Apparatus for Screening Multiple Oxygen-Reduction Catalysts
NASA Technical Reports Server (NTRS)
Whitacre, Jay; Narayanan, Sekharipuram
2009-01-01
An apparatus that includes an array of multiple electrodes has been invented as a means of simultaneously testing multiple materials for their utility as oxygen-reduction catalysts in fuel cells. The apparatus ensures comparability of test results by exposing all the catalyst-material specimens to the same electrolytic test solution at the same potential. Heretofore, it has been possible to test only one specimen at a time, using a precise rotating disk electrode that provides a controlled flux of solution to the surface of the specimen.
Vail, III, William Banning
2001-01-01
Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information useful to determine the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a plurality of spaced apart voltage measurement electrodes that electrically engage a portion of the interior of the cased well. During measurements of information useful to determine formation resistivity, current is conducted between a first current conducting electrode in electrical contact with the interior of the cased well to a second current conducting electrode that is also in electrical contact with the interior of the cased well. The first and second current conducting electrodes are separated by a distance sufficient so that at least a portion of the current conducted between the first and second current conducting electrodes is conducted through the geological formation of interest.
Vail, III, William B.
1996-01-01
Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from inside the cased well. The multiple electrode apparatus have a minimum of three spaced apart voltage measurement electrodes that electrically engage the interior of the cased well. Measurement information is obtained related to current which is caused to flow from the cased well into the adjacent geological formation. First compensation information is obtained related to a first casing resistance between a first pair of the spaced apart voltage measurement electrodes. Second compensation information is obtained related to a second casing resistance between a second pair of the spaced apart voltage measurement electrodes. The measurement information, and first and second compensation information are used to determine a magnitude related to the adjacent formation resistivity.
Vail, W.B. III
1996-10-29
Methods of operation are disclosed for different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from inside the cased well. The multiple electrode apparatus have a minimum of three spaced-apart voltage measurement electrodes that electrically engage the interior of the cased well. Measurement information is obtained related to current which is caused to flow from the cased well into the adjacent geological formation. First compensation information is obtained related to a first casing resistance between a first pair of the spaced-apart voltage measurement electrodes. Second compensation information is obtained related to a second casing resistance between a second pair of the spaced-apart voltage measurement electrodes. The measurement information, and first and second compensation information are used to determine a magnitude related to the adjacent formation resistivity. 13 figs.
High Density Polymer-Based Integrated Electgrode Array
Maghribi, Mariam N.; Krulevitch, Peter A.; Davidson, James Courtney; Hamilton, Julie K.
2006-04-25
A high density polymer-based integrated electrode apparatus that comprises a central electrode body and a multiplicity of arms extending from the electrode body. The central electrode body and the multiplicity of arms are comprised of a silicone material with metal features in said silicone material that comprise electronic circuits.
Voltammetric analysis apparatus and method
Almon, A.C.
1993-06-08
An apparatus and method is described for electrochemical analysis of elements in solution. An auxiliary electrode, a reference electrode, and five working electrodes are positioned in a container containing a sample solution. The working electrodes are spaced apart evenly from each other and the auxiliary electrode to minimize any inter-electrode interference that may occur during analysis. An electric potential is applied between the auxiliary electrode and each of the working electrodes. Simultaneous measurements taken of the current flow through each of the working electrodes for each given potential in a potential range are used for identifying chemical elements present in the sample solution and their respective concentrations. Multiple working electrodes enable a more positive identification to be made by providing unique data characteristic of chemical elements present in the sample solution.
Voltametric analysis apparatus and method
Almon, Amy C.
1993-01-01
An apparatus and method for electrochemical analysis of elements in solution. An auxiliary electrode 14, a reference electrode 18, and five working electrodes 20, 22, 26, 28, and 30 are positioned in a container 12 containing a sample solution 34. The working electrodes are spaced apart evenly from each other and auxiliary electrode 14 to minimize any inter-electrode interference that may occur during analysis. An electric potential is applied between auxiliary electrode 14 and each of the working electrodes 20, 22, 26, 28, and 30. Simultaneous measurements taken of the current flow through each of the working electrodes for each given potential in a potential range are used for identifying chemical elements present in sample solution 34 and their respective concentrations. Multiple working electrodes enable a more positive identification to be made by providing unique data characteristic of chemical elements present in the sample solution.
Vail, III, William Banning
2000-01-01
Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a minimum of two spaced apart voltage measurement electrodes that electrically engage a first portion of the interior of the cased well and that provide at least first voltage information. Current control means are used to control the magnitude of any selected current that flows along a second portion of the interior of the casing to be equal to a predetermined selected constant. The first portion of the interior of the cased well is spaced apart from the second portion of the interior of the cased well. The first voltage information and the predetermined selected constant value of any selected current flowing along the casing are used in part to determine a magnitude related to the formation resistivity adjacent to the first portion of the interior of the cased well. Methods and apparatus having a plurality of voltage measurement electrodes are disclosed that provide voltage related information in the presence of constant currents flowing along the casing which is used to provide formation resistivity.
Multiple input electrode gap controller
Hysinger, C.L.; Beaman, J.J.; Melgaard, D.K.; Williamson, R.L.
1999-07-27
A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows. 17 figs.
Multiple input electrode gap controller
Hysinger, Christopher L.; Beaman, Joseph J.; Melgaard, David K.; Williamson, Rodney L.
1999-01-01
A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows.
Electrochemical Detection of Multiple Bioprocess Analytes
NASA Technical Reports Server (NTRS)
Rauh, R. David
2010-01-01
An apparatus that includes highly miniaturized thin-film electrochemical sensor array has been demonstrated as a prototype of instruments for simultaneous detection of multiple substances of interest (analytes) and measurement of acidity or alkalinity in bioprocess streams. Measurements of pH and of concentrations of nutrients and wastes in cell-culture media, made by use of these instruments, are to be used as feedback for optimizing the growth of cells or the production of desired substances by the cultured cells. The apparatus is designed to utilize samples of minimal volume so as to minimize any perturbation of monitored processes. The apparatus can function in a potentiometric mode (for measuring pH), an amperometric mode (detecting analytes via oxidation/reduction reactions), or both. The sensor array is planar and includes multiple thin-film microelectrodes covered with hydrous iridium oxide. The oxide layer on each electrode serves as both a protective and electrochemical transducing layer. In its transducing role, the oxide provides electrical conductivity for amperometric measurement or pH response for potentiometric measurement. The oxide on an electrode can also serve as a matrix for one or more enzymes that render the electrode sensitive to a specific analyte. In addition to transducing electrodes, the array includes electrodes for potential control. The array can be fabricated by techniques familiar to the microelectronics industry. The sensor array is housed in a thin-film liquid-flow cell that has a total volume of about 100 mL. The flow cell is connected to a computer-controlled subsystem that periodically draws samples from the bioprocess stream to be monitored. Before entering the cell, each 100-mL sample is subjected to tangential-flow filtration to remove particles. In the present version of the apparatus, the electrodes are operated under control by a potentiostat and are used to simultaneously measure the pH and the concentration of glucose. It is anticipated that development of procedures for trapping more enzymes into hydrous iridium oxide (and possibly into other electroactive metal oxides) and of means for imparting long-term stability to the transducer layers should make it possible to monitor concentrations of products of many enzyme reactions for example, such key bioprocess analytes as amino acids, vitamins, lactose, and acetate.
Vail, W.B. III.
1991-12-24
Methods of operation are described for an apparatus having at least two pairs of voltage measurement electrodes vertically disposed in a cased well to measure the resistivity of adjacent geological formations from inside the cased well. During stationary measurements with the apparatus at a fixed vertical depth within the cased well, the invention herein discloses methods of operation which include a measurement step and subsequent first and second compensation steps respectively resulting in improved accuracy of measurement. The invention also discloses multiple frequency methods of operation resulting in improved accuracy of measurement while the apparatus is simultaneously moved vertically in the cased well. The multiple frequency methods of operation disclose a first A.C. current having a first frequency that is conducted from the casing into formation and a second A.C. current having a second frequency that is conducted along the casing. The multiple frequency methods of operation simultaneously provide the measurement step and two compensation steps necessary to acquire accurate results while the apparatus is moved vertically in the cased well. 6 figures.
Vail, III, William B.
1991-01-01
Methods of operation of an apparatus having at least two pairs of voltage measurement electrodes vertically disposed in a cased well to measure the resistivity of adjacent geological formations from inside the cased well. During stationary measurements with the apparatus at a fixed vertical depth within the cased well, the invention herein discloses methods of operation which include a measurement step and subsequent first and second compensation steps respectively resulting in improved accuracy of measurement. The invention also discloses multiple frequency methods of operation resulting in improved accuracy of measurement while the apparatus is simultaneously moved vertically in the cased well. The multiple frequency methods of operation disclose a first A.C. current having a first frequency that is conducted from the casing into formation and a second A.C. current having a second frequency that is conducted along the casing. The multiple frequency methods of operation simultaneously provide the measurement step and two compensation steps necessary to acquire accurate results while the apparatus is moved vertically in the cased well.
Apparatus and method for the electrolysis of water
Greenbaum, Elias
2015-04-21
An apparatus for the electrolytic splitting of water into hydrogen and/or oxygen, the apparatus comprising: (i) at least one lithographically-patternable substrate having a surface; (ii) a plurality of microscaled catalytic electrodes embedded in said surface; (iii) at least one counter electrode in proximity to but not on said surface; (iv) means for collecting evolved hydrogen and/or oxygen gas; (v) electrical powering means for applying a voltage across said plurality of microscaled catalytic electrodes and said at least one counter electrode; and (vi) a container for holding an aqueous electrolyte and housing said plurality of microscaled catalytic electrodes and said at least one counter electrode. Electrolytic processes using the above electrolytic apparatus or functional mimics thereof are also described.
High mass throughput particle generation using multiple nozzle spraying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pui, David Y. H.; Chen, Da-Ren
Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.
High mass throughput particle generation using multiple nozzle spraying
Pui, David Y.H.; Chen, Da-Ren
2004-07-20
Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.
High mass throughput particle generation using multiple nozzle spraying
Pui, David Y. H. [Plymouth, MN; Chen, Da-Ren [Creve Coeur, MO
2009-03-03
Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.
Vail, III, William B.
1993-01-01
Methods of operation of an apparatus having at least two pairs of voltage measurement electrodes vertically disposed in a cased well to measure the resistivity of adjacent geological formations from inside the cased well. During stationary measurements with the apparatus at a fixed vertical depth within the cased well, the invention herein discloses methods of operation which include a measurement step and subsequent first and second compensation steps respectively resulting in improved accuracy of measurement. First and second order errors of measurement are identified, and the measurement step and two compensation steps provide methods to substantially eliminate their influence on the results. A multiple frequency apparatus adapted to movement within the well is described which simultaneously provide the measurement and two compensation steps.
Lipid nanotube or nanowire sensor
Noy, Aleksandr [Belmont, CA; Bakajin, Olgica [San Leandro, CA; Letant, Sonia [Livermore, CA; Stadermann, Michael [Dublin, CA; Artyukhin, Alexander B [Menlo Park, CA
2009-06-09
A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.
Lipid nanotube or nanowire sensor
Noy, Aleksandr [Belmont, CA; Bakajin, Olgica [San Leandro, CA; Letant, Sonia [Livermore, CA; Stadermann, Michael [Dublin, CA; Artyukhin, Alexander B [Menlo Park, CA
2010-06-29
A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.
Photoelectrochemical molecular comb
Thundat, Thomas G [Knoxville, TN; Ferrell, Thomas L [Knoxville, TN; Brown,; Gilbert, M [Knoxville, TN
2007-05-01
A method, system, and apparatus are provided for separating molecules, such as biomolecules. The method, system, and apparatus utilize an electrochemical cell having at least to electrodes, one electrode comprising a photo-sensitive material capable of generating a photopotential. Molecules are moved through an electrolyte medium between the at least two electrodes based upon localized photopotentials.
Photoelectrochemical molecular comb
Thundat, Thomas G [Knoxville, TN; Ferrell, Thomas L [Knoxville, TN; Brown, Gilbert M [Knoxville, TN
2012-02-07
A method, system, and apparatus are provided for separating molecules, such as biomolecules. The method, system, and apparatus utilize an electrochemical cell having at least two electrodes, one electrode comprising a photo-sensitive material capable of generating a photopotential. Molecules are moved through an electrolyte medium between the at least two electrodes based upon localized photopotentials.
Particulate matter sensor with a heater
Hall, Matthew [Austin, TX
2011-08-16
An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.
Gas permeable electrode for electrochemical system
Ludwig, Frank A.; Townsend, Carl W.
1989-01-01
An electrode apparatus adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments.
Separation of metal ions from aqueous solutions
Almon, Amy C.
1994-01-01
A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.
Gas permeable electrode for electrochemical system
Ludwig, F.A.; Townsend, C.W.
1989-09-12
An electrode apparatus is described which is adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments. 3 figs.
Electrolyte measurement device and measurement procedure
Cooper, Kevin R.; Scribner, Louie L.
2010-01-26
A method and apparatus for measuring the through-thickness resistance or conductance of a thin electrolyte is provided. The method and apparatus includes positioning a first source electrode on a first side of an electrolyte to be tested, positioning a second source electrode on a second side of the electrolyte, positioning a first sense electrode on the second side of the electrolyte, and positioning a second sense electrode on the first side of the electrolyte. current is then passed between the first and second source electrodes and the voltage between the first and second sense electrodes is measured.
Bertram, L.A.; Fisher, R.W.; Mattox, D.M.; Zanner, F.J.
1986-09-09
A method and apparatus for ion plating are described. The apparatus uses more negative than a first electrode voltage in a vacuum arc remelt system to attract low energy ions from the anode electrode to the article to be plated. 2 figs.
Method and apparatus for simultaneous spectroelectrochemical analysis
Chatterjee, Sayandev; Bryan, Samuel A; Schroll, Cynthia A; Heineman, William R
2013-11-19
An apparatus and method of simultaneous spectroelectrochemical analysis is disclosed. A transparent surface is provided. An analyte solution on the transparent surface is contacted with a working electrode and at least one other electrode. Light from a light source is focused on either a surface of the working electrode or the analyte solution. The light reflected from either the surface of the working electrode or the analyte solution is detected. The potential of the working electrode is adjusted, and spectroscopic changes of the analyte solution that occur with changes in thermodynamic potentials are monitored.
Komini Babu, S.; Chung, H. T.; Zelenay, P.; ...
2015-09-14
This manuscript presents micro-scale experimental diagnostics and nano-scale resolution X-ray imaging applied to the study of proton conduction in non-precious metal catalyst (NPMC) fuel cell cathodes. NPMC’s have the potential to reduce the cost of the fuel cell for multiple applications. But, NPMC electrodes are inherently thick compared to the convention Pt/C electrode due to the lower volumetric activity. Thus, the electric potential drop through the Nafion across the electrode thickness can yield significant performance loss. Ionomer distributions in the NPMC electrodes with different ionomer loading are extracted from morphological data using nanoscale X-ray computed tomography (nano-XCT) imaging of themore » cathode. Microstructured electrode scaffold (MES) diagnostics are used to measure the electrolyte potential at discrete points across the thickness of the catalyst layer. When using that apparatus, the electrolyte potential drop, the through-thickness reaction distribution, and the proton conductivity are measured and correlated with the corresponding Nafion morphology and cell performance.« less
1976-10-01
and Identify by block number) This report describes an improved, approaching-needle electrostatic sensitivity apparatus as well as the...category. Thus, basic lead styphnate, RD1333 lead azide, dextrinated lead azide and tetracene all ignited. But, as expected, tetryl, PETN, superfine PETN... dextrinated lead azide obtained using the same apparatus and procedure and conducted at the same time. Sample Preparation, Electrode Replacement, and
Assembly for electrical conductivity measurements in the piston cylinder device
Watson, Heather Christine [Dublin, CA; Roberts, Jeffrey James [Livermore, CA
2012-06-05
An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.
Three dimensional microelectrode system for dielectrophoresis
Dehlinger, Dietrich A.; Rose, Klint A.; Shusteff, Maxim; Bailey, Christopher G.; Mariella, Jr., Raymond P.
2013-09-03
A dielectrophoresis apparatus for separating particles from a sample, including an apparatus body; a dielectrophoresis channel in the apparatus body, the dielectrophoresis channel having a central axis, a bottom, a top, a first side, and a second side; a first mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the first mesa extending at an angle to the central axis of the dielectrophoresis channel; a first electrode extending along the first mesa; a second mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the second mesa extending at an angle to the central axis of the dielectrophoresis channel; a space between at least one of the first electrode and the second side or the second electrode and the second side; and a gap between the first electrode and the second electrode.
Apparatus for electrolytically tapered or contoured cavities
NASA Technical Reports Server (NTRS)
Williams, L. A. (Inventor)
1967-01-01
An electrolytic machining apparatus for forming tapered or contoured cavities in an electrically conductive and electrochemically erodible piece is presented. It supports the workpiece and an electrode for movement relatively toward each other and has means for pumping an electrolyte between the workpiece and the electrode.
Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D
2013-09-17
Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.
Processing materials inside an atmospheric-pressure radiofrequency nonthermal plasma discharge
Selwyn, Gary S.; Henins, Ivars; Park, Jaeyoung; Herrmann, Hans W.
2006-04-11
Apparatus for the processing of materials involving placing a material either placed between an radio-frequency electrode and a ground electrode, or which is itself one of the electrodes. This is done in atmospheric pressure conditions. The apparatus effectively etches or cleans substrates, such as silicon wafers, or provides cleaning of spools and drums, and uses a gas containing an inert gas and a chemically reactive gas.
Electroshock protection circuit
NASA Technical Reports Server (NTRS)
Heskett, H.; Meincer, J.; Inglis, A. L.
1973-01-01
Circuit was developed to prevent accidental shock through electrodes used to test subjects as part of Skylab program. This circuit is placed between electrical apparatus and electrode that is attached to patient's body. Thus, patient is effectively protected from dangerous electrical shock that might be caused by failure in electrical apparatus.
NASA Astrophysics Data System (ADS)
Ito, T. M.; Ramsey, J. C.; Yao, W.; Beck, D. H.; Cianciolo, V.; Clayton, S. M.; Crawford, C.; Currie, S. A.; Filippone, B. W.; Griffith, W. C.; Makela, M.; Schmid, R.; Seidel, G. M.; Tang, Z.; Wagner, D.; Wei, W.; Williamson, S. E.
2016-04-01
We have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and ˜600 Torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of 1-2 cm between them, and a potential up to ±50 kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a wide range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, I < 1 pA at 45 kV, correspond to a lower bound on the effective volume resistivity of liquid helium of ρV > 5 × 1018 Ω cm. This lower bound is 5 times larger than the bound previously measured. We report the design, construction, and operational experience of the apparatus, as well as initial results.
Ito, T M; Ramsey, J C; Yao, W; Beck, D H; Cianciolo, V; Clayton, S M; Crawford, C; Currie, S A; Filippone, B W; Griffith, W C; Makela, M; Schmid, R; Seidel, G M; Tang, Z; Wagner, D; Wei, W; Williamson, S E
2016-04-01
We have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and ∼600 Torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of 1-2 cm between them, and a potential up to ±50 kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a wide range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, I < 1 pA at 45 kV, correspond to a lower bound on the effective volume resistivity of liquid helium of ρV > 5 × 10(18) Ω cm. This lower bound is 5 times larger than the bound previously measured. We report the design, construction, and operational experience of the apparatus, as well as initial results.
Apparatus for electrode current control in linear MHD generators
Demirjian, Ara M.; Solbes, Albert
1984-01-01
Apparatus for controlling a plurality of opposing, electrode, direct-currents at pre-set locations across a channel that comprises a converter for converting each electrode current into first and second periodic control signals which are 180.degree. out of phase with respect to each other and which have equal magnitudes corresponding to the magnitude of the associated electrode current; and couplers for magnetically coupling individual ones of the first control signals and for magnetically coupling individual ones of the second signals such that the corresponding electrode currents are equalized or rendered proportional by balancing the same in the same or constant ratios in accordance with the locations of the electrode currents.
Electrode assemblies, plasma generating apparatuses, and methods for generating plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Peter C.; Grandy, Jon D.; Detering, Brent A.
Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating membermore » to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.« less
Shielded beam delivery apparatus and method
Hershcovitch, Ady; Montano, Rory Dominick
2006-07-11
An apparatus includes a plasma generator aligned with a beam generator for producing a plasma to shield an energized beam. An electrode is coaxially aligned with the plasma generator and followed in turn by a vortex generator coaxially aligned with the electrode. A target is spaced from the vortex generator inside a fluid environment. The electrode is electrically biased relative to the electrically grounded target for driving the plasma toward the target inside a vortex shield.
Adhesive coated electrical apparatus having sublimable protective covering and an assembly method
Wootton, Roy E.
1982-01-01
Electrical apparatus including an enclosure, an electrode disposed within the enclosure, and supports for insulatably supporting the electrode within the enclosure has a permanently sticky adhesive material which is disposed on the interior surface of the outer enclosure. A high-vapor-pressure sublimable material is disposed on the permanently sticky adhesive material, with the sublimable material capable of subliming away in the presence of a vacuum. The presence of the sublimable material enables the apparatus to be non-sticky during assembly and handling operations, while being rendered sticky upon commissioning of the apparatus.
Side wire feed for welding apparatus
NASA Technical Reports Server (NTRS)
Arnett, J. C.
1974-01-01
Coaxial electrode arrangement has solid central electrode, insulated outer electrode, and transverse channel for feeding wire through tip of electrode assembly. Polymeric insulation is thrust aside by pressure, which is provided by separately operated mechanism acting through central electrode.
Metod And Apparatus For Debris Mitigation For An Electrical Discharge Source
Klebanoff, Leonard E.; Silfvast, William T.; Rader, Daniel J.
2005-05-03
Method and apparatus for mitigating the transport of debris generated and dispersed from electric discharge sources by thermophoretic and electrostatic deposition. A member is positioned adjacent the front electrode of an electric discharge source and used to establish a temperature difference between it and the front electrode. By flowing a gas between the member and the front electrode a temperature gradient is established that can be used for thermophoretic deposition of particulate debris on either the member or front electrode depending upon the direction of the thermal gradient. Establishing an electric field between the member and front electrode can aid in particle deposition by electrostatic deposition.
Method and apparatus for debris mitigation for an electrical discharge source
Klebanoff, Leonard E [San Clemente, CA; Rader, Daniel J [Albuquerque, NM; Silfvast, William T [Helena, CA
2006-01-24
Method and apparatus for mitigating the transport of debris generated and dispersed from electric discharge sources by thermophoretic and electrostatic deposition. A member is positioned adjacent the front electrode of an electric discharge source and used to establish a temperature difference between it and the front electrode. By flowing a gas between the member and the front electrode a temperature gradient is established that can be used for thermophoretic deposition of particulate debris on either the member or front electrode depending upon the direction of the thermal gradient. Establishing an electric field between the member and front electrode can aid in particle deposition by electrostatic deposition.
Production of dense plasmas in a hypocycloidal pinch apparatus
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.
1977-01-01
A high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production have been made. The collapse fronts of the current sheets are well organized, and dense plasma foci are produced on the axis with radial stability in excess of 5 microsec. A plasma density greater than 10 to the 18th power per cu cm is determined with Stark broadening and CO2 laser absorption. Essentially complete absorption of a high-energy CO2 laser beam has been observed. A plasma temperature of approximately 1 keV is measured with differential transmission of soft X-rays through thin foils. The advantages of this apparatus over the coaxial plasma focus are improvements in (1) plasma volume, (2) stability, (3) containment time, (4) access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.
Economou, Anastasios; Voulgaropoulos, Anastasios
2003-01-01
The development of a dedicated automated sequential-injection analysis apparatus for anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (AdSV) is reported. The instrument comprised a peristaltic pump, a multiposition selector valve and a home-made potentiostat and used a mercury-film electrode as the working electrodes in a thin-layer electrochemical detector. Programming of the experimental sequence was performed in LabVIEW 5.1. The sequence of operations included formation of the mercury film, electrolytic or adsorptive accumulation of the analyte on the electrode surface, recording of the voltammetric current-potential response, and cleaning of the electrode. The stripping step was carried out by applying a square-wave (SW) potential-time excitation signal to the working electrode. The instrument allowed unattended operation since multiple-step sequences could be readily implemented through the purpose-built software. The utility of the analyser was tested for the determination of copper(II), cadmium(II), lead(II) and zinc(II) by SWASV and of nickel(II), cobalt(II) and uranium(VI) by SWAdSV.
Economou, Anastasios; Voulgaropoulos, Anastasios
2003-01-01
The development of a dedicated automated sequential-injection analysis apparatus for anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (AdSV) is reported. The instrument comprised a peristaltic pump, a multiposition selector valve and a home-made potentiostat and used a mercury-film electrode as the working electrodes in a thin-layer electrochemical detector. Programming of the experimental sequence was performed in LabVIEW 5.1. The sequence of operations included formation of the mercury film, electrolytic or adsorptive accumulation of the analyte on the electrode surface, recording of the voltammetric current-potential response, and cleaning of the electrode. The stripping step was carried out by applying a square-wave (SW) potential-time excitation signal to the working electrode. The instrument allowed unattended operation since multiple-step sequences could be readily implemented through the purpose-built software. The utility of the analyser was tested for the determination of copper(II), cadmium(II), lead(II) and zinc(II) by SWASV and of nickel(II), cobalt(II) and uranium(VI) by SWAdSV. PMID:18924623
NASA Technical Reports Server (NTRS)
Buehler, Martin (Inventor)
2009-01-01
An electro-active sensor includes a nonconductive platform with a first electrode set attached with a first side of a nonconductive platform. The first electrode set serves as an electrochemical cell that may be utilized to detect electro-active species in solution. A plurality of electrode sets and a variety of additional electrochemical cells and sensors may be attached with the nonconductive platform. The present invention also includes a method for constructing the aforementioned electro-active sensor. Additionally, an apparatus for detection and observation is disclosed, where the apparatus includes a sealable chamber for insertion of a portion of an electro-active sensor. The apparatus allows for monitoring and detection activities. Allowing for control of attached cells and sensors, a dual-mode circuitry is also disclosed. The dual-mode circuitry includes a switch, allowing the circuitry to be switched from a potentiostat to a galvanostat mode.
Method and apparatus for improving heat transfer in a fluidized bed
Lessor, Delbert L.; Robertus, Robert J.
1990-01-01
An apparatus contains a fluidized bed that includes particles of different triboelectrical types, each particle type acquiring an opposite polarity upon contact. The contact may occur between particles of the two types or between particles of etiher type and structure or fluid present in the apparatus. A fluidizing gas flow is passed through the particles to produce the fluidized bed. Immersed within the bed are electrodes. An alternating EMF source connected to the electrodes applies an alternating electric field across the fluidized bed to cause particles of the first type to move relative to particles of the second type and relative to the gas flow. In a heat exchanger incorporating the apparatus, the electrodes are conduits conveying a fluid to be heated. The two particle types alternately contact each conduit to transfer heat from a hot gas flow to the second fluid within the conduit.
Method and apparatus for electrospark deposition
Bailey, Jeffrey A.; Johnson, Roger N.; Park, Walter R.; Munley, John T.
2004-12-28
A method and apparatus for controlling electrospark deposition (ESD) comprises using electrical variable waveforms from the ESD process as a feedback parameter. The method comprises measuring a plurality of peak amplitudes from a series of electrical energy pulses delivered to an electrode tip. The maximum peak value from among the plurality of peak amplitudes correlates to the contact force between the electrode tip and a workpiece. The method further comprises comparing the maximum peak value to a set point to determine an offset and optimizing the contact force according to the value of the offset. The apparatus comprises an electrode tip connected to an electrical energy wave generator and an electrical signal sensor, which connects to a high-speed data acquisition card. An actuator provides relative motion between the electrode tip and a workpiece by receiving a feedback drive signal from a processor that is operably connected to the actuator and the high-speed data acquisition card.
Ito, T. M.; Ramsey, J. C.; Yao, W.; ...
2016-04-25
In this study, we have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and ~600 Torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of 1–2 cm between them, and a potential up to ±50 kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a widemore » range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, I < 1 pA at 45 kV, correspond to a lower bound on the effective volume resistivity of liquid helium of ρ V > 5 × 10 18 Ω cm. This lower bound is 5 times larger than the bound previously measured. Finally, we report the design, construction, and operational experience of the apparatus, as well as initial results« less
Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping
2015-11-10
The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.
Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping
2017-01-17
The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.
Electroplating method and apparatus
Looney, Robert B.; Smith, William E. L.
1978-06-20
An apparatus for high speed electroplating or anodizing tubular members such as nuclear reactor fuel elements. A loading arm positions the member on a base for subsequent support by one of two sets of electrical contacts. A carriage assembly positions electrodes into and around the member. Electrolyte is pumped between the electrodes and the member while electric current is applied. Programmed controls sequentially employ each of the two sets of contacts to expose all surfaces of the member to the electrolyte. The member is removed from the apparatus by an unloading arm.
Method for making nanotubes and nanoparticles
Zettl, Alexander Karlwalter; Cohen, Marvin Lou
2000-01-01
The present invention is an apparatus and method for producing nano-scale tubes and particles. The apparatus comprises novel electrodes for use in arc discharge techniques. The electrodes have interior conduits for delivery and withdrawal of material from the arc region where product is formed. In one embodiment, the anode is optionally made from more than one material and is termed a compound anode. The materials used in the compound anode assist in the reaction that forms product in the arc region of the apparatus. The materials assist either by providing reaction ingredients, catalyst, or affecting the reaction kinetics. Among other uses, the inventive apparatus is used to produce nanotubes and nanoparticles having a variety of electrical and mechanical properties.
Vail, W.B. III.
1991-08-27
Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation. 9 figures.
Vail, III, William B.
1991-01-01
Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.
Neutron detection apparatus and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derzon, Mark S.; Borek, III, Theodore T.
An apparatus for neutron detection is provided. The apparatus comprises a sensor medium in electrical contact with an electrode arrangement conformed to collect radiation-generated charge from the sensor medium. The sensor medium comprises a borazine and/or a borazine-based polymer.
Method and apparatus for sputtering with a plasma lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, Andre
A plasma lens for enhancing the quality and rate of sputter deposition onto a substrate is described herein. The plasma lens serves to focus positively charged ions onto the substrate while deflecting negatively charged ions, while at the same time due to the line of sight positioning of the lens, allowing for free passage of neutrals from the target to the substrate. The lens itself is formed of a wound coil of multiple turns, inside of which are deposed spaced lens electrodes which are electrically paired to impress an E field overtop the B field generated by the coil, themore » potential applied to the electrodes increasing from end to end towards the center of the lens, where the applied voltage is set to a high potential at the center electrodes as to produce a potential minimum on the axis of the lens.« less
Development of a Portable Blood Sugar Apparatus and GOD Enzyme Strip.
Zhen-Cheng, Chen; Yu-Qian, Zhao; Jing-Tian, Tang; Ling-Yun, Li
2005-01-01
A pocket blood sugar apparatus tested by enzyme electrode, which was designed using carbon and silver plasma as conducting materials. Both the work and reference electrodes are applied to the parts of enzyme electrode. The glucose oxidase is taken as the medium of blood sugar measuring. And the range of measuring glucose is about 50mg/dL - 500mgl/dL. It has better linear for the results and fit coefficient arrives at 0.985. Its sensitivity of measurement is higher than current glucose biosensor obviously. A single chip microcomputer, AD mu C812, is used for central control processor of the instrument parts. It measures the output of microampere level currency, which is conduced by blood sugar reacting with the glucose oxidase on the enzyme electrode. And at the same time, the microampere level currency is amplified, processed. Then the results are displayed on LCD. The apparatus are better for measuring blood sugar, and the results are consistent with what the large biochemical instruments get.
NEUTRON MEASURING METHOD AND APPARATUS
Seaborg, G.T.; Friedlander, G.; Gofman, J.W.
1958-07-29
A fast neutron fission detecting apparatus is described consisting of a source of fast neutrons, an ion chamber containing air, two electrodes within the ion chamber in confronting spaced relationship, a high voltage potential placed across the electrodes, a shield placed about the source, and a suitable pulse annplifier and recording system in the electrode circuit to record the impulse due to fissions in a sannple material. The sample material is coated onto the active surface of the disc electrode and shielding means of a material having high neutron capture capabilities for thermal neutrons are provided in the vicinity of the electrodes and about the ion chamber so as to absorb slow neutrons of thermal energy to effectively prevent their diffusing back to the sample and causing an error in the measurement of fast neutron fissions.
High reliability low jitter pulse generator
Savage, Mark E.; Stoltzfus, Brian S.
2013-01-01
A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.
Method and apparatus for detecting combustion instability in continuous combustion systems
Benson, Kelly J.; Thornton, Jimmy D.; Richards, George A.; Straub, Douglas L.
2006-08-29
An apparatus and method to sense the onset of combustion stability is presented. An electrode is positioned in a turbine combustion chamber such that the electrode is exposed to gases in the combustion chamber. A control module applies a voltage potential to the electrode and detects a combustion ionization signal and determines if there is an oscillation in the combustion ionization signal indicative of the occurrence of combustion stability or the onset of combustion instability. A second electrode held in a coplanar but spaced apart manner by an insulating member from the electrode provides a combustion ionization signal to the control module when the first electrode fails. The control module broadcasts a notice if the parameters indicate the combustion process is at the onset of combustion instability or broadcasts an alarm signal if the parameters indicate the combustion process is unstable.
Apparatus for use in rapid and accurate controlled-potential coulometric analysis
Frazzini, Thomas L.; Holland, Michael K.; Pietri, Charles E.; Weiss, Jon R.
1981-01-01
An apparatus for controlled-potential coulometric analysis of a solution includes a cell to contain the solution to be analyzed and a plurality of electrodes to contact the solution in the cell. Means are provided to stir the solution and to control the atmosphere above it. A potentiostat connected to the electrodes controls potential differences among the electrodes. An electronic circuit connected to the potentiostat provides analog-to-digital conversion and displays a precise count of charge transfer during a desired chemical process. This count provides a measure of the amount of an unknown substance in the solution.
Controlling electrode gap during vacuum arc remelting at low melting current
Williamson, Rodney L.; Zanner, Frank J.; Grose, Stephen M.
1997-01-01
An apparatus and method for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived.
An Integration of Geophysical Methods to Explore Buried Structures on the Bench and in the Field
NASA Astrophysics Data System (ADS)
Booterbaugh, A. P.; Lachhab, A.
2011-12-01
In the following study, an integration of geophysical methods and devices were implemented on the bench and in the field to accurately identify buried structures. Electrical resistivity and ground penetrating radar methods, including both a fabricated electrical resistivity apparatus and an electrical resistivity device were all used in this study. The primary goal of the study was to test the accuracy and reliability of the apparatus which costs a fraction of the price of a commercially sold resistivity instrument. The apparatus consists of four electrodes, two multimeters, a 12-volt battery, a DC to AC inverter and wires. Using this apparatus, an electrical current, is injected into earth material through the outer electrodes and the potential voltage is measured across the inner electrodes using a multimeter. The recorded potential and the intensity of the current can then be used to calculate the apparent resistivity of a given material. In this study the Wenner array, which consists of four equally spaced electrodes, was used due to its higher accuracy and greater resolution when investigating lateral variations of resistivity in shallow depths. In addition, the apparatus was used with an electrical resistivity device and a ground penetrating radar unit to explore the buried building foundation of Gustavus Adolphus Hall located on Susquehanna University Campus, Selinsgrove, PA. The apparatus successfully produced consistent results on the bench level revealing the location of small bricks buried under a soil material. In the summer of 2010, seventeen electrical resistivity transects were conducted on the Gustavus Adolphus site where and revealed remnants of the foundation. In the summer of 2011, a ground penetrating radar survey and an electrical resistivity tomography survey were conducted to further explore the site. Together these methods identified the location of the foundation and proved that the apparatus was a reliable tool for regular use on the bench and in the field.
Apparatus for in situ heating and vitrification
Buelt, James L.; Oma, Kenton H.; Eschbach, Eugene A.
1994-01-01
An apparatus for decontaminating ground areas where toxic chemicals are buried includes a plurality of spaced electrodes located in the ground and to which a voltage is applied for bringing about current flow. Power delivered to the ground volatilizes the chemicals that are then collected and directed to a gas treatment system. A preferred form of the invention employs high voltage arc discharge between the electrodes for heating a ground region to relatively high temperatures at relatively low power levels. Electrodes according to the present invention are provided with preferentially active lower portions between which current flows for the purpose of soil heating or for soil melting and vitrification. Promoting current flow below ground level avoids predominantly superficial treatment and increases electrode life.
Vail, W.B. III.
1989-04-11
Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes. 3 figs.
Apparatus for in situ heating and vitrification
Buelt, J.L.; Oma, K.H.; Eschbach, E.A.
1994-05-31
An apparatus for decontaminating ground areas where toxic chemicals are buried includes a plurality of spaced electrodes located in the ground and to which a voltage is applied for bringing about current flow. Power delivered to the ground volatilizes the chemicals that are then collected and directed to a gas treatment system. A preferred form of the invention employs high voltage arc discharge between the electrodes for heating a ground region to relatively high temperatures at relatively low power levels. Electrodes according to the present invention are provided with preferentially active lower portions between which current flows for the purpose of soil heating or for soil melting and vitrification. Promoting current flow below ground level avoids predominantly superficial treatment and increases electrode life. 15 figs.
Vail, III, William B.
1989-01-01
Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes.
ARC length control for plasma welding
NASA Technical Reports Server (NTRS)
Iceland, William F. (Inventor)
1988-01-01
A control system to be used with a plasma arc welding apparatus is disclosed. The plasma arc welding apparatus includes a plasma arc power supply, a contactor, and an electrode assembly for moving the electrode relative to a work piece. The electrode assembly is raised or lowered by a drive motor. The present apparatus includes a plasma arc adapter connected across the power supply to measure the voltage across the plasma arc. The plasma arc adapter forms a dc output signal input to a differential amplifier. A second input is defined by an adjustable resistor connected to a dc voltage supply to permit operator control. The differential amplifier forms an output difference signal provided to an adder circuit. The adder circuit then connects with a power amplifier which forms the driving signal for the motor. In addition, the motor connects to a tachometor which forms a feedback signal delivered to the adder to provide damping, therby avoiding servo loop overshoot.
Electrode immersion depth determination and control in electroslag remelting furnace
Melgaard, David K [Albuquerque, NM; Beaman, Joseph J [Austin, TX; Shelmidine, Gregory J [Tijeras, NM
2007-02-20
An apparatus and method for controlling an electroslag remelting furnace comprising adjusting electrode drive speed by an amount proportional to a difference between a metric of electrode immersion and a set point, monitoring impedance or voltage, and calculating the metric of electrode immersion depth based upon a predetermined characterization of electrode immersion depth as a function of impedance or voltage.
Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, II, Rex E.
2000-01-01
An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.
Controlling electrode gap during vacuum arc remelting at low melting current
Williamson, R.L.; Zanner, F.J.; Grose, S.M.
1997-04-15
An apparatus and method are disclosed for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived. 5 figs.
Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus and methods
Zaromb, Solomon
2001-01-01
Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.
Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus
Zaromb, Solomon
1994-01-01
Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.
Anderson, David F.
1984-01-01
A conventional Kanne tritium monitor has been redesigned to reduce its sensitivity to such contaminants as tritiated water vapor and tritiated oil. The high voltage electrode has been replaced by a wire cylinder and the collector electrode has been reduced in diameter. The area sensitive to contamination has thereby been reduced by about a factor of forty while the overall apparatus sensitivity and operation has not been affected. The design allows for in situ decontamination of the chambers, if necessary.
Lingafelter, J.W.
1960-04-01
An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.
Anderson, D.F.
1981-01-27
A conventional Kanne tritium monitor has been redesigned to reduce its sensitivity to such contaminants as tritiated water vapor and tritiated oil. The high voltage electrode has been replaced by a wire cylinder and the collector electrode has been reduced in diameter. The area sensitive to contamination has thereby been reduced by about a factor of forty while the overall apparatus sensitivity and operation has not been affected. The design allows for in situ decontamination of the chambers, if necessary.
Apparatus and process for deposition of hard carbon films
Nyaiesh, Ali R.; Garwin, Edward L.
1989-01-01
A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.
Apparatus and process for deposition of hard carbon films
Nyaiesh, Ali R.; Garwin, Edward L.
1989-01-03
A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.
Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus
Zaromb, S.
1994-06-21
Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity [>=]10[sup [minus]4] (ohm-cm)[sup [minus]1], and preferably [>=]0.01 (ohm-cm)[sup [minus]1]. The conductivity may be due predominantly to Ag[sup +] ions, as in Ag[sub 2]WO[sub 4], or to F[sup [minus
Vacuum Arc Vapor Deposition Method and Apparatus for Applying Identification Symbols to Substrates
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor); Roxby, Donald L. (Inventor); Weeks, Jack L. (Inventor)
2002-01-01
An apparatus for applying permanent markings onto products using a Vacuum Arc Vapor Deposition (VAVD) marker by accelerating atoms or molecules from a vaporization source onto a substrate to form human and/or machine-readable part identification marking that can be detected optically or via a sensing device like x-ray, thermal imaging, ultrasound, magneto-optic, micro-power impulse radar, capacitance, or other similar sensing means. The apparatus includes a housing with a nozzle having a marking end. A chamber having an electrode, a vacuum port and a charge is located within the housing. The charge is activated by the electrode in a vacuum environment and deposited onto a substrate at the marking end of the nozzle. The apparatus may be a hand-held device or be disconnected from the handle and mounted to a robot or fixed station.
Method and Apparatus for Separating Particles by Dielectrophoresis
NASA Technical Reports Server (NTRS)
Pant, Kapil (Inventor); Wang, Yi (Inventor); Bhatt, Ketan (Inventor); Prabhakarpandian, Balabhasker (Inventor)
2014-01-01
Particle separation apparatus separate particles and particle populations using dielectrophoretic (DEP) forces generated by one or more pairs of electrically coupled electrodes separated by a gap. Particles suspended in a fluid are separated by DEP forces generated by the at least one electrode pair at the gap as they travel over a separation zone comprising the electrode pair. Selected particles are deflected relative to the flow of incoming particles by DEP forces that are affected by controlling applied potential, gap width, and the angle linear gaps with respect to fluid flow. The gap between an electrode pair may be a single, linear gap of constant gap, a single linear gap having variable width, or a be in the form of two or more linear gaps having constant or variable gap width having different angles with respect to one another and to the flow.
Apparatus for electrohydrodynamically assembling patterned colloidal structures
NASA Technical Reports Server (NTRS)
Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)
2000-01-01
A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.
APPARATUS FOR THE MASS ANALYSIS OF PLASMA ON A CONTINUOUS BASIS
Neidigh, R.V.
1963-07-01
An apparatus for the mass analysis of plasmas on a continuous basis is described. The apparatus comprises a pair of parallel electrodes in a tubular member which serve as a velocity-selecting region for ions drawn by an accelerating potential through a tapered nose cone affixed to the tubular member. The magnetic force and electrostatic forces in the velocity-selecting region are made equal and opposite in direction to prevent the ionic species from striking either of the electrodes as they traverse the region. A pair of parallel plates is positioned within the tubular member and in alignment with the electrodes, but displaced slightly so as not to be seen by direct light coming through the entrance slit of the nose cone, and one of these plates serves as a collector plate. This collector plate is coupled to the vertical amplifier of an oscilloscope or other recorder to provide a continuous indication of the ionic coinposition of the plasma under analysis. ( DELTA EC)
Apparatus for preparing a sample for mass spectrometry
Villa-Aleman, Eliel
1994-01-01
An apparatus for preparing a sample for analysis by a mass spectrometer system. The apparatus has an entry chamber and an ionization chamber separated by a skimmer. A capacitor having two space-apart electrodes followed by one or more ion-imaging lenses is disposed in the ionization chamber. The chamber is evacuated and the capacitor is charged. A valve injects a sample gas in the form of sample pulses into the entry chamber. The pulse is collimated by the skimmer and enters the ionization chamber. When the sample pulse passes through the gap between the electrodes, it discharges the capacitor and is thereby ionized. The ions are focused by the imaging lenses and enter the mass analyzer, where their mass and charge are analyzed.
Method and apparatus for improved observation of in-situ combustion processes
Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.
Method and apparatus are provided for obtaining accurate dynamic measurements for passage of phase fronts through a core sample in a test fixture. Flow-through grid structures are provided for electrodes to permit data to be obtained before, during and after passage of a front there-through. Such electrodes are incorporated in a test apparatus for obtaining electrical characteristics of the core sample. With the inventive structure a method is provided for measurement of instabilities in a phase front progressing through the medium. Availability of accurate dynamic data representing parameters descriptive of material characteristics before, during and after passage of a front provides a more efficient method for enhanced recovery of oil using a fire flood technique. 6 figures, 2 tables.
Rapid detection of bacteria in foods and biological fluids
NASA Technical Reports Server (NTRS)
Fealey, R. D.; Renner, W.
1973-01-01
Simple and inexpensive apparatus, called "redox monitoring cell," rapidly detects presence of bacteria. Bacteria is detected by measuring drop in oxygen content in test solution. Apparatus consists of vial with two specially designed electrodes connected to sensitive voltmeter.
Dense plasma focus production in a hypocycloidal pinch
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.
1975-01-01
A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.
Real-time combustion control and diagnostics sensor-pressure oscillation monitor
Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy [Morgantown, WV; Huckaby, E David [Morgantown, WV; Richards, George A [Morgantown, WV
2009-07-14
An apparatus and method for monitoring and controlling the combustion process in a combustion system to determine the amplitude and/or frequencies of dynamic pressure oscillations during combustion. An electrode in communication with the combustion system senses hydrocarbon ions and/or electrons produced by the combustion process and calibration apparatus calibrates the relationship between the standard deviation of the current in the electrode and the amplitudes of the dynamic pressure oscillations by applying a substantially constant voltage between the electrode and ground resulting in a current in the electrode and by varying one or more of (1) the flow rate of the fuel, (2) the flow rate of the oxidant, (3) the equivalence ratio, (4) the acoustic tuning of the combustion system, and (5) the fuel distribution in the combustion chamber such that the amplitudes of the dynamic pressure oscillations in the combustion chamber are calculated as a function of the standard deviation of the electrode current. Thereafter, the supply of fuel and/or oxidant is varied to modify the dynamic pressure oscillations.
Method and apparatus for controlling electrode gap during vacuum consumable arc remelting
Fisher, R.W.; Maroone, J.P.; Tipping, D.W.; Zanner, F.J.
During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.
Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Christian J., E-mail: christian.long@nist.gov; Maryland Nanocenter, University of Maryland, College Park, Maryland 20742; Cannara, Rachel J.
2015-07-15
Piezoelectric actuation of atomic force microscope (AFM) cantilevers often suffers from spurious mechanical resonances in the loop between the signal driving the cantilever and the actual tip motion. These spurious resonances can reduce the accuracy of AFM measurements and in some cases completely obscure the cantilever response. To address these limitations, we developed a specialized AFM cantilever holder for electrostatic actuation of AFM cantilevers. The holder contains electrical contacts for the AFM cantilever chip, as well as an electrode (or electrodes) that may be precisely positioned with respect to the back of the cantilever. By controlling the voltages on themore » AFM cantilever and the actuation electrode(s), an electrostatic force is applied directly to the cantilever, providing a near-ideal transfer function from drive signal to tip motion. We demonstrate both static and dynamic actuations, achieved through the application of direct current and alternating current voltage schemes, respectively. As an example application, we explore contact resonance atomic force microscopy, which is a technique for measuring the mechanical properties of surfaces on the sub-micron length scale. Using multiple electrodes, we also show that the torsional resonances of the AFM cantilever may be excited electrostatically, opening the door for advanced dynamic lateral force measurements with improved accuracy and precision.« less
Apparatus tube configuration and mounting for solid oxide fuel cells
Zymboly, G.E.
1993-09-14
A generator apparatus is made containing long, hollow, tubular, fuel cells containing an inner air electrode, an outer fuel electrode, and solid electrolyte there between, placed between a fuel distribution board and a board which separates the combustion chamber from the generating chamber, where each fuel cell has an insertable open end and in insertable, plugged, closed end, the plugged end being inserted into the fuel distribution board and the open end being inserted through the separator board where the plug is completely within the fuel distribution board. 3 figures.
Implantable apparatus for localized heating of tissue
Doss, James D.
1987-01-01
With the object of repetitively treating deep-seated, inoperable tumors by hyperthermia as well as locally heating other internal tissue masses repetitively, a receiving antenna, transmission line, and electrode arrangment are implanted completely within the patient's body, with the receiving antenna just under the surface of the skin and with the electrode arrangement being located so as to most effectively heat the tissue to be treated. An external, transmitting antenna, driven by an external radio-frequency energy source, is closely coupled to the implanted receiving antenna so that the energy coupled across the air-skin interface provides electromagnetic energy suitable for heating the tissue in the vicinity of the implanted electrodes. The resulting increase in tissue temperature may be estimated by an indirect measurement of the decrease in tissue resistivity in the heated region. This change in resistivity appears as a change in the loading of the receiving antenna which can be measured by either determining the change in the phase relationship between the voltage and the current appearing on the transmitting antenna or by measuring the change in the magnitude of the impedance thereof. Optionally, multiple electrode arrays may be activated or inactivated by the application of magnetic fields to operate implanted magnetic reed switches.
Implantable apparatus for localized heating of tissue
Doss, J.D.
1985-05-20
With the object of repetitively treating deep-seated, inoperable tumors by hyperthermia as well as locally heating other internal tissue masses repetitively, a receiving antenna, transmission line and electrode arrangement are implanted completely within the patient's body, with the receiving antenna just under the surface of the skin and with the electrode arrangement being located so as to most effectively heat the tissue to be treated. An external, transmitting antenna, driven by an external radio-frequency energy source, is closely coupled to the implanted receiving antenna so that the energy coupled across the air-skin interface provides electromagnetic energy suitable for heating the tissue in the vicinity of the implanted electrodes. The resulting increase in tissue temperature may be estimated by an indirect measurement of the decrease in tissue resistivity in the heat region. This change in resistivity appears as a change in the loading of the receiving antenna which can be measured by either determining the change in the phase relationship between the voltage and the current appearing on the transmitting antenna or by measuring the change in the magnitude of the impedance thereof. Optionally, multiple electrode arrays may be activated or inactivated by the application of magnetic fields to operate implanted magnetic reed swtiches. 5 figs.
Pool power control in remelting systems
Williamson, Rodney L [Albuquerque, NM; Melgaard, David K [Albuquerque, NM; Beaman, Joseph J [Austin, TX
2011-12-13
An apparatus for and method of controlling a remelting furnace comprising adjusting current supplied to an electrode based upon a predetermined pool power reference value and adjusting the electrode drive speed based upon the predetermined pool power reference value.
High-voltage electrical apparatus utilizing an insulating gas of sulfur hexafluoride and helium
Wootton, Roy E.
1980-01-01
High-voltage electrical apparatus includes an outer housing at low potential, an inner electrode disposed within the outer housing at high potential with respect thereto, and support means for insulatably supporting the inner electrode within the outer housing. Conducting particles contaminate the interior of the outer housing, and an insulating gas electrically insulates the inner electrode from the outer housing even in the presence of the conducting particles. The insulating gas is comprised of sulfur hexafluoride at a partial pressure of from about 2.9 to about 3.4 atmospheres absolute, and helium at a partial pressure from about 1.1 to about 11.4 atmospheres absolute. The sulfur hexafluoride comprises between 20 and 65 volume percent of the insulating gas.
NASA Astrophysics Data System (ADS)
Park, Jong Ho; Park, Jung Jin; Park, O. Ok; Jin, Chang-Soo; Yang, Jung Hoon
2016-04-01
Because of the rise in renewable energy use, the redox flow battery (RFB) has attracted extensive attention as an energy storage system. Thus, many studies have focused on improving the performance of the felt electrodes used in RFBs. However, existing analysis cells are unsuitable for characterizing felt electrodes because of their complex 3-dimensional structure. Analysis is also greatly affected by the measurement conditions, viz. compression ratio, contact area, and contact strength between the felt and current collector. To address the growing need for practical analytical apparatus, we report a new analysis cell for accurate electrochemical characterization of felt electrodes under various conditions, and compare it with previous ones. In this cell, the measurement conditions can be exhaustively controlled with a compression supporter. The cell showed excellent reproducibility in cyclic voltammetry analysis and the results agreed well with actual RFB charge-discharge performance.
Griffiths, Stewart K.; Nilson, Robert H.; Hruby, Jill M.
2002-01-01
An apparatus and procedure for performing microfabrication of detailed metal structures by electroforming metal deposits within small cavities. Two primary areas of application are: the LIGA process which manufactures complex three-dimensional metal parts and the damascene process used for electroplating line and via interconnections of microelectronic devices. A porous electrode held in contact or in close proximity with a plating substrate or mold top to ensure one-dimensional and uniform current flow into all mold cavities is used. Electrolyte is pumped over the exposed surface of the porous electrode to ensure uniform ion concentrations at this external surface. The porous electrode prevents electrolyte circulation within individual mold cavities, avoiding preferential enhancement of ion transport in cavities having favorable geometries. Both current flow and ion transport are one-dimensional and identical in all mold cavities, so all metal deposits grow at the same rate eliminating nonuniformities of the prior art.
Method and apparatus for controlling electroslag remelting
Maguire, Michael C.; Zanner, Frank J.; Damkroger, Brian K.; Miszkiel, Mark E.; Aronson, Eugene A.
1994-01-01
Method and apparatus for controlling electrode immersion depth in an electroslag remelting furnace. The phase difference of the alternating current circuit established in the furnace is calculated in real time and employed to more accurately control immersion depth than possible with voltage-swing systems.
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Gottlieb, Herbert H., Ed.
1981-01-01
Describes an apparatus for plotting electric fields using burglar alarm window tape for electrodes and carbonized electronic stencil paper as sheet resistance. Also describes a simple pentode modulator circuit which will modulate a typical helium-neon gas laser, providing an audio channel for demonstration purposes. (SK)
Carbon nanotube network thin-film transistors on flexible/stretchable substrates
Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali
2016-03-29
This disclosure provides systems, methods, and apparatus for flexible thin-film transistors. In one aspect, a device includes a polymer substrate, a gate electrode disposed on the polymer substrate, a dielectric layer disposed on the gate electrode and on exposed portions of the polymer substrate, a carbon nanotube network disposed on the dielectric layer, and a source electrode and a drain electrode disposed on the carbon nanotube network.
Method and apparatus for processing exhaust gas with corona discharge
Barlow, Stephan E.; Orlando, Thomas M.; Tonkyn, Russell G.
1999-01-01
The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes.
Jackson, Darryl D.; Hollen, Robert M.
1983-01-01
A new automatable cleaning apparatus which makes use of a method of very thoroughly and quickly cleaning a gauze electrode used in chemical analyses is given. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg. plutonium sample was removed in less than 3 minutes, using only about 60 ml. of rinse solution and two main rinse steps.
Apparatus for preparing a sample for mass spectrometry
Villa-Aleman, E.
1994-05-10
An apparatus is described for preparing a sample for analysis by a mass spectrometer system. The apparatus has an entry chamber and an ionization chamber separated by a skimmer. A capacitor having two space-apart electrodes followed by one or more ion-imaging lenses is disposed in the ionization chamber. The chamber is evacuated and the capacitor is charged. A valve injects a sample gas in the form of sample pulses into the entry chamber. The pulse is collimated by the skimmer and enters the ionization chamber. When the sample pulse passes through the gap between the electrodes, it discharges the capacitor and is thereby ionized. The ions are focused by the imaging lenses and enter the mass analyzer, where their mass and charge are analyzed. 1 figures.
NASA Technical Reports Server (NTRS)
Aston, Graeme (Inventor)
1984-01-01
A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.
Three dimensional separation trap based on dielectrophoresis and use thereof
Mariella, Jr., Raymond P.
2004-05-04
An apparatus is adapted to separate target materials from other materials in a flow containing the target materials and other materials. A dielectrophoretic trap is adapted to receive the target materials and the other materials. At least one electrode system is provided in the trap. The electrode system has a three-dimensional configuration. The electrode system includes a first electrode and a second electrode that are shaped and positioned relative to each such that application of an electrical voltage to the first electrode and the second electrode creates a dielectrophoretic force and said dielectrophoretic force does not reach zero between the first electrode and the second electrode.
Identification of elemental mercury in the subsurface
Jackson, Dennis G
2015-01-06
An apparatus and process is provided for detecting elemental mercury in soil. A sacrificial electrode of aluminum is inserted below ground to a desired location using direct-push/cone-penetrometer based equipment. The insertion process removes any oxides or previously found mercury from the electrode surface. Any mercury present adjacent the electrode can be detected using a voltmeter which indicates the presence or absence of mercury. Upon repositioning the electrode within the soil, a fresh surface of the aluminum electrode is created allowing additional new measurements.
Electrode assembly for a fluidized bed apparatus
Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.
1976-11-23
An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.
Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.
1986-12-09
Method and apparatus are provided for obtaining accurate dynamic measurements for passage of phase fronts through a core sample in a test fixture. Flow-through grid structures are provided for electrodes to permit data to be obtained before, during and after passage of a front there through. Such electrodes are incorporated in a test apparatus for obtaining electrical characteristics of the core sample. With the inventive structure a method is provided for measurement of instabilities in a phase front progressing through the medium. Availability of accurate dynamic data representing parameters descriptive of material characteristics before, during and after passage of a front provides a more efficient method for enhanced recovery of oil using a fire flood technique. 12 figs.
Lee, David O.; Montoya, Paul C.; Wayland, Jr., James R.
1986-01-01
Method and apparatus are provided for obtaining accurate dynamic measurements for passage of phase fronts through a core sample in a test fixture. Flow-through grid structures are provided for electrodes to permit data to be obtained before, during and after passage of a front therethrough. Such electrodes are incorporated in a test apparatus for obtaining electrical characteristics of the core sample. With the inventive structure a method is provided for measurement of instabilities in a phase front progressing through the medium. Availability of accurate dynamic data representing parameters descriptive of material characteristics before, during and after passage of a front provides a more efficient method for enhanced recovery of oil using a fire flood technique.
Nanoscopic electrode molecular probes
Krstic, Predrag S [Knoxville, TN; Meunier, Vincent [Knoxville, TN
2012-05-22
The present invention relates to a method and apparatus for enhancing the electron transport property measurements of a molecule when the molecule is placed between chemically functionalized carbon-based nanoscopic electrodes to which a suitable voltage bias is applied. The invention includes selecting a dopant atom for the nanoscopic electrodes, the dopant atoms being chemically similar to atoms present in the molecule, and functionalizing the outer surface and terminations of the electrodes with the dopant atoms.
Method and apparatus for processing exhaust gas with corona discharge
Barlow, S.E.; Orlando, T.M.; Tonkyn, R.G.
1999-06-22
The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes. 12 figs.
Apparatus tube configuration and mounting for solid oxide fuel cells
Zymboly, Gregory E.
1993-01-01
A generator apparatus (10) is made containing long, hollow, tubular, fuel cells containing an inner air electrode (64), an outer fuel electrode (56), and solid electrolyte (54) therebetween, placed between a fuel distribution board (29) and a board (32) which separates the combustion chamber (16) from the generating chamber (14), where each fuel cell has an insertable open end and in insertable, plugged, closed end (44), the plugged end being inserted into the fuel distribution board (29) and the open end being inserted through the separator board (32) where the plug (60) is completely within the fuel distribution board (29).
Johnston, Lawrence H.
1976-01-01
1. Apparatus for detonation of high explosive in uniform timing comprising in combination, an outer case, spark gap electrodes insulatedly supported in spaced relationship within said case to form a spark gap, high explosive of the class consisting of pentaerythritol tetranitrate and trimethylene trinitramine substantially free from material sensitive to detonation by impact compressed in surrounding relation to said electrodes including said spark gap under a pressure from about 100 psi to about 500 psi, said spark gap with said compressed explosive therein requiring at least 1000 volts for sparking, and means for impressing at least 1000 volts on said spark gap.
NASA Technical Reports Server (NTRS)
Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)
1995-01-01
A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.
Jackson, D.D.; Hollen, R.M.
1981-02-27
A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.
Deichelbohrer, P.R.
1983-08-08
A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.
Real-time combustion controls and diagnostics sensors (CCADS)
Thornton, Jimmy D.; Richards, George A.; Dodrill, Keith A.; Nutter, Jr., Roy S.; Straub, Douglas
2005-05-03
The present invention is directed to an apparatus for the monitoring of the combustion process within a combustion system. The apparatus comprises; a combustion system, a means for supplying fuel and an oxidizer, a device for igniting the fuel and oxidizer in order to initiate combustion, and a sensor for determining the current conducted by the combustion process. The combustion system comprises a fuel nozzle and an outer shell attached to the combustion nozzle. The outer shell defines a combustion chamber. Preferably the nozzle is a lean premix fuel nozzle (LPN). Fuel and an oxidizer are provided to the fuel nozzle at separate rates. The fuel and oxidizer are ignited. A sensor positioned within the combustion system comprising at least two electrodes in spaced-apart relationship from one another. At least a portion of the combustion process or flame is between the first and second electrodes. A voltage is applied between the first and second electrodes and the magnitude of resulting current between the first and second electrodes is determined.
Segmented electrode hall thruster with reduced plume
Fisch, Nathaniel J.; Raitses, Yevgeny
2004-08-17
An apparatus and method for thrusting plasma, utilizing a Hall thruster with segmented electrodes along the channel, which make the acceleration region as localized as possible. Also disclosed are methods of arranging the electrodes so as to minimize erosion and arcing. Also disclosed are methods of arranging the electrodes so as to produce a substantial reduction in plume divergence. The use of electrodes made of emissive material will reduce the radial potential drop within the channel, further decreasing the plume divergence. Also disclosed is a method of arranging and powering these electrodes so as to provide variable mode operation.
Electric filter with movable belt electrode
Bergman, W.
1983-09-20
A method and apparatus for removing airborne contaminants entrained in a gas or airstream includes an electric filter characterized by a movable endless belt electrode, a grounded electrode, and a filter medium sandwiched there between. Inclusion of the movable, endless belt electrode provides the driving force for advancing the filter medium through the filter, and reduces frictional drag on the filter medium, thereby permitting a wide choice of filter medium materials. Additionally, the belt electrode includes a plurality of pleats in order to provide maximum surface area on which to collect airborne contaminants. 4 figs.
Electric filter with movable belt electrode
Bergman, Werner
1983-01-01
A method and apparatus for removing airborne contaminants entrained in a gas or airstream includes an electric filter characterized by a movable endless belt electrode, a grounded electrode, and a filter medium sandwiched therebetween. Inclusion of the movable, endless belt electrode provides the driving force for advancing the filter medium through the filter, and reduces frictional drag on the filter medium, thereby permitting a wide choice of filter medium materials. Additionally, the belt electrode includes a plurality of pleats in order to provide maximum surface area on which to collect airborne contaminants.
Plasma arc torch with coaxial wire feed
Hooper, Frederick M
2002-01-01
A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.
Dynamic control of remelting processes
Bertram, Lee A.; Williamson, Rodney L.; Melgaard, David K.; Beaman, Joseph J.; Evans, David G.
2000-01-01
An apparatus and method of controlling a remelting process by providing measured process variable values to a process controller; estimating process variable values using a process model of a remelting process; and outputting estimated process variable values from the process controller. Feedback and feedforward control devices receive the estimated process variable values and adjust inputs to the remelting process. Electrode weight, electrode mass, electrode gap, process current, process voltage, electrode position, electrode temperature, electrode thermal boundary layer thickness, electrode velocity, electrode acceleration, slag temperature, melting efficiency, cooling water temperature, cooling water flow rate, crucible temperature profile, slag skin temperature, and/or drip short events are employed, as are parameters representing physical constraints of electroslag remelting or vacuum arc remelting, as applicable.
NASA Technical Reports Server (NTRS)
Aston, G. (Inventor)
1981-01-01
A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.
Ceramic distribution members for solid state electrolyte cells and method of producing
NASA Technical Reports Server (NTRS)
Clark, Douglas J. (Inventor); Galica, Leo M. (Inventor); Losey, Robert W. (Inventor); Suitor, Jerry W. (Inventor)
1993-01-01
A solid state electrolyte cells apparatus and method of producing is disclosed. The apparatus can be used for separating oxygen from an oxygen-containing feedstock or as a fuel cell for reacting fluids. Cells can be stacked so that fluids can be introduced and removed from the apparatus through ceramic distribution members having ports designed for distributing the fluids in parallel flow to and from each cell. The distribution members can also serve as electrodes to membranes or as membrane members between electrodes. The distribution member design does not contain any horizontal internal ports which allows the member to be thin. A method of tape casting in combination with an embossing method allows intricate radial ribs and bosses to be formed on each distribution member. The bosses serve as seals for the ports and allow the distribution members to be made without any horizontal internal ports.
Method of producing ceramic distribution members for solid state electrolyte cells
NASA Technical Reports Server (NTRS)
Clark, Douglas J. (Inventor); Galica, Leo M. (Inventor); Losey, Robert W. (Inventor); Suitor, Jerry W. (Inventor)
1995-01-01
A solid state electrolyte cells apparatus and method of producing is disclosed. The apparatus can be used for separating oxygen from an oxygen-containing feedstock or as a fuel cell for reacting fluids. Cells can be stacked so that fluids can be introduced and removed from the apparatus through ceramic distribution members having ports designed for distributing the fluids in parallel flow to and from each cell. The distribution members can also serve as electrodes to membranes or as membrane members between electrodes, The distribution member design does not contain any horizontal internal ports which allows the member to be thin. A method of tape casting in combination with an embossing method allows intricate radial ribs and bosses to be formed on each distribution member. The bosses serve as seals for the ports and allow the distribution members to be made without any horizontal internal ports.
Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore
2003-11-18
The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.
Doss, James D.; Hutson, Richard L.
1982-01-01
The disclosure relates to a circulating saline electrode for changing corneal shape in eyes. The electrode comprises a tubular nonconductive electrode housing having an annular expanded base which has a surface substantially matched to a subject corneal surface. A tubular conductive electrode connected to a radiofrequency generating source is disposed within the electrode housing and longitudinally aligned therewith. The electrode has a generally hemispherical head having at least one orifice. Saline solution is circulated through the apparatus and over the cornea to cool the corneal surface while radiofrequency electric current emitted from the electrode flows therefrom through the cornea to a second electrode, on the rear of the head. This current heats the deep corneal stroma and thereby effects corneal reshaping as a biological response to the heat.
High-performance rechargeable batteries with fast solid-state ion conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Joseph C.
A high-performance rechargeable battery using ultra-fast ion conductors. In one embodiment the rechargeable battery apparatus includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanomaterial in the enclosure, and a heat transfer unit.
Microelectromechanical flow control apparatus
Okandan, Murat [NE Albuquerque, NM
2009-06-02
A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.
Extended range chemical sensing apparatus
Hughes, Robert C.; Schubert, W. Kent
1994-01-01
An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.
Safely splicing glass optical fibers
NASA Technical Reports Server (NTRS)
Korbelak, K.
1980-01-01
Field-repair technique fuses glass fibers in flammable environment. Apparatus consists of v-groove vacuum chucks on manipulators, high-voltage dc power supply and tungsten electrodes, microscope to observe joint alignment and fusion, means of test transmission through joint. Apparatus is enclosed in gas tight bos filled with inert gas during fusion. About 2 feet of fiber end are necessary for splicing.
Electroluminescent apparatus having a structured luminescence conversion layer
Krummacher, Benjamin Claus [Sunnyvale, CA
2008-09-02
An apparatus such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains color-changing and non-color-changing regions arranged in a particular pattern.
NASA Technical Reports Server (NTRS)
De Luca, Gianluca; De Luca, Carlo J.; Bergman, Per
2004-01-01
A portable electronic apparatus records electromyographic (EMG) signals in as many as 16 channels at a sampling rate of 1,024 Hz in each channel. The apparatus (see figure) includes 16 differential EMG electrodes (each electrode corresponding to one channel) with cables and attachment hardware, reference electrodes, an input/output-and-power-adapter unit, a 16-bit analog-to-digital converter, and a hand-held computer that contains a removable 256-MB flash memory card. When all 16 EMG electrodes are in use, full-bandwidth data can be recorded in each channel for as long as 8 hours. The apparatus is powered by a battery and is small enough that it can be carried in a waist pouch. The computer is equipped with a small screen that can be used to display the incoming signals on each channel. Amplitude and time adjustments of this display can be made easily by use of touch buttons on the screen. The user can also set up a data-acquisition schedule to conform to experimental protocols or to manage battery energy and memory efficiently. Once the EMG data have been recorded, the flash memory card is removed from the EMG apparatus and placed in a flash-memory- card-reading external drive unit connected to a personal computer (PC). The PC can then read the data recorded in the 16 channels. Preferably, before further analysis, the data should be stored in the hard drive of the PC. The data files are opened and viewed on the PC by use of special- purpose software. The software for operation of the apparatus resides in a random-access memory (RAM), with backup power supplied by a small internal lithium cell. A backup copy of this software resides on the flash memory card. In the event of loss of both main and backup battery power and consequent loss of this software, the backup copy can be used to restore the RAM copy after power has been restored. Accessories for this device are also available. These include goniometers, accelerometers, foot switches, and force gauges.
Apparatus and method for in-situ cleaning of resist outgassing windows
Klebanoff, Leonard E.; Haney, Steven J.
2001-01-01
An apparatus and method for in-situ cleaning of resist outgassing windows. The apparatus includes a chamber located in a structure, with the chamber having an outgassing window to be cleaned positioned in alignment with a slot in the chamber, whereby radiation energy passes through the window, the chamber, and the slot onto a resist-coated wafer mounted in the structure. The chamber is connected to a gas supply and the structure is connected to a vacuum pump. Within the chamber are two cylindrical sector electrodes and a filament is electrically connected to one sector electrode and a power supply. In a first cleaning method the sector electrodes are maintained at the same voltage, the filament is unheated, the chamber is filled with argon (Ar) gas under pressure, and the window is maintained at a zero voltage, whereby Ar ions are accelerated onto the window surface, sputtering away carbon deposits that build up as a result of resist outgassing. A second cleaning method is similar except oxygen gas (O.sub.2) is admitted to the chamber instead of Ar. These two methods can be carried out during lithographic operation. A third method, carried out during a maintenance period, involves admitting CO.sub.2 into the chamber, heating the filament to a point of thermionic emission, the sector electrodes are at different voltages, excited CO.sub.2 gas molecules are created which impact the carbon contamination on the window, and gasify it, producing CO gaseous products that are pumped away.
Sensing roller for in-process thickness measurement
Novak, James L.
1996-01-01
An apparatus and method for processing materials by sensing roller, in which the sensing roller has a plurality of conductive rings (electrodes) separated by rings of dielectric material. Sensing capacitances or impedances between the electrodes provides information on thicknesses of the materials being processed, location of wires therein, and other like characteristics of the materials.
Surface electromyographic electrode pair with built-in buffer-amplifiers.
Fujisawa, M; Uchida, K; Yamada, Y; Ishibashi, K
1990-03-01
By means of a surface electrode with an operational amplifier, a new electrode unit suitable for an electromyographic-biofeedback apparatus and for portable electromyography used outside a Faraday cage was developed. The operational amplifier, which has an output impedance lower than 10 ohms, functions as an efficient buffer amplifier and is able to protect the EMG signals from background noises. This new electrode unit is small (32 x 12 x 5 mm), waterproof, and inexpensive. Because its structure is simple, it can be built in any laboratory.
Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
Isenberg, Arnold O.
1987-01-01
An electrochemical apparatus is made containing an exterior electrode bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.
Apparatus and process for microbial detection and enumeration
NASA Technical Reports Server (NTRS)
Wilkins, J. R.; Grana, D. (Inventor)
1982-01-01
An apparatus and process for detecting and enumerating specific microorganisms from large volume samples containing small numbers of the microorganisms is presented. The large volume samples are filtered through a membrane filter to concentrate the microorganisms. The filter is positioned between two absorbent pads and previously moistened with a growth medium for the microorganisms. A pair of electrodes are disposed against the filter and the pad electrode filter assembly is retained within a petri dish by retainer ring. The cover is positioned on base of petri dish and sealed at the edges by a parafilm seal prior to being electrically connected via connectors to a strip chart recorder for detecting and enumerating the microorganisms collected on filter.
Method and apparatus for guiding ablative therapy of abnormal biological electrical excitation
NASA Technical Reports Server (NTRS)
Armoundas, Antonis A. (Inventor); Feldman, Andrew B. (Inventor); Sherman, Derin A. (Inventor); Cohen, Richard J. (Inventor)
2001-01-01
This invention involves method and apparatus for guiding ablative therapy of abnormal biological electrical excitation. In particular, it is designed for treatment of cardiac arrhythmias. In the method of this invention electrical signals are acquired from passive electrodes, and an inverse dipole method is used to identify the site of origin of an arrhytmia. The location of the tip of the ablation catheter is similarly localized from signals acquired from the passive electrodes while electrical energy is delivered to the tip of the catheter. The catheter tip is then guided to the site of origin of the arrhythmia, and ablative radio frequency energy is delivered to its tip to ablate the site.
METAL SPRAYER FOR USE IN VACUUM OR INERT ATMOSPHERE
Monroe, R.E.
1958-10-14
A metal sprayer is described for use in a vacuum or inert atmosphere with a straight line wire feed and variable electrode contact angle. This apparatus comprises two wires which are fed through straight tubes of two mechanisms positioned on opposite sides of a central tube to which an inert gas is fed. The two mechanisms and the wires being fed constitute electrodes to which electrical current is supplied so that the wires are melted by the electric are formed at their contacting region and sprayed by the gas supplied by the central tube. This apparatus is designed specifically to apply a zirconium coating to uranium in an inert atmosphere and without the use of an oxidizing flame.
Apparatus for electrical-assisted incremental forming and process thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, John; Cao, Jian
A process and apparatus for forming a sheet metal component using an electric current passing through the component. The process can include providing an incremental forming machine, the machine having at least one arcuate tipped tool and at least electrode spaced a predetermined distance from the arcuate tipped tool. The machine is operable to perform a plurality of incremental deformations on the sheet metal component using the arcuate tipped tool. The machine is also operable to apply an electric direct current through the electrode into the sheet metal component at the predetermined distance from the arcuate tipped tool while themore » machine is forming the sheet metal component.« less
Fiber optics spectrochemical emission sensors
Griffin, Jeffrey W.; Olsen, Khris B.
1992-01-01
A method of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species uses a probe insertable into the well or tank via a cable and having electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited the fluid in alignment with the light guide axis and optical emissions are received from the excited chemical species along such axis.
Fiber optics spectrochemical emission sensors
Griffin, J.W.; Olsen, K.B.
1992-02-04
A method is described of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species. The method uses a probe insertable into the well or tank via a cable and having an electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has an optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited in the fluid in alignment with the light guide axis. Optical emissions are received from the excited chemical species along such axis. 18 figs.
A prepositioned areal electrofishing apparatus for sampling stream habitats
Fisher, William L.; Brown, Marshall E.
1993-01-01
We describe the design, use, and sampling characteristics ofan electrofishing apparatus used to sample fish in stream habitats. The apparatus uses two prepositioned areal electrofishing devices (PAED) of different designs, a bottom parallel electrode PAED and a suspended dropper electrode PAED. To determine the effective immobilization ranges of the PAEDs, we evaluated intensities and shapes of the PAEDs' electrical fields, and the electroshock responses of fish in cages in concrete tanks and in four streams in Alabama with different water conductivities. Electroshock responses indicated that complete immobilization occurred at voltage gradients of 1.0 V/cm or higher (voltage drop, 400 V AC), as far as 35 cm from the PAED electrodes, although some fish were immobilized up to 65 cm away at 0.3 V/cm. We estimated the immobilization (stun) power density threshold to be about 10 μW/cm3. Stream evaluations of the PAEDs revealed that higher voltages were needed to immobilize fish at lower (35 μS/cm) and higher (120 and 125 μS/cm) water conductivities, whereas lower voltages were required at an intermediate conductivity (60 μS/cm). These results conformed with the predictions of power transfer theory and underscored the need to calibrate PAEDs to stream conductivities to standardize the effective sampling range.
Material transport method and apparatus
Ramsey, J. Michael; Ramsey, Roswitha S.
2000-01-01
An electrospray apparatus uses a microchannel formed in a microchip. Fluid is pumped through the channel to an outlet orifice using either hydraulic or electrokinetic means. An electrospray is generated by establishing a sufficient potential difference between the fluid at the outlet orifice and a target electrode spaced from the outlet orifice. Electrokinetic pumping is also utilized to provide additional benefits to microchip devices.
Material transport method and apparatus
Ramsey, J. Michael; Ramsey, Roswitha S.
2001-01-01
An electrospray apparatus uses a microchannel formed in a microchip. Fluid is pumped through the channel to an outlet orifice using either hydraulic or electrokinetic means. An electrospray is generated by establishing a sufficient potential difference between the fluid at the outlet orifice and a target electrode spaced from the outlet orifice. Electrokinetic pumping is also utilized to provide additional benefits to microchip devices.
Extended range chemical sensing apparatus
Hughes, R.C.; Schubert, W.K.
1994-01-18
An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.
Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Koster, James E.
2001-01-01
The apparatus and method provide an improved technique for detecting ions as the area from which ions are attracted to a detector is increased, consequently increasing the number of ions detected. This is achieved by providing the outer electrodes of the detector connected to the electrical potential, together with alternate intermediate electrodes. The other intermediate electrodes and preferably the housing are grounded. The technique renders such detection techniques more sensitive and gives them a lower threshold at which they can function.
Electrode carrying wire for GTAW welding
NASA Technical Reports Server (NTRS)
Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)
1990-01-01
A welding torch for gas tungsten arc welding apparatus has a hollow tungsten electrode including a ceramic liner and forms the filler metal wire guide. The wire is fed through the tungsten electrode thereby reducing the size of the torch to eliminate clearance problems which exist with external wire guides. Since the wire is preheated from the tungsten more wire may be fed into the weld puddle, and the wire will not oxidize because it is always within the shielding gas.
Electrode holder useful in a corrosion testing device
Murphy, R.J. Jr.; Jamison, D.E.
1986-08-19
The present invention is directed to an apparatus and method for holding one or more test electrodes of precisely known exposed surface area. The present invention is particularly useful in a device for determining the corrosion properties of the materials from which the test electrodes have been formed. The present invention relates to a device and method for holding the described electrodes wherein the exposed surface area of the electrodes is only infinitesimally decreased. Further, in the present invention the exposed, electrically conductive surface area of the contact devices is small relative to the test electrode surface area. The holder of the present invention conveniently comprises a device for contacting and engaging each test electrode at two point contacts infinitesimally small in relation to the exposed surface area of the electrodes. 4 figs.
Electrode holder useful in a corrosion testing device
Murphy, Jr., Robert J.; Jamison, Dale E.
1986-01-01
The present invention is directed to an apparatus and method for holding one or more test electrodes of precisely known exposed surface area. The present invention is particularly useful in a device for determining the corrosion properties of the materials from which the test electrodes have been formed. The present invention relates to a device and method for holding the described electrodes wherein the exposed surface area of the electrodes is only infinitesimally decreased. Further, in the present invention the exposed, electrically conductive surface area of the contact devices is small relative to the test electrode surface area. The holder of the present invention conveniently comprises a device for contacting and engaging each test electrode at two point contacts infinitesimally small in relation to the exposed surface area of the electrodes.
Methods and Apparatus for Pulsed-DC Dielectric Barrier Discharge Plasma Actuator and Circuit
NASA Technical Reports Server (NTRS)
Corke, Thomas C. (Inventor); Gold, Calman (Inventor); Kaszeta, Richard (Inventor)
2017-01-01
A plasma generating device intended to induce a flow in a fluid via plasma generation includes a dielectric separating two electrodes and a power supply. The first electrode is exposed to a fluid flow while the second electrode is positioned under the dielectric. The power supply is electrically coupled to a switch and the first and second electrodes. When the power supply is energized by repeated action of the switch, it causes a pulsed DC current between the electrodes which causes the fluid to ionize generating a plasma. The generation of the plasma induces a force with a velocity component in the fluid.
A diamond active target for the PADME experiment
NASA Astrophysics Data System (ADS)
Chiodini, G.
2017-02-01
The PADME (Positron Annihilation into Dark Mediator Experiment) collaboration searches for dark photons produced in the annihilation e++e-→γ+A' of accelerated positrons with atomic electrons of a fixed target at the Beam Test Facility of Laboratori Nazionali di Frascati. The apparatus can detect dark photons decaying into visible A'→e+e- and invisible A'→χχ channels, where χ's are particles of a secluded sector weakly interacting and therefore undetected. In order to improve the missing mass resolution and to measure the beam flux, PADME has an active target able to reconstruct the beam spot position and the bunch multiplicity. In this work the active target is described, which is made of a detector grade polycrystalline synthetic diamond with strip electrodes on both surfaces. The electrodes segmentation allows to measure the beam profile along X and Y and evaluate the average beam position bunch per bunch. The results of beam tests for the first two diamond detector prototypes are shown. One of them holds innovative graphitic electrodes built with a custom process developed in the laboratory, and the other one with commercially available traditional Cr-Au electrodes. The front-end electronics used in the test beam is discussed and the performance observed is presented. Finally, the final design of the target to be realized at the beginning of 2017 to be ready for data taking in 2018 is illustrated.
Metal halogen battery construction with improved technique for producing halogen hydrate
Fong, Walter L.; Catherino, Henry A.; Kotch, Richard J.
1983-01-01
An improved electrical energy storage system comprising, at least one cell having a positive electrode and a negative electrode separated by aqueous electrolyte, a store means wherein halogen hydrate is formed and stored as part of an aqueous material having a liquid level near the upper part of the store, means for circulating electrolyte through the cell, conduit means for transmitting halogen gas formed in the cell to a hydrate forming apparatus associated with the store, said hydrate forming apparatus including, a pump to which there is introduced quantities of the halogen gas and chilled water, said pump being located in the store and an outlet conduit leading from the pump and being substantially straight and generally vertically disposed and having an exit discharge into the gas space above the liquid level in the store, and wherein said hydrate forming apparatus is highly efficient and very resistant to plugging or jamming. The disclosure also relates to an improved method for producing chlorine hydrate in zinc chlorine batteries.
Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro
2015-04-28
An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.
Atmospheric pressure helium afterglow discharge detector for gas chromatography
Rice, G.; D'Silva, A.P.; Fassel, V.A.
1985-04-05
An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.
Atmospheric pressure helium afterglow discharge detector for gas chromatography
Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.
1986-05-06
An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.
Sensing roller for in-process thickness measurement
Novak, J.L.
1996-07-16
An apparatus and method are disclosed for processing materials by sensing roller, in which the sensing roller has a plurality of conductive rings (electrodes) separated by rings of dielectric material. Sensing capacitances or impedances between the electrodes provides information on thicknesses of the materials being processed, location of wires therein, and other like characteristics of the materials. 6 figs.
Farmer, Joseph C.
2017-04-04
A high-performance rechargeable battery using ultra-fast ion conductors. In one embodiment the rechargeable battery apparatus includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanomaterial in the enclosure, and a heat transfer unit.
Vail, W.B. III.
1991-08-27
Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into the formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figures.
Vail, W.B. III.
1989-11-21
Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figs.
Vail, III, William B.
1991-01-01
Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas present. Lithological characteristics of the formation such as the pressence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.
Vail, III, William B.
1989-01-01
Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.
Method and apparatus for accurately manipulating an object during microelectrophoresis
Parvin, Bahram A.; Maestre, Marcos F.; Fish, Richard H.; Johnston, William E.
1997-01-01
An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations add reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage.
Method and apparatus for accurately manipulating an object during microelectrophoresis
Parvin, B.A.; Maestre, M.F.; Fish, R.H.; Johnston, W.E.
1997-09-23
An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations and reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage. 11 figs.
Apparatus and method for use in storing energy
Sathrum, Aaron J.
2017-08-01
Some embodiments provide energy storage systems that comprise: a first electrode; a second electrode; an electrolyte; the first electrode, the second electrode and the electrolyte are positioned such that the electrolyte is in contact with at least the first electrode; and a polarity reversal system electrically coupled with the first electrode and the second electrode, wherein the polarity reversal system is configured to allow the energy storage system to operate while a first polarity to charge and discharge electrical energy while operating in the first polarity, and the polarity reversal system is configured to reverse the voltage polarity across the first and second electrodes to a second polarity to allow the energy storage system to continue to operate while the second polarity is established across the first electrode and the second electrode to continue to charge and discharge electrical energy while operating in the second polarity.
Method and apparatus for removing ions from soil
Bibler, J.P.
1993-03-02
A method and apparatus are presented for selectively removing species of ions from an area of soil. Permeable membranes 14 and 18 impregnated with an ion exchange resin that is specific to one or more species of chemical ions are inserted into ground 12 in close proximity to, and on opposing sides of, a soil area of interest 22. An electric potential is applied across electrodes 26 and 28 to cause the migration of ions out of soil area 22 toward the membranes 14 and 18. Preferably, the resin exchanges ions of sodium or hydrogen for ions of mercury that it captures from soil area 22. Once membranes 14 and 18 become substantially saturated with mercury ions, the potential applied across electrodes 26 and 28 is discontinued and membranes 14 and 18 are preferably removed from soil 12 for storage or recovery of the ions. The membranes are also preferably impregnated with a buffer to inhibit the effect of the hydrolysis of water by current from the electrodes.
Method and apparatus for removing ions from soil
Bibler, Jane P.
1993-01-01
A method and apparatus for selectively removing species of ions from an area of soil. Permeable membranes 14 and 18 impregnated with an ion exchange resin that is specific to one or more species of chemical ions are inserted into ground 12 in close proximity to, and on opposing sides of, a soil area of interest 22. An electric potential is applied across electrodes 26 and 28 to cause the migration of ions out of soil area 22 toward the membranes 14 and 18. Preferably, the resin exchanges ions of sodium or hydrogen for ions of mercury that it captures from soil area 22. Once membranes 14 and 18 become substantially saturated with mercury ions, the potential applied across electrodes 26 and 28 is discontinued and membranes 14 and 18 are preferably removed from soil 12 for storage or recovery of the ions. The membranes are also preferably impregnated with a buffer to inhibit the effect of the hydrolysis of water by current from the electrodes.
Method for electrohydrodynamically assembling patterned colloidal structures
NASA Technical Reports Server (NTRS)
Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)
1999-01-01
A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.
Portable Apparatus for Electrochemical Sensing of Ethylene
NASA Technical Reports Server (NTRS)
Manoukian, Mourad; Tempelman, Linda A.; Forchione, John; Krebs, W. Michael; Schmitt, Edwin W.
2007-01-01
A small, lightweight, portable apparatus based on an electrochemical sensing principle has been developed for monitoring low concentrations of ethylene in air. Ethylene has long been known to be produced by plants and to stimulate the growth and other aspects of the development of plants (including, notably, ripening of fruits and vegetables), even at concentrations as low as tens of parts per billion (ppb). The effects are magnified in plant-growth and -storage chambers wherein ethylene can accumulate. There is increasing recognition in agriculture and related industries that it is desirable to monitor and control ethylene concentrations in order to optimize the growth, storage, and ripening of plant products. Hence, there are numerous potential uses for the present apparatus in conjunction with equipment for controlling ethylene concentrations. The ethylene sensor is of a thick-film type with a design optimized for a low detection limit. The sensor includes a noble metal sensing electrode on a chip and a hydrated solid-electrolyte membrane that is held in contact with the chip. Also located on the sensor chip are a counter electrode and a reference electrode. The sensing electrode is held at a fixed potential versus the reference electrode. Detection takes place at active-triple-point areas where the sensing electrode, electrolyte, and sample gas meet. These areas are formed by cutting openings in the electrolyte membrane. The electrode current generated from electrochemical oxidation of ethylene at the active triple points is proportional to the concentration of ethylene. An additional film of the solid-electrolyte membrane material is deposited on the sensing electrode to increase the effective triple-point areas and thereby enhance the detection signal. The sensor chip is placed in a holder that is part of a polycarbonate housing. When fully assembled, the housing holds the solid-electrolyte membrane in contact with the chip (see figure). The housing includes a water reservoir for keeping the solid-electrolyte membrane hydrated. The housing also includes flow channels for circulating a sample stream of air over the chip: ethylene is brought to the sensing surface predominately by convection in this sample stream. The sample stream is generated by a built-in sampling pump. The forced circulation of sample air contributes to the attainment of a low detection limit.
Bismuth-based electrochemical stripping analysis
Wang, Joseph
2004-01-27
Method and apparatus for trace metal detection and analysis using bismuth-coated electrodes and electrochemical stripping analysis. Both anodic stripping voltammetry and adsorptive stripping analysis may be employed.
Method and apparatus for sputtering utilizing an apertured electrode and a pulsed substrate bias
NASA Technical Reports Server (NTRS)
Przybyszewski, J. S.; Shaltens, R. K. (Inventor)
1973-01-01
The method and equipment used for sputtering by use of an apertured electrode and a pulsed substrate bias are discussed. The technique combines the advantages of ion plating with the versatility of a radio frequency sputtered source. Electroplating is accomplished by passing a pulsed high voltage direct current to the article being plated during radio frequency sputtering.
Metal atomization spray nozzle
Huxford, Theodore J.
1993-01-01
A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.
System, Apparatus, and Method for Active Debris Removal
NASA Technical Reports Server (NTRS)
Hickey, Christopher J. (Inventor); Spehar, Peter T. (Inventor); Griffith, Sr., Anthony D. (Inventor); Kohli, Rajiv (Inventor); Burns, Susan H. (Inventor); Gruber, David J. (Inventor); Lee, David E. (Inventor); Robinson, Travis M. (Inventor); Damico, Stephen J. (Inventor); Smith, Jason T. (Inventor)
2017-01-01
Systems, apparatuses, and methods for removal of orbital debris are provided. In one embodiment, an apparatus includes a spacecraft control unit configured to guide and navigate the apparatus to a target. The apparatus also includes a dynamic object characterization unit configured to characterize movement, and a capture feature, of the target. The apparatus further includes a capture and release unit configured to capture a target and deorbit or release the target. The collection of these apparatuses is then employed as multiple, independent and individually operated vehicles launched from a single launch vehicle for the purpose of disposing of multiple debris objects.
Signal characteristics of electroseismic conversion
NASA Astrophysics Data System (ADS)
Peng, Rong; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Liu, Zichun; Guan, Bingyan; Huang, Shiqi
2018-04-01
Electric fields applying on the fluid-filled porous materials can induce small relative pore-fluid motions due to electroseismic conversions. In order to characterize the electroseismic propagation phenomena, we have designed an experimental apparatus to acquire the electroseismic (ES) signals. The electroseismic measurements on different samples have been conducted to confirm the origin of the recorded signals. We find that a strong acoustic signal generates around the electrode and affects the identification of ES signals. To further confirm and distinguish the ES signal as well as the acoustic signal around the electrode, we have analyzed records obtained with regular movements of the receiver, the sample and the source. Analysis has been made on the characteristics of the traveltime, polarity and frequency of ES signals. Our results show that the traveltime of ES signal relates to the distance between the rock sample and the receiver, the location of the exciting electrode has little impact on the traveltime. The applied electric field influences the polarity of ES signal, the polarity of ES signal reverses along with the changes of the electric field direction. While it has no polarity effects on the acoustic signal generated around the electrode. The frequency spectrum of ES signal is absolutely different with that of the acoustic signal generated around the electrode. The acoustic signal around the electrode has multiple dominant frequencies which are mainly in low-frequency range without being affected by the frequency of the electric field. The ES signal has only one dominant frequency which closely relates to the frequency of the electric field. The understanding of the signal characteristics on electroseismic conversion can contribute to a better application and interpretation of ES exploration.
Method and apparatus for electron-only radiation detectors from semiconductor materials
Lund, James C.
2000-01-01
A system for obtaining improved resolution in room temperature semiconductor radiation detectors such as CdZnTe and Hgl.sub.2, which exhibit significant hole-trapping. A electrical reference plane is established about the perimeter of a semiconductor crystal and disposed intermediately between two oppositely biased end electrodes. The intermediate reference plane comprises a narrow strip of wire in electrical contact with the surface of the crystal, biased at a potential between the end electrode potentials and serving as an auxiliary electrical reference for a chosen electrode--typically the collector electrode for the more mobile charge carrier. This arrangement eliminates the interfering effects of the less mobile carriers as these are gathered by their electrode collector.
Wilcox, J.M.; Baker, W.R.
1963-09-17
This invention is a magnetohydrodynamic device for generating a highly ionized ion-electron plasma at a region remote from electrodes and structural members, thus avoiding contamination of the plasma. The apparatus utilizes a closed, gas-filled, cylindrical housing in which an axially directed magnetic field is provided. At one end of the housing, a short cylindrical electrode is disposed coaxially around a short axial inner electrode. A radial electrical discharge is caused to occur between the inner and outer electrodes, creating a rotating hydromagnetic ionization wave that propagates aiong the magnetic field lines toward the opposite end of the housing. A shorting switch connected between the electrodes prevents the wave from striking the opposite end of the housing. (AEC)
Actinide ion sensor for pyroprocess monitoring
Jue, Jan-fong; Li, Shelly X.
2014-06-03
An apparatus for real-time, in-situ monitoring of actinide ion concentrations which comprises a working electrode, a reference electrode, a container, a working electrolyte, a separator, a reference electrolyte, and a voltmeter. The container holds the working electrolyte. The voltmeter is electrically connected to the working electrode and the reference electrode and measures the voltage between those electrodes. The working electrode contacts the working electrolyte. The working electrolyte comprises an actinide ion of interest. The reference electrode contacts the reference electrolyte. The reference electrolyte is separated from the working electrolyte by the separator. The separator contacts both the working electrolyte and the reference electrolyte. The separator is ionically conductive to the actinide ion of interest. The reference electrolyte comprises a known concentration of the actinide ion of interest. The separator comprises a beta double prime alumina exchanged with the actinide ion of interest.
Chapman, Christopher C.
1995-01-01
An apparatus, and method of operating the apparatus, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed either by excavating a melt zone in a quantity of soil or rock, or by constructing a melt zone in an apparatus above grade and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials.
Snap-in compressible biomedical electrode
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.; Hillman, C. E., Jr. (Inventor)
1977-01-01
A replaceable, prefilled electrode enclosed in a plastic seal and suitably adapted for attachment to a reusable, washable cap having snaps thereon is disclosed. The apparatus is particularly adapted for quick positioning of electrodes to obtain an EEG. The individual electrodes are formed of a sponge body which is filled with a conductive electrolyte gel during manufacture. The sponge body is adjacent to a base formed of a conductive plastic material. The base has at its center a male gripper snap. The cap locates the female snap to enable the electrode to be positioned. The electrode can be stored and used quickly by attaching to the female gripper snap. The snap is correctly positioned and located by mounting it in a stretchable cap. The cap is reusable with new electrodes for each use. The electrolyte gel serves as the contact electrode to achieve a good ohmic contact with the scalp.
Method and apparatus for the guided ablative therapy of fast ventricular arrhythmia
NASA Technical Reports Server (NTRS)
Cohen, Richard J. (Inventor); Barley, Maya (Inventor)
2010-01-01
Method and apparatus for guiding ablative therapy of abnormal biological electrical excitation. The excitation from the previous excitatory wave is significant at the beginning of the next excitation. In particular, it is designed for treatment of fast cardiac arrhythmias. Electrical signals are acquired from recording electrodes, and an inverse dipole method is used to identify the site of origin of an arrhythmia. The location of the tip of an ablation catheter is similarly localized from signals acquired from the recording electrodes while electrical pacing energy is delivered to the tip of the catheter close to or in contact with the cardiac tissue. The catheter tip is then guided to the site of origin of the arrhythmia, and ablative radio frequency energy is delivered to its tip to ablate the site.
Nanoscale electromechanical parametric amplifier
Aleman, Benjamin Jose; Zettl, Alexander
2016-09-20
This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.
Metal atomization spray nozzle
Huxford, T.J.
1993-11-16
A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.
Reichner, P.; Dollard, W.J.
1991-01-08
An electrochemical apparatus is made having a generator section containing axially elongated electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one gaseous spent fuel exit channel, where the spent fuel exit channel passes from the generator chamber to combine with the fresh feed fuel inlet at a mixing apparatus, reformable fuel mixture channel passes through the length of the generator chamber and connects with the mixing apparatus, that channel containing entry ports within the generator chamber, where the axis of the ports is transverse to the fuel electrode surfaces, where a catalytic reforming material is distributed near the reformable fuel mixture entry ports. 2 figures.
Method of making sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
Isenberg, Arnold O.
1989-01-01
An electrochemical apparatus is made containing an exterior electorde bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.
Controls for maintaining low nitrogen oxides content in internal combustion engine exhaust gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siebke, H.; Moro, B.; Schoenborn, M.
1976-08-10
A control system and apparatus for measuring and monitoring the nitrogen oxides content of internal combustion engine exhaust gases is described. The exhaust gases are contacted with the reducing electrode of a sensor cell having a predetermined potential established between the cell electrodes so that the reducing electrode is able to reduce both the nitrogen oxides and oxygen content of the exhaust gas. The current flowing through the sensor cell is measured to determine whether the nitrogen oxides content of the exhaust gas is sufficiently low.
In situ heating to detoxify organic-contaminated soils
Buelt, James L.; Oma, Kenton H.
1990-01-01
A method and apparatus for decontaminating ground areas where toxic chemicals are buried comprises disposition of a plurality of spaced electrodes in the ground to be treated and application of a voltage across the electrodes for bringing about current flow through the ground. Power delivered to the ground volatilizes the chemicals which are collected and directed to a gas treatment system. The preferred form of the invention employs high voltage arc discharge between the electrodes for heating a ground region to relatively high temperatures at relatively low power levels.
Osborne, Louis S.; Lanza, Richard C.
1984-01-01
A method and apparatus for determining the distribution of a position-emitting radioisotope into an object, the apparatus consisting of a wire mesh radiation converter, an ionizable gas for propagating ionization events caused by electrodes released by the converter, a drift field, a spatial position detector and signal processing circuitry for correlating near-simultaneous ionization events and determining their time differences, whereby the position sources of back-to-back collinear radiation can be located and a distribution image constructed.
Micklash. II, Kenneth James; Dutton, Justin James; Kaye, Steven
2014-06-03
An apparatus for testing of multiple material samples includes a gas delivery control system operatively connectable to the multiple material samples and configured to provide gas to the multiple material samples. Both a gas composition measurement device and pressure measurement devices are included in the apparatus. The apparatus includes multiple selectively openable and closable valves and a series of conduits configured to selectively connect the multiple material samples individually to the gas composition device and the pressure measurement devices by operation of the valves. A mixing system is selectively connectable to the series of conduits and is operable to cause forced mixing of the gas within the series of conduits to achieve a predetermined uniformity of gas composition within the series of conduits and passages.
Apparatus for detecting alpha radiation in difficult access areas
Steadman, Peter; MacArthur, Duncan W.
1997-09-02
An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure.
Tran, Tri D.; Farmer, Joseph C.; Murguia, Laura
2001-01-01
An electrically regeneratable electrochemical cell (30) for capacitive deionization and electrochemical purification and regeneration of electrodes includes two end plates (31, 32), one at each end of the cell (30). A new regeneration method is applied to the cell (30) which includes slowing or stopping the purification cycle, electrically desorbing contaminants and removing the desorbed contaminants. The cell (30) further includes a plurality of generally identical double-sided intermediate electrodes (37-43) that are equidistally separated from each other, between the two end electrodes (35, 36). As the electrolyte enters the cell, it flows through a continuous open serpentine channel (65-71) defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cell (30), ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. The cell (30) is regenerated electrically to desorb such previously removed ions.
Hess, Katherine C; Epting, William K; Litster, Shawn
2011-12-15
We report the development and use of a microstructured electrode scaffold (MES) to make spatially resolved, in situ, electrolyte potential measurements through the thickness of a polymer electrolyte fuel cell (PEFC) electrode. This new approach uses a microfabricated apparatus to analyze the coupled transport and electrochemical phenomena in porous electrodes at the microscale. In this study, the MES allows the fuel cell to run under near-standard operating conditions, while providing electrolyte potential measurements at discrete distances through the electrode's thickness. Here we use spatial distributions of electrolyte potential to evaluate the effects of Ohmic and mass transport resistances on the through-plane reaction distribution for various operating conditions. Additionally, we use the potential distributions to estimate the ionic conductivity of the electrode. Our results indicate the in situ conductivity is higher than typically estimated for PEFC electrodes based on bulk polymer electrolyte membrane (PEM) conductivity.
Evaluation of niobium as candidate electrode material for DC high voltage photoelectron guns
BastaniNejad, M.; Mohamed, Md. Abdullah; Elmustafa, A. A.; ...
2012-08-17
In this study, the field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirror-like finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain and two fine-grain) that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and gradient. In all cases,more » field emission from electrodes (stainless steel and/or niobium) could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a gradient of 18.7 MV/m.« less
Evaluation of Niobium as Candidate Electrode Material for DC High Voltage Photoelectron Guns
NASA Technical Reports Server (NTRS)
BastaniNejad, M.; Mohamed, Abdullah; Elmustafa, A. A.; Adderley, P.; Clark, J.; Covert, S.; Hansknecht, J.; Hernandez-Garcia, C.; Poelker, M.; Mammei, R.;
2012-01-01
The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirror-like finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain) that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium) could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18:7 MV/m.
Vacuum Deposition From A Welding Torch
NASA Technical Reports Server (NTRS)
Poorman, R. M.
1993-01-01
Process derived from arc welding produces films of high quality. Modified gas/tungsten-arc welding process developed for use in outer space. Welding apparatus in process includes hollow tungsten electrode through which inert gas flows so arc struck between electrode and workpiece in vacuum of space. Offers advantages of fast deposition, possibility of applying directional impetus to flow of materials, very low pressure at surface being coated, and inert environment.
Electrolytic cell. [For separating anolyte and catholyte
Bullock, J.S.; Hale, B.D.
1984-09-14
An apparatus is described for the separation of the anolyte and the catholyte during electrolysis. The electrolyte flows through an electrolytic cell between the oppositely charged electrodes. The cell is equipped with a wedge-shaped device, the tapered end being located between the electrodes on the effluent side of the cell. The wedge diverts the flow of the electrolyte to either side of the wedge, substantially separating the anolyte and the catholyte.
Apparatus and method for plasma processing of SRF cavities
NASA Astrophysics Data System (ADS)
Upadhyay, J.; Im, Do; Peshl, J.; Bašović, M.; Popović, S.; Valente-Feliciano, A.-M.; Phillips, L.; Vušković, L.
2016-05-01
An apparatus and a method are described for plasma etching of the inner surface of superconducting radio frequency (SRF) cavities. Accelerator SRF cavities are formed into a variable-diameter cylindrical structure made of bulk niobium, for resonant generation of the particle accelerating field. The etch rate non-uniformity due to depletion of the radicals has been overcome by the simultaneous movement of the gas flow inlet and the inner electrode. An effective shape of the inner electrode to reduce the plasma asymmetry for the coaxial cylindrical rf plasma reactor is determined and implemented in the cavity processing method. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise way to establish segmented plasma columns. The test structure was a pillbox cavity made of steel of similar dimension to the standard SRF cavity. This was adopted to experimentally verify the plasma surface reaction on cylindrical structures with variable diameter using the segmented plasma generation approach. The pill box cavity is filled with niobium ring- and disk-type samples and the etch rate of these samples was measured.
METHOD AND APPARATUS FOR PRODUCING INTENSE ENERGETIC GAS DISCHARGES
Bell, P.R.; Luce, J.S.
1960-01-01
A device for producing an energetic gas arc discharge employing the use of gas-fed hollow cathode and anode electrodes is reported. The rate of feed of the gas to the electrodes is regulated to cause complete space charge neutralization to occur within the electrodes. The arc discharge is closely fitted within at least one of the electrodes so tint the gas fed to this electrode is substantially completely ionized before it is emitted into the vacuum chamber. It is this electrode design and the axial potential gradient that exists in the arc which permits the arc to be operated in low pressures and at volthges and currents that permit the arc to be energetic. The use of the large number of energetic ions that are accelerated toward the cathode as a propulsion device for a space vehicle is set forth.
Photoelectrochemical molecular comb
Thundat, Thomas G.; Ferrell, Thomas L.; Brown, Gilbert M.
2006-08-15
A method and apparatus for separating molecules. The apparatus includes a substrate having a surface. A film in contact with the surface defines a substrate/film interface. An electrode electrically connected to the film applies a voltage potential between the electrode and the substrate to form a depletion region in the substrate at the substrate/film interface. A photon energy source having an energy level greater than the potential is directed at the depletion region to form electron-hole pairs in the depletion region. At least one of the electron-hole pairs is separated by the potential into an independent electron and an independent hole having opposite charges and move in opposing directions. One of the electron and hole reach the substrate/film interface to create a photopotential in the film causing charged molecules in the film to move in response to the localized photovoltage.
Magnetron with flux switching cathode and method of operation
Aaron, D.B.; Wiley, J.D.
1989-09-12
A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness. 5 figs.
Magnetron with flux switching cathode and method of operation
Aaron, David B.; Wiley, John D.
1989-01-01
A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness.
Earth melter and method of disposing of feed materials
Chapman, Christopher C.
1994-01-01
An apparatus, and method of operating the apparatus, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials.
Earth melter and method of disposing of feed materials
Chapman, C.C.
1994-10-11
An apparatus, and method of operating the apparatus is described, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials. 3 figs.
Glenn, David F.; Matthern, Gretchen E.; Propp, W. Alan; Glenn, Anne W.; Shaw, Peter G.
2006-08-08
A method and apparatus for determining spatial locations of defects in a material are described. The method includes providing a plurality of electrodes in contact with a material, applying a sinusoidal voltage to a select number of the electrodes at a predetermined frequency, determining gain and phase angle measurements at other of the electrodes in response to applying the sinusoidal voltage to the select number of electrodes, determining impedance values from the gain and phase angle measurements, computing an impedance spectrum for an area of the material from the determined impedance values, and comparing the computed impedance spectrum with a known impedance spectrum to identify spatial locations of defects in the material.
Programmable electroacoustic filter apparatus and method for its manufacture
Nordquist, Christopher; Olsson, Roy H.; Scott, Sean Michael; Wojciechowski, Kenneth; Branch, Darren W.
2016-03-01
An acoustically coupled frequency selective radio frequency (RF) device is provided. The device includes a piezoelectric substrate overlain by a plurality of electrodes. The device further includes a pair of RF input terminals at least one of which is electrically connected to at least one of the electrodes, and a pair of output RF terminals, at least one of which is electrically connected to at least one other of the electrodes. At least one of the electrodes is electromechanically reconfigurable between a state in which it is closer to a face of the piezoelectric substrate and at least one state in which it is farther from the face of the piezoelectric substrate.
Methods and apparatus for using gas and liquid phase cathodic depolarizers
NASA Technical Reports Server (NTRS)
Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor)
1998-01-01
The invention provides methods for using gas and liquid phase cathodic depolarizers in an electrochemical cell having a cation exchange membrane in intimate contact with the anode and cathode. The electrochemical conversion of cathodic depolarizers at the cathode lowers the cell potential necessary to achieve a desired electrochemical conversion, such as ozone evolution, at the anode. When gaseous cathodic depolarizers, such as oxygen, are used, a gas diffusion cathode having the cation exchange membrane bonded thereto is preferred. When liquid phase cathodic depolarizers are used, the cathode may be a flow-by electrode, flow-through electrode, packed-bed electrode or a fluidized-bed electrode in intimate contact with the cation exchange membrane.
Signal processing with a summing operational amplifier in multicomponent potentiometric titrations.
Parczewski, A
1987-06-01
It has been proved that application of two indicator electrodes connected to the ordinary titration apparatus through an auxiliary electronic device (a summing operational amplifier) significantly extends the scope of multicomponent potentiometric titrations in which the analytes are determined simultaneously from a single titration curve. For each analyte there is a corresponding potential jump on the titration curve. By application of the proposed auxiliary device, the sum of the electrode potentials is measured. The device also enables the relative sizes of the potential jumps at the end-points on the titration curve to be varied. The advantages of the proposed signal processing are exemplified by complexometric potentiometric titrations of Fe(III) and Cu(II) in mixtures, with a platinum electrode and a copper ion-selective electrode as the indicator electrodes.
Method of low temperature operation of an electrochemical cell array
Singh, P.; Ruka, R.J.; Bratton, R.J.
1994-04-26
A method is described for operating an electrochemical cell generator apparatus containing a generator chamber containing an array of cells having interior and exterior electrodes with solid electrolyte between the electrodes, where a hot gas contacts the outside of the cells and the generating chamber normally operates at over 850 C, where N[sub 2] gas is fed to contact the interior electrode of the cells in any case when the generating chamber temperature drops for whatever reason to within the range of from 550 C to 800 C, to eliminate cracking within the cells. 2 figures.
CONTROL FOR ISOTOPE SEPARATING APPARATUS
Brackney, H.W.
1960-08-01
Improvements in methods and means for controlling the position and condition of the ion beam of calutrons for more efficient operation were developed. These improvements were accomplished by the addition of a new electrode in the receiver adjacent to and on the far side of one of the ion collector pockets. this electrode receiving and metering a small pcrtion of the outer fringe of the ion beam directed to this pocket. More sensitive and accurate control of the focusing of the ion beams may be obtained by maximizing the ratio of the current to the above pocket to the current to the additional electrode.
Infrared nanoantenna apparatus and method for the manufacture thereof
Peters, David W.; Davids, Paul; Leonhardt, Darin; Kim, Jin K.; Wendt, Joel R.; Klem, John F.
2014-06-10
An exemplary embodiment of the present invention is a photodetector comprising a semiconductor body, a periodically patterned metal nanoantenna disposed on a surface of the semiconductor body, and at least one electrode separate from the nanoantenna. The semiconductor body comprises an active layer in sufficient proximity to the nanoantenna for plasmonic coupling thereto. The nanoantenna is dimensioned to absorb electromagnetic radiation in at least some wavelengths not more than 12 .mu.m that are effective for plasmonic coupling into the active layer. The electrode is part of an electrode arrangement for obtaining a photovoltage or photocurrent in operation under appropriate stimulation.
Bacteria detection instrument and method
NASA Technical Reports Server (NTRS)
Renner, W.; Fealey, R. D. (Inventor)
1972-01-01
A method and apparatus for screening a sample fluid for bacterial presence are disclosed wherein the fluid sample is mixed with culture media of sufficient quantity to permit bacterial growth in order to obtain a test solution. The concentration of oxygen dissolved in the test solution is then monitored using the potential difference between a reference electrode and a noble metal electrode which are in contact with the test solution. The change in oxygen concentration which occurs during a period of time as indicated by the electrode potential difference is compared with a detection criterion which exceeds the change which would occur absent bacteria.
The Clinical Uses of Electrocochleography
Gibson, William P.
2017-01-01
The clinical uses of electrocochleography are reviewed with some technical notes on the apparatus needed to get clear recordings under different conditions. Electrocochleography can be used to estimate auditory thresholds in difficult to test children and a golf club electrode is described. The same electrode can be used to obtain electrical auditory brainstem responses (EABR). Diagnostic testing in the clinic can be performed with a transtympanic needle electrode, and a suitable disposable monopolar electrode is described. The use of tone bursts rather than click stimuli gives a better means of diagnosis of the presence of endolymphatic hydrops. Electrocochleography can be used to monitor the cochlear function during surgery and a long coaxial cable, which can be sterilized, is needed to avoid electrical artifacts. Recently electrocochleography has been used to monitor cochlear implant insertion and to record residual hearing using an electrode on the cochlear implant array as the non-inverting (active) electrode. PMID:28634435
The Clinical Uses of Electrocochleography.
Gibson, William P
2017-01-01
The clinical uses of electrocochleography are reviewed with some technical notes on the apparatus needed to get clear recordings under different conditions. Electrocochleography can be used to estimate auditory thresholds in difficult to test children and a golf club electrode is described. The same electrode can be used to obtain electrical auditory brainstem responses (EABR). Diagnostic testing in the clinic can be performed with a transtympanic needle electrode, and a suitable disposable monopolar electrode is described. The use of tone bursts rather than click stimuli gives a better means of diagnosis of the presence of endolymphatic hydrops. Electrocochleography can be used to monitor the cochlear function during surgery and a long coaxial cable, which can be sterilized, is needed to avoid electrical artifacts. Recently electrocochleography has been used to monitor cochlear implant insertion and to record residual hearing using an electrode on the cochlear implant array as the non-inverting (active) electrode.
Crewe, Albert V.
2000-01-01
Disclosed are lens apparatus in which a beam of charged particlesis brought to a focus by means of a magnetic field, the lens being situated behind the target position. In illustrative embodiments, a lens apparatus is employed in a scanning electron microscopeas the sole lens for high-resolution focusing of an electron beam, and in particular, an electron beam having an accelerating voltage of from about 10 to about 30,000 V. In one embodiment, the lens apparatus comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. In other embodiments, the lens apparatus comprises a magnetic dipole or virtual magnetic monopole fabricated from a variety of materials, including permanent magnets, superconducting coils, and magnetizable spheres and needles contained within an energy-conducting coil. Multiple-array lens apparatus are also disclosed for simultaneous and/or consecutive imaging of multiple images on single or multiple specimens. The invention further provides apparatus, methods, and devices useful in focusing charged particle beams for lithographic processes.
Fiber optic apparatus for detecting molecular species by surface enhanced Raman spectroscopy
Angel, S.M.; Sharma, S.K.
1988-11-01
Optrode apparatus for detecting constituents of a fluid medium includes an optical fiber having a metal coating on at least a portion of a light transmissive core. The metal is one, such as silver, gold or copper, which enhances emission of Raman signal frequencies by molecules adsorbed on the surface of the coating when monochromatic probe light of a different frequency is scattered by such molecules and the metal coating is sufficiently thin to transmit light between the absorbed molecules and the core of the fiber. Probe light is directed into one end of the fiber and a detector analyzes light emitted from the fiber for Raman frequencies that identify one or more particular molecular species. In one form, the optrode may function as a working electrode of an electrochemical cell while also serving to detect the products of oxidation or reduction reactions which occur at the electrode surface. 6 figs.
Fiber optic apparatus for detecting molecular species by surface enhanced Raman spectroscopy
Angel, S.M.; Sharma, S.K.
1987-11-30
Optrode apparatus for detecting constituents of a fluid medium includes an optical fiber having a metal coating on at least a portion of a light transmissive core. The metal is one, such as silver, gold or copper, which enhances emission of Raman signal frequencies by molecules adsorbed on the surface of the coating when monochromatic probe light of a different frequency is scattered by such molecules and the metal coating is sufficiently thin to transmit light between the adsorbed molecules and the core of the fiber. Probe light is directed into one end of the fiber and a detector analyzes light emitted from the fiber for Raman frequencies that identify one or more particular molecular species. In one form, the optrode may function as a working electrode of an electrochemical cell while also serving to detect the products of oxidation or reduction reactions which occur at the electrode surface. 6 figs.
Production of fissioning uranium plasma to approximate gas-core reactor conditions
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.; Kim, K. H.
1974-01-01
The intense burst of neutrons from the d-d reaction in a plasma-focus apparatus is exploited to produce a fissioning uranium plasma. The plasma-focus apparatus consists of a pair of coaxial electrodes and is energized by a 25 kJ capacitor bank. A 15-g rod of 93% enriched U-235 is placed in the end of the center electrode where an intense electron beam impinges during the plasma-focus formation. The resulting uranium plasma is heated to about 5 eV. Fission reactions are induced in the uranium plasma by neutrons from the d-d reaction which were moderated by the polyethylene walls. The fission yield is determined by evaluating the gamma peaks of I-134, Cs-138, and other fission products, and it is found that more than 1,000,000 fissions are induced in the uranium for each focus formation, with at least 1% of these occurring in the uranium plasma.
Reichner, Philip; Dollard, Walter J.
1991-01-01
An electrochemical apparatus (10) is made having a generator section (22) containing axially elongated electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one gaseous spent fuel exit channel (46), where the spent fuel exit channel (46) passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at a mixing apparatus (50), reformable fuel mixture channel (52) passes through the length of the generator chamber (22) and connects with the mixing apparatus (50), that channel containing entry ports (54) within the generator chamber (22), where the axis of the ports is transverse to the fuel electrode surfaces (18), where a catalytic reforming material is distributed near the reformable fuel mixture entry ports (54).
Sample preparation system for microfluidic applications
Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA; Harnett, Cindy K [Livermore, CA
2007-05-08
An apparatus that couples automated injection with flow feedback to provide nanoliter accuracy in controlling microliter volumes. The apparatus comprises generally a source of hydraulic fluid pressure, a fluid isolator joined to the outlet of the hydraulic pressure source and a flow sensor to provide pressure-driven analyte metering. For operation generally and particularly in microfluidic systems the hydraulic pressure source is typically an electrokinetic (EK) pump that incorporates gasless electrodes. The apparatus is capable of metering sub-microliter volumes at flowrates of 1 100 .mu.L/min into microsystem load pressures of up to 1000 50 psi, respectively. Flowrates can be specified within 0.5 .mu.L/min and volumes as small as 80 nL can be metered.
Conductive polymer foam surface improves the performance of a capacitive EEG electrode.
Baek, Hyun Jae; Lee, Hong Ji; Lim, Yong Gyu; Park, Kwang Suk
2012-12-01
In this paper, a new conductive polymer foam-surfaced electrode was proposed for use as a capacitive EEG electrode for nonintrusive EEG measurements in out-of-hospital environments. The current capacitive electrode has a rigid surface that produces an undefined contact area due to its stiffness, which renders it unable to conform to head curvature and locally isolates hairs between the electrode surface and scalp skin, making EEG measurement through hair difficult. In order to overcome this issue, a conductive polymer foam was applied to the capacitive electrode surface to provide a cushioning effect. This enabled EEG measurement through hair without any conductive contact with bare scalp skin. Experimental results showed that the new electrode provided lower electrode-skin impedance and higher voltage gains, signal-to-noise ratios, signal-to-error ratios, and correlation coefficients between EEGs measured by capacitive and conventional resistive methods compared to a conventional capacitive electrode. In addition, the new electrode could measure EEG signals, while the conventional capacitive electrode could not. We expect that the new electrode presented here can be easily installed in a hat or helmet to create a nonintrusive wearable EEG apparatus that does not make users look strange for real-world EEG applications.
APPARATUS FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES
Scott, F.R.; Josephson, V.
1960-02-01
>A device for producing a high-energy ionized gas region comprises an evacuated tapered insulating vessel and a substantially hemispherical insulating cap hermetically affixed to the large end of the vessel, an annular electrode having a diameter equal to and supported in the interior wall of the vessel at the large end and having a conductive portion inside the vessel, a second electrode supported at the small end of the vessel, means connected to the vessel for introducing a selected gas therein, a source of high potential having two poles. means for connecting one pole of the high potential source to the annular electrode, and means for connecting the other pole of the potential source to the second electrode.
Apparatus for the plasma destruction of hazardous gases
Kang, M.
1995-02-07
A plasma cell for destroying hazardous gases is described. An electric-discharge cell having an electrically conducting electrode onto which an alternating high-voltage waveform is impressed and a dielectric barrier adjacent thereto, together forming a high-voltage electrode, generates self-terminating discharges throughout a volume formed between this electrode and a grounded conducting liquid electrode. The gas to be transformed is passed through this volume. The liquid may be flowed, generating thereby a renewable surface. Moreover, since hydrochloric and hydrofluoric acids may be formed from destruction of various chlorofluorocarbons in the presence of water, a conducting liquid may be selected which will neutralize these corrosive compounds. The gases exiting the discharge region may be further scrubbed if additional purification is required. 4 figs.
Apparatus for the plasma destruction of hazardous gases
Kang, Michael
1995-01-01
A plasma cell for destroying hazardous gases. An electric-discharge cell having an electrically conducting electrode onto which an alternating high-voltage waveform is impressed and a dielectric barrier adjacent thereto, together forming a high-voltage electrode, generates self-terminating discharges throughout a volume formed between this electrode and a grounded conducting liquid electrode. The gas to be transformed is passed through this volume. The liquid may be flowed, generating thereby a renewable surface. Moreover, since hydrochloric and hydrofluoric acids may be formed from destruction of various chlorofluorocarbons in the presence of water, a conducting liquid may be selected which will neutralize these corrosive compounds. The gases exiting the discharge region may be further scrubbed if additional purification is required.
Ice electrode electrolytic cell
Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.
1993-04-06
This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.
Ice electrode electrolytic cell
Glenn, David F.; Suciu, Dan F.; Harris, Taryl L.; Ingram, Jani C.
1993-01-01
This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.
Large discharge-volume, silent discharge spark plug
Kang, Michael
1995-01-01
A large discharge-volume spark plug for providing self-limiting microdischarges. The apparatus includes a generally spark plug-shaped arrangement of a pair of electrodes, where either of the two coaxial electrodes is substantially shielded by a dielectric barrier from a direct discharge from the other electrode, the unshielded electrode and the dielectric barrier forming an annular volume in which self-terminating microdischarges occur when alternating high voltage is applied to the center electrode. The large area over which the discharges occur, and the large number of possible discharges within the period of an engine cycle, make the present silent discharge plasma spark plug suitable for use as an ignition source for engines. In the situation, where a single discharge is effective in causing ignition of the combustible gases, a conventional single-polarity, single-pulse, spark plug voltage supply may be used.
Method of doping organic semiconductors
Kloc,; Christian Leo; Ramirez; Arthur Penn; So, Woo-Young
2010-10-26
An apparatus has a crystalline organic semiconducting region that includes polyaromatic molecules. A source electrode and a drain electrode of a field-effect transistor are both in contact with the crystalline organic semiconducting region. A gate electrode of the field-effect transistor is located to affect the conductivity of the crystalline organic semiconducting region between the source and drain electrodes. A dielectric layer of a first dielectric that is substantially impermeable to oxygen is in contact with the crystalline organic semiconducting region. The crystalline organic semiconducting region is located between the dielectric layer and a substrate. The gate electrode is located on the dielectric layer. A portion of the crystalline organic semiconducting region is in contact with a second dielectric via an opening in the dielectric layer. A physical interface is located between the second dielectric and the first dielectric.
Electromicroinjection of particles into living cells
Ray, F. Andrew; Cram, L. Scott; Galey, William R.
1988-01-01
Method and apparatus for introducing particles into living cells. Fluorescently-stained human chromosomes are introduced into cultured, mitotic Chinese hamster cells using electromicroinjection. The recipient cells frequently survived the physiological perturbation imposed by a successful chromosome injection. Successfully injected recipient cells maintained viability as evidenced by their ability to be expanded. The technique relies on the surface charge of fluorescently stained chromosomes and their ability to be attracted and repelled to and from the tip of a micropipette. The apparatus includes a micropipette having a tip suitable for piercing the membrane of a target cell and an electrode inserted into the lumen thereof. The target cells and suspended particles are located in an electrically conducted solution, and the lumen of the micropipette is filled with an electrically conducting solution which contacts the electrode located therein. A second electrode is also located in the conducting solution containing the target cells and particles. Voltages applied to the electrode within the micropipette attract the particles to the region of the tip thereof. The particles adhere to the surface of the micropipette with sufficient force that insertion of the micropipette tip and attached particle through the membrane of a target cell will not dislodge the particle. By applying a voltage having the opposite polarity of the attraction voltage, the particles are expelled from the micropipette to which is then withdrawn from the cell body.
78 FR 29388 - Notice of Intent To Grant Exclusive License
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
..., Alternating Ionic Magnetic Resonance (AIMR) Multiple-Chambered Culture Apparatus, NASA Case No. MSC-25545-1... Alternating Ionic Magnetic Resonance (AIMR) Multiple-Chambered Culture Apparatus, NASA Case No. MSC-25633-1...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-05
..., 2004, now expired, entitled ``Method And Apparatus for Performing Multiple Simultaneous Manipulations..., 2006 entitled ``Method And Apparatus for Performing Multiple Simultaneous Manipulations of Biomolecules...
Apparatus for detecting alpha radiation in difficult access areas
Steadman, P.; MacArthur, D.W.
1997-09-02
An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure is disclosed. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure. 4 figs.
Analytical instruments, ionization sources, and ionization methods
Atkinson, David A.; Mottishaw, Paul
2006-04-11
Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.
Apparatus and processes for the mass production of photovoltaic modules
Barth, Kurt L [Ft. Collins, CO; Enzenroth, Robert A [Fort Collins, CO; Sampath, Walajabad S [Fort Collins, CO
2007-05-22
An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.
Apparatus and processes for the mass production of photovotaic modules
Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.
2002-07-23
An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.
Method of low temperature operation of an electrochemical cell array
Singh, Prabhakar; Ruka, Roswell J.; Bratton, Raymond J.
1994-01-01
In the method of operating an electrochemical cell generator apparatus containing a generator chamber (20) containing an array of cells (12) having interior and exterior electrodes with solid electrolyte between the electrodes, where a hot gas (F) contacts the outside of the cells (12) and the generating chamber normally operates at over 850.degree. C., where N.sub.2 gas is fed to contact the interior electrode of the cells (12) in any case when the generating chamber (20) temperature drops for whatever reason to within the range of from 550.degree. C. to 800.degree. C., to eliminate cracking within the cells (12).
Lindenmeyer, C.W.
1993-01-26
An apparatus and method to automate the handling of multiple digital tape cassettes for processing by commercially available cassette tape readers and recorders. A removable magazine rack stores a plurality of tape cassettes, and cooperates with a shuttle device that automatically inserts and removes cassettes from the magazine to the reader and vice-versa. Photocells are used to identify and index to the desired tape cassette. The apparatus allows digital information stored on multiple cassettes to be processed without significant operator intervention.
Lindenmeyer, Carl W.
1993-01-01
An apparatus and method to automate the handling of multiple digital tape cassettes for processing by commercially available cassette tape readers and recorders. A removable magazine rack stores a plurality of tape cassettes, and cooperates with a shuttle device that automatically inserts and removes cassettes from the magazine to the reader and vice-versa. Photocells are used to identify and index to the desired tape cassette. The apparatus allows digital information stored on multiple cassettes to be processed without significant operator intervention.
Automatic multiple applicator electrophoresis
NASA Technical Reports Server (NTRS)
Grunbaum, B. W.
1977-01-01
Easy-to-use, economical device permits electrophoresis on all known supporting media. System includes automatic multiple-sample applicator, sample holder, and electrophoresis apparatus. System has potential applicability to fields of taxonomy, immunology, and genetics. Apparatus is also used for electrofocusing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almasi, Gheorghe; Blumrich, Matthias Augustin; Chen, Dong
Methods and apparatus perform fault isolation in multiple node computing systems using commutative error detection values for--example, checksums--to identify and to isolate faulty nodes. When information associated with a reproducible portion of a computer program is injected into a network by a node, a commutative error detection value is calculated. At intervals, node fault detection apparatus associated with the multiple node computer system retrieve commutative error detection values associated with the node and stores them in memory. When the computer program is executed again by the multiple node computer system, new commutative error detection values are created and stored inmore » memory. The node fault detection apparatus identifies faulty nodes by comparing commutative error detection values associated with reproducible portions of the application program generated by a particular node from different runs of the application program. Differences in values indicate a possible faulty node.« less
Gavenonis, Thomas L.; Hewitt, William H.
1989-01-01
A method and apparatus for providing low peak time and pulse width actinic energy from a lamp by varying the input energy of a capacitive ignition circuit having relatively high voltage to the lamp. The lamp comprises a pair of electrodes disposed within a light transparent envelope in which a combustible and an oxidizing gas reaction combination is located. The combustible is preferably shredded zirconium which is in contact with and provides an electrical discharge path between the electrodes. The gas is preferably pressurized oxygen.
Apparatus for the electrolytic production of metals
Sadoway, Donald R.
1993-01-01
Improved electrolytic cells for producing metals by the electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells, at least one electrode includes a protective layer comprising an oxide of the cell product metal formed upon an alloy of the cell product metal and a more noble metal. In the case of an aluminum reduction cell, the electrode can comprise an alloy of aluminum with copper, nickel, iron, or combinations thereof, upon which is formed an aluminum oxide protective layer.
Gavenonis, Thomas L.; Hewitt, William H.
1989-06-06
A method and apparatus for providing low peak time and pulse width actinic energy from a lamp by varying the input energy of a capacitive ignition circuit having relatively high voltage to the lamp. The lamp comprises a pair of electrodes disposed within a light transparent envelope in which a combustible and an oxidizing gas reaction combination is located. The combustible is preferably shredded zirconium which is in contact with and provides an electrical discharge path between the electrodes. The gas is preferably pressurized oxygen.
Farmer, Joseph
1995-01-01
An electrochemical cell for capacitive deionization and electrochemical purification and regeneration of electrodes includes two oppositely disposed, spaced-apart end plates, one at each end of the cell. Two generally identical single-sided end electrodes, are arranged one at each end of the cell, adjacent to the end plates. An insulator layer is interposed between each end plate and the adjacent end electrode. Each end electrode includes a single sheet of conductive material having a high specific surface area and sorption capacity. In the preferred embodiment, the sheet of conductive material is formed of carbon aerogel composite. The cell further includes a plurality of generally identical double-sided intermediate electrodes that are equidistally separated from each other, between the two end electrodes. As the electrolyte enters the cell, it flows through a continuous open serpentine channel defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cell, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the cell is saturated with the removed ions, the cell is regenerated electrically, thus significantly minimizing secondary wastes.
Farmer, J.
1995-06-20
An electrochemical cell for capacitive deionization and electrochemical purification and regeneration of electrodes includes two oppositely disposed, spaced-apart end plates, one at each end of the cell. Two generally identical single-sided end electrodes, are arranged one at each end of the cell, adjacent to the end plates. An insulator layer is interposed between each end plate and the adjacent end electrode. Each end electrode includes a single sheet of conductive material having a high specific surface area and sorption capacity. In the preferred embodiment, the sheet of conductive material is formed of carbon aerogel composite. The cell further includes a plurality of generally identical double-sided intermediate electrodes that are equidistantly separated from each other, between the two end electrodes. As the electrolyte enters the cell, it flows through a continuous open serpentine channel defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cell, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the cell is saturated with the removed ions, the cell is regenerated electrically, thus significantly minimizing secondary wastes. 17 figs.
Li, Shelly X; Jue, Jan-fong; Herbst, Ronald Scott; Herrmann, Steven Douglas
2015-01-13
An apparatus for the real-time, in-situ monitoring of actinide-ion concentrations. A working electrolyte is positioned within the interior of a container. The working electrolyte is separated from a reference electrolyte by a separator. A working electrode is at least partially in contact with the working electrolyte. A reference electrode is at least partially in contact with the reference electrolyte. A voltmeter is electrically connected to the working electrode and the reference electrode. The working electrolyte comprises an actinide-ion of interest. The separator is ionically conductive to the actinide-ion of interest. The separator comprises an actinide, Zr, and Nb. Preferably, the actinide of the separator is Am or Np, more preferably Pu. In one embodiment, the actinide of the separator is the actinide of interest. In another embodiment, the separator further comprises P and O.
NASA Technical Reports Server (NTRS)
van Boeyen, Roger W. (Inventor); Reeh, Jonathan A. (Inventor); Kesmez, Mehmet (Inventor); Heselmeyer, Eric A. (Inventor); Parkey, Jeffrey S. (Inventor)
2016-01-01
An electrochemically actuated pump and an electrochemical actuator for use with a pump. The pump includes one of various stroke volume multiplier configurations with the pressure of a pumping fluid assisting actuation of a driving fluid bellows. The electrochemical actuator has at least one electrode fluidically coupled to the driving fluid chamber of the first pump housing and at least one electrode fluidically coupled to the driving fluid chamber of the second pump housing. Accordingly, the electrochemical actuator selectively pressurizes hydrogen gas within a driving fluid chamber. The actuator may include a membrane electrode assembly including an ion exchange membrane with first and second catalyzed electrodes in contact with opposing sides of the membrane, and first and second hydrogen gas chambers in fluid communication with the first and second electrodes, respectively. A controller may reverse the polarity of a voltage source electrically coupled to the current collectors.
Hietala, Susan Leslie; Hietala, Vincent Mark; Tigges, Chris Phillip
2001-01-01
A method and apparatus for measuring surface changes, such as mass uptake at various pressures, in a thin-film material, in particular porous membranes, using multiple differently-configured acoustic sensors.
Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore
2001-01-01
The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.
Method and apparatus for cartilage reshaping by radiofrequency heating
Wong, Brian J.; Milner, Thomas E.; Sobol, Emil N.; Keefe, Michael W.
2003-07-08
A method and apparatus for reshaping cartilage using radiofrequency heating. The cartilage temperature is raised sufficiently for stress relaxation to occur in the cartilage, but low enough so that significant denaturation of the cartilage does not occur. The RF electrodes may be designed to also function as molds, preses, clamps, or mandrills to deform the cartilage tissue. Changes in various properties of the cartilage associated with stress relaxation in the cartilage may be measured in order to provide the control signal to provide effective reshaping without denaturation.
Maurye, Praveen; Basu, Arpita; Bandyopadhyay, Tapas Kumar; Biswas, Jayanta Kumar; Mohanty, Bimal Prasana
2017-08-01
PAGE is the most widely used technique for the separation and biochemical analysis of biomolecules. The ever growing field of proteomics and genomics necessitates the analysis of many proteins and nucleic acid samples to understand further about the structure and function of cells. Simultaneous analysis of multiple protein samples often requires casting of many PAGE gels. Several variants of multi-gel casting/electrophoresis apparatuses are frequently used in research laboratories. Requirement of supplementary gels to match the growing demand for analyzing additional protein samples sometimes become a cause of concern. Available apparatuses are not amenable to and therefore, not recommended for any modification to accommodate additional gel casting units other than what is prescribed by the manufacturer. A novel apparatus is described here for casting multiple PAGE gels comprising four detachable components that provide enhanced practicability and performance of the apparatus. This newly modified apparatus promises to be a reliable source for making multiple gels in less time without hassle. Synchronized functioning of unique components broaden the possibilities of developing inexpensive, safe, and time-saving multi-gel casting apparatus. This apparatus can be easily fabricated and modified to accommodate desired number of gel casting units. The estimated cost (∼$300) for fabrication of the main apparatus is very competitive and effortless assembly procedure can be completed within ∼30 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Efficient electrocatalytic conversion of CO.sub.2 to CO using ligand-protected Au.sub.25 clusters
Kauffman, Douglas; Matranga, Christopher; Qian, Huifeng; Jin, Rongchao; Alfonso, Dominic R.
2015-09-22
An apparatus and method for CO.sub.2 reduction using an Au.sub.25 electrode. The Au.sub.25 electrode is comprised of ligand-protected Au.sub.25 having a structure comprising an icosahedral core of 13 atoms surrounded by a shell of six semi-ring structures bonded to the core of 13 atoms, where each semi-ring structure is typically --SR--Au--SR--Au--SR or --SeR--Au--SeR--Au--SeR. The 12 semi-ring gold atoms within the six semi-ring structures are stellated on 12 of the 20 faces of the icosahedron of the Au.sub.13 core, and organic ligand --SR or --SeR groups are bonded to the Au.sub.13 core with sulfur or selenium atoms. The Au.sub.25 electrode and a counter-electrode are in contact with an electrolyte comprising CO.sub.2 and H+, and a potential of at least -0.1 volts is applied from the Au.sub.25 electrode to the counter-electrode.
Sensor apparatus using an electrochemical cell
Thakur, Mrinal
2003-07-01
A method for sensing mechanical quantities such as force, stress, strain, pressure and acceleration is disclosed. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electro negativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors. An apparatus for sensing such mechanical quantities using materials such as doped 1,4 cis-polyisopropene and nafion. The 1,4 cis-polyisopropene may be doped with lithium perchlorate or iodine. The output voltage signal increases with an increase of the sensing area for a given stress. The device can be used as an intruder alarm, among other applications.
Apparatus for preventing particle deposition from process streams on optical access windows
Logan, Ronald G.; Grimm, Ulrich
1993-01-01
An electrostatic precipitator is disposed inside and around the periphery of the window of a viewing port communicating with a housing through which a particle-laden gas stream is being passed. The precipitator includes a pair of electrodes around the periphery of the window, spaced apart and connected to a unidirectional voltage source. Application of high voltage from the source to the electrodes causes air molecules in the gas stream to become ionized, attaching to solid particles and causing them to be deposited on a collector electrode. This prevents the particles from being deposited on the window and keeps the window clean for viewing and making optical measurements.
Laeseke, Paul F; Sampson, Lisa A; Haemmerich, Dieter; Brace, Chris L; Fine, Jason P; Frey, Tina M; Winter, Thomas C; Lee, Fred T
2005-12-01
A multiple-electrode radiofrequency (RF) system was developed based on switching between electrodes that allows for the simultaneous use of as many as three electrically independent electrodes. The purpose of this study was to determine if each multiple-electrode ablation zone is identical to an ablation zone created with conventional single-electrode mode. Nine female domestic pigs (mean weight, 90 kg) were used for this study. A prototype monopolar multiple-electrode RF ablation system was created with use of an RF generator and an electronic switching algorithm. A maximum of three electrodes can be used simultaneously by switching between electrodes at each impedance spike (30 omega greater than baseline levels). A total of 39 zones of ablation were created at open laparotomy in pig livers with use of a conventional single electrode (n = 9), two single electrodes simultaneously (n = 6 ablations; 12 ablation zones), or three single electrodes simultaneously (n = 6 ablations; 18 ablation zones). RF electrodes were spaced in separate lobes of the liver when multiple zones of coagulation were created simultaneously. Animals were euthanized after RF ablation, livers were removed, and ablation zones were sectioned and measured. Zones of coagulation created simultaneously with two or three electrodes were equivalent to ablation zones created with use of conventional single-electrode ablation. No significant differences were observed among control animals treated with a single electrode, those with two separate zones of ablation created simultaneously, and those with three simultaneously created ablation zones in terms of mean (+/-SD) minimum diameter (1.6 cm +/- 0.6, 1.6 cm +/- 0.5, and 1.7 cm +/- 0.4, respectively), maximum diameter (2.0 cm +/- 0.5, 2.3 cm +/- 0.5, 2.2 cm +/- 0.5, respectively), and volume (6.7 cm3 +/- 3.7, 7.4 cm3 +/- 3.8, and 7.8 cm3 +/- 3.9; P > .30, analysis of variance, pairwise t-test comparisons). A rapid-switching multiple-electrode RF system was able to simultaneously create as many as three separate ablation zones of equivalent size compared with single-electrode controls. This system would allow physicians to simultaneously treat multiple tumors, substantially reducing procedure time and anesthesia risk.
Hyperthermia heating apparatus. [cancer therapy
NASA Technical Reports Server (NTRS)
Gammell, P. M. (Inventor)
1982-01-01
Electromagnetic energy is delivered to a localized area of a patient's body in a hyperthermic treatment so that it provides a uniform distribution of electromagnetic flux lines within the localized area of the patient's body and produces a uniform and localized heating gradient. An electrode array includes a number of electrodes which are arranged in pair, with the electrodes in each pair being spaced a particular distance apart. The array is driven by a balanced line system which is electromagnetically coupled to each pair of electrodes and which is shielded by a ground coaxial shield which itself is ground to the body of the patient. Each electrode is embedded in a Teflon stand-off in order to move the region of strong field, from the body, produced by rapidly changing potentials. The two pairs of electrodes forming a cross-like geometry are used with the balanced line systems. The electrical power is either multiplexed among the electrodes or the second pair is driven by a potential which is sinusoidal and which is 90% out of phase with the first balanced line system which is also sinusoidal.
Luttrell, Edward; Turner, Paul W.
1978-01-01
This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.
Ultrasound Velocity Measurement in a Liquid Metal Electrode
Perez, Adalberto; Kelley, Douglas H.
2015-01-01
A growing number of electrochemical technologies depend on fluid flow, and often that fluid is opaque. Measuring the flow of an opaque fluid is inherently more difficult than measuring the flow of a transparent fluid, since optical methods are not applicable. Ultrasound can be used to measure the velocity of an opaque fluid, not only at isolated points, but at hundreds or thousands of points arrayed along lines, with good temporal resolution. When applied to a liquid metal electrode, ultrasound velocimetry involves additional challenges: high temperature, chemical activity, and electrical conductivity. Here we describe the experimental apparatus and methods that overcome these challenges and allow the measurement of flow in a liquid metal electrode, as it conducts current, at operating temperature. Temperature is regulated within ±2 °C using a Proportional-Integral-Derivative (PID) controller that powers a custom-built furnace. Chemical activity is managed by choosing vessel materials carefully and enclosing the experimental setup in an argon-filled glovebox. Finally, unintended electrical paths are carefully prevented. An automated system logs control settings and experimental measurements, using hardware trigger signals to synchronize devices. This apparatus and these methods can produce measurements that are impossible with other techniques, and allow optimization and control of electrochemical technologies like liquid metal batteries. PMID:26273726
NASA Astrophysics Data System (ADS)
Ruggeri, Paolo; Jougnot, Damien; Chavarriaga, Ricardo; Brandner, Catherine; del Rocio Millán Ruiz, José; Linde, Niklas
2015-04-01
In soil science, the hysteretic nature of the water retention curve plays an important role in describing a soil's propensity to retain water and conduct fluid flow. However, hysteresis effects remain difficult to study and to quantify. Geophysical methods provide suitable and non-invasive tools that could be used for this purpose. For example, the degree of water saturation in a soil can be determined by measuring its electrical resistivity, while a water flux through a soil generates a measureable electrical potential difference (streaming potential). The objective of this work is to study the hysteretic behaviour of unconsolidated sediments during repeated drainage and imbibition cycles under well-constrained laboratory conditions. Monitoring was performed using a 32-electrode electroencephalography (EEG) apparatus (Biosemi) coupled with a current injection system. We used a 150 cm high sand-filled column in which we monitored self-potential (SP) signals using 15 electrodes in direct contact with the medium (so-called "naked" electrodes), and 15 electrodes that were inserted in small porous pots that were filled with water of the same conductivity and chloride concentration as the water saturating the sand (so-called "chamber" electrodes). For both electrode types, the electrodes were placed between 5 and 145 cm height with an electrode spacing of 10 cm. Pressure (10 tensiometers) and mass, together with the temperature and the relative humidity in the room, were constantly monitored for the entire duration of the experiments. We performed ten cycles of drainage and imbibition by changing the water level of an external reservoir connected to the column. Each drainage and imbibition cycle took approximately 25 and 17 hours, respectively, for a total duration of the experiment of 24 days. After each imbibition and drainage cycle, we performed complex conductivity measurements by injecting a known electric current at two electrodes using a sine wave with varying frequency (top and bottom of the column) and by measuring the electric voltages at the 30 SP measurement electrodes. These measurements allowed us to determine the evolution of the electrical resistivity of the studied media at different states of hysteresis. Our first results indicate that hysteretic effects and entrapped air are clearly evidenced in the electrical resistivity measurements. Noteworthy our SP measurements (for both chamber and naked electrodes) are affected by an important electrode polarization contribution. This contribution is repeatable and different for the two types of electrodes (amplitude and shape) with the smallest effects seen for the naked electrodes. These data will help to better understand hysteretic effects in soil science and, highlights the importance of differentiating between petrophysical and instrumental responses in in situ soil studies when using geophysical methods.
Farmer, Joseph C.
1999-01-01
An electrically regeneratable electrochemical cell (30) for capacitive deionization and electrochemical purification and regeneration of electrodes includes two end plates (31, 32), one at each end of the cell (30). Two end electrodes (35, 36) are arranged one at each end of the cell (30), adjacent to the end plates (31, 32). An insulator layer (33) is interposed between each end plate (31, 32) and the adjacent end electrode (35, 36). Each end electrode (35, 36) includes a single sheet (44) of conductive material having a high specific surface area and sorption capacity. In one embodiment, the sheet (44) of conductive material is formed of carbon aerogel composite. The cell (30) further includes a plurality of generally identical double-sided intermediate electrodes (37-43) that are equidistally separated from each other, between the two end electrodes (35, 36). As the electrolyte enters the cell, it flows through a continuous open serpentine channel (65-71) defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cell (30), ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the cell (30) is saturated with the removed ions, the cell (30) is regenerated electrically, thus significantly minimizing secondary wastes.
Power control apparatus and methods for electric vehicles
Gadh, Rajit; Chung, Ching-Yen; Chu, Chi-Cheng; Qiu, Li
2016-03-22
Electric vehicle (EV) charging apparatus and methods are described which allow the sharing of charge current between multiple vehicles connected to a single source of charging energy. In addition, this charge sharing can be performed in a grid-friendly manner by lowering current supplied to EVs when necessary in order to satisfy the needs of the grid, or building operator. The apparatus and methods can be integrated into charging stations or can be implemented with a middle-man approach in which a multiple EV charging box, which includes an EV emulator and multiple pilot signal generation circuits, is coupled to a single EV charge station.
Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
NASA Technical Reports Server (NTRS)
Cisar, Alan J. (Inventor); Murphy, Oliver J. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Hitchens, G. Duncan (Inventor)
1997-01-01
The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface, an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane for purposes of hydration.
Rouhani, S. Zia
1996-01-01
In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery.
Rouhani, S.Z.
1996-12-03
In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery. 35 figs.
Apparatus for thermally evolving chemical analytes from a removable substrate
Linker, Kevin L.; Hannum, David W.
2003-06-03
Method and apparatus suited to convenient field use for heating a porous metallic substrate swiped on the surface of an article possibly bearing residue of contraband or other target chemical substances. The preferred embodiment of the device includes means for holding the swiped substrate between electrodes bearing opposite electrical charges, thereby completing an electrical circuit in which current can flow through the porous metallic substrate. Resistance causes the substrate to heat, thus driving adherent target chemicals, if present, into a space from which they are carried via gas flow into a detector such as a portable IMS for analysis.
Method and apparatus for making diamond-like carbon films
Pern, Fu-Jann [Golden, CO; Touryan, Kenell J [Indian Hills, CO; Panosyan, Zhozef Retevos [Yerevan, AM; Gippius, Aleksey Alekseyevich [Moscow, RU
2008-12-02
Ion-assisted plasma enhanced deposition of diamond-like carbon (DLC) films on the surface of photovoltaic solar cells is accomplished with a method and apparatus for controlling ion energy. The quality of DLC layers is fine-tuned by a properly biased system of special electrodes and by exact control of the feed gas mixture compositions. Uniform (with degree of non-uniformity of optical parameters less than 5%) large area (more than 110 cm.sup.2) DLC films with optical parameters varied within the given range and with stability against harmful effects of the environment are achieved.
MULTIPLE ELECTRON BEAM ION PUMP AND SOURCE
Ellis, R.E.
1962-02-27
A vacuum pump is designed which operates by ionizing incoming air and by withdrawing the ions from the system by means of electrical fields. The apparatus comprises a cylindrical housing communicable with the vessel to be evacuated and having a thin wall section in one end. Suitable coils provide a longitudinal magnetic field within the cylinder. A broad cathode and an anode structure is provided to establish a plurality of adjacent electron beams which are parallel to the cylinder axis. Electron reflector means are provided so that each of the beams constitutes a PIG or reflex discharge. Such structure provides a large region in which incoming gas molecules may be ionized by electron bombardment. A charged electrode assembly accelerates the ions through the thin window, thereby removing the gas from the system. The invention may also be utilized as a highly efficient ion source. (AEC)
Tunable molten oxide pool assisted plasma-melter vitrification systems
Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.
1998-01-01
The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical characteristics capable of maintaining optimal joule heating and glass forming properties during the conversion process.
Method and apparatus for fiber optic multiple scattering suppression
NASA Technical Reports Server (NTRS)
Ackerson, Bruce J. (Inventor)
2000-01-01
The instant invention provides a method and apparatus for use in laser induced dynamic light scattering which attenuates the multiple scattering component in favor of the single scattering component. The preferred apparatus utilizes two light detectors that are spatially and/or angularly separated and which simultaneously record the speckle pattern from a single sample. The recorded patterns from the two detectors are then cross correlated in time to produce one point on a composite single/multiple scattering function curve. By collecting and analyzing cross correlation measurements that have been taken at a plurality of different spatial/angular positions, the signal representative of single scattering may be differentiated from the signal representative of multiple scattering, and a near optimum detector separation angle for use in taking future measurements may be determined.
A Modular Laser Apparatus for Polarimetry, Nephelometry, and Fluorimetry in General Chemistry
ERIC Educational Resources Information Center
Jurzenski, Jessica; Darveau, Scott A.; Gindt, Yvonne; Mueller, Jessica; Vaverka, April; Barta, Cheri; Fitch, Anthony
2004-01-01
A novel apparatus that strengthens the connection between research and teaching laboratories and serves multiple purposes is described. A versatile laser apparatus suitable for the undergraduate teaching laboratory that may serve as polarimeter, nephelometer or fluorimeter is designed.
Monitoring and analyzing waste glass compositions
Schumacher, R.F.
1994-03-01
A device and method are described for determining the viscosity of a fluid, preferably molten glass. The apparatus and method use the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality. 2 figures.
Monitoring and analyzing waste glass compositions
Schumacher, Ray F.
1994-01-01
A device and method for determining the viscosity of a fluid, preferably molten glass. The apparatus and method uses the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality.
Directly induced swing for closed loop control of electroslag remelting furnace
Damkroger, Brian
1998-01-01
An apparatus and method for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal.
Improved Instrument for Detecting Water and Ice in Soil
NASA Technical Reports Server (NTRS)
Buehler, Martin; Chin, Keith; Keymeulen, Didler; McCann, Timothy; Seshadri, Suesh; Anderson, Robert
2009-01-01
An instrument measures electrical properties of relatively dry soils to determine their liquid water and/or ice contents. Designed as a prototype of instruments for measuring the liquid-water and ice contents of lunar and planetary soils, the apparatus could also be utilized for similar purposes in research and agriculture involving terrestrial desert soils and sands, and perhaps for measuring ice buildup on aircraft surfaces. This instrument is an improved version of the apparatus described in Measuring Low Concentrations of Liquid Water and Ice in Soil (NPO-41822), NASA Tech Briefs, Vol. 33, No. 2 (February 2009), page 22. The designs of both versions are based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and the magnitude and phase angle of impedance changes accordingly) with increasing water content. The previous version included an impedance spectrometer and a jar into which a sample of soil was placed. Four stainless-steel screws at the bottom of the jar were used as electrodes of a fourpoint impedance probe connected to the spectrometer. The present instrument does not include a sample jar and can be operated without acquiring or handling samples. Its impedance probe consists of a compact assembly of electrodes housed near the tip of a cylinder. The electrodes protrude slightly from the cylinder (see Figure 1). In preparation for measurements, the cylinder is simply pushed into the ground to bring the soil into contact with the electrodes.
Drop short control of electrode gap
Fisher, Robert W.; Maroone, James P.; Tipping, Donald W.; Zanner, Frank J.
1986-01-01
During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.
Cylindrical geometry hall thruster
Raitses, Yevgeny; Fisch, Nathaniel J.
2002-01-01
An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.
Micromachined patch-clamp apparatus
Okandan, Murat
2012-12-04
A micromachined patch-clamp apparatus is disclosed for holding one or more cells and providing electrical, chemical, or mechanical stimulation to the cells during analysis with the patch-clamp technique for studying ion channels in cell membranes. The apparatus formed on a silicon substrate utilizes a lower chamber formed from silicon nitride using surface micromachining and an upper chamber formed from a molded polymer material. An opening in a common wall between the chambers is used to trap and hold a cell for analysis using the patch-clamp technique with sensing electrodes on each side of the cell. Some embodiments of the present invention utilize one or more electrostatic actuators formed on the substrate to provide mechanical stimulation to the cell being analyzed, or to provide information about mechanical movement of the cell in response to electrical or chemical stimulation.
Electric field divertor plasma pump
Schaffer, Michael J.
1994-01-01
An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.
Electric field divertor plasma pump
Schaffer, M.J.
1994-10-04
An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.
Apparatus for inspecting fuel elements
Oakley, David J.; Groves, Oliver J.; Kaiser, Bruce J.
1986-01-01
Disclosed is an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.
Apparatus for inspecting fuel elements
Kaiser, B.J.; Oakley, D.J.; Groves, O.J.
1984-12-21
This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.
Modular Apparatus and Method for Attaching Multiple Devices
NASA Technical Reports Server (NTRS)
Okojie, Robert S (Inventor)
2015-01-01
A modular apparatus for attaching sensors and electronics is disclosed. The modular apparatus includes a square recess including a plurality of cavities and a reference cavity such that a pressure sensor can be connected to the modular apparatus. The modular apparatus also includes at least one voltage input hole and at least one voltage output hole operably connected to each of the plurality of cavities such that voltage can be applied to the pressure sensor and received from the pressure sensor.
Setter, Joseph R.; Maclay, G. Jordan
1989-09-12
A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.
Calligraphic Poling of Ferroelectric Material
NASA Technical Reports Server (NTRS)
Mohageg, Makan; Strekalov, Dmitry; Savchenkov, Anatoliy; Matsko, Adrey; Maleki, Lute; Iltchenko, Vladimir
2007-01-01
Calligraphic poling is a technique for generating an arbitrary, possibly complex pattern of localized reversal in the direction of permanent polarization in a wafer of LiNbO3 or other ferroelectric material. The technique is so named because it involves a writing process in which a sharp electrode tip is moved across a surface of the wafer to expose the wafer to a polarizing electric field in the desired pattern. The technique is implemented by use of an apparatus, denoted a calligraphic poling machine (CPM), that includes the electrode and other components as described in more detail below.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, Neil Reginald; Colston, Jr, Billy W.
An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.
Membrane with supported internal passages
NASA Technical Reports Server (NTRS)
Gonzalez-Martin, Anuncia (Inventor); Salinas, Carlos E. (Inventor); Cisar, Alan J. (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)
2000-01-01
The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface comprising permanent tubes preferably placed at the ends of the fluid passages. The invention also provides an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane.
ERIC Educational Resources Information Center
Hendricks, Lloyd J.; And Others
1982-01-01
Describes apparatus/methodology and provides background information for an experiment demonstrating electrochemical concepts and properties of electrochemical cells. The color of a solution close to an electrode is changed from that of the bulk solution to either of two contrasting colors depending on whether the reaction is oxidation or…
Directly induced swing for closed loop control of electroslag remelting furnace
Damkroger, B.
1998-04-07
An apparatus and method are disclosed for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal. 8 figs.
Fiber optic apparatus for detecting molecular species by surface enhanced Raman spectroscopy
Angel, Stanley M.; Sharma, Shiv K.
1988-01-01
Optrode apparatus for detecting constituents of a fluid medium includes an optical fiber (13, 13a to 13e) having a metal coating (22, 22a to 22e) on at least a portion of a light transmissive core (17, 17a to 17d). The metal is one, such as silver, gold or copper, which enhances emission of Raman signal frequencies by molecules adsorbed on the surface of the coating when monochromatic probe light of a different frequency is scattered by such molecules and the metal coating is sufficiently thin to transmit light between the absorbed molecules and the core of the fiber. Probe light is directed into one end of the fiber and a detector (16, 16d, 16e) analyzes light emitted from the fiber for Raman frequencies that identify one or more particular molecular species. In one form, the optrode (13e) may function as a working electrode of an electrochemical cell (53) while also serving to detect the products of oxidation or reduction reactions which occur at the electrode surface.
The Breakdown Characteristics of the Silicone Oil for Electric Power Apparatus
NASA Astrophysics Data System (ADS)
Yoshida, Hisashi; Yanabu, Satoru
The basic breakdown characteristics of the silicone oil as an insulating medium was studied with aim of realization of electric power apparatus which may be considered to be SF6 free and flame-retarding. As the first step, the impulse breakdown characteristics was measured with three kinds of electrodes whose electric field distributions differed. The breakdown characteristics in silicone oil was explained in relation to stressed oil volume (SOV) and the breakdown stress. At the second step the surface breakdown characteristic for impulse voltage was measured with two kinds of insulators which was set to between plane electrodes. The surface breakdown characteristic for impulse voltage was explained in relation to the ratio of the relative permittivity of oil and insulator. And on the third step, the breakdown characteristics of oil gap after interrupting small capacitive current was studied. In this experiment, the disconnecting switch to interrupt capacitive current was simulated by oil gap after interrupting impulse current, and to measure breakdown characteristics the high impulse voltage was subsequently applied. The breakdown stress in silicone oil after application of impulse current was discussed for insulation recovery characteristics.
Cryogenic rf test of the first SRF cavity etched in an rf Ar/Cl2 plasma
NASA Astrophysics Data System (ADS)
Upadhyay, J.; Palczewski, A.; Popović, S.; Valente-Feliciano, A.-M.; Im, Do; Phillips, H. L.; Vušković, L.
2017-12-01
An apparatus and a method for etching of the inner surfaces of superconducting radio frequency (SRF) accelerator cavities are described. The apparatus is based on the reactive ion etching performed in an Ar/Cl2 cylindrical capacitive discharge with reversed asymmetry. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity was used. The single cell cavity was mechanically polished and buffer chemically etched and then rf tested at cryogenic temperatures to provide a baseline characterization. The cavity's inner wall was then exposed to the capacitive discharge in a mixture of Argon and Chlorine. The inner wall acted as the grounded electrode, while kept at elevated temperature. The processing was accomplished by axially moving the dc-biased, corrugated inner electrode and the gas flow inlet in a step-wise manner to establish a sequence of longitudinally segmented discharges. The cavity was then tested in a standard vertical test stand at cryogenic temperatures. The rf tests and surface condition results, including the electron field emission elimination, are presented.
Capacitance probe for fluid flow and volume measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1995-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Pulsed discharge ionization source for miniature ion mobility spectrometers
Xu, Jun; Ramsey, J. Michael; Whitten, William B.
2004-11-23
A method and apparatus is disclosed for flowing a sample gas and a reactant gas (38, 43) past a corona discharge electrode (26) situated at a first location in an ion drift chamber (24), applying a pulsed voltage waveform comprising a varying pulse component and a dc bias component to the corona discharge electrode (26) to cause a corona which in turn produces ions from the sample gas and the reactant gas, applying a dc bias to the ion drift chamber (24) to cause the ions to drift to a second location (25) in the ion drift chamber (24), detecting the ions at the second location (25) in the drift chamber (24), and timing the period for the ions to drift from the corona discharge electrode to the selected location in the drift chamber.
Capacitance Probe for Fluid Flow and Volume Measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Electroosmotic pump unit and assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shaorong
An electroosmotic pump unit includes at least a first pump element, at least a second pump element, and an electrode. Each pump element includes a tube, an electrically grounded fluid inlet, a fluid outlet electrically coupled to the electrode, and a porous monolith immobilized in the tube and having open pores having net surface charges. When the electrode applies a voltage across the monoliths, a fluid supplied to the first pump element flows through the pump elements in a direction from a fluid inlet of the first pump element toward a fluid outlet of the second pump element. A pluralitymore » of electroosmotic pump units may be connected in series in a pump assembly. The electroosmotic pump unit, or pump assembly, may be connected to an apparatus such as a HPLC.« less
Schofield, A.E.
1958-07-22
A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.
Apparatus and method for transforming living cells
Okandan, Murat; Galambos, Paul C.
2003-11-11
An apparatus and method are disclosed for in vitro transformation of living cells. The apparatus, which is formed as a microelectromechanical device by surface micromachining, can be used to temporarily disrupt the cell walls or membrane of host cells one at a time so that a particular substance (e.g. a molecular tag, nucleic acid, bacteria, virus etc.) can be introduced into the cell. Disruption of the integrity of the host cells (i.e. poration) can be performed mechanically or electrically, or by both while the host cells are contained within a flow channel. Mechanical poration is possible using a moveable member which has a pointed or serrated edge and which is driven by an electrostatic actuator to abrade, impact or penetrate the host cell. Electroporation is produced by generating a relatively high electric field across the host cell when the host cell is located in the flow channel between a pair of electrodes having a voltage applied therebetween.
Static continuous electrophoresis device
NASA Technical Reports Server (NTRS)
Rhodes, P. H. (Inventor)
1982-01-01
An apparatus is disclosed for carrying out a moving wall type electrophoresis process for separation of cellular particles. The apparatus includes a water-tight housing containing an electrolytic buffer solution. A separation chamber in the housing is defined by spaced opposed moving walls and spaced opposed side walls. Substrate assemblies, which support the moving wall include vacuum ports for positively sealing the moving walls against the substrate walls. Several suction conduits communicate with the suction ports and are arranged in the form of valleys in a grid plate. The raised land portion of the grid plat supports the substrate walls against deformation inwardly under suction. A cooling chamber is carried on the back side of plate. The apparatus also has tensioner means including roller and adjustment screws for maintaining the belts in position and a drive arrangement including an electric motor with a gear affixed to its output shaft. Electrode assemblies are disposed to provide the required electric field.
Test apparatus to monitor time-domain signals from semiconductor-detector pixel arrays
NASA Astrophysics Data System (ADS)
Haston, Kyle; Barber, H. Bradford; Furenlid, Lars R.; Salçin, Esen; Bora, Vaibhav
2011-10-01
Pixellated semiconductor detectors, such as CdZnTe, CdTe, or TlBr, are used for gamma-ray imaging in medicine and astronomy. Data analysis for these detectors typically estimates the position (x, y, z) and energy (E) of each interacting gamma ray from a set of detector signals {Si} corresponding to completed charge transport on the hit pixel and any of its neighbors that take part in charge sharing, plus the cathode. However, it is clear from an analysis of signal induction, that there are transient signal on all pixel electrodes during the charge transport and, when there is charge trapping, small negative residual signals on all electrodes. If we wish to optimally obtain the event parameters, we should take all these signals into account. We wish to estimate x,y,z and E from the set of all electrode signals, {Si(t)}, including time dependence, using maximum-likelihood techniques[1]. To do this, we need to determine the probability of the electrode signals, given the event parameters {x, y, z, E}, i.e. Pr( {Si(t)} | {x, y, z, E} ). Thus we need to map the detector response of all pixels, {Si(t)}, for a large number of events with known x,y,z and E.In this paper we demonstrate the existence of the transient signals and residual signals and determine their magnitudes. They are typically 50-100 times smaller than the hit-pixel signals. We then describe development of an apparatus to measure the response of a 16-pixel semiconductor detector and show some preliminary results. We also discuss techniques for measuring the event parameters for individual gamma-ray interactions, a requirement for determining Pr( {Si(t)} | {x, y, z, E}).
Multiple-channel, total-reflection optic with controllable divergence
Gibson, David M.; Downing, Robert G.
1997-01-01
An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence.
Multiple-channel, total-reflection optic with controllable divergence
Gibson, D.M.; Downing, R.G.
1997-02-18
An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence. 11 figs.
Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions
Beattie, Kenneth L.
1998-01-01
An improved microfabricated apparatus for conducting a multiplicity of individual and simultaneous binding reactions is described. The apparatus comprises a substrate on which are located discrete and isolated sites for binding reactions. The apparatus is characterized by discrete and isolated regions that extend through said substrate and terminate on a second surface thereof such that when a test sample is allowed to the substrate, it is capable of penetrating through each such region during the course of said binding reaction. The apparatus is especially useful for sequencing by hybridization of DNA molecules.
Cold Atom Source Containing Multiple Magneto-Optical Traps
NASA Technical Reports Server (NTRS)
Ramirez-Serrano, Jaime; Kohel, James; Kellogg, James; Lim, Lawrence; Yu, Nan; Maleki, Lute
2007-01-01
An apparatus that serves as a source of a cold beam of atoms contains multiple two-dimensional (2D) magneto-optical traps (MOTs). (Cold beams of atoms are used in atomic clocks and in diverse scientific experiments and applications.) The multiple-2D-MOT design of this cold atom source stands in contrast to single-2D-MOT designs of prior cold atom sources of the same type. The advantages afforded by the present design are that this apparatus is smaller than prior designs.
High Temperature Electrolysis using Electrode-Supported Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; C. M. Stoots
2010-07-01
An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. The cells currently under study were developed primarily for the fuel cell mode of operation. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 µm thick), nickel-YSZ steam/hydrogen electrodes (~1400 µm thick), and manganite (LSM) air-side electrodes (~90 µm thick). The purpose of the present study was to document and compare the performance and degradation ratesmore » of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of DC potential sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-duration testing, first in the fuel cell mode, then in the electrolysis mode over more than 500 hours of operation. Results indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of the single-cell test apparatus developed specifically for these experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
X. Zhang; J. E. O'Brien; R. C. O'Brien
2011-11-01
An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm{sup 2} per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes ({approx}10 {mu}m thick), nickel-YSZ steam/hydrogen electrodes ({approx}1400 {mu}m thick), and modified LSM or LSCF air-side electrodes ({approx}90 {mu}m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysismore » mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments.« less
Automatic multiple-sample applicator and electrophoresis apparatus
NASA Technical Reports Server (NTRS)
Grunbaum, B. W. (Inventor)
1977-01-01
An apparatus for performing electrophoresis and a multiple-sample applicator is described. Electrophoresis is a physical process in which electrically charged molecules and colloidal particles, upon the application of a dc current, migrate along a gel or a membrane that is wetted with an electrolyte. A multiple-sample applicator is provided which coacts with a novel tank cover to permit an operator either to depress a single button, thus causing multiple samples to be deposited on the gel or on the membrane simultaneously, or to depress one or more sample applicators separately by means of a separate button for each applicator.
Specimen illumination apparatus with optical cavity for dark field illumination
Pinkel, Daniel; Sudar, Damir; Albertson, Donna
1999-01-01
An illumination apparatus with a specimen slide holder, an illumination source, an optical cavity producing multiple reflection of illumination light to a specimen comprising a first and a second reflective surface arranged to achieve multiple reflections of light to a specimen is provided. The apparatus can further include additional reflective surfaces to achieve the optical cavity, a slide for mounting the specimen, a coverslip which is a reflective component of the optical cavity, one or more prisms for directing light within the optical cavity, antifading solutions for improving the viewing properties of the specimen, an array of materials for analysis, fluorescent components, curved reflective surfaces as components of the optical cavity, specimen detection apparatus, optical detection equipment, computers for analysis of optical images, a plane polarizer, fiberoptics, light transmission apertures, microscopic components, lenses for viewing the specimen, and upper and lower mirrors above and below the specimen slide as components of the optical cavity. Methods of using the apparatus are also provided.
Multistage Electrophoretic Separators
NASA Technical Reports Server (NTRS)
Thomas, Nathan; Doyle, John F.; Kurk, Andy; Vellinger, John C.; Todd, Paul
2006-01-01
A multistage electrophoresis apparatus has been invented for use in the separation of cells, protein molecules, and other particles and solutes in concentrated aqueous solutions and suspensions. The design exploits free electrophoresis but overcomes the deficiencies of prior free-electrophoretic separators by incorporating a combination of published advances in mathematical modeling of convection, sedimentation, electro-osmotic flow, and the sedimentation and aggregation of droplets. In comparison with other electrophoretic separators, these apparatuses are easier to use and are better suited to separation in relatively large quantities characterized in the art as preparative (in contradistinction to smaller quantities characterized in the art as analytical). In a multistage electrophoretic separator according to the invention, an applied vertical steady electric field draws the electrically charged particles of interest from within a cuvette to within a collection cavity that has been moved into position of the cuvette. There are multiple collection cavities arranged in a circle; each is aligned with the cuvette for a prescribed short time. The multistage, short-migration-path character of the invention solves, possibly for the first time, the fluid-instability problems associated with free electrophoresis. The figure shows a prototype multistage electrophoretic separator that includes four sample stations and five collection stages per sample. At each sample station, an aqueous solution or suspension containing charged species to be separated is loaded into a cuvette, which is machined into a top plate. The apparatus includes a lower plate, into which 20 collection cavities have been milled. Each cavity is filled with an electrophoresis buffer solution. For the collection of an electrophoretic fraction, the lower plate is rotated to move a designated collection cavity into alignment with the opening of the cuvette. An electric field is then applied between a non-gassing electrode in the collection cavity and an electrolyte compartment, which is separated from the cuvette by a semipermeable membrane. The electrolyte is refreshed by circulation by use of a peristaltic pump. In subsequent steps, the lower plate is rotated to collect other electrophoretic fractions. Later, the collected fractions are removed from the collection cavities through ports that have threaded plugs. The base of the apparatus contains power supplies and a computer interface. The design includes provisions for monitoring and feedback control of cavity position, electric field, and temperature. The operation of the apparatus can easily be automated, as demonstrated by use of software that has already been written for this purpose.
A membrane-based immunosensor for the analysis of the herbicide isoproturon.
Baskeyfield, Damian E H; Davis, Frank; Magan, Naresh; Tothill, Ibtisam E
2011-08-12
A membrane based heterogeneous competitive enzyme-linked immunosorbent assay (ELISA) was used in this work to develop an immunosensor for the detection of a common herbicide, isoproturon. A screen-printed carbon working electrode with carbon counter and silver-silver chloride pseudo-reference electrode was utilized incorporating a membrane fixed into intimate contact with the working electrode to facilitate signal transduction. The membrane containing an immobilized isoproturon-ovalbumin conjugate was laminated onto the carbon working electrode and horseradish peroxidase (HRP) labeled polyclonal antibody was then applied for the competitive assay. Two different amperometric systems, hydroquinone and o-phenylenediamine (OPD) mediation reduction were utilised and the properties of the resultant sensors were compared. A flow injection apparatus was also developed utilising the immunosensor. Limits of detection for isoproturon (LLD(90)) were found to be as low as 0.84 ng mL(-1). The senor was also validated using spiked extracted soil samples and also isoproturon contaminated samples. Copyright © 2011 Elsevier B.V. All rights reserved.
APPARATUS FOR PRODUCING IONS OF VAPORIZABLE MATERIALS
Wright, B.T.
1958-01-28
a uniform and copious supply of ions. The source comprises a hollow arc- block and means for establishing a magnetic field through the arc-block. Vaporization of the material to be ionized is produced by an electric heated filament. The arc producing structure within the arc-block consists of a cathode disposed between a pair of collimating electrodes along with an anode adjacent each collimating electrode on the side opposite the cathode. A positive potential applied to the anodes and collimating electrodes, with respect to the cathode, and the magnetic field act to accelerate the electrons from the cathode through a slit in each collimating clectrode towards the respective anode. In this manner a pair of collinear arc discharges are produced in the gas region which can be tapped for an abundant supply of ions of the material being analyzed.
Stabilizing metal components in electrodes of electrochemical cells
Spengler, Charles J.; Ruka, Roswell J.
1989-01-01
Disclosed is a method of reducing the removal or transfer into a gas phase of a current carrying metal in an apparatus, such as an electrochemical cell 2 having a porous fuel electrode 6 containing metal particles 11, where the metal is subject to removal or transfer into a gaseous phase, the method characterized in that (1) a metal organic compound that decomposes to form an electronically conducting oxide coating when heated is applied to the metal and porous electrode, and (2) the compound on the metal is then heated to a temperature sufficient to decompose the compound into an oxide coating 13 by increasing the temperature at a rate that is longer than 1 hour between room temperature and 600.degree. C., resulting in at least one continuous layer 13, 14 of the oxide coating on the metal.
Continuous-flow electrophoresis: Membrane-associated deviations of buffer pH and conductivity
NASA Technical Reports Server (NTRS)
Smolka, A. J. K.; Mcguire, J. K.
1978-01-01
The deviations in buffer pH and conductivity which occur near the electrode membranes in continuous-flow electrophoresis were studied in the Beckman charged particle electrophoresis system and the Hanning FF-5 preparative electrophoresis instrument. The nature of the membranes separating the electrode compartments from the electrophoresis chamber, the electric field strength, and the flow rate of electrophoresis buffer were all found to influence the formation of the pH and conductivity gradients. Variations in electrode buffer flow rate and the time of electrophoresis were less important. The results obtained supported the hypothesis that a combination of Donnan membrane effects and the differing ionic mobilities in the electrophoresis buffer was responsible for the formation of the gradients. The significance of the results for the design and stable operation of continuous-flow electrophoresis apparatus was discussed.
NASA Technical Reports Server (NTRS)
Webster, C. R. (Inventor)
1986-01-01
A method and apparatus for an optogalvanic spectroscopy system are disclosed. Orthogonal geometry exists between the axis of a laser probe beam and the axis of a discharge created by a pair of spaced apart and longituduinally aligned high voltage electrodes. The electrodes are movable to permit adjustment of the location of a point in the discharge which is to irradiated by a laser beam crossing the discharge region. The cell dimensions are selected so that the cross section of the discharge region is substantly comparable in size to the cross section of the laser beam passing orthogonally through the discharge region.
Continuous steel production and apparatus
Peaslee, Kent D [Rolla, MO; Peter, Jorg J [McMinnville, OR; Robertson, David G. C. [Rolla, MO; Thomas, Brian G [Champaign, IL; Zhang, Lifeng [Trondheim, NO
2009-11-17
A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.
APPARATUS AND METHOD FOR ARC WELDING
Noland, R.A.; Stone, C.C.
1960-05-10
An apparatus and method are given for forming a welding arc which is rotated by a magnetic field very rapidly about an annular electrode so that a weld is produced simultaneously over all points of an annular or closed path. This invention inhibits outgassing from the jacket of a fuel slug which is being welded by adjusting the pressure throughout the welding cycle to establish a balance between the gas pressure within the jacket and that of the atmosphere surrounding the jacket. Furthermore, an improved control of the magnetic field producing rotation of the welding arc is disclosed whereby this rotation is prevented from splashing about the metal being welded as the welding arc makes it molten.
NASA Astrophysics Data System (ADS)
Okutsu, Kenichi; Nakashima, Yuji; Yamazaki, Kenichiro; Fujimoto, Keita; Nakano, Motoyoshi; Ohshimo, Keijiro; Misaizu, Fuminori
2017-05-01
An ion imaging apparatus with a double linear reflectron mass spectrometer has been developed, in order to measure velocity and angular distributions of mass-analyzed fragment ions produced by photodissociation of mass-selected gas phase complex ions. The 1st and the 2nd linear reflectrons were placed facing each other and controlled by high-voltage pulses in order to perform the mass-separation of precursor ions in the 1st reflectron and to observe the focused image of the photofragment ions in the 2nd reflectron. For this purpose, metal meshes were attached on all electrodes in the 1st reflectron, whereas the mesh was attached only on the last electrode in the 2nd reflectron. The performance of this apparatus was evaluated using imaging measurement of Ca+ photofragment ions from photodissociation reaction of Ca+Ar complex ions at 355 nm photoexcitation. The focused ion images were obtained experimentally with the double linear reflectron at the voltages of the reflection electrodes close to the predictions by ion trajectory simulations. The velocity and angular distributions of the produced Ca+ ([Ar] 4p1, 2P3/2) ion were analyzed from the observed images. The binding energy D0 of Ca+Ar in the ground state deduced in the present measurement was consistent with those determined theoretically and by spectroscopic measurements. The anisotropy parameter β of the transition was evaluated for the first time by this instrument.
Determination of ion mobility in EHD flow zone of plasma generator
NASA Astrophysics Data System (ADS)
Sumariyah, Kusminarto, Hermanto, Arief; Nuswantoro, Pekik
2015-12-01
Determination has been carried out for ion mobility in EHD flow zone generated using a pin-concentric multiple ring electrodes and a pin-single ring electrode used as a comparator. The pin needle was made from stainless steel with a tip diameter of 0.18 mm. The concentris multiple ring electrode in form three/two concentric ring electrodes which made of metal material connected to each other. Each ring of three concentric ring electrode has a diameter of 24 mm, 16 mm and 8 mm. And each ring of two concentric ring electrode has a diameter of 24 mm and 16 mm. Single ring electrode has a diameter24 mm. The all ring has same of width and thickness were 2 mm and 3 mm. EHD was generated by using a DC high voltage of 10 kV. Pin functional as an active electrode of corona discharge while the all ring electrodes acted as ions collector and passive electrodes. The experimental results show that the ion current is proportional to V2 according to calculations by Chouelo for hyperbolic-field approach. Ion mobility obtained from the quadratic polynomial fitting of experimental data were current and voltage as well as Choelo formulation. The results showed that the mobility of ions in the EHD flow zones utilizing pin-consentric multiple ring electrode larger than utilizing pin-single ring electrode. Pin-three Consentic ring electrode has the largest of ion mobility
NASA Astrophysics Data System (ADS)
Shirata, Kento; Inden, Yuki; Kasai, Seiya; Oya, Takahide; Hagiwara, Yosuke; Kaeriyama, Shunichi; Nakamura, Hideyuki
2016-04-01
We investigated the robust detection of surface electromyogram (EMG) signals based on the stochastic resonance (SR) phenomenon, in which the response to weak signals is optimized by adding noise, combined with multiple surface electrodes. Flexible carbon nanotube composite paper (CNT-cp) was applied to the surface electrode, which showed good performance that is comparable to that of conventional Ag/AgCl electrodes. The SR-based EMG signal system integrating an 8-Schmitt-trigger network and the multiple-CNT-cp-electrode array successfully detected weak EMG signals even when the subject’s body is in the motion, which was difficult to achieve using the conventional technique. The feasibility of the SR-based EMG detection technique was confirmed by demonstrating its applicability to robot hand control.
Apparatus for measuring particle properties
Rader, Daniel J.; Castaneda, Jaime N.; Grasser, Thomas W.; Brockmann, John E.
1998-01-01
An apparatus for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle's size can be determined from the intensity of the light scattered. The particle's velocity can be determined from the elapsed time between various intensities of the light scattered.
Non-destructive testing method and apparatus utilizing phase multiplication holography
Collins, H. Dale; Prince, James M.; Davis, Thomas J.
1984-01-01
An apparatus and method for imaging of structural characteristics in test objects using radiation amenable to coherent signal processing methods. Frequency and phase multiplication of received flaw signals is used to simulate a test wavelength at least one to two orders of magnitude smaller than the actual wavelength. The apparent reduction in wavelength between the illumination and recording radiation performs a frequency translation hologram. The hologram constructed with a high synthetic frequency and flaw phase multiplication is similar to a conventional acoustic hologram construction at the high frequency.
Modeling Lithium Movement over Multiple Cycles in a Lithium-Metal Battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrese, A; Newman, J
This paper builds on the work by Ferrese et al. [J. Electrochem., 159, A1615 (2012)], where a model of a lithium-metal battery with a LiyCoO2 positive electrode was created in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. In this paper, the model is expanded to study the movement of lithium along the lithium-metal anode over multiple cycles. From this model, it is found that when a low percentage of lithium at the negative electrode is utilized, the movement of lithium along the negative electrode/separator interface reaches a quasimore » steady state after multiple cycles. This steady state is affected by the slope of the open-circuit-potential function in the positive electrode, the rate of charge and discharge, the depth of discharge, and the length of the rest periods. However, when a high percent of the lithium at the negative electrode is utilized during cycling, the movement does not reach a steady state and pinching can occur, where the lithium nearest the negative tab becomes progressively thinner after cycling. This is another nonlinearity that leads to a progression of the movement of lithium over multiple cycles. (C) 2014 The Electrochemical Society.« less
Structured luminescence conversion layer
Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin
2012-12-11
An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.
METHOD AND APPARATUS FOR DETERMINING CHARGED PARTICLE MOTION
Kerns, Q.A.
1959-08-01
An analog system for determining the motion of charged particles in three dimensional electrical fields is described. A model electrode structure is formed and potentials are applied to the electrodes to provide an analog of the field which is to be studied. To simulate charged particles within the model, conducting spheres are placed at points from which particle motion is to be traced. To free the spheres from gravitational attraction in order that they will be electrostatically accelerated through the model, the apparatus is suspended and dropped. During the pericd that the model is dropping the spheres move through the electrcde structure with a motion corresponding to that of particles in the real system. The model is photographed in the course of falling so that the instantaneous position of the spheres within the simulated field at selected times may be observed and measured. The device thus gives data of particles in the real system. The model is photographed in the course of falling so that the instantaneous position of the spheres within the simulated field at selected times may be observed and measured. The device thus gives data which frequently can otherwise be obtained only with a digital computer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming; Liu, Jie; Gleber, Sophie C.
An enhanced mechanical design of multiple zone plates precision alignment apparatus for hard x-ray focusing in a twenty-nanometer scale is provided. The precision alignment apparatus includes a zone plate alignment base frame; a plurality of zone plates; and a plurality of zone plate holders, each said zone plate holder for mounting and aligning a respective zone plate for hard x-ray focusing. At least one respective positioning stage drives and positions each respective zone plate holder. Each respective positioning stage is mounted on the zone plate alignment base frame. A respective linkage component connects each respective positioning stage and the respectivemore » zone plate holder. The zone plate alignment base frame, each zone plate holder and each linkage component is formed of a selected material for providing thermal expansion stability and positioning stability for the precision alignment apparatus.« less
Photoacoustic spectroscopy and the in situ characterization of the electrochemical interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallet, C.E.
1988-01-01
Photoacoustics is a new spectroscopic method which has been used for in situ characterization of the electrochemical interface during the past ten years. The basic principles of the photoacoustic effect and the principal results of the Rosencwaig-Gersho theory are discussed in light of the usefulness of the method in electrochemical studies. Different experimental arrangements suitable for in situ electrode studies are presented. A review of the use to date of photoacoustics in electrochemistry includes studies of electrochromic systems, semiconductor electrodes, passivation layers, and of electrocatalytic mixed oxides. These works demonstrated that, with relatively simple apparatus, it was possible to detectmore » and to characterize very thin layers formed on electrodes. It is still not clear whether in most cases photoacoustic spectroscopy has an overwhelming advantage over well-established optical methods for adsorption measurements; however, all the potentialities of the method have yet to be explored. 73 refs., 6 figs.« less
Assembly of photo-bioelectrochemical cells using photosystem I-functionalized electrodes
NASA Astrophysics Data System (ADS)
Efrati, Ariel; Lu, Chun-Hua; Michaeli, Dorit; Nechushtai, Rachel; Alsaoub, Sabine; Schuhmann, Wolfgang; Willner, Itamar
2016-02-01
The design of photo-bioelectrochemical cells based on native photosynthetic reaction centres is attracting substantial recent interest as a means for the conversion of solar light energy into electrical power. In the natural photosynthetic apparatus, the photosynthetic reaction centres are coupled to biocatalytic transformations leading to CO2 fixation and O2 evolution. Although significant progress in the integration of native photosystems with electrodes for light-to-electrical energy conversion has been achieved, the conjugation of the photosystems to enzymes to yield photo-bioelectrocatalytic solar cells remains a challenge. Here we demonstrate the assembly of integrated photosystem I/glucose oxidase or glucose dehydrogenase photo-bioelectrochemical electrodes. We highlight the photonic wiring of the biocatalysts by means of photosystem I using glucose as fuel. Our results provide a general approach to assemble photo-bioelectrochemical solar cells with wide implications for solar energy conversion, bioelectrocatalysis and sensing.
Tuck, J.L.
1955-03-01
This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.
Imaging alpha particle detector
Anderson, David F.
1985-01-01
A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.
Imaging alpha particle detector
Anderson, D.F.
1980-10-29
A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.
APPARATUS FOR PRODUCING IONS OF VAPORIZABLE MATERIALS
Starr, C.
1957-11-19
This patent relates to electronic discharge devices used as ion sources, and in particular describes an ion source for application in a calutron. The source utilizes two cathodes disposed at opposite ends of a longitudinal opening in an arc block fed with vaporized material. A magnetic field is provided parallel to the length of the arc block opening. The electrons from the cathodes are directed through slits in collimating electrodes into the arc block parallel to the magnetic field and cause an arc discharge to occur between the cathodes, as the arc block and collimating electrodes are at a positive potential with respect to the cathode. The ions are withdrawn by suitable electrodes disposed opposite the arc block opening. When such an ion source is used in a calutron, an arc discharge of increased length may be utilized, thereby increasing the efficiency and economy of operation.
Coaxial carbon plasma gun deposition of amorphous carbon films
NASA Technical Reports Server (NTRS)
Sater, D. M.; Gulino, D. A.; Rutledge, S. K.
1984-01-01
A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.
APPARATUS FOR CONTROLLING THE POSITION OF AN ION BEAM IN A CALUTRON
Lawrence, E.O.
1958-01-01
ABS>This patent relates to improvements in electric discharge devices of the calutron type for separation of the isotopes of an element from the freely occurring composition. The improvement constitutes means for the continuous control of the path of an ion beam to obtain maximum reception in a receiver compartment. Withdrawal of the ions from the source is accomplished by an accelerator electrode placed at a positive potential with respect to the receiver. The ions are projected through a magnetic field perpendicular to the direction of motion towards a receiver. In order to obtain a signal representative of the magnitude of ions received from a particular ion-beam in its compartment, an electrode is disposed in the compartment. The signal from the compartment electrode controls the voltage of the acccleratimg electrodc through appropriate circuitry to maintain the path of the particular ion beam optimum for maximum ion current in the compartment.
Rouhani, S. Zia
1996-10-22
The state of charge of electrochemical batteries of different kinds is determined by measuring the incremental change in the total volume of the reactive masses in the battery. The invention is based on the principle that all electrochemical batteries, either primary or secondary (rechargeable), produce electricity through a chemical reaction with at least one electrode, and the chemical reactions produce certain changes in the composition and density of the electrode. The reactive masses of the electrodes, the electrolyte, and any separator or spacers are usually contained inside a battery casing of a certain volume. As the battery is used, or recharged, the specific volume of at least one of the electrode masses will change and, since the masses of the materials do not change considerably, the total volume occupied by at least one of the electrodes will change. These volume changes may be measured in many different ways and related to the state of charge in the battery. In one embodiment, the volume change can be measured by monitoring the small changes in one of the principal dimensions of the battery casing as it expands or shrinks to accommodate the combined volumes of its components.
Apparatus for measuring particle properties
Rader, D.J.; Castaneda, J.N.; Grasser, T.W.; Brockmann, J.E.
1998-08-11
An apparatus is described for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle`s size can be determined from the intensity of the light scattered. The particle`s velocity can be determined from the elapsed time between various intensities of the light scattered. 11 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzarella, Ricardo; Slocum, Alexander H.; Doherty, Tristan
Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus,more » the intermediate layer can serve as a current collector for the electrochemical cell.« less
Electrochemical cells and methods of manufacturing the same
Bazzarella, Ricardo; Slocum, Alexander H; Doherty, Tristan; Cross, III, James C
2015-11-03
Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus, the intermediate layer can serve as a current collector for the electrochemical cell.
Droplet combustion at reduced gravity
NASA Technical Reports Server (NTRS)
Dryer, F. L.; Williams, F. A.
1988-01-01
The current work involves theoretical analyses of the effects identified, experiments in the NASA Lewis drop towers performed in the middeck areas of the Space Shuttle. In addition, there is laboratory work associated with the design of the flight apparatus. Calculations have shown that some of the test-matrix data can be obtained in drop towers, and some are achievable only in the space experiments. The apparatus consists of a droplet dispensing device (syringes), a droplet positioning device (opposing, retractable, hollow needles), a droplet ignition device (two matched pairs of retractable spark electrodes), gas and liquid handling systems, a data acquisition system (mainly giving motion-picture records of the combustion in two orthogonal views, one with backlighting for droplet resolution), and associated electronics.
Tunnel effect measuring systems and particle detectors
NASA Technical Reports Server (NTRS)
Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)
1994-01-01
Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.
LOW VOLTAGE 14 Mev NEUTRON SOURCE
Little, R.N. Jr.; Graves, E.R.
1959-09-29
An apparatus yielding high-energy neutrons at the rate of 10/sup 8/ or more per second by the D,T or D,D reactions is described. The deuterium gas filling is ionized by electrons emitted from a filament, and the resulting ions are focused into a beam and accelerated against a fixed target. The apparatus is built in accordance with the relationship V/sub s/ = A--B log pd, where V/sub s/ is the sparking voltage, p the gas pressure, and d the gap length between the high voltage electrodes. Typical parameters to obtain the high neutron yields are 55 to 80 kv, 0.5 to 7.0 ma beam current, 5 to 12 microns D/sub 2/, and a gap length of 1 centimeter.
Tunnel effect measuring systems and particle detectors
NASA Technical Reports Server (NTRS)
Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)
1993-01-01
Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.
Tunnel effect wave energy detection
NASA Technical Reports Server (NTRS)
Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)
1995-01-01
Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.
Distributed parallel messaging for multiprocessor systems
Chen, Dong; Heidelberger, Philip; Salapura, Valentina; Senger, Robert M; Steinmacher-Burrow, Burhard; Sugawara, Yutaka
2013-06-04
A method and apparatus for distributed parallel messaging in a parallel computing system. The apparatus includes, at each node of a multiprocessor network, multiple injection messaging engine units and reception messaging engine units, each implementing a DMA engine and each supporting both multiple packet injection into and multiple reception from a network, in parallel. The reception side of the messaging unit (MU) includes a switch interface enabling writing of data of a packet received from the network to the memory system. The transmission side of the messaging unit, includes switch interface for reading from the memory system when injecting packets into the network.
NASA Astrophysics Data System (ADS)
Li, J.; Dong, J.; Zhu, F.
2017-12-01
Melting plays an unparalleled role in planetary differentiation processes including the formation of metallic cores, basaltic crusts, and atmospheres. Knowledge of the melting behavior of Earth materials provides critical constraints for establishing the Earth's thermal structure, interpreting regional seismic anomalies, and understanding the nature of chemical heterogeneity. Measuring the melting points of compressed materials, however, have remained challenging mainly because melts are often mobile and reactive, and temperature and pressure gradients across millimeter or micron-sized samples introduce large uncertainties in melting detection. Here the melting curve of KCl was determined through in situ ionic conductivity measurements, using the multi-anvil apparatus at the University of Michigan. The method improves upon the symmetric configuration that was used recently for studying the melting behaviors of NaCl, Na2CO3, and CaCO3 (Li and Li 2015 American Mineralogist, Li et al. 2017 Earth and Planetary Science Letters). In the new configuration, the thermocouple and electrodes are placed together with the sample at the center of a cylindrical heater where the temperature is the highest along the axis, in order to minimize uncertainties in temperature measurements and increase the stability of the sample and electrodes. With 1% reproducibility in melting point determination at pressures up to 20 GPa, this method allows us to determine the sample pressure to oil load relationship at high temperatures during multiple heating and cooling cycles, on the basis of the well-known melting curves of ionic compounds. This approach enables more reliable pressure measurements than relying on a small number of fixed-point phase transitions. The new data on KCl bridge the gap between the piston-cylinder results up to 4 GPa (Pistorius 1965 J. of Physics and Chemistry of Solids) and several diamond-anvil cell data points above 20 GPa (Boehler et al. 1996 Physical Review). We will examine the effect of solid-state phase transition on the melting curves of halides and test the validity of various melting theories.
Apparatus for mounting crystal
Longeway, Paul A.
1985-01-01
A thickness monitor useful in deposition or etching reactor systems comprising a crystal-controlled oscillator in which the crystal is deposited or etched to change the frequency of the oscillator. The crystal rests within a thermally conductive metallic housing and arranged to be temperature controlled. Electrode contacts are made to the surface primarily by gravity force such that the crystal is substantially free of stress otherwise induced by high temperature.
Testing of a scanning adiabatic calorimeter with Joule effect heating of the sample
NASA Astrophysics Data System (ADS)
Barreiro-Rodríguez, G.; Yáñez-Limón, J. M.; Contreras-Servin, C. A.; Herrera-Gomez, A.
2008-01-01
We evaluated a scanning adiabatic resistive calorimeter (SARC) developed to measure the specific enthalpy of viscous and gel-type materials. The sample is heated employing the Joule effect. The cell is constituted by a cylindrical jacket and two pistons, and the sample is contained inside the jacket between the two pistons. The upper piston can slide to allow for thermal expansion and to keep the pressure constant. The pistons also function as electrodes for the sample. While the sample is heated through the Joule effect, the electrodes and the jacket are independently heated to the same temperature of the sample using automatic control. This minimizes the heat transport between the sample and its surroundings. The energy to the sample is supplied by applying to the electrodes an ac voltage in the kilohertz range, establishing a current in the sample and inducing electric dissipation. This energy can be measured with enough exactitude to determine the heat capacity. This apparatus also allows for the quantification of the thermal conductivity by reproducing the evolution of the temperature as heat is introduced only to one of the pistons. To this end, the system was modeled using finite element calculations. This dual capability proved to be very valuable for correction in the determination of the specific enthalpy. The performance of the SARC was evaluated by comparing the heat capacity results to those obtained by differential scanning calorimetry measurements using a commercial apparatus. The analyzed samples were zeolite, bauxite, hematite, bentonite, rice flour, corn flour, and potato starch.
Mar, Alan [Albuquerque, NM; Zutavern, Fred J [Albuquerque, NM; Loubriel, Guillermo [Albuquerque, NM
2007-02-06
An improved photoconductive semiconductor switch comprises multiple-line optical triggering of multiple, high-current parallel filaments between the switch electrodes. The switch can also have a multi-gap, interdigitated electrode for the generation of additional parallel filaments. Multi-line triggering can increase the switch lifetime at high currents by increasing the number of current filaments and reducing the current density at the contact electrodes in a controlled manner. Furthermore, the improved switch can mitigate the degradation of switching conditions with increased number of firings of the switch.
Lamp for generating high power ultraviolet radiation
Morgan, Gary L.; Potter, James M.
2001-01-01
The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.
Sensor apparatus using an electrochemical cell
Thakur, Mrinal
2002-01-01
A novel technology for sensing mechanical quantities such as force, stress, strain, pressure and acceleration has been invented. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electronegativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors.
Grinding assembly, grinding apparatus, weld joint defect repair system, and methods
Larsen, Eric D.; Watkins, Arthur D.; Bitsoi, Rodney J.; Pace, David P.
2005-09-27
A grinding assembly for grinding a weld joint of a workpiece includes a grinder apparatus, a grinder apparatus includes a grinding wheel configured to grind the weld joint, a member configured to receive the grinding wheel, the member being configured to be removably attached to the grinder apparatus, and a sensor assembly configured to detect a contact between the grinding wheel and the workpiece. The grinding assembly also includes a processing circuitry in communication with the grinder apparatus and configured to control operations of the grinder apparatus, the processing circuitry configured to receive weld defect information of the weld joint from an inspection assembly to create a contour grinding profile to grind the weld joint in a predetermined shape based on the received weld defect information, and a manipulator having an end configured to carry the grinder apparatus, the manipulator further configured to operate in multiple dimensions.
Miniature pulsed vacuum arc plasma gun and apparatus for thin-film fabrication
Brown, Ian G.; MacGill, Robert A.; Galvin, James E.; Ogletree, David F.; Salmeron, Miquel
1998-01-01
A miniature (dime-size in cross-section) vapor vacuum arc plasma gun is described for use in an apparatus to produce thin films. Any conductive material can be layered as a film on virtually any substrate. Because the entire apparatus can easily be contained in a small vacuum chamber, multiple dissimilar layers can be applied without risk of additional contamination. The invention has special applications in semiconductor manufacturing.
Miniature pulsed vacuum arc plasma gun and apparatus for thin-film fabrication
Brown, I.G.; MacGill, R.A.; Galvin, J.E.; Ogletree, D.F.; Salmeron, M.
1998-11-24
A miniature (dime-size in cross-section) vapor vacuum arc plasma gun is described for use in an apparatus to produce thin films. Any conductive material can be layered as a film on virtually any substrate. Because the entire apparatus can easily be contained in a small vacuum chamber, multiple dissimilar layers can be applied without risk of additional contamination. The invention has special applications in semiconductor manufacturing. 8 figs.
Tomkins, James L [Albuquerque, NM; Camp, William J [Albuquerque, NM
2009-03-17
A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective segregation of classified and unclassified users. The physical interconnect structure also permits easy physical scalability of the computing apparatus. The computing apparatus can include an emulator which permits applications from the same job to be launched on processors that use different operating systems.
Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.
1998-01-01
The present invention provides a relatively compact self-powered, tunable waste conversion system and apparatus which has the advantage of highly robust operation which provides complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The system provides the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or by an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced or without further use of the gases generated by the conversion process. The apparatus may be employed as a self-powered or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production.
Novak, James L.; Petterson, Ben
1998-06-09
A sensing system locates an object by sensing the object's effect on electric fields. The object's effect on the mutual capacitance of electrode pairs varies according to the distance between the object and the electrodes. A single electrode pair can sense the distance from the object to the electrodes. Multiple electrode pairs can more precisely locate the object in one or more dimensions.
1993-09-01
to Doug Vaught, J. Towell, and Eric Schlierman of Puget Sound Naval Shipyard for providing laboratory space, equipment, and logistical support for the...availability and mobility of toxic metal contamination in the sediments of Sinclair Inlet, Puget Sound , Washington, acid volatile sulfide (AVS) and... Puget Sound , Washington ........ 1 2. Apparatus used for measuring acid volatile sulfides ........................... 5 3. Sulfide electrode
Kia, Kaveh Kazemi; Bonabi, Fahimeh
2012-12-01
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kia, Kaveh Kazemi; Bonabi, Fahimeh
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through themore » graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.« less
Ryu, DongHyun; Kim, Yong Jae; Kim, Seon Il; Hong, Hyeonaug; Ahn, Hyun S.
2018-01-01
Photosynthesis converts solar energy to electricity in a highly efficient manner. Since only water is needed as fuel for energy conversion, this highly efficient energy conversion process has been rigorously investigated. In particular, photosynthetic apparatus, such as photosystem II (PSII), photosystem I (PSI), or thylakoids, have been isolated from various plants to construct bio-hybrid anodes. Although PSII or PSI decorated anodes have shown potentials, there still remain challenges, such as poor stability of PSII-based systems or need for electron donors other than water molecules of PSI-based systems. Thylakoid membranes are relatively stable after isolation and they contain all the necessary photosynthetic apparatus including the PSII and PSI. To increase electrical connections between thylakoids and anodes, nanomaterials such as carbon nanotubes, nanowires, nanoparticles, or graphene have been employed. However, since they rely on the secondary electrical connections between thylakoids and anodes; it is desired to achieve larger direct contacts between them. Here, we aimed to develop micro-pillar (MP) array anodes to maximize direct contact with thylakoids. The thylakoid morphology was analyzed and the MP array was designed to maximize direct contact with thylakoids. The performance of MP anodes and a photosynthetic fuel cell based on MP electrodes was demonstrated and analyzed. PMID:29587387
NASA Astrophysics Data System (ADS)
Kia, Kaveh Kazemi; Bonabi, Fahimeh
2012-12-01
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.
NASA Astrophysics Data System (ADS)
Kim, Dae-Kyu; Choi, Jong-Ho
2018-02-01
Herein is presented a comparative performance analysis of heterojunction organic-based light-emitting field-effect transistors (OLEFETs) with symmetric (Au only) and asymmetric (Au and LiF/Al) electrode contacts. The devices had a top source-drain contact with long-channel geometry and were produced by sequentially depositing p-type pentacene and n-type N,N‧-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13) using a neutral cluster beam deposition apparatus. The spectroscopic, structural and morphological properties of the organic thin films were examined using photoluminescence (PL) spectroscopy, X-ray diffraction (XRD) method, laser scanning confocal and atomic force microscopy (LSCM, AFM). Based upon the growth of high-quality, well-packed crystalline thin films, the devices demonstrated ambipolar field-effect characteristics, stress-free operational stability, and light emission under ambient conditions. Various device parameters were derived from the fits of the observed characteristics. The hole mobilities were nearly equal irrespective of the electrode contacts, whereas the electron mobilities of the transistors with LiF/Al drain electrodes were higher due to the low injection barrier. For the OLEFETs with symmetric electrodes, electroluminescence (EL) occurred only in the vicinity of the hole-injecting electrode, whereas for the OLEFETs with asymmetric electrodes, the emission occurred in the vicinity of both hole- and electron-injecting electrodes. By tuning the carrier injection and transport through high- and low-work function metals, the hole-electron recombination sites could be controlled. The operating conduction and light emission mechanism are discussed with the aid of EL images obtained using a charge-coupled device (CCD) camera.
Plasma confinement apparatus using solenoidal and mirror coils
Fowler, T. Kenneth; Condit, William C.
1979-01-01
A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.
Electrochemical cells and methods of manufacturing the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzarella, Ricardo; Slocum, Alexander H.; Doherty, Tristan
2016-07-26
Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus,more » the intermediate layer can serve as a current collector for the electrochemical cell.« less
Welding wire pressure sensor assembly
NASA Technical Reports Server (NTRS)
Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)
1994-01-01
The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.
MEMS based pyroelectric thermal energy harvester
Hunter, Scott R; Datskos, Panagiotis G
2013-08-27
A pyroelectric thermal energy harvesting apparatus for generating an electric current includes a cantilevered layered pyroelectric capacitor extending between a first surface and a second surface, where the first surface includes a temperature difference from the second surface. The layered pyroelectric capacitor includes a conductive, bimetal top electrode layer, an intermediate pyroelectric dielectric layer and a conductive bottom electrode layer. In addition, a pair of proof masses is affixed at a distal end of the layered pyroelectric capacitor to face the first surface and the second surface, wherein the proof masses oscillate between the first surface and the second surface such that a pyroelectric current is generated in the pyroelectric capacitor due to temperature cycling when the proof masses alternately contact the first surface and the second surface.
APPARATUS FOR CONTROL OF HIGH-ENERGY ACCELERATORS
Heard, H.G.
1961-10-24
A particle beam positioning control for a synchrotron or the like is described. The control includes means for selectively impressing a sinusoidal perturbation upon the rising voltage utilized to sweep the frequency of the f-m oscillator which is conventionally coupled to the accelerating electrode of a synchrotron. The perturbation produces a variation in the normal rate of change of frequency of the accelerating voltage applied to the accelerating electrode, resulting in an expansion or contraction of the particle beam orbit diameter during the perturbation. The beam may thus be controlled such that a portion strikes a target positioned close to the expanded or contracted orbit diameter and returns to the original orbit for further acceleration to the final energy. (AEC)
METHOD AND APPARATUS FOR DETERMINING AMALGAM DECOMPOSITION RATE
Johnson, R.W.; Wright, C.C.
1962-04-24
A method and apparatus for measuring the rate at which an amalgam decomposes in contact with aqueous solutions are described. The amalgam and an aqueous hydroxide solution are disposed in an electrolytic cell. The amalgam is used as the cathode of the cell, and an electrode and anode are disposed in the aqueous solution. A variable source of plating potential is connected across the cell. The difference in voltage between the amalgam cathode and a calibrated source of reference potential is used to control the variable source to null the difference in voltage and at the same time to maintain the concentration of the amalgam at some predetermined constant value. The value of the current required to maintain this concentration constant is indicative of the decomposition rate of the amalgam. (AEC)
A High Voltage Asymmetric Waveform Generator for FAIMS
Canterbury, Jesse D.; Gladden, James; Buck, Lon; Olund, Roy; MacCoss, Michael J.
2010-01-01
High field asymmetric waveform ion mobility spectrometry (FAIMS) has been used increasingly in recent years as an additional method of ion separation and selection prior to mass spectrometry. The FAIMS electrodes are relatively simple to design and fabricate for laboratories wishing to implement their own FAIMS designs. However, construction of the electronics apparatus needed to produce the required high magnitude asymmetric electric field oscillating at a frequency of several hundred kilohertz is not trivial. Here we present an entirely custom-built electronics setup capable of supplying the required waveforms and voltages. The apparatus is relatively simple and inexpensive to implement. We also present data acquired on this system demonstrating the use of FAIMS as a gas phase ion filter interface to an ion trap mass spectrometer. PMID:20332067
Novak, J.L.; Petterson, B.
1998-06-09
A sensing system locates an object by sensing the object`s effect on electric fields. The object`s effect on the mutual capacitance of electrode pairs varies according to the distance between the object and the electrodes. A single electrode pair can sense the distance from the object to the electrodes. Multiple electrode pairs can more precisely locate the object in one or more dimensions. 12 figs.
Design of novel dual-port tapered waveguide plasma apparatus by numerical analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, D.; Zhou, R.; Yang, X. Q., E-mail: yyxxqq-mail@163.com
Microwave plasma apparatus is often of particular interest due to their superiority of low cost, electrode contamination free, and suitability for industrial production. However, there exist problems of unstable plasma and low electron density in conventional waveguide apparatus based on single port, due to low strength and non-uniformity of microwave field. This study proposes a novel dual-port tapered waveguide plasma apparatus based on power-combining technique, to improve the strength and uniformity of microwave field for the applications of plasma. A 3D model of microwave-induced plasma (field frequency 2.45 GHz) in argon at atmospheric pressure is presented. On the condition thatmore » the total input power is 500 W, simulations indicate that coherent power-combining will maximize the electric-field strength to 3.32 × 10{sup 5 }V/m and improve the uniformity of distributed microwave field, which raised 36.7% and 47.2%, respectively, compared to conventional waveguide apparatus of single port. To study the optimum conditions for industrial application, a 2D argon fluid model based on above structure is presented. It demonstrates that relatively uniform and high-density plasma is obtained at an argon flow rate of 200 ml/min. The contrastive result of electric-field distribution, electron density, and gas temperature is also valid and clearly proves the superiority of coherent power-combining to conventional technique in flow field.« less
Machining of AISI D2 Tool Steel with Multiple Hole Electrodes by EDM Process
NASA Astrophysics Data System (ADS)
Prasad Prathipati, R.; Devuri, Venkateswarlu; Cheepu, Muralimohan; Gudimetla, Kondaiah; Uzwal Kiran, R.
2018-03-01
In recent years, with the increasing of technology the demand for machining processes is increasing for the newly developed materials. The conventional machining processes are not adequate to meet the accuracy of the machining of these materials. The non-conventional machining processes of electrical discharge machining is one of the most efficient machining processes is being widely used to machining of high accuracy products of various industries. The optimum selection of process parameters is very important in machining processes as that of an electrical discharge machining as they determine surface quality and dimensional precision of the obtained parts, even though time consumption rate is higher for machining of large dimension features. In this work, D2 high carbon and chromium tool steel has been machined using electrical discharge machining with the multiple hole electrode technique. The D2 steel has several applications such as forming dies, extrusion dies and thread rolling. But the machining of this tool steel is very hard because of it shard alloyed elements of V, Cr and Mo which enhance its strength and wear properties. However, the machining is possible by using electrical discharge machining process and the present study implemented a new technique to reduce the machining time using a multiple hole copper electrode. In this technique, while machining with multiple holes electrode, fin like projections are obtained, which can be removed easily by chipping. Then the finishing is done by using solid electrode. The machining time is reduced to around 50% while using multiple hole electrode technique for electrical discharge machining.
NASA Astrophysics Data System (ADS)
Jewulski, J. R.; Osif, T. L.; Remick, R. J.
1990-12-01
The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling, and optimization studies. Correlation and optimization studies are described which include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells are presented which include the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms.
Means and method for nonuniform poling of piezoelectric transducers
Hsu, David K.; Margetan, Frank J.; Hasselbusch, Michael D.; Wormley, Samuel J.; Hughes, Michael S.; Thompson, Donald O.
1990-10-09
An apparatus and method for nonuniform poling of piezoelectric transducers includes machining one or more indentation into an end of a piezoelectric rod and cutting the rod to present a thickened disk shape. Highly electrically conductive material is deposited on at least the indentations in the one end and on at least portions of the opposite face of the member. One or more electrodes are configured to matingly fit within the indentations on the one face of the disk, with a like number of electrodes being positionable on the opposite face of the material. Electrical power is then applied to the electrodes in desired amounts, polarity, and duration. The indentations vary the electrical field produced within the piezoelectric material to produce nonuniform poling in the material. The thick disk is then cut to remove the indentations and to present a thin, flat two sided disk for installation in a conventional piezoelectric transducer probe. The indentations are selected to produce poling in accordance with desired transducer response profiles such as Gaussian or Bessel functions.
Organic fuel cell methods and apparatus
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Surampudi, Subbarao (Inventor); Prakash, G. K. Surya (Inventor); Vamos, Eugene (Inventor); Olah, George A. (Inventor)
2001-01-01
A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.
Organic fuel cell methods and apparatus
NASA Technical Reports Server (NTRS)
Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Vamos, Eugene (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Frank, Harvey A. (Inventor); Prakash, G. K. Surya (Inventor)
2004-01-01
A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.
Organic fuel cell methods and apparatus
NASA Technical Reports Server (NTRS)
Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Surampudi, Subbarao (Inventor); Olah, George A. (Inventor); Vamos, Eugene (Inventor); Narayanan, Sekharipuram R. (Inventor); Prakash, G. K. Surya (Inventor)
2008-01-01
A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.
Method and apparatus of prefetching streams of varying prefetch depth
Gara, Alan [Mount Kisco, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Hoenicke, Dirk [Seebruck-Seeon, DE
2012-01-24
Method and apparatus of prefetching streams of varying prefetch depth dynamically changes the depth of prefetching so that the number of multiple streams as well as the hit rate of a single stream are optimized. The method and apparatus in one aspect monitor a plurality of load requests from a processing unit for data in a prefetch buffer, determine an access pattern associated with the plurality of load requests and adjust a prefetch depth according to the access pattern.
Apparatus for blending small particles
Bradley, R.A.; Reese, C.R.; Sease, J.D.
1975-08-26
An apparatus is described for blending small particles and uniformly loading the blended particles in a receptacle. Measured volumes of various particles are simultaneously fed into a funnel to accomplish radial blending and then directed onto the apex of a conical splitter which collects the blended particles in a multiplicity of equal subvolumes. Thereafter the apparatus sequentially discharges the subvolumes for loading in a receptacle. A system for blending nuclear fuel particles and loading them into fuel rod molds is described in a preferred embodiment. (auth)
Sensitivity to microstimulation of somatosensory cortex distributed over multiple electrodes.
Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Tenore, Francesco V; Bensmaia, Sliman J
2015-01-01
Meaningful and repeatable tactile sensations can be evoked by electrically stimulating primary somatosensory cortex. Intracortical microstimulation (ICMS) may thus be a viable approach to restore the sense of touch in individuals who have lost it, for example tetraplegic patients. One of the potential limitations of this approach, however, is that high levels of current can damage the neuronal tissue if the resulting current densities are too high. The limited range of safe ICMS amplitudes thus limits the dynamic range of ICMS-evoked sensations. One way to get around this limitation would be to distribute the ICMS over multiple electrodes in the hopes of intensifying the resulting percept without increasing the current density experienced by the neuronal tissue. Here, we test whether stimulating through multiple electrodes is a viable solution to increase the dynamic range of ICMS-elicited sensations without increasing the peak current density. To this end, we compare the ability of non-human primates to detect ICMS delivered through one vs. multiple electrodes. We also compare their ability to discriminate pulse trains differing in amplitude when these are delivered through one or more electrodes. We find that increasing the number of electrodes through which ICMS is delivered only has a marginal effect on detectability or discriminability despite the fact that 2-4 times more current is delivered overall. Furthermore, the impact of multielectrode stimulation (or lack thereof) is found whether pulses are delivered synchronously or asynchronously, whether the leading phase of the pulses is cathodic or anodic, and regardless of the spatial configuration of the electrode groups.
Detection of electromagnetic radiation using micromechanical multiple quantum wells structures
Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN
2007-07-17
An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.
Design of a nonlinear, thin-film Mach-Zehnder interferometer
NASA Technical Reports Server (NTRS)
Pearson, Earl F.
1996-01-01
A Mach-Zehnder interferometer consists of a 3 db splitter to create the two separate beams, an optical path difference to control the interference between the two beams and another 3 db coupler to reconstruct the output signal. The performance of each of its components has been investigated. Since an optical path difference is required for its function, the performance of a Mach-Zehnder interferometer is not very sensitive to construction parameters. In designing an interferometer for this work, the following considerations must be observed: the interferometer is to be made of phthalocyanine or polydiacetylene thin films; in order to avoid thermal effects which are slower, the wavelength chosen must not be absorbed in either one or two photon processes; the wavelength chosen must be easily generated (laser line); the spacing between the interferometer arms must be large enough to allow attachment of external electrodes; the vapor deposition apparatus can accept disks no larger than 0.9 inches; and the design must allow multiple layer coating in order to determine the optimum film thickness or to change to another substance.
1981-06-01
voltage electrode and forms the interface between the water and vacuum. Figure 1 Low Pressure Switch Apparatus 380 The water Blumlein, the...buildup of current and can predict the rate constant within 30%, it appears that we understand the basic mechanism of the low pressure switch . 0.22...E. J. Lauer, "Status of Low Pressure Switch Research and Development," UCID 17998, Dec. 12, 1978. 4. E. J. Lauer, S. S. Yu and D. M. Cox, "Onset
Portable electrophoresis apparatus using minimum electrolyte
NASA Technical Reports Server (NTRS)
Stevens, M. R.; Vickers, J. M. (Inventor)
1976-01-01
An electrophoresis unit for use in conducting electrophoretic analysis of specimens is described. The unit includes a sealable container in which a substrate mounted specimen is suspended in an electrolytic vapor. A heating unit is employed to heat a supply of electrolyte to produce the vapor. The substrate is suspended within the container by being attached between a pair of clips which also serve as electrodes to which a direct current power source may be connected.
NASA Astrophysics Data System (ADS)
Yang, De-zheng; Wang, Wen-chun; Jia, Li; Nie, Dong-xia; Shi, Heng-chao
2011-04-01
In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.
NASA Astrophysics Data System (ADS)
Shu, Jinian; Wilson, Kevin R.; Ahmed, Musahid; Leone, Stephen R.
2006-04-01
An aerosol apparatus has been coupled to the Chemical Dynamics Beamline of the Advanced Light Source at Lawrence Berkeley National Laboratory. This apparatus has multiple capabilities for aerosol studies, including vacuum ultraviolet (VUV) light scattering, photoelectron imaging, and mass spectroscopy of aerosols. By utilizing an inlet system consisting of a 200μm orifice nozzle and aerodynamic lenses, aerosol particles of ˜50nm-˜1μm in diameter can be sampled directly from atmospheric pressure. The machine is versatile and can probe carbonaceous aerosols generated by a laboratory flame, nebulized solutions of biological molecules, hydrocarbon aerosol reaction products, and synthesized inorganic nanoparticles. The sensitivity of this apparatus is demonstrated by the detection of nanoparticles with VUV light scattering, photoelectron imaging, and charged particle detection. In addition to the detection of nanoparticles, the thermal vaporization of aerosols on a heater tip leads to the generation of intact gas phase molecules. This phenomenon coupled to threshold single photon ionization, accessible with tunable VUV light, allows for fragment-free mass spectrometry of complex molecules. The initial experiments with light scattering, photoelectron imaging, and aerosol mass spectrometry reported here serve as a demonstration of the design philosophy and multiple capabilities of the apparatus.
Cheng, K S; Simske, S J; Isaacson, D; Newell, J C; Gisser, D G
1990-01-01
Electric current computed tomography is a process for determining the distribution of electrical conductivity inside a body based upon measurements of voltage or current made at the body's surface. Most such systems use different electrodes for the application of current and the measurement of voltage. This paper shows that when a multiplicity of electrodes are attached to a body's surface, the voltage data are most sensitive to changes in resistivity in the body's interior when voltages are measured from all electrodes, including those carrying current. This assertion is true despite the presence of significant levels of skin impedance at the electrodes. This conclusion is supported both theoretically and by experiment. Data were first taken using all electrodes for current and voltage. Then current was applied only at a pair of electrodes, with voltages measured on all other electrodes. We then constructed the second data set by calculation from the first. Targets could be detected with better signal-to-noise ratio by using the reconstructed data than by using the directly measured voltages on noncurrent-carrying electrodes. Images made from voltage data using only noncurrent-carrying electrodes had higher noise levels and were less able to accurately locate targets. We conclude that in multiple electrode systems for electric current computed tomography, current should be applied and voltage should be measured from all available electrodes.
Design of multi-wavelength tunable filter based on Lithium Niobate
NASA Astrophysics Data System (ADS)
Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun
2018-05-01
A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.
Tan, Guoqiang; Chong, Lina; Amine, Rachid; ...
2017-04-12
To promote lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport, and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electro-active zones possible; furthermore, the colander-like porous electrode facilitates themore » oxygen diffusion, catalytic reaction, and stable deposition of discharge products. Finally, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Guoqiang; Chong, Lina; Amine, Rachid
For the promotion of lithium oxygen batteries available for :practical applications, the development of advanced cathode catalysts with low-high activity, and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@grapbene Multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium oxygen cells. 'The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electroactive zones possible; furthermore the colander-like porousmore » electrode facilitates the oxygen diffusion, catalytic reaction,and stable deposition of discharge products. As a result, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Guoqiang; Chong, Lina; Amine, Rachid
To promote lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport, and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electro-active zones possible; furthermore, the colander-like porous electrode facilitates themore » oxygen diffusion, catalytic reaction, and stable deposition of discharge products. Finally, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less
Tan, Guoqiang; Chong, Lina; Amine, Rachid; Lu, Jun; Liu, Cong; Yuan, Yifei; Wen, Jianguo; He, Kun; Bi, Xuanxuan; Guo, Yuanyuan; Wang, Hsien-Hau; Shahbazian-Yassar, Reza; Al Hallaj, Said; Miller, Dean J; Liu, Dijia; Amine, Khalil
2017-05-10
For the promotion of lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity, and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electroactive zones possible; furthermore, the colander-like porous electrode facilitates the oxygen diffusion, catalytic reaction, and stable deposition of discharge products. As a result, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.
Overstreet, Cynthia K.; Hellman, Randall B.; Ponce Wong, Ruben D.; Santos, Veronica J.; Helms Tillery, Stephen I.
2016-01-01
The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS) of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g., encoding contact events and pressure on multiple digits). In this study, we evaluated the ability of an awake, behaving non-human primate (Macaca mulatta) to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex. PMID:27995126
Overstreet, Cynthia K; Hellman, Randall B; Ponce Wong, Ruben D; Santos, Veronica J; Helms Tillery, Stephen I
2016-01-01
The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS) of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g., encoding contact events and pressure on multiple digits). In this study, we evaluated the ability of an awake, behaving non-human primate ( Macaca mulatta ) to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex.
Flexible electrode belt for EIT using nanofiber web dry electrodes.
Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J
2012-10-01
Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.
Carbon dioxide capture using resin-wafer electrodeionization
Lin, YuPo J.; Snyder, Seth W.; Trachtenberg, Michael S.; Cowan, Robert M.; Datta, Saurav
2015-09-08
The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium. A pH suitable for exchange of CO.sub.2 is electrochemically maintained within the basic and acidic ion exchange wafers by applying an electric potential across the cathode and anode.
Resistive anode image converter
NASA Technical Reports Server (NTRS)
Lampton, M. L.; Paresce, F. (Inventor)
1976-01-01
The invention of an apparatus for imaging soft X-ray and ultraviolet electromagnetic radiation and charged particles was described. The apparatus includes a pair of microchannel electron multiplier plates connected in a cascaded chevron configuration which intercepts an incident beam of radiation or charged particles. Incident photons or charged particles strike the front surface of the chevron configuration causing emission of electrons. The electrons are accelerated by a voltage gradient and strike the inner side walls of the individual channels, causing emission of secondary electrons. Accelerated and multiplied secondary electrons impinge upon a resistive anode after they transverse the chevron configuration. A pulse position circuit converts the magnitude or transit time of the currents flowing from the point of impact of the electrons on the resistive anode to four contact electrodes mounted on their periphery of the resistive anode into the spatial coordinates of electron impact.
Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media
McLellan, Edward J.
1983-01-01
Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode (1) and cathode (2) to below breakdown voltage using a dc voltage source (3). An array of resistors (4) or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit (5) producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO.sub.2 laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.
Tunnel and field effect carrier ballistics
NASA Technical Reports Server (NTRS)
Kaiser, William J. (Inventor); Bell, L. Douglas (Inventor)
1989-01-01
Methods and apparatus for interacting carriers with a structure of matter employ an electrode for emitting said carriers at a distance from a surface of that structure, and cause such carriers to travel along ballistic trajectories inside that structure by providing along the mentioned distance a gap for performance of a process selected from the group of carrier tunneling and field emission and injecting carriers emitted by the mentioned electrode and that process ballistically into the structure through the gap and the mentioned surface. The carriers are collected or analyzed after their travel along ballistic trajectories in the structure of matter. Pertinent information on the inside of the structure is obtained by conducting inside that structure what conventionally would have been considered external ballistics, while performing the carrier-propelling internal ballistics conversely outside that structure.
Cavallo's multiplier for in situ generation of high voltage
NASA Astrophysics Data System (ADS)
Clayton, S. M.; Ito, T. M.; Ramsey, J. C.; Wei, W.; Blatnik, M. A.; Filippone, B. W.; Seidel, G. M.
2018-05-01
A classic electrostatic induction machine, Cavallo's multiplier, is suggested for in situ production of very high voltage in cryogenic environments. The device is suitable for generating a large electrostatic field under conditions of very small load current. Operation of the Cavallo multiplier is analyzed, with quantitative description in terms of mutual capacitances between electrodes in the system. A demonstration apparatus was constructed, and measured voltages are compared to predictions based on measured capacitances in the system. The simplicity of the Cavallo multiplier makes it amenable to electrostatic analysis using finite element software, and electrode shapes can be optimized to take advantage of a high dielectric strength medium such as liquid helium. A design study is presented for a Cavallo multiplier in a large-scale, cryogenic experiment to measure the neutron electric dipole moment.
Steady state compact toroidal plasma production
Turner, William C.
1986-01-01
Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.
NASA Astrophysics Data System (ADS)
Wei, Xuefeng F.; Grill, Warren M.
2005-12-01
Deep brain stimulation (DBS) electrodes are designed to stimulate specific areas of the brain. The most widely used DBS electrode has a linear array of 4 cylindrical contacts that can be selectively turned on depending on the placement of the electrode and the specific area of the brain to be stimulated. The efficacy of DBS therapy can be improved by localizing the current delivery into specific populations of neurons and by increasing the power efficiency through a suitable choice of electrode geometrical characteristics. We investigated segmented electrode designs created by sectioning each cylindrical contact into multiple rings. Prototypes of these designs, made with different materials and larger dimensions than those of clinical DBS electrodes, were evaluated in vitro and in simulation. A finite element model was developed to study the effects of varying the electrode characteristics on the current density and field distributions in an idealized electrolytic medium and in vitro experiments were conducted to measure the electrode impedance. The current density over the electrode surface increased towards the edges of the electrode, and multiple edges increased the non-uniformity of the current density profile. The edge effects were more pronounced over the end segments than over the central segments. Segmented electrodes generated larger magnitudes of the second spatial difference of the extracellular potentials, and thus required lower stimulation intensities to achieve the same level of neuronal activation as solid electrodes. For a fixed electrode conductive area, increasing the number of segments (edges) decreased the impedance compared to a single solid electrode, because the average current density over the segments increased. Edge effects played a critical role in determining the current density distributions, neuronal excitation patterns, and impedance of cylindrical electrodes, and segmented electrodes provide a means to increase the efficiency of DBS.
Real-time separation of multineuron recordings with a DSP32C signal processor.
Gädicke, R; Albus, K
1995-04-01
We have developed a hardware and software package for real-time discrimination of multiple-unit activities recorded simultaneously from multiple microelectrodes using a VME-Bus system. Compared with other systems cited in literature or commercially available, our system has the following advantages. (1) Each electrode is served by its own preprocessor (DSP32C); (2) On-line spike discrimination is performed independently for each electrode. (3) The VME-bus allows processing of data received from 16 electrodes. The digitized (62.5 kHz) spike form is itself used as the model spike; the algorithm allows for comparing and sorting complete wave forms in real time into 8 different models per electrode.
NASA Technical Reports Server (NTRS)
Swaminathan, Prasanna; Dennison, J. R.; Sim, Alec; Brunson, Jerilyn; Crapo, Eric; Frederickson, A. R.
2004-01-01
Conductivity of insulating materials is a key parameter to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. Classical ASTM and IEC methods to measure thin film insulator conductivity apply a constant voltage to two electrodes around the sample and measure the resulting current for tens of minutes. However, conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator. Charge decay methods expose one side of the insulator in vacuum to sequences of charged particles, light, and plasma, with a metal electrode attached to the other side of the insulator. Data are obtained by capacitive coupling to measure both the resulting voltage on the open surface and emission of electrons from the exposed surface, as well monitoring currents to the electrode. Instrumentation for both classical and charge storage decay methods has been developed and tested at Jet Propulsion Laboratory (JPL) and at Utah State University (USU). Details of the apparatus, test methods and data analysis are given here. The JPL charge storage decay chamber is a first-generation instrument, designed to make detailed measurements on only three to five samples at a time. Because samples must typically be tested for over a month, a second-generation high sample throughput charge storage decay chamber was developed at USU with the capability of testing up to 32 samples simultaneously. Details are provided about the instrumentation to measure surface charge and current; for charge deposition apparatus and control; the sample holders to properly isolate the mounted samples; the sample carousel to rotate samples into place; the control of the sample environment including sample vacuum, ambient gas, and sample temperature; and the computer control and data acquisition systems. Measurements are compared here for a number of thin film insulators using both methods at both facilities. We have found that conductivity determined from charge storage decay methods is 102 to 104 larger than values obtained from classical methods. Another Spacecraft Charging Conference presentation describes more extensive measurements made with these apparatus. This work is supported through funding from the NASA Space Environments and Effects Program and the USU Space Dynamics Laboratory Enabling Technologies Program.
Quantum Darwinism Requires an Extra-Theoretical Assumption of Encoding Redundancy
NASA Astrophysics Data System (ADS)
Fields, Chris
2010-10-01
Observers restricted to the observation of pointer states of apparatus cannot conclusively demonstrate that the pointer of an apparatus mathcal{A} registers the state of a system of interest S without perturbing S. Observers cannot, therefore, conclusively demonstrate that the states of a system S are redundantly encoded by pointer states of multiple independent apparatus without destroying the redundancy of encoding. The redundancy of encoding required by quantum Darwinism must, therefore, be assumed from outside the quantum-mechanical formalism and without the possibility of experimental demonstration.
Evacuate and backfill apparatus and method
Oakley, David J.; Groves, Oliver J.
1985-01-01
An apparatus and method for treatment of hollow articles by evacuating existing gas or gases therefrom and purging or backfilling the articles with a second gas such as helium. The apparatus includes a sealed enclosure having an article storage drum mounted therein. A multiplicity of such articles are fed singly into the enclosure and loaded into radial slots formed in the drum. The enclosure is successively evacuated and purged with helium to replace the existing gas in the articles with helium. The purged articles are then discharged singly from the drum and transported out of the enclosure.
Method and apparatus for detection of charge on ions and particles
Fuerstenau, Stephen Douglas; Soli, George Arthur
2002-01-01
The present invention provides a tessellated array detector with charge collecting plate (or cup) electrode pixels and amplifying circuitry integrated into each pixel making it sensitive to external electrostatic charge; a micro collector/amplifier pixel design possessing a small capacitance to ensure a high charge to voltage signal conversion for low noise/high sensitivity operation; a micro-fabricated array of such pixels to create a useful macroscopic target area for ion and charged particle collection.
Microfluidic devices with thick-film electrochemical detection
Wang, Joseph; Tian, Baomin; Sahlin, Eskil
2005-04-12
An apparatus for conducting a microfluidic process and analysis, including at least one elongated microfluidic channel, fluidic transport means for transport of fluids through the microfluidic channel, and at least one thick-film electrode in fluidic connection with the outlet end of the microfluidic channel. The present invention includes an integrated on-chip combination reaction, separation and thick-film electrochemical detection microsystem, for use in detection of a wide range of analytes, and methods for the use thereof.
Method and apparatus for forming billets from metallic chip scraps
Girshov, Vladimir Leonidovich [St. Petersburg, RU; Treschevskiy, Arnold Nikolayevich [St. Petersburg, RU; Kochkin, Victor Georgievich [St. Petersburg, RU; Abramov, Alexey Alexandrovich [St. Petersburg, RU; Sidenko, Natalja Semenovna [St. Petersburg, RU
2006-05-02
After recycled titanium alloy chips are crushed and cleaned, they are pressed into cylindrically briquettes with a relative density of 0.6, and placed into capsules. The capsules are heated and placed into a preheated pressing rig. The pressing rig repetitively applies axial force to the capsule, resulting in a relative density of at least 0.95. The product billets are used for consumable electrodes, secondary casting alloys, forgings, extruded semi-finished products and the like.
Anger, Hal O.; Martin, Donn C.; Lampton, Michael L.
1983-01-01
A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally.
Capillary electrophoresis systems and methods
Dorairaj, Rathissh [Hillsboro, OR; Keynton, Robert S [Louisville, KY; Roussel, Thomas J [Louisville, KY; Crain, Mark M [Georgetown, IN; Jackson, Douglas J [New Albany, IN; Walsh, Kevin M [Louisville, KY; Naber, John F [Goshen, KY; Baldwin, Richard P [Louisville, KY; Franco, Danielle B [Mount Washington, KY
2011-08-02
An embodiment of the invention is directed to a capillary electrophoresis apparatus comprising a plurality of separation micro-channels. A sample loading channel communicates with each of the plurality of separation channels. A driver circuit comprising a plurality of electrodes is configured to induce an electric field across each of the plurality of separation channels sufficient to cause analytes in the samples to migrate along each of the channels. The system further comprises a plurality of detectors configured to detect the analytes.
Internal wire guide for GTAW welding
NASA Technical Reports Server (NTRS)
Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)
1989-01-01
A welding torch for gas tungsten arc welding apparatus has a filler metal wire guide positioned within the torch, and within the shielding gas nozzle. The wire guide is adjacent to the tungsten electrode and has a ceramic liner through which the wire is fed. This reduces the size of the torch and eliminates the outside clearance problems that exit with external wire guides. Additionally, since the wire is always within the shielding gas, oxidizing of the wire is eliminated.
Method and apparatus for thermal power generation
Mangus, James D.
1979-01-01
A method and apparatus for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component.
Development And Testing Of The Inertial Electrostatic Confinement Diffusion Thruster
NASA Technical Reports Server (NTRS)
Becnel, Mark D.; Polzin, Kurt A.
2013-01-01
The Inertial Electrostatic Confinement (IEC) diffusion thruster is an experiment in active development that takes advantage of physical phenomenon that occurs during operation of an IEC device. The IEC device has been proposed as a fusion reactor design that relies on traditional electrostatic ion acceleration and is typically arranged in a spherical geometry. The design incorporates two radially-symmetric spherical electrodes. Often the inner electrode utilizes a grid of wire shaped in a sphere with a radius 15 to 50 percent of the radius of the outer electrode. The inner electrode traditionally has 90 percent or more transparency to allow particles (ions) to pass to the center of the spheres and collide/recombine in the dense plasma core at r=0. When operating the IEC, an unsteady plasma leak is typically observed passing out one of the gaps in the lattice grid of the inner electrode. The IED diffusion thruster is based upon the idea that this plasma leak can be used for propulsive purposes. The IEC diffusion thruster utilizes the radial symmetry found in the IEC device. A cylindrical configuration is employed here as it will produce a dense core of plasma the length of the cylindrical grid while promoting the plasma leak to exhaust through an electromagnetic nozzle at one end of the apparatus. A proof-of-concept IEC diffusion thruster is operational and under testing using argon as propellant (Figure 1).
Development of the cryogenic system of AEgIS at CERN
NASA Astrophysics Data System (ADS)
Derking, J. H.; Bremer, J.; Burghart, G.; Doser, M.; Dudarev, A.; Haider, S.
2014-01-01
The AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is located at the antiproton decelerator complex of CERN. The main goal of the experiment is to perform the first direct measurement of the Earth's gravitational acceleration on antihydrogen atoms within 1% precision. The antihydrogen is produced in a cylindrical Penning trap by combining antiprotons with positrons. To reach the precision of 1%, the antihydrogen has to be cooled to 100 mK to reduce its random velocity. A dilution refrigerator is selected to deliver the necessary cooling capacity of 100 μW at 50 mK. The AEgIS cryogenic system basically consists of cryostats for a 1-T and for a 5-T superconducting magnet, a central region cryostat, a dilution refrigerator cryostat and a measurement cryostat with a Moiré deflectometer to measure the gravitational acceleration. In autumn 2012, the 1-T cryostat, 5-T cryostat and central region cryostat were assembled and commissioned. The apparatus is cooled down in eight days using 2500 L of liquid helium and liquid nitrogen. During operation, the average consumption of liquid helium is 150 Lṡday-1 and of liquid nitrogen 5 Lṡday-1. The temperature sensors at the Penning traps measured 12 K to 18 K, which is higher than expected. Simulations show that this is caused by a bad thermalization of the trap wiring. The implementation of the sub-kelvin region is foreseen for mid-2015. The antihydrogen will be cooled down to 100 mK in an ultra-cold trap consisting of multiple high-voltage electrodes made of sapphire with gold plated electrode sectors.
Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning
NASA Technical Reports Server (NTRS)
Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor)
2007-01-01
Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.
Buican, T.N.
1993-05-04
Apparatus and method is described for measuring intensities at a plurality of wavelengths and lifetimes. A source of multiple-wavelength electromagnetic radiation is passed through a first interferometer modulated at a first frequency, the output thereof being directed into a sample to be investigated. The light emitted from the sample as a result of the interaction thereof with the excitation radiation is directed into a second interferometer modulated at a second frequency, and the output detected and analyzed. In this manner excitation, emission, and lifetime information may be obtained for a multiplicity of fluorochromes in the sample.
Cleaved-edge-overgrowth nanogap electrodes.
Luber, Sebastian M; Bichler, Max; Abstreiter, Gerhard; Tornow, Marc
2011-02-11
We present a method to fabricate multiple metal nanogap electrodes of tailored width and distance in parallel, on the cleaved plane of a GaAs/AlGaAs heterostructure. The three-dimensional patterned structures are obtained by a combination of molecular-beam-epitaxial regrowth on a crystal facet, using the cleaved-edge-overgrowth (CEO) method, and subsequent wet selective etching and metallization steps. SEM and AFM studies reveal smooth and co-planar electrodes of width and distance of the order of 10 nm. Preliminary electrical characterization indicates electrical gap insulation in the 100 MΩ range with kΩ lead resistance. We propose our methodology to realize multiple electrode geometries that would allow investigation of the electrical conductivity of complex nanoscale objects such as branched organic molecules.
Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T. (Inventor)
2016-01-01
An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.
Method and apparatus for determining nutrient stimulation of biological processes
Colwell, F.S.; Geesey, G.G.; Gillis, R.J.; Lehman, R.M.
1997-11-11
A method and apparatus is described for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for said microorganisms in said sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure differences in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses. 5 figs.
Method and apparatus for determining nutrient stimulation of biological processes
Colwell, Frederick S.; Geesey, Gill G.; Gillis, Richard J.; Lehman, R. Michael
1999-01-01
A method and apparatus for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for said microorganisms in said sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure difference in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses.
Method and apparatus for determining nutrient stimulation of biological processes
Colwell, F.S.; Geesey, G.G.; Gillis, R.J.; Lehman, R.M.
1999-07-13
A method and apparatus are disclosed for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for microorganisms in the sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure difference in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses. 5 figs.
Method and apparatus for determining nutrient stimulation of biological processes
Colwell, Frederick S.; Geesey, Gill G.; Gillis, Richard J.; Lehman, R. Michael
1997-01-01
A method and apparatus for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for said microorganisms in said sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure differences in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses.
Internal gas and liquid distributor for electrodeionization device
Lin, YuPo J.; Snyder, Seth W.; Henry, Michael P.; Datta, Saurav
2016-05-17
The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The gas and aqueous fluid are introduced into each basic wafer via a porous gas distributor which disperses the gas as micro-sized bubbles laterally throughout the distributor before entering the wafer. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme or inorganic catalyst to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium.
Neural interface methods and apparatus to provide artificial sensory capabilities to a subject
Buerger, Stephen P.; Olsson, III, Roy H.; Wojciechowski, Kenneth E.; Novick, David K.; Kholwadwala, Deepesh K.
2017-01-24
Embodiments of neural interfaces according to the present invention comprise sensor modules for sensing environmental attributes beyond the natural sensory capability of a subject, and communicating the attributes wirelessly to an external (ex-vivo) portable module attached to the subject. The ex-vivo module encodes and communicates the attributes via a transcutaneous inductively coupled link to an internal (in-vivo) module implanted within the subject. The in-vivo module converts the attribute information into electrical neural stimuli that are delivered to a peripheral nerve bundle within the subject, via an implanted electrode. Methods and apparatus according to the invention incorporate implantable batteries to power the in-vivo module allowing for transcutaneous bidirectional communication of low voltage (e.g. on the order of 5 volts) encoded signals as stimuli commands and neural responses, in a robust, low-error rate, communication channel with minimal effects to the subjects' skin.
Method and apparatus for spatially uniform electropolishing and electrolytic etching
Mayer, Steven T.; Contolini, Robert J.; Bernhardt, Anthony F.
1992-01-01
In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed.
Method and apparatus for spatially uniform electropolishing and electrolytic etching
Mayer, S.T.; Contolini, R.J.; Bernhardt, A.F.
1992-03-17
In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed. 6 figs.
Apparatus and method for tuned unsteady flow purging of high pulse rate spark gaps
Thayer, III, William J.
1990-01-01
A spark gap switch apparatus is disclosed which is capable of operating at a high pulse rate which comprises an insulated housing; a pair of spaced apart electrodes each having one end thereof within a first bore formed in the housing and defining a spark gap therebetween; a pressure wave reflector in the first bore in the housing and spaced from the spark gap and capable of admitting purge flow; and a second enlarged bore contiguous with the first bore and spaced from the opposite side of the spark gap; whereby pressure waves generated during discharge of a spark across the spark gap will reflect off the wave reflector and back from the enlarged bore to the spark gap to clear from the spark gap hot gases residues generated during the discharge and simultaneously restore the gas density and pressure in the spark gap to its initial value.
Electrostatic particle trap for ion beam sputter deposition
Vernon, Stephen P.; Burkhart, Scott C.
2002-01-01
A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.
Method and apparatus for electrokinetic transport
NASA Technical Reports Server (NTRS)
James, Patrick Ismail (Inventor); Stejic, George (Inventor)
2012-01-01
Controlled electrokinetic transport of constituents of liquid media can be achieved by connecting at least two volumes containing liquid media with at least one dielectric medium with opposing dielectric surfaces in direct contact with said liquid media, and establishing at least one conduit across said dielectric medium, with a conduit inner surface surrounding a conduit volume and at least a first opening and a second opening opposite to the first opening. The conduit is arranged to connect two volumes containing liquid media and includes a set of at least three electrodes positioned in proximity of the inner conduit surface. A power supply is arranged to deliver energy to the electrodes such that time-varying potentials inside the conduit volume are established, where the superposition of said potentials represents at least one controllable traveling potential well that can travel between the opposing conduit openings.
McLellan, E.J.
1980-10-17
Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode and cathode to below breakdown voltage using a dc voltage source. An array of resistors or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO/sub 2/ laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.
Apparatus and methods for memory using in-plane polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Junwei; Chang, Kai; Ji, Shuai-Hua
A memory device includes a semiconductor layer with an in-plane polarization component switchable between a first direction and a second direction. A writing electrode is employed to apply a writing voltage to the semiconductor layer to change the in-plane polarization component between the first direction and the second direction. A reading electrode is employed to apply a reading voltage to the semiconductor layer to measure a tunneling current substantially perpendicular to the polarization direction of the in-plane polarization component. The directions of the reading voltage and the writing voltage are substantially perpendicular to each other. Therefore, the reading process ismore » non-destructive. Thin films (e.g., one unit cell thick) of ferroelectric material can be used in the memory device to increase the miniaturization of the device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takagi, Yasumasa, E-mail: ytakagi@ims.ac.jp; Uemura, Yohei; Yokoyama, Toshihiko
2014-09-29
We have constructed an ambient pressure X-ray photoelectron spectroscopy instrument that uses hard X-ray radiation at the high-performance undulator beamline BL36XU of SPring-8. The dependence of the Au 4f peak intensity from Au foil on the ambient N{sub 2} pressure was measured. At a photon energy of 7.94 keV, the Au 4f peak intensity maintained 40% at 3000 Pa compared with that at high vacuum. We designed a polymer electrolyte fuel cell that allows us to perform X-ray photoelectron spectroscopy measurements of an electrode under working conditions. The oxidized Pt peaks were observed in the Pt 3d{sub 5/2} level of Pt nanoparticlesmore » in the cathode, and the peaks clearly depended on the applied voltage between the anode and cathode. Our apparatus can be applied as a valuable in situ tool for the investigation of the electronic states and adsorbed species of polymer electrolyte fuel cell electrode catalysts under the reaction conditions.« less
Means and method for nonuniform poling of piezoelectric transducers
Hsu, D.K.; Margetan, F.J.; Hasselbusch, M.D.; Wormley, S.J.; Hughes, M.S.; Thompson, D.O.
1990-10-09
An apparatus and method are disclosed for nonuniform poling of piezoelectric transducers includes machining one or more indentation into an end of a piezoelectric rod and cutting the rod to present a thickened disk shape. Highly electrically conductive material is deposited on at least the indentations in the one end and on at least portions of the opposite face of the member. One or more electrodes are configured to matingly fit within the indentations on the one face of the disk, with a like number of electrodes being positionable on the opposite face of the material. Electrical power is then applied to the electrodes in desired amounts, polarity, and duration. The indentations vary the electrical field produced within the piezoelectric material to produce nonuniform poling in the material. The thick disk is then cut to remove the indentations and to present a thin, flat two sided disk for installation in a conventional piezoelectric transducer probe. The indentations are selected to produce poling in accordance with desired transducer response profiles such as Gaussian or Bessel functions. 14 figs.
Electrochemical processing of solid waste
NASA Technical Reports Server (NTRS)
Bockris, J. OM.; Hitchens, G. D.; Kaba, L.
1988-01-01
The investigation into electrolysis as a means of waste treatment and recycling on manned space missions is described. The electrochemical reactions of an artificial fecal waste mixture was examined. Waste electrolysis experiments were performed in a single compartment reactor, on platinum electrodes, to determine conditions likely to maximize the efficiency of oxidation of fecal waste material to CO2. The maximum current efficiencies for artificial fecal waste electrolysis to CO2 was found to be around 50 percent in the test apparatus. Experiments involving fecal waste oxidation on platinum indicates that electrodes with a higher overvoltage for oxygen evolution such as lead dioxide will give a larger effective potential range for organic oxidation reactions. An electrochemical packed column reactor was constructed with lead dioxide as electrode material. Preliminary experiments were performed using a packed-bed reactor and continuous flow techniques showing this system may be effective in complete oxidation of fecal material. The addition of redox mediator Ce(3+)/Ce(4+) enhances the oxidation process of biomass components. Scientific literature relevant to biomass and fecal waste electrolysis were reviewed.
Large area atmospheric-pressure plasma jet
Selwyn, Gary S.; Henins, Ivars; Babayan, Steve E.; Hicks, Robert F.
2001-01-01
Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.
Atmospheric-pressure plasma jet
Selwyn, Gary S.
1999-01-01
Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.
Cadmium poisoning of oxygen reduction on platinum electrode in potassium hydroxide
NASA Technical Reports Server (NTRS)
Miller, R. O.
1972-01-01
Experiment with a rotating disk and ring apparatus showed no poisoning by cadmium in 8.5 M KOH, alone or with Cl(-) or CO3(=). Poisoning does not occur either in 0.1 M KOH supernatant at CdO, but a partially reversible poisoning results from .0001 M CdCl2 and traces of fatty acid are present. Evidence indicates that the catastrophic poisoning affects the four-electron O2 reduction more than it does the one-electron H3O(+) discharge.
Anger, H.O.; Martin, D.C.; Lampton, M.L.
1983-07-26
A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally. 15 figs.
Nier, A.O.C.
1959-08-25
A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.
NASA Astrophysics Data System (ADS)
Xie, Xingwang; Han, Xinjie; Long, Huabao; Dai, Wanwan; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
In this paper, a new liquid-crystal microlens array (LCMLA) with patterned ring-electrode arrays (PREAs) is investigated, which has an ability to acquire multiple-mode two-dimensional images with better electrically tunable efficiency than common liquid-crystal devices. The new type of LCMLA can be used to overcome several remarkable disadvantage of conventional liquid-crystal microlens arrays switched and adjusted electrically by relatively complex mechanism. There are two layer electrodes in the LCMLA developed by us. The top electrode layer consists of PREAs with different featured diameter but the same center for each single cell, and the bottom is a plate electrode. When both electrode structures are driven independently by variable AC voltage signal, a gradient electric field distribution could be obtained, which can drive liquid-crystal molecules to reorient themselves along the gradient electric field shaped, so as to demonstrate a satisfactory refractive index distribution. The common experiments are carried out to validate the performances needed. As shown, the focal length of the LCMLA can be adjusted continuously according to the variable voltage signal applied. According to designing, the LCMLA will be integrated continuously with an image sensors to set up a camera with desired performances. The test results indicate that our camera based on the LCMLA can obtain distinct multiple-mode two-dimensional images under the condition of using relatively low driving signal voltage.
Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst.
Im, Ji Sun; Woo, Sang-Wook; Jung, Min-Jung; Lee, Young-Seak
2008-11-01
Nano-sized carbon fibers were prepared by using electrospinning, and their electrochemical properties were investigated as a possible electrode material for use as an electric double-layer capacitor (EDLC). To improve the electrode capacitance of EDLC, we implemented a three-step optimization. First, metal catalyst was introduced into the carbon fibers due to the excellent conductivity of metal. Vanadium pentoxide was used because it could be converted to vanadium for improved conductivity as the pore structure develops during the carbonization step. Vanadium catalyst was well dispersed in the carbon fibers, improving the capacitance of the electrode. Second, pore-size development was manipulated to obtain small mesopore sizes ranging from 2 to 5 nm. Through chemical activation, carbon fibers with controlled pore sizes were prepared with a high specific surface and pore volume, and their pore structure was investigated by using a BET apparatus. Finally, polyacrylonitrile was used as a carbon precursor to enrich for nitrogen content in the final product because nitrogen is known to improve electrode capacitance. Ultimately, the electrospun activated carbon fibers containing vanadium show improved functionality in charge/discharge, cyclic voltammetry, and specific capacitance compared with other samples because of an optimal combination of vanadium, nitrogen, and fixed pore structures.
Evacuate and backfill apparatus and method
Oakley, D.J.; Groves, O.J.
1984-06-27
An apparatus and method as described for treatment of hollow articles by evacuating existing gas or gases therefrom and purging or backfilling the articles with a second gas such as helium. The apparatus includes a sealed enclosure having an article storage drum mounted therein. A multiplicity of such articles are fed singly into the enclosure and loaded into radial slots formed in the drum. The enclosure is successively evacuated and purged with helium to replace the existing gas in the articles with helium. The purged articles are then discharged singly from the drum and transported out of the enclosure.
Mass transfer apparatus and method for separation of gases
Blount, Gerald C.
2015-10-13
A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.
Mass transfer apparatus and method for separation of gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blount, Gerald C.; Gorensek, Maximilian Boris; Hamm, Luther L.
A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.
The Commercial Vapor Diffusion Apparatus (CVDA) STS-95
NASA Technical Reports Server (NTRS)
2004-01-01
The Commercial Vapor Diffusion Apparatus will be used to perform 128 individual crystal growth investigations for commercial and science research. These experiments will grow crystals of several different proteins, including HIV-1 Protease Inhibitor, Glycogen Phosphorylase A, and NAD Synthetase. The Commercial Vapor Diffusion Apparatus supports multiple commercial investigations within a controlled environment. The goal of the Commercial Protein Crystal Growth payload on STS-95 is to grow large, high-quality crystals of several different proteins of interest to industry, and to continue to refine the technology and procedures used in microgravity for this important commercial research.
Inflatable belt for the application of electrode arrays
NASA Astrophysics Data System (ADS)
Sadleir, R. J.; Fox, R. A.; Turner, V. F.
2000-02-01
A prototype device for application of a multiple electrode array to the human abdomen is described and assessed. The device consists of a segmented pneumatic (PVC) belt that, upon inflation, presses electrodes onto the skin simultaneously and with predetermined relative spacings. A single belt can fit a wide range of subject sizes and is comfortable for subjects to wear. It may be useful under conditions where the time taken to attach electrodes is crucial—as in hospital emergency ward applications, and where the maintenance of constant relative electrode spacings is important. The noise performance of these electrodes was only slightly poorer than that obtained using adhesive ECG electrodes.
Structural health monitoring apparatus and methodology
NASA Technical Reports Server (NTRS)
Giurgiutiu, Victor (Inventor); Yu, Lingyu (Inventor); Bottai, Giola Santoni (Inventor)
2011-01-01
Disclosed is an apparatus and methodology for structural health monitoring (SHM) in which smart devices interrogate structural components to predict failure, expedite needed repairs, and thus increase the useful life of those components. Piezoelectric wafer active sensors (PWAS) are applied to or integrated with structural components and various data collected there from provide the ability to detect and locate cracking, corrosion, and disbanding through use of pitch-catch, pulse-echo, electro/mechanical impedance, and phased array technology. Stand alone hardware and an associated software program are provided that allow selection of multiple types of SHM investigations as well as multiple types of data analysis to perform a wholesome investigation of a structure.
Dusty-Plasma Particle Accelerator
NASA Technical Reports Server (NTRS)
Foster, John E.
2005-01-01
A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the initiation of a low-current, high-voltage cathode spot. Plasma pressure associated with the cathode spot as well as the large voltage drop at the cathode spot accelerates the charged particles toward the substrate. The ultimate kinetic energy attained by particles exiting the particle holder depends in part on the magnitude of the cathode spot sheath potential difference, which is proportional to the magnitude of the voltage pulse, and the on the electric charge on the dust. The magnitude of the voltage pulse can be controlled directly, whereas the particle s electric charge can be controlled indirectly by controlling the operating parameters of the plasma apparatus.
Repeated furrow formation from a single mitotic apparatus in cylindrical sand dollar eggs.
Rappaport, R
1985-04-01
The methods used previously to demonstrate the ability of a single mitotic apparatus to elicit multiple furrows involved considerable cell distortion and did not permit the investigator to control the positioning of the parts or to observe satisfactorily the early stages of furrow development. In this investigation, Echinarachnius parma eggs were confined in 82 microns i.d. transparent, silicone rubber-walled capillaries, and the mitotic apparatus was moved by pushing the poles inward with 55-microns-diameter glass balls. When the mitotic apparatus was shifted immediately after the furrow first appeared, a new furrow appeared in the normal relation to the new position in 1-2 minutes. The same mitotic apparatus could elicit up to 13 furrows as it was shifted back and forth by alternately pushing in the poles. The previous furrow regressed as the new furrow developed. The operations protracted the furrow establishment period to as long as 24.5 minutes after establishment of the first furrow. The characteristics of furrow regression were related to the distance the mitotic apparatus was moved. It is unlikely that regression was caused either by stress imposed on the surface or the removal of the mitotic apparatus from the vicinity of the furrow.
Apparatus and method for improving radiation coherence and reducing beam emittance
Csonka, P.L.
1992-05-12
A method and apparatus for increasing the coherence and reducing the emittance of a beam-shaped pulse operates by splitting the pulse into multiple sub-beams, delaying the propagation of the various sub-beams by varying amounts, and then recombining the sub-beams by means of a rotating optical element to form a pulse of longer duration with improved transverse coherence. 16 figs.
Sealing apparatus utilizing a conformable member
Neef, William S.; Lambert, Donald R.
1988-01-01
Sealing apparatus and method, comprising first and second surfaces or membranes, at least one of which surfaces is deformable, placed in proximity to one another. Urging means cause these surfaces to contact one another in a manner such that the deformable surface "deforms" to conform to the geometry of the other surface, thereby creating a seal. The seal is capable of undergoing multiple cycles of sealing and unsealing.
Apparatus and method for improving radiation coherence and reducing beam emittance
Csonka, Paul L.
1992-01-01
A method and apparatus for increasing the coherence and reducing the emittance of a beam-shaped pulse operates by splitting the pulse into multiple sub-beams, delaying the propagation of the various sub-beams by varying amounts, and then recombining the sub-beams by means of a rotating optical element to form a pulse of longer duration with improved transverse coherence.
Colloidal paradigm in supercapattery electrode systems
NASA Astrophysics Data System (ADS)
Chen, Kunfeng; Xue, Dongfeng
2018-01-01
Among decades of development, electrochemical energy storage systems are now sorely in need of a new design paradigm at the nano size and ion level to satisfy the higher energy and power demands. In this review paper, we introduce a new colloidal electrode paradigm for supercapattery that integrates multiple-scale forms of matter, i.e. ion clusters, colloidal ions, and nanosized materials, into one colloid system, coupled with multiple interactions, i.e. electrostatic, van der Waals forces, and chemical bonding, thus leading to the formation of many redox reactive centers. This colloidal electrode not only keeps the original ionic nature in colloidal materials, but also creates a new attribute of high electroactivity. Colloidal supercapattery is a perfect application example of the novel colloidal electrode, leading to higher specific capacitance than traditional electrode materials. The high electroactivity of the colloidal electrode mainly comes from the contribution of exposed reactive centers, owing to the confinement effect of carbon and a binder matrix. Systematic and thorough research on the colloidal system will significantly promote the development of fundamental science and the progress of advanced energy storage technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karagounis, Ilias V.; Koukourakis, Michael I., E-mail: targ@her.forthnet.gr, E-mail: mkoukour@med.duth.gr; Abatzoglou, Ioannis M., E-mail: abadzoglou@yahoo.gr
Purpose: In vivo radiobiology experiments involving partial body irradiation (PBI) of mice are of major importance because they allow for the evaluation of individual organ tolerance; overcoming current limitations of experiments using lower dose, whole body irradiation. In the current study, the authors characterize and validate an effective and efficient apparatus for multiple animal PBI, directed to the head, thorax, or abdomen of mice. Methods: The apparatus is made of polymethylmethacrylate and consists of a rectangular parallelepiped prism (40 cm × 16 cm × 8 cm), in which five holes were drilled to accomodate standard 60 ml syringes, each housingmore » an unanesthetized, fully immobilized mouse. Following CT-scanning and radiotherapy treatment planning, radiation fields were designed to irradiate the head, thorax, or abdomen of the animal. Thermoluminescent dosimeters (TLDs) were used to confirm the treatment planning dosimetry for primary beam and scattered radiation. Results: Mice are efficiently placed into 60 ml syringes and immobilized, without the use of anesthetics. Although partial rotational movement around the longitudinal axis and a minor 2 mm forward/backward movement are permitted, this does not compromise the irradiation of the chosen body area. TLDs confirmed the dose values predicted by the treatment planning dosimetry, both for primary beam and scattered radiation. Conclusions: The customized PMMA apparatus described and validated is cost-effective, convenient to use, and efficient in performing PBI without the use of anesthesia. The developed apparatus permits the isolated irradiation of the mouse head, thorax, and abdomen. Importantly, the apparatus allows the delivery of PBI to five mice, simultaneously, representing an efficient way to effectively expose a large number of animals to PBI through multiple daily fractions, simulating clinical radiotherapy treatment schedules.« less
Karagounis, Ilias V; Abatzoglou, Ioannis M; Koukourakis, Michael I
2016-05-01
In vivo radiobiology experiments involving partial body irradiation (PBI) of mice are of major importance because they allow for the evaluation of individual organ tolerance; overcoming current limitations of experiments using lower dose, whole body irradiation. In the current study, the authors characterize and validate an effective and efficient apparatus for multiple animal PBI, directed to the head, thorax, or abdomen of mice. The apparatus is made of polymethylmethacrylate and consists of a rectangular parallelepiped prism (40 cm × 16 cm × 8 cm), in which five holes were drilled to accomodate standard 60 ml syringes, each housing an unanesthetized, fully immobilized mouse. Following CT-scanning and radiotherapy treatment planning, radiation fields were designed to irradiate the head, thorax, or abdomen of the animal. Thermoluminescent dosimeters (TLDs) were used to confirm the treatment planning dosimetry for primary beam and scattered radiation. Mice are efficiently placed into 60 ml syringes and immobilized, without the use of anesthetics. Although partial rotational movement around the longitudinal axis and a minor 2 mm forward/backward movement are permitted, this does not compromise the irradiation of the chosen body area. TLDs confirmed the dose values predicted by the treatment planning dosimetry, both for primary beam and scattered radiation. The customized PMMA apparatus described and validated is cost-effective, convenient to use, and efficient in performing PBI without the use of anesthesia. The developed apparatus permits the isolated irradiation of the mouse head, thorax, and abdomen. Importantly, the apparatus allows the delivery of PBI to five mice, simultaneously, representing an efficient way to effectively expose a large number of animals to PBI through multiple daily fractions, simulating clinical radiotherapy treatment schedules.
NASA Astrophysics Data System (ADS)
Lachhab, A.; Stepanik, N.; Booterbaugh, A.
2010-12-01
In the following study, an electrical resistivity device was built and used in both a laboratory setup and in the field to accurately identify the location of a septic tank and the foundation of Gustavus Adolphus (GA); a building that was burned at Susquehanna University in 1964. The entire apparatus, which costs a fraction of the price of a typical electrical resistivity device, was tested for accuracy in the laboratory prior to its use in the field. The electrical resistivity apparatus consists of a deep-cycle twelve volt battery, an AC to DC inverter and two multimeters to measure the potential and the current intensity from four linear electrodes via a wireless data transmission system. This apparatus was constructed by using basic inexpensive electrical and electronic equipments. The recorded potential and current values were used to calculate the apparent resistivity of different materials adopting the Wenner array for both investigations. Several tests were performed on the tabletop bench, producing consistent results when applied to find small bricks structures with different geometrical arrangement buried under a mixed sand-soil formation. The apparatus was also used to investigate a subsurface salty water plume in the same formation. The horizontal resistivity profile obtained over the vertical small brick wall matched the theoretical apparent resistivity of resistivity versus displacement on a vertical dike in a homogeneous material. In addition, the two-dimensional resistivity profile replicate the salty plume size conformably. Following the success on the small-scale laboratory tabletop bench, the electrical resistivity apparatus was implemented in the field to explore the foundation of GA in one location and the septic tank in another. An array of transects were performed, analyzed and plotted using MATLAB. The three dimensional contours of apparent resistivity depicted exactly the locations of the buried foundation walls, the septic tank and the leaking plume.
Contento, Nicholas M.; Bohn, Paul W.
2014-05-23
While electrochemical methods are well suited for lab-on-a-chip applications, reliably coupling multiple, electrode-controlled processes in a single microfluidic channel remains a considerable challenge, because the electric fields driving electrokinetic flow make it difficult to establish a precisely known potential at the working electrode(s). The challenge of coupling electrochemical detection with microchip electrophoresis is well known; however, the problem is general, arising in other multielectrode arrangements with applications in enhanced detection and chemical processing. Here, we study the effects of induced electric fields on voltammetric behavior in a microchannel containing multiple in-channel electrodes, using a Fe(CN) 6 3/4- model system. Whenmore » an electric field is induced by applying a cathodic potential at one inchannel electrode, the half-wave potential (E 1/2) for the oxidation of ferrocyanide at an adjacent electrode shifts to more negative potentials. The E 1/2 value depends linearly on the electric field current at a separate in-channel electrode. The observed shift in E 1/2 is quantitatively described by a model, which accounts for the change in solution potential caused by the iR drop along the length of the microchannel. The model, which reliably captures changes in electrode location and solution conductivity, apportions the electric field potential between iR drop and electrochemical potential components, enabling the study of microchannel electric field magnitudes at low applied potentials. In the system studied, the iR component of the electric field potential increases exponentially with applied current before reaching an asymptotic value near 80 % of the total applied potential. The methods described will aid in the development and interpretation of future microchip electrochemistry methods, particularly those that benefit from the coupling of electrokinetic and electrochemical phenomena at low voltages.« less
Oximeter for reliable clinical determination of blood oxygen saturation in a fetus
Robinson, Mark R.; Haaland, David M.; Ward, Kenneth J.
1996-01-01
With the crude instrumentation now in use to continuously monitor the status of the fetus at delivery, the obstetrician and labor room staff not only over-recognize the possibility of fetal distress with the resultant rise in operative deliveries, but at times do not identify fetal distress which may result in preventable fetal neurological harm. The invention, which addresses these two basic problems, comprises a method and apparatus for non-invasive determination of blood oxygen saturation in the fetus. The apparatus includes a multiple frequency light source which is coupled to an optical fiber. The output of the fiber is used to illuminate blood containing tissue of the fetus. In the preferred embodiment, the reflected light is transmitted back to the apparatus where the light intensities are simultaneously detected at multiple frequencies. The resulting spectrum is then analyzed for determination of oxygen saturation. The analysis method uses multivariate calibration techniques that compensate for nonlinear spectral response, model interfering spectral responses and detect outlier data with high sensitivity.
Distributed magnetic field positioning system using code division multiple access
NASA Technical Reports Server (NTRS)
Prigge, Eric A. (Inventor)
2003-01-01
An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.
Venous obstruction in permanent pacemaker patients: an isotopic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauletti, M.; Di Ricco, G.; Solfanelli, S.
1981-01-01
Isotope venography was used to study the venous circulation proximal to the superior vena cava in two groups of pacemaker patients, one with a single endocavitary electrode and the other with multiple pacing catheters. A control group of patients without pacemakers was also studied. Numerous abnormalities were found, especially in the group with multiple electrodes. These findings suggest that venous obstruction is a common complication of endocardial pacing.
Method of Fabricating a Piezoelectric Composite Apparatus
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats (Inventor); Bryant, Robert (Inventor); Fox, Robert L. (Inventor); Hellbaum, Richard F. (Inventor); High, James W. (Inventor); Jalink, Antony, Jr. (Inventor); Little, Bruce D. (Inventor); Mirick, Paul H. (Inventor)
2003-01-01
A method for fabricating a piezoelectric macro-fiber composite actuator comprises providing a piezoelectric material that has two sides and attaching one side upon an adhesive backing sheet. The method further comprises slicing the piezoelectric material to provide a plurality of piezoelectric fibers in juxtaposition. A conductive film is then adhesively bonded to the other side of the piezoelectric material, and the adhesive backing sheet is removed. The conductive film has first and second conductive patterns formed thereon which are electrically isolated from one another and in electrical contact with the piezoelectric material. The first and second conductive patterns of the conductive film each have a plurality of electrodes to form a pattern of interdigitated electrodes. A second film is then bonded to the other side of the piezoelectric material. The second film may have a pair of conductive patterns similar to the conductive patterns of the first film.
Method and apparatus for nondestructive in vivo measurement of photosynthesis
Greenbaum, E.
1988-02-22
A device for in situ, nondestructive measurement of photosynthesis in live plants and photosynthetic microorganisms is disclosed which comprises a Clark-type oxygen electrode having a substantially transparent cathode comprised of an optical fiber having a metallic grid microetched onto its front face and sides, an anode, a substantially transparent electrolyte film, and a substantially transparent oxygen permeable membrane. The device is designed to be placed in direct contact with a photosynthetic portion of a living plant, and nondestructive, noninvasive measurement of photosynthetic oxygen production from the plant can be taken by passing light through the fiber-optic cathode, transparent electrolyte and transparent membrane, and onto the plant so that photosynthesis occurs. The oxygen thus produced by the plant is measured polarographically by the electrode. The present invention allows for rapid, nondestructive measurements of photosynthesis in living plants in a manner heretofore impossible using prior art methods. 6 figs.
Method and apparatus for nondestructive in vivo measurement of photosynthesis
Greenbaum, Elias
1988-01-01
A device for in situ, nondestructive measurement of photosynthesis in live plants and photosynthetic microorganisms is disclosed which comprises a Clark-type oxygen electrode having a substantially transparent cathode comprised of an optical fiber having a metallic grid microetched onto its front face and sides, an anode, a substantially transparent electrolyte film, and a substantially transparent oxygen permeable membrane. The device is designed to be placed in direct contact with a photosynthetic portion of a living plant, and nondestructive, noninvasive measurement of photosynthetic oxygen production from the plant can be taken by passing light through the fiber-optic cathode, transparent electroyte and transparent membrane, and onto the plant so that photosynthesis occurs. The oxygen thus produced by the plant is measured polargraphically by the electrode. The present invention allows for rapid, nondestructive measurements of photosynthesis in living plants in a manner heretofore impossible using prior art methods.
Apparatus for atmospheric pressure pin-to-hole spark discharge and uses thereof
Dobrynin, Danil V.; Fridman, Alexander; Cho, Young I.; Fridman, Gregory; Friedman, Gennady
2016-12-06
Disclosed herein are atmospheric pressure pin-to-hole pulsed spark discharge devices and methods for creating plasma. The devices include a conduit for fluidically communicating a gas, a plasma, or both, therethrough, portion of the conduit capable of being connected to a gas supply, and a second portion of the conduit capable of emitting a plasma; a positive electrode comprising a sharp tip; and a ground plate electrode. Disclosed are methods for treating a skin ulcer using non-thermal plasma include flowing a gas through a cold spark discharge zone simultaneously with the creation of a pulsed spark discharge to give rise to a non-thermal plasma emitted from a conduit, the non-thermal plasma comprising NO; and contacting a skin ulcer with said non-thermal plasma for sufficient time and intensity to give rise to treatment of the skin ulcer.
Dielectrophoretic systems without embedded electrodes
Cummings, Eric B [Livermore, CA; Singh, Anup K [San Francisco, CA
2006-03-21
Method and apparatus for dielectrophoretic separation of particles in a fluid based using array of insulating structures arranged in a fluid flow channel. By utilizing an array of insulating structures, a spatially inhomogeneous electric field is created without the use of the embedded electrodes conventionally employed for dielectrophoretic separations. Moreover, by using these insulating structures a steady applied electric field has been shown to provide for dielectrophoresis in contrast to the conventional use of an alternating electric field. In a uniform array of posts, dielectrophoretic effects have been produced flows having significant pressure-driven and electrokinetic transport. Above a threshold applied electric field, filaments of concentrated and rarefied particles appear in the flow as a result of dielectrophoresis. Above a higher threshold applied voltage, dielectrophoresis produces zones of highly concentrated and immobilized particles. These patterns are strongly influenced by the angle of the array of insulating structures with respect to the mean applied electric field and the shape of the insulating structures.
Production of selenium-72 and arsenic-72
Phillips, Dennis R.
1994-01-01
Methods and apparatus for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short.
Production of selenium-72 and arsenic-72
Phillips, Dennis R.
1995-01-01
Methods and apparatus for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short.
Method and Apparatus for Measuring Surface Air Pressure
NASA Technical Reports Server (NTRS)
Lin, Bing (Inventor); Hu, Yongxiang (Inventor)
2014-01-01
The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.
Development of the cryogenic system of AEgIS at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derking, J. H.; Bremer, J.; Burghart, G.
2014-01-29
The AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is located at the antiproton decelerator complex of CERN. The main goal of the experiment is to perform the first direct measurement of the Earth’s gravitational acceleration on antihydrogen atoms within 1% precision. The antihydrogen is produced in a cylindrical Penning trap by combining antiprotons with positrons. To reach the precision of 1%, the antihydrogen has to be cooled to 100 mK to reduce its random velocity. A dilution refrigerator is selected to deliver the necessary cooling capacity of 100 μW at 50 mK. The AEgIS cryogenic system basically consists of cryostatsmore » for a 1-T and for a 5-T superconducting magnet, a central region cryostat, a dilution refrigerator cryostat and a measurement cryostat with a Moiré deflectometer to measure the gravitational acceleration. In autumn 2012, the 1-T cryostat, 5-T cryostat and central region cryostat were assembled and commissioned. The apparatus is cooled down in eight days using 2500 L of liquid helium and liquid nitrogen. During operation, the average consumption of liquid helium is 150 L⋅day{sup −1} and of liquid nitrogen 5 L⋅day{sup −1}. The temperature sensors at the Penning traps measured 12 K to 18 K, which is higher than expected. Simulations show that this is caused by a bad thermalization of the trap wiring. The implementation of the sub-kelvin region is foreseen for mid-2015. The antihydrogen will be cooled down to 100 mK in an ultra-cold trap consisting of multiple high-voltage electrodes made of sapphire with gold plated electrode sectors.« less
Anatomy-driven multiple trajectory planning (ADMTP) of intracranial electrodes for epilepsy surgery.
Sparks, Rachel; Vakharia, Vejay; Rodionov, Roman; Vos, Sjoerd B; Diehl, Beate; Wehner, Tim; Miserocchi, Anna; McEvoy, Andrew W; Duncan, John S; Ourselin, Sebastien
2017-08-01
Epilepsy is potentially curable with resective surgery if the epileptogenic zone (EZ) can be identified. If non-invasive imaging is unable to elucidate the EZ, intracranial electrodes may be implanted to identify the EZ as well as map cortical function. In current clinical practice, each electrode trajectory is determined by time-consuming manual inspection of preoperative imaging to find a path that avoids blood vessels while traversing appropriate deep and superficial regions of interest (ROIs). We present anatomy-driven multiple trajectory planning (ADMTP) to find safe trajectories from a list of user-defined ROIs within minutes rather than the hours required for manual planning. Electrode trajectories are automatically computed in three steps: (1) Target Point Selection to identify appropriate target points within each ROI; (2) Trajectory Risk Scoring to quantify the cumulative distance to critical structures (blood vessels) along each trajectory, defined as the skull entry point to target point. (3) Implantation Plan Computation: to determine a feasible combination of low-risk trajectories for all electrodes. ADMTP was evaluated on 20 patients (190 electrodes). ADMTP lowered the quantitative risk score in 83% of electrodes. Qualitative results show ADMTP found suitable trajectories for 70% of electrodes; a similar portion of manual trajectories were considered suitable. Trajectory suitability for ADMTP was 95% if traversing sulci was not included in the safety criteria. ADMTP is computationally efficient, computing between 7 and 12 trajectories in 54.5 (17.3-191.9) s. ADMTP efficiently compute safe and surgically feasible electrode trajectories.
Computational overlay metrology with adaptive data analytics
NASA Astrophysics Data System (ADS)
Schmitt-Weaver, Emil; Subramony, Venky; Ullah, Zakir; Matsunobu, Masazumi; Somasundaram, Ravin; Thomas, Joel; Zhang, Linmiao; Thul, Klaus; Bhattacharyya, Kaustuve; Goossens, Ronald; Lambregts, Cees; Tel, Wim; de Ruiter, Chris
2017-03-01
With photolithography as the fundamental patterning step in the modern nanofabrication process, every wafer within a semiconductor fab will pass through a lithographic apparatus multiple times. With more than 20,000 sensors producing more than 700GB of data per day across multiple subsystems, the combination of a light source and lithographic apparatus provide a massive amount of information for data analytics. This paper outlines how data analysis tools and techniques that extend insight into data that traditionally had been considered unmanageably large, known as adaptive analytics, can be used to show how data collected before the wafer is exposed can be used to detect small process dependent wafer-towafer changes in overlay.
Superconductivity devices: Commercial use of space
NASA Technical Reports Server (NTRS)
Haertling, Gene; Furman, Eugene; Hsi, Chi-Shiung; Li, Guang
1993-01-01
A YBCO thick film containing 20 percent Ag2O with a T(sub c) of 86.8 K and J(sub c) of 108 A/sq cm was obtained. The film was fabricated by a two-step firing process, i.e., firing the film at 1000 C for 10 minutes and annealing at 970 C for 30 minutes. The two-step firing process, however, was not suitable for the multiple-lead YBCO sample due to the formation of the 211 green phase at 1000 C in the multiple-lead YBCO sample. A BSCCO thick film printed on a MgO coated MSZ substrate and fired at 845 C for 2 hours exhibited a superconducting behavior at 89 K. Because of its porous microstructure, the critical current density of the BSCCO thick film was limited. This report also includes the results of the YBCO and BSCCO materials used as oxide electrodes for ferroelectric materials. The YBCO electroded PLZT showed higher remanent polarization and coercive field than the sample electroded with silver paste. A higher Curie temperature for the PLZT was obtained from the YBCO electroded sample. The BSCCO electroded sample, however, exhibited the same Curie temperature as that of a silver electroded sample. Dissipation factors of the ferroelectric samples increased when the oxide electrode was applied.
Apparatus for measuring the decontamination factor of a multiple filter air-cleaning system
Ortiz, John P.
1986-01-01
An apparatus for measuring the overall decontamination factor of first and second filters located in a plenum. The first filter separates the plenum's upstream and intermediate chambers. The second filter separates the plenum's intermediate and downstream chambers. The apparatus comprises an aerosol generator that generates a challenge aerosol. An upstream collector collects unfiltered aerosol which is piped to first and second dilution stages and then to a laser aerosol spectrometer. An intermediate collector collects challenge aerosol that penetrates the first filter. The filtered aerosol is piped to the first dilution stage, diluted, and then piped to the laser aerosol spectrometer which detects single particles. A downstream collector collects challenge aerosol that penetrates both filters. The twice-filtered aerosol is piped to the aerosol spectrometer. A pump and several valves control the movement of aerosol within the apparatus.
Apparatus for measuring the decontamination factor of a multiple filter air-cleaning system
Ortiz, J.P.
1985-07-03
An apparatus for measuring the overall decontamination factors of first and second filters located in a plenum. The first filter separates the plenum's upstream and intermediate chambers. The second filter separates the plenum's intermediate and downstream chambers. The apparatus comprises an aerosol generator that generates a challenge aerosol. An upstream collector collects unfiltered aerosol which is piped to first and second dilution stages and then to a laser aerosol spectrometer. An intermediate collector collects challenge aerosol that penetrates the first filter. The filtered aerosol is piped to the first dilution stage, diluted, and then piped to the laser aerosol spectrometer which detects single particles. A downstream collector collects challenge aerosol that penetrates both filters. The twice-filtered aerosol is piped to the aerosol spectrometer. A pump and several valves control the movement of aerosol within the apparatus.
Sputter-deposited fuel cell membranes and electrodes
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Chun, William (Inventor); Ruiz, Ron P. (Inventor); Valdez, Thomas I. (Inventor)
2001-01-01
A method for preparing a membrane for use in a fuel cell membrane electrode assembly includes the steps of providing an electrolyte membrane, and sputter-depositing a catalyst onto the electrolyte membrane. The sputter-deposited catalyst may be applied to multiple sides of the electrolyte membrane. A method for forming an electrode for use in a fuel cell membrane electrode assembly includes the steps of obtaining a catalyst, obtaining a backing, and sputter-depositing the catalyst onto the backing. The membranes and electrodes are useful for assembling fuel cells that include an anode electrode, a cathode electrode, a fuel supply, and an electrolyte membrane, wherein the electrolyte membrane includes a sputter-deposited catalyst, and the sputter-deposited catalyst is effective for sustaining a voltage across a membrane electrode assembly in the fuel cell.
Shapeable short circuit resistant capacitor
Taylor, Ralph S.; Myers, John D.; Baney, William J.
2015-10-06
A ceramic short circuit resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The capacitor that exhibits a benign failure mode in which a multitude of discrete failure events result in a gradual loss of capacitance. Each event is a localized event in which localized heating causes an adjacent portion of one or both of the electrodes to vaporize, physically cleaning away electrode material from the failure site. A first metal electrode, a second metal electrode, and a ceramic dielectric layer between the electrodes are thin enough to be formed in a serpentine-arrangement with gaps between the first electrode and the second electrode that allow venting of vaporized electrode material in the event of a benign failure.
Oriented nanotube electrodes for lithium ion batteries and supercapacitors
Frank, Arthur J.; Zhu, Kai; Wang, Qing
2013-03-05
An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.
Charge Transfer in Multiple Site Chemical Systems.
1985-05-30
oxidation either chemically (using excess Ce+(IV)) or electrochemically (using a reticulated vitreous carbon electrode potentiostated at +1.20 V vs.. SCE...The resulting polymers form fairly stable, electrochemically active films on the cxidizing electrode, which can be Pt, SnO2 or vitreous carbon ...surface, including platinum and glassy carbon electrodes. The redox couples incorporated include polypyrydyl omplexes of iron, ruthenium and osmium
Makeyev, Oleksandr; Ding, Quan; Martínez-Juárez, Iris E; Gaitanis, John; Kay, Steven M; Besio, Walter G
2013-01-01
As epilepsy affects approximately one percent of the world population, electrical stimulation of the brain has recently shown potential for additive seizure control therapy. Closed-loop systems that apply electrical stimulation when seizure onset is automatically detected require high accuracy of automatic seizure detection based on electrographic brain activity. To improve this accuracy we propose to use noninvasive tripolar concentric ring electrodes that have been shown to have significantly better signal-to-noise ratio, spatial selectivity, and mutual information compared to conventional disc electrodes. The proposed detection methodology is based on integration of multiple sensors using exponentially embedded family (EEF). In this preliminary study it is validated on over 26.3 hours of data collected using both tripolar concentric ring and conventional disc electrodes concurrently each from 7 human patients with epilepsy including five seizures. For a cross-validation based group model EEF correctly detected 100% and 80% of seizures respectively with <0.76 and <1.56 false positive detections per hour respectively for the two electrode modalities. These results clearly suggest the potential of seizure onset detection based on data from tripolar concentric ring electrodes.
A cost-effective device for the rapid transfer of gel-separated proteins onto membranes.
Tam, Hann W; Huang, Yu-Chen; Tam, Ming F
2009-03-01
We describe here the fabrication of a cost-effective semi-dry blotting apparatus for the transfer of proteins onto membranes. Graphite sheets were used as electrodes. Protein mixtures were separated on NuPAGE 4% to 12% polyacrylamide gradient gels. With a Tris-bicine buffer, we demonstrated that close to 80% of the proteins with apparent molecular mass of 80kDa or less were removed from the gels after 8min of blotting. The process is much faster than the techniques reported previously in the literature.
Electrowinning process with electrode compartment to avoid contamination of electrolyte
Poa, Davis S.; Pierce, R. Dean; Mulcahey, Thomas P.; Johnson, Gerald K.
1993-01-01
An electrolytic process and apparatus for reducing calcium oxide in a molten electrolyte of CaCl.sub.2 -CaF.sub.2 with a graphite anode in which particles or other contamination from the anode is restricted by the use of a porous barrier in the form of a basket surrounding the anode which may be removed from the electrolyte to burn the graphite particles, and wherein the calcium oxide feed is introduced to the anode compartment to increase the oxygen ion concentration at the anode.
Method and apparatus for chemically altering fluids in continuous flow
Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.
1993-10-19
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.
Method and apparatus for chemically altering fluids in continuous flow
Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.
1993-01-01
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.
Deichelbohrer, Paul R [Richland, WA
1986-01-01
A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.
Wang, C.L.
1981-05-14
Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.
Wang, Ching L.
1983-09-13
Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.
Makeyev, Oleksandr; Ding, Quan; Kay, Steven M; Besio, Walter G
2012-01-01
As epilepsy affects approximately one percent of the world population, electrical stimulation of the brain has recently shown potential for additive seizure control therapy. Previously, we applied noninvasive transcranial focal stimulation via tripolar concentric ring electrodes on the scalp of rats after inducing seizures with pentylenetetrazole. We developed a system to detect seizures and automatically trigger the stimulation and evaluated the system on the electrographic activity from rats. In this preliminary study we propose and validate a novel seizure onset detection algorithm based on exponentially embedded family. Unlike the previously proposed approach it integrates the data from multiple electrodes allowing an improvement of the detector performance.
Production of selenium-72 and arsenic-72
Phillips, D.R.
1994-12-06
Methods and apparatus are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short. 2 figures.
Pedretti, Kevin
2008-11-18
A compute processor allocator architecture for allocating compute processors to run applications in a multiple processor computing apparatus is distributed among a subset of processors within the computing apparatus. Each processor of the subset includes a compute processor allocator. The compute processor allocators can share a common database of information pertinent to compute processor allocation. A communication path permits retrieval of information from the database independently of the compute processor allocators.
Multiple-membrane multiple-electrolyte redox flow battery design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yushan; Gu, Shuang; Gong, Ke
A redox flow battery is provided. The redox flow battery involves multiple-membrane (at least one cation exchange membrane and at least one anion exchange membrane), multiple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and at least one electrolyte disposed between the two membranes) as the basic characteristic, such as a double-membrane, triple electrolyte (DMTE) configuration or a triple-membrane, quadruple electrolyte (TMQE) configuration. The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolytemore » and the positive or negative electrolyte.« less
A simple, efficient resistance soldering apparatus
NASA Technical Reports Server (NTRS)
Vermillion, C. M.
1972-01-01
Multiple resistance soldering device for attaching electric leads to multiple terminal block connectors uses power source with one terminal connected to working probe, and other terminal attached to connector carrying common pins for lead insertion. Mating of male and female connectors solders each lead to individual cup pin.
Matsui, T; Arai, I; Gotoh, S; Hattori, H; Takase, B; Kikuchi, M; Ishihara, M
2005-10-01
The impaired balance of the low-frequency/high-frequency ratio obtained from spectral components of RR intervals can be a diagnostic test for sepsis. In addition, it is known that a reduction of heart rate variability (HRV) is useful in identifying septic patients at risk of the development of multiple organ dysfunction syndrome (MODS). We have reported a non-contact method using a microwave radar to monitor the heart and respiratory rates of a healthy person placed inside an isolator or of experimental animals exposed to toxic materials. With the purpose of preventing secondary exposure of medical personnel to toxic materials under biochemical hazard conditions, we designed a novel apparatus for non-contact measurement of HRV using a 1215 MHz microwave radar, a high-pass filter, and a personal computer. The microwave radar monitors only the small reflected waves from the subject's chest wall, which are modulated by the cardiac and respiratory motion. The high-pass filter enhances the cardiac signal and attenuates the respiratory signal. In a human trial, RR intervals derived from the non-contact apparatus significantly correlated with those derived from ECG (r=0.98, P<0.0001). The non-contact apparatus showed a similar power spectrum of RR intervals to that of ECG. Our non-contact HRV measurement apparatus appears promising for future pre-hospital monitoring of septic patients or for predicting MODS patients, inside isolators or in the field for mass casualties under biochemical hazard circumstances.
Method and Apparatus for Automated Isolation of Nucleic Acids from Small Cell Samples
NASA Technical Reports Server (NTRS)
Sundaram, Shivshankar; Prabhakarpandian, Balabhaskar; Pant, Kapil; Wang, Yi
2014-01-01
RNA isolation is a ubiquitous need, driven by current emphasis on microarrays and miniaturization. With commercial systems requiring 100,000 to 1,000,000 cells for successful isolation, there is a growing need for a small-footprint, easy-to-use device that can harvest nucleic acids from much smaller cell samples (1,000 to 10,000 cells). The process of extraction of RNA from cell cultures is a complex, multi-step one, and requires timed, asynchronous operations with multiple reagents/buffers. An added complexity is the fragility of RNA (subject to degradation) and its reactivity to surface. A novel, microfluidics-based, integrated cartridge has been developed that can fully automate the complex process of RNA isolation (lyse, capture, and elute RNA) from small cell culture samples. On-cartridge cell lysis is achieved using either reagents or high-strength electric fields made possible by the miniaturized format. Traditionally, silica-based, porous-membrane formats have been used for RNA capture, requiring slow perfusion for effective capture. In this design, high efficiency capture/elution are achieved using a microsphere-based "microfluidized" format. Electrokinetic phenomena are harnessed to actively mix microspheres with the cell lysate and capture/elution buffer, providing important advantages in extraction efficiency, processing time, and operational flexibility. Successful RNA isolation was demonstrated using both suspension (HL-60) and adherent (BHK-21) cells. Novel features associated with this development are twofold. First, novel designs that execute needed processes with improved speed and efficiency were developed. These primarily encompass electric-field-driven lysis of cells. The configurations include electrode-containing constructs, or an "electrode-less" chip design, which is easy to fabricate and mitigates fouling at the electrode surface; and the "fluidized" extraction format based on electrokinetically assisted mixing and contacting of microbeads in a shape-optimized chamber. A secondary proprietary feature is in the particular layout integrating these components to perform the desired operation of RNA isolation. Apart from a novel functional capability, advantages of the innovation include reduced or eliminated use of toxic reagents, and operator-independent extraction of RNA.
Evaluating the Field Emission Characteristics of Aluminum for DC High Voltage Photo-Electron Guns
NASA Astrophysics Data System (ADS)
Taus, Rhys; Poelker, Matthew; Forman, Eric; Mamun, Abdullah
2014-03-01
High current photoguns require high power laser light, but only a small portion of the laser light illuminating the photocathode produces electron beam. Most of the laser light (~ 65%) simply serves to heat the photocathode, which leads to evaporation of the chemicals required to create the negative electron affinity condition necessary for photoemission. Photocathode cooling techniques have been employed to address this problem, but active cooling of the photocathode is complicated because the cooling apparatus must float at high voltage. This work evaluates the field emission characteristics of cathode electrodes manufactured from materials with high thermal conductivity: aluminum and copper. These electrodes could serve as effective heat sinks, to passively cool the photocathode that resides within such a structure. However, literature suggests ``soft'' materials like aluminum and copper are ill suited for photogun applications, due to excessive field emission when biased at high voltage. This work provides an evaluation of aluminum and copper electrodes inside a high voltage field emission test stand, before and after coating with titanium nitride (TiN), a coating that enhances surface hardness. National Science Foundation Award Number: 1062320 and the Department of Defence ASSURE program.
Warren, Oden L.; Asif, S. A. Syed; Cyrankowski, Edward; Kounev, Kalin
2010-09-21
An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.-
Warren, Oden L; Asif, Syed Amanula Syed; Cyrankowski, Edward; Kounev, Kalin
2013-06-04
An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.
MAGNETIC PROPERTIES OF TWO-LAYERS FILMS,
DATA STORAGE SYSTEMS, METAL FILMS), (*THIN FILM STORAGE DEVICES, MAGNETIC PROPERTIES ), VAPOR PLATING, VACUUM APPARATUS, NICKEL ALLOYS, IRON ALLOYS, COBALT ALLOYS, ANISOTROPY, MULTIPLE OPERATION, USSR