogens from patients so as to minimize the probability that pathogens acquire resistance de novo. Yet strong drug pressure imposes intense selection in favor of resistance through alleviation of competition with wild-type populations. Aggressive chemotherapy thus generates opposing evolutionary forces which together determine the rate of drug resistance emergence. Identifying treatment regimens which best retard resistance evolution while maximizing health gains and minimizing disease transmission requires empirical analysis of resistance evolution in vivo in conjunction with measures of clinical outcomes and infectiousness. Using rodent malaria in laboratory mice, we found that less aggressive chemotherapeutic regimens substantially reduced the probability of onward transmission of resistance (by >150-fold), without compromising health outcomes. Our experiments suggest that there may be cases where resistance evolution can be managed more effectively with treatment regimens other than those which reduce pathogen burdens as fast as possible.

  3. Drug resistance and biochemical characteristics of Salmonella from turkeys.

    PubMed Central

    Poppe, C; Kolar, J J; Demczuk, W H; Harris, J E

    1995-01-01

    A study was conducted to determine the antibiotic resistance and biochemical characteristics of 2690 Salmonella strains belonging to 52 serovars and isolated from environmental and feed samples from 270 turkey flocks in Canada. Resistance of the Salmonella strains to the aminoglycoside antibiotics varied widely; none of the strains were resistant to amikacin, 14.2% were resistant to neomycin, 25.8% were resistant to gentamicin, and 27.7% of the strains were resistant to kanamycin. Most strains (97.6%) were resistant to the aminocyclitol, spectinomycin. Regarding resistance to the beta-lactam antibiotics, 14.3% and 14.4% of the strains were resistant to ampicillin and carbenicillin, respectively, whereas only 5 (0.2%) of the strains were resistant to cephalothin. None of the strains were resistant to the fluoroquinolone ciprofloxacin or to polymyxin B. Resistance to chloramphenicol and nitrofurantoin was found in 2.4% and 7% of the strains, respectively. Only 1.7% of the strains were resistant to the trimethoprimsulfamethoxazole combination, whereas 58.1% were resistant to sulfisoxazole. Thirty-eight percent of the strains were resistant to tetracycline. Salmonella serovars differed markedly in their drug resistance profiles. Biochemical characterization of the Salmonella showed that the S. anatum, S. saintpaul and S. reading serovars could be divided into distinct biotypes. PMID:8548684

  4. Multidrug-resistant tuberculosis drug susceptibility and molecular diagnostic testing.

    PubMed

    Kalokhe, Ameeta S; Shafiq, Majid; Lee, James C; Ray, Susan M; Wang, Yun F; Metchock, Beverly; Anderson, Albert M; Nguyen, Minh Ly T

    2013-02-01

    Multidrug-resistant tuberculosis (MDR TB), defined by resistance to the 2 most effective first-line drugs, isoniazid and rifampin, is on the rise globally and is associated with significant morbidity and mortality. Despite the increasing availability of novel rapid diagnostic tools for Mycobacterium tuberculosis (Mtb) drug susceptibility testing, the clinical applicability of these methods is unsettled. In this study, the mechanisms of action and resistance of Mtb to isoniazid and rifampin, and the utility, advantages and limitations of the available Mtb drug susceptibility testing tools are reviewed, with particular emphasis on molecular methods with rapid turnaround including line probe assays, molecular beacon-based real-time polymerase chain reaction and pyrosequencing. The authors conclude that neither rapid molecular drug testing nor phenotypic methods are perfect in predicting Mtb drug susceptibility and therefore must be interpreted within the clinical context of each patient.

  5. Highly active ozonides selected against drug resistant malaria

    PubMed Central

    Lobo, Lis; de Sousa, Bruno; Cabral, Lília; Cristiano, Maria LS; Nogueira, Fátima

    2016-01-01

    Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART), artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites. PMID:27276364

  6. Drug resistance analysis by next generation sequencing in Leishmania

    PubMed Central

    Leprohon, Philippe; Fernandez-Prada, Christopher; Gazanion, Élodie; Monte-Neto, Rubens; Ouellette, Marc

    2014-01-01

    The use of next generation sequencing has the power to expedite the identification of drug resistance determinants and biomarkers and was applied successfully to drug resistance studies in Leishmania. This allowed the identification of modulation in gene expression, gene dosage alterations, changes in chromosome copy numbers and single nucleotide polymorphisms that correlated with resistance in Leishmania strains derived from the laboratory and from the field. An impressive heterogeneity at the population level was also observed, individual clones within populations often differing in both genotypes and phenotypes, hence complicating the elucidation of resistance mechanisms. This review summarizes the most recent highlights that whole genome sequencing brought to our understanding of Leishmania drug resistance and likely new directions. PMID:25941624

  7. Complex genetics of drug resistance in Mycobacterium tuberculosis.

    PubMed

    Warner, Digby F; Mizrahi, Valerie

    2013-10-01

    Three new studies have used whole-genome sequencing of M. tuberculosis to demonstrate unexpected complexity in the modern evolution of drug-resistant tuberculosis, and a fourth study suggests a close evolutionary relationship between the pathogen and its human host over a period of 70,000 years. Collectively, the observations in these studies suggest that future strategies to tackle drug-resistant tuberculosis must integrate host genetics with detailed strain epidemiology.

  8. Eradication of Drug Resistant Staphylococcus aureus by Liposomal Oleic Acids

    PubMed Central

    Huang, Chun-Ming; Chen, Chao-Hsuan; Pornpattananangkul, Dissaya; Zhang, Li; Chan, Michael; Hsieh, Ming-Fa; Zhang, Liangfang

    2010-01-01

    Staphylococcus aureus (S. aureus) represents a major threat to a broad range of healthcare and community associated infections. This bacterium has rapidly evolved resistance to multiple drugs throughout its antibiotic history and thus it is imperative to develop novel antimicrobial strategies to enrich the currently shrinking therapeutic options against S. aureus. This study evaluated the antimicrobial activity and therapeutic efficacy of oleic acid (OA) in a liposomal formulation as an innate bactericide against methicillin-resistant S. aureus (MRSA). In vitro studies showed that these OA-loaded liposomes (LipoOA) could rapidly fuse into the bacterial membranes, thereby significantly improving the potency of OA to kill MRSA compared with the use of free OA. Further in vivo tests demonstrated that LipoOA were highly effective in curing skin infections caused by MRSA bacteria and preserving the integrity of the infected skin using a mouse skin model. Moreover, a preliminary skin toxicity study proved high biocompatibility of LipoOA to normal skin tissues. These findings suggest that LipoOA hold great potential to become a new, effective, and safe antimicrobial agent for the treatment of MRSA infections. PMID:20880576

  9. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    PubMed

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  10. A new multiple-drug applicator with minimal drug cross-talk, leakage, and consumption.

    PubMed

    Fujita, Yosuke; Shimomura, Takeshi; Hosoguchi, Masafumi; Kano, Masanobu; Fukurotani, Kenkichi; Tabata, Toshihide

    2010-04-01

    The relative effects of multiple drugs give an important clue to dissect a neuronal mechanism and to seek for a candidate neurotherapeutical agent. Here we have devised a "flute" applicator which can deliver several drugs to a neural cell preparation. The applicator stands by, cleaning itself with bath perfusate and delivers drugs only during test applications. This minimizes drug cross-talk in and leakage from the applicator and drug consumption. Using the applicator, we successfully compared the relative effects of widely different doses of an agonist in single neurons. The flute applicator would be a useful tool for pharmacological analyses.

  11. A new multiple-drug applicator with minimal drug cross-talk, leakage, and consumption.

    PubMed

    Fujita, Yosuke; Shimomura, Takeshi; Hosoguchi, Masafumi; Kano, Masanobu; Fukurotani, Kenkichi; Tabata, Toshihide

    2010-04-01

    The relative effects of multiple drugs give an important clue to dissect a neuronal mechanism and to seek for a candidate neurotherapeutical agent. Here we have devised a "flute" applicator which can deliver several drugs to a neural cell preparation. The applicator stands by, cleaning itself with bath perfusate and delivers drugs only during test applications. This minimizes drug cross-talk in and leakage from the applicator and drug consumption. Using the applicator, we successfully compared the relative effects of widely different doses of an agonist in single neurons. The flute applicator would be a useful tool for pharmacological analyses. PMID:20060427

  12. Using Aspergillus nidulans to identify antifungal drug resistance mutations.

    PubMed

    He, Xiaoxiao; Li, Shengnan; Kaminskyj, Susan G W

    2014-02-01

    Systemic fungal infections contribute to at least 10% of deaths in hospital settings. Most antifungal drugs target ergosterol (polyenes) or its biosynthetic pathway (azoles and allylamines), or beta-glucan synthesis (echinocandins). Antifungal drugs that target proteins are prone to the emergence of resistant strains. Identification of genes whose mutations lead to targeted resistance can provide new information on those pathways. We used Aspergillus nidulans as a model system to exploit its tractable sexual cycle and calcofluor white as a model antifungal agent to cross-reference our results with other studies. Within 2 weeks from inoculation on sublethal doses of calcofluor white, we isolated 24 A. nidulans adaptive strains from sectoring colonies. Meiotic analysis showed that these strains had single-gene mutations. In each case, the resistance was specific to calcofluor white, since there was no cross-resistance to caspofungin (echinocandin). Mutation sites were identified in two mutants by next-generation sequencing. These were confirmed by reengineering the mutation in a wild-type strain using a gene replacement strategy. One of these mutated genes was related to cell wall synthesis, and the other one was related to drug metabolism. Our strategy has wide application for many fungal species, for antifungal compounds used in agriculture as well as health care, and potentially during protracted drug therapy once drug resistance arises. We suggest that our strategy will be useful for keeping ahead in the drug resistance arms race. PMID:24363365

  13. The medical and surgical treatment of drug-resistant tuberculosis

    PubMed Central

    Calligaro, Gregory L.; Moodley, Loven; Symons, Greg

    2014-01-01

    Multi drug-resistant tuberculosis (MDR-TB) and extensively drug-resistant TB (XDR-TB) are burgeoning global problems with high mortality which threaten to destabilise TB control programs in several parts of the world. Of alarming concern is the emergence, in large numbers, of patients with resistance beyond XDR-TB (totally drug-resistant TB; TDR-TB or extremely drug resistant TB; XXDR-TB). Given the burgeoning global phenomenon of MDR-TB, XDR-TB and TDR-TB, and increasing international migration and travel, healthcare workers, researchers, and policy makers in TB endemic and non-endemic countries should familiarise themselves with issues relevant to the management of these patients. Given the lack of novel TB drugs and limited access to existing drugs such as linezolid and bedaquiline in TB endemic countries, significant numbers of therapeutic failures are emerging from the ranks of those with XDR-TB. Given the lack of appropriate facilities in resource-limited settings, such patients are being discharged back into the community where there is likely ongoing disease spread. In the absence of effective drug regimens, in appropriate patients, surgery is a critical part of management. Here we review the diagnosis, medical and surgical management of MDR-TB and XDR-TB. PMID:24624282

  14. Phenotypic drug profiling in droplet microfluidics for better targeting of drug-resistant tumors

    PubMed Central

    Sarkar, S.; Cohen, N.; Sabhachandani, P.; Konry, T.

    2015-01-01

    Acquired drug resistance is a key factor in the failure of chemotherapy. Due to intratumoral heterogeneity, cancer cells depict variations in intracellular drug uptake and efflux at the single cell level, which may not be detectable in bulk assays. In this study we present a droplet microfluidics-based approach to assess the dynamics of drug uptake, efflux and cytotoxicity in drug-sensitive and drug-resistant breast cancer cells. An integrated droplet generation and docking microarray was utilized to encapsulate single cells as well as homotypic cell aggregates. Drug-sensitive cells showed greater death in the presence or absence of Doxorubicin (Dox) compared to the drug-resistant cells. We observed heterogeneous Dox uptake in individual drug-sensitive cells while the drug-resistant cells showed uniformly low uptake and retention. Dox-resistant cells were classified into distinct subsets based on their efflux properties. Cells that showed longer retention of extracellular reagents also demonstrated maximal death. We further observed homotypic fusion of both cell types in droplets, which resulted in increased cell survival in the presence of high doses of Dox. Our results establish the applicability of this microfluidic platform for quantitative drug screening in single cells and multicellular interactions. PMID:26456240

  15. GWAMAR: Genome-wide assessment of mutations associated with drug resistance in bacteria

    PubMed Central

    2014-01-01

    Background Development of drug resistance in bacteria causes antibiotic therapies to be less effective and more costly. Moreover, our understanding of the process remains incomplete. One promising approach to improve our understanding of how resistance is being acquired is to use whole-genome comparative approaches for detection of drug resistance-associated mutations. Results We present GWAMAR, a tool we have developed for detecting of drug resistance-associated mutations in bacteria through comparative analysis of whole-genome sequences. The pipeline of GWAMAR comprises several steps. First, for a set of closely related bacterial genomes, it employs eCAMBer to identify homologous gene families. Second, based on multiple alignments of the gene families, it identifies mutations among the strains of interest. Third, it calculates several statistics to identify which mutations are the most associated with drug resistance. Conclusions Based on our analysis of two large datasets retrieved from publicly available data for M. tuberculosis, we identified a set of novel putative drug resistance-associated mutations. As a part of this work, we present also an application of our tool to detect putative compensatory mutations. PMID:25559874

  16. World Antimalarial Resistance Network I: clinical efficacy of antimalarial drugs.

    PubMed

    Price, Ric N; Dorsey, Grant; Ashley, Elizabeth A; Barnes, Karen I; Baird, J Kevin; d'Alessandro, Umberto; Guerin, Philippe J; Laufer, Miriam K; Naidoo, Inbarani; Nosten, François; Olliaro, Piero; Plowe, Christopher V; Ringwald, Pascal; Sibley, Carol H; Stepniewska, Kasia; White, Nicholas J

    2007-01-01

    The proliferation of antimalarial drug trials in the last ten years provides the opportunity to launch a concerted global surveillance effort to monitor antimalarial drug efficacy. The diversity of clinical study designs and analytical methods undermines the current ability to achieve this. The proposed World Antimalarial Resistance Network (WARN) aims to establish a comprehensive clinical database from which standardised estimates of antimalarial efficacy can be derived and monitored over time from diverse geographical and endemic regions. The emphasis of this initiative is on five key variables which define the therapeutic response. Ensuring that these data are collected at the individual patient level in a consistent format will facilitate better data management and analytical practices, and ensure that clinical data can be readily collated and made amenable for pooled analyses. Such an approach, if widely adopted will permit accurate and timely recognition of trends in drug efficacy. This will guide not only appropriate interventions to deal with established multidrug resistant strains of malaria, but also facilitate prompt action when new strains of drug resistant plasmodia first emerge. A comprehensive global database incorporating the key determinants of the clinical response with in vitro, molecular and pharmacokinetic parameters will bring together relevant data on host, drug and parasite factors that are fundamental contributors to treatment efficacy. This resource will help guide rational drug policies that optimize antimalarial drug use, in the hope that the emergence and spread of resistance to new drugs can be, if not prevented, at least delayed.

  17. Demonstration of plasmid-mediated drug resistance in Mycobacterium abscessus.

    PubMed

    Matsumoto, Cristianne Kayoko; Bispo, Paulo José Martins; Santin, Katiane; Nogueira, Christiane Lourenço; Leão, Sylvia Cardoso

    2014-05-01

    Plasmid-mediated kanamycin resistance was detected in a strain of Mycobacterium abscessus subsp. bolletii responsible for a nationwide epidemic of surgical infections in Brazil. The plasmid did not influence susceptibility to tobramycin, streptomycin, trimethoprim-sulfamethoxazole, clarithromycin, or ciprofloxacin. Plasmid-mediated drug resistance has not been described so far in mycobacteria. PMID:24574286

  18. A Research-Inspired Laboratory Sequence Investigating Acquired Drug Resistance

    ERIC Educational Resources Information Center

    Taylor, Elizabeth Vogel; Fortune, Jennifer A.; Drennan, Catherine L.

    2010-01-01

    Here, we present a six-session laboratory exercise designed to introduce students to standard biochemical techniques in the context of investigating a high impact research topic, acquired resistance to the cancer drug Gleevec. Students express a Gleevec-resistant mutant of the Abelson tyrosine kinase domain, the active domain of an oncogenic…

  19. The interplay between drug resistance and fitness in malaria parasites

    PubMed Central

    Rosenthal, Philip J.

    2013-01-01

    Summary Controlling the spread of antimalarial drug resistance, especially resistance of Plasmodium falciparum to artemisinin-based combination therapies, is a high priority. Available data indicate that, as with other microorganisms, the spread of drug-resistant malaria parasites is limited by fitness costs that frequently accompany resistance. Resistance-mediating polymorphisms in malaria parasites have been identified in putative drug transporters and in target enzymes. The impacts of these polymorphisms on parasite fitness have been characterized in vitro and in animal models. Additional insights have come from analyses of samples from clinical studies, both evaluating parasites under different selective pressures and determining the clinical consequences of infection with different parasites. With some exceptions, resistance-mediating polymorphisms lead to malaria parasites that, compared to wild type, grow less well in culture and in animals, and are replaced by wild type when drug pressure diminishes in the clinical setting. In some cases, the fitness costs of resistance may be offset by compensatory mutations that increase virulence or changes that enhance malaria transmission. However, not enough is known about effects of resistance mediators on parasite fitness. A better appreciation of the costs of fitness-mediating mutations will facilitate the development of optimal guidelines for the treatment and prevention of malaria. PMID:23899091

  20. Analysis of reverse transcriptase and protease genes of HIV for antiretroviral drug resistance in treatment-exposed Jamaican pediatrics.

    PubMed

    Ramkissoon, Adriel P; Amarakoon, Icolyn I; Hamilton, Cindy-Leigh C; Pierre, Russell B; Eyzaguirre, Lindsay M; Carr, Jean K; Blattner, William A; Roye, Marcia E

    2015-09-01

    This study reports on the drug resistance profiles for HIV-infected pediatrics in Jamaica who have been exposed to antiretroviral therapy (ART). The genetic diversity of HIV-1 found in these patients was also determined using phylogenetic analysis. The protease-reverse transcriptase (Pro-RT) region of the genome was amplified from 40 samples, sequenced, and analyzed for the identification of antiretroviral resistance-associated mutations (RAMs). All isolates belonged to subtype B and 39 possessed multiple RAMs in the reverse transcriptase genes that would compromise the efficacy of drugs being used to treat these patients. Four isolates possessed RAMs in the protease genes. The overall frequency of HIV drug resistance was 95%. The high frequency of drug resistance is supported by epidemiological data that revealed an equally high frequency of treatment failure (98%) among the study participants. The results of this study indicate the urgent need for greater access to drug resistance testing in Jamaica. PMID:26122980

  1. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells

    PubMed Central

    Ramirez, Michael; Rajaram, Satwik; Steininger, Robert J.; Osipchuk, Daria; Roth, Maike A.; Morinishi, Leanna S.; Evans, Louise; Ji, Weiyue; Hsu, Chien-Hsiang; Thurley, Kevin; Wei, Shuguang; Zhou, Anwu; Koduru, Prasad R.; Posner, Bruce A.; Wu, Lani F.; Altschuler, Steven J.

    2016-01-01

    Cancer therapy has traditionally focused on eliminating fast-growing populations of cells. Yet, an increasing body of evidence suggests that small subpopulations of cancer cells can evade strong selective drug pressure by entering a ‘persister' state of negligible growth. This drug-tolerant state has been hypothesized to be part of an initial strategy towards eventual acquisition of bona fide drug-resistance mechanisms. However, the diversity of drug-resistance mechanisms that can expand from a persister bottleneck is unknown. Here we compare persister-derived, erlotinib-resistant colonies that arose from a single, EGFR-addicted lung cancer cell. We find, using a combination of large-scale drug screening and whole-exome sequencing, that our erlotinib-resistant colonies acquired diverse resistance mechanisms, including the most commonly observed clinical resistance mechanisms. Thus, the drug-tolerant persister state does not limit—and may even provide a latent reservoir of cells for—the emergence of heterogeneous drug-resistance mechanisms. PMID:26891683

  2. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria.

    PubMed

    van Ingen, Jakko; Boeree, Martin J; van Soolingen, Dick; Mouton, Johan W

    2012-06-01

    Nontuberculous mycobacteria (NTM) are increasingly recognized as causative agents of opportunistic infections in humans. For most NTM infections the therapy of choice is drug treatment, but treatment regimens differ by species, in particular between slow (e.g. Mycobacterium avium complex, Mycobacterium kansasii) and rapid growers (e.g. Mycobacterium abscessus, Mycobacterium fortuitum). In general, drug treatment is long, costly, and often associated with drug-related toxicities; outcome of drug treatment is poor and is likely related to the high levels of natural antibiotic resistance in NTM. The role of drug susceptibility testing (DST) in the choice of agents for antimicrobial treatment of NTM disease, mainly that by slow growers, remains subject of debate. There are important discrepancies between drug susceptibility measured in vitro and the activity of the drug observed in vivo. In part, these discrepancies derive from laboratory technical issues. There is still no consensus on a standardized method. With the increasing clinical importance of NTM disease, DST of NTM is again in the spotlight. This review provides a comprehensive overview of the mechanisms of drug resistance in NTM, phenotypic methods for testing susceptibility in past and current use for DST of NTM, as well as molecular approaches to assess drug resistance.

  3. Human APOBEC3 proteins, retrovirus restriction, and HIV drug resistance.

    PubMed

    Haché, Guylaine; Mansky, Louis M; Harris, Reuben S

    2006-01-01

    Over 40 million people worldwide currently have HIV/AIDS. Many antiretroviral drugs have proven effective, but drug-resistant HIV variants frequently emerge to thwart treatment efforts. Reverse transcription errors undoubtedly contribute to drug resistance, but additional significant sources of viral genetic variation are debatable. The human APOBEC3F and APOBEC3G proteins can potently inhibit retrovirus infection by a mechanism that involves retroviral cDNA cytosine deamination. Here we review the current knowledge on the mechanism of APOBEC3-dependent retrovirus restriction and discuss whether this innate host-defense system actively contributes to HIV genetic variation.

  4. Active control of multiple resistive wall modes

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Martin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, G.; Zanca, P.

    2005-12-01

    A two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitive agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition |n - n'| = Nc. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc × Nc = 4 × 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc × Nc = 4 × 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7 8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback.

  5. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes.

    PubMed

    Rudramurthy, Gudepalya Renukaiah; Swamy, Mallappa Kumara; Sinniah, Uma Rani; Ghasemzadeh, Ali

    2016-01-01

    Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals). Antimicrobials are considered "miracle drugs" and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs) depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future. PMID:27355939

  6. Evaluation and management of a patient with multiple drug allergies.

    PubMed

    Blumenthal, Kimberly G; Saff, Rebecca R; Banerji, Aleena

    2014-01-01

    Multiple drug allergy syndrome (MDAS) is a clinical diagnosis made in patients with adverse reactions to two or more structurally unrelated drugs with an underlying immune-mediated mechanism causing the reaction. The evaluation of a patient with MDAS begins with a comprehensive drug allergy history and consideration of the underlying immune mechanism for each reaction. Skin testing is a useful diagnostic tool; however, the only validated immediate hypersensitivity skin testing is for penicillin where the antigenic determinants have been identified. Skin testing to most other drugs, although not validated, can be considered using a nonirritating concentration (NIC). In general, skin test positivity using an NIC suggests that the drug should be avoided, but a negative result does not rule out an IgE-mediated allergy. A test dose, also called a drug provocation test, graded oral challenge, or incremental challenge, should be performed when there is a low likelihood of an IgE-mediated mechanism for the reaction. In patients with a recent IgE-mediated hypersensitivity reaction or positive skin testing with no reasonable alternative treatment options, desensitization protocols can be used to allow the patient to safely receive a necessary drug. The evaluation of patients with MDAS is both challenging and time-consuming for the practicing allergist, who must systematically evaluate each reaction to help determine which drugs can be safely used again in the future. The molecular mechanisms and risk factors for this condition remain poorly understood, but research to further understand this condition is ongoing.

  7. Combination Approaches to Combat Multi-Drug Resistant Bacteria

    PubMed Central

    Worthington, Roberta J.; Melander, Christian

    2013-01-01

    The increasing prevalence of infections caused by multi-drug resistant bacteria is a global health problem that is exacerbated by the dearth of novel classes of antibiotics entering the clinic over the past 40 years. Herein we describe recent developments toward combination therapies for the treatment of multi-drug resistant bacterial infections. These efforts include antibiotic-antibiotic combinations, and the development of adjuvants that either directly target resistance mechanisms such as the inhibition of β-lactamase enzymes, or indirectly target resistance by interfering with bacterial signaling pathways such as two-component systems. We also discuss screening of libraries of previously approved drugs to identify non-obvious antimicrobial adjuvants. PMID:23333434

  8. Genome Analysis of the First Extensively Drug-Resistant (XDR) Mycobacterium tuberculosis in Malaysia Provides Insights into the Genetic Basis of Its Biology and Drug Resistance

    PubMed Central

    Kuan, Chee Sian; Chan, Chai Ling; Yew, Su Mei; Toh, Yue Fen; Khoo, Jia-Shiun; Chong, Jennifer; Lee, Kok Wei; Tan, Yung-Chie; Yee, Wai-Yan; Ngeow, Yun Fong; Ng, Kee Peng

    2015-01-01

    The outbreak of extensively drug-resistant tuberculosis (XDR-TB) has become an increasing problem in many TB-burdened countries. The underlying drug resistance mechanisms, including the genetic variation favored by selective pressure in the resistant population, are partially understood. Recently, the first case of XDR-TB was reported in Malaysia. However, the detailed genotype family and mechanisms of the formation of multiple drugs resistance are unknown. We sequenced the whole genome of the UM 1072388579 strain with a 2-kb insert-size library and combined with that from previously sequenced 500-bp-insert paired-end reads to produce an improved sequence with maximal sequencing coverage across the genome. In silico spoligotyping and phylogenetic analyses demonstrated that UM 1072388579 strain belongs to an ancestral-like, non-Beijing clade of East Asia lineage. This is supported by the presence of a number of lineage-specific markers, including fadD28, embA, nuoD and pks7. Polymorphism analysis showed that the drug-susceptibility profile is correlated with the pattern of resistance mutations. Mutations in drug-efflux pumps and the cell wall biogenesis pathway such as mmpL, pks and fadD genes may play an important role in survival and adaptation of this strain to its surrounding environment. In this work, fifty-seven putative promoter SNPs were identified. Among them, we identified a novel SNP located at -4 T allele of TetR/acrR promoter as an informative marker to recognize strains of East Asian lineage. Our work indicates that the UM 1072388579 harbors both classical and uncommon SNPs that allow it to escape from inhibition by many antibiotics. This study provides a strong foundation to dissect the biology and underlying resistance mechanisms of the first reported XDR M. tuberculosis in Malaysia. PMID:26110649

  9. Investigational new drugs for the treatment of resistant pneumococcal infections.

    PubMed

    Hoffman-Roberts, Holly L; C Babcock, Emily; Mitropoulos, Isaac F

    2005-08-01

    Antibiotic resistance in Streptococcus pneumoniae is not only increasing with penicillin but also with other antimicrobial classes including the macrolides, tetracyclines and sulfonamides. This trend with antibiotic resistance has highlighted the need for the further development of new anti-infectives for the treatment of pneumococcal infections, particularly against multi-drug resistant pneumococci. Several new drugs with anti-pneumococcal activity are at various stages of development and will be discussed in this review. Two new cephalosporins with activity against S. pneumoniae include ceftobiprole and RWJ-54428. Faropenem is in a new class of beta-lactam antibiotics called the penems. Structurally, the penems are a hybrid between the penicillins and cephalosporins. Sitafloxacin and garenoxacin are two new quinolones that are likely to have a role in treating pneumococcal infections. Oritavancin and dalbavancin are glycopeptides with activity against methicillin-resistant S. aureus and vancomycin-resistant Enterococcus spp. as well as multi-drug resistant pneumococci. Tigecycline is the first drug in a new class of anti-infectives called the glycycyclines that has activity against penicillin-resistant pneumococci. PMID:16050791

  10. Antimicrobial resistance: consideration as an adverse drug event.

    PubMed

    Martin, Steven J; Micek, Scott T; Wood, G Christopher

    2010-06-01

    Antimicrobial resistance has increased dramatically in the past 15 to 20 yrs and presents a patient safety concern unlike any other in the intensive care unit. Antimicrobial resistance in critically ill patients increases morbidity, mortality, length of hospital stay, and healthcare costs. Some organisms may have intrinsically high levels of resistance or may be spread between patients by poor infection control practices. However, a major driver of antimicrobial resistance is antibiotic use. As such, the development of antimicrobial resistance can often be thought of as an adverse drug event. This article explores the link between drug use, drug dosing, other selective pressures and resistance, and describes concepts to minimize the negative impact of antimicrobial therapy. Two broad themes of these concepts are minimizing the use of antibiotics whenever possible and optimizing antibiotic usage when they are needed. Strategies for minimizing the use of antimicrobials include using optimal diagnostic procedures to ensure the need for antimicrobials, streamlining or discontinuing therapy when possible based on culture results, and using the shortest duration of therapy needed for documented infections. Strategies for optimizing antimicrobial use include using optimal dosing based on the manufacturer's instructions and current pharmacodynamic data, guiding better prescribing based on local susceptibility patterns and formulary restriction, and avoiding drugs with more propensity to foster resistance.

  11. Problems of Glioblastoma Multiforme Drug Resistance.

    PubMed

    Stavrovskaya, A A; Shushanov, S S; Rybalkina, E Yu

    2016-02-01

    Glioblastoma multiforme (GBL) is the most common and aggressive brain neoplasm. A standard therapeutic approach for GBL involves combination therapy consisting of surgery, radiotherapy, and chemotherapy. The latter is based on temozolomide (TMZ). However, even by applying such a radical treatment strategy, the mean patient survival time is only 14.6 months. Here we review the molecular mechanisms underlying the resistance of GBL cells to TMZ including genetic and epigenetic mechanisms. Present data regarding a role for genes and proteins MGMT, IDH1/2, YB-1, MELK, MVP/LRP, MDR1 (ABCB1), and genes encoding other ABC transporters as well as Akt3 kinase in developing resistance of GBL to TMZ are discussed. Some epigenetic regulators of resistance to TMZ such as microRNA and EZH2 are reviewed. PMID:27260389

  12. Establishing Drug Resistance in Microorganisms by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Demirev, Plamen A.; Hagan, Nathan S.; Antoine, Miquel D.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and 13C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  13. New Developments in Antiepileptic Drug Resistance: An Integrative View

    PubMed Central

    Schmidt, Dieter; Löscher, Wolfgang

    2009-01-01

    Current theories on drug resistance in epilepsy include the drug transporter hypothesis, the drug target hypothesis, and a novel approach called the inherent severity model of epilepsy, which posits that the severity of the disease determines its relative response to medication. Valuable as each of these hypotheses is, none is currently a stand-alone theory that is able to convincingly explain drug resistance in human epilepsy. As a consequence, it may be of interest to update and integrate the various hypotheses of drug resistance and to explore possible links to the severity of epilepsy. The observation that a high frequency of seizures prior to onset of treatment is a prognostic signal of increased severity and future drug failure suggests that common neurobiological factors may underlie both disease severity and pharmacoresistance. Such a link has been proposed for depression; however, the evidence for a direct mechanistic link, genetic or otherwise, between drug response and disease severity of human epilepsy is still elusive. Although emerging data from experimental studies suggest that alterations in GABAA receptors may present one example of a mechanistic link, clearly more work is needed to explore whether common neurobiological factors may underlie both epilepsy severity and drug failure. PMID:19421380

  14. Induction of anti-actin drug resistance in Tetrahymena.

    PubMed

    Zackroff, Robert V; Hufnagel, Linda A

    2002-01-01

    Both cytochalasin D and latrunculin B reversibly inhibited Tetrahymena phagocytosis at concentrations similar to those effective in mammalian systems, even though ciliate actins are known to be highly divergent from mammalian actins. Overnight exposure to relatively low (0.25 microM) concentrations of latrunculin B induced resistance in Tetrahymena to the inhibitory effects of that drug, as well as cross-resistance to cytochalasin D. However, much higher (> 30 microM) concentrations of cytochalasin D were required for induction of cross-resistance to latrunculin B. Anti-actin drug resistance in Tetrahymena may involve a general multidrug resistance mechanism and/or specific feedback regulation of F-actin assembly and stability.

  15. Non-toxic antimicrobials that evade drug resistance

    PubMed Central

    Davis, Stephen A.; Vincent, Benjamin M.; Endo, Matthew M.; Whitesell, Luke; Marchillo, Karen; Andes, David R.; Lindquist, Susan; Burke, Martin D.

    2015-01-01

    Drugs that act more promiscuously provide fewer routes for the emergence of resistant mutants. But this benefit often comes at the cost of serious off-target and dose-limiting toxicities. The classic example is the antifungal amphotericin B (AmB), which has evaded resistance for more than half a century. We report dramatically less toxic amphotericins that nevertheless evade resistance. They are scalably accessed in just three steps from the natural product, and bind their target (the fungal sterol, ergosterol) with far greater selectivity than AmB. Hence, they are less toxic and far more effective in a mouse model of systemic candidiasis. Surprisingly, exhaustive efforts to select for mutants resistant to these more selective compounds revealed that they are just as impervious to resistance as AmB. Thus, highly selective cytocidal action and the evasion of resistance are not mutually exclusive, suggesting practical routes to the discovery of less toxic, resistance-evasive therapies. PMID:26030729

  16. Molecular dynamics studies on HIV-1 protease drug resistance and folding pathways.

    PubMed

    Cecconi, F; Micheletti, C; Carloni, P; Maritan, A

    2001-06-01

    Drug resistance to HIV-1 protease involves the accumulation of multiple mutations in the protein. We investigate the role of these mutations by using molecular dynamics simulations that exploit the influence of the native-state topology in the folding process. Our calculations show that sites contributing to phenotypic resistance of FDA-approved drugs are among the most sensitive positions for the stability of partially folded states and should play a relevant role in the folding process. Furthermore, associations between amino acid sites mutating under drug treatment are shown to be statistically correlated. The striking correlation between clinical data and our calculations suggest a novel approach to the design of drugs tailored to bind regions crucial not only for protein function, but for folding as well.

  17. Acquisition of second-line drug resistance and extensive drug resistance during recent transmission of Mycobacterium tuberculosis in rural China.

    PubMed

    Hu, Y; Mathema, B; Zhao, Q; Chen, L; Lu, W; Wang, W; Kreiswirth, B; Xu, B

    2015-12-01

    Multidrug-resistant tuberculosis (MDR-TB) is prevalent in countries with a high TB burden, like China. As little is known about the emergence and spread of second-line drug (SLD) -resistant TB, we investigate the emergence and transmission of SLD-resistant Mycobacterium tuberculosis in rural China. In a multi-centre population-based study, we described the bacterial population structure and the transmission characteristics of SLD-resistant TB using Spoligotyping in combination with genotyping based on 24-locus MIRU-VNTR (mycobacterial interspersed repetitive unit-variable-number tandem repeat) plus four highly variable loci for the Beijing family, in four rural Chinese regions with diverse geographic and socio-demographic characteristics. Transmission networks among genotypically clustered patients were constructed using social network analysis. Of 1332 M. tuberculosis patient isolates recovered, the Beijing family represented 74.8% of all isolates and an association with MDR and simultaneous resistance between first-line drugs and SLDs. The genotyping analysis revealed that 189 isolates shared MIRU-VNTR patterns in 78 clusters with clustering rate and recent transmission rate of 14.2% and 8.3%, respectively. Fifty-three SLD-resistant isolates were observed in 31 clusters, 30 of which contained the strains with different drug susceptibility profiles and genetic mutations. In conjunction with molecular data, socio-network analysis indicated a key role of Central Township in the transmission across a highly interconnected network where SLD resistance accumulation occurred during transmission. SLD-resistant M. tuberculosis has been spreading in rural China with Beijing family being the dominant strains. Primary transmission of SLD-resistant strains in the population highlights the importance of routine drug susceptibility testing and effective anti-tuberculosis regimens for drug-resistant TB.

  18. Efflux pump-mediated drug resistance in Burkholderia.

    PubMed

    Podnecky, Nicole L; Rhodes, Katherine A; Schweizer, Herbert P

    2015-01-01

    Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in Burkholderia cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND) family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA, and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  19. Efflux pump-mediated drug resistance in Burkholderia

    PubMed Central

    Podnecky, Nicole L.; Rhodes, Katherine A.; Schweizer, Herbert P.

    2015-01-01

    Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in Burkholderia cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND) family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA, and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance. PMID:25926825

  20. Managing anthelmintic resistance--parasite fitness, drug use strategy and the potential for reversion towards susceptibility.

    PubMed

    Leathwick, Dave M

    2013-11-15

    The rotation of different anthelmintic classes, on an approximately annual basis, has been widely promoted and adopted as a strategy to delay the development of anthelmintic resistance in nematode parasites. Part of the rationale for recommending this practice was the expectation that resistant genotype worms have a lower ecological fitness than susceptible worms, at least in the early stages of selection, and so reversion towards susceptibility could be expected in those years when an alternative class of anthelmintic was used. The routine use of combination anthelmintics might be expected to negate this opportunity for reversion because multiple classes of anthelmintic would be used simultaneously. A simulation model was used to investigate whether the optimal strategy for use of multiple drug classes (i.e. an annual rotation of two classes of anthelmintic or continuous use of two classes in combination) changed with the size of the fitness cost associated with resistance. Model simulations were run in which the fitness cost associated with each resistance gene was varied from 0% to 15% and the rate at which resistance developed was compared for each of the drug-use strategies. Other factors evaluated were the initial frequency of the resistance genes and the proportion of the population not exposed to treatment (i.e. in refugia). Increasing the proportion of the population in refugia always slowed the development of resistance, as did using combinations in preference to an annual rotation. As the fitness cost associated with resistance increased, resistance developed more slowly and this was more pronounced when a combination was used compared to a rotation. If the fitness cost was sufficiently high then resistance did not develop (i.e. the resistance gene frequency declined over time) and this occurred at lower fitness costs when a combination was used. The results, therefore, indicate that the optimal drug-use strategy to maximise the benefit of any fitness

  1. Potential risk for drug resistance globalization at the Hajj.

    PubMed

    Al-Tawfiq, J A; Memish, Z A

    2015-02-01

    Antibiotics were once considered the miracle cure for infectious diseases. The tragedy would be the loss of these miracles as we witness increased antibiotic resistance throughout the world. One of the concerns during mass gatherings is the transmission of antibiotic resistance. Hajj is one of the most common recurring mass gatherings, attracting millions of people from around the world. The transmission of drug-resistant organisms during the Hajj is not well described. In the current review, we summarize the available literature on the transmission and acquisition of antibiotic resistance during the Hajj and present possible solutions.

  2. Advancing drug delivery systems for the treatment of multiple sclerosis.

    PubMed

    Tabansky, Inna; Messina, Mark D; Bangeranye, Catherine; Goldstein, Jeffrey; Blitz-Shabbir, Karen M; Machado, Suly; Jeganathan, Venkatesh; Wright, Paul; Najjar, Souhel; Cao, Yonghao; Sands, Warren; Keskin, Derin B; Stern, Joel N H

    2015-12-01

    Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system. It is characterized by demyelination of neurons and loss of neuronal axons and oligodendrocytes. In MS, auto-reactive T cells and B cells cross the blood-brain barrier (BBB), causing perivenous demyelinating lesions that form multiple discrete inflammatory demyelinated plaques located primarily in the white matter. In chronic MS, cortical demyelination and progressive axonal transections develop. Treatment for MS can be stratified into disease-modifying therapies (DMTs) and symptomatic therapy. DMTs aim to decrease circulating immune cells or to prevent these cells from crossing the BBB and reduce the inflammatory response. There are currently 10 DMTs approved for the relapsing forms of MS; these vary with regard to their efficacy, route and frequency of administration, adverse effects, and toxicity profile. Better drug delivery systems are being developed in order to decrease adverse effects, increase drug efficacy, and increase patient compliance through the direct targeting of pathologic cells. Here, we address the uses and benefits of advanced drug delivery systems, including nanoparticles, microparticles, fusion antibodies, and liposomal formulations. By altering the properties of therapeutic particles and enhancing targeting, breakthrough drug delivery technologies potentially applicable to multiple disease treatments may rapidly emerge.

  3. HIV resistance to antiviral drugs: public health implications.

    PubMed

    Wainberg, M A; Cameron, D W

    1998-01-01

    The widespread occurrence of HIV strains resistant to antiviral drugs has given rise to a number of important concerns distinct from the obvious question of the relationship between drug resistance and treatment failure. A major issue is the extent to which drug-resistant viruses may be transmitted in primary infection via sexual or intravenous routes and how this relates to the relative fitness of such strains. It is also important to understand the potential role of effective antiviral therapy in the decrease of viral burden in both blood and sexual secretions, and the extent to which this may be compromised in individuals harboring resistant viruses. A related subject is the important role of patient adherence to antiviral therapy in achieving sustained reduction in viral load and preventing the emergence of drug resistance. These linked topics are tied to the central role of antiviral agents in the selection of mutant forms that can attain a replication advantage in the presence of drug. PMID:16904396

  4. Antifungal drug resistance evokedvia RNAi-dependent epimutations

    PubMed Central

    Calo, Silvia; Shertz-Wall, Cecelia; Lee, Soo Chan; Bastidas, Robert J.; Nicolás, Francisco E.; Granek, Joshua A.; Mieczkowski, Piotr; Torres-Martinez, Santiago; Ruiz-Vazquez, Rosa M.; Cardenas, Maria E.; Heitman, Joseph

    2014-01-01

    Microorganisms evolve via mechanisms spanning sexual/parasexual reproduction, mutators, aneuploidy, Hsp90, and even prions. Mechanisms that may seem detrimental can be repurposed to generate diversity. Here we show the human fungal pathogen Mucor circinelloides develops spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One involves Mendelian mutations that confer stable drug resistance; the other occurs via an epigenetic RNA interference (RNAi)-mediated pathway resulting in unstable drug resistance. The peptidyl-prolyl isomerase FKBP12 interacts with FK506 forming a complex that inhibits the protein phosphatase calcineurin1. Calcineurin inhibition by FK506 blocks M. circinelloides transition to hyphae and enforces yeast growth2. Mutations in the fkbA gene encoding FKBP12 or the calcineurin cnbR or cnaA genes confer FK506 resistance (FK506R) and restore hyphal growth. In parallel, RNAi is spontaneously triggered to silence the FKBP12 fkbA gene, giving rise to drug-resistant epimutants. FK506R epimutants readily reverted to the drug-sensitive wild-type (WT) phenotype when grown without drug. The establishment of these epimutants is accompanied by generation of abundant fkbA small RNA (sRNA) and requires the RNAi pathway as well as other factors that constrain or reverse the epimutant state. Silencing involves generation of a double-stranded RNA (dsRNA) trigger intermediate from the fkbA mature mRNA to produce antisense fkbA RNA. This study uncovers a novel epigenetic RNAi-based epimutation mechanism controlling phenotypic plasticity, with possible implications for antimicrobial drug resistance and RNAi-regulatory mechanisms in fungi and other eukaryotes. PMID:25079329

  5. An Intravaginal Ring for the Simultaneous Delivery of Multiple Drugs

    PubMed Central

    Baum, Marc M.; Butkyavichene, Irina; Gilman, Joshua; Kennedy, Sean; Kopin, Etana; Malone, Amanda M.; Nguyen, Cali; Smith, Thomas J.; Friend, David R.; Clark, Meredith R.; Moss, John A.

    2013-01-01

    Intravaginal delivery of microbicide combinations is a promising approach for the prevention of sexually transmitted infections, but requires a method of providing simultaneous, independent release of multiple agents into the vaginal compartment. A novel intravaginal ring (IVR) platform has been developed for simultaneous delivery of the reverse-transcriptase inhibitor tenofovir (TFV) and the guanosine analogue antiviral acyclovir (ACV) with independent control of release rate for each drug. The IVR is based on a pod design, with up to 10 individual polymer-coated drug cores embedded in the ring releasing through preformed delivery channels. The release rate from each pod is controlled independently of the others by the drug properties, polymer coating, and size and number of delivery channels. Pseudo-zero-order in vitro release of TFV (144 ± 10 µg day) and ACV (120 ± 19 µg day−1) from an IVR containing both drugs was sustained for 28 days. The mechanical properties of the pod IVR were evaluated and compared with the commercially available Estring® (Pfizer, NY, NY). The pod-IVR design enables the vaginal delivery of multiple microbicides with differing physicochemical properties, and is an attractive approach for the sustained intravaginal delivery of relatively hydrophilic drugs that are difficult to deliver using conventional matrix IVR technology. PMID:22619076

  6. Rewired Metabolism in Drug-resistant Leukemia Cells

    PubMed Central

    Stäubert, Claudia; Bhuiyan, Hasanuzzaman; Lindahl, Anna; Broom, Oliver Jay; Zhu, Yafeng; Islam, Saiful; Linnarsson, Sten; Lehtiö, Janne; Nordström, Anders

    2015-01-01

    Cancer cells that escape induction therapy are a major cause of relapse. Understanding metabolic alterations associated with drug resistance opens up unexplored opportunities for the development of new therapeutic strategies. Here, we applied a broad spectrum of technologies including RNA sequencing, global untargeted metabolomics, and stable isotope labeling mass spectrometry to identify metabolic changes in P-glycoprotein overexpressing T-cell acute lymphoblastic leukemia (ALL) cells, which escaped a therapeutically relevant daunorubicin treatment. We show that compared with sensitive ALL cells, resistant leukemia cells possess a fundamentally rewired central metabolism characterized by reduced dependence on glutamine despite a lack of expression of glutamate-ammonia ligase (GLUL), a higher demand for glucose and an altered rate of fatty acid β-oxidation, accompanied by a decreased pantothenic acid uptake capacity. We experimentally validate our findings by selectively targeting components of this metabolic switch, using approved drugs and starvation approaches followed by cell viability analyses in both the ALL cells and in an acute myeloid leukemia (AML) sensitive/resistant cell line pair. We demonstrate how comparative metabolomics and RNA expression profiling of drug-sensitive and -resistant cells expose targetable metabolic changes and potential resistance markers. Our results show that drug resistance is associated with significant metabolic costs in cancer cells, which could be exploited using new therapeutic strategies. PMID:25697355

  7. Homeless individuals and drug-resistant tuberculosis in south Texas.

    PubMed

    Morris, J T; McAllister, C K

    1992-09-01

    Drug-resistant tuberculosis was found in 21 percent of homeless individuals in New York City between 1982 and 1987. To see if this relationship existed in south Texas, we evaluated all admissions to a Texas Health Department facility with culture-proven tuberculosis. Four hundred forty-three patients were admitted between September 1987 and October 1990. Twenty-six, (5.9 percent) of these patients were identified as homeless. Alcoholism, tobacco abuse, divorce, and unemployment were common demographic characteristics. Six male patients and one female patient (27 percent) had Mycobacterium tuberculosis resistant to one or more antituberculosis drugs. Five were Hispanic, one was white, and one was black. The six male patients had resistance to only one drug, either rifampin or ethambutol. The female patient had resistance to streptomycin, isoniazid, and rifampin. These findings illustrate that drug-resistant tuberculosis exists among homeless individuals in south Texas. As the number of homeless people increases, physicians need to recognize that pulmonary tuberculosis is a frequent infection in this population and that the causal mycobacteria may well be resistant to one or more antituberculosis agents. PMID:1516406

  8. Homeless individuals and drug-resistant tuberculosis in south Texas.

    PubMed

    Morris, J T; McAllister, C K

    1992-09-01

    Drug-resistant tuberculosis was found in 21 percent of homeless individuals in New York City between 1982 and 1987. To see if this relationship existed in south Texas, we evaluated all admissions to a Texas Health Department facility with culture-proven tuberculosis. Four hundred forty-three patients were admitted between September 1987 and October 1990. Twenty-six, (5.9 percent) of these patients were identified as homeless. Alcoholism, tobacco abuse, divorce, and unemployment were common demographic characteristics. Six male patients and one female patient (27 percent) had Mycobacterium tuberculosis resistant to one or more antituberculosis drugs. Five were Hispanic, one was white, and one was black. The six male patients had resistance to only one drug, either rifampin or ethambutol. The female patient had resistance to streptomycin, isoniazid, and rifampin. These findings illustrate that drug-resistant tuberculosis exists among homeless individuals in south Texas. As the number of homeless people increases, physicians need to recognize that pulmonary tuberculosis is a frequent infection in this population and that the causal mycobacteria may well be resistant to one or more antituberculosis agents.

  9. More effective drugs lead to harder selective sweeps in the evolution of drug resistance in HIV-1

    PubMed Central

    Feder, Alison F; Rhee, Soo-Yon; Holmes, Susan P; Shafer, Robert W; Petrov, Dmitri A; Pennings, Pleuni S

    2016-01-01

    In the early days of HIV treatment, drug resistance occurred rapidly and predictably in all patients, but under modern treatments, resistance arises slowly, if at all. The probability of resistance should be controlled by the rate of generation of resistance mutations. If many adaptive mutations arise simultaneously, then adaptation proceeds by soft selective sweeps in which multiple adaptive mutations spread concomitantly, but if adaptive mutations occur rarely in the population, then a single adaptive mutation should spread alone in a hard selective sweep. Here, we use 6717 HIV-1 consensus sequences from patients treated with first-line therapies between 1989 and 2013 to confirm that the transition from fast to slow evolution of drug resistance was indeed accompanied with the expected transition from soft to hard selective sweeps. This suggests more generally that evolution proceeds via hard sweeps if resistance is unlikely and via soft sweeps if it is likely. DOI: http://dx.doi.org/10.7554/eLife.10670.001 PMID:26882502

  10. Multidrug-resistant to extensively drug resistant tuberculosis: what is next?

    PubMed

    Jain, Amita; Dixit, Pratima

    2008-11-01

    Drug resistant tuberculosis is a man made problem. While tuberculosis is hundred percent curable, multidrug resistant tuberculosis (MDR-TB) is difficult to treat. Inadequate and incomplete treatment and poor treatment adherence has led to a newer form of drug resistance known as extensively drug resistant tuberculosis (XDR-TB). XDR-TB is defined as tuberculosis caused by Mycobacterium tuberculosis strain, which is resistant to at least rifampicin and isoniazid among the first line anti tubercular drugs (MDR-TB) in addition to resistance to any fluroquinolones and at least one of three injectable second line anti tubercular drugs i.e. amikacin, kanamycin and/or capreomycin. Mismanagement of tuberculosis paves the way to drug resistant tuberculosis. Emergence of XDR-TB is reported world wide. Reported prevalence rates of XDR-TB of total MDR cases are; 6.6% overall worldwide, 6.5% in industrialized countries, 13.6% in Russia and Eastern Europe, 1.5% in Asia, 0.6% in Africa and Middle East and 15.4% in Republic of Korea. Better management and control of tuberculosis specially drug resistant TB by experienced and qualified doctors, access to standard microbiology laboratory,co-morbitidy of HIV and tuberculosis,new anti-TB drug regimens, better diagnostic tests,international standards for second line drugs (SLD)-susceptibility testing,invention of newer anti- tubercular molecules and vaccines and knowing the real magnitude of XDR-TB are some of the important issues to be addressed for effective prevention and management of XDR-TB. PMID:19208985

  11. Extensively Drug-Resistant Tuberculosis: Principles of Resistance, Diagnosis, and Management.

    PubMed

    Wilson, John W; Tsukayama, Dean T

    2016-04-01

    Extensively drug-resistant (XDR) tuberculosis (TB) is an unfortunate by-product of mankind's medical and pharmaceutical ingenuity during the past 60 years. Although new drug developments have enabled TB to be more readily curable, inappropriate TB management has led to the emergence of drug-resistant disease. Extensively drug-resistant TB describes Mycobacterium tuberculosis that is collectively resistant to isoniazid, rifampin, a fluoroquinolone, and an injectable agent. It proliferates when established case management and infection control procedures are not followed. Optimized treatment outcomes necessitate time-sensitive diagnoses, along with expanded combinations and prolonged durations of antimicrobial drug therapy. The challenges to public health institutions are immense and most noteworthy in underresourced communities and in patients coinfected with human immunodeficiency virus. A comprehensive and multidisciplinary case management approach is required to optimize outcomes. We review the principles of TB drug resistance and the risk factors, diagnosis, and managerial approaches for extensively drug-resistant TB. Treatment outcomes, cost, and unresolved medical issues are also discussed.

  12. Antiretroviral drug resistance mutations in naïve and experienced patients in Shiraz, Iran, 2014.

    PubMed

    Naziri, Hamed; Baesi, Kazem; Moradi, Abdolvahab; Aghasadeghi, Mohammad R; Tabarraei, Alijan; McFarland, Willi; Davarpanah, Mohamad Ali

    2016-09-01

    Resistance to antiretroviral agents is a significant concern in the clinical management of HIV-infected individuals, particularly in areas of the world where treatment options are limited. In this study, we aimed to identify HIV drug-resistance-associated mutations in 40 drug-naïve patients and 62 patients under antiretroviral therapy (ART) referred to the Shiraz HIV/AIDS Research Center - the first such data available for the south of Iran. HIV reverse transcriptase and protease genes were amplified and sequenced to determine subtypes and antiretroviral- resistance-associated mutations (RAMs). Subtype CRF35-AD recombinant was the most prevalent in all patients (98 of 102, 96 %), followed by subtype A1, and subtype B (one each, 2 %). Among the 40 ART-naïve patients, two mutations associated with nucleoside reverse transcriptase inhibitor (NRTI) resistance (two with Y115F and T215I) and three associated with non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance (two with G190S and Y181C, four with V179T) were found. Among ART-experienced patients, four mutations associated with resistance to NRTI, four with NNRTI, and five with protease inhibitors (PI) were found. Twenty patients with high levels of resistance were already on second-line therapy. We document for the first time in this region of Iran high levels of ART resistance to multiple drugs. Our findings call for more vigilant systematic ART resistance surveillance, increased resistance testing, careful management of patients with existing regimens, and strong advocacy for expansion of available drugs in Iran. PMID:27368990

  13. Evolution of drug resistance in Salmonella panama isolates in Chile.

    PubMed Central

    Cordano, A M; Virgilio, R

    1996-01-01

    In a search for Salmonella isolates in the environment in Chile in 1975, drug-susceptible strains of Salmonella panama were recovered for the first time from river water and vegetables in the vicinity of Santiago. Two to 3 years later, antibiotic-resistant S. panama began to appear in a variety of sources (meat, animals, vegetables, etc.), giving rise to a human epidemic that involved the entire nation. Of 139 clinical isolates studied, 7 were drug susceptible, 11 were resistant only to nitrofurans, and 3 were streptomycin, spectinomycin, and nitrofuran resistant; none of these 21 isolates harbored plasmid DNA. Most isolates (n = 107) were resistant to nitrofurans (chromosomal) and to streptomycin, spectinomycin, sulfonamides, tetracycline, and mercuric and tellurite salts; this multidrug resistance was encoded on a 218-kb plasmid classified in a number of strains as being in the IncHI2 group. From 1982 to 1993, 11 isolates acquired an additional self-transferable plasmid coding for resistance to any one of ampicillin (61 kb), ampicillin and trimethoprim (65 kb), ampicillin, trimethoprim, streptomycin, and sulfonamides (71 kb), ampicillin, gentamicin, kanamycin, and tetracycline (120 kb), or a nontransferable plasmid of approximately 6 kb encoding resistance to ampicillin or kanamycin. With the exception of ampicillin or ampicillin and trimethoprim resistance, S. panama isolates from foodstuffs, mainly pork meat products, and animals had resistance patterns that were the same as those found in clinical specimens. Remarkably, strains from goats and goat cheese and from shellfish isolated in particular rural regions were either drug susceptible or resistant only to streptomycin-spectinomycin encoded on a mobile genetic element and to nitrofurans. The report describes the arrival of a susceptible S. panama strain, its spread all over the country, and the evolution of progressively complex resistance patterns. PMID:8834876

  14. Molecular and biochemical mechanisms of drug resistance in fungi.

    PubMed

    Yamaguchi, H

    1999-01-01

    This paper reviews the current status of our understanding of resistance mechanisms of three major classes of antifungal drugs for systemic use, amphotericin B (AMPH), flucytosine (5-FC) and several azole antifungals, in particular fluconazole (FLCZ), at the molecular and cellular levels. Although the number of reports of AMPH- or 5-FC-resistant fungal species and strains is limited, several mechanisms of resistance have been described. AMPH-resistant Candida have a marked decrease in ergosterol content compared with AMPH-susceptible control isolates. A lesion in the UMP-pyrophosphorylase is the most frequent determinant of 5-FC resistance in C. albicans. Recently resistance of C. albicans to azoles has become an increasing problem. Extensive biochemical studies have highlighted a significant diversity in mechanisms conferring resistance to FLCZ and other azoles, which include alterations in sterol biosynthesis, target site, uptake and efflux. Among them, the most important mechanism clinically is reduced access of the drug to the intracellular P450 14 DM target, probably because of the action of a multidrug resistance efflux pump, and overproduction of that target. However, other possible resistance mechanisms for azoles remain to be identified.

  15. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum.

    PubMed

    Bushman, Mary; Morton, Lindsay; Duah, Nancy; Quashie, Neils; Abuaku, Benjamin; Koram, Kwadwo A; Dimbu, Pedro Rafael; Plucinski, Mateusz; Gutman, Julie; Lyaruu, Peter; Kachur, S Patrick; de Roode, Jacobus C; Udhayakumar, Venkatachalam

    2016-03-16

    Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures.

  16. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum.

    PubMed

    Bushman, Mary; Morton, Lindsay; Duah, Nancy; Quashie, Neils; Abuaku, Benjamin; Koram, Kwadwo A; Dimbu, Pedro Rafael; Plucinski, Mateusz; Gutman, Julie; Lyaruu, Peter; Kachur, S Patrick; de Roode, Jacobus C; Udhayakumar, Venkatachalam

    2016-03-16

    Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures. PMID:26984625

  17. The role of photodynamic therapy in overcoming cancer drug resistance

    PubMed Central

    Spring, Bryan Q.; Rizvi, Imran; Xu, Nan; Hasan, Tayyaba

    2015-01-01

    Many modalities of cancer therapy induce mechanisms of treatment resistance and escape pathways during chronic treatments, including photodynamic therapy (PDT). It is conceivable that resistance induced by one treatment might be overcome by another treatment. Emerging evidence suggests that the unique mechanisms of tumor cell and microenvironment damage produced by PDT could be utilized to overcome cancer drug resistance, to mitigate the compensatory induction of survival pathways and even to re-sensitize resistant cells to standard therapies. Approaches that capture the unique features of PDT, therefore, offer promising factors for increasing the efficacy of a broad range of therapeutic modalities. Here, we highlight key preclinical findings utilizing PDT to overcome classical drug resistance or escape pathways and thus enhance the efficacy of many pharmaceuticals, possibly explaining the clinical observations of the PDT response to otherwise treatment-resistant diseases. With the development of nanotechnology, it is possible that light activation may be used not only to damage and sensitize tumors but also to enable controlled drug release to inhibit escape pathways that may lead to resistance or cell proliferation. PMID:25856800

  18. Multiple Drug Transport Pathways through Human P-Glycoprotein.

    PubMed

    McCormick, James W; Vogel, Pia D; Wise, John G

    2015-07-21

    P-Glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11-12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methylpyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp is presented.

  19. Drugs that target pathogen public goods are robust against evolved drug resistance.

    PubMed

    Pepper, John W

    2012-11-01

    Pathogen drug resistance is a central problem in medicine and public health. It arises through somatic evolution, by mutation and selection among pathogen cells within a host. Here, we examine the hypothesis that evolution of drug resistance could be reduced by developing drugs that target the secreted metabolites produced by pathogen cells instead of directly targeting the cells themselves. Using an agent-based computational model of an evolving population of pathogen cells, we test this hypothesis and find support for it. We also use our model to explain this effect within the framework of standard evolutionary theory. We find that in our model, the drugs most robust against evolved drug resistance are those that target the most widely shared external products, or 'public goods', of pathogen cells. We also show that these drugs exert a weak selective pressure for resistance because they create only a weak correlation between drug resistance and cell fitness. The same principles apply to design of vaccines that are robust against vaccine escape. Because our theoretical results have crucial practical implications, they should be tested by empirical experiments.

  20. HIV Drug-resistant Strains as Epidemiologic Sentinels

    PubMed Central

    Grant, Robert M.; Porco, Travis C.; Getz, Wayne M.

    2006-01-01

    Observed declines in drug resistance to nucleoside reverse transcriptase inhibitors among persons recently infected with HIV-1 in monitored subpopulations can be interpreted as a positive sign and lead public health officials to decrease efforts towards HIV prevention. By means of a mathematical model, we identified 3 processes that can account for the observed decline: increase in high-risk behavior, decrease in proportion of acutely infected persons whose conditions are treated, and change in treatment efficacy. These processes, singly or in combination, can lead to increases or decreases in disease and drug-resistance prevalence in the general population. We discuss the most appropriate public health response under each scenario and emphasize how further data collection and analyses are required to more reliably evaluate the observed time trends and the relative importance of forces shaping the epidemic. Our study highlights how drug resistance markers can be used as epidemiologic sentinels to devise public health solutions. PMID:16494741

  1. New strategies against drug resistance to herpes simplex virus.

    PubMed

    Jiang, Yu-Chen; Feng, Hui; Lin, Yu-Chun; Guo, Xiu-Rong

    2016-03-01

    Herpes simplex virus (HSV), a member of the Herpesviridae family, is a significant human pathogen that results in mucocutaneous lesions in the oral cavity or genital infections. Acyclovir (ACV) and related nucleoside analogues can successfully treat HSV infections, but the emergence of drug resistance to ACV has created a barrier for the treatment of HSV infections, especially in immunocompromised patients. There is an urgent need to explore new and effective tactics to circumvent drug resistance to HSV. This review summarises the current strategies in the development of new targets (the DNA helicase/primase (H/P) complex), new types of molecules (nature products) and new antiviral mechanisms (lethal mutagenesis of Janus-type nucleosides) to fight the drug resistance of HSV. PMID:27025259

  2. New strategies against drug resistance to herpes simplex virus

    PubMed Central

    Jiang, Yu-Chen; Feng, Hui; Lin, Yu-Chun; Guo, Xiu-Rong

    2016-01-01

    Herpes simplex virus (HSV), a member of the Herpesviridae family, is a significant human pathogen that results in mucocutaneous lesions in the oral cavity or genital infections. Acyclovir (ACV) and related nucleoside analogues can successfully treat HSV infections, but the emergence of drug resistance to ACV has created a barrier for the treatment of HSV infections, especially in immunocompromised patients. There is an urgent need to explore new and effective tactics to circumvent drug resistance to HSV. This review summarises the current strategies in the development of new targets (the DNA helicase/primase (H/P) complex), new types of molecules (nature products) and new antiviral mechanisms (lethal mutagenesis of Janus-type nucleosides) to fight the drug resistance of HSV. PMID:27025259

  3. Is selection relevant in the evolutionary emergence of drug resistance?

    PubMed

    Day, Troy; Huijben, Silvie; Read, Andrew F

    2015-03-01

    The emergence of drug-resistant pathogens is often considered a canonical case of evolution by natural selection. Here we argue that the strength of selection can be a poor predictor of the rate of resistance emergence. It is possible for a resistant strain to be under negative selection and still emerge in an infection or spread in a population. Measuring the right parameters is a necessary first step toward the development of evidence-based resistance-management strategies. We argue that it is the absolute fitness of the resistant strains that matters most and that a primary determinant of the absolute fitness of a resistant strain is the ecological context in which it finds itself.

  4. Drug rechallenge and treatment beyond progression—implications for drug resistance

    PubMed Central

    Kuczynski, Elizabeth A.; Sargent, Daniel J.; Grothey, Axel; Kerbel, Robert S.

    2015-01-01

    The established dogma in oncology for managing recurrent or refractory disease dictates that therapy is changed at disease progression, because the cancer is assumed to have become drug-resistant. Drug resistance, whether pre-existing or acquired, is largely thought to be a stable and heritable process; thus, reuse of therapeutic agents that have failed is generally contraindicated. Over the past few decades, clinical evidence has suggested a role for unstable, non-heritable mechanisms of acquired drug resistance pertaining to chemotherapy and targeted agents. There are many examples of circumstances where patients respond to reintroduction of the same therapy (drug rechallenge) after a drug holiday following disease relapse or progression during therapy. Additional, albeit limited, evidence suggests that, in certain circumstances, continuing a therapy beyond disease progression can also have antitumour activity. In this Review, we describe the anticancer agents used in these treatment strategies and discuss the potential mechanisms explaining the apparent tumour re-sensitization with reintroduced or continued therapy. The extensive number of malignancies and drugs that challenge the custom of permanently switching to different drugs at each line of therapy warrants a more in-depth examination of the definitions of disease progression and drug resistance and the resulting implications for patient care. PMID:23999218

  5. Pattern of Drug Resistance and Risk Factors Associated with Development of Drug Resistant Mycobacterium tuberculosis in Pakistan

    PubMed Central

    Ullah, Irfan; Javaid, Arshad; Tahir, Zarfishan; Ullah, Obaid; Shah, Aamer Ali; Hasan, Fariha; Ayub, Najma

    2016-01-01

    Background Drug resistant tuberculosis (DR-TB) is a major public health problem in developing countries such as Pakistan. Objective The current study was conducted to assess the frequency of drug resistant tuberculosis including multi drug resistance (MDR- TB) as well as risk factors for development of DR-TB, in Punjab, Pakistan. Methodology Drug susceptibility testing (DST) was performed, using proportion method, for 2367 culture positive Mycobacterium tuberculosis (MTB) cases that were enrolled from January 2012 to December 2013 in the province of Punjab, Pakistan, against first-line anti-tuberculosis drugs. The data was analyzed using statistical software; SPSS version 18. Results Out of 2367 isolates, 273 (11.5%) were resistant to at least one anti-TB drug, while 221 (9.3%) showed MDR- TB. Risk factors for development of MDR-TB were early age (ranges between 10–25 years) and previously treated TB patients. Conclusion DR-TB is a considerable problem in Pakistan. Major risk factors are previous history of TB treatment and younger age group. It emphasizes the need for effective TB control Program in the country. PMID:26809127

  6. Treatment for hepatitis B in patients with drug resistance

    PubMed Central

    Kroy, Daniela C.

    2016-01-01

    Persistent hepatitis B virus (HBV) infections affect about 240 million patients worldwide that are at risk of developing liver cirrhosis or hepatocellular carcinoma. HBV is a small, partially double stranded DNA virus with four overlapping genes and a unique life cycle, which involves the generation of an RNA template for replication via reverse transcription. Mutations occur frequently during chronic infection, and particular selection pressures select distinct mutants. Nucleoside and nucleotide analogues like lamivudine (LMV), entecavir (ETV), telbivudine (LdT), adefovir dipivoxil (ADV) and tenofovir (TDF) are used to achieve long-term suppression of viral replication. Importantly, these drugs have different barriers to resistance, explaining the higher incidence of treatment failure in the past due to drug resistant viral strains for the older compounds LMV, LdT and ADV. On a molecular level, drug resistant mutations usually affect the reverse transcriptase domain of the HBV polymerase protein. Secondary compensatory mutations restore the replication fitness of the mutant virus. From a clinical point of view, patients undergoing antiviral therapy require regular testing for HBV DNA (every 3–6 months). In case of insufficient viral suppression or viral breakthrough (>1 log increase in HBV DNA above nadir), strict adherence to therapy needs to be ensured. If drug resistance is suspected or even molecularly confirmed, rescue therapy strategies exist, usually switching to a noncross-resistant antiviral drug. LMV, LdT and ETV resistant HBV can be treated with TDF monotherapy, ADV resistance with ETV or TDF, and insufficient responses to TDF may require ETV either as mono- or combination therapy. Complex treatment histories with many antivirals may sometimes necessitate the combination of highly effective antivirals like ETV and TDF. Novel treatment targets such as core (capsid) inhibitors, siRNA targeting protein translation, entry inhibitors or immune modulators

  7. Meditation improves clinicoelectroencephalographic measures in drug-resistant epileptics.

    PubMed

    Deepak, K K; Manchanda, S K; Maheshwari, M C

    1994-03-01

    Eleven adults suffering from drug-resistant epilepsies were given meditation practice, while another nine adults acted as waiting list controls. All patients were on antiepileptic drugs and their serum drug levels were monitored regularly. Patients in the intervention group were given training in meditation, and they practiced meditation 20 minutes a day for one year. They showed a significant reduction in seizure frequency and duration, an increase in the dominant background EEG frequency, a reduction in mean spectral intensity of the 0.7-7.7 Hz segment, and an increment in mean spectral intensity in the 8-12 Hz segment of the EEG. All changes were statistically significant. Control patients did not show significant changes in seizure frequency and duration during the observation period of one year. The results indicate that continued meditation practice is of substantial help in improving the clinicoelectrographic picture in drug-resistant epileptics.

  8. Microbial persistence and the road to drug resistance

    PubMed Central

    Cohen, Nadia R.; Lobritz, Michael A.; Collins, James J.

    2013-01-01

    Summary Microbial drug persistence is a widespread phenomenon in which a sub-population of microorganisms is able to survive antimicrobial treatment without acquiring resistance-conferring genetic changes. Microbial persisters can cause recurrent or intractable infections, and like resistant mutants, they carry an increasing clinical burden. In contrast to heritable drug resistance, however, the biology of persistence is only beginning to be unraveled. Persisters have traditionally been thought of as metabolically dormant, non-dividing cells. However, as discussed in this review, increasing evidence suggests that persistence is in fact an actively maintained state, triggered and enabled by a network of intracellular stress-responses that can accelerate processes of adaptive evolution. Beyond shedding light on the basis of persistence, these findings raise the possibility that persisters behave as an evolutionary reservoir from which resistant organisms can emerge. As persistence and its consequences come into clearer focus, clinically relevant eradication strategies are urgently needed. PMID:23768488

  9. Persistence of HIV-1 transmitted drug resistance mutations.

    PubMed

    Castro, Hannah; Pillay, Deenan; Cane, Patricia; Asboe, David; Cambiano, Valentina; Phillips, Andrew; Dunn, David T

    2013-11-01

    There are few data on the persistence of individual human immunodeficiency virus type 1 (HIV-1) transmitted drug resistance (TDR) mutations in the absence of selective drug pressure. We studied 313 patients in whom TDR mutations were detected at their first resistance test and who had a subsequent test performed while ART-naive. The rate at which mutations became undetectable was estimated using exponential regression accounting for interval censoring. Most thymidine analogue mutations (TAMs) and T215 revertants (but not T215F/Y) were found to be highly stable, with NNRTI and PI mutations being relatively less persistent. Our estimates are important for informing HIV transmission models.

  10. Small molecule inhibitor screen identifies synergistic activity of the bromodomain inhibitor CPI203 and bortezomib in drug resistant myeloma

    PubMed Central

    Siegel, Matthew B.; Liu, Selina Qiuying; Davare, Monika A.; Spurgeon, Stephen E.; Loriaux, Marc M.; Druker, Brian J.

    2015-01-01

    Purpose Despite significant therapeutic progress in multiple myeloma, drug resistance is uniformly inevitable and new treatments are needed. Our aim was to identify novel, efficacious small-molecule combinations for use in drug resistant multiple myeloma. Experimental Design A panel of 116 small molecule inhibitors was used to screen resistant myeloma cell lines for potential therapeutic targets. Agents found to have enhanced activity in the bortezomib or melphalan resistant myeloma cell lines were investigated further in combination. Synergistic combinations of interest were evaluated in primary patient cells. Results The overall single-agent drug sensitivity profiles were dramatically different between melphalan and bortezomib resistant cells, however, the bromodomain inhibitor, CPI203, was observed to have enhanced activity in both the bortezomib and melphalan resistant lines compared to their wild-type counterparts. The combination of bortezomib and CPI203 was found to be synergistic in both the bortezomib and melphalan resistant cell lines as well as in a primary multiple myeloma sample from a patient refractory to recent proteasome inhibitor treatment. The CPI203-bortezomib combination led to enhanced apoptosis and anti-proliferative effects. Finally, in contrast to prior reports of synergy between bortezomib and other epigenetic modifying agents, which implicated MYC downregulation or NOXA induction, our analyses suggest that CPI203-bortezomib synergy is independent of these events. Conclusion Our preclinical data supports a role for the clinical investigation of the bromodomain inhibitor CPI203 combined with bortezomib or alkylating agents in resistant multiple myeloma. PMID:26254279

  11. Detection of multi-drug resistant Escherichia coli in the urban waterways of Milwaukee, WI.

    PubMed

    Kappell, Anthony D; DeNies, Maxwell S; Ahuja, Neha H; Ledeboer, Nathan A; Newton, Ryan J; Hristova, Krassimira R

    2015-01-01

    Urban waterways represent a natural reservoir of antibiotic resistance which may provide a source of transferable genetic elements to human commensal bacteria and pathogens. The objective of this study was to evaluate antibiotic resistance of Escherichia coli isolated from the urban waterways of Milwaukee, WI compared to those from Milwaukee sewage and a clinical setting in Milwaukee. Antibiotics covering 10 different families were utilized to determine the phenotypic antibiotic resistance for all 259 E. coli isolates. All obtained isolates were determined to be multi-drug resistant. The E. coli isolates were also screened for the presence of the genetic determinants of resistance including ermB (macrolide resistance), tet(M) (tetracycline resistance), and β-lactamases (bla OXA, bla SHV, and bla PSE). E. coli from urban waterways showed a greater incidence of antibiotic resistance to 8 of 17 antibiotics tested compared to human derived sources. These E. coli isolates also demonstrated a greater incidence of resistance to higher numbers of antibiotics compared to the human derived isolates. The urban waterways demonstrated a greater abundance of isolates with co-occurrence of antibiotic resistance than human derived sources. When screened for five different antibiotic resistance genes conferring macrolide, tetracycline, and β-lactam resistance, clinical E. coli isolates were more likely to harbor ermB and bla OXA than isolates from urban waterway. These results indicate that Milwaukee's urban waterways may select or allow for a greater incidence of multiple antibiotic resistance organisms and likely harbor a different antibiotic resistance gene pool than clinical sources. The implications of this study are significant to understanding the presence of resistance in urban freshwater environments by supporting the idea that sediment from urban waterways serves as a reservoir of antibiotic resistance.

  12. Detection of multi-drug resistant Escherichia coli in the urban waterways of Milwaukee, WI

    PubMed Central

    Kappell, Anthony D.; DeNies, Maxwell S.; Ahuja, Neha H.; Ledeboer, Nathan A.; Newton, Ryan J.; Hristova, Krassimira R.

    2015-01-01

    Urban waterways represent a natural reservoir of antibiotic resistance which may provide a source of transferable genetic elements to human commensal bacteria and pathogens. The objective of this study was to evaluate antibiotic resistance of Escherichia coli isolated from the urban waterways of Milwaukee, WI compared to those from Milwaukee sewage and a clinical setting in Milwaukee. Antibiotics covering 10 different families were utilized to determine the phenotypic antibiotic resistance for all 259 E. coli isolates. All obtained isolates were determined to be multi-drug resistant. The E. coli isolates were also screened for the presence of the genetic determinants of resistance including ermB (macrolide resistance), tet(M) (tetracycline resistance), and β-lactamases (blaOXA, blaSHV, and blaPSE). E. coli from urban waterways showed a greater incidence of antibiotic resistance to 8 of 17 antibiotics tested compared to human derived sources. These E. coli isolates also demonstrated a greater incidence of resistance to higher numbers of antibiotics compared to the human derived isolates. The urban waterways demonstrated a greater abundance of isolates with co-occurrence of antibiotic resistance than human derived sources. When screened for five different antibiotic resistance genes conferring macrolide, tetracycline, and β-lactam resistance, clinical E. coli isolates were more likely to harbor ermB and blaOXA than isolates from urban waterway. These results indicate that Milwaukee’s urban waterways may select or allow for a greater incidence of multiple antibiotic resistance organisms and likely harbor a different antibiotic resistance gene pool than clinical sources. The implications of this study are significant to understanding the presence of resistance in urban freshwater environments by supporting the idea that sediment from urban waterways serves as a reservoir of antibiotic resistance. PMID:25972844

  13. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance

    PubMed Central

    Wei, Tuo; Chen, Chao; Liu, Juan; Liu, Cheng; Posocco, Paola; Liu, Xiaoxuan; Cheng, Qiang; Huo, Shuaidong; Liang, Zicai; Fermeglia, Maurizio; Liang, Xing-Jie; Rocchi, Palma; Peng, Ling

    2015-01-01

    Drug resistance and toxicity constitute challenging hurdles for cancer therapy. The application of nanotechnology for anticancer drug delivery is expected to address these issues and bring new hope for cancer treatment. In this context, we established an original nanomicellar drug delivery system based on an amphiphilic dendrimer (AmDM), which could generate supramolecular micelles to effectively encapsulate the anticancer drug doxorubicin (DOX) with high drug-loading capacity (>40%), thanks to the unique dendritic structure creating large void space for drug accommodation. The resulting AmDM/DOX nanomicelles were able to enhance drug potency and combat doxorubicin resistance in breast cancer models by significantly enhancing cellular uptake while considerably decreasing efflux of the drug. In addition, the AmDM/DOX nanoparticles abolished significantly the toxicity related to the free drug. Collectively, our studies demonstrate that the drug delivery system based on nanomicelles formed with the self-assembling amphiphilic dendrimer constitutes a promising and effective drug carrier in cancer therapy. PMID:25713374

  14. Effect and Safety of Shihogyejitang for Drug Resistant Childhood Epilepsy

    PubMed Central

    Lee, Jinsoo; Son, Kwanghyun; Hwang, Gwiseo

    2016-01-01

    Objective. Herbal medicine has been widely used to treat drug resistant epilepsy. Shihogyejitang (SGT) has been commonly used to treat epilepsy. We investigated the effect and safety of SGT in children with drug resistant epilepsy. Design. We reviewed medical records of 54 patients with epilepsy, who failed to respond to at least two antiepileptic drugs and have been treated with SGT between April 2006 and June 2014 at the Department of Pediatric Neurology, I-Tomato Hospital, Korea. Effect was measured by the response rate, seizure-free rate, and retention rate at six months. We also checked adverse events, change in antiepileptic drugs use, and the variables related to the outcome. Results. Intent-to-treat analysis showed that, after six months, 44.4% showed a >50% seizure reduction, 24.1% including seizure-free, respectively, and 53.7% remained on SGT. Two adverse events were reported, mild skin rash and fever. Focal seizure type presented significantly more positive responses when compared with other seizure types at six months (p = 0.0284, Fisher's exact test). Conclusion. SGT is an effective treatment with excellent tolerability for drug resistant epilepsy patients. Our data provide evidence that SGT may be used as alternative treatment option when antiepileptic drug does not work in epilepsy children. PMID:27047568

  15. Drug metabolism and clearance system in tumor cells of patients with multiple myeloma

    PubMed Central

    Hassen, Wafa; Kassambara, Alboukadel; Reme, Thierry; Sahota, Surinder; Seckinger, Anja; Vincent, Laure; Cartron, Guillaume; Moreaux, Jérôme; Hose, Dirk; Klein, Bernard

    2015-01-01

    Resistance to chemotherapy is a major limitation of cancer treatments with several molecular mechanisms involved, in particular altered local drug metabolism and detoxification process. The role of drug metabolism and clearance system has not been satisfactorily investigated in Multiple Myeloma (MM), a malignant plasma cell cancer for which a majority of patients escapes treatment. The expression of 350 genes encoding for uptake carriers, xenobiotic receptors, phase I and II Drug Metabolizing Enzymes (DMEs) and efflux transporters was interrogated in MM cells (MMCs) of newly-diagnosed patients in relation to their event free survival. MMCs of patients with a favourable outcome have an increased expression of genes coding for xenobiotic receptors (RXRα, LXR, CAR and FXR) and accordingly of their gene targets, influx transporters and phase I/II DMEs. On the contrary, MMCs of patients with unfavourable outcome displayed a global down regulation of genes coding for xenobiotic receptors and the downstream detoxification genes but had a high expression of genes coding for ARNT and Nrf2 pathways and ABC transporters. Altogether, these data suggests ARNT and Nrf2 pathways could be involved in MM primary resistance and that targeting RXRα, PXR, LXR and FXR through agonists could open new perspectives to alleviate or reverse MM drug resistance. PMID:25669983

  16. Determinants of Genetic Diversity of Spontaneous Drug Resistance in Bacteria.

    PubMed

    Couce, Alejandro; Rodríguez-Rojas, Alexandro; Blázquez, Jesús

    2016-07-01

    Any pathogen population sufficiently large is expected to harbor spontaneous drug-resistant mutants, often responsible for disease relapse after antibiotic therapy. It is seldom appreciated, however, that while larger populations harbor more mutants, the abundance distribution of these mutants is expected to be markedly uneven. This is because a larger population size allows early mutants to expand for longer, exacerbating their predominance in the final mutant subpopulation. Here, we investigate the extent to which this reduction in evenness can constrain the genetic diversity of spontaneous drug resistance in bacteria. Combining theory and experiments, we show that even small variations in growth rate between resistant mutants and the wild type result in orders-of-magnitude differences in genetic diversity. Indeed, only a slight fitness advantage for the mutant is enough to keep diversity low and independent of population size. These results have important clinical implications. Genetic diversity at antibiotic resistance loci can determine a population's capacity to cope with future challenges (i.e., second-line therapy). We thus revealed an unanticipated way in which the fitness effects of antibiotic resistance can affect the evolvability of pathogens surviving a drug-induced bottleneck. This insight will assist in the fight against multidrug-resistant microbes, as well as contribute to theories aimed at predicting cancer evolution.

  17. Drug-resistant tuberculosis in Mumbai, India: An agenda for operations research

    PubMed Central

    Mistry, Nerges; Tolani, Monica; Osrin, David

    2012-01-01

    Operations research (OR) is well established in India and is also a prominent feature of the global and local agendas for tuberculosis (TB) control. India accounts for a quarter of the global burden of TB and of new cases. Multidrug-resistant TB is a significant problem in Mumbai, India’s most populous city, and there have been recent reports of totally resistant TB. Much thought has been given to the role of OR in addressing programmatic challenges, by both international partnerships and India’s Revised National TB Control Programme. We attempt to summarize the major challenges to TB control in Mumbai, with an emphasis on drug resistance. Specific challenges include diagnosis of TB and defining cure, detecting drug resistant TB, multiple sources of health care in the private, public and informal sectors, co-infection with human immunodeficiency virus (HIV) and a concurrent epidemic of non-communicable diseases, suboptimal prescribing practices, and infection control. We propose a local agenda for OR: modeling the effects of newer technologies, active case detection, and changes in timing of activities, and mapping hotspots and contact networks; modeling the effects of drug control, changing the balance of ambulatory and inpatient care, and adverse drug reactions; modeling the effects of integration of TB and HIV diagnosis and management, and preventive drug therapy; and modeling the effects of initiatives to improve infection control. PMID:24501697

  18. Gender Differences in Drug Resistance Skills of Youth in Guanajuato, Mexico

    PubMed Central

    Marsiglia, Flavio F.; Ayers, Stephanie L.; Calderón-Tena, Carlos O.; Nuño-Gutiérrez, Bertha L.

    2011-01-01

    Research is limited or absent on Mexican adolescents’ exposure to substance offers, ways of dealing with these offers, and possible gender differences in responses to offers. Extending U.S.-based research, this study examines how youth living in the Mexican state of Guanajuato employ the four drug resistance strategies—refuse, explain, avoid, and leave—that are part of the Keepin’ It REAL evidence-based drug prevention intervention. The analysis uses cross-sectional survey data from 702 students enrolled in eight alternative secondary education sites in 2007. Participants reported the drug resistance behaviors they used to deal with offers of alcohol, cigarettes, and marijuana. Using multivariate regression, findings indicate most youth had developed repertoires of drug resistance strategies that involved multiple REAL strategies and some other strategy as well. For those receiving offers, the most common strategy was to refuse the offer with a simple ‘‘no.’’ However, males used all the strategies significantly more often than females for situations involving cigarettes and marijuana as well as when using refuse and non-REAL strategies for alcohol. Possible reasons for the gender difference in use of strategies are discussed. The findings can help inform effective prevention programs based on teaching culturally appropriate drug resistance and communication skills. PMID:21424398

  19. Hepatitis C Virus and Antiviral Drug Resistance

    PubMed Central

    Kim, Seungtaek; Han, Kwang-Hyub; Ahn, Sang Hoon

    2016-01-01

    Since its discovery in 1989, hepatitis C virus (HCV) has been intensively investigated to understand its biology and develop effective antiviral therapies. The efforts of the previous 25 years have resulted in a better understanding of the virus, and this was facilitated by the development of in vitro cell culture systems for HCV replication. Antiviral treatments and sustained virological responses have also improved from the early interferon monotherapy to the current all-oral regimens using direct-acting antivirals. However, antiviral resistance has become a critical issue in the treatment of chronic hepatitis C, similar to other chronic viral infections, and retreatment options following treatment failure have become important questions. Despite the clinical challenges in the management of chronic hepatitis C, substantial progress has been made in understanding HCV, which may facilitate the investigation of other closely related flaviviruses and lead to the development of antiviral agents against these human pathogens. PMID:27784846

  20. Genome Analysis of 17 Extensively Drug-Resistant Strains Reveals New Potential Mutations for Resistance

    PubMed Central

    Tarazona, D.; Galarza, M.; Borda, V.; Curitomay, R.

    2014-01-01

    We report the whole-genome sequence of an extensively drug-resistant (XDR) tuberculosis (TB) strain of Latin American–Mediterranean (LAM) lineage. This strain is phenotypically resistant to aminoglycosides, but carries no related mutations in rrs, tlyA, and eis. Through genome analysis comparison with 16 XDR strains, we found 218 non-synonymous single nucleotide polymorphisms (SNPs) shared that could confer resistance. PMID:25081269

  1. [Multidrug-resistant tuberculosis: current epidemiology, therapeutic regimens, new drugs].

    PubMed

    Gómez-Ayerbe, C; Vivancos, M J; Moreno, S

    2016-09-01

    Multidrug and extensively resistant tuberculosis are especially severe forms of the disease for which no efficacious therapy exists in many cases. All the countries in the world have registered cases, although most of them are diagnosed in resource-limited countries from Asia, Africa and South America. For adequate treatment, first- and second-line antituberculosis drugs have to be judiciously used, but the development of new drugs with full activity, good tolerability and little toxicity is urgently needed. There are some drugs in development, some of which are already available through expanded-access programs. PMID:27608311

  2. Design of a Multiple Drug Delivery System Directed at Periodontitis

    PubMed Central

    Sundararaj, Sharath C.; Thomas, Mark V.; Peyyala, Rebecca; Dziubla, Thomas D.; Puleo, David A.

    2013-01-01

    Periodontal disease is highly prevalent, with 90% of the world population affected by either periodontitis or its preceding condition, gingivitis. These conditions are caused by bacterial biofilms on teeth, which stimulate a chronic inflammatory response that leads to loss of alveolar bone and, ultimately, the tooth. Current treatment methods for periodontitis address specific parts of the disease, with no individual treatment serving as a complete therapy. The present research sought to demonstrate development of a multiple drug delivery system for stepwise treatment of different stages of periodontal disease. More specifically, multilayered films were fabricated from an association polymer comprising cellulose acetate phthalate and Pluronic F-127 to achieve sequential release of drugs. The four types of drugs used were metronidazole, ketoprofen, doxycycline, and simvastatin to eliminate infection, inhibit inflammation, prevent tissue destruction, and aid bone regeneration, respectively. Different erosion times and adjustable sequential release profiles were achieved by modifying the number of layers or by inclusion of a slower-eroding polymer layer. Analysis of antibiotic and anti-inflammatory bioactivity showed that drugs released from the devices retained 100% bioactivity. The multilayered CAPP delivery system offers a versatile approach for releasing different drugs based on the pathogenesis of periodontitis and other conditions. PMID:23948165

  3. The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin?

    PubMed Central

    Koch, Anastasia; Mizrahi, Valerie; Warner, Digby F

    2014-01-01

    The emergence of drug-resistant pathogens poses a major threat to public health. Although influenced by multiple factors, high-level resistance is often associated with mutations in target-encoding or related genes. The fitness cost of these mutations is, in turn, a key determinant of the spread of drug-resistant strains. Rifampicin (RIF) is a frontline anti-tuberculosis agent that targets the rpoB-encoded β subunit of the DNA-dependent RNA polymerase (RNAP). In Mycobacterium tuberculosis (Mtb), RIF resistance (RIFR) maps to mutations in rpoB that are likely to impact RNAP function and, therefore, the ability of the organism to cause disease. However, while numerous studies have assessed the impact of RIFR on key Mtb fitness indicators in vitro, the consequences of rpoB mutations for pathogenesis remain poorly understood. Here, we examine evidence from diverse bacterial systems indicating very specific effects of rpoB polymorphisms on cellular physiology, and consider these observations in the context of Mtb. In addition, we discuss the implications of these findings for the propagation of clinically relevant RIFR mutations. While our focus is on RIF, we also highlight results which suggest that drug-independent effects might apply to a broad range of resistance-associated mutations, especially in an obligate pathogen increasingly linked with multidrug resistance. PMID:26038512

  4. Additional Drug Resistance of Multidrug-Resistant Tuberculosis in Patients in 9 Countries

    PubMed Central

    Dalton, Tracy; Ershova, Julia; Tupasi, Thelma; Caoili, Janice Campos; Van Der Walt, Martie; Kvasnovsky, Charlotte; Yagui, Martin; Bayona, Jaime; Contreras, Carmen; Leimane, Vaira; Via, Laura E.; Kim, HeeJin; Akksilp, Somsak; Kazennyy, Boris Y.; Volchenkov, Grigory V.; Jou, Ruwen; Kliiman, Kai; Demikhova, Olga V.; Cegielski, J. Peter

    2015-01-01

    Data from a large multicenter observational study of patients with multidrug-resistant tuberculosis (MDR TB) were analyzed to simulate the possible use of 2 new approaches to treatment of MDR TB: a short (9-month) regimen and a bedaquiline-containing regimen. Of 1,254 patients, 952 (75.9%) had no resistance to fluoroquinolones and second-line injectable drugs and thus would qualify as candidates for the 9-month regimen; 302 (24.1%) patients with resistance to a fluoroquinolone or second-line injectable drug would qualify as candidates for a bedaquiline-containing regimen in accordance with published guidelines. Among candidates for the 9-month regimen, standardized drug-susceptibility tests demonstrated susceptibility to a median of 5 (interquartile range 5–6) drugs. Among candidates for bedaquiline, drug-susceptibility tests demonstrated susceptibility to a median of 3 (interquartile range 2–4) drugs; 26% retained susceptibility to <2 drugs. These data may assist national TB programs in planning to implement new drugs and drug regimens. PMID:25988299

  5. Biophysical principles predict fitness landscapes of drug resistance.

    PubMed

    Rodrigues, João V; Bershtein, Shimon; Li, Anna; Lozovsky, Elena R; Hartl, Daniel L; Shakhnovich, Eugene I

    2016-03-15

    Fitness landscapes of drug resistance constitute powerful tools to elucidate mutational pathways of antibiotic escape. Here, we developed a predictive biophysics-based fitness landscape of trimethoprim (TMP) resistance for Escherichia coli dihydrofolate reductase (DHFR). We investigated the activity, binding, folding stability, and intracellular abundance for a complete set of combinatorial DHFR mutants made out of three key resistance mutations and extended this analysis to DHFR originated from Chlamydia muridarum and Listeria grayi We found that the acquisition of TMP resistance via decreased drug affinity is limited by a trade-off in catalytic efficiency. Protein stability is concurrently affected by the resistant mutants, which precludes a precise description of fitness from a single molecular trait. Application of the kinetic flux theory provided an accurate model to predict resistance phenotypes (IC50) quantitatively from a unique combination of the in vitro protein molecular properties. Further, we found that a controlled modulation of the GroEL/ES chaperonins and Lon protease levels affects the intracellular steady-state concentration of DHFR in a mutation-specific manner, whereas IC50 is changed proportionally, as indeed predicted by the model. This unveils a molecular rationale for the pleiotropic role of the protein quality control machinery on the evolution of antibiotic resistance, which, as we illustrate here, may drastically confound the evolutionary outcome. These results provide a comprehensive quantitative genotype-phenotype map for the essential enzyme that serves as an important target of antibiotic and anticancer therapies.

  6. Biophysical principles predict fitness landscapes of drug resistance.

    PubMed

    Rodrigues, João V; Bershtein, Shimon; Li, Anna; Lozovsky, Elena R; Hartl, Daniel L; Shakhnovich, Eugene I

    2016-03-15

    Fitness landscapes of drug resistance constitute powerful tools to elucidate mutational pathways of antibiotic escape. Here, we developed a predictive biophysics-based fitness landscape of trimethoprim (TMP) resistance for Escherichia coli dihydrofolate reductase (DHFR). We investigated the activity, binding, folding stability, and intracellular abundance for a complete set of combinatorial DHFR mutants made out of three key resistance mutations and extended this analysis to DHFR originated from Chlamydia muridarum and Listeria grayi We found that the acquisition of TMP resistance via decreased drug affinity is limited by a trade-off in catalytic efficiency. Protein stability is concurrently affected by the resistant mutants, which precludes a precise description of fitness from a single molecular trait. Application of the kinetic flux theory provided an accurate model to predict resistance phenotypes (IC50) quantitatively from a unique combination of the in vitro protein molecular properties. Further, we found that a controlled modulation of the GroEL/ES chaperonins and Lon protease levels affects the intracellular steady-state concentration of DHFR in a mutation-specific manner, whereas IC50 is changed proportionally, as indeed predicted by the model. This unveils a molecular rationale for the pleiotropic role of the protein quality control machinery on the evolution of antibiotic resistance, which, as we illustrate here, may drastically confound the evolutionary outcome. These results provide a comprehensive quantitative genotype-phenotype map for the essential enzyme that serves as an important target of antibiotic and anticancer therapies. PMID:26929328

  7. Copper-zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma.

    PubMed

    Salem, Kelley; McCormick, Michael L; Wendlandt, Erik; Zhan, Fenghuang; Goel, Apollina

    2015-01-01

    Multiple myeloma (MM) is an incurable B-cell malignancy. The proteasome inhibitor bortezomib (BTZ) is a frontline MM drug; however, intrinsic or acquired resistance to BTZ remains a clinical hurdle. As BTZ induces oxidative stress in MM cells, we queried if altered redox homeostasis promotes BTZ resistance. In primary human MM samples, increased gene expression of copper-zinc superoxide dismutase (CuZnSOD or SOD1) correlated with cancer progression, high-risk disease, and adverse overall and event-free survival outcomes. As an in vitro model, human MM cell lines (MM.1S, 8226, U266) and the BTZ-resistant (BR) lines (MM.1SBR, 8226BR) were utilized to determine the role of antioxidants in intrinsic or acquired BTZ-resistance. An up-regulation of CuZnSOD, glutathione peroxidase-1 (GPx-1), and glutathione (GSH) were associated with BTZ resistance and attenuated prooxidant production by BTZ. Enforced overexpression of SOD1 induced BTZ resistance and pharmacological inhibition of CuZnSOD with disulfiram (DSF) augmented BTZ cytotoxicity in both BTZ-sensitive and BTZ-resistant cell lines. Our data validates CuZnSOD as a novel therapeutic target in MM. We propose DSF as an adjuvant to BTZ in MM that is expected to overcome intrinsic and acquired BTZ resistance as well as augment BTZ cytotoxicity. PMID:25485927

  8. Copper–zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma

    PubMed Central

    Salem, Kelley; McCormick, Michael L.; Wendlandt, Erik; Zhan, Fenghuang; Goel, Apollina

    2014-01-01

    Multiple myeloma (MM) is an incurable B-cell malignancy. The proteasome inhibitor bortezomib (BTZ) is a frontline MM drug; however, intrinsic or acquired resistance to BTZ remains a clinical hurdle. As BTZ induces oxidative stress in MM cells, we queried if altered redox homeostasis promotes BTZ resistance. In primary human MM samples, increased gene expression of copper–zinc superoxide dismutase (CuZnSOD or SOD1) correlated with cancer progression, high-risk disease, and adverse overall and event-free survival outcomes. As an in vitro model, human MM cell lines (MM.1S, 8226, U266) and the BTZ-resistant (BR) lines (MM.1SBR, 8226BR) were utilized to determine the role of antioxidants in intrinsic or acquired BTZ-resistance. An up-regulation of CuZnSOD, glutathione peroxidase-1 (GPx-1), and glutathione (GSH) were associated with BTZ resistance and attenuated prooxidant production by BTZ. Enforced overexpression of SOD1 induced BTZ resistance and pharmacological inhibition of CuZnSOD with disulfiram (DSF) augmented BTZ cytotoxicity in both BTZ-sensitive and BTZ-resistant cell lines. Our data validates CuZnSOD as a novel therapeutic target in MM. We propose DSF as an adjuvant to BTZ in MM that is expected to overcome intrinsic and acquired BTZ resistance as well as augment BTZ cytotoxicity. PMID:25485927

  9. Impact of HIV type 1 drug resistance mutations and phenotypic resistance profile on virologic response to salvage therapy.

    PubMed

    Ross, L; Liao, Q; Gao, H; Pham, S; Tolson, J; Hertogs, K; Larder, B; Saag, M S

    2001-10-10

    This study examines the association between presence of drug resistance mutations and phenotypic resistance at baseline to virologic response to salvage therapy in a community setting. The study population consisted of 58 antiretroviral drug-experienced patients with HIV-1 infection who had recently switched therapy because of virologic failure. Drug resistance mutations in the reverse transcriptase- and protease-coding regions and phenotypic susceptibility to 13 antiretroviral drugs were assessed at baseline. Plasma HIV-1 RNA levels were assessed at baseline and at subsequent clinic visits. Results showed that three variables were significant in predicting virologic response: HIV-1 levels at baseline, number of protease mutations, and phenotypic sensitivity score for the regimen at baseline. For four drugs there was a significant association between the presence of specific drug resistance mutations and >10-fold phenotypic resistance to that drug. With phenotypic resistance defined as >4-fold resistance, the association between specific drug resistance mutations and phenotypic resistance was significant for seven drugs. Overall, these data show that phenotypic susceptibility and absence of drug resistance mutations, particularly protease mutations, are significant predictors of virologic response. For several drugs, specific combinations of drug resistance mutations are associated with decreased phenotypic susceptibility and might provide useful clinical guidelines in selecting therapeutic options.

  10. "Applied" Aspects of the Drug Resistance Strategies Project

    ERIC Educational Resources Information Center

    Hecht, Michael L.; Miller-Day, Michelle A.

    2010-01-01

    This paper discusses the applied aspects of our Drug Resistance Strategies Project. We argue that a new definitional distinction is needed to expand the notion of "applied" from the traditional notion of utilizing theory, which we call "applied.1," in order to consider theory-grounded, theory testing and theory developing applied research. We…

  11. ETS1 inactivation causes innate drug resistance to EGFR inhibitors.

    PubMed

    Tetsu, Osamu; Phuchareon, Janyaporn; Eisele, David W; McCormick, Frank

    2016-03-01

    Mutations in epidermal growth factor receptor (EGFR) are found in approximately 10% of lung cancers. Treatment with EGFR inhibitors, although promising, has surprisingly resulted in greater than 90% tumor reduction in only 5% of cases, prompting us to investigate the mechanism of innate drug resistance. PMID:27308601

  12. Determination of drug resistance and virus typology in HIV-1-positive pediatric patients in Istanbul, Turkey.

    PubMed

    Yoldaş, Ozlem; Ağaçfidan, Ali; Lübke, Nadine; Somer, Ayper; Hançerli, Selda; Verheyen, Jens; Kaiser, Rolf; Akgül, Baki

    2014-01-01

    The aim of the study was to determine the prevalence of drug resistance of HIV-1 in pediatric patients from Istanbul, Turkey. Genotypic drug resistance testing revealed transmission of drug resistance from mother to child in 20%. Due to rising numbers of children with HIV-1, baseline resistance testing is recommended for Turkey.

  13. [Disease-modifying drugs in pediatric patients with multiple sclerosis].

    PubMed

    Bykova, O V; Nankina, I A; Drozdova, I M; Kvasova, O V; Batysheva, T T; Boiko, A N

    2016-01-01

    The vast majority of therapies are being evaluated and introduced for the treatment of adult multiple sclerosis (MS). A role of these drugs in the management of pediatric MS has yet to be defined both in Russia and in the whole world. Despite the fact that today the study of new drugs in the pediatric population have included in routine practices of the big pharmaceutical agencies, such as FDA and EMA, recommendations for the treatment of pediatric patients with MS are based not so much on a long period of systematic clinical research, but on professional consensus of international expert associations, in particular, the International pediatric multiple sclerosis study group (IPMSSG). The clinical trials include the small number of patients which is not comparable to those conducted in adults. Therefore, there is a need for study designs for assessment of efficacy and safety of the drugs for MS treatment in children and adolescents. The authors present the IPMSSG concept on the treatment of pediatric MS taking into account peculiarities of the Russian legislation and experience of national experts.

  14. Modeling mass drug treatment and resistant filaria disease transmission

    NASA Astrophysics Data System (ADS)

    Fuady, A. M.; Nuraini, N.; Soewono, E.; Tasman, H.; Supriatna, A. K.

    2014-03-01

    It has been indicated that a long term application of combined mass drug treatment may contribute to the development of drug resistance in lymphatic filariasis. This phenomenon is not well understood due to the complexity of filaria life cycle. In this paper we formulate a mathematical model for the spread of mass drug resistant in a filaria endemic region. The model is represented in a 13-dimensional Host-Vector system. The basic reproductive ratio of the system which is obtained from the next generation matrix, and analysis of stability of both the disease free equilibrium and the coexistence equilibria are shown. Numerical simulation for long term dynamics for possible field conditions is also shown.

  15. Drug Resistance Characteristics and Macrolide-Resistant Mechanisms of Streptococcus pneumoniae in Wenzhou City, China

    PubMed Central

    Hu, Dakang; Sun, Zheng; Luo, Xinhua; Liu, Shuangchun; Yu, Lianhua; Qu, Ying; Yang, Jinhong; Yu, Jian; Li, Xiangyang; Zhang, Jin

    2016-01-01

    Background Streptococcus pneumoniae (SP) is a Gram-positive, alpha-hemolytic, facultative anaerobic member of the genus Streptococcus. The erythromycin-resistant methylase (erm) gene and macrolide efflux (mef) gene are the 2 main genes that can mediate SP. Transposon (Tn) also plays an important role in the collection and metastasis of the gene. In the present study we investigated the drug resistance characteristics and the macrolide-resistant mechanisms of SP in Wenzhou City, China. Material/Methods Sixty-eight strains of SP were isolated from sputum samples of hospitalized children in the Second Affiliated Hospital of Wenzhou Medical University. These strains were analyzed using antimicrobial susceptibility tests to determine their drug resistance to 10 kinds of antibacterials. Macrolide-resistant phenotypes were identified using K-B method. PCR method was used to analyze the erm B gene, mef A gene, and int Tn gene. Results Drug resistance rates of 68 strains of SP were 98.5%, 100.0%, 63.2%, 52.9%, 94.1%, 89.7%, 0.0%, 0.0%, 16.2%, and 14.7% for clindamycin, erythromycin, penicillin G, cefotaxime, tetracycline, sulfamethoxazole/trimethoprim, levofloxacin, vancomycin, chloramphenicol, and amoxicillin, respectively. Total detection rates of the erm B gene, mef A gene, and int Tn gene were 98.5%, 91.2%, and 100.0%, respectively. Conclusions SP shows significant multi-drug resistance in Wenzhou City, whereas there is no clinical value of macrolides antibiotics for SP. cMLSB mediated by erm B gene is the most predominant phenotype among macrolide-resistant SP. The int Tn gene may play an important role in horizontal transfer and clonal dissemination of SP drug resistance genes in Wenzhou City. PMID:27483416

  16. Drug Resistance Characteristics and Macrolide-Resistant Mechanisms of Streptococcus pneumoniae in Wenzhou City, China.

    PubMed

    Hu, Dakang; Sun, Zheng; Luo, Xinhua; Liu, Shuangchun; Yu, Lianhua; Qu, Ying; Yang, Jinhong; Yu, Jian; Li, Xiangyang; Zhang, Jin

    2016-01-01

    BACKGROUND Streptococcus pneumoniae (SP) is a Gram-positive, alpha-hemolytic, facultative anaerobic member of the genus Streptococcus. The erythromycin-resistant methylase (erm) gene and macrolide efflux (mef) gene are the 2 main genes that can mediate SP. Transposon (Tn) also plays an important role in the collection and metastasis of the gene. In the present study we investigated the drug resistance characteristics and the macrolide-resistant mechanisms of SP in Wenzhou City, China. MATERIAL AND METHODS Sixty-eight strains of SP were isolated from sputum samples of hospitalized children in the Second Affiliated Hospital of Wenzhou Medical University. These strains were analyzed using antimicrobial susceptibility tests to determine their drug resistance to 10 kinds of antibacterials. Macrolide-resistant phenotypes were identified using K-B method. PCR method was used to analyze the erm B gene, mef A gene, and int Tn gene. RESULTS Drug resistance rates of 68 strains of SP were 98.5%, 100.0%, 63.2%, 52.9%, 94.1%, 89.7%, 0.0%, 0.0%, 16.2%, and 14.7% for clindamycin, erythromycin, penicillin G, cefotaxime, tetracycline, sulfamethoxazole/trimethoprim, levofloxacin, vancomycin, chloramphenicol, and amoxicillin, respectively. Total detection rates of the erm B gene, mef A gene, and int Tn gene were 98.5%, 91.2%, and 100.0%, respectively. CONCLUSIONS SP shows significant multi-drug resistance in Wenzhou City, whereas there is no clinical value of macrolides antibiotics for SP. cMLSB mediated by erm B gene is the most predominant phenotype among macrolide-resistant SP. The int Tn gene may play an important role in horizontal transfer and clonal dissemination of SP drug resistance genes in Wenzhou City. PMID:27483416

  17. Trichomonas vaginalis Antimicrobial Drug Resistance in 6 US Cities, STD Surveillance Network, 2009–2010

    PubMed Central

    Augostini, Peter; Asbel, Lenore E.; Bernstein, Kyle T.; Kerani, Roxanne P.; Mettenbrink, Christie J.; Pathela, Preeti; Schwebke, Jane R.; Secor, W. Evan; Workowski, Kimberly A.; Davis, Darlene; Braxton, Jim; Weinstock, Hillard S.

    2012-01-01

    Nitroimidazoles (metronidazole and tinidazole) are the only recommended drugs for treating Trichomonas vaginalis infection, and previous samples that assessed resistance of such isolates have been limited in geographic scope. We assessed the prevalence of in vitro aerobic metronidazole and tinidazole resistance among T. vaginalis isolates from multiple geographic sites in the United States. Swab specimens were obtained from women who underwent routine pelvic examinations at sexually transmitted disease clinics in 6 US cities. Cultured T. vaginalis isolates were tested for nitroimidazole resistance (aerobic minimum lethal concentration [MLC] >50 µg/mL). Of 538 T. vaginalis isolates, 23 (4.3%) exhibited low-level in vitro metronidazole resistance (minimum lethal concentrations 50–100 µg/mL). No isolates exhibited moderate- to high-level metronidazole resistance or tinidazole resistance. Results highlight the possibility that reliance on a single class of antimicrobial drugs for treating T. vaginalis infections may heighten vulnerability to emergence of resistance. Thus, novel treatment options are needed. PMID:22608054

  18. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter

    PubMed Central

    Petersen, Ines; Gabryszewski, Stanislaw J.; Johnston, Geoffrey L.; Dhingra, Satish K.; Ecker, Andrea; Lewis, Rebecca E.; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp H.; Palatulan, Eugene; Johnson, David J.; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M.; Lanzer, Michael; Fidock, David A.

    2015-01-01

    Summary The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria. PMID:25898991

  19. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter.

    PubMed

    Petersen, Ines; Gabryszewski, Stanislaw J; Johnston, Geoffrey L; Dhingra, Satish K; Ecker, Andrea; Lewis, Rebecca E; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp P; Palatulan, Eugene; Johnson, David J; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M; Lanzer, Michael; Fidock, David A

    2015-07-01

    The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria.

  20. Genotypes of Mycobacterium tuberculosis in patients at risk of drug resistance in Bolivia.

    PubMed

    Monteserin, Johana; Camacho, Mirtha; Barrera, Lucía; Palomino, Juan Carlos; Ritacco, Viviana; Martin, Anandi

    2013-07-01

    Bolivia ranks among the 10 Latin American countries with the highest rates of tuberculosis (TB) and multidrug resistant (MDR) TB. In view of this, and of the lacking information on the population structure of Mycobacterium tuberculosis in the country, we explored genotype associations with drug resistance and clustering by analyzing isolates collected in 2010 from 100 consecutive TB patients at risk of drug resistance in seven of the nine departments in which Bolivia is divided. Fourteen isolates were MDR, 29 had other drug resistance profiles, and 57 were pansusceptible. Spoligotype family distribution was: Haarlem 39.4%, LAM 26.3%, T 22.2%, S 2.0%, X 1.0%, orphan 9.1%, with very low intra-family diversity and absence of Beijing genotypes. We found 66 different MIRU-VNTR patterns; the most frequent corresponded to Multiple Locus Variable Analysis (MLVA) MtbC15 patterns 860, 372 and 873. Twelve clusters, each with identical MIRU-VNTR and spoligotypes, gathered 35 patients. We found no association of genotype with drug resistant or MDR-TB. Clustering associated with SIT 50 and the H3 subfamily to which it belongs (p<0.0001). The largest cluster involved isolates from three departments and displayed a genotype (SIT 50/MLVA 860) previously identified in Bolivian migrants into Spain and Argentina suggesting that this genotype is widespread among Bolivian patients. Our study presents a first overview of M. tuberculosis genotypes at risk of drug resistance circulating in Bolivia. However, results should be taken cautiously because the sample is small and includes a particular subset of M. tuberculosis population.

  1. 42 CFR 447.514 - Upper limits for multiple source drugs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Upper limits for multiple source drugs. 447.514... limits for multiple source drugs. (a) Establishment and issuance of a listing. (1) CMS will establish and issue listings that identify and set upper limits for multiple source drugs that meet the...

  2. The population genetics of drug resistance evolution in natural populations of viral, bacterial and eukaryotic pathogens.

    PubMed

    Wilson, Benjamin A; Garud, Nandita R; Feder, Alison F; Assaf, Zoe J; Pennings, Pleuni S

    2016-01-01

    Drug resistance is a costly consequence of pathogen evolution and a major concern in public health. In this review, we show how population genetics can be used to study the evolution of drug resistance and also how drug resistance evolution is informative as an evolutionary model system. We highlight five examples from diverse organisms with particular focus on: (i) identifying drug resistance loci in the malaria parasite Plasmodium falciparum using the genomic signatures of selective sweeps, (ii) determining the role of epistasis in drug resistance evolution in influenza, (iii) quantifying the role of standing genetic variation in the evolution of drug resistance in HIV, (iv) using drug resistance mutations to study clonal interference dynamics in tuberculosis and (v) analysing the population structure of the core and accessory genome of Staphylococcus aureus to understand the spread of methicillin resistance. Throughout this review, we discuss the uses of sequence data and population genetic theory in studying the evolution of drug resistance.

  3. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Yu, Caitong; Zhou, Mengjiao; Zhang, Xiujuan; Wei, Weijia; Chen, Xianfeng; Zhang, Xiaohong

    2015-03-01

    Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in previous reports. These PEG stabilized DOX NPs exhibit good biocompatibility and stability, long blood circulation time, fast release in an acidic environment and high accumulation in tumors. Compared with free DOX, DOX NPs display a dramatically enhanced anticancer therapeutic efficacy in the inhibition of cell and tumor growth. Moreover, they can also be readily incorporated with other anticancer drugs for synergistic chemotherapy to overcome the drug resistance of cancers. The fluorescence properties of DOX also endow these NPs with imaging capabilities, thus making it a multifunctional system for diagnosis and treatment. This work demonstrates great potential of DOX NPs for cancer diagnosis, therapy and overcoming drug tolerance.Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in

  4. A Reprofiled Drug, Auranofin, Is Effective against Metronidazole-Resistant Giardia lamblia

    PubMed Central

    Tejman-Yarden, Noa; Miyamoto, Yukiko; Leitsch, David; Santini, Jennifer; Debnath, Anjan; Gut, Jiri; McKerrow, James H.; Reed, Sharon L.

    2013-01-01

    Giardiasis is one of the most common causes of diarrheal disease worldwide. Treatment is primarily with 5-nitro antimicrobials, particularly metronidazole. Resistance to metronidazole has been described, and treatment failures can occur in up to 20% of cases, making development of alternative antigiardials an important goal. To this end, we have screened a chemical library of 746 approved human drugs and 164 additional bioactive compounds for activity against Giardia lamblia. We identified 56 compounds that caused significant inhibition of G. lamblia growth and attachment. Of these, 15 were previously reported to have antigiardial activity, 20 were bioactive but not approved for human use, and 21 were drugs approved for human use for other indications. One notable compound of the last group was the antirheumatic drug auranofin. Further testing revealed that auranofin was active in the low (4 to 6)-micromolar range against a range of divergent G. lamblia isolates representing both human-pathogenic assemblages A and B. Most importantly, auranofin was active against multiple metronidazole-resistant strains. Mechanistically, auranofin blocked the activity of giardial thioredoxin oxidoreductase, a critical enzyme involved in maintaining normal protein function and combating oxidative damage, suggesting that this inhibition contributes to the antigiardial activity. Furthermore, auranofin was efficacious in vivo, as it eradicated infection with different G. lamblia isolates in different rodent models. These results indicate that the approved human drug auranofin could be developed as a novel agent in the armamentarium of antigiardial drugs, particularly against metronidazole-resistant strains. PMID:23403423

  5. Structure-Based Tetravalent Zanamivir with Potent Inhibitory Activity against Drug-Resistant Influenza Viruses.

    PubMed

    Fu, Lifeng; Bi, Yuhai; Wu, Yan; Zhang, Shanshan; Qi, Jianxun; Li, Yan; Lu, Xuancheng; Zhang, Zhenning; Lv, Xun; Yan, Jinghua; Gao, George F; Li, Xuebing

    2016-07-14

    Zanamivir and oseltamivir are principal influenza antiviral drugs that target viral neuraminidase (NA), but resistant viruses containing mutant NAs with diminished drug affinity are increasingly emerging. Using the structural knowledge of both drug-binding sites and their spatial arrangement on the homotetrameric NA, we have developed a tetravalent zanamivir (TZ) molecule that exhibited marked increases in NA binding affinity, inhibition of NA enzyme activity, and in vitro plus in vivo antiviral efficacy over zanamivir. TZ functioned against both human seasonal H3N2 and avian H7N9 viruses, including drug-resistant mutants. Crystal structure of a resistant N9 NA in complex with TZ explained the function, which showed that four zanamivir residues simultaneously bound to all four monomers of NA. The design method of TZ described in this study may be useful to develop drugs or ligands that target proteins with multiple binding sites. The potent anti-influenza activity of TZ makes it attractive for further development. PMID:27341624

  6. The evolution of drug resistance in clinical isolates of Candida albicans

    PubMed Central

    Guiducci, Candace; Martinez, Diego A; Delorey, Toni; Li, Bi yu; White, Theodore C; Cuomo, Christina; Rao, Reeta P; Berman, Judith; Thompson, Dawn A; Regev, Aviv

    2015-01-01

    Candida albicans is both a member of the healthy human microbiome and a major pathogen in immunocompromised individuals. Infections are typically treated with azole inhibitors of ergosterol biosynthesis often leading to drug resistance. Studies in clinical isolates have implicated multiple mechanisms in resistance, but have focused on large-scale aberrations or candidate genes, and do not comprehensively chart the genetic basis of adaptation. Here, we leveraged next-generation sequencing to analyze 43 isolates from 11 oral candidiasis patients. We detected newly selected mutations, including single-nucleotide polymorphisms (SNPs), copy-number variations and loss-of-heterozygosity (LOH) events. LOH events were commonly associated with acquired resistance, and SNPs in 240 genes may be related to host adaptation. Conversely, most aneuploidies were transient and did not correlate with drug resistance. Our analysis also shows that isolates also varied in adherence, filamentation, and virulence. Our work reveals new molecular mechanisms underlying the evolution of drug resistance and host adaptation. DOI: http://dx.doi.org/10.7554/eLife.00662.001 PMID:25646566

  7. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds.

    PubMed

    Cummins, Ian; Wortley, David J; Sabbadin, Federico; He, Zhesi; Coxon, Christopher R; Straker, Hannah E; Sellars, Jonathan D; Knight, Kathryn; Edwards, Lesley; Hughes, David; Kaundun, Shiv Shankhar; Hutchings, Sarah-Jane; Steel, Patrick G; Edwards, Robert

    2013-04-01

    Multiple-herbicide resistance (MHR) in black-grass (Alopecurus myosuroides) and annual rye-grass (Lolium rigidum) is a global problem leading to a loss of chemical weed control in cereal crops. Although poorly understood, in common with multiple-drug resistance (MDR) in tumors, MHR is associated with an enhanced ability to detoxify xenobiotics. In humans, MDR is linked to the overexpression of a pi class glutathione transferase (GSTP1), which has both detoxification and signaling functions in promoting drug resistance. In both annual rye-grass and black-grass, MHR was also associated with the increased expression of an evolutionarily distinct plant phi (F) GSTF1 that had a restricted ability to detoxify herbicides. When the black-grass A. myosuroides (Am) AmGSTF1 was expressed in Arabidopsis thaliana, the transgenic plants acquired resistance to multiple herbicides and showed similar changes in their secondary, xenobiotic, and antioxidant metabolism to those determined in MHR weeds. Transcriptome array experiments showed that these changes in biochemistry were not due to changes in gene expression. Rather, AmGSTF1 exerted a direct regulatory control on metabolism that led to an accumulation of protective flavonoids. Further evidence for a key role for this protein in MHR was obtained by showing that the GSTP1- and MDR-inhibiting pharmacophore 4-chloro-7-nitro-benzoxadiazole was also active toward AmGSTF1 and helped restore herbicide control in MHR black-grass. These studies demonstrate a central role for specific GSTFs in MHR in weeds that has parallels with similar roles for unrelated GSTs in MDR in humans and shows their potential as targets for chemical intervention in resistant weed management.

  8. Antifungal drug resistance among Candida species: mechanisms and clinical impact.

    PubMed

    Sanguinetti, Maurizio; Posteraro, Brunella; Lass-Flörl, Cornelia

    2015-06-01

    The epidemiology of Candida infections has changed in recent years. Although Candida albicans is still the main cause of invasive candidiasis in most clinical settings, a substantial proportion of patients is now infected with non-albicans Candida species. The various Candida species vary in their susceptibility to the most commonly used antifungal agents, and the intrinsic resistance to antifungal therapy seen in some species, along with the development of acquired resistance during treatment in others, is becoming a major problem in the management of Candida infection. A better understanding of the mechanisms and clinical impact of antifungal drug resistance is essential for the efficient treatment of patients with Candida infection and for improving treatment outcomes. Herein, we report resistance to the azoles and echinocandins among Candida species.

  9. Experience with pulmonary resection for extensively drug-resistant tuberculosis.

    PubMed

    Shiraishi, Yuji; Katsuragi, Naoya; Kita, Hidefumi; Toishi, Masayuki; Onda, Takahito

    2008-12-01

    Extensively drug-resistant tuberculosis is becoming a global threat. It is a relatively new phenomenon, and its optimal management remains undetermined. We report our experience in using pulmonary resection for treating patients with this disease. Records were reviewed of 54 consecutive patients undergoing a pulmonary resection for multidrug-resistant tuberculosis at Fukujuji Hospital between 2000 and 2006. These patients were identified using the definition approved by the World Health Organization Global Task Force on extensively drug-resistant tuberculosis in October 2006. Five (9%) patients (3 men and 2 women) aged 31-60 years met the definition. None of the patients was HIV-positive. Although the best available multidrug regimens were initiated, no patient could achieve sputum conversion. Adjuvant resectional surgery was considered because the patients had localized disease. Procedures performed included pneumonectomy (2) and upper lobectomy (3). There was no operative mortality or morbidity. All patients attained sputum-negative status after the operation, and they were maintained on multidrug regimens for 12-25 months postoperatively. All patients remained free from disease at the time of follow-up. Pulmonary resection under cover of state-of-the-art chemotherapy is safe and effective for patients with localized extensively drug-resistant tuberculosis.

  10. Modeling HIV-1 drug resistance as episodic directional selection.

    PubMed

    Murrell, Ben; de Oliveira, Tulio; Seebregts, Chris; Kosakovsky Pond, Sergei L; Scheffler, Konrad

    2012-01-01

    The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

  11. Antimalarial drug resistance in Bangladesh, 1996-2012.

    PubMed

    Haque, Ubydul; Glass, Gregory E; Haque, Waziul; Islam, Nazrul; Roy, Shyamal; Karim, Jahirul; Noedl, Harald

    2013-12-01

    Malaria remains an important health problem in Bangladesh, with approximately 14 million people at risk. Antimalarial drug resistance is a major obstacle to the control of malaria in endemic countries. In 2012, Bangladesh reported an estimated 29 522 malaria episodes, of which 94% were reported as being caused by Plasmodium falciparum. In this study, we reviewed and summarized antimalarial drug resistance data from Bangladesh published until June 2013. We searched published sources for data referring to any type of P. falciparum drug resistance (in vivo, in vitro, or molecular) and found 169 articles published in peer-reviewed journals. Of these, 143 articles were excluded because they did not meet our inclusion criteria. After detailed review of the remaining 26 articles, 14 were selected for evaluation. Published studies indicate that P. falciparum shows varying levels of resistance to chloroquine, mefloquine and sulfadoxine-pyrimethamine. Combination therapy of chloroquine and primaquine has proven ineffective and combinations of sulfadoxine-pyrimethamine with either quinine or chloroquine have also shown poor efficacy. Recent studies indicate that artemisinin derivatives, such as artesunate, remain highly efficacious in treating P. falciparum malaria. Available data suggest that artemisinins, quinine, doxycyline, mefloquine-artesunate and azithromycin-artesunate combination therapy remain efficacious in the treatment of P. falciparum malaria in Bangladesh.

  12. Systematic Review of the Performance of Rapid Rifampicin Resistance Testing for Drug-Resistant Tuberculosis

    PubMed Central

    Arentz, Matthew; Sorensen, Bess; Horne, David J.; Walson, Judd L.

    2013-01-01

    Introduction Rapid tests for rifampicin resistance may be useful for identifying isolates at high risk of drug resistance, including multidrug-resistant TB (MDR-TB). However, choice of diagnostic test and prevalence of rifampicin resistance may both impact a diagnostic strategy for identifying drug resistant-TB. We performed a systematic review to evaluate the performance of WHO-endorsed rapid tests for rifampicin resistance detection. Methods We searched MEDLINE, Embase and the Cochrane Library through January 1, 2012. For each rapid test, we determined pooled sensitivity and specificity estimates using a hierarchical random effects model. Predictive values of the tests were determined at different prevalence rates of rifampicin resistance and MDR-TB. Results We identified 60 publications involving six different tests (INNO-LiPA Rif. TB assay, Genotype MTBDR assay, Genotype MTBDRplus assay, Colorimetric Redox Indicator (CRI) assay, Nitrate Reductase Assay (NRA) and MODS tests): for all tests, negative predictive values were high when rifampicin resistance prevalence was ≤ 30%. However, positive predictive values were considerably reduced for the INNO-LiPA Rif. TB assay, the MTBDRplus assay and MODS when rifampicin resistance prevalence was < 5%. Limitations In many studies, it was unclear whether patient selection or index test performance could have introduced bias. In addition, we were unable to evaluate critical concentration thresholds for the colorimetric tests. Discussion Rapid tests for rifampicin resistance alone cannot accurately predict rifampicin resistance or MDR-TB in areas with a low prevalence of rifampicin resistance. However, in areas with a high prevalence of rifampicin resistance and MDR-TB, these tests may be a valuable component of an MDR-TB management strategy. PMID:24098523

  13. IGF-1 receptor targeted nanoparticles for image-guided therapy of stroma-rich and drug resistant human cancer

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M.; Zhou, Zhiyang; Wang, Liya; Wang, Andrew; Mao, Hui; Yang, Lily

    2016-05-01

    Low drug delivery efficiency and drug resistance from highly heterogeneous cancer cells and tumor microenvironment represent major challenges in clinical oncology. Growth factor receptor, IGF-1R, is overexpressed in both human tumor cells and tumor associated stromal cells. The level of IGF-1R expression is further up-regulated in drug resistant tumor cells. We have developed IGF-1R targeted magnetic iron oxide nanoparticles (IONPs) carrying multiple anticancer drugs into human tumors. This IGF-1R targeted theranostic nanoparticle delivery system has an iron core for non-invasive MR imaging, amphiphilic polymer coating to ensure the biocompatibility as well as for drug loading and conjugation of recombinant human IGF-1 as targeting molecules. Chemotherapy drugs, Doxorubicin (Dox), was encapsulated into the polymer coating and/or conjugated to the IONP surface by coupling with the carboxyl groups. The ability of IGF1R targeted theranostic nanoparticles to penetrate tumor stromal barrier and enhance tumor cell killing has been demonstrated in human pancreatic cancer patient tissue derived xenograft (PDX) models. Repeated systemic administrations of those IGF-1R targeted theranostic IONP carrying Dox led to breaking the tumor stromal barrier and improved therapeutic effect. Near infrared (NIR) optical and MR imaging enabled noninvasive monitoring of nanoparticle-drug delivery and therapeutic responses. Our results demonstrated that IGF-1R targeted nanoparticles carrying multiple drugs are promising combination therapy approaches for image-guided therapy of stroma-rich and drug resistant human cancer, such as pancreatic cancer.

  14. Resistance to antiplatelet drugs: molecular mechanisms and laboratory detection.

    PubMed

    Cattaneo, M

    2007-07-01

    The definition 'resistance to antiplatelet drugs' should be limited to situations in which failure of the drug to hit its pharmacological target has been documented by specific laboratory tests. Aspirin resistance, as determined by specific tests (e.g. serum thromboxane B(2)), appears to be rare (1-2%) and, in most instances, is caused by poor compliance. In contrast to aspirin, studies that used specific tests to measure the pharmacological effect of thienopyridines [e.g. vasodilator-stimulated phosphoprotein (VASP)] showed a wide variability of responses to these drugs, with significant proportions of subjects (15-30%) who are very poor responders. Inter-individual differences in the extent of metabolism of thienopyridines to their active metabolites is the most plausible mechanism for the observed inter-individual variability in platelet inhibition. The demonstration that some patients may be 'resistant' or 'poor responders' to the pharmacological effect of antiplatelet drugs, has prompted the need of laboratory monitoring of antiplatelet therapy. However, many published studies have been performed using unspecific tests of platelet function, which identify patients on antiplatelet treatment with high residual platelet reactivity, which is not necessarily because of resistance to antiplatelet drugs. Despite this drawback, identification of patients with high residual platelet reactivity may be useful to predict their risk of atherothrombotic events. However, many studies still need to be carried out to identify the ideal laboratory test and to answer basic questions on its clinical utility and cost-effectiveness, before monitoring antiplatelet therapy can be recommended in the clinical practise. Until then, monitoring of antiplatelet therapy should be considered for investigational purposes only. PMID:17635731

  15. Insights into the mechanism of drug resistance. X-ray structure analysis of multi-drug resistant HIV-1 protease ritonavir complex

    SciTech Connect

    Liu, Zhigang; Yedidi, Ravikiran S.; Wang, Yong; Dewdney, Tamaria G.; Reiter, Samuel J.; Brunzelle, Joseph S.; Kovari, Iulia A.; Kovari, Ladislau C.

    2013-01-08

    Ritonavir (RTV) is a first generation HIV-1 protease inhibitor with rapidly emerging drug resistance. Mutations at residues 46, 54, 82 and 84 render the HIV-1 protease drug resistant against RTV. We report the crystal structure of multi-drug resistant (MDR) 769 HIV-1 protease (carrying resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84 and 90) complexed with RTV and the in vitro enzymatic IC50 of RTV against MDR HIV-1 protease. The structural and functional studies demonstrate significant drug resistance of MDR HIV-1 protease against RTV, arising from reduced hydrogen bonds and Van der Waals interactions between RTV and MDR HIV-1 protease.

  16. Sensitive, resistant and multi-drug resistant Acinetobacter baumanii at Saudi Arabia hospital eastern region.

    PubMed

    Ahmed, Mughis Uddin; Farooq, Reshma; Al-Hawashim, Nadia; Ahmed, Motasim; Yiannakou, Nearchos; Sayeed, Fatima; Sayed, Ali Rifat; Lutfullah, Sualiha

    2015-05-01

    Since the Physicians start use of antibiotics long ago with un-notice drug resistance. However actual problem was recognized about 85 years ago. Antibiotic resistant and Multi-drug resistant bacterial strains are at rise throughout the world. It is physicians and researchers to take scientific research based appropriate action to overcome this ever-spreading problem. This study is designed to find out sensitive (S), resistant (R) and multi-drug resistant (MDR) Acinetobacter baumanii strain along with other isolates in the resident patients of Eastern Region of Saudi Arabia. Pseudomonas aeruginosa is excluded from other gram-negative organisms isolated from different sites as it will be dealt separately. This study is based in was retrospective observations designed to collect data of different stains of Acinetobacter baumanii with reference to their Sensitivity (S), Resistance (R), Multi-Drug Resistance (MDR) along with other Gram negative isolated from different sites (from 1st January 2004 to 31st December 2011) at King Abdulaziz Hospital located Eastern Region of Kingdom of Saudi Arabia (KSA). All necessary techniques were used to culture and perform sensitivity of these isolates. There were 4532 isolates out of which 3018 (67%) were from patients. Out of Acinetobacter baumanii infected were 906 (20%) while other 3626 (80%) isolates were miscellaneous. Numbers of patients or cases were 480 (53%) out of 906 isolates and numbers of patients or cases in other organisms were 2538 (70%) out of 3626 isolates. Acinetobacter baumanii infected patients 221 (46%) were male and 259 (54%) were female and the male and female ratio of 1:1.2. In other organisms this male female ratio was almost same. There was steady rise in number of patients and the hence the isolates from 2004 to 2011. Majority of the bacterial strains were isolated as single organism but some were isolated as double or triple or quadruple or more organisms from different sites. Sensitive, Resistant and

  17. Fibroblasts contribute to melanoma tumour growth and drug resistance

    PubMed Central

    Flach, Edward H.; Rebecca, Vito W.; Herlyn, Meenhard; Smalley, Keiran S. M.; Anderson, Alexander R. A.

    2011-01-01

    The role of tumour-stromal interactions in progression is generally well accepted but their role in initiation or treatment is less well understood. It is now generally agreed that rather than consisting solely of malignant cells, tumours consist of a complex dynamic mixture of cancer cells, host fibroblasts, endothelial cells, and immune cells that interact with each other and micro-environmental factors to drive tumour progression. We are particularly interested in stromal cells (for example fibroblasts) and stromal factors (for example fibronectin) as important players in tumour progression since they have also been implicated in drug resistance. Here we develop an integrated approach to understand the role of such stromal cells and factors in the growth and maintenance of tumours as well as their potential impact on treatment resistance, specifically in application to melanoma. Using a suite of experimental assays we show that melanoma cells can stimulate the recruitment of fibroblasts and activate them, resulting in melanoma cell growth by providing both structural (extra-cellular matrix proteins) and chemical support (growth factors). Motivated by these experimental results we construct a compartment model and use it to investigate the roles of both stromal activation and tumour aggressiveness in melanoma growth and progression. We utilise this model to investigate the role fibroblasts might play in melanoma treatment resistance and the clinically observed flare phenomena that is seen when a patient, who appears resistant to a targeted drug, is removed from that treatment. Our model makes the unexpected prediction that targeted therapies may actually hasten tumour progression once resistance has occurred. If confirmed experimentally, this provocative prediction may bring important new insights into how drug resistance could be managed clinically. PMID:22067046

  18. ATP7B expression confers multidrug resistance through drug sequestration.

    PubMed

    Moinuddin, F M; Shinsato, Yoshinari; Komatsu, Masaharu; Mitsuo, Ryoichi; Minami, Kentaro; Yamamoto, Masatatsu; Kawahara, Kohich; Hirano, Hirofumi; Arita, Kazunori; Furukawa, Tatsuhiko

    2016-04-19

    We previously reported that ATP7B is involved in cisplatin resistance and ATP7A confers multidrug resistance (MDR) in cancer cells.In this study, we show that ATP7B expressing cells also are resistant to doxorubicin, SN-38, etoposide, and paclitaxel as well as cisplatin.In ATP7B expressing cells, doxorubicin relocated from the nuclei to the late-endosome at 4 hours after doxorubicin exposure. EGFP-ATP7B mainly colocalized with doxorubicin.ATP7B has six metal binding sites (MBSs) in the N-terminal cytoplasmic region. To investigate the role of the MBSs of ATP7B in doxorubicin resistance, we used three mutant ATP7B (Cu0, Cu6 and M6C/S) expressing cells. Cu0 has no MBSs, Cu6 has only the sixth MBS and M6C/S carries CXXC to SXXS mutation in the sixth MBS. Cu6 expressing cells were less resistance to the anticancer agents than wild type ATP7B expressing cells, and had doxorubicin sequestration in the late-endosome. Cu0- and M6C/S-expressing cells were sensitive to doxorubicin. In these cells, doxorubicin did not relocalize to the late-endosome. EGFP-M6C/S mainly localized to the trans-Golgi network (TGN) even in the presence of copper. Thus the cysteine residues in the sixth MBS of ATP7B are essential for MDR phenotype.Finally, we found that ammonium chloride and tamoxifen suppressed late endosomal sequestration of doxorubicin, thereby attenuating drug resistance. These results suggest that the sequestration depends on the acidity of the vesicles partly.We here demonstrate that ATP7B confers MDR by facilitating nuclear drug efflux and late endosomal drug sequestration. PMID:26988911

  19. ATP7B expression confers multidrug resistance through drug sequestration

    PubMed Central

    Moinuddin, F M; Shinsato, Yoshinari; Komatsu, Masaharu; Mitsuo, Ryoichi; Minami, Kentaro; Yamamoto, Masatatsu; Kawahara, Kohich; Hirano, Hirofumi; Arita, Kazunori; Furukawa, Tatsuhiko

    2016-01-01

    We previously reported that ATP7B is involved in cisplatin resistance and ATP7A confers multidrug resistance (MDR) in cancer cells. In this study, we show that ATP7B expressing cells also are resistant to doxorubicin, SN-38, etoposide, and paclitaxel as well as cisplatin. In ATP7B expressing cells, doxorubicin relocated from the nuclei to the late-endosome at 4 hours after doxorubicin exposure. EGFP-ATP7B mainly colocalized with doxorubicin. ATP7B has six metal binding sites (MBSs) in the N-terminal cytoplasmic region. To investigate the role of the MBSs of ATP7B in doxorubicin resistance, we used three mutant ATP7B (Cu0, Cu6 and M6C/S) expressing cells. Cu0 has no MBSs, Cu6 has only the sixth MBS and M6C/S carries CXXC to SXXS mutation in the sixth MBS. Cu6 expressing cells were less resistance to the anticancer agents than wild type ATP7B expressing cells, and had doxorubicin sequestration in the late-endosome. Cu0- and M6C/S-expressing cells were sensitive to doxorubicin. In these cells, doxorubicin did not relocalize to the late-endosome. EGFP-M6C/S mainly localized to the trans-Golgi network (TGN) even in the presence of copper. Thus the cysteine residues in the sixth MBS of ATP7B are essential for MDR phenotype. Finally, we found that ammonium chloride and tamoxifen suppressed late endosomal sequestration of doxorubicin, thereby attenuating drug resistance. These results suggest that the sequestration depends on the acidity of the vesicles partly. We here demonstrate that ATP7B confers MDR by facilitating nuclear drug efflux and late endosomal drug sequestration. PMID:26988911

  20. [MOLECULAR MECHANISMS OF DRUG RESISTANCE NEISSERIA GONORRHOEAE HISTORY AND PROSPECTS].

    PubMed

    Bodoev, I N; Il'ina, E N

    2015-01-01

    Neisseria gonorrhoeae (gonococcus) is a strict human pathogen, which causes gonorrhea--an infectious disease, whose origin dates back to more than two thousand years. Due to the unique plasticity of the genetic material, these bacteria have acquired the capacity to adapt to the host immune system, cause repeated infections, as well as withstand antimicrobials. Since the introduction of antibiotics in 1930s, gonococcus has displayed its propensity to develop resistance to all clinically useful antibiotics. It is important to note that the known resistance determinants of N. gonorrhoeae were acquired through horizontal gene transfer, recombination and spontaneous mutagenesis, and may be located both in the chromosome and on the plasmid. After introduction of a new antimicrobial drug, gonococcus becomes resistant within two decades and replaces sensitive bacterial population. Currently Ceftriaxone is the last remaining antibiotic for first-line treatment of gonorrhea. However, the first gonococcus displaying high-level resistance to Ceftriaxone was isolated in Japan a few years ago. Therefore, in the near future, gonorrhea may become untreatable. In the present review, we discuss the chronology of the anti-gonorrhea drugs (antibiotics) replacement, the evolution of resistance mechanisms emergence and future perspectives of N. gonorrhoeae treatment.

  1. Fighting drug-resistant Plasmodium falciparum: the challenge of artemisinin resistance.

    PubMed

    Wongsrichanalai, C; Sibley, C H

    2013-10-01

    Following a decade-long scale up of malaria control through vector control interventions, the introduction of rapid diagnostic tests and highly efficacious Artemisinin-based Combination Therapy (ACT) along with other measures, global malaria incidence declined significantly. The recent development of artemisinin resistance on the Cambodia-Thailand border, however, is of great concern. This review encompasses the background of artemisinin resistance in Plasmodium falciparum, its situation, especially in the Greater Mekong Sub-region (GMS), and the responses taken to overcome this resistance. The difficulties in defining resistance are presented, particularly the necessity of measuring the clinical response to artemisinins using the slow parasite-clearance phenotype. Efforts to understand the molecular basis of artemisinin resistance and the search for molecular markers are reviewed. The markers, once identified, can be applied as an efficient tool for resistance surveillance. Despite the limitation of current surveillance methods, it is important to continue vigilance for artemisinin resistance. The therapeutic efficacy "in vivo study" network for monitoring antimalarial resistance in the GMS has been strengthened. GMS countries are working together in response to artemisinin resistance and aim to eliminate all P. falciparum parasites. These efforts are crucial since a resurgence of malaria due to drug and/or insecticide resistance, program cuts, lack of political support and donor fatigue could set back malaria control success in the sub-region and threaten malaria control and elimination if resistance spreads to other regions.

  2. Alcohol and Other Drug Resistance Strategies Employed by Rural Adolescents

    PubMed Central

    Pettigrew, Jonathan; Miller-Day, Michelle; Krieger, Janice; Hecht, Michael L.

    2011-01-01

    This study seeks to identify how rural adolescents make health decisions and utilize communication strategies to resist influence attempts in offers of alcohol, tobacco, and other drugs (ATOD). Semi-structured interviews were conducted with 113 adolescents from rural school districts to solicit information on ATOD norms, past ATOD experiences, and substance offer-response episodes. Rural youths’ resistance strategies were similar to previous findings with urban adolescents – refuse, explain, avoid, and leave (the REAL typology) – while unique features of these strategies were identified including the importance of personal narratives, the articulation of a non-user identity, and being “accountable” to self and others. PMID:21552345

  3. Personalized Cancer Medicine: Molecular Diagnostics, Predictive biomarkers, and Drug Resistance

    PubMed Central

    Gonzalez de Castro, D; Clarke, P A; Al-Lazikani, B; Workman, P

    2013-01-01

    The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution. PMID:23361103

  4. An analysis of the population genetics of potential multi-drug resistance in Wuchereria bancrofti due to combination chemotherapy.

    PubMed

    Schwab, A E; Churcher, T S; Schwab, A J; Basáñez, M-G; Prichard, R K

    2007-07-01

    Currently, annual mass treatments with albendazole (ABZ) plus ivermectin (IVM) or diethylcarbamazine (DEC) are administered under the Global Programme to Eliminate Lymphatic Filariasis (GPELF). Drug resistance against both ABZ and IVM is prevalent in nematodes of veterinary importance, raising awareness that if anthelmintic resistance were to develop among Wuchereria bancrofti populations, this would jeopardize GPELF's goals. Genetic structure was incorporated into an existing transmission dynamics model for lymphatic filariasis (LF) to investigate the potential development of concurrent resistance to ABZ and IVM. The resultant models explore the impact of different inheritance modes of resistance to ABZ and IVM on the likely risk of treatment failure under our model assumptions. Results indicate that under ABZ+IVM combination, selection for resistance to one drug is enhanced if resistance to the other drug is already present. Excess parasite homozygosity may increase selection for dominant IVM resistance via enhancing the frequency of recessive ABZ resistance. The model predicts that if multiple resistance genes are associated with different efficacy properties of a drug combination, then examining changes at single loci may be misleading. Sampling schemes in genetic epidemiological surveys investigating the frequency of an allele under selection should consider host age, as individuals of different ages may acquire parasites at different rates.

  5. Microarray-based detection and expression analysis of ABC and SLC transporters in drug-resistant ovarian cancer cell lines.

    PubMed

    Januchowski, Radosław; Zawierucha, Piotr; Andrzejewska, Małgorzata; Ruciński, Marcin; Zabel, Maciej

    2013-04-01

    Multiple drug resistance of cancer cells is multifactorial. A microarray technique may provide information about new candidate genes playing a role in drug resistance. Drug membrane transporters from ABC and SLC families play a main role in this phenomenon. This study demonstrates alterations in ABC and SLC gene expression levels in methotrexate, cisplatin, doxorubicin, vincristine, topotecan and paclitaxel-resistant variant of W1 ovarian cancer cell line. Resistant W1 cell lines were derived by stepwise selection of cells in increasing concentration of drugs. Affymetrix GeneChip(®) Human Genome U219 Array Strip was used for hybridizations. Statistical significance was determined by independent sample t-test. The genes having altered expression levels in drug-resistant sublines were selected and filtered by scater plot. Genes up/downregulated more than threefolds were selected and listed. Among ABC genes, seven were upregulated and three were downregulated. Three genes: ABCB1, ABCB4 and ABCG2 were upregulated very significantly (over tenfold). One ABCA8 was significantly downregulated. Among 38 SLC genes, 18 were upregulated, 16 were downregulated and four were up- or downregulated dependent on the cell line. Expression of 10 SLC genes was changed very significantly (over tenfold). Four genes were significantly increased: SLC6A1, SLC9A2, SLC12A1, SLC16A6 and six genes were significantly decreased: SLC2A14, SLC7A3, SLC7A8, SLC7A11, SLC16A14, SLC38A9. Based on the expression profiles, our results provide a preliminary insight into the relationship between drug resistance and expression of membrane transporters involved in drug resistance. Correlation of specific drug transporter with drug resistance requires further analysis.

  6. Transmitted drug resistance in nonsubtype B HIV-1 infection

    PubMed Central

    Chan, Philip A; Kantor, Rami

    2009-01-01

    HIV-1 nonsubtype B variants account for the majority of HIV infections worldwide. Drug resistance in individuals who have never undergone antiretroviral therapy can lead to early failure and limited treatment options and, therefore, is an important concern. Evaluation of reported transmitted drug resistance (TDR) is challenging owing to varying definitions and study designs, and is further complicated by HIV-1 subtype diversity. In this article, we discuss the importance of various mutation lists for TDR definition, summarize TDR in nonsubtype B HIV-1 and highlight TDR reporting and interpreting challenges in the context of HIV-1 diversity. When examined carefully, TDR in HIV-1 non-B protease and reverse transcriptase is still relatively low in most regions. Whether it will increase with time and therapy access, as observed in subtype-B-predominant regions, remains to be determined. PMID:20161523

  7. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis.

    PubMed

    Yu, Caitong; Zhou, Mengjiao; Zhang, Xiujuan; Wei, Weijia; Chen, Xianfeng; Zhang, Xiaohong

    2015-03-19

    Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in previous reports. These PEG stabilized DOX NPs exhibit good biocompatibility and stability, long blood circulation time, fast release in an acidic environment and high accumulation in tumors. Compared with free DOX, DOX NPs display a dramatically enhanced anticancer therapeutic efficacy in the inhibition of cell and tumor growth. Moreover, they can also be readily incorporated with other anticancer drugs for synergistic chemotherapy to overcome the drug resistance of cancers. The fluorescence properties of DOX also endow these NPs with imaging capabilities, thus making it a multifunctional system for diagnosis and treatment. This work demonstrates great potential of DOX NPs for cancer diagnosis, therapy and overcoming drug tolerance.

  8. [Signal transduction and drug resistance in Mycobacterium tuberculosis--A review].

    PubMed

    Wang, Shanshan; Feng, Yi; Zhang, Zhe

    2015-08-01

    Mycobacterium tuberculosis infection kills two million people every year, and the chemotherapy has led to significant amount of drug resistance. Signal transduction systems are used by bacteria to survive or adapt to their living environment, but the relationship to drug resistance is not well understood. In this article, we introduced the two-component signal transduction systems of M. tuberculosis and analyzed their relationship with drug resistance. We identified five two-component system pairs involved in the formation of drug resistance. Therefore, these two-component systems are good targeting sites for small biochemical drugs to target so as to reverse the drug resistance and virulence.

  9. Mathematical models of tumor heterogeneity and drug resistance

    NASA Astrophysics Data System (ADS)

    Greene, James

    In this dissertation we develop mathematical models of tumor heterogeneity and drug resistance in cancer chemotherapy. Resistance to chemotherapy is one of the major causes of the failure of cancer treatment. Furthermore, recent experimental evidence suggests that drug resistance is a complex biological phenomena, with many influences that interact nonlinearly. Here we study the influence of such heterogeneity on treatment outcomes, both in general frameworks and under specific mechanisms. We begin by developing a mathematical framework for describing multi-drug resistance to cancer. Heterogeneity is reflected by a continuous parameter, which can either describe a single resistance mechanism (such as the expression of P-gp in the cellular membrane) or can account for the cumulative effect of several mechanisms and factors. The model is written as a system of integro-differential equations, structured by the continuous "trait," and includes density effects as well as mutations. We study the limiting behavior of the model, both analytically and numerically, and apply it to study treatment protocols. We next study a specific mechanism of tumor heterogeneity and its influence on cell growth: the cell-cycle. We derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations, when the number of cells is large. The model is closely tied to experimental data of cell growth, and includes a novel implementation of

  10. Overcoming Resistance of Cancer Cells to PARP-1 Inhibitors with Three Different Drug Combinations

    PubMed Central

    Castel, David; Moshe, Itai; Mazal, Inbal; Cohen, Osher; Avivi, Camila; Rosenblatt, Kineret; Aviel-Ronen, Sarit; Schiby, Ginette; Yahalom, Joachim; Amariglio, Ninette; Pfeffer, Raphael; Lawrence, Yaacov; Toren, Amos; Rechavi, Gideon; Paglin, Shoshana

    2016-01-01

    Inhibitors of poly[ADP-ribose] polymerase 1 (PARPis) show promise for treatment of cancers which lack capacity for homologous recombination repair (HRR). However, new therapeutic strategies are required in order to overcome innate and acquired resistance to these drugs and thus expand the array of cancers that could benefit from them. We show that human cancer cell lines which respond poorly to ABT-888 (a PARPi), become sensitive to it when co-treated with vorinostat (a histone deacetylase inhibitor (HDACi)). Vorinostat also sensitized PARPis insensitive cancer cell lines to 6-thioguanine (6-TG)–a drug that targets PARPis sensitive cells. The sensitizing effect of vorinostat was associated with increased phosphorylation of eukaryotic initiation factor (eIF) 2α which in and of itself increases the sensitivity of cancer cells to ABT-888. Importantly, these drug combinations did not affect survival of normal fibroblasts and breast cells, and significantly increased the inhibition of xenograft tumor growth relative to each drug alone, without affecting the mice weight or their liver and kidney function. Our results show that combination of vorinostat and ABT-888 could potentially prove useful for treatment of cancer with innate resistance to PARPis due to active HRR machinery, while the combination of vorinostat and 6-TG could potentially overcome innate or acquired resistance to PARPis due to secondary or reversal BRCA mutations, to decreased PARP-1 level or to increased expression of multiple drug resistant proteins. Importantly, drugs which increase phosphorylation of eIF2α may mimic the sensitizing effect of vorinostat on cellular response to PARPis or to 6-TG, without activating all of its downstream effectors. PMID:27196668

  11. Overcoming MITF-conferred drug resistance through dual AURKA/MAPK targeting in human melanoma cells

    PubMed Central

    Pathria, G; Garg, B; Borgdorff, V; Garg, K; Wagner, C; Superti-Furga, G; Wagner, S N

    2016-01-01

    MITF (microphthalmia-associated transcription factor) is a frequently amplified lineage-specific oncogene in human melanoma, whose role in intrinsic drug resistance has not been systematically investigated. Utilizing chemical inhibitors for major signaling pathways/cellular processes, we witness MITF as an elicitor of intrinsic drug resistance. To search kinase(s) targets able to bypass MITF-conferred drug resistance, we employed a multi-kinase inhibitor-directed chemical proteomics-based differential affinity screen in human melanocytes carrying ectopic MITF overexpression. A subsequent methodical interrogation informed mitotic Ser/Thr kinase Aurora Kinase A (AURKA) as a crucial regulator of melanoma cell proliferation and migration, independent of the underlying molecular alterations, including TP53 functional status and MITF levels. Crucially, assessing the efficacy of investigational AURKA inhibitor MLN8237, we pre-emptively witness the procurement of a molecular program consistent with acquired drug resistance. This involved induction of multiple MAPK (mitogen-activated protein kinase) signaling pathway components and their downstream proliferation effectors (Cyclin D1 and c-JUN) and apoptotic regulators (MITF and Bcl-2). A concomitant AURKA/BRAF and AURKA/MEK targeting overcame MAPK signaling activation-associated resistance signature in BRAF- and NRAS-mutated melanomas, respectively, and elicited heightened anti-proliferative activity and apoptotic cell death. These findings reveal a previously unreported MAPK signaling-mediated mechanism of immediate resistance to AURKA inhibitors. These findings could bear significant implications for the application and the success of anti-AURKA approaches that have already entered phase-II clinical trials for human melanoma. PMID:26962685

  12. Assessing transmissibility of HIV-1 drug resistance mutations from treated and from drug-naive individuals

    PubMed Central

    Winand, Raf; Theys, Kristof; Eusébio, Mónica; Aerts, Jan; Camacho, Ricardo J.; Gomes, Perpetua; Suchard, Marc A.; Vandamme, Anne-Mieke; Abecasis, Ana B.

    2015-01-01

    Objectives: Surveillance drug resistance mutations (SDRMs) in drug-naive patients are typically used to survey HIV-1-transmitted drug resistance (TDR). We test here how SDRMs in patients failing treatment, the original source of TDR, contribute to assessing TDR, transmissibility and transmission source of SDRMs. Design: This is a retrospective observational study analyzing a Portuguese cohort of HIV-1-infected patients. Methods: The prevalence of SDRMs to protease inhibitors, nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs) in drug-naive and treatment-failing patients was measured for 3554 HIV-1 subtype B patients. Transmission ratio (prevalence in drug-naive/prevalence in treatment-failing patients), average viral load and robust linear regression with outlier detection (prevalence in drug-naive versus in treatment-failing patients) were analyzed and used to interpret transmissibility. Results: Prevalence of SDRMs in drug-naive and treatment-failing patients were linearly correlated, but some SDRMs were classified as outliers – above (PRO: D30N, N88D/S, L90 M, RT: G190A/S/E) or below (RT: M184I/V) expectations. The normalized regression slope was 0.073 for protease inhibitors, 0.084 for NRTIs and 0.116 for NNRTIs. Differences between SDRMs transmission ratios were not associated with differences in viral loads. Conclusion: The significant linear correlation between prevalence of SDRMs in drug-naive and in treatment-failing patients indicates that the prevalence in treatment-failing patients can be useful to predict levels of TDR. The slope is a cohort-dependent estimate of rate of TDR per drug class and outlier detection reveals comparative persistence of SDRMs. Outlier SDRMs with higher transmissibility are more persistent and more likely to have been acquired from drug-naive patients. Those with lower transmissibility have faster reversion dynamics after transmission and are associated with

  13. Investigational drugs to treat methicillin-resistant Staphylococcus aureus

    PubMed Central

    Vuong, Cuong; Yeh, Anthony J; Cheung, Gordon YC; Otto, Michael

    2016-01-01

    Introduction Staphylococcus aureus remains one of the leading causes of morbidity and mortality worldwide. This is to a large extent due to antibiotic-resistant strains, in particular methicillin-resistant S. aureus (MRSA). While the toll of invasive MRSA infections appears to decrease in U.S. hospitals, the rate of community-associated MRSA infections remains constant and there is a surge of MRSA in many other countries. This situation calls for continuing if not increased efforts to find novel strategies to combat MRSA infections. Areas covered This review will provide an overview of current investigational antibiotics in clinical development (up to phase II), and of therapeutic antibodies and alternative drugs against S. aureus in preclinical and clinical development, including a short description of the mechanism of action and a presentation of microbiological and clinical data. Expert opinion Increased recent antibiotic development efforts and results from pathogenesis research have led to several new antibiotics and alternative drugs, as well as a more informed selection of targets for vaccination efforts against MRSA. This developing portfolio of novel anti-staphylococcal drugs will hopefully provide us with additional and more efficient ways to combat MRSA infections in the near future and prevent us from running out of treatment options, even if new resistances arise. PMID:26536498

  14. Delamanid expanded access novel treatment of drug resistant tuberculosis

    PubMed Central

    Rustomjee, Roxana; Zumla, Alimuddin

    2015-01-01

    Tuberculosis (TB) remains a global emergency and is one of the most common infectious disease causes of death in developing countries. Current treatment regimens for multi-drug resistant TB are associated with low treatment success rates, are toxic, and require long duration of treatment. The need for shorter and more effective treatment regimens is urgent. Delamanid (Deltyba, or formerly known as OPC-67683) is a new dihydro-imidazooxazole anti-TB drug active against resistant forms of pulmonary TB. Delamanid kills Mycobacterium tuberculosis by inhibiting the synthesis of mycolic acids required for cell wall synthesis. Whilst delamanid has been included in the WHO Model List of Essential Medicine by the World Health Organization Expert Committee on Selection and Use of Essential Medicines and in international guidance for the treatment of multi-drug resistant TB since April 2014, its access in countries with the greatest need, has proven challenging. This review provides an update on currently available clinical safety and efficacy data on delamanid and offers a discussion on research priorities and recommendations for expedited, expanded access. PMID:26604805

  15. [Drug resistance in nosocomial strains of staphylococci to methicillin].

    PubMed

    Sawicka-Grzelak, A; Rokosz, A; Meisel-Mikołajczyk, F

    1998-01-01

    The aim of the present study was the analysis of drug susceptibility of MRSA and MRCNS strains isolated from patients hospitalized in 14 wards of the State Clinical Hospital No 1 in Warsaw. The strains were identified (ID 32 STAPH), and their susceptibility to antimicrobial agents (ATB STAPH) was determined in ATB system (bioMérieux, France). Four methods were applied to confirm the resistance to methicillin: ATB-plus system, disc-diffusion method (Oxa 1 microgram, Oxoid, U.K.), Crystal MRSA ID (Becton Dickinson-BBL, USA) and agar screen test in TSA medium (Difco, USA) with methicillin (25 mg/l, Sigma, USA). 108 Staphylococcus spp. strains were found in 300 clinical specimens. 56 strains were methicillin-resistant (52%). Among methicillin-resistant strains 13 MRSA, 28 MRSE and 15 of other species were found. All MRSA strains were susceptible to vancomycin, teicoplanin and fusidic acid. MRCNS were susceptible first of all to vancomycin (43/43), minocycline (42/43) and pristinamycin (42/43). On the basis of the obtained results it can be stated that methicillin-resistant staphylococci occur in hospital wards. The greatest number of methicillin-resistant strains was cultured from patients hospitalized in surgery wards (32), methicillin-resistant strains much more frequently occur among coagulase-negative staphylococci, especially in Staphylococcus epidermis. Glycopeptide antibiotics are most active against isolated MRSA strains. The most active therapeutic agent against MRCNS is vancomycin. PMID:9857608

  16. Multiple origins of Plasmodium falciparum dihydropteroate synthetase mutant alleles associated with sulfadoxine resistance in India.

    PubMed

    Lumb, Vanshika; Das, Manoj K; Singh, Neeru; Dev, Vas; Khan, Wajihullah; Sharma, Yagya D

    2011-06-01

    With the spread of chloroquine (CQ)-resistant malaria in India, sulfadoxine-pyrimethamine (SP) alone or in combination with artesunate is used as an alternative antimalarial drug. Due to continuous drug pressure, the Plasmodium falciparum parasite is exhibiting resistance to antifolates because of mutations in candidate genes dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps). Our earlier study on flanking microsatellite markers of dhfr mutant alleles from India had shown a single origin of the pyrimethamine resistance and some minor haplotypes which shared haplotypes with Southeast Asian (Thailand) strains. In the present study, we have analyzed 193 of these Indian P. falciparum isolates for 15 microsatellite loci around dhps to investigate the genetic lineages of the mutant dhps alleles in different parts of the country. Eighty-one of these samples had mutant dhps alleles, of which 62 were from Andaman and Nicobar Islands and the remaining 19 were from mainland India. Of 112 isolates with a wild-type dhps allele, 109 were from mainland India and only 3 were from Andaman and Nicobar Islands. Consistent with the model of selection, the mean expected heterozygosity (H(e)) around mutant dhps alleles (H(e) = 0.55; n = 81) associated with sulfadoxine resistance was lower (P ≤ 0.05) than the mean H(e) around the wild-type dhps allele (H(e) = 0.80; n = 112). There was more genetic diversity in flanking microsatellites of dhps than dhfr among these isolates, which confirms the assertion that dhps mutations are at a very early stage of fixation in the parasite population. Microsatellite haplotypes around various mutant dhps alleles suggest that the resistant dhps alleles have multiple independent origins in India, especially in Andaman and Nicobar Islands. Determining the genetic lineages of the resistant dhps alleles on Andaman and Nicobar Islands and mainland India is significant, given the role of Asia in the intercontinental spread of chloroquine

  17. Surfactant-based drug delivery systems for treating drug-resistant lung cancer.

    PubMed

    Kaur, Prabhjot; Garg, Tarun; Rath, Goutam; Murthy, R S R; Goyal, Amit K

    2016-01-01

    Among all cancers, lung cancer is the major cause of deaths. Lung cancer can be categorized into two classes for prognostic and treatment purposes: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Both categories of cancer are resistant to certain drugs. Various mechanisms behind drug resistance are over-expression of superficial membrane proteins [glycoprotein (P-gp)], lung resistance-associated proteins, aberration of the intracellular enzyme system, enhancement of the cell repair system and deregulation of cell apoptosis. Structure-performance relationships and chemical compatibility are consequently major fundamentals in surfactant-based formulations, with the intention that a great deal investigation is committed to this region. With the purpose to understand the potential of P-gp in transportation of anti-tumor drugs to cancer cells with much effectiveness and specificity, several surfactant-based delivery systems have been developed which may include microspheres, nanosized drug carriers (nanoparticles, nanoemulsions, stealth liposomes, nanogels, polymer-drug conjugates), novel powders, hydrogels and mixed micellar systems intended for systemic and/or localized delivery. PMID:25013959

  18. HIV-1 Drug Resistance Mutations: Potential Applications for Point-of-Care Genotypic Resistance Testing

    PubMed Central

    Rhee, Soo-Yon; Jordan, Michael R.; Raizes, Elliot; Chua, Arlene; Parkin, Neil; Kantor, Rami; Van Zyl, Gert U.; Mukui, Irene; Hosseinipour, Mina C.; Frenkel, Lisa M.; Ndembi, Nicaise; Hamers, Raph L.; Rinke de Wit, Tobias F.; Wallis, Carole L.; Gupta, Ravindra K.; Fokam, Joseph; Zeh, Clement; Schapiro, Jonathan M.; Carmona, Sergio; Katzenstein, David; Tang, Michele; Aghokeng, Avelin F.; De Oliveira, Tulio; Wensing, Annemarie M. J.; Gallant, Joel E.; Wainberg, Mark A.; Richman, Douglas D.; Fitzgibbon, Joseph E.; Schito, Marco; Bertagnolio, Silvia; Yang, Chunfu; Shafer, Robert W.

    2015-01-01

    The increasing prevalence of acquired and transmitted HIV-1 drug resistance is an obstacle to successful antiretroviral therapy (ART) in the low- and middle-income countries (LMICs) hardest hit by the HIV-1 pandemic. Genotypic drug resistance testing could facilitate the choice of initial ART in areas with rising transmitted drug resistance (TDR) and enable care-providers to determine which individuals with virological failure (VF) on a first- or second-line ART regimen require a change in treatment. An inexpensive near point-of-care (POC) genotypic resistance test would be useful in settings where the resources, capacity, and infrastructure to perform standard genotypic drug resistance testing are limited. Such a test would be particularly useful in conjunction with the POC HIV-1 viral load tests that are currently being introduced in LMICs. A POC genotypic resistance test is likely to involve the use of allele-specific point mutation assays for detecting drug-resistance mutations (DRMs). This study proposes that two major nucleoside reverse transcriptase inhibitor (NRTI)-associated DRMs (M184V and K65R) and four major NNRTI-associated DRMs (K103N, Y181C, G190A, and V106M) would be the most useful for POC genotypic resistance testing in LMIC settings. One or more of these six DRMs was present in 61.2% of analyzed virus sequences from ART-naïve individuals with intermediate or high-level TDR and 98.8% of analyzed virus sequences from individuals on a first-line NRTI/NNRTI-containing regimen with intermediate or high-level acquired drug resistance. The detection of one or more of these DRMs in an ART-naïve individual or in a individual with VF on a first-line NRTI/NNRTI-containing regimen may be considered an indication for a protease inhibitor (PI)-containing regimen or closer virological monitoring based on cost-effectiveness or country policy. PMID:26717411

  19. HIV-1 Drug Resistance Mutations: Potential Applications for Point-of-Care Genotypic Resistance Testing.

    PubMed

    Rhee, Soo-Yon; Jordan, Michael R; Raizes, Elliot; Chua, Arlene; Parkin, Neil; Kantor, Rami; Van Zyl, Gert U; Mukui, Irene; Hosseinipour, Mina C; Frenkel, Lisa M; Ndembi, Nicaise; Hamers, Raph L; Rinke de Wit, Tobias F; Wallis, Carole L; Gupta, Ravindra K; Fokam, Joseph; Zeh, Clement; Schapiro, Jonathan M; Carmona, Sergio; Katzenstein, David; Tang, Michele; Aghokeng, Avelin F; De Oliveira, Tulio; Wensing, Annemarie M J; Gallant, Joel E; Wainberg, Mark A; Richman, Douglas D; Fitzgibbon, Joseph E; Schito, Marco; Bertagnolio, Silvia; Yang, Chunfu; Shafer, Robert W

    2015-01-01

    The increasing prevalence of acquired and transmitted HIV-1 drug resistance is an obstacle to successful antiretroviral therapy (ART) in the low- and middle-income countries (LMICs) hardest hit by the HIV-1 pandemic. Genotypic drug resistance testing could facilitate the choice of initial ART in areas with rising transmitted drug resistance (TDR) and enable care-providers to determine which individuals with virological failure (VF) on a first- or second-line ART regimen require a change in treatment. An inexpensive near point-of-care (POC) genotypic resistance test would be useful in settings where the resources, capacity, and infrastructure to perform standard genotypic drug resistance testing are limited. Such a test would be particularly useful in conjunction with the POC HIV-1 viral load tests that are currently being introduced in LMICs. A POC genotypic resistance test is likely to involve the use of allele-specific point mutation assays for detecting drug-resistance mutations (DRMs). This study proposes that two major nucleoside reverse transcriptase inhibitor (NRTI)-associated DRMs (M184V and K65R) and four major NNRTI-associated DRMs (K103N, Y181C, G190A, and V106M) would be the most useful for POC genotypic resistance testing in LMIC settings. One or more of these six DRMs was present in 61.2% of analyzed virus sequences from ART-naïve individuals with intermediate or high-level TDR and 98.8% of analyzed virus sequences from individuals on a first-line NRTI/NNRTI-containing regimen with intermediate or high-level acquired drug resistance. The detection of one or more of these DRMs in an ART-naïve individual or in a individual with VF on a first-line NRTI/NNRTI-containing regimen may be considered an indication for a protease inhibitor (PI)-containing regimen or closer virological monitoring based on cost-effectiveness or country policy. PMID:26717411

  20. Ethanol-resistant polymeric film coatings for controlled drug delivery.

    PubMed

    Rosiaux, Y; Muschert, S; Chokshi, R; Leclercq, B; Siepmann, F; Siepmann, J

    2013-07-10

    The sensitivity of controlled release dosage forms to the presence of ethanol in the gastro intestinal tract is critical, if the incorporated drug is potent and exhibits severe side effects. This is for instance the case for most opioid drugs. The co-ingestion of alcoholic beverages can lead to dose dumping and potentially fatal consequences. For these reasons the marketing of hydromorphone HCl extended release capsules (Palladone) was suspended. The aim of this study was to develop a novel type of controlled release film coatings, which are ethanol-resistant: even the presence of high ethanol concentrations in the surrounding bulk fluid (e.g., up to 40%) should not affect the resulting drug release kinetics. Interestingly, blends of ethylcellulose and medium or high viscosity guar gums provide such ethanol resistance. Theophylline release from pellets coated with the aqueous ethylcellulose dispersion Aquacoat® ECD 30 containing 10 or 15% medium and high viscosity guar gum was virtually unaffected by the addition of 40% ethanol to the release medium. Furthermore, drug release was shown to be long term stable from this type of dosage forms under ambient and stress conditions (without packaging material), upon appropriate curing.

  1. Exosomes in development, metastasis and drug resistance of breast cancer.

    PubMed

    Yu, Dan-dan; Wu, Ying; Shen, Hong-yu; Lv, Meng-meng; Chen, Wei-xian; Zhang, Xiao-hui; Zhong, Shan-liang; Tang, Jin-hai; Zhao, Jian-hua

    2015-08-01

    Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attention has been paid to the role of exosomes in the development of breast cancer, the most life-threatening cancer in women. Breast cancer could induce salivary glands to secret specific exosomes, which could be used as biomarkers in the diagnosis of early breast cancer. Exosome-delivered nucleic acid and proteins partly facilitate the tumorigenesis, metastasis and resistance of breast cancer. Exosomes could also transmit anti-cancer drugs outside breast cancer cells, therefore leading to drug resistance. However, exosomes are effective tools for transportation of anti-cancer drugs with lower immunogenicity and toxicity. This is a promising way to establish a drug delivery system. PMID:26052865

  2. Exosomes in development, metastasis and drug resistance of breast cancer.

    PubMed

    Yu, Dan-dan; Wu, Ying; Shen, Hong-yu; Lv, Meng-meng; Chen, Wei-xian; Zhang, Xiao-hui; Zhong, Shan-liang; Tang, Jin-hai; Zhao, Jian-hua

    2015-08-01

    Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attention has been paid to the role of exosomes in the development of breast cancer, the most life-threatening cancer in women. Breast cancer could induce salivary glands to secret specific exosomes, which could be used as biomarkers in the diagnosis of early breast cancer. Exosome-delivered nucleic acid and proteins partly facilitate the tumorigenesis, metastasis and resistance of breast cancer. Exosomes could also transmit anti-cancer drugs outside breast cancer cells, therefore leading to drug resistance. However, exosomes are effective tools for transportation of anti-cancer drugs with lower immunogenicity and toxicity. This is a promising way to establish a drug delivery system.

  3. Exosomes in development, metastasis and drug resistance of breast cancer

    PubMed Central

    Yu, Dan-dan; Wu, Ying; Shen, Hong-yu; Lv, Meng-meng; Chen, Wei-xian; Zhang, Xiao-hui; Zhong, Shan-liang; Tang, Jin-hai; Zhao, Jian-hua

    2015-01-01

    Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attention has been paid to the role of exosomes in the development of breast cancer, the most life-threatening cancer in women. Breast cancer could induce salivary glands to secret specific exosomes, which could be used as biomarkers in the diagnosis of early breast cancer. Exosome-delivered nucleic acid and proteins partly facilitate the tumorigenesis, metastasis and resistance of breast cancer. Exosomes could also transmit anti-cancer drugs outside breast cancer cells, therefore leading to drug resistance. However, exosomes are effective tools for transportation of anti-cancer drugs with lower immunogenicity and toxicity. This is a promising way to establish a drug delivery system. PMID:26052865

  4. Drug Resistance Strategies and Substance Use among Adolescents in Monterrey, Mexico

    PubMed Central

    Marsiglia, Flavio Francisco; Castillo, Jason; Becerra, David; Nieri, Tanya

    2011-01-01

    This study examined drug resistance strategies and substance use among adolescents from Monterrey, Mexico. The focus was strategies that U.S. adolescents use most often to resist using substances, including refuse (saying no), explain (declining with an explanation), avoid (staying away from situations where drugs are offered), and leave (exiting situations where drugs are offered). Using self-administered questionnaire data from a convenience sample of 327 Mexican students enrolled at two secondary schools (preparatorias), we tested whether frequent use of particular drug resistance strategies predicted actual substance use. Multiple regression results showed that different strategies were effective for different substances, that some effects were mediated by number of offers received, and that certain effects were stronger for females than for males. Students using the refuse strategy reported less cigarette use and less binge drinking; those using the avoid strategy reported less alcohol and cigarette use; and those using the leave strategy reported less binge drinking and, for females only, less marijuana use. Use of the explain strategy was not significantly related to substance use after controlling for use of other strategies. Findings are discussed in terms of Mexican cultural values and their implications for the design of prevention programs for Mexican youth. PMID:18365314

  5. [Occurrence and drug-resistance of beta-hemolytic streptococci].

    PubMed

    Mikołajczyk, Dorota; Budzyńska, Anna; Kaczmarek, Agnieszka; Gospodarek, Eugenia

    2007-01-01

    The aim of this study was the analysis of drug-resistance and frequency appearance of beta-hemolytic streptococci strains which were isolated in 2003-2005 in the University Hospital at the L. Rydygier Collegium Medicum in Bydgoszcz University of Nicolaus Copernicus in Toruń. Among investigeted beta-hemolytic streptococci the most frequency isolated species was S. agalactiae. All isolates examined in our study were susceptible to penicillin, the higest rate of resistance was found for tetracycline. The rates of resistence to macrolide-lincosamide-streptogramin B (phenotyp MLS(B)) were as follows: S. agalactiae (18.7%), S. pyogenes (10.1%), group G streptococci (10.6%) and group C streptococci (8.0%). In our study we presented also a special case patient from which in investigeted period S. agalactiae was isolated twenty eight times. For ten chromosomal DNA isolated from this patient three different PFGE profiles were obtained.

  6. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase

    SciTech Connect

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M. Brett; Ferreira, Antonio M.; Lee, Richard E.; Bashford, Donald; White, Stephen W.

    2013-04-08

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S{sub N}1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  7. Catalysis and sulfa drug resistance in dihydropteroate synthase.

    PubMed

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M Brett; Ferreira, Antonio M; Lee, Richard E; Bashford, Donald; White, Stephen W

    2012-03-01

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S(N)1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  8. Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma

    PubMed Central

    2009-01-01

    Background Drug resistance is a primary hindrance for the efficiency of chemotherapy against osteosarcoma. Although chemotherapy has improved the prognosis of osteosarcoma patients dramatically after introduction of neo-adjuvant therapy in the early 1980's, the outcome has since reached plateau at approximately 70% for 5 year survival. The remaining 30% of the patients eventually develop resistance to multiple types of chemotherapy. In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure incurred from multidrug resistant (MDR) tumor cells, we explored the possibility of loading doxorubicin onto biocompatible, lipid-modified dextran-based polymeric nanoparticles and evaluated the efficacy. Methods Doxorubicin was loaded onto a lipid-modified dextran based polymeric nano-system. The effect of various concentrations of doxorubicin alone or nanoparticle loaded doxorubicin on KHOS, KHOSR2, U-2OS, and U-2OSR2 cells was analyzed. Effects on drug retention, immunofluorescence, Pgp expression, and induction of apoptosis were also analyzed. Results Dextran nanoparticles loaded with doxorubicin had a curative effect on multidrug resistant osteosarcoma cell lines by increasing the amount of drug accumulation in the nucleus via Pgp independent pathway. Nanoparticles loaded with doxorubicin also showed increased apoptosis in osteosarcoma cells as compared with doxorubicin alone. Conclusion Lipid-modified dextran nanoparticles loaded with doxorubicin showed pronounced anti-proliferative effects against osteosarcoma cell lines. These findings may lead to new treatment options for MDR osteosarcoma. PMID:19917123

  9. Reversing Cancer Multidrug Resistance in Xenograft Models via Orchestrating Multiple Actions of Functional Mesoporous Silica Nanoparticles.

    PubMed

    Yang, Debin; Wang, Tingfang; Su, Zhigui; Xue, Lingjing; Mo, Ran; Zhang, Can

    2016-08-31

    A multistimuli responsive drug delivery system (DDS) based on sulfhydryl and amino-cofunctionalized mesoporous silica nanoparticles (SH/NH2-MSNs) has been developed, in which the multifunctional hyaluronic acid (HA) derivatives were grafted onto the SH/NH2-MSNs by disulfide bonds for targeting delivery, controlling drug release and reversing multidrug resistance (MDR). The doxorubicin (Dox) loaded multifunctional HA derivatives modified mesoporous silica nanoparticles (Dox/HHS-MSNs) were enzyme and redox sensitive, which could respond to the intracellular stimuli of hyaluronidase (HAase) and glutathione (GSH) successively and prevent drug leakage before reaching the tumor tissues. The cellular uptake experiments showed that Dox/HHS-MSNs were vulnerable to be endocytosed into the Dox-resistant human breast adenocarcinoma (MCF-7/ADR) cells, efficiently realized the endolysosomal escape and remained in the cytoplasm. Because of orchestrating multiple actions above including active targeting, endolysosomal escape and efficient multilevel drug release, Dox/HHS-MSNs could induce the strongest apoptosis and cytotoxicity of MCF-7/ADR cells. Furthermore, a series of in vivo studies on MCF-7/ADR tumor-bearing xenograft mouse models demonstrated that Dox/HHS-MSNs possessed the enhanced tumor-targeting capacity and the best therapeutic efficacy to reverse cancer MDR. PMID:27420116

  10. Using MALDI-TOF Mass Spectrometry to Identify Drug Resistant Staphylococcal Isolates from Nonhospital Environments in Brunei Darussalam.

    PubMed

    Chong, Ko S; Shazali, Siti A; Xu, Zhen; Cutler, Ronald R; Idris, Adi

    2016-01-01

    Drug resistant bacteria have been a growing threat to the community and hospitals due to the misuse of antibiotics by humans, industrialization, and lack of novel antimicrobials currently available. Little is known about the prevalence of drug resistant bacteria in nonhealthcare environments in Brunei Darussalam and about how antibiotic resistant genes are transferred within these environments. Human contact points from different types of environments in Brunei Darussalam, varying from urban to jungle settings, were swabbed and cultured onto selective media to isolate staphylococci bacteria before performing antimicrobial susceptibility testing on the isolates. The identity of the isolates was determined using MALDI-TOF mass spectrometry (MS). Staphylococci isolates resistant to oxacillin were further tested for their minimum inhibitory concentration (MIC). PCR analysis of the mecA gene, a gene that confers resistance to oxacillin, is done to determine the level of resistance to oxacillin. Ten different staphylococcal species were identified by MALDI-TOF-MS analysis. Out of the 36 staphylococci isolates, 24 were resistant to multiple antibiotics including two isolates which were oxacillin resistant. Some staphylococci isolates had similar antibiotic resistance profiles to other staphylococci isolates of different species in the same location. This work provides the first-ever evidence of drug resistant staphylococci in the nonhospital environment in Brunei Darussalam. PMID:27127505

  11. Using MALDI-TOF Mass Spectrometry to Identify Drug Resistant Staphylococcal Isolates from Nonhospital Environments in Brunei Darussalam

    PubMed Central

    Chong, Ko S.; Shazali, Siti A.; Xu, Zhen; Cutler, Ronald R.; Idris, Adi

    2016-01-01

    Drug resistant bacteria have been a growing threat to the community and hospitals due to the misuse of antibiotics by humans, industrialization, and lack of novel antimicrobials currently available. Little is known about the prevalence of drug resistant bacteria in nonhealthcare environments in Brunei Darussalam and about how antibiotic resistant genes are transferred within these environments. Human contact points from different types of environments in Brunei Darussalam, varying from urban to jungle settings, were swabbed and cultured onto selective media to isolate staphylococci bacteria before performing antimicrobial susceptibility testing on the isolates. The identity of the isolates was determined using MALDI-TOF mass spectrometry (MS). Staphylococci isolates resistant to oxacillin were further tested for their minimum inhibitory concentration (MIC). PCR analysis of the mecA gene, a gene that confers resistance to oxacillin, is done to determine the level of resistance to oxacillin. Ten different staphylococcal species were identified by MALDI-TOF-MS analysis. Out of the 36 staphylococci isolates, 24 were resistant to multiple antibiotics including two isolates which were oxacillin resistant. Some staphylococci isolates had similar antibiotic resistance profiles to other staphylococci isolates of different species in the same location. This work provides the first-ever evidence of drug resistant staphylococci in the nonhospital environment in Brunei Darussalam. PMID:27127505

  12. Regulatory Circuitry Governing Fungal Development, Drug Resistance, and Disease

    PubMed Central

    Shapiro, Rebecca S.; Robbins, Nicole; Cowen, Leah E.

    2011-01-01

    Summary: Pathogenic fungi have become a leading cause of human mortality due to the increasing frequency of fungal infections in immunocompromised populations and the limited armamentarium of clinically useful antifungal drugs. Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are the leading causes of opportunistic fungal infections. In these diverse pathogenic fungi, complex signal transduction cascades are critical for sensing environmental changes and mediating appropriate cellular responses. For C. albicans, several environmental cues regulate a morphogenetic switch from yeast to filamentous growth, a reversible transition important for virulence. Many of the signaling cascades regulating morphogenesis are also required for cells to adapt and survive the cellular stresses imposed by antifungal drugs. Many of these signaling networks are conserved in C. neoformans and A. fumigatus, which undergo distinct morphogenetic programs during specific phases of their life cycles. Furthermore, the key mechanisms of fungal drug resistance, including alterations of the drug target, overexpression of drug efflux transporters, and alteration of cellular stress responses, are conserved between these species. This review focuses on the circuitry regulating fungal morphogenesis and drug resistance and the impact of these pathways on virulence. Although the three human-pathogenic fungi highlighted in this review are those most frequently encountered in the clinic, they represent a minute fraction of fungal diversity. Exploration of the conservation and divergence of core signal transduction pathways across C. albicans, C. neoformans, and A. fumigatus provides a foundation for the study of a broader diversity of pathogenic fungi and a platform for the development of new therapeutic strategies for fungal disease. PMID:21646428

  13. A Method for Amplicon Deep Sequencing of Drug Resistance Genes in Plasmodium falciparum Clinical Isolates from India.

    PubMed

    Rao, Pavitra N; Uplekar, Swapna; Kayal, Sriti; Mallick, Prashant K; Bandyopadhyay, Nabamita; Kale, Sonal; Singh, Om P; Mohanty, Akshaya; Mohanty, Sanjib; Wassmer, Samuel C; Carlton, Jane M

    2016-06-01

    A major challenge to global malaria control and elimination is early detection and containment of emerging drug resistance. Next-generation sequencing (NGS) methods provide the resolution, scalability, and sensitivity required for high-throughput surveillance of molecular markers of drug resistance. We have developed an amplicon sequencing method on the Ion Torrent PGM platform for targeted resequencing of a panel of six Plasmodium falciparum genes implicated in resistance to first-line antimalarial therapy, including artemisinin combination therapy, chloroquine, and sulfadoxine-pyrimethamine. The protocol was optimized using 12 geographically diverse P. falciparum reference strains and successfully applied to multiplexed sequencing of 16 clinical isolates from India. The sequencing results from the reference strains showed 100% concordance with previously reported drug resistance-associated mutations. Single-nucleotide polymorphisms (SNPs) in clinical isolates revealed a number of known resistance-associated mutations and other nonsynonymous mutations that have not been implicated in drug resistance. SNP positions containing multiple allelic variants were used to identify three clinical samples containing mixed genotypes indicative of multiclonal infections. The amplicon sequencing protocol has been designed for the benchtop Ion Torrent PGM platform and can be operated with minimal bioinformatics infrastructure, making it ideal for use in countries that are endemic for the disease to facilitate routine large-scale surveillance of the emergence of drug resistance and to ensure continued success of the malaria treatment policy.

  14. A Method for Amplicon Deep Sequencing of Drug Resistance Genes in Plasmodium falciparum Clinical Isolates from India

    PubMed Central

    Rao, Pavitra N.; Uplekar, Swapna; Kayal, Sriti; Mallick, Prashant K.; Bandyopadhyay, Nabamita; Kale, Sonal; Singh, Om P.; Mohanty, Akshaya; Mohanty, Sanjib; Wassmer, Samuel C.

    2016-01-01

    A major challenge to global malaria control and elimination is early detection and containment of emerging drug resistance. Next-generation sequencing (NGS) methods provide the resolution, scalability, and sensitivity required for high-throughput surveillance of molecular markers of drug resistance. We have developed an amplicon sequencing method on the Ion Torrent PGM platform for targeted resequencing of a panel of six Plasmodium falciparum genes implicated in resistance to first-line antimalarial therapy, including artemisinin combination therapy, chloroquine, and sulfadoxine-pyrimethamine. The protocol was optimized using 12 geographically diverse P. falciparum reference strains and successfully applied to multiplexed sequencing of 16 clinical isolates from India. The sequencing results from the reference strains showed 100% concordance with previously reported drug resistance-associated mutations. Single-nucleotide polymorphisms (SNPs) in clinical isolates revealed a number of known resistance-associated mutations and other nonsynonymous mutations that have not been implicated in drug resistance. SNP positions containing multiple allelic variants were used to identify three clinical samples containing mixed genotypes indicative of multiclonal infections. The amplicon sequencing protocol has been designed for the benchtop Ion Torrent PGM platform and can be operated with minimal bioinformatics infrastructure, making it ideal for use in countries that are endemic for the disease to facilitate routine large-scale surveillance of the emergence of drug resistance and to ensure continued success of the malaria treatment policy. PMID:27008882

  15. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon.

    PubMed Central

    Poole, K; Krebes, K; McNally, C; Neshat, S

    1993-01-01

    An outer membrane protein of 50 kDa (OprK) was overproduced in a siderophore-deficient mutant of Pseudomonas aeruginosa capable of growth on iron-deficient minimal medium containing 2,2'-dipyridyl (0.5 mM). The expression of OprK in the mutant (strain K385) was associated with enhanced resistance to a number of antimicrobial agents, including ciprofloxacin, nalidixic acid, tetracycline, chloramphenicol, and streptonigrin. OprK was inducible in the parent strain by growth under severe iron limitation, as provided, for example, by the addition of dipyridyl or ZnSO4 to the growth medium. The gene encoding OprK (previously identified as ORFC) forms part of an operon composed of three genes (ORFABC) implicated in the secretion of the siderophore pyoverdine. Mutants defective in ORFA, ORFB, or ORFC exhibited enhanced susceptibility to tetracycline, chloramphenicol, ciprofloxacin, streptonigrin, and dipyridyl, consistent with a role for the ORFABC operon in multiple antibiotic resistance in P. aeruginosa. Sequence analysis of ORFC (oprK) revealed that its product is homologous to a class of outer membrane proteins involved in export. Similarly, the products of ORFA and ORFB exhibit homology to previously described bacterial export proteins located in the cytoplasmic membrane. These data suggest that ORFA-ORFB-oprK (ORFC)-dependent drug efflux contributes to multiple antibiotic resistance in P. aeruginosa. We propose, therefore, the designation mexAB (multiple efflux) for ORFAB. Images PMID:8226684

  16. What's in a name? The future of drug-resistant tuberculosis classification.

    PubMed

    Sullivan, Timothy; Ben Amor, Yanis

    2013-04-01

    Due to a recent resurgence in tuberculosis research focused on drug development, several new antituberculosis drugs are in the pipeline, and the standard of care for tuberculosis might soon change. If new drugs replace the current first-line treatment, then existing classifications of resistance, including multidrug-resistant and extensively drug-resistant tuberculosis, might become less relevant. When much needed new drugs reach the market, a new classification system for resistance might need to be devised to describe resistance to these novel agents. Many options for such a system exist, each with its own inherent benefits and challenges. The adoption of new terminology for resistance should be guided by outcomes data from clinical trials in progress, and should be accompanied by increased support for drug susceptibility testing in developing countries to be clinically useful. Consideration of these issues now will hopefully help foster an informed approach to the classification of drug-resistant tuberculosis in the era of new drugs.

  17. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes.

    PubMed

    Shen, Ding-Wu; Pouliot, Lynn M; Hall, Matthew D; Gottesman, Michael M

    2012-07-01

    Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis. PMID:22659329

  18. Cisplatin Resistance: A Cellular Self-Defense Mechanism Resulting from Multiple Epigenetic and Genetic Changes

    PubMed Central

    Shen, Ding-Wu; Pouliot, Lynn M.; Hall, Matthew D.

    2012-01-01

    Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis. PMID:22659329

  19. 75 FR 33317 - Antibacterial Resistance and Diagnostic Device and Drug Development Research for Bacterial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... Development Research for Bacterial Diseases; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION... Diseases Society of America (IDSA) regarding scientific and potential research issues in antibacterial drug resistance, rapid diagnostic device development for bacterial diseases, and antibacterial drug...

  20. First-Line Treatment for Tuberculosis (TB), Drug Resistant TB -- A Visual Tour

    MedlinePlus

    ... Skip Content Marketing Share this: Main Content Area Tuberculosis Drugs First-Line Treatment of TB for Drug- ... ago. See how these drugs work . Multidrug-Resistant Tuberculosis (MDR TB) and Second-Line Treatments MDR TB ...

  1. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid...

  2. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid...

  3. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid...

  4. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid...

  5. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid...

  6. Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells.

    PubMed

    Kim, Kyoung-Ran; Kim, Da-Rae; Lee, Taemin; Yhee, Ji Young; Kim, Byeong-Su; Kwon, Ick Chan; Ahn, Dae-Ro

    2013-03-11

    A DNA tetrahedron is employed for efficient delivery of doxorubicin into drug-resistant breast cancer cells. The drug delivered with the DNA nanoconstruct is considerably cytotoxic, whereas free doxorubicin is virtually non-cytotoxic for the drug-resistant cells. Thus, the DNA tetrahedron, made of the inherently natural and biocompatible material, can be a good candidate for the drug carrier to overcome MDR in cancer cells.

  7. Towards drug repositioning: a unified computational framework for integrating multiple aspects of drug similarity and disease similarity.

    PubMed

    Zhang, Ping; Wang, Fei; Hu, Jianying

    2014-01-01

    In response to the high cost and high risk associated with traditional de novo drug discovery, investigation of potential additional uses for existing drugs, also known as drug repositioning, has attracted increasing attention from both the pharmaceutical industry and the research community. In this paper, we propose a unified computational framework, called DDR, to predict novel drug-disease associations. DDR formulates the task of hypothesis generation for drug repositioning as a constrained nonlinear optimization problem. It utilizes multiple drug similarity networks, multiple disease similarity networks, and known drug-disease associations to explore potential new associations among drugs and diseases with no known links. A large-scale study was conducted using 799 drugs against 719 diseases. Experimental results demonstrated the effectiveness of the approach. In addition, DDR ranked drug and disease information sources based on their contributions to the prediction, thus paving the way for prioritizing multiple data sources and building more reliable drug repositioning models. Particularly, some of our novel predictions of drug-disease associations were supported by clinical trials databases, showing that DDR could serve as a useful tool in drug discovery to efficiently identify potential novel uses for existing drugs. PMID:25954437

  8. Towards Drug Repositioning: A Unified Computational Framework for Integrating Multiple Aspects of Drug Similarity and Disease Similarity

    PubMed Central

    Zhang, Ping; Wang, Fei; Hu, Jianying

    2014-01-01

    In response to the high cost and high risk associated with traditional de novo drug discovery, investigation of potential additional uses for existing drugs, also known as drug repositioning, has attracted increasing attention from both the pharmaceutical industry and the research community. In this paper, we propose a unified computational framework, called DDR, to predict novel drug-disease associations. DDR formulates the task of hypothesis generation for drug repositioning as a constrained nonlinear optimization problem. It utilizes multiple drug similarity networks, multiple disease similarity networks, and known drug-disease associations to explore potential new associations among drugs and diseases with no known links. A large-scale study was conducted using 799 drugs against 719 diseases. Experimental results demonstrated the effectiveness of the approach. In addition, DDR ranked drug and disease information sources based on their contributions to the prediction, thus paving the way for prioritizing multiple data sources and building more reliable drug repositioning models. Particularly, some of our novel predictions of drug-disease associations were supported by clinical trials databases, showing that DDR could serve as a useful tool in drug discovery to efficiently identify potential novel uses for existing drugs. PMID:25954437

  9. Towards drug repositioning: a unified computational framework for integrating multiple aspects of drug similarity and disease similarity.

    PubMed

    Zhang, Ping; Wang, Fei; Hu, Jianying

    2014-01-01

    In response to the high cost and high risk associated with traditional de novo drug discovery, investigation of potential additional uses for existing drugs, also known as drug repositioning, has attracted increasing attention from both the pharmaceutical industry and the research community. In this paper, we propose a unified computational framework, called DDR, to predict novel drug-disease associations. DDR formulates the task of hypothesis generation for drug repositioning as a constrained nonlinear optimization problem. It utilizes multiple drug similarity networks, multiple disease similarity networks, and known drug-disease associations to explore potential new associations among drugs and diseases with no known links. A large-scale study was conducted using 799 drugs against 719 diseases. Experimental results demonstrated the effectiveness of the approach. In addition, DDR ranked drug and disease information sources based on their contributions to the prediction, thus paving the way for prioritizing multiple data sources and building more reliable drug repositioning models. Particularly, some of our novel predictions of drug-disease associations were supported by clinical trials databases, showing that DDR could serve as a useful tool in drug discovery to efficiently identify potential novel uses for existing drugs.

  10. Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole.

    PubMed

    Nascimento, Adriana M; Goldman, Gustavo H; Park, Steven; Marras, Salvatore A E; Delmas, Guillaume; Oza, Uma; Lolans, Karen; Dudley, Michael N; Mann, Paul A; Perlin, David S

    2003-05-01

    A collection of Aspergillus fumigatus mutants highly resistant to itraconazole (RIT) at 100 micro g ml(-1) were selected in vitro (following UV irradiation as a preliminary step) to investigate mechanisms of drug resistance in this clinically important pathogen. Eight of the RIT mutants were found to have a mutation at Gly54 (G54E, -K, or -R) in the azole target gene CYP51A. Primers designed for highly conserved regions of multidrug resistance (MDR) pumps were used in reverse transcriptase PCR amplification reactions to identify novel genes encoding potential MDR efflux pumps in A. fumigatus. Two genes, AfuMDR3 and AfuMDR4, showed prominent changes in expression levels in many RIT mutants and were characterized in more detail. Analysis of the deduced amino acid sequence encoded by AfuMDR3 revealed high similarity to major facilitator superfamily transporters, while AfuMDR4 was a typical member of the ATP-binding cassette superfamily. Real-time quantitative PCR with molecular beacon probes was used to assess expression levels of AfuMDR3 and AfuMDR4. Most RIT mutants showed either constitutive high-level expression of both genes or induction of expression upon exposure to itraconazole. Our results suggest that overexpression of one or both of these newly identified drug efflux pump genes of A. fumigatus and/or selection of drug target site mutations are linked to high-level itraconazole resistance and are mechanistic considerations for the emergence of clinical resistance to itraconazole.

  11. The potential impact of antifungal drug resistance mechanisms on the host immune response to Candida

    PubMed Central

    Lewis, Russell E.; Viale, Pierluigi; Kontoyiannis, Dimitrios P.

    2012-01-01

    A large number of studies have been published over the last two decades examining molecular mechanisms of antifungal resistance in Candida species. However, few of these studies have explored how such mechanisms influence the host immune response to this opportunistic pathogen. With recent advances in our understanding of host immunity to Candida, a body of emerging literature has begun to explore how intrinsic and adaptive resistance mechanisms in Candida alter host immune system evasion and detection, which could have important implications for understanding (1) why certain resistance mechanisms and Candida species predominate in certain patient populations, (2) the biological context for understanding why high in vitro levels of resistance in may not necessarily correlate with risk of drug failure in vivo and (3) insight into effective immunotherapeutic strategies for combatting Candida resistance. Although this area of research is still in its infancy, two themes are emerging: First, the immunoevasion and intracellular persistence of C. glabrata may be a key factor in the capability of this species to persist in the course of multiple antifungal treatments and develop multidrug resistance. Second, changes in the cell wall associated with antifungal resistance often favor evasion for the host immune response. PMID:22722245

  12. Haemonchus contortus as a paradigm and model to study anthelmintic drug resistance.

    PubMed

    Gilleard, John S

    2013-10-01

    Anthelmintic resistance is a major problem for the control livestock parasites and a potential threat to the sustainability of community-wide treatment programmes being used to control human parasites in the developing world. Anthelmintic resistance is essentially a complex quantitative trait in which multiple mutations contribute to the resistance phenotype in an additive manner. Consequently, a combination of forward genetic and genomic approaches are needed to identify the causal mutations and quantify their contribution to the resistance phenotype. Therefore, there is a need to develop genetic and genomic approaches for key parasite species identified as relevant models. Haemonchus contortus, a gastro-intestinal parasite of sheep, has shown a remarkable propensity to develop resistance to all the drugs used in its control. Partly because of this, and partly because of its experimental amenability, research on this parasite has contributed more than any other to our understanding of anthelmintic resistance. H. contortus offers a variety of advantages as an experimental system including the ability to undertake genetic crosses; a prerequisite for genetic mapping. This review will discuss the current progress on developing H. contortus as a model system in which to study anthelmintic resistance. PMID:23998513

  13. Mechanisms of drug resistance that target the androgen axis in castration resistant prostate cancer (CRPC).

    PubMed

    Penning, Trevor M

    2015-09-01

    Castrate resistant prostate cancer (CRPC) is the fatal-form of prostate cancer and remains androgen dependent. The reactivation of the androgen axis occurs due to adaptive intratumoral androgen biosynthesis which can be driven by adrenal androgens and/or by changes in the androgen receptor (AR) including AR gene amplification. These mechanisms are targeted with P450c17 inhibitors e.g., abiraterone acetate and AR super-antagonists e.g., enzalutamide, respectively. Clinical experience indicates that with either agent an initial response is followed by drug resistance and the patient clinically progresses on these agents. This article reviews the mechanisms of intrinsic and acquired drug resistance that target the androgen axis and how this might be surmounted.

  14. Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens

    PubMed Central

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N.

    2015-01-01

    Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation is drug repurposing, which is to find new applications outside the scope of the original medical indication of the drug. Ebselen, an organoselenium clinical molecule, possesses potent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Staphylococcus, Streptococcus, and Enterococcus, but not against Gram-negative pathogens. Moreover, the activity of ebselen against Gram-positive pathogens exceeded those activities determined for vancomycin and linezolid, drugs of choice for treatment of Enterococcus and Staphylococcus infections. The minimum inhibitory concentrations of ebselen at which 90% of clinical isolates of Enterococcus and Staphylococcus were inhibited (MIC90) were found to be 0.5 and 0.25 mg/L, respectively. Ebselen showed significant clearance of intracellular methicillin-resistant S. aureus (MRSA) in comparison to vancomycin and linezolid. We demonstrated that ebselen inhibits the bacterial translation process without affecting mitochondrial biogenesis. Additionally, ebselen was found to exhibit excellent activity in vivo in a Caenorhabditis elegans MRSA-infected whole animal model. Finally, ebselen showed synergistic activities with conventional antimicrobials against MRSA. Taken together, our results demonstrate that ebselen, with its potent antimicrobial activity and safety profiles, can be potentially used to treat multidrug resistant Gram-positive bacterial infections alone or in combination with other antibiotics and should be further clinically evaluated. PMID:26222252

  15. Resistance to the antimitotic drug estramustine is distinct from the multidrug resistant phenotype.

    PubMed Central

    Speicher, L. A.; Sheridan, V. R.; Godwin, A. K.; Tew, K. D.

    1991-01-01

    Following EMS mutagenesis, three estramustine (EM) resistant DU 145 human prostatic carcinoma cell lines were clonally selected by exposure to incrementally increasing concentrations of the drug. Although only low levels of resistance (approximately 3-fold) were attainable, this resistance was stable in the absence of continuous drug exposure. These EM-resistant clones (EMR 4,9,12) did not exhibit cross resistance to vinblastine, taxol, or adriamycin, and had collateral sensitivity to cytochalasin B. None of the lines had elevated expression of P-glycoprotein mRNA or glutathione S-transferase activity, suggesting a phenotype distinct from the classic multi-drug resistance phenotype. This conclusion was supported further by the observation that two MDR cell lines (FLC mouse erythroleukaemic and SKOV3 human ovarian carcinoma cells) showed sensitivity to EM. Fluorescent activated cell sorting analysis of the effects of EM on cell cycle traverse revealed that at EM concentrations up to 20 microM an increasing percentage of wild type cells were blocked in G2/M; no such effect occurred in EMR lines. Differential interference contrast microscopy was employed to study EM's effect on mitosis. EMR lines were able to form functional, albeit smaller, spindles at EM concentrations that resulted in chromosomal disorganisation and inhibition of mitotic progression in wild type cells. EMR lines were able to progress through mitosis and cytokinesis at the same rate as untreated cells. Tritiated EM was used to evaluate potential drug uptake/efflux mutations in ERM clones. EMR 4 and 9 incorporate less EM than wild type cells; however, they have significantly decreased cellular volumes. The initial efflux rate constants for EMR clones were greater than for wild type cells. Within 5 min greater than 70% of the drug was lost from resistant cells compared to a 50% loss by the wild type. Although the specific mechanisms of resistance have yet to be defined, the lack of collateral

  16. Targeting the miR-221-222/PUMA/BAK/BAX Pathway Abrogates Dexamethasone Resistance in Multiple Myeloma.

    PubMed

    Zhao, Jian-Jun; Chu, Zhang-Bo; Hu, Yu; Lin, Jianhong; Wang, Zhongqiu; Jiang, Meng; Chen, Ming; Wang, Xujun; Kang, Yue; Zhou, Yangsheng; Chonghaile, Triona Ni; Johncilla, Melanie E; Tai, Yu-Tzu; Cheng, Jin Q; Letai, Antony; Munshi, Nikhil C; Anderson, Kenneth C; Carrasco, Ruben D

    2015-10-15

    Despite recent therapeutic advances that have doubled the median survival time of patients with multiple myeloma, intratumor genetic heterogeneity contributes to disease progression and emergence of drug resistance. miRNAs are noncoding small RNAs that play important roles in the regulation of gene expression and have been implicated in cancer progression and drug resistance. We investigated the role of the miR-221-222 family in dexamethasone-induced drug resistance in multiple myeloma using the isogenic cell lines MM1R and MM1S, which represent models of resistance and sensitivity, respectively. Analysis of array comparative genome hybridization data revealed gain of chromosome X regions at band p11.3, wherein the miR-221-222 resides, in resistant MM1R cells but not in sensitive MM1S cells. DNA copy number gains in MM1R cells were associated with increased miR-221-222 expression and downregulation of p53-upregulated modulator of apoptosis (PUMA) as a likely proapoptotic target. We confirmed PUMA mRNA as a direct target of miR-221-222 in MM1S and MM1R cells by both gain-of-function and loss-of-function studies. In addition, miR-221-222 treatment rendered MM1S cells resistant to dexamethasone, whereas anti-miR-221-222 partially restored the dexamethasone sensitivity of MM1R cells. These studies have uncovered a role for miR-221-222 in multiple myeloma drug resistance and suggest a potential therapeutic role for inhibitors of miR-221-222 binding to PUMA mRNA as a means of overcoming dexamethasone resistance in patients. The clinical utility of this approach is predicated on the ability of antisense miR-221-222 to increase survival while reducing tumor burden and is strongly supported by the metastatic propensity of MM1R cells in preclinical mouse xenograft models of multiple myeloma. Moreover, our observation of increased levels of miR-221-222 with decreased PUMA expression in multiple myeloma cells from patients at relapse versus untreated controls suggests an even

  17. Spectrum and drug resistance of pathogens from patients with burns.

    PubMed

    Sun, Feng-Jun; Zhang, Xiao-Bing; Fang, Yadong; Chen, Jianhong; Xing, Haiyan; Shi, Huiqing; Feng, Wei; Xia, Peiyuan

    2012-12-01

    Microbial infection is an obstacle of burn treatment. However, little is known on what types of microbial infection dominate in the burn center and how the dynamic change of those microorganisms occurs during the past several years in China. We conducted a retrospective study of nosocomial infection (NI) in a large burn center to analyze the spectrum and antimicrobial resistance of microbial isolates from January 2003 to December 2010. We studied 989 isolates from 677 patients who had signs and symptoms of infection 48h after admission. The number of NIs per 100 admissions was 10.9. The commonest isolates were Pseudomonas aeruginosa (23.1%), Staphylococcus aureus (18.7%), and Candida (11.4%). The result indicated that the numbers of patients with Acinetobacter sp. infection increased (P=0.004), but with Proteus mirabilis infection decreased (P=0.004). The isolated Acinetobacter sp. and P. aeruginosa were consistently highly resistant to almost all antibiotics tested. Notably, more frequent Acinetobacter sp. isolates appeared to be resistant to amikacin, gentamicin, tobramycin, ceftazidim, piperacillin, tazobactam, levofloxacin, and ciprofloxacin and more frequent Escherichia coli isolates were resistant to ceftazidime and aztreonam at the late time period although the P. aeruginosa and E. coli isolates were sensitive to less used ciprofloxacin and piperacillin/tazobactam. The increased rates of drug-resistant isolates in the later period might be associated with regular prophylactic therapy with antibiotics. PMID:22795514

  18. The epidemiology and spread of drug resistant human influenza viruses.

    PubMed

    Hurt, Aeron C

    2014-10-01

    Significant changes in the circulation of antiviral-resistant influenza viruses have occurred over the last decade. The emergence and continued circulation of adamantane-resistant A(H3N2) and A(H1N1)pdm09 viruses mean that the adamantanes are no longer recommended for use. Resistance to the newer class of drugs, the neuraminidase inhibitors, is typically associated with poorer viral replication and transmission. But 'permissive' mutations, that compensated for impairment of viral function in A(H1N1) viruses during 2007/2008, enabled them to acquire the H275Y NA resistance mutation without fitness loss, resulting in their rapid global spread. Permissive mutations now appear to be present in A(H1N1)pdm09 viruses thereby increasing the risk that oseltamivir-resistant A(H1N1)pdm09 viruses may also spread globally, a concerning scenario given that oseltamivir is the most widely used influenza antiviral.

  19. Risk Factors for Acquisition of Drug Resistance during Multidrug-Resistant Tuberculosis Treatment, Arkhangelsk Oblast, Russia, 2005–2010

    PubMed Central

    Ershova, Julia; Vlasova, Natalia; Nikishova, Elena; Tarasova, Irina; Eliseev, Platon; Maryandyshev, Andrey O.; Shemyakin, Igor G.; Kurbatova, Ekaterina; Cegielski, J. Peter

    2015-01-01

    Acquired resistance to antituberculosis drugs decreases effective treatment options and the likelihood of treatment success. We identified risk factors for acquisition of drug resistance during treatment for multidrug-resistant tuberculosis (MDR TB) and evaluated the effect on treatment outcomes. Data were collected prospectively from adults from Arkhangelsk Oblast, Russia, who had pulmonary MDR TB during 2005–2008. Acquisition of resistance to capreomycin and of extensively drug-resistant TB were more likely among patients who received <3 effective drugs than among patients who received >3 effective drugs (9.4% vs. 0% and 8.6% vs. 0.8%, respectively). Poor outcomes were more likely among patients with acquired capreomycin resistance (100% vs. 25.9%), acquired ofloxacin resistance (83.6% vs. 22.7%), or acquired extensive drug resistance (100% vs. 24.4%). To prevent acquired drug resistance and poor outcomes, baseline susceptibility to first- and second-line drugs should be determined quickly, and treatment should be adjusted to contain >3 effective drugs. PMID:25988954

  20. Risk factors for acquisition of drug resistance during multidrug-resistant tuberculosis treatment, Arkhangelsk Oblast, Russia, 2005-2010.

    PubMed

    Smith, Sarah E; Ershova, Julia; Vlasova, Natalia; Nikishova, Elena; Tarasova, Irina; Eliseev, Platon; Maryandyshev, Andrey O; Shemyakin, Igor G; Kurbatova, Ekaterina; Cegielski, J Peter

    2015-06-01

    Acquired resistance to antituberculosis drugs decreases effective treatment options and the likelihood of treatment success. We identified risk factors for acquisition of drug resistance during treatment for multidrug-resistant tuberculosis (MDR TB) and evaluated the effect on treatment outcomes. Data were collected prospectively from adults from Arkhangelsk Oblast, Russia, who had pulmonary MDR TB during 2005-2008. Acquisition of resistance to capreomycin and of extensively drug-resistant TB were more likely among patients who received <3 effective drugs than among patients who received >3 effective drugs (9.4% vs. 0% and 8.6% vs. 0.8%, respectively). Poor outcomes were more likely among patients with acquired capreomycin resistance (100% vs. 25.9%), acquired ofloxacin resistance (83.6% vs. 22.7%), or acquired extensive drug resistance (100% vs. 24.4%). To prevent acquired drug resistance and poor outcomes, baseline susceptibility to first- and second-line drugs should be determined quickly, and treatment should be adjusted to contain >3 effective drugs. PMID:25988954

  1. Risk factors for acquisition of drug resistance during multidrug-resistant tuberculosis treatment, Arkhangelsk Oblast, Russia, 2005-2010.

    PubMed

    Smith, Sarah E; Ershova, Julia; Vlasova, Natalia; Nikishova, Elena; Tarasova, Irina; Eliseev, Platon; Maryandyshev, Andrey O; Shemyakin, Igor G; Kurbatova, Ekaterina; Cegielski, J Peter

    2015-06-01

    Acquired resistance to antituberculosis drugs decreases effective treatment options and the likelihood of treatment success. We identified risk factors for acquisition of drug resistance during treatment for multidrug-resistant tuberculosis (MDR TB) and evaluated the effect on treatment outcomes. Data were collected prospectively from adults from Arkhangelsk Oblast, Russia, who had pulmonary MDR TB during 2005-2008. Acquisition of resistance to capreomycin and of extensively drug-resistant TB were more likely among patients who received <3 effective drugs than among patients who received >3 effective drugs (9.4% vs. 0% and 8.6% vs. 0.8%, respectively). Poor outcomes were more likely among patients with acquired capreomycin resistance (100% vs. 25.9%), acquired ofloxacin resistance (83.6% vs. 22.7%), or acquired extensive drug resistance (100% vs. 24.4%). To prevent acquired drug resistance and poor outcomes, baseline susceptibility to first- and second-line drugs should be determined quickly, and treatment should be adjusted to contain >3 effective drugs.

  2. In Silico Repositioning-Chemogenomics Strategy Identifies New Drugs with Potential Activity against Multiple Life Stages of Schistosoma mansoni

    PubMed Central

    Neves, Bruno J.; Braga, Rodolpho C.; Bezerra, José C. B.; Cravo, Pedro V. L.; Andrade, Carolina H.

    2015-01-01

    Morbidity and mortality caused by schistosomiasis are serious public health problems in developing countries. Because praziquantel is the only drug in therapeutic use, the risk of drug resistance is a concern. In the search for new schistosomicidal drugs, we performed a target-based chemogenomics screen of a dataset of 2,114 proteins to identify drugs that are approved for clinical use in humans that may be active against multiple life stages of Schistosoma mansoni. Each of these proteins was treated as a potential drug target, and its amino acid sequence was used to interrogate three databases: Therapeutic Target Database (TTD), DrugBank and STITCH. Predicted drug-target interactions were refined using a combination of approaches, including pairwise alignment, conservation state of functional regions and chemical space analysis. To validate our strategy, several drugs previously shown to be active against Schistosoma species were correctly predicted, such as clonazepam, auranofin, nifedipine, and artesunate. We were also able to identify 115 drugs that have not yet been experimentally tested against schistosomes and that require further assessment. Some examples are aprindine, gentamicin, clotrimazole, tetrabenazine, griseofulvin, and cinnarizine. In conclusion, we have developed a systematic and focused computer-aided approach to propose approved drugs that may warrant testing and/or serve as lead compounds for the design of new drugs against schistosomes. PMID:25569258

  3. In silico repositioning-chemogenomics strategy identifies new drugs with potential activity against multiple life stages of Schistosoma mansoni.

    PubMed

    Neves, Bruno J; Braga, Rodolpho C; Bezerra, José C B; Cravo, Pedro V L; Andrade, Carolina H

    2015-01-01

    Morbidity and mortality caused by schistosomiasis are serious public health problems in developing countries. Because praziquantel is the only drug in therapeutic use, the risk of drug resistance is a concern. In the search for new schistosomicidal drugs, we performed a target-based chemogenomics screen of a dataset of 2,114 proteins to identify drugs that are approved for clinical use in humans that may be active against multiple life stages of Schistosoma mansoni. Each of these proteins was treated as a potential drug target, and its amino acid sequence was used to interrogate three databases: Therapeutic Target Database (TTD), DrugBank and STITCH. Predicted drug-target interactions were refined using a combination of approaches, including pairwise alignment, conservation state of functional regions and chemical space analysis. To validate our strategy, several drugs previously shown to be active against Schistosoma species were correctly predicted, such as clonazepam, auranofin, nifedipine, and artesunate. We were also able to identify 115 drugs that have not yet been experimentally tested against schistosomes and that require further assessment. Some examples are aprindine, gentamicin, clotrimazole, tetrabenazine, griseofulvin, and cinnarizine. In conclusion, we have developed a systematic and focused computer-aided approach to propose approved drugs that may warrant testing and/or serve as lead compounds for the design of new drugs against schistosomes.

  4. Analysis of hepatitis B virus genotyping and drug resistance gene mutations based on massively parallel sequencing.

    PubMed

    Han, Yingxin; Zhang, Yinxin; Mei, Yanhua; Wang, Yuqi; Liu, Tao; Guan, Yanfang; Tan, Deming; Liang, Yu; Yang, Ling; Yi, Xin

    2013-11-01

    Drug resistance to nucleoside analogs is a serious problem worldwide. Both drug resistance gene mutation detection and HBV genotyping are helpful for guiding clinical treatment. Total HBV DNA from 395 patients who were treated with single or multiple drugs including Lamivudine, Adefovir, Entecavir, Telbivudine, Tenofovir and Emtricitabine were sequenced using the HiSeq 2000 sequencing system and validated using the 3730 sequencing system. In addition, a mixed sample of HBV plasmid DNA was used to determine the cutoff value for HiSeq-sequencing, and 52 of the 395 samples were sequenced three times to evaluate the repeatability and stability of this technology. Of the 395 samples sequenced using both HiSeq and 3730 sequencing, the results from 346 were consistent, and the results from 49 were inconsistent. Among the 49 inconsistent results, 13 samples were detected as drug-resistance-positive using HiSeq but negative using 3730, and the other 36 samples showed a higher number of drug-resistance-positive gene mutations using HiSeq 2000 than using 3730. Gene mutations had an apparent frequency of 1% as assessed by the plasmid testing. Therefore, a 1% cutoff value was adopted. Furthermore, the experiment was repeated three times, and the same results were obtained in 49/52 samples using the HiSeq sequencing system. HiSeq sequencing can be used to analyze HBV gene mutations with high sensitivity, high fidelity, high throughput and automation and is a potential method for hepatitis B virus gene mutation detection and genotyping.

  5. A Platform for Rapid, Quantitative Assessment of Multiple Drug Combinations Simultaneously in Solid Tumors In Vivo

    PubMed Central

    Grenley, Marc O.; Casalini, Joseph R.; Tretyak, Ilona; Ditzler, Sally H.; Thirstrup, Derek J.; Frazier, Jason P.; Pierce, Daniel W.; Carleton, Michael; Klinghoffer, Richard A.

    2016-01-01

    While advances in high-throughput screening have resulted in increased ability to identify synergistic anti-cancer drug combinations, validation of drug synergy in the in vivo setting and prioritization of combinations for clinical development remain low-throughput and resource intensive. Furthermore, there is currently no viable method for prospectively assessing drug synergy directly in human patients in order to potentially tailor therapies. To address these issues we have employed the previously described CIVO platform and developed a quantitative approach for investigating multiple combination hypotheses simultaneously in single living tumors. This platform provides a rapid, quantitative and cost effective approach to compare and prioritize drug combinations based on evidence of synergistic tumor cell killing in the live tumor context. Using a gemcitabine resistant model of pancreatic cancer, we efficiently investigated nine rationally selected Abraxane-based combinations employing only 19 xenografted mice. Among the drugs tested, the BCL2/BCLxL inhibitor ABT-263 was identified as the one agent that synergized with Abraxane® to enhance acute induction of localized apoptosis in this model of human pancreatic cancer. Importantly, results obtained with CIVO accurately predicted the outcome of systemic dosing studies in the same model where superior tumor regression induced by the Abraxane/ABT-263 combination was observed compared to that induced by either single agent. This supports expanded use of CIVO as an in vivo platform for expedited in vivo drug combination validation and sets the stage for performing toxicity-sparing drug combination studies directly in cancer patients with solid malignancies. PMID:27359113

  6. Definition of drug-resistant epilepsy: is it evidence based?

    PubMed

    Wiebe, Samuel

    2013-05-01

    Clinical case definitions are the cornerstone of clinical communication and of clinical and epidemiologic research. The ramifications of establishing a case definition are extensive, including potentially large changes in epidemiologic estimates of frequency, and decisions for clinical management. Yet, defining a condition entails numerous challenges such as defining the scope and purpose, incorporating the strongest evidence base with clinical expertise, accounting for patients' values, and considering impact on care. The clinical case definition of drug-resistant epilepsy, in addition, must address what constitutes an adequate intervention for an individual drug, what are the outcomes of relevance, what period of observation is sufficient to determine success or failure, how many medications should be tried, whether seizure frequency should play a role, and what is the role of side effects and tolerability. On the other hand, the principles of evidence-based medicine (EBM) aim at providing a systematic approach to incorporating the best available evidence into the process of clinical decision for individual patients. The case definition of drug-resistant epilepsy proposed by the the International League Against Epilepsy (ILAE) in 2009 is evaluated in terms of the principles of EBM as well as the stated goals of the authors of the definition.

  7. HIV Treatment Adherence, Drug Resistance, Virologic Failure: Evolving Concepts

    PubMed Central

    Nachega, Jean B.; Marconi, Vincent C.; van Zyl, Gert U.; Gardner, Edward M.; Preiser, Wolfgang; Hong, Steven Y.; Mills, Edward J.; Gross, Robert

    2016-01-01

    Poor adherence to combined antiretroviral therapy (cART) has been shown to be a major determinant of virologic failure, emergence of drug resistant virus, disease progression, hospitalizations, mortality, and health care costs. While high adherence levels can be achieved in both resource-rich and resource-limited settings following initiation of cART, long-term adherence remains a challenge regardless of available resources. Barriers to optimal adherence may originate from individual (biological, socio-cultural, behavioral), pharmacological, and societal factors. Although patients and providers should continuously strive for maximum adherence to cART, there is accumulating evidence that each class of antiretroviral therapy has specific adherence-drug resistance relationship characteristics allowing certain regimens more flexibility than others. There is not a universally accepted measure for cART adherence, since each method has distinct advantages and disadvantages including cost, complexity, accuracy, precision, intrusiveness and bias. Development of a real-time cART adherence monitoring tool will enable the development of novel, pre-emptive adherence-improving strategies. The application of these strategies may ultimately prove to be the most cost-effective method to reduce morbidity and mortality for the individual and decrease the likelihood of HIV transmission and emergence of resistance in the community. PMID:21406048

  8. MULTI-FUNCTIONAL NANOCARRIERS TO OVERCOME TUMOR DRUG RESISTANCE

    PubMed Central

    Jabr-Milane, Lara S.; van Vlerken, Lilian E.; Yadav, Sunita; Amiji, Mansoor M.

    2008-01-01

    The development of resistance to variety of chemotherapeutic agents is one of the major challenges in effective cancer treatment. Tumor cells are able to generate a multi-drug resistance (MDR) phenotype due to microenvironmental selection pressures. This review addresses the use of nanotechnology-based delivery systems to overcome MDR in solid tumors. Our own work along with evidence from the literature illustrates the development of various types of engineered nanocarriers specifically designed to enhance tumor-targeted delivery through passive and active targeting strategies. Additionally, multi-functional nanocarriers are developed to enhance drug delivery and overcome MDR by either simultaneous or sequential delivery of resistance modulators (e.g., with P-glycoprotein substrates), agents that regulate intracellular pH, agents that lower the apoptotic threshold (e.g., with ceramide), or in combination with energy delivery (e.g., sound, heat, and light) to enhance the effectiveness of anticancer agents in refractory tumors. In preclinical studies, the use of multi-functional nanocarriers has shown significant promise in enhancing cancer therapy, especially against MDR tumors. PMID:18538481

  9. Map the gap: missing children with drug-resistant tuberculosis

    PubMed Central

    Yuen, C. M.; Rodriguez, C. A.; Keshavjee, S.

    2015-01-01

    Background: The lack of published information about children with multidrug-resistant tuberculosis (MDR-TB) is an obstacle to efforts to advocate for better diagnostics and treatment. Objective: To describe the lack of recognition in the published literature of MDR-TB and extensively drug-resistant TB (XDR-TB) in children. Design: We conducted a systematic search of the literature published in countries that reported any MDR- or XDR-TB case by 2012 to identify MDR- or XDR-TB cases in adults and in children. Results: Of 184 countries and territories that reported any case of MDR-TB during 2005–2012, we identified adult MDR-TB cases in the published literature in 143 (78%) countries and pediatric MDR-TB cases in 78 (42%) countries. Of the 92 countries that reported any case of XDR-TB, we identified adult XDR-TB cases in the published literature in 55 (60%) countries and pediatric XDR-TB cases for 9 (10%) countries. Conclusion: The absence of publications documenting child MDR- and XDR-TB cases in settings where MDR- and XDR-TB in adults have been reported indicates both exclusion of childhood disease from the public discourse on drug-resistant TB and likely underdetection of sick children. Our results highlight a large-scale lack of awareness about children with MDR- and XDR-TB. PMID:26400601

  10. Trastuzumab emtansine: mechanisms of action and drug resistance

    PubMed Central

    2014-01-01

    Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate that is effective and generally well tolerated when administered as a single agent to treat advanced breast cancer. Efficacy has now been demonstrated in randomized trials as first line, second line, and later than the second line treatment of advanced breast cancer. T-DM1 is currently being evaluated as adjuvant treatment for early breast cancer. It has several mechanisms of action consisting of the anti-tumor effects of trastuzumab and those of DM1, a cytotoxic anti-microtubule agent released within the target cells upon degradation of the human epidermal growth factor receptor-2 (HER2)-T-DM1 complex in lysosomes. The cytotoxic effect of T-DM1 likely varies depending on the intracellular concentration of DM1 accumulated in cancer cells, high intracellular levels resulting in rapid apoptosis, somewhat lower levels in impaired cellular trafficking and mitotic catastrophe, while the lowest levels lead to poor response to T-DM1. Primary resistance of HER2-positive metastatic breast cancer to T-DM1 appears to be relatively infrequent, but most patients treated with T-DM1 develop acquired drug resistance. The mechanisms of resistance are incompletely understood, but mechanisms limiting the binding of trastuzumab to cancer cells may be involved. The cytotoxic effect of T-DM1 may be impaired by inefficient internalization or enhanced recycling of the HER2-T-DM1 complex in cancer cells, or impaired lysosomal degradation of trastuzumab or intracellular trafficking of HER2. The effect of T-DM1 may also be compromised by multidrug resistance proteins that pump DM1 out of cancer cells. In this review we discuss the mechanism of action of T-DM1 and the key clinical results obtained with it, the combinations of T-DM1 with other cytotoxic agents and anti-HER drugs, and the potential resistance mechanisms and the strategies to overcome resistance to T-DM1. PMID:24887180

  11. [Drug resistance testing of Mycobacterium tuberculosis isolates from sputum in Chad].

    PubMed

    Abdelhadi, O; Ndokaïn, J; Ali, M Moussa; Friocourt, V; Mortier, E; Heym, B

    2012-02-01

    Culture and resistance testing of Mycobacterium tuberculosis are not regularly performed in Chad. Sputa were obtained from three different categories of hospitals (district, regional and national) in Chad. All examined sputa were smear-positive and were investigated by culture and drug resistance testing for first-line antituberculosis drugs. From 232 sputa positive for acid-fast bacilli, 135 isolates of M. tuberculosis from different patients (46 women, 89 men, mean age 34 years) were analyzed. All the patients except one corresponded to new cases of tuberculosis. In total, 27 out of 135 isolates (20%) were resistant to at least one major antituberculosis drug. Resistance to isoniazid was the most frequent resistance observed, with 18 isolates (13%) presenting at least this resistance. Three isolates (2.2%) were resistant to isoniazid and rifampicin (multidrug resistance MDR) including one isolate being concomitantly resistant to streptomycin and ethambutol. The resistance rate differed in relation to the category of the hospital; the most important resistance rate was observed in regional hospitals (33%), while it was 16% and 14% in the national and district hospitals, respectively. HIV serology was performed in 81 patients, among whom 20 (25%) were positive. This is the first study that shows that drug resistance of M. tuberculosis is present in Chad. Besides single drug-resistant isolates, multidrug-resistant strains of M. tuberculosis could also be identified. This result highlights the urgency of initiating actions to detect drug resistance and limit the spread of drug-resistant strains.

  12. Drug resistance to Mycobacterium tuberculosis: from the traditional Chinese view to modern systems biology.

    PubMed

    Xu, Yuhui; Zhang, Zongde; Sun, Zhaogang

    2015-01-01

    The pathogen, Mycobacterium tuberculosis (M. tuberculosis) is a well-evolved, organized pathogen that has developed drug resistance, specifically multidrug resistance (MDR) and extensive drug resistance (XDR). This review primarily summarizes the mechanisms of drug resistance by M. tuberculosis according to the traditional Chinese view. The traditional Chinese view of drug resistance includes: the physical barrier of the cell wall; mutations relating to current anti-TB agents; drug efflux pumps; and drug stress, including the SOS response systems, the mismatch repair systems and the toxin-antitoxin systems. In addition, this review addresses the integrated systems biology of genomics, transcriptomics, proteomics, metabolomics and interactomics. Development of the various levels of systems biology has enabled determination of the anatomy of bacteria. Finally, the current review proposes that further investigation regarding the population of individuals with a high drug metabolic speed is vital to further understand drug resistance in M. tuberculosis.

  13. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates.

    PubMed

    Straimer, Judith; Gnädig, Nina F; Witkowski, Benoit; Amaratunga, Chanaki; Duru, Valentine; Ramadani, Arba Pramundita; Dacheux, Mélanie; Khim, Nimol; Zhang, Lei; Lam, Stephen; Gregory, Philip D; Urnov, Fyodor D; Mercereau-Puijalon, Odile; Benoit-Vical, Françoise; Fairhurst, Rick M; Ménard, Didier; Fidock, David A

    2015-01-23

    The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases and measured ring-stage survival rates after drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13 to 49% to 0.3 to 2.4% after the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from ≤0.6% to 2 to 29% after the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared with that of reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites.

  14. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates.

    PubMed

    Straimer, Judith; Gnädig, Nina F; Witkowski, Benoit; Amaratunga, Chanaki; Duru, Valentine; Ramadani, Arba Pramundita; Dacheux, Mélanie; Khim, Nimol; Zhang, Lei; Lam, Stephen; Gregory, Philip D; Urnov, Fyodor D; Mercereau-Puijalon, Odile; Benoit-Vical, Françoise; Fairhurst, Rick M; Ménard, Didier; Fidock, David A

    2015-01-23

    The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases and measured ring-stage survival rates after drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13 to 49% to 0.3 to 2.4% after the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from ≤0.6% to 2 to 29% after the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared with that of reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites. PMID:25502314

  15. Numerical modeling of the transmission dynamics of drug-sensitive and drug-resistant HSV-2

    NASA Astrophysics Data System (ADS)

    Gumel, A. B.

    2001-03-01

    A competitive finite-difference method will be constructed and used to solve a modified deterministic model for the spread of herpes simplex virus type-2 (HSV-2) within a given population. The model monitors the transmission dynamics and control of drug-sensitive and drug-resistant HSV-2. Unlike the fourth-order Runge-Kutta method (RK4), which fails when the discretization parameters exceed certain values, the novel numerical method to be developed in this paper gives convergent results for all parameter values.

  16. Decreased drug accumulation and increased tolerance to DNA damage in tumor cells with a low level of cisplatin resistance.

    PubMed

    Lanzi, C; Perego, P; Supino, R; Romanelli, S; Pensa, T; Carenini, N; Viano, I; Colangelo, D; Leone, R; Apostoli, P; Cassinelli, G; Gambetta, R A; Zunino, F

    1998-04-15

    In an attempt to examine the cellular changes associated with cisplatin resistance, we selected a cisplatin-resistant (A43 1/Pt) human cervix squamous cell carcinoma cell line following continuous in vitro drug exposure. The resistant subline was characterized by a 2.5-fold degree of resistance. In particular, we investigated the expression of cellular defence systems and other cellular factors probably involved in dealing with cisplatin-induced DNA damage. Resistant cells exhibited decreased platinum accumulation and reduced levels of DNA-bound platinum and interstrand cross-link frequency after short-term drug exposure. Analysis of the effect of cisplatin on cell cycle progression revealed a cisplatin-induced G2M arrest in sensitive and resistant cells. Interestingly, a slowdown in S-phase transit was found in A431/Pt cells. A comparison of the ability of sensitive and resistant cells to repair drug-induced DNA damage suggested that resistant cells were able to tolerate higher levels of cisplatin-induced DNA damage than their parental counterparts. Analysis of the expression of proteins involved in DNA mismatch repair showed a decreased level of MSH2 in resistant cells. Since MSH2 seems to be involved in recognition of drug-induced DNA damage, this change may account for the increased tolerance to DNA damage observed in the resistant subline. In conclusion, the involvement of accumulation defects and the increased tolerance to cisplatin-induced DNA damage in these cisplatin-resistant cells support the notion that multiple changes contribute to confer a low level of cisplatin resistance. PMID:9719480

  17. Gallium phosphinoarylbisthiolato complexes counteract drug resistance of cancer cells.

    PubMed

    Fischer-Fodor, Eva; Vălean, Ana-Maria; Virag, Piroska; Ilea, Petru; Tatomir, Corina; Imre-Lucaci, Florica; Schrepler, Maria Perde; Krausz, Ludovic Tibor; Tudoran, Lucian Barbu; Precup, Calin George; Lupan, Iulia; Hey-Hawkins, Evamarie; Silaghi-Dumitrescu, Luminita

    2014-04-01

    In cancer therapy the platinum-based drugs are used frequently with a good clinical outcome, but besides unwanted side effects which occur, the tumour cells subjected to treatment are prone to develop tolerance or even multidrug resistance (MDR). Metal compounds with a central atom other than platinum are efficient in targeting the chemoresistant cells, therefore the biological outcome of two recently synthesized gallium phosphinoarylbisthiolato complexes was studied, having the formula [X][Ga{PPh(2-SC6H4)2-κ(3)S,S',P}{PPh(2-SC6H4)2-κ(2)S,S'}] where [X] is either the NEt3H (1) or PPh4 (2) cation. Compounds 1 and 2 display in vitro cytotoxicity against both platinum-sensitive and platinum-resistant cell lines (A2780 and A2780cis). Morphological and ultrastructural evidence points toward their capacity to impair tumour cells survival. This behaviour is based on malignant cells capacity to selectively intake gallium, and to bind to the cellular DNA. They are able to cause massive DNA damage in treated cancer cells, focusing on 7-methylguanine and 8-oxoguanine sites and oxidizing the pyrimidine bases; this leads to early apoptosis of a significant percent of treated cells. The intrinsic and extrinsic apoptotic pathways are influenced through the modulation of gene expression following the treatment with complexes 1 and 2, which accompanies the negative regulation of P-glycoprotein 1 (Pgp-1), an important cellular ABC-type transporter from the multidrug resistance (MDR) family. The studied Ga(III) compounds demonstrated the capacity to counteract the chemoresistance mechanisms in the tumours defiant to standard drug action. Compound 2 shows a good anticancer potential and it could represent an alternative to platinum-based drugs especially in the situation of standard treatment failure.

  18. Role of integrated cancer nanomedicine in overcoming drug resistance.

    PubMed

    Iyer, Arun K; Singh, Amit; Ganta, Srinivas; Amiji, Mansoor M

    2013-11-01

    Cancer remains a major killer of mankind. Failure of conventional chemotherapy has resulted in recurrence and development of virulent multi drug resistant (MDR) phenotypes adding to the complexity and diversity of this deadly disease. Apart from displaying classical physiological abnormalities and aberrant blood flow behavior, MDR cancers exhibit several distinctive features such as higher apoptotic threshold, aerobic glycolysis, regions of hypoxia, and elevated activity of drug-efflux transporters. MDR transporters play a pivotal role in protecting the cancer stem cells (CSCs) from chemotherapy. It is speculated that CSCs are instrumental in reviving tumors after the chemo and radiotherapy. In this regard, multifunctional nanoparticles that can integrate various key components such as drugs, genes, imaging agents and targeting ligands using unique delivery platforms would be more efficient in treating MDR cancers. This review presents some of the important principles involved in development of MDR and novel methods of treating cancers using multifunctional-targeted nanoparticles. Illustrative examples of nanoparticles engineered for drug/gene combination delivery and stimuli responsive nanoparticle systems for cancer therapy are also discussed. PMID:23880506

  19. Antibiotic Adjuvants: Diverse Strategies for Controlling Drug-Resistant Pathogens

    PubMed Central

    Gill, Erin E; Franco, Octavio L; Hancock, Robert E W

    2015-01-01

    The growing number of bacterial pathogens that are resistant to numerous antibiotics is a cause for concern around the globe. There have been no new broad-spectrum antibiotics developed in the last 40 years, and the drugs we have currently are quickly becoming ineffective. In this article, we explore a range of therapeutic strategies that could be employed in conjunction with antibiotics and may help to prolong the life span of these life-saving drugs. Discussed topics include antiresistance drugs, which are administered to potentiate the effects of current antimicrobials in bacteria where they are no longer (or never were) effective; antivirulence drugs, which are directed against bacterial virulence factors; host-directed therapies, which modulate the host's immune system to facilitate infection clearance; and alternative treatments, which include such therapies as oral rehydration for diarrhea, phage therapy, and probiotics. All of these avenues show promise for the treatment of bacterial infections and should be further investigated to explore their full potential in the face of a postantibiotic era. PMID:25393203

  20. Multi-drug-resistant Staphylococcus aureus and future chemotherapy.

    PubMed

    Hiramatsu, K; Katayama, Y; Matsuo, M; Sasaki, T; Morimoto, Y; Sekiguchi, A; Baba, T

    2014-10-01

    Staphylococcus (S.) aureus silently stays as our natural flora, and yet sometimes threatens our life as a tenacious pathogen. In addition to its ability to outwit our immune system, its multi-drug resistance phenotype makes it one of the most intractable pathogenic bacteria in the history of antibiotic chemotherapy. It conquered practically all the antibiotics that have been developed since 1940s. In 1961, the first MRSA was found among S. aureus clinical isolates. Then MRSA prevailed throughout the world as a multi-resistant hospital pathogen. In 1997, MRSA strain Mu50 with reduced susceptibility to vancomycin was isolated. Vancomycin-intermediate S. aureus (VISA), so named according to the CLSI criteria, was the product of adaptive mutation of S. aureus against vancomycin that had long been the last resort to MRSA infection. Here, we describe the genetic basis for the remarkable ability of S. aureus to acquire multi-antibiotic resistance, and propose a novel paradigm for future chemotherapy against the multi-resistant pathogens.

  1. Drug resistance, patent resistance: Indian pharmaceuticals and the impact of a new patent regime.

    PubMed

    Halliburton, M

    2009-01-01

    This article highlights potential public health effects of India's Patents Act of 2005, which was implemented to conform to the requirements of the World Trade Organisation's Trade-Related Aspects of Intellectual Property Agreement (TRIPS), a new legal regime that will likely have a significant impact on access to HIV/AIDS medications in much of the world. This new patent law may play a role in keeping new antiretroviral (ARV) medications, including improved first-line medications and second-line drugs that are being developed for first-line drug resistant HIV, financially out of reach for many people living with HIV/AIDS in poor countries. India's drug industry, which had thrived under earlier patent laws that protected processes but not products in the case of medications, had brought down the price of ARV drugs in South Asia and Africa by more than 90%. While most existing drugs are grandfathered under the new patent laws, newer ARV medications may be barred from manufacture by Indian companies. This article analyses the effects of the coming together of this new legal regime, the global political economy and emerging resistance to HIV/AIDS medications, and evaluates efforts to mitigate the negative public health effects of the new patent laws.

  2. Multi-drug resistant oral Candida species isolated from HIV-positive patients in South Africa and Cameroon.

    PubMed

    Dos Santos Abrantes, Pedro Miguel; McArthur, Carole P; Africa, Charlene Wilma Joyce

    2014-06-01

    Candida species are a common cause of infection in immune-compromised HIV-positive individuals, who are usually treated with the antifungal drug, fluconazole, in public hospitals in Africa. However, information about the prevalence of drug resistance to fluconazole and other antifungal agents on Candida species is very limited. This study examined 128 Candida isolates from South Africa and 126 Cameroonian Candida isolates for determination of species prevalence and antifungal drug susceptibility. The isolates were characterized by growth on chromogenic and selective media and by their susceptibility to 9 antifungal drugs tested using the TREK™ YeastOne9 drug panel (Thermo Scientific, USA). Eighty-three percent (82.8%) of South African isolates were Candida albicans (106 isolates), 9.4% were Candida glabrata (12 isolates), and 7.8% were Candida dubliniensis (10 isolates). Of the Cameroonian isolates, 73.02% were C. albicans (92 isolates); 19.05% C. glabrata (24 isolates); 3.2% Candida tropicalis (4 isolates); 2.4% Candida krusei (3 isolates); 1.59% either Candida kefyr, Candida parapsilopsis, or Candida lusitaneae (2 isolates); and 0.79% C. dubliniensis (1 isolate). Widespread C. albicans resistance to azoles was detected phenotypically in both populations. Differences in drug resistance were seen within C. glabrata found in both populations. Echinocandin drugs were more effective on isolates obtained from the Cameroon than in South Africa. A multiple-drug resistant C. dubliniensis strain isolated from the South African samples was inhibited only by 5-flucytosine in vitro on the YO9 panel. Drug resistance among oral Candida species is common among African HIV patients in these 2 countries. Regional surveillance of Candida species drug susceptibility should be undertaken to ensure effective treatment for HIV-positive patients.

  3. Treatment Options for Carbapenem-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections

    PubMed Central

    Viehman, J. Alexander; Nguyen, Minh-Hong; Doi, Yohei

    2014-01-01

    Acinetobacter baumannii is a leading cause of healthcare-associated infections worldwide. Due to various intrinsic and acquired mechanisms of resistance, most β-lactam agents are not effective against many strains, and carbapenems have played an important role in therapy. Recent trends show many infections are caused by carbapenem-resistant, or even extensively drug-resistant (XDR) strains, for which effective therapy is not well established. Evidence to date suggests that colistin constitutes the backbone of therapy, but the unique pharmacokinetic properties of colistin have led many to suggest the use of combination antimicrobial therapy. However, the combination of agents and dosing regimens that delivers the best clinical efficacy while minimizing toxicity is yet to be defined. Carbapenems, sulbactam, rifampin and tigecycline have been the most studied in the context of combination therapy. Most data regarding therapy for invasive, resistant A. baumannii infections come from uncontrolled case series and retrospective analyses, though some clinical trials have been completed and others are underway. Early institution of appropriate antimicrobial therapy is shown to consistently improve survival of patients with carbapenem-resistant and XDR A. baumannii infection, but the choice of empiric therapy in these infections remains an open question. This review summarizes the most current knowledge regarding the epidemiology, mechanisms of resistance, and treatment considerations of carbapenem-resistant and XDR A. baumannii. PMID:25091170

  4. Matrix Hyaluronan Promotes Specific MicroRNA Upregulation Leading to Drug Resistance and Tumor Progression

    PubMed Central

    Bourguignon, Lilly Y. W.

    2016-01-01

    Solid tumor invasion, metastasis and therapeutic drug resistance are the common causes for serious morbidity and cancer recurrence in patients. A number of research studies have searched for malignancy-related biomarkers and drug targets that are closely linked to tumor cell properties. One of the candidates is matrix hyaluronan (HA), which is known as one of the major extracellular matrix (ECM) components. HA serves as a physiological ligand for surface CD44 molecule and also functions as a bio-regulator. The binding of HA to CD44 has been shown to stimulate concomitant activation of a number of oncogenic pathways and abnormal cellular processes in cancer cells and cancer stem cells (CSCs). MicroRNAs (miRNAs) belong to a class of small RNAs containing ~20–25 nucleotides and are known to promote aberrant cellular functions in cancer cells. In this article, I have focused on the role of HA interaction with CD44 and several important signaling molecules in the regulation of unique miRNAs (e.g., miR-21, miR-302 and miR-10b) and their downstream targets leading to multiple tumor cell-specific functions (e.g., tumor cell growth, drug resistance and metastasis) and cancer progression. This new knowledge could provide the groundwork necessary for establishing new tumor markers and developing important, novel drugs targeted against HA/CD44-associated tumor progression, which can be utilized in the therapeutic treatment of metastatic cancer patients. PMID:27070574

  5. Presence of drug resistance mutations among drug-naive patients in Morocco.

    PubMed

    Annaz, Hicham El; Recordon-Pinson, Patricia; Baba, Nabil; Sedrati, Omar; Mrani, Saad; Fleury, Hervé

    2011-08-01

    The aim of the present study was to determine viral subtypes and resistance mutations to antiretroviral treatment (ART) in HIV-1-infected treatment-naive patients from Rabat, Morocco during the period 2005-2009. The protease and reverse transcriptase (RT) genes were sequenced, the phylogenetic trees were inferred, and the resistance-associated mutations to NRTIs, NNRTIs, and PIs were recorded according to the international list of surveillance drug resistance mutations (SDRMs). The viral subtypes were subtype B (74%), CRF02_AG (15%), A1 (6%), C (2%), F1 (1%), CRF09 (1%), and CRF25_cpx (1%). The presence of DRMs was found in four (5.06%) of 91 patients; resistance mutations to NRTIs were M184V and T215I/S revertant mutations; resistance to NNRTIs was associated with K103N and resistance to PIs with V82A. These findings have relevant implications for the local molecular mapping of HIV-1 and future ART surveillance studies in the region.

  6. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus.

    PubMed

    Brown, Ashley N; Smith, Kathryn; Samuels, Tova A; Lu, Jiangrui; Obare, Sherine O; Scott, Maria E

    2012-04-01

    We show here that silver nanoparticles (AgNP) were intrinsically antibacterial, whereas gold nanoparticles (AuNP) were antimicrobial only when ampicillin was bound to their surfaces. Both AuNP and AgNP functionalized with ampicillin were effective broad-spectrum bactericides against Gram-negative and Gram-positive bacteria. Most importantly, when AuNP and AgNP were functionalized with ampicillin they became potent bactericidal agents with unique properties that subverted antibiotic resistance mechanisms of multiple-drug-resistant bacteria.

  7. Resistance-resistant antibiotics.

    PubMed

    Oldfield, Eric; Feng, Xinxin

    2014-12-01

    New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms.

  8. The Latest Innovations in the Drug Pipeline for Multiple Sclerosis

    PubMed Central

    Radick, Lea; Mehr, Stanton R.

    2015-01-01

    Several new medications are being investigated in late-phase studies for the treatment of patients with relapsing or progressive multiple sclerosis (MS). These agents represent a variety of mechanisms of action and provide not only lower relapse rates but also improvement in disabilities. The majority of investigational trials involve selective sphingosine-1-phosphate receptor 1 immunomodulators, such as laquinimod, ozanimod, ponesimod, and siponimod, in an effort to build on the success of fingolimod. Ocrelizumab is a CD20-positive B-cell–targeting monoclonal antibody with a promising new mechanism of action. Ofatumumab is also a CD20 inhibitor. Daclizumab, an interleukin-2 inhibitor, has evidence of good efficacy but is associated with unfavorable side effects. Masitinib is a mast-cell inhibitor that also has shown efficacy in Alzheimer's disease and amyotrophic lateral sclerosis. Phase 3 trials for some of these agents will conclude in the next 12 months, and their manufacturers are expected to apply for US Food and Drug Administration approval soon thereafter. This review article summarizes data for newly approved and late-phase investigational agents for the treatment of patients with MS. PMID:26702336

  9. Multidrug-resistant and extensively drug-resistant tuberculosis: a review of current concepts and future challenges.

    PubMed

    Günther, Gunar

    2014-06-01

    Multidrug-resistant and extensively drug-resistant tuberculosis are recent global health issues, which makes tuberculosis - after the success of short course treatment during the second half of the last century - a major health challenge. Globalisation, health inequalities, competing economic interests and political instability contribute substantially to the spread of drug-resistant strains, which are associated with high rates of morbidity and mortality. Issues such as increasing transmission of drug-resistant strains, poor diagnostic coverage and a lengthy, toxic treatment need to be overcome by innovative approaches to tuberculosis control, prevention, diagnostics and treatment. This review addresses recent developments and future concepts.

  10. Antiretroviral drug resistance among antiretroviral-naïve and treatment experienced patients infected with HIV in Iran.

    PubMed

    Baesi, Kazem; Ravanshad, Mehrdad; Ghanbarisafari, Maryam; Saberfar, Esmaeil; Seyedalinaghi, Seyedahmad; Volk, Jonathan E

    2014-07-01

    Resistance to antiretroviral therapy (ART) threatens the success of programs to reduce HIV morbidity and mortality, particularly in countries with few treatment options. In the present study, genotype and phenotype data from ART-naïve and experienced hospitalized patients infected with HIV in Tehran, Iran were used to assess the prevalence and types of transmitted (TDR) and acquired drug resistance (ADR) mutations. All 30 participants naïve to ART and 62 of 70 (88.6%) participants receiving ART had detectable viral loads. Among participants receiving ART with sequencing data available (n = 62), 36 (58.1%) had at least one drug resistance mutation; the most common mutations were K103N (21.0%), M184V (19.4%), and the thymidine analogue mutations. Seven (11.3%), 27 (43.5%), and two (3.2%) of these participants had resistance to one, two, and three drug classes, respectively. High-level resistance to efavirenz (EFV) was more common among participants on EFV-based regimens than high-level lopinavir/ritonivar (LPV/r) resistance among those on LPV/r-based regimens (55.3% vs. 6.7%, P < 0.0001). Two (6.7%) antiretroviral-naïve participants had K103N mutations. These findings document an alarmingly high frequency of multiple HIV drug class resistance in Iran, confirm the presence of TDR, and highlight the need for systematic viral load monitoring and drug resistance testing, including at diagnosis. Expanded access to new antiretroviral medications from additional drug classes is needed.

  11. High Prevalence of Drug Resistance in Animal Trypanosomes without a History of Drug Exposure

    PubMed Central

    Chitanga, Simbarashe; Marcotty, Tanguy; Namangala, Boniface; Van Den Abbeele, Jan; Delespaux, Vincent

    2011-01-01

    Background Trypanosomosis caused by Trypanosoma congolense is a major constraint to animal health in sub-Saharan Africa. Unfortunately, the treatment of the disease is impaired by the spread of drug resistance. Resistance to diminazene aceturate (DA) in T. congolense is linked to a mutation modifying the functioning of a P2-type purine-transporter responsible for the uptake of the drug. Our objective was to verify if the mutation was linked or not to drug pressure. Methodology/Principal Findings Thirty-four T. congolense isolates sampled from tsetse or wildlife were screened for the DA-resistance linked mutation using DpnII-PCR-RFLP. The results showed 1 sensitive, 12 resistant and 21 mixed DpnII-PCR-RFLP profiles. This suggests that the mutation is present on at least one allele of each of the 33 isolates. For twelve of the isolates, a standard screening method in mice was used by (i) microscopic examination, (ii) trypanosome-specific 18S-PCR after 2 months of observation and (iii) weekly trypanosome-specific 18S-PCR for 8 weeks. The results showed that all mice remained microscopically trypanosome-positive after treatment with 5 mg/kg DA. With 10 and 20 mg/kg, 8.3% (n = 72) and 0% (n = 72) of the mice became parasitologically positive after treatment. However, in these latter groups the trypanosome-specific 18S-PCR indicated a higher degree of trypanosome-positivity, i.e., with a unique test, 51.4% (n = 72) and 38.9% (n = 72) and with the weekly tests 79.2% (n = 24) and 66.7% (n = 24) for 10 and 20 mg/kg respectively. Conclusion/Significance The widespread presence of the DA-resistance linked mutation in T. congolense isolated from wildlife suggests that this mutation is favourable to parasite survival and/or its dissemination in the host population independent from the presence of drug. After treatment with DA, those T. congolense isolates cause persisting low parasitaemias even after complete elimination of the drug and with little

  12. Contribution of rural-to-urban migration in the prevalence of drug resistant tuberculosis in China.

    PubMed

    Wang, W; Wang, J; Zhao, Q; Darling, N D; Yu, M; Zhou, B; Xu, B

    2011-04-01

    Increased drug resistance rates to the first-line anti-tuberculosis drugs and multidrug resistance (MDR) were observed in China. The objectives of this study were to determine the prevalence and risk factors for drug-resistant tuberculosis (TB) in urban China and, more specifically, to determine the contribution of migration to case burden and drug resistance rates of urban cities. A facility-based epidemiological study of all active TB patients reported in the four districts of Shanghai and Ningbo between April 1, 2008 and March 31, 2009 was conducted. Residents had significantly higher drug-resistance rates than migrants (any drug resistance: 29.8% vs. 23.5%, respectively, P = 0.038; MDR: 10.9% vs. 6.1%, P = 0.048). Previously treated migrant patients were more likely to harbor drug-resistant TB and MDR-TB than new migrant cases, with adjusted odds ratios of 3.85 and 6.52, respectively. In total, 46.2% of the previously treated cases were resistant to INH, 38.5% to SM, 33.3% to RMP and 30.8% to EMB, while 13.1%, 17.5%, 7.0% and 6.8% of new cases were resistant to the four agents, respectively. To prevent the transmission of drug-resistant TB among migrants and residents, improved case management and appropriate treatment regimens should be sustained to prevent acquired drug resistance.

  13. [Progress in researches on molecular markers of Plasmodium falciparum drug resistance].

    PubMed

    Zhang, Mei-hua; Lu, Feng; Cao, Jun; Gao, Qi

    2015-06-01

    Effective chemotherapy is the mainstay of malaria control. However, it is undergoing the serious threat by resis- tance of falciparum malaria to antimalarial drugs. In recent years, with the development of molecular biology technology, molec- ular markers have been widely used to monitor antimalarial drug resistance. This paper reviews the researches on the common molecular markers related to Plasmodiumfalciparum drug resistance.

  14. Combination of amikacin and doxycycline against multidrug-resistant and extensively drug-resistant tuberculosis.

    PubMed

    Gonzalo, Ximena; Casali, Nicola; Broda, Agnieszka; Pardieu, Claire; Drobniewski, Francis

    2015-04-01

    The objective of this study was to assess the activity of amikacin in combination with doxycycline against clinical strains of Mycobacterium tuberculosis in the search for new strategies against multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. The study included 28 clinical M. tuberculosis strains, comprising 5 fully susceptible, 1 isoniazid-resistant, 17 MDR, 1 poly-resistant (streptomycin/isoniazid), 1 rifampicin-resistant and 3 XDR isolates, as well as the laboratory strain M. tuberculosis H37Rv. Minimum inhibitory concentrations (MICs) were determined using a modified chequerboard methodology in a BACTEC™ MGIT™ 960 System. Fractional inhibitory concentration indices (FICIs) were calculated, and synergy, indifference or antagonism was assessed. Whole-genome sequencing was performed to investigate the genetic basis of synergy, indifference or antagonism. The MIC50 and MIC90 values (MICs that inhibit 50% and 90% of the isolates, respectively) were, respectively, 0.5 mg/L and 1.0 mg/L for amikacin and 8 mg/L and 16 mg/L for doxycycline. The combination of amikacin and doxycycline showed a synergistic effect in 18 of the 29 strains tested and indifference in 11 strains. Antagonism was not observed. A streptomycin resistance mutation (K43R) was associated with indifference. In conclusion, the benefit of addition of doxycycline to an amikacin-containing regimen should be explored since in vitro results in this study indicate either synergy or indifference. Moreover, doxycycline also has immunomodulatory effects.

  15. First-Line Anti-Tubercular Drug Resistance of Mycobacterium tuberculosis in IRAN: A Systematic Review

    PubMed Central

    Pourakbari, Babak; Mamishi, Setareh; Mohammadzadeh, Mona; Mahmoudi, Shima

    2016-01-01

    Background: The spread of drug-resistant tuberculosis (TB) is one of the major public health problems through the world. Surveillance of anti-TB drug resistance is essential for monitoring of TB control strategies. The occurrence of drug resistance, particularly multi-drug resistance Mycobacterium tuberculosis (MDR), defined as resistance to at least rifampicin (RIF) and isoniazid (INH), has become a significant public health dilemma. The status of drug-resistance TB in Iran, one of the eastern Mediterranean countries locating between Azerbaijan and Armenia and high-TB burden countries (such as Afghanistan and Pakistan) has been reported inconsistently. Therefore, the aim of this study was to summarize reports of first-line anti-tubercular drug resistance in M. tuberculosis in Iran. Material and Methods: We systematically reviewed published studies on drug-resistant M. tuberculosis in Iran. The search terms were “Mycobacterium tuberculosis susceptibility” or “Mycobacterium tuberculosis resistant” and Iran. Results: Fifty-two eligible articles, published during 1998–2014, were included in this review. Most of the studies were conducted in Tehran. The most common used laboratory method for detecting M. tuberculosis drug resistant was Agar proportion. The highest resistance to first-line drugs was seen in Tehran, the capital city of Iran. The average prevalence of isoniazid (INH), rifampin (RIF), streptomycin (SM), and ethambotol (EMB) resistance via Agar proportion method in Tehran was 26, 23, 22.5, and 16%, respectively. In general, resistance to INH was more common than RIF, SM, and EMB in Tehran Conclusions: In conclusion, this systematic review summarized the prevalence and distribution of first-line anti-tubercular drug resistance of M. tuberculosis in Iran. Our results suggested that effective strategies to minimize the acquired drug resistance, to control the transmission of resistance and improve the diagnosis measures for TB control in Iran. PMID

  16. Discovery of cyclosporine A and its analogs as broad-spectrum anti-influenza drugs with a high in vitro genetic barrier of drug resistance.

    PubMed

    Ma, Chunlong; Li, Fang; Musharrafieh, Rami Ghassan; Wang, Jun

    2016-09-01

    As the number of drug-resistant influenza viruses continues to increase, antivirals with novel mechanisms of action are urgently needed. Among the two classes of FDA-approved antiviral drugs, neuraminidase (NA) inhibitors, oseltamivir, zanamivir, and peramivir, are currently the only choice for the prevention and treatment of influenza virus infection. Due to the antigenic drift and antigenic shift, it will only be a matter of time before influenza viruses become completely resistant to these NA inhibitors. In pursuing the next generation of antiviral drugs with complementary mechanisms of action to those of the NA inhibitors, we have identified a natural product, cyclosporine A (CsA) (1), as a desired drug candidate. In this study, we discovered that CsA (1) and its analogs have broad-spectrum antiviral activity against multiple influenza A and B strains, including strains that are resistant to either NA or M2 inhibitors or both. Moreover, CsA (1) displays a high in vitro genetic barrier of drug resistance than oseltamivir carboxylate Mechanistic studies revealed that CsA (1) acts at the intermediate step of viral replication post viral fusion. Its antiviral mechanism is independent of inhibiting the isomerase activity of cyclophilin A (CypA), and CsA (1) has no effect on the viral polymerase activity The potent antiviral efficacy of CsA (1), coupled with the high in vitro genetic barrier of drug resistance and novel mechanism of action, renders CsA (1) a promising anti-influenza drug candidate for further development. PMID:27478032

  17. Perampanel: A Review in Drug-Resistant Epilepsy.

    PubMed

    Frampton, James E

    2015-09-01

    Perampanel (Fycompa®), an orally-active, selective, noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, is a first-in-class antiepileptic drug (AED) offering the convenience of once-daily administration. In the EU and US, perampanel is approved in patients with epilepsy aged ≥12 years for the adjunctive treatment of primary generalized tonic-clonic seizures (GTCS) and partial-onset seizures (POS; with or without secondary generalization). In phase III trials of 17 or 19 weeks' duration, add-on perampanel ≤12 mg/day significantly improved seizure control in patients aged ≥12 years who were experiencing either primary GTCS or POS (with or without secondary generalization), despite ongoing treatment with stable dosages of one to three AEDs. Improvements in seizure control were maintained for up to 2 years in extensions of these core studies. Perampanel also provided sustained seizure control for up to ≈4 years in an extension of two phase II studies in patients aged ≥18 years with drug-resistant POS. Adjunctive perampanel therapy was generally well tolerated. Treatment-emergent adverse events were most commonly CNS-related (e.g. dizziness, somnolence, fatigue and irritability) and dose-related; however, most were of mild to moderate intensity. Clinical experience with perampanel is accumulating, although comparative studies and pharmacoeconomic data that could assist in positioning it relative to other AEDS that are approved and/or recommended as adjunctive therapy are lacking. Nonetheless, on the basis of its overall clinical profile and unique mechanism of action, perampanel is a useful additional adjunctive treatment option for patients with drug-resistant POS, with or without secondary generalization, and primary GTCS. PMID:26370209

  18. Managing drug-resistant epilepsy: challenges and solutions

    PubMed Central

    Dalic, Linda; Cook, Mark J

    2016-01-01

    Despite the development of new antiepileptic drugs (AEDs), ~20%–30% of people with epilepsy remain refractory to treatment and are said to have drug-resistant epilepsy (DRE). This multifaceted condition comprises intractable seizures, neurobiochemical changes, cognitive decline, and psychosocial dysfunction. An ongoing challenge to both researchers and clinicians alike, DRE management is complicated by the heterogeneity among this patient group. The underlying mechanism of DRE is not completely understood. Many hypotheses exist, and relate to both the intrinsic characteristics of the particular epilepsy (associated syndrome/lesion, initial response to AED, and the number and type of seizures prior to diagnosis) and other pharmacological mechanisms of resistance. The four current hypotheses behind pharmacological resistance are the “transporter”, “target”, “network”, and “intrinsic severity” hypotheses, and these are reviewed in this paper. Of equal challenge is managing patients with DRE, and this requires a multidisciplinary approach, involving physicians, surgeons, psychiatrists, neuropsychologists, pharmacists, dietitians, and specialist nurses. Attention to comorbid psychiatric and other diseases is paramount, given the higher prevalence in this cohort and associated poorer health outcomes. Treatment options need to consider the economic burden to the patient and the likelihood of AED compliance and tolerability. Most importantly, higher mortality rates, due to comorbidities, suicide, and sudden death, emphasize the importance of seizure control in reducing this risk. Overall, resective surgery offers the best rates of seizure control. It is not an option for all patients, and there is often a significant delay in referring to epilepsy surgery centers. Optimization of AEDs, identification and treatment of comorbidities, patient education to promote adherence to treatment, and avoidance of triggers should be periodically performed until further

  19. Transmission of multidrug-resistant and extensively drug-resistant tuberculosis in rural Bangladesh: lessons learnt.

    PubMed

    Gumusboga, A; Aung, K J M; Rigouts, L; Van Deun, A

    2012-09-21

    We report community transmission of multidrug-resistant (MDR-) and extensively drug-resistant tuberculosis (XDR-TB) documented by fingerprinting, with secondary cases appearing over a period of 10 years. The index case failed MDR-TB treatment, with amplification to XDR-TB after refusing treatment when first diagnosed and developing pre-XDR-TB on private treatment. Some of the first MDR-TB patients were not started on appropriate treatment due to delayed diagnosis or to excessively rigid application of National TB Programme guidelines. Early presumptive MDR- and XDR-TB diagnosis and removal of barriers, such as obligatory hospitalisation, could have stopped this trend of resistance amplification and transmission.

  20. Clinically Relevant Transmitted Drug Resistance to First Line Antiretroviral Drugs and Implications for Recommendations

    PubMed Central

    Monge, Susana; Guillot, Vicente; Alvarez, Marta; Chueca, Natalia; Stella, Natalia; Peña, Alejandro; Delgado, Rafael; Córdoba, Juan; Aguilera, Antonio; Vidal, Carmen; García, Federico; CoRIS

    2014-01-01

    Background The aim was to analyse trends in clinically relevant resistance to first-line antiretroviral drugs in Spain, applying the Stanford algorithm, and to compare these results with reported Transmitted Drug Resistance (TDR) defined by the 2009 update of the WHO SDRM list. Methods We analysed 2781 sequences from ARV naive patients of the CoRIS cohort (Spain) between 2007–2011. Using the Stanford algorithm “Low-level resistance”, “Intermediate resistance” and “High-level resistance” categories were considered as “Resistant”. Results 70% of the TDR found using the WHO list were relevant for first-line treatment according to the Stanford algorithm. A total of 188 patients showed clinically relevant resistance to first-line ARVs [6.8% (95%Confidence Interval: 5.8–7.7)], and 221 harbored TDR using the WHO list [7.9% (6.9–9.0)]. Differences were due to a lower prevalence in clinically relevant resistance for NRTIs [2.3% (1.8–2.9) vs. 3.6% (2.9–4.3) by the WHO list] and PIs [0.8% (0.4–1.1) vs. 1.7% (1.2–2.2)], while it was higher for NNRTIs [4.6% (3.8–5.3) vs. 3.7% (3.0–4.7)]. While TDR remained stable throughout the study period, clinically relevant resistance to first line drugs showed a significant trend to a decline (p = 0.02). Conclusions Prevalence of clinically relevant resistance to first line ARVs in Spain is decreasing, and lower than the one expected looking at TDR using the WHO list. Resistance to first-line PIs falls below 1%, so the recommendation of screening for TDR in the protease gene should be questioned in our setting. Cost-effectiveness studies need to be carried out to inform evidence-based recommendations. PMID:24637804

  1. Antimalarial drug resistance: a review of the biology and strategies to delay emergence and spread

    PubMed Central

    Klein, E.Y.

    2013-01-01

    The emergence of resistance to former first-line antimalarial drugs has been an unmitigated disaster. In recent years, artemisinin class drugs have become standard and they are considered an essential tool for helping to eradicate the disease. However, their ability to reduce morbidity and mortality and to slow transmission requires the maintenance of effectiveness. Recently, an artemisinin delayed-clearance phenotype was described. This is believed to be the precursor to resistance and threatens local elimination and global eradication plans. Understanding how resistance emerges and spreads is important for developing strategies to contain its spread. Resistance is the result of two processes: (i) drug selection of resistant parasites; and (ii) the spread of resistance. In this review, we examine the factors that lead to both drug selection and the spread of resistance. We then examine strategies for controlling the spread of resistance, pointing out the complexities and deficiencies in predicting how resistance will spread. PMID:23394809

  2. Triclosan Derivatives: Towards Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis

    SciTech Connect

    Freundlich, Joel S.; Wang, Feng; Vilchèze, Catherine; Gulten, Gulcin; Langley, Robert; Schiehser, Guy A.; Jacobus, David P.; Jacobs, Jr., William R.; Sacchettini, James C.

    2009-06-30

    Isoniazid (INH) is a frontline antitubercular drug that inhibits the enoyl acyl carrier protein reductase InhA. Novel inhibitors of InhA that are not cross-resistant to INH represent a significant goal in antitubercular chemotherapy. The design, synthesis, and biological activity of a series of triclosan-based inhibitors is reported, including their promising efficacy against INH-resistant strains of M. tuberculosis. Triclosan has been previously shown to inhibit InhA, an essential enoyl acyl carrier protein reductase involved in mycolic acid biosynthesis, the inhibition of which leads to the lysis of Mycobacterium tuberculosis. Using a structure-based drug design approach, a series of 5-substituted triclosan derivatives was developed. Two groups of derivatives with alkyl and aryl substituents, respectively, were identified with dramatically enhanced potency against purified InhA. The most efficacious inhibitor displayed an IC{sub 50} value of 21 nM, which was 50-fold more potent than triclosan. X-ray crystal structures of InhA in complex with four triclosan derivatives revealed the structural basis for the inhibitory activity. Six selected triclosan derivatives were tested against isoniazid-sensitive and resistant strains of M. tuberculosis. Among those, the best inhibitor had an MIC value of 4.7 {mu}g mL{sup -1} (13 {mu}M), which represents a tenfold improvement over the bacteriocidal activity of triclosan. A subset of these triclosan analogues was more potent than isoniazid against two isoniazid-resistant M. tuberculosis strains, demonstrating the significant potential for structure-based design in the development of next generation antitubercular drugs.

  3. Control of a Multi-Drug-Resistant Acinetobacter baumannii Outbreak after Orthopedics Department Relocation

    PubMed Central

    Gogou, Vasiliki; Meletis, Georgios; Tsitouras, Dimosthenis

    2013-01-01

    Acinetobacter baumannii clinical isolates have the ability to survive in the hospital niche for prolonged time periods and to develop resistance against multiple antimicrobial agents. Therefore, A. baumannii has emerged as an important cause of nosocomial outbreaks worldwide, especially in critical-care environments such as intensive care units. In the present communication, we report a multi-drug-resistant A. baumannii outbreak that occurred in an orthopedics department in Greece after the admission of a patient previously hospitalized in the intensive care unit of a Greek tertiary care hospital. Despite the implementation of infection control measures, 29 patients were infected, significantly raising their hospitalization periods and treatment costs. Interestingly, the outbreak was put under control after the department’s previously programmed relocation.

  4. Multi-Drug Resistance Mediated by Class 1 Integrons in Aeromonas Isolated from Farmed Freshwater Animals

    PubMed Central

    Deng, Yuting; Wu, Yali; Jiang, Lan; Tan, Aiping; Zhang, Ruiquan; Luo, Li

    2016-01-01

    Aeromonas is regarded as an important pathogen of freshwater animals but little is known about the genetics of its antimicrobial resistance in Chinese aquaculture. The aim of this study was to investigate the presence of integrons and characterize multidrug resistant Aeromonas spp. isolated from diseased farmed freshwater animals. These animal samples included fish, ornamental fish, shrimp, turtles, and amphibians which were collected from 64 farms in Guangdong province of South China. One hundred and twelve Aeromonas spp. isolates were examined for antimicrobial resistance phenotypes and the presence of class 1 integron sequences. Twenty-two (19.6%) of these isolates carried a class 1 integron comprising six different gene insertion cassettes including drfA12-orfF-aadA2, drfA12-orfF, aac(6′)-II-blaOXA-21-cat3, catB3, arr-3, and dfrA17. Among these, drfA12-orfF-aadA2 was the dominant gene cassette array (63.6%, 14/22) and this is the first report of aac(6′)-II-blaOXA-21-cat3 in an Aeromonas hydrophila isolate from a Chinese giant salamander (Andrias davidianus). All the integron-positive strains were resistant to more than five agents and 22 contained other resistance genes including blaCTX-M-3, blaTEM-1, aac(6′)-Ib-cr, and tetA. All integron-positive isolates also contained mutations in the quinolone resistance determining regions (QRDR). Our investigation demonstrates that freshwater animals can serve as a reservoir for pathogenic Aeromonas strains containing multiple drug-resistance integrons. This data suggests that surveillance for antimicrobial resistance of animal origin and a prudent and responsible use of antimicrobials in aquaculture is necessary in these farms. PMID:27379065

  5. Multi-Drug Resistance Mediated by Class 1 Integrons in Aeromonas Isolated from Farmed Freshwater Animals.

    PubMed

    Deng, Yuting; Wu, Yali; Jiang, Lan; Tan, Aiping; Zhang, Ruiquan; Luo, Li

    2016-01-01

    Aeromonas is regarded as an important pathogen of freshwater animals but little is known about the genetics of its antimicrobial resistance in Chinese aquaculture. The aim of this study was to investigate the presence of integrons and characterize multidrug resistant Aeromonas spp. isolated from diseased farmed freshwater animals. These animal samples included fish, ornamental fish, shrimp, turtles, and amphibians which were collected from 64 farms in Guangdong province of South China. One hundred and twelve Aeromonas spp. isolates were examined for antimicrobial resistance phenotypes and the presence of class 1 integron sequences. Twenty-two (19.6%) of these isolates carried a class 1 integron comprising six different gene insertion cassettes including drfA12-orfF-aadA2, drfA12-orfF, aac(6')-II-bla OXA-21 -cat3, catB3, arr-3, and dfrA17. Among these, drfA12-orfF-aadA2 was the dominant gene cassette array (63.6%, 14/22) and this is the first report of aac(6')-II-bla OXA-21 -cat3 in an Aeromonas hydrophila isolate from a Chinese giant salamander (Andrias davidianus). All the integron-positive strains were resistant to more than five agents and 22 contained other resistance genes including bla CTX-M-3, bla TEM-1, aac(6')-Ib-cr, and tetA. All integron-positive isolates also contained mutations in the quinolone resistance determining regions (QRDR). Our investigation demonstrates that freshwater animals can serve as a reservoir for pathogenic Aeromonas strains containing multiple drug-resistance integrons. This data suggests that surveillance for antimicrobial resistance of animal origin and a prudent and responsible use of antimicrobials in aquaculture is necessary in these farms. PMID:27379065

  6. Mechanism of immunomodulatory drugs' action in the treatment of multiple myeloma

    PubMed Central

    Chang, Xiubao; Zhu, Yuanxiao; Shi, Changxin; Stewart, A. Keith

    2014-01-01

    Although immunomodulatory drugs (IMiDs), such as thalidomide, lenalidomide, and pomalidomide, are widely used in the treatment of multiple myeloma (MM), the molecular mechanism of IMiDs' action is largely unknown. In this review, we will summarize recent advances in the application of IMiDs in MM cancer treatment as well as their effects on immunomodulatory activities, anti-angiogenic activities, intervention of cell surface adhesion molecules between myeloma cells and bone marrow stromal cells, anti-inflammatory activities, anti-proliferation, pro-apoptotic effects, cell cycle arrest, and inhibition of cell migration and metastasis. In addition, the potential IMiDs' target protein, IMiDs' target protein's functional role, and the potential molecular mechanisms of IMiDs resistance will be discussed. We wish, by presentation of our naive discussion, that this review article will facilitate further investigation in these fields. PMID:24374776

  7. Drug-resistant tuberculosis in subjects included in the Second National Survey on Antituberculosis Drug Resistance in Porto Alegre, Brazil*, **

    PubMed Central

    Micheletti, Vania Celina Dezoti; Moreira, José da Silva; Ribeiro, Marta Osório; Kritski, Afranio Lineu; Braga, José Ueleres

    2014-01-01

    OBJECTIVE: To describe the prevalence of multidrug-resistant tuberculosis (MDR-TB) among tuberculosis patients in a major Brazilian city, evaluated via the Second National Survey on Antitub