Sample records for multiple emission components

  1. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Treesearch

    Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer

    2015-01-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....

  2. Einstein Observatory survey of X-ray emission from solar-type stars - The late F and G dwarf stars

    NASA Technical Reports Server (NTRS)

    Maggio, A.; Sciortino, S.; Vaiana, G. S.; Majer, P.; Bookbinder, J.

    1987-01-01

    Results of a volume-limited X-ray survey of stars of luminosity classes IV and V in the spectral range F7-G9 observed with the Einstein Observatory are presented. Using survival analysis techniques, the stellar X-ray luminosity function in the 0.15-4.0 keV energy band for both single and multiple sources. It is shown that the difference in X-ray luminosity between these two classes of sources is consistent with the superposition of individual components in multiple-component systems, whose X-ray properties are similar to those of the single-component sources. The X-ray emission of the stars in our sample is well correlated with their chromospheric CA II H-K line emission and with their projected equatorial rotational velocity. Comparison of the X-ray luminosity function constructed for the sample of the dG stars of the local population with the corresponding functions derived elsewhere for the Hyades, the Pleiades, and the Orion Ic open cluster confirms that the level of X-ray emission decreases with stellar age.

  3. Comparative Chemistry and Toxicity of Diesel and Biomass Combustion Emissions

    EPA Science Inventory

    Air pollution includes a complex mixture of carbonaceous gases and particles emitted from multiple anthropogenic, biogenic, and biomass burning sources, and also includes secondary organic components that form during atmospheric aging of these emissions. Exposure to these mixture...

  4. Time dependent emission line profiles in the radially streaming particle model of Seyfert galaxy nuclei and quasi-stellar objects

    NASA Technical Reports Server (NTRS)

    Hubbard, R.

    1974-01-01

    The radially-streaming particle model for broad quasar and Seyfert galaxy emission features is modified to include sources of time dependence. The results are suggestive of reported observations of multiple components, variability, and transient features in the wings of Seyfert and quasi-stellar emission lines.

  5. Development of the crop residue and rangeland burning in the 2014 National Emissions Inventory using information from multiple sources

    EPA Science Inventory

    Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. One component of the biomass burning inventory, crop residue burning, has been poorly characterized in the National Emissions I...

  6. Identification of chemical components of combustion emissions that affect pro-atherosclerotic vascular responses in mice

    PubMed Central

    Seilkop, Steven K.; Campen, Matthew J.; Lund, Amie K.; McDonald, Jacob D.; Mauderly, Joe L.

    2012-01-01

    Combustion emissions cause pro-atherosclerotic responses in apolipoprotein E-deficient (ApoE/−) mice, but the causal components of these complex mixtures are unresolved. In studies previously reported, ApoE−/− mice were exposed by inhalation 6 h/day for 50 consecutive days to multiple dilutions of diesel or gasoline exhaust, wood smoke, or simulated “downwind” coal emissions. In this study, the analysis of the combined four-study database using the Multiple Additive Regression Trees (MART) data mining approach to determine putative causal exposure components regardless of combustion source is reported. Over 700 physical–chemical components were grouped into 45 predictor variables. Response variables measured in aorta included endothelin-1, vascular endothelin growth factor, three matrix metalloproteinases (3, 7, 9), metalloproteinase inhibitor 2, heme-oxygenase-1, and thiobarbituric acid reactive substances. Two or three predictors typically explained most of the variation in response among the experimental groups. Overall, sulfur dioxide, ammonia, nitrogen oxides, and carbon monoxide were most highly predictive of responses, although their rankings differed among the responses. Consistent with the earlier finding that filtration of particles had little effect on responses, particulate components ranked third to seventh in predictive importance for the eight response variables. MART proved useful for identifying putative causal components, although the small number of pollution mixtures (4) can provide only suggestive evidence of causality. The potential independent causal contributions of these gases to the vascular responses, as well as possible interactions among them and other components of complex pollutant mixtures, warrant further evaluation. PMID:22486345

  7. Identification of chemical components of combustion emissions that affect pro-atherosclerotic vascular responses in mice.

    PubMed

    Seilkop, Steven K; Campen, Matthew J; Lund, Amie K; McDonald, Jacob D; Mauderly, Joe L

    2012-04-01

    Combustion emissions cause pro-atherosclerotic responses in apolipoprotein E-deficient (ApoE/⁻) mice, but the causal components of these complex mixtures are unresolved. In studies previously reported, ApoE⁻/⁻ mice were exposed by inhalation 6 h/day for 50 consecutive days to multiple dilutions of diesel or gasoline exhaust, wood smoke, or simulated "downwind" coal emissions. In this study, the analysis of the combined four-study database using the Multiple Additive Regression Trees (MART) data mining approach to determine putative causal exposure components regardless of combustion source is reported. Over 700 physical-chemical components were grouped into 45 predictor variables. Response variables measured in aorta included endothelin-1, vascular endothelin growth factor, three matrix metalloproteinases (3, 7, 9), metalloproteinase inhibitor 2, heme-oxygenase-1, and thiobarbituric acid reactive substances. Two or three predictors typically explained most of the variation in response among the experimental groups. Overall, sulfur dioxide, ammonia, nitrogen oxides, and carbon monoxide were most highly predictive of responses, although their rankings differed among the responses. Consistent with the earlier finding that filtration of particles had little effect on responses, particulate components ranked third to seventh in predictive importance for the eight response variables. MART proved useful for identifying putative causal components, although the small number of pollution mixtures (4) can provide only suggestive evidence of causality. The potential independent causal contributions of these gases to the vascular responses, as well as possible interactions among them and other components of complex pollutant mixtures, warrant further evaluation.

  8. The BL LAC phenomenon: X-ray observations of transition objects and determination of the x-ray spectrum of a complete sample of flat-spectrum radio sources

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    1994-01-01

    This report summarizes the activities related to two ROSAT investigations: (1) x-ray properties of radio galaxies thought to contain BL Lac type nuclei; and (2) x-ray spectra of a complete sample of flat-spectrum radio sources. The following papers describing the research are provided as attachments: Multiple X-ray Emission Components in Low Power Radio Galaxies; New X-ray Results on Radio Galaxies; Analysis Techniques for a Multiwavelength Study of Radio Galaxies; Separation of X-ray Emission Components in Radio Galaxies; X-ray Emission in Powerful Radio Galaxies and Quasars; Extended and Compact X-ray Emission in Powerful Radio Galaxies; and X-ray Spectra of a Complete Sample of Extragalactic Core-dominated Radio Sources.

  9. Photoluminescence study of MBE grown InGaN with intentional indium segregation

    NASA Astrophysics Data System (ADS)

    Cheung, Maurice C.; Namkoong, Gon; Chen, Fei; Furis, Madalina; Pudavar, Haridas E.; Cartwright, Alexander N.; Doolittle, W. Alan

    2005-05-01

    Proper control of MBE growth conditions has yielded an In0.13Ga0.87N thin film sample with emission consistent with In-segregation. The photoluminescence (PL) from this epilayer showed multiple emission components. Moreover, temperature and power dependent studies of the PL demonstrated that two of the components were excitonic in nature and consistent with indium phase separation. At 15 K, time resolved PL showed a non-exponential PL decay that was well fitted with the stretched exponential solution expected for disordered systems. Consistent with the assumed carrier hopping mechanism of this model, the effective lifetime, , and the stretched exponential parameter, , decrease with increasing emission energy. Finally, room temperature micro-PL using a confocal microscope showed spatial clustering of low energy emission.

  10. Time-frequency analysis of stimulus frequency otoacoustic emissions and their changes with efferent stimulation in guinea pigs

    NASA Astrophysics Data System (ADS)

    Berezina-Greene, Maria A.; Guinan, John J.

    2015-12-01

    To aid in understanding their origin, stimulus frequency otoacoustic emissions (SFOAEs) were measured at a series of tone frequencies using the suppression method, both with and without stimulation of medial olivocochlear (MOC) efferents, in anesthetized guinea pigs. Time-frequency analysis showed SFOAE energy peaks in 1-3 delay components throughout the measured frequency range (0.5-12 kHz). One component's delay usually coincided with the phase-gradient delay. When multiple delay components were present, they were usually near SFOAE dips. Below 2 kHz, SFOAE delays were shorter than predicted from mechanical measurements. With MOC stimulation, SFOAE amplitude was decreased at most frequencies, but was sometimes enhanced, and all SFOAE delay components were affected. The MOC effects and an analysis of model data suggest that the multiple SFOAE delay components arise at the edges of the traveling-wave peak, not far basal of the peak. Comparisons with published guinea-pig neural data suggest that the short latencies of low-frequency SFOAEs may arise from coherent reflection from an organ-of-Corti motion that has a shorter group delay than the traveling wave.

  11. On reliable time-frequency characterization and delay estimation of stimulus frequency otoacoustic emissions

    NASA Astrophysics Data System (ADS)

    Biswal, Milan; Mishra, Srikanta

    2018-05-01

    The limited information on origin and nature of stimulus frequency otoacoustic emissions (SFOAEs) necessitates a thorough reexamination into SFOAE analysis procedures. This will lead to a better understanding of the generation of SFOAEs. The SFOAE response waveform in the time domain can be interpreted as a summation of amplitude modulated and frequency modulated component waveforms. The efficiency of a technique to segregate these components is critical to describe the nature of SFOAEs. Recent advancements in robust time-frequency analysis algorithms have staked claims on the more accurate extraction of these components, from composite signals buried in noise. However, their potential has not been fully explored for SFOAEs analysis. Indifference to distinct information, due to nature of these analysis techniques, may impact the scientific conclusions. This paper attempts to bridge this gap in literature by evaluating the performance of three linear time-frequency analysis algorithms: short-time Fourier transform (STFT), continuous Wavelet transform (CWT), S-transform (ST) and two nonlinear algorithms: Hilbert-Huang Transform (HHT), synchrosqueezed Wavelet transform (SWT). We revisit the extraction of constituent components and estimation of their magnitude and delay, by carefully evaluating the impact of variation in analysis parameters. The performance of HHT and SWT from the perspective of time-frequency filtering and delay estimation were found to be relatively less efficient for analyzing SFOAEs. The intrinsic mode functions of HHT does not completely characterize the reflection components and hence IMF based filtering alone, is not recommended for segregating principal emission from multiple reflection components. We found STFT, WT, and ST to be suitable for canceling multiple internal reflection components with marginal altering in SFOAE.

  12. Pulsars Magnetospheres

    NASA Technical Reports Server (NTRS)

    Timokhin, Andrey

    2012-01-01

    Current density determines the plasma flow regime. Cascades are non-stationary. ALWAYS. All flow regimes look different: multiple components (?) Return current regions should have particle accelerating zones in the outer magnetosphere: y-ray pulsars (?) Plasma oscillations in discharges: direct radio emission (?)

  13. The nebular spectra of the transitional Type Ia Supernovae 2007on and 2011iv: broad, multiple components indicate aspherical explosion cores

    NASA Astrophysics Data System (ADS)

    Mazzali, P. A.; Ashall, C.; Pian, E.; Stritzinger, M. D.; Gall, C.; Phillips, M. M.; Höflich, P.; Hsiao, E.

    2018-05-01

    The nebular-epoch spectrum of the rapidly declining, `transitional' Type Ia supernova (SN) 2007on showed double emission peaks, which have been interpreted as indicating that the SN was the result of the direct collision of two white dwarfs. The spectrum can be reproduced using two distinct emission components, one redshifted and one blueshifted. These components are similar in mass but have slightly different degrees of ionization. They recede from one another at a line-of-sight speed larger than the sum of the combined expansion velocities of their emitting cores, thereby acting as two independent nebulae. While this configuration appears to be consistent with the scenario of two white dwarfs colliding, it may also indicate an off-centre delayed detonation explosion of a near-Chandrasekhar-mass white dwarf. In either case, broad emission line widths and a rapidly evolving light curve can be expected for the bolometric luminosity of the SN. This is the case for both SNe 2007on and 2011iv, also a transitional SN Ia that exploded in the same elliptical galaxy, NGC 1404. Although SN 2011iv does not show double-peaked emission line profiles, the width of its emission lines is such that a two-component model yields somewhat better results than a single-component model. Most of the mass ejected is in one component, however, which suggests that SN 2011iv was the result of the off-centre ignition of a Chandrasekhar-mass white dwarf.

  14. Outer heliospheric radio emissions. II - Foreshock source models

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Kurth, William S.; Gurnett, Donald A.

    1992-01-01

    Observations of LF radio emissions in the range 2-3 kHz by the Voyager spacecraft during the intervals 1983-1987 and 1989 to the present while at heliocentric distances greater than 11 AU are reported. New analyses of the wave data are presented, and the characteristics of the radiation are reviewed and discussed. Two classes of events are distinguished: transient events with varying starting frequencies that drift upward in frequency and a relatively continuous component that remains near 2 kHz. Evidence for multiple transient sources and for extension of the 2-kHz component above the 2.4-kHz interference signal is presented. The transient emissions are interpreted in terms of radiation generated at multiples of the plasma frequency when solar wind density enhancements enter one or more regions of a foreshock sunward of the inner heliospheric shock. Solar wind density enhancements by factors of 4-10 are observed. Propagation effects, the number of radiation sources, and the time variability, frequency drift, and varying starting frequencies of the transient events are discussed in terms of foreshock sources.

  15. Aptamer- and nucleic acid enzyme-based systems for simultaneous detection of multiple analytes

    DOEpatents

    Lu, Yi [Champaign, IL; Liu, Juewen [Albuquerque, NM

    2011-11-15

    The present invention provides aptamer- and nucleic acid enzyme-based systems for simultaneously determining the presence and optionally the concentration of multiple analytes in a sample. Methods of utilizing the system and kits that include the sensor components are also provided. The system includes a first reactive polynucleotide that reacts to a first analyte; a second reactive polynucleotide that reacts to a second analyte; a third polynucleotide; a fourth polynucleotide; a first particle, coupled to the third polynucleotide; a second particle, coupled to the fourth polynucleotide; and at least one quencher, for quenching emissions of the first and second quantum dots, coupled to the first and second reactive polynucleotides. The first particle includes a quantum dot having a first emission wavelength. The second particle includes a second quantum dot having a second emission wavelength different from the first emission wavelength. The third polynucleotide and the fourth polynucleotide are different.

  16. Quantification of Methane and Ethane Emissions from the San Juan Basin

    NASA Astrophysics Data System (ADS)

    Smith, M. L.; Kort, E. A.; Karion, A.; Sweeney, C.; Gvakharia, A.

    2015-12-01

    Methane (CH4), a potent greenhouse gas, and the primary component of natural gas, is emitted from areas of high fossil fuel production and processing. Recently, persistent and large methane emissions (~0.59 Tg yr-1) from the four corners area of the United States have been identified using satellite (SCIAMACHY) observations taken over the years 2003 to 2009. These emissions appear to be the largest CH4 anomaly (positive deviation above background values) in the contiguous U.S., and exceed bottom-up inventory estimates for the area by 1.8 to 3.5 times. The majority of emissions sources expected to contribute to this anomalous CH4 signal are located in the San Juan basin of New Mexico, and include harvesting and processing of natural gas, coal, and coalbed CH4. The magnitude of CH4 emissions from the San Juan basin have not yet been directly quantified using airborne measurements. Additionally, changing fossil fuel-related activities in the basin may have altered the magnitude of CH4 emissions compared to estimates derived from 2003-2009 satellite measurements. Here, we present in-situ airborne observations of CH4 over the San Juan basin, which allow tight quantification of CH4 fluxes using the mass balance method. Observations over the basin were taken for multiple wind directions on multiple days in April, 2015 to obtain a robust estimate of CH4 emissions. The flux of ethane (C2H6), the second most abundant component of natural gas and a tracer species indicative of fossil-derived CH4, was also quantified. Substantial C2H6 emissions may affect regional air quality and chemistry through its influence on tropospheric ozone production.

  17. Independent component model for cognitive functions of multiple subjects using [15O]H2O PET images.

    PubMed

    Park, Hae-Jeong; Kim, Jae-Jin; Youn, Tak; Lee, Dong Soo; Lee, Myung Chul; Kwon, Jun Soo

    2003-04-01

    An independent component model of multiple subjects' positron emission tomography (PET) images is proposed to explore the overall functional components involved in a task and to explain subject specific variations of metabolic activities under altered experimental conditions utilizing the Independent component analysis (ICA) concept. As PET images represent time-compressed activities of several cognitive components, we derived a mathematical model to decompose functional components from cross-sectional images based on two fundamental hypotheses: (1) all subjects share basic functional components that are common to subjects and spatially independent of each other in relation to the given experimental task, and (2) all subjects share common functional components throughout tasks which are also spatially independent. The variations of hemodynamic activities according to subjects or tasks can be explained by the variations in the usage weight of the functional components. We investigated the plausibility of the model using serial cognitive experiments of simple object perception, object recognition, two-back working memory, and divided attention of a syntactic process. We found that the independent component model satisfactorily explained the functional components involved in the task and discuss here the application of ICA in multiple subjects' PET images to explore the functional association of brain activations. Copyright 2003 Wiley-Liss, Inc.

  18. Studies on Automobile Clutch Release Bearing Characteristics with Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Chen, Guoliang; Chen, Xiaoyang

    Automobile clutch release bearings are important automotive driveline components. For the clutch release bearing, early fatigue failure diagnosis is significant, but the early fatigue failure response signal is not obvious, because failure signals are susceptible to noise on the transmission path and to working environment factors such as interference. With an improvement in vehicle design, clutch release bearing fatigue life indicators have increasingly become an important requirement. Contact fatigue is the main failure mode of release rolling bearing components. Acoustic emission techniques in contact fatigue failure detection have unique advantages, which include highly sensitive nondestructive testing methods. In the acoustic emission technique to detect a bearing, signals are collected from multiple sensors. Each signal contains partial fault information, and there is overlap between the signals' fault information. Therefore, the sensor signals receive simultaneous source information integration is complete fragment rolling bearing fault acoustic emission signal, which is the key issue of accurate fault diagnosis. Release bearing comprises the following components: the outer ring, inner ring, rolling ball, cage. When a failure occurs (such as cracking, pitting), the other components will impact damaged point to produce acoustic emission signal. Release bearings mainly emit an acoustic emission waveform with a Rayleigh wave propagation. Elastic waves emitted from the sound source, and it is through the part surface bearing scattering. Dynamic simulation of rolling bearing failure will contribute to a more in-depth understanding of the characteristics of rolling bearing failure, because monitoring and fault diagnosis of rolling bearings provide a theoretical basis and foundation.

  19. EXPERIMENTS AT THE INTERFACE OF CARBON PARTICLE CHEMISTRY AND TOXCIOLOGY

    EPA Science Inventory

    Air pollution includes a complex mixture of carbonaceous gases and particles emitted from multiple anthropogenic, biogenic, and biomass burning sources, and also includes secondary organic components that form during atmospheric aging of these emissions. Exposure to these mixture...

  20. A view at the interface between particle chemistry and toxicology

    EPA Science Inventory

    Air pollution includes a complex mixture of carbonaceous gases and particles emitted from multiple anthropogenic, biogenic, and biomass burning sources, and also includes secondary organic components that form during atmospheric aging of these emissions. Exposure to these mixture...

  1. Prompt optical emission from gamma-ray bursts with multiple timescale variability of central engine activities

    NASA Astrophysics Data System (ADS)

    Xu, Si-Yao; Li, Zhuo

    2014-04-01

    Complete high-resolution light curves of GRB 080319B observed by Swift present an opportunity for detailed temporal analysis of prompt optical emission. With a two-component distribution of initial Lorentz factors, we simulate the dynamical process of shells being ejected from the central engine in the framework of the internal shock model. The emitted radiations are decomposed into different frequency ranges for a temporal correlation analysis between the light curves in different energy bands. The resulting prompt optical and gamma-ray emissions show similar temporal profiles, with both showing a superposition of a component with slow variability and a component with fast variability, except that the gamma-ray light curve is much more variable than its optical counterpart. The variability in the simulated light curves and the strong correlation with a time lag between the optical and gamma-ray emissions are in good agreement with observations of GRB 080319B. Our simulations suggest that the variations seen in the light curves stem from the temporal structure of the shells injected from the central engine of gamma-ray bursts. Future observations with high temporal resolution of prompt optical emission from GRBs, e.g., by UFFO-Pathfinder and SVOM-GWAC, will provide a useful tool for investigating the central engine activity.

  2. Extremely Bright GRB 160625B with Multiple Emission Episodes: Evidence for Long-term Ejecta Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Hou-Jun; Lü, Jing; Zhong, Shu-Qing

    GRB 160625B is an extremely bright GRB with three distinct emission episodes. By analyzing its data observed with the Gamma-Ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi mission, we find that a multicolor blackbody (mBB) model can be used to fit very well the spectra of the initial short episode (Episode I) within the hypothesis of photosphere emission of a fireball model. The time-resolved spectra of its main episode (Episode II), which was detected with both GBM and LAT after a long quiescent stage (∼180 s) following the initial episode, can be fitted with amore » model comprising an mBB component plus a cutoff power-law (CPL) component. This GRB was detected again in the GBM and LAT bands with a long extended emission (Episode III) after a quiescent period of ∼300 s. The spectrum of Episode III is adequately fitted with CPL plus single power-law models, and no mBB component is required. These features may imply that the emission of the three episodes are dominated by distinct physics processes, i.e., Episode I is possible from the cocoon emission surrounding the relativistic jet, Episode II may be from photosphere emission and internal shock of the relativistic jet, and Episode III is contributed by internal and external shocks of the relativistic jet. On the other hand, both X-ray and optical afterglows are consistent with the standard external shocks model.« less

  3. Extremely Bright GRB 160625B with Multiple Emission Episodes: Evidence for Long-term Ejecta Evolution

    NASA Astrophysics Data System (ADS)

    Lü, Hou-Jun; Lü, Jing; Zhong, Shu-Qing; Huang, Xiao-Li; Zhang, Hai-Ming; Lan, Lin; Xie, Wei; Lu, Rui-Jing; Liang, En-Wei

    2017-11-01

    GRB 160625B is an extremely bright GRB with three distinct emission episodes. By analyzing its data observed with the Gamma-Ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi mission, we find that a multicolor blackbody (mBB) model can be used to fit very well the spectra of the initial short episode (Episode I) within the hypothesis of photosphere emission of a fireball model. The time-resolved spectra of its main episode (Episode II), which was detected with both GBM and LAT after a long quiescent stage (˜180 s) following the initial episode, can be fitted with a model comprising an mBB component plus a cutoff power-law (CPL) component. This GRB was detected again in the GBM and LAT bands with a long extended emission (Episode III) after a quiescent period of ˜300 s. The spectrum of Episode III is adequately fitted with CPL plus single power-law models, and no mBB component is required. These features may imply that the emission of the three episodes are dominated by distinct physics processes, I.e., Episode I is possible from the cocoon emission surrounding the relativistic jet, Episode II may be from photosphere emission and internal shock of the relativistic jet, and Episode III is contributed by internal and external shocks of the relativistic jet. On the other hand, both X-ray and optical afterglows are consistent with the standard external shocks model.

  4. ALMA Reveals Metals yet No Dust within Multiple Components in CR7

    NASA Astrophysics Data System (ADS)

    Matthee, J.; Sobral, D.; Boone, F.; Röttgering, H.; Schaerer, D.; Girard, M.; Pallottini, A.; Vallini, L.; Ferrara, A.; Darvish, B.; Mobasher, B.

    2017-12-01

    We present spectroscopic follow-up observations of CR7 with ALMA, targeted at constraining the infrared (IR) continuum and [C II]{}158μ {{m}} line-emission at high spatial resolution matched to the HST/WFC3 imaging. CR7 is a luminous Lyα emitting galaxy at z = 6.6 that consists of three separated UV-continuum components. Our observations reveal several well-separated components of [C II] emission. The two most luminous components in [C II] coincide with the brightest UV components (A and B), blueshifted by ≈ 150 km s‑1 with respect to the peak of Lyα emission. Other [C II] components are observed close to UV clumps B and C and are blueshifted by ≈ 300 and ≈80 km s‑1 with respect to the systemic redshift. We do not detect FIR continuum emission due to dust with a 3σ limiting luminosity {L}{IR}({T}d=35 {{K}})< 3.1× {10}10 {L}ȯ . This allows us to mitigate uncertainties in the dust-corrected SFR and derive SFRs for the three UV clumps A, B, and C of 28, 5, and 7 {M}ȯ yr‑1. All clumps have [C II] luminosities consistent within the scatter observed in the local relation between SFR and {L}[{{C}{{II}}]}, implying that strong Lyα emission does not necessarily anti-correlate with [C II] luminosity. Combining our measurements with the literature, we show that galaxies with blue UV slopes have weaker [C II] emission at fixed SFR, potentially due to their lower metallicities and/or higher photoionization. Comparison with hydrodynamical simulations suggests that CR7's clumps have metallicities of 0.1< {{Z}}/{{{Z}}}ȯ < 0.2. The observed ISM structure of CR7 indicates that we are likely witnessing the build up of a central galaxy in the early universe through complex accretion of satellites.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ke; Linden, Tim, E-mail: kefang@umd.edu, E-mail: linden.70@osu.edu

    Radio observations at multiple frequencies have detected a significant isotropic emission component between 22 MHz and 10 GHz, commonly termed the ARCADE-2 Excess. The origin of this radio emission is unknown, as the intensity, spectrum and isotropy of the signal are difficult to model with either traditional astrophysical mechanisms or novel physics such as dark matter annihilation. We posit a new model capable of explaining the key components of the excess radio emission. Specifically, we show that the re-acceleration of non-thermal electrons via turbulence in merging galaxy clusters are capable of explaining the intensity, spectrum, and isotropy of the ARCADE-2more » data. We examine the parameter spaces of cluster re-acceleration, magnetic field, and merger rate, finding that the radio excess can be reproduced assuming reasonable assumptions for each. Finally, we point out that future observations will definitively confirm or rule-out the contribution of cluster mergers to the isotropic radio background.« less

  6. THE MASSIVE PROTOSTELLAR CLUSTER NGC 6334I AT 220 au RESOLUTION: DISCOVERY OF FURTHER MULTIPLICITY, DIVERSITY, AND A HOT MULTI-CORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brogan, C. L.; Hunter, T. R.; Indebetouw, R.

    2016-12-01

    We present Very Large Array and Atacama Large Millimeter/submillimeter Array imaging of the deeply embedded protostellar cluster NGC 6334I from 5 cm to 1.3 mm at angular resolutions as fine as 0.″17 (220 au). The dominant hot core MM1 is resolved into seven components at 1.3 mm, clustered within a radius of 1000 au. Four of the components have brightness temperatures >200 K, radii ∼300 au, minimum luminosities ∼10{sup 4} L {sub ⊙}, and must be centrally heated. We term this new phenomenon a “hot multi-core.” Two of these objects also exhibit compact free–free emission at longer wavelengths, consistent withmore » a hypercompact H ii region (MM1B) and a jet (MM1D). The spatial kinematics of the water maser emission centered on MM1D are consistent with it being the origin of the high-velocity bipolar molecular outflow seen in CO. The close proximity of MM1B and MM1D (440 au) suggests a proto-binary or a transient bound system. Several components of MM1 exhibit steep millimeter spectral energy distributions indicative of either unusual dust spectral properties or time variability. In addition to resolving MM1 and the other hot core (MM2) into multiple components, we detect five new millimeter and two new centimeter sources. Water masers are detected for the first time toward MM4A, confirming its membership in the protocluster. With a 1.3 mm brightness temperature of 97 K coupled with a lack of thermal molecular line emission, MM4A appears to be a highly optically thick 240  L {sub ⊙} dust core, possibly tracing a transient stage of massive protostellar evolution. The nature of the strongest water maser source CM2 remains unclear due to its combination of non-thermal radio continuum and lack of dust emission.« less

  7. The Massive Protostellar Cluster NGC 6334I at 220 au Resolution: Discovery of Further Multiplicity, Diversity, and a Hot Multi-core

    NASA Astrophysics Data System (ADS)

    Brogan, C. L.; Hunter, T. R.; Cyganowski, C. J.; Chandler, C. J.; Friesen, R.; Indebetouw, R.

    2016-12-01

    We present Very Large Array and Atacama Large Millimeter/submillimeter Array imaging of the deeply embedded protostellar cluster NGC 6334I from 5 cm to 1.3 mm at angular resolutions as fine as 0.″17 (220 au). The dominant hot core MM1 is resolved into seven components at 1.3 mm, clustered within a radius of 1000 au. Four of the components have brightness temperatures >200 K, radii ˜300 au, minimum luminosities ˜104 L ⊙, and must be centrally heated. We term this new phenomenon a “hot multi-core.” Two of these objects also exhibit compact free-free emission at longer wavelengths, consistent with a hypercompact H II region (MM1B) and a jet (MM1D). The spatial kinematics of the water maser emission centered on MM1D are consistent with it being the origin of the high-velocity bipolar molecular outflow seen in CO. The close proximity of MM1B and MM1D (440 au) suggests a proto-binary or a transient bound system. Several components of MM1 exhibit steep millimeter spectral energy distributions indicative of either unusual dust spectral properties or time variability. In addition to resolving MM1 and the other hot core (MM2) into multiple components, we detect five new millimeter and two new centimeter sources. Water masers are detected for the first time toward MM4A, confirming its membership in the protocluster. With a 1.3 mm brightness temperature of 97 K coupled with a lack of thermal molecular line emission, MM4A appears to be a highly optically thick 240 L ⊙ dust core, possibly tracing a transient stage of massive protostellar evolution. The nature of the strongest water maser source CM2 remains unclear due to its combination of non-thermal radio continuum and lack of dust emission.

  8. Assessing the nonlinear response of fine particles to precursor emissions: Development and application of an extended response surface modeling technique v1.0

    DOE PAGES

    Zhao, B.; Wang, S. X.; Xing, J.; ...

    2015-01-30

    An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widelymore » used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.« less

  9. Emission current control system for multiple hollow cathode devices

    NASA Technical Reports Server (NTRS)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  10. Fevers and Chills: Separating thermal and synchrotron components in SNR spectra

    NASA Astrophysics Data System (ADS)

    Fedor, Emily Elizabeth; Martina-Hood, Hyourin; Stage, Michael D.

    2018-06-01

    Spatially-resolved spectroscopy is an extremely powerful tool in X-ray analysis of extended sources, but can be computationally difficult if a source exhibits complex morphology. For example, high-resolution Chandra data of bright Galactic supernova remnants (Cas A, Tycho, etc.) allow extractions of high-quality spectra from tens to hundreds of thousands of regions, providing a rich laboratory for localizing emission from processes such as thermal line emission, bremsstrahlung, and synchrotron. This soft-band analysis informs our understanding of the typically nonthermal hard X-ray emission observed with other lower-resolution instruments. The analysis is complicated by both projection effects and the presence of multiple emission mechanisms in some regions. In particular, identifying regions with significant nonthermal emission is critical to understanding acceleration processes in remnants. Fitting tens of thousands of regions with complex, multi-component models can be time-consuming and involve so many free parameters that little constraint can be placed on the values. Previous work by Stage & Allen ('06, '07, '11) on Cas A used a technique to identify regions dominated by the highest-cutoff synchrotron emission by fitting with a simple thermal emission model and identifying regions with anomalously high apparent temperatures (caused by presence of the high-energy tail of the synchrotron emission component). Here, we present a similar technique. We verify the previous approach and, more importantly, expand it to include a method to identify regions containing strong lower-cutoff synchrotron radiation. Such regions might be associated with the reverse-shock of a supernova. Identification of a nonthermal electron population in the interior of an SNR would have significant implications for the energy balance and emission mechanisms producing the high-energy (> 10 keV) spectrum.

  11. A mechanistic modeling system for estimating large scale emissions and transport of pollen and co-allergens

    PubMed Central

    Efstathiou, Christos; Isukapalli, Sastry

    2011-01-01

    Allergic airway diseases represent a complex health problem which can be exacerbated by the synergistic action of pollen particles and air pollutants such as ozone. Understanding human exposures to aeroallergens requires accurate estimates of the spatial distribution of airborne pollen levels as well as of various air pollutants at different times. However, currently there are no established methods for estimating allergenic pollen emissions and concentrations over large geographic areas such as the United States. A mechanistic modeling system for describing pollen emissions and transport over extensive domains has been developed by adapting components of existing regional scale air quality models and vegetation databases. First, components of the Biogenic Emissions Inventory System (BEIS) were adapted to predict pollen emission patterns. Subsequently, the transport module of the Community Multiscale Air Quality (CMAQ) modeling system was modified to incorporate description of pollen transport. The combined model, CMAQ-pollen, allows for simultaneous prediction of multiple air pollutants and pollen levels in a single model simulation, and uses consistent assumptions related to the transport of multiple chemicals and pollen species. Application case studies for evaluating the combined modeling system included the simulation of birch and ragweed pollen levels for the year 2002, during their corresponding peak pollination periods (April for birch and September for ragweed). The model simulations were driven by previously evaluated meteorological model outputs and emissions inventories for the eastern United States for the simulation period. A semi-quantitative evaluation of CMAQ-pollen was performed using tree and ragweed pollen counts in Newark, NJ for the same time periods. The peak birch pollen concentrations were predicted to occur within two days of the peak measurements, while the temporal patterns closely followed the measured profiles of overall tree pollen. For the case of ragweed pollen, the model was able to capture the patterns observed during September 2002, but did not predict an early peak; this can be associated with a wider species pollination window and inadequate spatial information in current land cover databases. An additional sensitivity simulation was performed to comparatively evaluate the dispersion patterns predicted by CMAQ-pollen with those predicted by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, which is used extensively in aerobiological studies. The CMAQ estimated concentration plumes matched the equivalent pollen scenario modeled with HYSPLIT. The novel pollen modeling approach presented here allows simultaneous estimation of multiple airborne allergens and other air pollutants, and is being developed as a central component of an integrated population exposure modeling system, the Modeling Environment for Total Risk studies (MENTOR) for multiple, co-occurring contaminants that include aeroallergens and irritants. PMID:21516207

  12. A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christos; Isukapalli, Sastry; Georgopoulos, Panos

    2011-04-01

    Allergic airway diseases represent a complex health problem which can be exacerbated by the synergistic action of pollen particles and air pollutants such as ozone. Understanding human exposures to aeroallergens requires accurate estimates of the spatial distribution of airborne pollen levels as well as of various air pollutants at different times. However, currently there are no established methods for estimating allergenic pollen emissions and concentrations over large geographic areas such as the United States. A mechanistic modeling system for describing pollen emissions and transport over extensive domains has been developed by adapting components of existing regional scale air quality models and vegetation databases. First, components of the Biogenic Emissions Inventory System (BEIS) were adapted to predict pollen emission patterns. Subsequently, the transport module of the Community Multiscale Air Quality (CMAQ) modeling system was modified to incorporate description of pollen transport. The combined model, CMAQ-pollen, allows for simultaneous prediction of multiple air pollutants and pollen levels in a single model simulation, and uses consistent assumptions related to the transport of multiple chemicals and pollen species. Application case studies for evaluating the combined modeling system included the simulation of birch and ragweed pollen levels for the year 2002, during their corresponding peak pollination periods (April for birch and September for ragweed). The model simulations were driven by previously evaluated meteorological model outputs and emissions inventories for the eastern United States for the simulation period. A semi-quantitative evaluation of CMAQ-pollen was performed using tree and ragweed pollen counts in Newark, NJ for the same time periods. The peak birch pollen concentrations were predicted to occur within two days of the peak measurements, while the temporal patterns closely followed the measured profiles of overall tree pollen. For the case of ragweed pollen, the model was able to capture the patterns observed during September 2002, but did not predict an early peak; this can be associated with a wider species pollination window and inadequate spatial information in current land cover databases. An additional sensitivity simulation was performed to comparatively evaluate the dispersion patterns predicted by CMAQ-pollen with those predicted by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, which is used extensively in aerobiological studies. The CMAQ estimated concentration plumes matched the equivalent pollen scenario modeled with HYSPLIT. The novel pollen modeling approach presented here allows simultaneous estimation of multiple airborne allergens and other air pollutants, and is being developed as a central component of an integrated population exposure modeling system, the Modeling Environment for Total Risk studies (MENTOR) for multiple, co-occurring contaminants that include aeroallergens and irritants.

  13. Kiloparsec-scale gaseous clumps and star formation at z = 5-7

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Maiolino, R.; Amorin, R.; Pentericci, L.; Pallottini, A.; Ferrara, A.; Willott, C. J.; Smit, R.; Matthee, J.; Sobral, D.; Santini, P.; Castellano, M.; De Barros, S.; Fontana, A.; Grazian, A.; Guaita, L.

    2018-05-01

    We investigate the morphology of the [CII] emission in a sample of "normal" star-forming galaxies at 5 < z < 7.2 in relation to their UV (rest-frame) counterpart. We use new ALMA observations of galaxies at z ˜ 6 - 7, as well as a careful re-analysis of archival ALMA data. In total 29 galaxies were analysed, 21 of which are detected in [CII]. For several of the latter the [CII] emission breaks into multiple components. Only a fraction of these [CII] components, if any, is associated with the primary UV systems, while the bulk of the [CII] emission is associated either with fainter UV components, or not associated with any UV counterpart at the current limits. By taking into account the presence of all these components, we find that the L[CII]-SFR relation at early epochs is fully consistent with the local relation, but it has a dispersion of 0.48±0.07 dex, which is about two times larger than observed locally. We also find that the deviation from the local L[CII]-SFR relation has a weak anti-correlation with the EW(Lyα). The morphological analysis also reveals that [CII] emission is generally much more extended than the UV emission. As a consequence, these primordial galaxies are characterised by a [CII] surface brightness generally much lower than expected from the local Σ _{[CII]}-Σ _{SFR} relation. These properties are likely a consequence of a combination of different effects, namely: gas metallicity, [CII] emission from obscured star-forming regions, strong variations of the ionisation parameter, and circumgalactic gas in accretion or ejected by these primeval galaxies.

  14. Kiloparsec-scale gaseous clumps and star formation at z = 5-7

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Maiolino, R.; Amorin, R.; Pentericci, L.; Pallottini, A.; Ferrara, A.; Willott, C. J.; Smit, R.; Matthee, J.; Sobral, D.; Santini, P.; Castellano, M.; De Barros, S.; Fontana, A.; Grazian, A.; Guaita, L.

    2018-07-01

    We investigate the morphology of the [C II] emission in a sample of `normal' star-forming galaxies at 5 < z < 7.2 in relation to their UV (rest-frame) counterpart. We use new Atacama Large Millimetre/submillimetre Array (ALMA) observations of galaxies at z ˜ 6-7, as well as a careful re-analysis of archival ALMA data. In total 29 galaxies were analysed, 21 of which are detected in [C II]. For several of the latter the [C II] emission breaks into multiple components. Only a fraction of these [C II] components, if any, is associated with the primary UV systems, while the bulk of the [C II] emission is associated either with fainter UV components, or not associated with any UV counterpart at the current limits. By taking into account the presence of all these components, we find that the L_[C II]-SFR (star formation rate) relation at early epochs is fully consistent with the local relation, but it has a dispersion of 0.48 ± 0.07 dex, which is about two times larger than observed locally. We also find that the deviation from the local L_[C II]-SFR relation has a weak anticorrelation with the EW(Ly α). The morphological analysis also reveals that [C II] emission is generally much more extended than the UV emission. As a consequence, these primordial galaxies are characterized by a [C II] surface brightness generally much lower than expected from the local Σ _[C II]-Σ _{SFR} relation. These properties are likely a consequence of a combination of different effects, namely gas metallicity, [C II] emission from obscured star-forming regions, strong variations of the ionization parameter, and circumgalactic gas in accretion or ejected by these primeval galaxies.

  15. Multiple-component Decomposition from Millimeter Single-channel Data

    NASA Astrophysics Data System (ADS)

    Rodríguez-Montoya, Iván; Sánchez-Argüelles, David; Aretxaga, Itziar; Bertone, Emanuele; Chávez-Dagostino, Miguel; Hughes, David H.; Montaña, Alfredo; Wilson, Grant W.; Zeballos, Milagros

    2018-03-01

    We present an implementation of a blind source separation algorithm to remove foregrounds off millimeter surveys made by single-channel instruments. In order to make possible such a decomposition over single-wavelength data, we generate levels of artificial redundancy, then perform a blind decomposition, calibrate the resulting maps, and lastly measure physical information. We simulate the reduction pipeline using mock data: atmospheric fluctuations, extended astrophysical foregrounds, and point-like sources, but we apply the same methodology to the Aztronomical Thermal Emission Camera/ASTE survey of the Great Observatories Origins Deep Survey–South (GOODS-S). In both applications, our technique robustly decomposes redundant maps into their underlying components, reducing flux bias, improving signal-to-noise ratio, and minimizing information loss. In particular, GOODS-S is decomposed into four independent physical components: one of them is the already-known map of point sources, two are atmospheric and systematic foregrounds, and the fourth component is an extended emission that can be interpreted as the confusion background of faint sources.

  16. A new X-ray spectral observation of NGC 1068

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.; Netzer, H.; Arnaud, K. A.; Boldt, E. A.; Holt, S. S.; Jahoda, K. M.; Kelley, R.; Mushotzky, R. F.; Petre, R.; Serlemitsos, P. J.

    1993-01-01

    A new X-ray observation of NGC 1068, in which improved spectral resolution (R is approximately equal to 40) and broad energy range provide important new constraints on models for this galaxy, is reported. The observed X-ray continuum of NGC 1068 from 0.3 to 10 keV is well fitted as the sum of two power-law spectra with no evidence for absorption intrinsic to the source. Strong Fe K emission lines with a total equivalent width of 2700 eV were detected due to iron less ionized than Fe XX and to iron more ionized than Fe XXIII. No evidence was seen for lines due to the recombination of highly ionized oxygen with an upper limit for the O Ly-alpha emission line of 40 eV. The discovery of multiple Fe K and Fe L emission lines indicates a broad range of ionization states for this gas. The X-ray emission from the two components is modeled for various geometries using a photoionization code that calculates the temperature and ionization state of the gas. Typical model parameters are a total Compton depth of a few percent, an inner boundary of the hot component of about 1 pc, and an inner boundary of the warm component of about 20 pc.

  17. MULTI-FREQUENCY, MULTI-EPOCH STUDY OF Mrk 501: HINTS FOR A TWO-COMPONENT NATURE OF THE EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, A.; Chitnis, V. R.; Singh, B. B.

    2015-01-01

    Since the detection of very high energy (VHE) γ-rays from Mrk 501, its broadband emission of radiation was mostly and quite effectively modeled using the one zone emission scenario. However, broadband spectral and flux variability studies enabled by the multi-wavelength campaigns carried out during the recent years have revealed the rather complex behavior of Mrk 501. The observed emission from Mrk 501 could be due to a complex superposition of multiple emission zones. Moreover, new evidence of detection of very hard intrinsic γ-ray spectra obtained from Fermi-LAT observations has challenged the theories about the origin of VHE γ-rays. Our studiesmore » based on Fermi-LAT data indicate the existence of two separate components in the spectrum, one for low-energy γ-rays and the other for high-energy γ-rays. Using multi-waveband data from several ground- and space-based instruments, in addition to HAGAR data, the spectral energy distribution of Mrk 501 is obtained for various flux states observed during 2011. In the present work, this observed broadband spectral energy distribution is reproduced with a leptonic, multi-zone synchrotron self-Compton (SSC) model.« less

  18. IGRINS NEAR-IR HIGH-RESOLUTION SPECTROSCOPY OF MULTIPLE JETS AROUND LkHα 234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Heeyoung; Yuk, In-Soo; Park, Byeong-Gon

    2016-02-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H{sub 2} emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position–velocity diagrams of the H{sub 2} 1−0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics maymore » be explained by a geometrical bow shock model. We detected a component of H{sub 2} emission at the systemic velocity (V{sub LSR} = −10.2 km s{sup −1}) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at V{sub LSR} = −100–−130 km s{sup −1}. We infer that the H{sub 2} emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H{sub 2} lines imply that the gas is thermalized at a temperature of 2500–3000 K and the emission results from shock excitation.« less

  19. ASCA X-ray observations of pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Skinner, S. L.; Walter, F. M.; Yamauchi, S.

    1996-01-01

    The results of recent Advanced Satellite for Cosmology and Astrophysics (ASCA) X-ray observations of two pre-main sequence stars are presented: the weak emission line T Tauri star HD 142361, and the Herbig Ae star HD 104237. The solid state imaging spectrometer spectra for HD 142361 shows a clear emission line from H-like Mg 7, and spectral fits reveal a multiple temperature plasma with a hot component of at least 16 MK. The spectra of HD 104237 show a complex temperature structure with the hottest plasma at temperatures of greater than 30 MK. It is concluded that mechanisms that predict only soft X-ray emission can be dismissed for Herbig Ae stars.

  20. Gamma-Ray Burst Prompt Emission Light Curves and Power Density Spectra in the ICMART Model

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Bing

    2014-02-01

    In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

  1. A Suboptimal Power-Saving Transmission Scheme in Multiple Component Carrier Networks

    NASA Astrophysics Data System (ADS)

    Chung, Yao-Liang; Tsai, Zsehong

    Power consumption due to transmissions in base stations (BSs) has been a major contributor to communication-related CO2 emissions. A power optimization model is developed in this study with respect to radio resource allocation and activation in a multiple Component Carrier (CC) environment. We formulate and solve the power-minimization problem of the BS transceivers for multiple-CC networks with carrier aggregation, while maintaining the overall system and respective users' utilities above minimum levels. The optimized power consumption based on this model can be viewed as a lower bound of that of other algorithms employed in practice. A suboptimal scheme with low computation complexity is proposed. Numerical results show that the power consumption of our scheme is much better than that of the conventional one in which all CCs are always active, if both schemes maintain the same required utilities.

  2. GRB 090227B: THE MISSING LINK BETWEEN THE GENUINE SHORT AND LONG GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muccino, M.; Ruffini, R.; Bianco, C. L.

    2013-02-15

    The time-resolved spectral analysis of GRB 090227B, made possible by the Fermi-GBM data, allows us to identify in this source the missing link between the genuine short and long gamma-ray bursts (GRBs). Within the Fireshell model of the GRBs we predict genuine short GRBs: bursts with the same inner engine of the long bursts but endowed with a severely low value of the baryon load, B {approx}< 5 Multiplication-Sign 10{sup -5}. A first energetically predominant emission occurs at the transparency of the e {sup +} e {sup -} plasma, the Proper-GRB (P-GRB), followed by a softer emission, the extended afterglow.more » The typical separation between the two emissions is expected to be of the order of 10{sup -3}-10{sup -2} s. We identify the P-GRB of GRB 090227B in the first 96 ms of emission, where a thermal component with the temperature kT = (517 {+-} 28) keV and a flux comparable with the non-thermal part of the spectrum is observed. This non-thermal component as well as the subsequent emission, where there is no evidence for a thermal spectrum, is identified with the extended afterglow. We deduce a theoretical cosmological redshift z = 1.61 {+-} 0.14. We then derive the total energy E{sup tot}{sub e{sup +}e{sup -}}= (2.83{+-}0.15) Multiplication-Sign 10{sup 53} erg, the baryon load B = (4.13 {+-} 0.05) Multiplication-Sign 10{sup -5}, the Lorentz {Gamma} factor at transparency {Gamma}{sub tr} = (1.44 {+-} 0.01) Multiplication-Sign 10{sup 4}, and the intrinsic duration {Delta}t' {approx} 0.35 s. We also determine the average density of the circumburst medium (CBM), (n {sub CBM}) = (1.90 {+-} 0.20) Multiplication-Sign 10{sup -5} particles cm{sup -3}. There is no evidence of beaming in the system. In view of the energetics and of the baryon load of the source, as well as of the low interstellar medium and of the intrinsic timescale of the signal, we identify the GRB progenitor as a binary neutron star. From the recent progress in the theory of neutron stars, we obtain masses of the stars m {sub 1} = m {sub 2} = 1.34 M {sub Sun} and their corresponding radii R {sub 1} = R {sub 2} = 12.24 km and thickness of their crusts {approx}0.47 km, consistent with the above values of the baryon load, of the energetics and of the time duration of the event.« less

  3. Scatter characterization and correction for simultaneous multiple small-animal PET imaging.

    PubMed

    Prasad, Rameshwar; Zaidi, Habib

    2014-04-01

    The rapid growth and usage of small-animal positron emission tomography (PET) in molecular imaging research has led to increased demand on PET scanner's time. One potential solution to increase throughput is to scan multiple rodents simultaneously. However, this is achieved at the expense of deterioration of image quality and loss of quantitative accuracy owing to enhanced effects of photon attenuation and Compton scattering. The purpose of this work is, first, to characterize the magnitude and spatial distribution of the scatter component in small-animal PET imaging when scanning single and multiple rodents simultaneously and, second, to assess the relevance and evaluate the performance of scatter correction under similar conditions. The LabPET™-8 scanner was modelled as realistically as possible using Geant4 Application for Tomographic Emission Monte Carlo simulation platform. Monte Carlo simulations allow the separation of unscattered and scattered coincidences and as such enable detailed assessment of the scatter component and its origin. Simple shape-based and more realistic voxel-based phantoms were used to simulate single and multiple PET imaging studies. The modelled scatter component using the single-scatter simulation technique was compared to Monte Carlo simulation results. PET images were also corrected for attenuation and the combined effect of attenuation and scatter on single and multiple small-animal PET imaging evaluated in terms of image quality and quantitative accuracy. A good agreement was observed between calculated and Monte Carlo simulated scatter profiles for single- and multiple-subject imaging. In the LabPET™-8 scanner, the detector covering material (kovar) contributed the maximum amount of scatter events while the scatter contribution due to lead shielding is negligible. The out-of field-of-view (FOV) scatter fraction (SF) is 1.70, 0.76, and 0.11% for lower energy thresholds of 250, 350, and 400 keV, respectively. The increase in SF ranged between 25 and 64% when imaging multiple subjects (three to five) of different size simultaneously in comparison to imaging a single subject. The spill-over ratio (SOR) increases with increasing the number of subjects in the FOV. Scatter correction improved the SOR for both water and air cold compartments of single and multiple imaging studies. The recovery coefficients for different body parts of the mouse whole-body and rat whole-body anatomical models were improved for multiple imaging studies following scatter correction. The magnitude and spatial distribution of the scatter component in small-animal PET imaging of single and multiple subjects simultaneously were characterized, and its impact was evaluated in different situations. Scatter correction improves PET image quality and quantitative accuracy for single rat and simultaneous multiple mice and rat imaging studies, whereas its impact is insignificant in single mouse imaging.

  4. Pox 186: An ultracompact galaxy with dominant ionized gas emission

    NASA Astrophysics Data System (ADS)

    Guseva, N. G.; Papaderos, P.; Izotov, Y. I.; Noeske, K. G.; Fricke, K. J.

    2004-07-01

    We present a ground-based optical spectroscopic and HST U, V, I photometric study of the blue compact dwarf (BCD) galaxy Pox 186. It is found that the emission of the low-surface brightness (LSB) component in Pox 186 at radii ⪉3 arcsec (⪉270 pc in linear scale) is mainly gaseous in origin. We detect Hα emission out to radii as large as 6 arcsec. At radii ⪆3 arcsec the light of the LSB component is contaminated by the emission of background galaxies complicating the study of the outermost regions. The surface brightness distribution in the LSB component can be approximated by an exponential law with a scale length α ⪉ 120 pc. This places Pox 186 among the most compact dwarf galaxies known. The derived α is likely to be an upper limit to the scale length of the LSB component because of the strong contribution of the gaseous emission. The oxygen abundance in the bright H II region derived from the 4.5 m Multiple Mirror Telescope (MMT) and 3.6 m ESO telescope spectra are 12 + log (O/H) = 7.76 ± 0.02 and 7.74 ± 0.01 (˜Z⊙/15), respectively, in accordance with previous determinations. The helium mass fractions found in this region are Y = 0.248 ± 0.009 (MMT) and Y = 0.248 ± 0.004 (3.6 m) suggesting a high primordial helium abundance. The MMT Observatory is a joint facility of the Smithsonian Institution and the University of Arizona. Based on observations collected at the European Southern Observatory, Chile, ESO program 71.B-0032(A). 12+\\log(O/H)⊙ = 8.92 (Anders & Grevesse \\cite{Anders89}).

  5. Observational constraints on the physical nature of submillimetre source multiplicity: chance projections are common

    NASA Astrophysics Data System (ADS)

    Hayward, Christopher C.; Chapman, Scott C.; Steidel, Charles C.; Golob, Anneya; Casey, Caitlin M.; Smith, Daniel J. B.; Zitrin, Adi; Blain, Andrew W.; Bremer, Malcolm N.; Chen, Chian-Chou; Coppin, Kristen E. K.; Farrah, Duncan; Ibar, Eduardo; Michałowski, Michał J.; Sawicki, Marcin; Scott, Douglas; van der Werf, Paul; Fazio, Giovanni G.; Geach, James E.; Gurwell, Mark; Petitpas, Glen; Wilner, David J.

    2018-05-01

    Interferometric observations have demonstrated that a significant fraction of single-dish submillimetre (submm) sources are blends of multiple submm galaxies (SMGs), but the nature of this multiplicity, i.e. whether the galaxies are physically associated or chance projections, has not been determined. We performed spectroscopy of 11 SMGs in six multicomponent submm sources, obtaining spectroscopic redshifts for nine of them. For an additional two component SMGs, we detected continuum emission but no obvious features. We supplement our observed sources with four single-dish submm sources from the literature. This sample allows us to statistically constrain the physical nature of single-dish submm source multiplicity for the first time. In three (3/7, { or} 43^{+39 }_{ -33} {per cent at 95 {per cent} confidence}) of the single-dish sources for which the nature of the blending is unambiguous, the components for which spectroscopic redshifts are available are physically associated, whereas 4/7 (57^{+33 }_{ -39} per cent) have at least one unassociated component. When components whose spectra exhibit continuum but no features and for which the photometric redshift is significantly different from the spectroscopic redshift of the other component are also considered, 6/9 (67^{+26 }_{ -37} per cent) of the single-dish sources are comprised of at least one unassociated component SMG. The nature of the multiplicity of one single-dish source is ambiguous. We conclude that physically associated systems and chance projections both contribute to the multicomponent single-dish submm source population. This result contradicts the conventional wisdom that bright submm sources are solely a result of merger-induced starbursts, as blending of unassociated galaxies is also important.

  6. INTERACTING COSMIC RAYS WITH MOLECULAR CLOUDS: A BREMSSTRAHLUNG ORIGIN OF DIFFUSE HIGH-ENERGY EMISSION FROM THE INNER 2 Degree-Sign Multiplication-Sign 1 Degree-Sign OF THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusef-Zadeh, F.; Roberts, D. A.; Royster, M.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and {gamma}-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of {approx}GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas.more » The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner {approx}300 Multiplication-Sign 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate {approx}1-10 Multiplication-Sign 10{sup -15} s{sup -1}, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10{sup -6}-10{sup -5}, large-scale magnetic field 10-20 {mu}G, the density of diffuse and dense molecular gas {approx}100 and {approx}10{sup 3} cm{sup -3} over 300 pc and 50 pc path lengths, and the variability of Fe I K{alpha} 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV {gamma}-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.« less

  7. Assessing methane emission estimation methods based on atmospheric measurements from oil and gas production using LES simulations

    NASA Astrophysics Data System (ADS)

    Saide, P. E.; Steinhoff, D.; Kosovic, B.; Weil, J.; Smith, N.; Blewitt, D.; Delle Monache, L.

    2017-12-01

    There are a wide variety of methods that have been proposed and used to estimate methane emissions from oil and gas production by using air composition and meteorology observations in conjunction with dispersion models. Although there has been some verification of these methodologies using controlled releases and concurrent atmospheric measurements, it is difficult to assess the accuracy of these methods for more realistic scenarios considering factors such as terrain, emissions from multiple components within a well pad, and time-varying emissions representative of typical operations. In this work we use a large-eddy simulation (LES) to generate controlled but realistic synthetic observations, which can be used to test multiple source term estimation methods, also known as an Observing System Simulation Experiment (OSSE). The LES is based on idealized simulations of the Weather Research & Forecasting (WRF) model at 10 m horizontal grid-spacing covering an 8 km by 7 km domain with terrain representative of a region located in the Barnett shale. Well pads are setup in the domain following a realistic distribution and emissions are prescribed every second for the components of each well pad (e.g., chemical injection pump, pneumatics, compressor, tanks, and dehydrator) using a simulator driven by oil and gas production volume, composition and realistic operational conditions. The system is setup to allow assessments under different scenarios such as normal operations, during liquids unloading events, or during other prescribed operational upset events. Methane and meteorology model output are sampled following the specifications of the emission estimation methodologies and considering typical instrument uncertainties, resulting in realistic observations (see Figure 1). We will show the evaluation of several emission estimation methods including the EPA Other Test Method 33A and estimates using the EPA AERMOD regulatory model. We will also show source estimation results from advanced methods such as variational inverse modeling, and Bayesian inference and stochastic sampling techniques. Future directions including other types of observations, other hydrocarbons being considered, and assessment of additional emission estimation methods will be discussed.

  8. The spectral energy distribution of powerful starburst galaxies - I. Modelling the radio continuum

    NASA Astrophysics Data System (ADS)

    Galvin, T. J.; Seymour, N.; Marvil, J.; Filipović, M. D.; Tothill, N. F. H.; McDermid, R. M.; Hurley-Walker, N.; Hancock, P. J.; Callingham, J. R.; Cook, R. H.; Norris, R. P.; Bell, M. E.; Dwarakanath, K. S.; For, B.; Gaensler, B. M.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2018-02-01

    We have acquired radio-continuum data between 70 MHz and 48 GHz for a sample of 19 southern starburst galaxies at moderate redshifts (0.067 < z < 0.227) with the aim of separating synchrotron and free-free emission components. Using a Bayesian framework, we find the radio continuum is rarely characterized well by a single power law, instead often exhibiting low-frequency turnovers below 500 MHz, steepening at mid to high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 and 500 MHz the radio continuum at low frequency (ν < 200 MHz) could be overestimated by upwards of a factor of 12 if a simple power-law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be α = -1.06, which is steeper than the canonical value of -0.8 for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution.

  9. A 12CO J = 4-->3 High-Velocity Cloud in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kim, Sungeun; Walsh, Wilfred; Xiao, Kecheng; Lane, Adair P.

    2005-10-01

    We present Antarctic Submillimeter Telescope and Remote Observatory observations of 12CO J=4-->3 and 12[C I] emission in the 30 Doradus complex in the Large Magellanic Cloud. We detected strong 12CO J=4-->3 emission toward R140, a multiple system of Wolf-Rayet stars located on the rim of the expanding H II shell surrounding the R136 cluster. We also detected a high-velocity gas component as a separate feature in the 12CO J=4-->3 spectrum. This component probably originates from molecular material accelerated as a result of the combined motion induced by the stellar winds and explosions of supernovae, including several fast-expanding H II shells in the complex. The lower limit on the total kinetic energy of the atomic and molecular gas component is ~2×1051 ergs, suggesting that this comprises only 20% of the total kinetic energy contained in the H II complex structure.

  10. Ultraviolet Observations of M-Type Symbiotic Stars

    NASA Astrophysics Data System (ADS)

    Michalitsianos, Andrew G.

    The significant differences revealed in high dispersion short wavelength spectra of two M-type symbiotic stars RW Hya (gM2 + pec) and RX Pup (M5 + pec) observed previously with IUE emphasizes the need for high resolution observations of a wide range of similar objects. The anomalies observed in high excitation lines in RX Pup of He II, N III], N IV], O III], C III], C IV and Si III] that show split line profiles, multiple component Doppler displaced components, and broadened blue wing emission structure in N III] and N IV] suggest motion in circumstellar material. In contrast, high dispersion UV spectra of RW Hya reveal narrow high excitation emission lines that give no suggestion of macroscopic motions in the circumstellar gas. We wish to extend observations of a selected number of symbiotic stars observed previously but in low resolution, to high dispersion in order to determine if particular M-type symbiotic stars exhibit anomalies in their line profile. As such, symbiotic stars exhibiting velocity structure in emission lines may form a subset of objects that are characterized by mass motions in their circumstellar envelops that create high excitation emission. UV line and continuum emission from other M-type symbiotics may arise from mainly photo-excitation processes that results from the intense radiation field associated with the hot secondary companion.

  11. Discrimination of biological and chemical threat simulants in residue mixtures on multiple substrates.

    PubMed

    Gottfried, Jennifer L

    2011-07-01

    The potential of laser-induced breakdown spectroscopy (LIBS) to discriminate biological and chemical threat simulant residues prepared on multiple substrates and in the presence of interferents has been explored. The simulant samples tested include Bacillus atrophaeus spores, Escherichia coli, MS-2 bacteriophage, α-hemolysin from Staphylococcus aureus, 2-chloroethyl ethyl sulfide, and dimethyl methylphosphonate. The residue samples were prepared on polycarbonate, stainless steel and aluminum foil substrates by Battelle Eastern Science and Technology Center. LIBS spectra were collected by Battelle on a portable LIBS instrument developed by A3 Technologies. This paper presents the chemometric analysis of the LIBS spectra using partial least-squares discriminant analysis (PLS-DA). The performance of PLS-DA models developed based on the full LIBS spectra, and selected emission intensities and ratios have been compared. The full-spectra models generally provided better classification results based on the inclusion of substrate emission features; however, the intensity/ratio models were able to correctly identify more types of simulant residues in the presence of interferents. The fusion of the two types of PLS-DA models resulted in a significant improvement in classification performance for models built using multiple substrates. In addition to identifying the major components of residue mixtures, minor components such as growth media and solvents can be identified with an appropriately designed PLS-DA model.

  12. The role of long-range transport and domestic emissions in determining atmospheric secondary inorganic particle concentrations across the UK

    NASA Astrophysics Data System (ADS)

    Vieno, M.; Heal, M. R.; Hallsworth, S.; Famulari, D.; Doherty, R. M.; Dore, A. J.; Tang, Y. S.; Braban, C. F.; Leaver, D.; Sutton, M. A.; Reis, S.

    2013-12-01

    Surface concentrations of secondary inorganic particle components over the UK have been analysed for 2001-2010 using the EMEP4UK regional atmospheric chemistry transport model. In early 2003 an episode of substantially elevated surface concentrations of ammonium nitrate was measured across the UK by the AGANET network. The EMEP4UK model was able accurately to represent both the long-term decadal surface concentrations and the episode in 2003. The latter was identified as consisting of three separate episodes, each of less than 1 month duration, in February, March and April. The primary cause of the elevated nitrate levels across the UK was meteorological, a persistent high pressure system, but whose varying location impacted the relative importance of transboundary vs. domestic emissions. Whilst long-range transport dominated the elevated nitrate in February, in contrast it was domestic emissions that mainly contributed to the March episode, and for the April episode both domestic emissions and long-range transport contributed. A prolonged episode such as the one in early 2003 can have substantial impact on annual average concentrations. The episode led to annual concentration differences at the regional scale of similar magnitude to those driven by long-term changes in precursor emissions over the full decade investigated here. The results demonstrate that a substantial part of the UK, particularly the south and south-east, may be close to or actually exceeding annual mean limit values because of import of inorganic aerosol components from continental Europe under specific conditions. The results reinforce the importance of employing multiple year simulations in the assessment of emissions reduction scenarios on PM concentrations and the need for international agreements to address the transboundary component of air pollution.

  13. Nitrous oxide emissions in cover crop-based corn production systems

    NASA Astrophysics Data System (ADS)

    Davis, Brian Wesley

    Nitrous oxide (N2O) is a potent greenhouse gas; the majority of N2O emissions are the result of agricultural management, particularly the application of N fertilizers to soils. The relationship of N2O emissions to varying sources of N (manures, mineral fertilizers, and cover crops) has not been well-evaluated. Here we discussed a novel methodology for estimating precipitation-induced pulses of N2O using flux measurements; results indicated that short-term intensive time-series sampling methods can adequately describe the magnitude of these pulses. We also evaluated the annual N2O emissions from corn-cover crop (Zea mays; cereal rye [Secale cereale], hairy vetch [Vicia villosa ], or biculture) production systems when fertilized with multiple rates of subsurface banded poultry litter, as compared with tillage incorporation or mineral fertilizer. N2O emissions increased exponentially with total N rate; tillage decreased emissions following cover crops with legume components, while the effect of mineral fertilizer was mixed across cover crops.

  14. RQL Fuel Shifting Sector Rig Test

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Haid, Daniel A.; Koopman, Frederick S.; Peschke, William O. T.; Siskind, Kenneth S.

    2004-01-01

    The low emissions potential of a Rich-Quench-Lean (RQL) combustor for use in the HIgh Speed Civil transport (HSCT) application was evaluated as part of the NASA Critical Propulsion Components (CPC) Program. Fuel shifting as an approach to combustor control was evaluated in a multiple bank RQL combustor, utilizing reduced scale quench technology implemented in a convoluted linear with quench plate concept.

  15. Synchrotron Self-Compton Emission from the Crab and Other Pulsars

    NASA Astrophysics Data System (ADS)

    Harding, Alice K.; Kalapotharakos, Constantinos

    2015-09-01

    Results of a simulation of synchrotron self-Compton (SSC) emission from a rotation-powered pulsar are presented. The radiating particles are assumed to be both accelerated primary electrons and a spectrum of electron-positron pairs produced in cascades near the polar cap. They follow trajectories in a slot gap using 3D force-free magnetic field geometry, gaining pitch angles through resonant cyclotron absorption of radio photons, radiating and scattering synchrotron emission at high altitudes out to and beyond the light cylinder. Full angular dependence of the synchrotron photon density is simulated in the scattering and all processes are treated in the inertial observer frame. Spectra for the Crab and Vela pulsars as well as two energetic millisecond pulsars, B1821-24 and B1937+21, are simulated using this model. The simulation of the Crab pulsar radiation can reproduce both the flux level and the shape of the observed optical to hard X-ray emission assuming a pair multiplicity of {M}+=3× {10}5, as well as the very-high-energy emission above 50 GeV detected by MAGIC and VERITAS, with both the synchrotron and SSC components reflecting the shape of the pair spectrum. Simulations of Vela, B1821-24, and B1937+21, for {M}+ up to 105, do not produce pair SSC emission that is detectable by current telescopes, indicating that only Crab-like pulsars produce significant SSC components. The pair synchrotron emission matches the observed X-ray spectrum of the millisecond pulsars, and the predicted peak of this emission at 1-10 MeV would be detectable with planned Compton telescopes.

  16. Climate mitigation is not the only benefit of a national energy system

    NASA Astrophysics Data System (ADS)

    Clack, C.

    2016-12-01

    Many speculate that the main driving force for a continental scale energy system is for climate mitigation. While this is a strong driver, there are multiple co-benefits that emerge from such a transition when purely driven by costs. These components could be managed within a planned system to provide a close-to-optimal solution that enhances the probability of realization. It is shown that these co-benefits of a continental scale electric system occur at costs lower than existing ones. That means there are multiple additional savings without extra costs or effort. The disadvantage is coordination between large geographic regions that could cause more complexity in planning. The main finding from different versions of the NEWS simulator is that carbon mitigation is enhanced by larger systems. In addition, there are increased jobs, reduced water consumption, Sulphur dioxide emissions, Nitrogen oxide emissions, a more distributed electric system and a lower cost of electricity.

  17. Organic light emitting device having multiple separate emissive layers

    DOEpatents

    Forrest, Stephen R [Ann Arbor, MI

    2012-03-27

    An organic light emitting device having multiple separate emissive layers is provided. Each emissive layer may define an exciton formation region, allowing exciton formation to occur across the entire emissive region. By aligning the energy levels of each emissive layer with the adjacent emissive layers, exciton formation in each layer may be improved. Devices incorporating multiple emissive layers with multiple exciton formation regions may exhibit improved performance, including internal quantum efficiencies of up to 100%.

  18. How can research on anthropogenic greenhouse gas flux quantification be better aligned with US climate change policy needs?

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.

    2014-12-01

    Scientific research on quantification of anthropogenic greenhouse gas emissions at national and sub-national scales within the US has advanced considerably in the last decade. Large investment has been made in building systems capable of observing greenhouse gases in the atmosphere at multiple scales, measuring direct anthropogenic fluxes near sources and modeling the linkages between fluxes and observed concentrations. Much of this research has been focused at improving the "verification" component of "monitoring, reporting, and verification" and indeed, has achieved successes in recent years. However, there are opportunities for ongoing scientific research to contribute critical new information to policymakers. In order to realize this contribution, additional but complementary, research foci must be emphasized. Examples include more focus on anthropogenic emission drivers, quantification at scales relevant to human decision-making, and exploration of cost versus uncertainty in observing/modeling systems. I will review what I think are the opportunities to better align scientific research with current and emerging US climate change policymaking. I will then explore a few examples of where expansion or alteration of greenhouse gas flux quantification research focus could better align with current and emerging US climate change policymaking such as embodied in the proposed EPA rule aimed at reducing emissions from US power plants, California's ongoing emissions reduction policymaking and aspirational emission reduction efforts in multiple US cities.

  19. Foreground Bias from Parametric Models of Far-IR Dust Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.

    2016-01-01

    We use simple toy models of far-IR dust emission to estimate the accuracy to which the polarization of the cosmic microwave background can be recovered using multi-frequency fits, if the parametric form chosen for the fitted dust model differs from the actual dust emission. Commonly used approximations to the far-IR dust spectrum yield CMB residuals comparable to or larger than the sensitivities expected for the next generation of CMB missions, despite fitting the combined CMB plus foreground emission to precision 0.1 percent or better. The Rayleigh-Jeans approximation to the dust spectrum biases the fitted dust spectral index by (Delta)(Beta)(sub d) = 0.2 and the inflationary B-mode amplitude by (Delta)(r) = 0.03. Fitting the dust to a modified blackbody at a single temperature biases the best-fit CMB by (Delta)(r) greater than 0.003 if the true dust spectrum contains multiple temperature components. A 13-parameter model fitting two temperature components reduces this bias by an order of magnitude if the true dust spectrum is in fact a simple superposition of emission at different temperatures, but fails at the level (Delta)(r) = 0.006 for dust whose spectral index varies with frequency. Restricting the observing frequencies to a narrow region near the foreground minimum reduces these biases for some dust spectra but can increase the bias for others. Data at THz frequencies surrounding the peak of the dust emission can mitigate these biases while providing a direct determination of the dust temperature profile.

  20. Tricolor emission of a fluorescent heteroditopic ligand over a concentration gradient of zinc(II) ions.

    PubMed

    Sreenath, Kesavapillai; Clark, Ronald J; Zhu, Lei

    2012-09-21

    The internal charge transfer (ICT) type fluoroionophore arylvinyl-bipy (bipy = 2,2'-bipyridyl) is covalently tethered to the spirolactam form of rhodamine to afford fluorescent heteroditopic ligand 4. Compound 4 can be excited in the visible region, the emission of which undergoes sequential bathochromic shifts over an increasing concentration gradient of Zn(ClO(4))(2) in acetonitrile. Coordination of Zn(2+) stabilizes the ICT excited state of the arylvinyl-bipy component of 4, leading to the first emission color shift from blue to green. At sufficiently high concentrations of Zn(ClO(4))(2), the nonfluorescent spirolactam component of 4 is transformed to the fluorescent rhodamine, which turns the emission color from green to orange via intramolecular fluorescence resonance energy transfer (FRET) from the Zn(2+)-bound arylvinyl-bipy fluorophore to rhodamine. While this work offers a new design of ratiometric chemosensors, in which sequential analyte-induced emission band shifts result in the sampling of multiple colors at different concentration ranges (i.e., from blue to green to orange as [Zn(2+)] increases in the current case), it also reveals the nuances of rhodamine spirolactam chemistry that have not been sufficiently addressed in the published literature. These issues include the ability of rhodamine spirolactam as a fluorescence quencher via electron transfer, and the slow kinetics of spirolactam ring-opening effected by Zn(2+) coordination under pH neutral aqueous conditions.

  1. The nature of pulsar radio emission

    NASA Astrophysics Data System (ADS)

    Dyks, J.; Rudak, B.; Demorest, P.

    2010-01-01

    High-quality averaged radio profiles of some pulsars exhibit double, highly symmetric features both in emission and in absorption. It is shown that both types of feature are produced by a split fan beam of extraordinary-mode curvature radiation that is emitted/absorbed by radially extended streams of magnetospheric plasma. With no emissivity in the plane of the stream, such a beam produces bifurcated emission components (BFCs) when our line of sight passes through the plane. An example of a double component created in this way is present in the averaged profile of the 5-ms pulsar J1012+5307. We show that the component can indeed be very well fitted by the textbook formula for the non-coherent beam of curvature radiation in the polarization state that is orthogonal to the plane of electron trajectory. The observed width of the BFC decreases with increasing frequency at a rate that confirms the curvature origin. Likewise, the double absorption features (double notches) are produced by the same beam of the extraordinary-mode curvature radiation, when it is eclipsed by thin plasma streams. The intrinsic property of curvature radiation to create bifurcated fan beams explains the double features in terms of a very natural geometry and implies the curvature origin of pulsar radio emission. Similarly, the `double conal' profiles of class D result from a cut through a wider stream with finite extent in magnetic azimuth. Therefore, their width reacts very slowly to changes of viewing geometry resulting from geodetic precession. The stream-cut interpretation implies a highly non-orthodox origin of both the famous S-swing of polarization angle and the low-frequency pulse broadening in D profiles. The azimuthal structure of polarization modes in the curvature radiation beam provides an explanation for the polarized `multiple imaging' and the edge depolarization of pulsar profiles.

  2. 40 CFR 75.16 - Special provisions for monitoring emissions from common, bypass, and multiple stacks for SO2...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. 75.16... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. (a... by the Administrator, such that these emissions are not underestimated. (e) Heat input rate. The...

  3. 40 CFR 75.16 - Special provisions for monitoring emissions from common, bypass, and multiple stacks for SO 2...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emissions from common, bypass, and multiple stacks for SO 2 emissions and heat input determinations. 75.16... emissions from common, bypass, and multiple stacks for SO 2 emissions and heat input determinations. (a... by the Administrator, such that these emissions are not underestimated. (e) Heat input rate. The...

  4. 40 CFR 75.16 - Special provisions for monitoring emissions from common, bypass, and multiple stacks for SO2...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. 75.16... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. (a... by the Administrator, such that these emissions are not underestimated. (e) Heat input rate. The...

  5. 40 CFR 75.16 - Special provisions for monitoring emissions from common, bypass, and multiple stacks for SO 2...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emissions from common, bypass, and multiple stacks for SO 2 emissions and heat input determinations. 75.16... emissions from common, bypass, and multiple stacks for SO 2 emissions and heat input determinations. (a... by the Administrator, such that these emissions are not underestimated. (e) Heat input rate. The...

  6. Synchrotron Self-Compton Emission from the Crab and Other Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Kalapotharakos, Konstantinos

    2015-01-01

    Results of a simulation of synchrotron-self Compton (SSC) emission from a rotation-powered pulsar are presented. The radiating particles are assumed to be both accelerated primary electrons and a spectrum of electron-positron pairs produced in cascades near the polar cap. They follow trajectories in a slot gap using 3D force-free magnetic field geometry, gaining pitch angles through resonant cyclotron absorption of radio photons, radiating and scattering synchrotron emission at high altitudes out to and beyond the light cylinder. Full angular dependence of the synchrotron photon density is simulated in the scattering and all processes are treated in the inertial observer frame. Spectra for the Crab and Vela pulsars as well as two energetic millisecond pulsars, B1821-24 and B1937+21 are simulated using this model. The simulation of the Crab pulsar radiation can reproduce both the flux level and the shape of the observed optical to hard X-ray emission assuming a pair multiplicity of M+ = 3x10(exp 5), as well as the very-high- energy emission above 50 GeV detected by MAGIC and VERITAS, with both the synchrotron and SSC components reflecting the shape of the pair spectrum. Simulations of Vela, B1821-24 and B1937+21, for M+ up to 10(exp 5), do not produce pair SSC emission that is detectable by current telescopes, indicating that only Crab-like pulsars produce significant SSC components. The pair synchrotron emission matches the observed X-ray spectrum of the millisecond pulsars and the predicted peak of this emission at 1-10 MeV would be detectable with planned Compton telescopes.

  7. CO in Protostars (COPS): Herschel-SPIRE Spectroscopy of Embedded Protostars

    NASA Astrophysics Data System (ADS)

    Yang, Yao-Lun; Green, Joel D.; Evans, Neal J., II; Lee, Jeong-Eun; Jørgensen, Jes K.; Kristensen, Lars E.; Mottram, Joseph C.; Herczeg, Gregory; Karska, Agata; Dionatos, Odysseas; Bergin, Edwin A.; Bouwman, Jeroen; van Dishoeck, Ewine F.; van Kempen, Tim A.; Larson, Rebecca L.; Yıldız, Umut A.

    2018-06-01

    We present full spectral scans from 200 to 670 μm of 26 Class 0+I protostellar sources obtained with Herschel-SPIRE as part of the “COPS-SPIRE” Open Time program, complementary to the DIGIT and WISH Key Programs. Based on our nearly continuous, line-free spectra from 200 to 670 μm, the calculated bolometric luminosities (L bol) increase by 50% on average, and the bolometric temperatures (T bol) decrease by 10% on average, in comparison with the measurements without Herschel. Fifteen protostars have the same class using T bol and L bol/L smm. We identify rotational transitions of CO lines from J=4\\to 3 to J=13\\to 12, along with emission lines of 13CO, HCO+, H2O, and [C I]. The ratios of 12CO to 13CO indicate that 12CO emission remains optically thick for J up < 13. We fit up to four components of temperature from the rotational diagram with flexible break points to separate the components. The distribution of rotational temperatures shows a primary population around 100 K with a secondary population at ∼350 K. We quantify the correlations of each line pair found in our data set and find that the strength of the correlation of CO lines decreases as the difference between J levels between two CO lines increases. The multiple origins of CO emission previously revealed by velocity-resolved profiles are consistent with this smooth distribution if each physical component contributes to a wide range of CO lines with significant overlap in the CO ladder. We investigate the spatial extent of CO emission and find that the morphology is more centrally peaked and less bipolar at high-J lines. We find the CO emission observed with SPIRE related to outflows, which consists of two components, the entrained gas and shocked gas, as revealed by our rotational diagram analysis, as well as the studies with velocity-resolved CO emission. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: III. Components of diesel and gasoline engine exhausts, hardwood smoke and simulated downwind coal emissions driving non-cancer biological responses in rodents.

    PubMed

    Mauderly, Joe L; Seilkop, Steven K

    2014-09-01

    An approach to identify causal components of complex air pollution mixtures was explored. Rats and mice were exposed by inhalation 6 h daily for 1 week or 6 months to dilutions of simulated downwind coal emissions, diesel and gasoline exhausts and wood smoke. Organ weights, hematology, serum chemistry, bronchoalveolar lavage, central vascular and respiratory allergic responses were measured. Multiple additive regression tree (MART) analysis of the combined database ranked 45 exposure (predictor) variables for importance to models best fitting 47 significant responses. Single-predictor concentration-response data were examined for evidence of single response functions across all exposure groups. Replication of the responses by the combined influences of the two most important predictors was tested. Statistical power was limited by inclusion of only four mixtures, albeit in multiple concentrations each and with particles removed for some groups. Results gave suggestive or strong evidence of causation of 19 of the 47 responses. The top two predictors of the 19 responses included only 12 organic and 6 inorganic species or classes. An increase in red blood cell count of rats by ammonia and pro-atherosclerotic vascular responses of mice by inorganic gases yielded the strongest evidence for causation and the best opportunity for confirmation. The former was a novel finding; the latter was consistent with other results. The results demonstrated the plausibility of identifying putative causal components of highly complex mixtures, given a database in which the ratios of the components are varied sufficiently and exposures and response measurements are conducted using a consistent protocol.

  9. Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vidal, M.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in Iν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H II regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40deg > l > -90deg is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the "Fermi bubble/microwave haze", making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20deg long filament seen in Hα at high Galactic latitude. Finally, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2σ upper limit of 1.6% in the Perseus region.

  10. Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; ...

    2016-09-20

    In this paper, we discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent withmore » a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I ν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5–20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40deg > l > -90deg is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the “Fermi bubble/microwave haze”, making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20deg long filament seen in Hα at high Galactic latitude. In conclusion, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2σ upper limit of 1.6% in the Perseus region.« less

  11. Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    In this paper, we discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent withmore » a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I ν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5–20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40deg > l > -90deg is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the “Fermi bubble/microwave haze”, making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20deg long filament seen in Hα at high Galactic latitude. In conclusion, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2σ upper limit of 1.6% in the Perseus region.« less

  12. Toward a Better Understanding of the GRB Phenomenon: a New Model for GRB Prompt Emission and its Effects on the New LiNT- Epeak,irest,NT Relation

    NASA Astrophysics Data System (ADS)

    Guiriec, S.; Kouveliotou, C.; Daigne, F.; Zhang, B.; Hascoët, R.; Nemmen, R. S.; Thompson, D. J.; Bhat, P. N.; Gehrels, N.; Gonzalez, M. M.; Kaneko, Y.; McEnery, J.; Mochkovitch, R.; Racusin, J. L.; Ryde, F.; Sacahui, J. R.; Ünsal, A. M.

    2015-07-01

    Gamma-ray burst (GRB) prompt emission spectra in the keV-MeV energy range are usually considered to be adequately fitted with the empirical Band function. Recent observations with the Fermi Gamma-ray Space Telescope (Fermi) revealed deviations from the Band function, sometimes in the form of an additional blackbody (BB) component, while on other occasions in the form of an additional power law (PL) component extending to high energies. In this article we investigate the possibility that the three components may be present simultaneously in the prompt emission spectra of two very bright GRBs (080916C and 090926A) observed with Fermi, and how the three components may affect the overall shape of the spectra. While the two GRBs are very different when fitted to a single Band function, they look like “twins” in the three-component scenario. Through fine-time spectroscopy down to the 100 ms timescale, we follow the evolution of the various components. We succeed in reducing the number of free parameters in the three-component model, which results in a new semi-empirical model—but with physical motivations—to be competitive with the Band function in terms of number of degrees of freedom. From this analysis using multiple components, the Band function is globally the most intense component, although the additional PL can overpower the others in sharp time structures. The Band function and the BB component are the most intense at early times and globally fade across the burst duration. The additional PL is the most intense component at late time and may be correlated with the extended high-energy emission observed thousands of seconds after the burst with Fermi/Large Area Telescope. Unexpectedly, this analysis also shows that the additional PL may be present from the very beginning of the burst, where it may even overpower the other components at low energy. We investigate the effect of the three components on the new time-resolved luminosity-hardness relation in both the observer and rest frames and show that a strong correlation exists between the flux of the non-thermal Band function and its Epeak only when the three components are fitted simultaneously to the data (i.e., {F}i{NT}-{E}{peak,i}{NT} relation). In addition, this result points toward a universal relation between those two quantities when transposed to the central engine rest frame for all GRBs (i.e., {L}i{NT}-{E}{peak,i}{rest,{NT}} relation). We discuss a possible theoretical interpretation of the three spectral components within this new empirical model. We suggest that (i) the BB component may be interpreted as the photosphere emission of a magnetized relativistic outflow, (ii) the Band component has synchrotron radiation in an optically thin region above the photosphere, either from internal shocks or magnetic field dissipation, and (iii) the extra PL component extending to high energies likely has an inverse Compton origin of some sort, even though its extension to a much lower energy remains a mystery.

  13. Polarization of edge emission from III-nitride light emitting diodes of emission wavelength from 395 to 455 nm

    NASA Astrophysics Data System (ADS)

    Jia, Chuanyu; Yu, Tongjun; Mu, Sen; Pan, Yaobo; Yang, Zhijian; Chen, Zhizhong; Qin, Zhixin; Zhang, Guoyi

    2007-05-01

    Polarization-resolved edge-emitting electroluminescence of InGaN /GaN multiple quantum well (MQW) light emitting diodes (LEDs) from 395to455nm was measured. Polarization ratio decreased from 3.2 of near-ultraviolet LEDs (395nm) to 1.9 of blue LEDs (455nm). Based on TE mode dominant emissions in InGaN /GaN MQWs, compressive strain in well region favors TE mode, indium induced quantum-dot-like behavior leads to an increased TM component. As wavelength increased, indium enhanced quantum-dot-like behavior became obvious and E ‖C electroluminescence signal increased thus lower polarization ratio. Electroluminescence spectrum shifts confirmed that quantum dotlike behaviors rather than strain might be dominant in modifying luminescence mode of InGaN /GaN MQWs from near ultraviolet to blue.

  14. The role of long-range transport and domestic emissions in determining atmospheric secondary inorganic particle concentrations across the UK

    NASA Astrophysics Data System (ADS)

    Vieno, M.; Heal, M. R.; Hallsworth, S.; Famulari, D.; Doherty, R. M.; Dore, A. J.; Tang, Y. S.; Braban, C. F.; Leaver, D.; Sutton, M. A.; Reis, S.

    2014-08-01

    Surface concentrations of secondary inorganic particle components over the UK have been analysed for 2001-2010 using the EMEP4UK regional atmospheric chemistry transport model and evaluated against measurements. Gas/particle partitioning in the EMEP4UK model simulations used a bulk approach, which may lead to uncertainties in simulated secondary inorganic aerosol. However, model simulations were able to accurately represent both the long-term decadal surface concentrations of particle sulfate and nitrate and an episode in early 2003 of substantially elevated nitrate measured across the UK by the AGANet network. The latter was identified as consisting of three separate episodes, each of less than 1 month duration, in February, March and April. The primary cause of the elevated nitrate levels across the UK was meteorological: a persistent high-pressure system, whose varying location impacted the relative importance of transboundary versus domestic emissions. Whilst long-range transport dominated the elevated nitrate in February, in contrast it was domestic emissions that mainly contributed to the March episode, and for the April episode both domestic emissions and long-range transport contributed. A prolonged episode such as the one in early 2003 can have substantial impact on annual average concentrations. The episode led to annual concentration differences at the regional scale of similar magnitude to those driven by long-term changes in precursor emissions over the full decade investigated here. The results demonstrate that a substantial part of the UK, particularly the south and southeast, may be close to or exceeding annual mean limit values because of import of inorganic aerosol components from continental Europe under specific conditions. The results reinforce the importance of employing multiple year simulations in the assessment of emissions reduction scenarios on particulate matter concentrations and the need for international agreements to address the transboundary component of air pollution.

  15. NUCLEAR X-RAY PROPERTIES OF THE PECULIAR RADIO-LOUD HIDDEN AGN 4C+29.30

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolewska, M. A.; Siemiginowska, Aneta; Migliori, G.

    2012-10-20

    We present results from a study of nuclear emission from a nearby radio galaxy, 4C+29.30, over a broad 0.5-200 keV X-ray band. This study used new XMM-Newton ({approx}17 ks) and Chandra ({approx}300 ks) data, and archival Swift/BAT data from the 58 month catalog. The hard (>2 keV) X-ray spectrum of 4C+29.30 can be decomposed into an intrinsic hard power law ({Gamma} {approx} 1.56) modified by a cold absorber with an intrinsic column density N {sub H,z} {approx} 5 Multiplication-Sign 10{sup 23} cm{sup -2}, and its reflection (|{Omega}/2{pi}| {approx} 0.3) from a neutral matter including a narrow iron K{alpha} emission linemore » at a rest-frame energy {approx}6.4 keV. The reflected component is less absorbed than the intrinsic one with an upper limit on the absorbing column of N {sup refl} {sub H,z} < 2.5 Multiplication-Sign 10{sup 22} cm{sup -2}. The X-ray spectrum varied between the XMM-Newton and Chandra observations. We show that a scenario invoking variations of the normalization of the power law is favored over a model with variable intrinsic column density. X-rays in the 0.5-2 keV band are dominated by diffuse emission modeled with a thermal bremsstrahlung component with temperature {approx}0.7 keV, and contain only a marginal contribution from the scattered power-law component. We hypothesize that 4C+29.30 belongs to a class of 'hidden' active galactic nuclei containing a geometrically thick torus. However, unlike the majority of hidden AGNs, 4C+29.30 is radio-loud. Correlations between the scattering fraction and Eddington luminosity ratio, and between black hole mass and stellar velocity dispersion, imply that 4C+29.30 hosts a black hole with {approx}10{sup 8} M {sub Sun} mass.« less

  16. Water in star-forming regions with Herschel (WISH). II. Evolution of 557 GHz 110-101 emission in low-mass protostars

    NASA Astrophysics Data System (ADS)

    Kristensen, L. E.; van Dishoeck, E. F.; Bergin, E. A.; Visser, R.; Yıldız, U. A.; San Jose-Garcia, I.; Jørgensen, J. K.; Herczeg, G. J.; Johnstone, D.; Wampfler, S. F.; Benz, A. O.; Bruderer, S.; Cabrit, S.; Caselli, P.; Doty, S. D.; Harsono, D.; Herpin, F.; Hogerheijde, M. R.; Karska, A.; van Kempen, T. A.; Liseau, R.; Nisini, B.; Tafalla, M.; van der Tak, F.; Wyrowski, F.

    2012-06-01

    Context. Water is a key tracer of dynamics and chemistry in low-mass star-forming regions, but spectrally resolved observations have so far been limited in sensitivity and angular resolution, and only data from the brightest low-mass protostars have been published. Aims: The first systematic survey of spectrally resolved water emission in 29 low-mass (L < 40 L⊙) protostellar objects is presented. The sources cover a range of luminosities and evolutionary states. The aim is to characterise the line profiles to distinguish physical components in the beam and examine how water emission changes with protostellar evolution. Methods: H2O was observed in the ground-state 110-101 transition at 557 GHz (Eup/kB ~ 60 K) as single-point observations with the Heterodyne Instrument for the Far-Infrared (HIFI) on Herschel in 29 deeply embedded Class 0 and I low-mass protostars. Complementary far-IR and sub-mm continuum data (including PACS data from our programme) are used to constrain the spectral energy distribution (SED) of each source. H2O intensities are compared to inferred envelope properties, e.g., mass and density, outflow properties and CO 3-2 emission. Results: H2O emission is detected in all objects except one (TMC1A). The line profiles are complex and consist of several kinematic components tracing different physical regions in each system. In particular, the profiles are typically dominated by a broad Gaussian emission feature, indicating that the bulk of the water emission arises in outflows, not in the quiescent envelope. Several sources show multiple shock components appearing in either emission or absorption, thus constraining the internal geometry of the system. Furthermore, the components include inverse P-Cygni profiles in seven sources (six Class 0, one Class I) indicative of infalling envelopes, and regular P-Cygni profiles in four sources (three Class I, one Class 0) indicative of expanding envelopes. Molecular "bullets" moving at ≳50 km s-1 with respect to the source are detected in four Class 0 sources; three of these sources were not known to harbour bullets previously. In the outflow, the H2O/CO abundance ratio as a function of velocity is nearly the same for all line wings, increasing from 10-3 at low velocities (<5 km s-1) to ≳10-1 at high velocities (>10 km s-1). The water abundance in the outer cold envelope is low, ≳10-10. The different H2O profile components show a clear evolutionary trend: in the younger Class 0 sources the emission is dominated by outflow components originating inside an infalling envelope. When large-scale infall diminishes during the Class I phase, the outflow weakens and H2O emission all but disappears. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org

  17. Developing a Mouse Model of Sensory and Cognitive Deficits for Multiple Sclerosis

    DTIC Science & Technology

    2012-07-01

    ABRs and otoacoustic emissions. More sophisticates measures, such as neural processing of binaural responses are typically performed in rats, guinea...ears we are able to calculate the binaural component of the EEGs for comparison of wild type and Claudin 11 knockout responses. We are awaiting the...knockout of the Claudin 11 gene. 2. Development of a novel anesthesia protocol to measure binaural auditory signals in the superior olivary complex of

  18. Feasibility of Rapid Multitracer PET Tumor Imaging

    NASA Astrophysics Data System (ADS)

    Kadrmas, D. J.; Rust, T. C.

    2005-10-01

    Positron emission tomography (PET) can characterize different aspects of tumor physiology using various tracers. PET scans are usually performed using only one tracer since there is no explicit signal for distinguishing multiple tracers. We tested the feasibility of rapidly imaging multiple PET tracers using dynamic imaging techniques, where the signals from each tracer are separated based upon differences in tracer half-life, kinetics, and distribution. Time-activity curve populations for FDG, acetate, ATSM, and PTSM were simulated using appropriate compartment models, and noisy dual-tracer curves were computed by shifting and adding the single-tracer curves. Single-tracer components were then estimated from dual-tracer data using two methods: principal component analysis (PCA)-based fits of single-tracer components to multitracer data, and parallel multitracer compartment models estimating single-tracer rate parameters from multitracer time-activity curves. The PCA analysis found that there is information content present for separating multitracer data, and that tracer separability depends upon tracer kinetics, injection order and timing. Multitracer compartment modeling recovered rate parameters for individual tracers with good accuracy but somewhat higher statistical uncertainty than single-tracer results when the injection delay was >10 min. These approaches to processing rapid multitracer PET data may potentially provide a new tool for characterizing multiple aspects of tumor physiology in vivo.

  19. Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore.

    PubMed

    Rich, Ryan M; Stankowska, Dorota L; Maliwal, Badri P; Sørensen, Thomas Just; Laursen, Bo W; Krishnamoorthy, Raghu R; Gryczynski, Zygmunt; Borejdo, Julian; Gryczynski, Ignacy; Fudala, Rafal

    2013-02-01

    Sample autofluorescence (fluorescence of inherent components of tissue and fixative-induced fluorescence) is a significant problem in direct imaging of molecular processes in biological samples. A large variety of naturally occurring fluorescent components in tissue results in broad emission that overlaps the emission of typical fluorescent dyes used for tissue labeling. In addition, autofluorescence is characterized by complex fluorescence intensity decay composed of multiple components whose lifetimes range from sub-nanoseconds to a few nanoseconds. For these reasons, the real fluorescence signal of the probe is difficult to separate from the unwanted autofluorescence. Here we present a method for reducing the autofluorescence problem by utilizing an azadioxatriangulenium (ADOTA) dye with a fluorescence lifetime of approximately 15 ns, much longer than those of most of the components of autofluorescence. A probe with such a long lifetime enables us to use time-gated intensity imaging to separate the signal of the targeting dye from the autofluorescence. We have shown experimentally that by discarding photons detected within the first 20 ns of the excitation pulse, the signal-to-background ratio is improved fivefold. This time-gating eliminates over 96 % of autofluorescence. Analysis using a variable time-gate may enable quantitative determination of the bound probe without the contributions from the background.

  20. Magneto acoustic emission apparatus for testing materials for embrittlement

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Min, Namkung (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1990-01-01

    A method and apparatus for testing steel components for temper embrittlement uses magneto-acoustic emission to nondestructively evaluate the component. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an ac current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a dc current to the electromagnets, then turning the magnets off and observing the residual magnetic induction.

  1. Jet Stability and the Generation of Superluminal and Stationary Components

    NASA Technical Reports Server (NTRS)

    Agudo, Ivan; Gomez, Jose-Luis; Marti, Jose-Maria; Ibanez, Jose-Maria; Marscher, Alan P.; Alberdi, Antonio; Aloy, Miguel-Angel; Hardee, Philip E.

    2001-01-01

    We present a numerical simulation of the response of an expanding relativistic jet to the ejection of a superluminal component. The simulation has been performed with a relativistic time-dependent hydrodynamical code from which simulated radio maps are computed by integrating the transfer equations for synchrotron radiation. The interaction of the superluminal component with the underlying jet results in the formation of multiple conical shocks behind the main perturbation. These trailing components can be easily distinguished because they appear to be released from the primary superluminal component instead of being ejected from the core. Their oblique nature should also result in distinct polarization properties. Those appearing closer to the core show small apparent motions and a very slow secular decrease in brightness and could be identified as stationary components. Those appearing farther downstream are weaker and can reach superluminal apparent motions. The existence of these trailing components indicates that not all observed components necessarily represent major perturbations at the jet inlet; rather, multiple emission components can be generated by a single disturbance in the jet. While the superluminal component associated with the primary perturbation exhibits a rather stable pattern speed, trailing components have velocities that increase with distance from the core but move at less than the jet speed. The trailing components exhibit motion and structure consistent with the triggering of pinch modes by the superluminal component. The increase in velocity of the trailing components is an indirect consequence of the acceleration of the expanding fluid, which is assumed to be relativistically hot; if observed, such accelerations would therefore favor an electron-positron (as opposed to proton rest mass) dominated jet.

  2. Effects of a suppressor tone on distortion product otoacoustic emissions fine structure: why a universal suppressor level is not a practical solution to obtaining single-generator DP-grams.

    PubMed

    Dhar, Sumitrajit; Shaffer, Lauren A

    2004-12-01

    The use of a suppressor tone has been proposed as the method of choice in obtaining single-generator distortion product (DP) grams, the speculation being that such DP grams will be more predictive of hearing thresholds. Current distortion product otoacoustic emissions (DPOAE) theory points to the ear canal DPOAE signal being a complex interaction between multiple components. The effectiveness of a suppressor tone is predicted to be dependent entirely on the relative levels of these components. We examine the validity of using a suppressor tone through a detailed examination of the effects of a suppressor on DPOAE fine structure in individual ears. DPOAE fine structure, recorded in 10 normal-hearing individuals with a suppressor tone at 45, 55, and 65 dB SPL, was compared with recordings without a suppressor. Behavioral hearing thresholds were also measured in the same subjects, using 2-dB steps. The effect of the suppressor tone on DPOAE fine structure varied between ears and was dependent on frequency within ears. Correlation between hearing thresholds and DPOAE level measured without a suppressor was similar to previous reports. The effects of the suppressor are explained in the theoretical framework of a model involving multiple DPOAE components. Our results suggest that a suppressor tone can have highly variable effects on fine structure across individuals or even across frequency within one ear, thereby making the use of a suppressor less viable as a clinical tool for obtaining single-generator DP grams.

  3. Particulate matter chemical component concentrations and sources in settings of household solid fuel use.

    PubMed

    Secrest, M H; Schauer, J J; Carter, E M; Baumgartner, J

    2017-11-01

    Particulate matter (PM) air pollution derives from combustion and non-combustion sources and consists of various chemical species that may differentially impact human health and climate. Previous reviews of PM chemical component concentrations and sources focus on high-income urban settings, which likely differ from the low- and middle-income settings where solid fuel (ie, coal, biomass) is commonly burned for cooking and heating. We aimed to summarize the concentrations of PM chemical components and their contributing sources in settings where solid fuel is burned. We searched the literature for studies that reported PM component concentrations from homes, personal exposures, and direct stove emissions under uncontrolled, real-world conditions. We calculated weighted mean daily concentrations for select PM components and compared sources of PM determined by source apportionment. Our search criteria yielded 48 studies conducted in 12 countries. Weighted mean daily cooking area concentrations of elemental carbon, organic carbon, and benzo(a)pyrene were 18.8 μg m -3 , 74.0 μg m -3 , and 155 ng m -3 , respectively. Solid fuel combustion explained 29%-48% of principal component/factor analysis variance and 41%-87% of PM mass determined by positive matrix factorization. Multiple indoor and outdoor sources impacted PM concentrations and composition in these settings, including solid fuel burning, mobile emissions, dust, and solid waste burning. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Instrumentation for simultaneous kinetic imaging of multiple fluorophores in single living cells

    NASA Astrophysics Data System (ADS)

    Morris, Stephen J.; Beatty, Diane M.; Welling, Larry W.; Wiegmann, Thomas B.

    1991-05-01

    Low-light fluorescence video microscopy has established itself as an excellent method for investigations of cell dynamics. There is a growing interest in resolving multiple images of 'ratio' fluorophores like indo or BCECF or the emission from multiple dyes placed in the same cell system. For rapid kinetic studies, the problems of photodynamic damage and photobleaching on one hand and the need for good spatial and temporal resolution on the other, press the resolution of the instrumentation. Rapid resolution of multiple probes at multiple wavelengths presents a third set of problems of exciting the probes and appropriately imaging the emitted light. The authors have designed a new real-time low-light fluorescence video microscope for capturing intensified images of up to four dyes contained in the same cell system. These can be two dual-emission wavelength 'ratio' dyes or multiple dyes. The optics allow simultaneous excitation of up to four fluorophores and the real-time (30 frames/second) capture of four separate fluorescence emission images. Each emission wavelength is imaged simultaneously by one of four cameras, then digitized and appropriately combined at standard video frame rates to be stored at high resolution on tape or video disk for further off-line correction and analysis. The design has no moving parts in its optical train, which overcomes a number of technical difficulties encountered in filter wheel or mechanical shutter designs for multiple imaging. The instrument can be assembled form off-the-shelf components. Coupled to compatible image processing software utilizing PC-AT computers, it can be realized for relatively low cost. Two examples of simultaneous multi-parameter imaging are presented. Synchronous observations of calcium and pH distribution in kidney epithelial cells, loaded with both indo-1 and SNARF-1TM, show that both are altered in response to ionomycin treatment; however, the kinetics for the two changes are quite different. Intracellular calcium increases rapidly when the bath Ca2+ is raised. The pH remains stable for several seconds, then suddenly collapses. The second example concerns fusion of human red blood cells (RBC) to fibroblasts expressing influenza hemagglutinin. Movement of soluble and membrane-bound dyes follow different kinetics, depending upon the molecular weight of the soluble dye. Furthermore, the swelling of the RBC occurs after the onset of fusion, and therefore cannot provide the driving force.

  5. Toward a better understanding of the GRB phenomenon: a new model for GRB prompt emission and its effects on the new L i NT$-$E peak,i rest,NT relation

    DOE PAGES

    Guiriec, S.; Kouveliotou, C.; Daigne, F.; ...

    2015-07-09

    Gamma-ray burst (GRB) prompt emission spectra in the keV–MeV energy range are usually considered to be adequately fitted with the empirical Band function. Recent observations with the Fermi Gamma-ray Space Telescope (Fermi) revealed deviations from the Band function, sometimes in the form of an additional blackbody (BB) component, while on other occasions in the form of an additional power law (PL) component extending to high energies. Here in this article we investigate the possibility that the three components may be present simultaneously in the prompt emission spectra of two very bright GRBs (080916C and 090926A) observed with Fermi, and how the three components may affect the overall shape of the spectra. While the two GRBs are very different when fitted to a single Band function, they look like "twins" in the three-component scenario. Through fine-time spectroscopy down to the 100 ms timescale, we follow the evolution of the various components. We succeed in reducing the number of free parameters in the three-component model, which results in a new semi-empirical model—but with physical motivations—to be competitive with the Band function in terms of number of degrees of freedom. From this analysis using multiple components, the Band function is globally the most intense component, although the additional PL can overpower the others in sharp time structures. The Band function and the BB component are the most intense at early times and globally fade across the burst duration. The additional PL is the most intense component at late time and may be correlated with the extended high-energy emission observed thousands of seconds after the burst with Fermi/Large Area Telescope. Unexpectedly, this analysis also shows that the additional PL may be present from the very beginning of the burst, where it may even overpower the other components at low energy. We investigate the effect of the three components on the new time-resolved luminosity–hardness relation in both the observer and rest frames and show that a strong correlation exists between the flux of the non-thermal Band function and its E peak only when the three components are fitted simultaneously to the data (i.e.,more » $${F}_{i}^{\\mathrm{NT}}$$–$${E}_{\\mathrm{peak},i}^{\\mathrm{NT}}$$ relation). In addition, this result points toward a universal relation between those two quantities when transposed to the central engine rest frame for all GRBs (i.e., $${L}_{i}^{\\mathrm{NT}}$$–$${E}_{\\mathrm{peak},i}^{\\mathrm{rest},\\mathrm{NT}}$$ relation). We discuss a possible theoretical interpretation of the three spectral components within this new empirical model. Lastly, we suggest that (i) the BB component may be interpreted as the photosphere emission of a magnetized relativistic outflow, (ii) the Band component has synchrotron radiation in an optically thin region above the photosphere, either from internal shocks or magnetic field dissipation, and (iii) the extra PL component extending to high energies likely has an inverse Compton origin of some sort, even though its extension to a much lower energy remains a mystery.« less

  6. Hot gas, cold gas and sub-haloes in a Lyman α blob at redshift 2.38

    NASA Astrophysics Data System (ADS)

    Francis, Paul. J.; Dopita, Michael A.; Colbert, James W.; Palunas, Povilas; Scarlata, Claudia; Teplitz, Harry; Williger, Gerard M.; Woodgate, Bruce E.

    2013-01-01

    We present integral field spectroscopy of a Lyman α blob at redshift 2.38, with a spectral resolution three times better than previous published work. As with previous observations, the blob has a chaotic velocity structure, much of which breaks up into multiple components. Our spectroscopy shows, however, that some of these multiple components are extremely narrow: they have velocity widths of less than 100 km s- 1. Combining these new data with previous observations, we argue that this Lyman α blob resides in a dark matter halo of around 1013 M⊙. At the centre of this halo are two compact red massive galaxies. They are surrounded by hot gas, probably a superwind from merger-induced nuclear starbursts. This hot gas has shut down star formation in the non-nuclear region of these galaxies, leading to their red-and-dead colours. A filament or lump of infalling cold gas is colliding with the hot gas phase and being shocked to high temperatures, while still around 30 kpc from the red galaxies. The shock region is self-absorbed in Lyman α but produces C iv emission. Further out still, the cold gas in a number of sub-haloes is being lit up, most likely by a combination of tidally triggered star formation, bow shocks as they plough through the hot halo medium, resonant scattering of Lyman α from the filament collision and tidal stripping of gas which enhances the Lyman α escape fraction. The observed Lyman α emission from the blob is dominated by the sum of the emission from these sub-haloes. On statistical grounds, we argue that Lyman α blobs are not greatly elongated in shape and that most are not powered by ionization or scattering from a central active galactic nucleus or starburst.

  7. Interpretation of satellite airglow observations during the March 22, 1979, magnetic storm, using the coupled ionosphere-thermosphere model developed at University College, London

    NASA Technical Reports Server (NTRS)

    Parish, H. F.; Gladstone, G. R.; Chakrabarti, S.

    1994-01-01

    The University of California, Berkeley, extreme ultraviolet spectrometer aboard the U.S. Air Force STP 78-1 satellite measured emission features in the Earth's dayglow due to neutral and ionized species in the atmosphere, in the 35 to 140-nm range. The spectrometer was operating between March 1979 and March 1980, including the period of the magnetic storm on March 22, 1979. Some of these measurements are interpreted using the predictions of the three-dimensional time-dependent coupled ionosphere-thermosphere model developed at University College, London. The observations show a reduction in the atomic oxygen 130.4-nm airglow emission at high northern latitudes following the storm. Model simulations show that this reduction in 130.4-nm emission is associated with an increase in the O2/O ratio. Analysis of model results using electron transport and radiative transport codes show that the brightness of 130.4-nm emission at high latitudes due to resonantly scattered sunlight is approximately twice that due to photoelectron impact excitation. However, the observed decrease in the brightness at high northern latitudes is mainly due to a change in the photoelectron impact source, which contributes approximately 75% of the total, as well as its multiple scattering component; for the photoelectron impact source at 70 deg latitude and 200 km altitude, the reduction in multiple scattering is 1.5 times greater than the reduction in the initial excitation. The reduction in the airglow emission is visible only in the norther n hemisphere because the south pole was not sunlit over the storm period. The comparison of model results with observations suggests that 130.4-nm emission may be useful as a tracer for global changes in the concentration of atomic energy.

  8. Estimating the Concentration and Biodegradability of Organic Matter in 22 Wastewater Treatment Plants Using Fluorescence Excitation Emission Matrices and Parallel Factor Analysis

    PubMed Central

    Yang, Liyang; Shin, Hyun-Sang; Hur, Jin

    2014-01-01

    This study aimed at monitoring the changes of fluorescent components in wastewater samples from 22 Korean biological wastewater treatment plants and exploring their prediction capabilities for total organic carbon (TOC), dissolved organic carbon (DOC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), and the biodegradability of the wastewater using an optical sensing technique based on fluorescence excitation emission matrices and parallel factor analysis (EEM-PARAFAC). Three fluorescent components were identified from the samples by using EEM-PARAFAC, including protein-like (C1), fulvic-like (C2) and humic-like (C3) components. C1 showed the highest removal efficiencies for all the treatment types investigated here (69% ± 26%–81% ± 8%), followed by C2 (37% ± 27%–65% ± 35%), while humic-like component (i.e., C3) tended to be accumulated during the biological treatment processes. The percentage of C1 in total fluorescence (%C1) decreased from 54% ± 8% in the influents to 28% ± 8% in the effluents, while those of C2 and C3 (%C2 and %C3) increased from 43% ± 6% to 62% ± 9% and from 3% ± 7% to 10% ± 8%, respectively. The concentrations of TOC, DOC, BOD, and COD were the most correlated with the fluorescence intensity (Fmax) of C1 (r = 0.790–0.817), as compared with the other two fluorescent components. The prediction capability of C1 for TOC, BOD, and COD were improved by using multiple regression based on Fmax of C1 and suspended solids (SS) (r = 0.856–0.865), both of which can be easily monitored in situ. The biodegradability of organic matter in BOD/COD were significantly correlated with each PARAFAC component and their combinations (r = −0.598–0.613, p < 0.001), with the highest correlation coefficient shown for %C1. The estimation capability was further enhanced by using multiple regressions based on %C1, %C2 and C3/C2 (r = −0.691). PMID:24448170

  9. Multiwavelength Observations of GRB 110731A: GeV Emission From Onset to Afterglow

    DOE PAGES

    Ackermann, M.; Ajello, M.; Asano, K.; ...

    2013-01-09

    In this paper, we report on the multiwavelength observations of the bright, long gamma-ray burst GRB 110731A, by the Fermi and Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that GRB 110731A shares many features with bright Large Area Telescope bursts observed by Fermi during the first three years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power-law component and temporally extended high-energy emission. In addition, this is the first GRB for whichmore » simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. Lastly, the observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparency constraint for the prompt signal and the spectral and temporal analysis of the forward-shock afterglow emission independently lead to an estimate of the bulk Lorentz factor of the jet Γ ~ 500-550.« less

  10. Multiwavelength Observations of GRB 110731A: GeV Emission from Onset to Afterglow

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Asano, K.; Baldini, L.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bellazzini, R.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Granot, J.; Greiner, J.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jackson, M. S.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Mészáros, P.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Romoli, C.; Roth, M.; Ryde, F.; Sanchez, D. A.; Sgrò, C.; Siskind, E. J.; Sonbas, E.; Spinelli, P.; Stamatikos, M.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Gruber, D.; Bhat, P. N.; Bissaldi, E.; Briggs, M. S.; Burgess, J. M.; Connaughton, V.; Foley, S.; Kippen, R. M.; Kouveliotou, C.; McBreen, S.; McGlynn, S.; Paciesas, W. S.; Pelassa, V.; Preece, R.; Rau, A.; van der Horst, A. J.; von Kienlin, A.; Kann, D. A.; Filgas, R.; Klose, S.; Krühler, T.; Fukui, A.; Sako, T.; Tristram, P. J.; Oates, S. R.; Ukwatta, T. N.; Littlejohns, O.

    2013-02-01

    We report on the multiwavelength observations of the bright, long gamma-ray burst GRB 110731A, by the Fermi and Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that GRB 110731A shares many features with bright Large Area Telescope bursts observed by Fermi during the first three years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power-law component and temporally extended high-energy emission. In addition, this is the first GRB for which simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. The observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparency constraint for the prompt signal and the spectral and temporal analysis of the forward-shock afterglow emission independently lead to an estimate of the bulk Lorentz factor of the jet Γ ~ 500-550.

  11. Design and Use of a Full Flow Sampling System (FFS) for the Quantification of Methane Emissions

    PubMed Central

    Johnson, Derek R.; Covington, April N.; Clark, Nigel N.

    2016-01-01

    The use of natural gas continues to grow with increased discovery and production of unconventional shale resources. At the same time, the natural gas industry faces continued scrutiny for methane emissions from across the supply chain, due to methane's relatively high global warming potential (25-84x that of carbon dioxide, according to the Energy Information Administration). Currently, a variety of techniques of varied uncertainties exists to measure or estimate methane emissions from components or facilities. Currently, only one commercial system is available for quantification of component level emissions and recent reports have highlighted its weaknesses. In order to improve accuracy and increase measurement flexibility, we have designed, developed, and implemented a novel full flow sampling system (FFS) for quantification of methane emissions and greenhouse gases based on transportation emissions measurement principles. The FFS is a modular system that consists of an explosive-proof blower(s), mass airflow sensor(s) (MAF), thermocouple, sample probe, constant volume sampling pump, laser based greenhouse gas sensor, data acquisition device, and analysis software. Dependent upon the blower and hose configuration employed, the current FFS is able to achieve a flow rate ranging from 40 to 1,500 standard cubic feet per minute (SCFM). Utilization of laser-based sensors mitigates interference from higher hydrocarbons (C2+). Co-measurement of water vapor allows for humidity correction. The system is portable, with multiple configurations for a variety of applications ranging from being carried by a person to being mounted in a hand drawn cart, on-road vehicle bed, or from the bed of utility terrain vehicles (UTVs). The FFS is able to quantify methane emission rates with a relative uncertainty of ± 4.4%. The FFS has proven, real world operation for the quantification of methane emissions occurring in conventional and remote facilities. PMID:27341646

  12. Design and Use of a Full Flow Sampling System (FFS) for the Quantification of Methane Emissions.

    PubMed

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2016-06-12

    The use of natural gas continues to grow with increased discovery and production of unconventional shale resources. At the same time, the natural gas industry faces continued scrutiny for methane emissions from across the supply chain, due to methane's relatively high global warming potential (25-84x that of carbon dioxide, according to the Energy Information Administration). Currently, a variety of techniques of varied uncertainties exists to measure or estimate methane emissions from components or facilities. Currently, only one commercial system is available for quantification of component level emissions and recent reports have highlighted its weaknesses. In order to improve accuracy and increase measurement flexibility, we have designed, developed, and implemented a novel full flow sampling system (FFS) for quantification of methane emissions and greenhouse gases based on transportation emissions measurement principles. The FFS is a modular system that consists of an explosive-proof blower(s), mass airflow sensor(s) (MAF), thermocouple, sample probe, constant volume sampling pump, laser based greenhouse gas sensor, data acquisition device, and analysis software. Dependent upon the blower and hose configuration employed, the current FFS is able to achieve a flow rate ranging from 40 to 1,500 standard cubic feet per minute (SCFM). Utilization of laser-based sensors mitigates interference from higher hydrocarbons (C2+). Co-measurement of water vapor allows for humidity correction. The system is portable, with multiple configurations for a variety of applications ranging from being carried by a person to being mounted in a hand drawn cart, on-road vehicle bed, or from the bed of utility terrain vehicles (UTVs). The FFS is able to quantify methane emission rates with a relative uncertainty of ± 4.4%. The FFS has proven, real world operation for the quantification of methane emissions occurring in conventional and remote facilities.

  13. Simultaneous assimilation of satellite NO2, O3, CO, and HNO3 data for the analysis of the tropospheric chemical composition

    NASA Astrophysics Data System (ADS)

    Miyazaki, K.; Eskes, H.; Sudo, K.

    2012-04-01

    Carbon monoxide (CO) and nitrogen oxides (NOx) play an important role in tropospheric chemistry through their influences on the ozone and hydroxyl radical (OH). The simultaneous optimization of various chemical components is expected to improve the emission inversion through the better description of the chemical feedbacks in the NOx- and CO-chemistry. This study aims to reproduce chemical composition distributions in the troposphere by combining information obtained from multiple satellite data sets. The emissions of CO and NOx, together with the 3D concentration fields of all forecasted chemical species in the global CTM CHASER have been simultaneously optimized using the ensemble Kalman filter (EnKF) data assimilation technique, and NO2, O3, CO, and HNO3 data obtained from OMI, TES, MOPITT, and MLS satellite measurements. The performance is evaluated against independent data from ozone sondes, aircraft measurements, GOME-2, and SCIAMACHY satellite data. Observing System Experiments (OSEs) have been carried out. These OSEs quantify the relative importance of each data set on constraining the emissions and concentrations. We confirmed that the simultaneous data assimilation improved the agreement with these independent data sets. The combined analysis of multiple data sets by means of advanced data assimilation system can provide a useful framework for the air quality research.

  14. Characterizing the Multi-Phase Origin of the [CII] Emission in M101 and NGC 6946

    NASA Astrophysics Data System (ADS)

    Tarantino, Elizabeth; Bolatto, Alberto; Herrera-Camus, Rodrigo

    2018-01-01

    The bright far-infrared line [CII] is a dominant cooling channel of the neutral interstellar medium (ISM) and is a tracer of star formation. However, [CII] can be excited in different environments of the ISM, such as in dense photodissociation regions (PDRs), the cold/warm neutral medium (CNM/WNM), and the warm ionized medium (WIM). Separating the [CII] emission into its multiple components is vital for understanding star formation and for using [CII] as a star formation tracer. We present spectrally resolved SOFIA/GREAT data of the 158 μm [CII] emission, as well as ancillary HI and CO 2-1 data, to disentangle the multiple phases of the ISM. We use 18 pointings that sample the range of different environments present in these galaxies, including star formation activity, metallicity, radiation field strength, and gas content. We find that on average the [CII] is more associated with the dense CO gas coming from PDRs than the neutral medium, consistent with other results in the literature. Additionally, the [CII] observations allow us to access the “CO-faint” molecular gas in regions that have too low of a metallicty to produce CO. This adds to the small number of studies that have explored this “CO-faint” regime.

  15. The early-type multiple system QZ Carinae

    NASA Astrophysics Data System (ADS)

    Mayer, P.; Lorenz, R.; Drechsel, H.; Abseim, A.

    2001-02-01

    We present an analysis of the early-type quadruple system QZ Car, consisting of an eclipsing and a non-eclipsing binary. The spectroscopic investigation is based on new high dispersion echelle and CAT/CES spectra of H and He lines. The elements for the orbit of the non-eclipsing pair could be refined. Lines of the brighter component of the eclipsing binary were detected in near-quadrature spectra, while signatures of the fainter component could be identified in only few spectra. Lines of the primary component of the non-eclipsing pair and of both components of the eclipsing pair were found to be variable in position and strength; in particular, the He ii 4686 emission line of the brighter eclipsing component is strongly variable. An ephemeris for the eclipsing binary QZ Car valid at present was derived Prim. Min. = hel. JD 2448687.16 + 5fd9991 * E. The relative orbit of the two binary constituents of the multiple system is discussed. In contrast to earlier investigations we found radial velocity changes of the systemic velocities of both binaries, which were used - together with an O-C analysis of the expected light-time effect - to derive approximate parameters of the mutual orbit of the two pairs. It is shown that this orbit and the distance to QZ Car can be further refined by minima timing and interferometry. Based on observations collected at the European Southern Observatory, La Silla, Chile.

  16. 40 CFR 86.1803-01 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Auxiliary Emission Control Device (AECD) means any element of design which senses temperature, vehicle speed.... Critical emission-related components are those components which are designed primarily for emission control... control system is a unique group of emission control devices, auxiliary emission control devices, engine...

  17. Combustor and Vane Features and Components Tested in a Gas Turbine Environment

    NASA Technical Reports Server (NTRS)

    Roinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    The use of ceramic matrix composites (CMCs) as combustor liners and turbine vanes provides the potential of improving next-generation turbine engine performance, through lower emissions and higher cycle efficiency, relative to today s use of superalloy hot-section components. For example, the introduction of film-cooling air in metal combustor liners has led to higher levels of nitrogen oxide (NOx) emissions from the combustion process. An environmental barrier coated (EBC) siliconcarbide- fiber-reinforced silicon carbide matrix (SiC/SiC) composite is a new material system that can operate at higher temperatures, significantly reducing the film-cooling requirements and enabling lower NOx production. Evaluating components and subcomponents fabricated from these advanced CMCs under gas turbine conditions is paramount to demonstrating that the material system can perform as required in the complex thermal stress and environmentally aggressive engine environment. To date, only limited testing has been conducted on CMC combustor and turbine concepts and subelements of this type throughout the industry. As part of the Ultra-Efficient Engine Technology (UEET) Program, the High Pressure Burner Rig (HPBR) at the NASA Glenn Research Center was selected to demonstrate coupon, subcomponent feature, and component testing because it can economically provide the temperatures, pressures, velocities, and combustion gas compositions that closely simulate the engine environments. The results have proven the HPBR to be a highly versatile test rig amenable to multiple test specimen configurations essential to coupon and component testing.

  18. A source with a 10{sup 13} DT neutron yield on the basis of a spherical plasma focus chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavyalov, N. V.; Maslov, V. V.; Rumyantsev, V. G., E-mail: rumyantsev@expd.vniief.ru

    2013-03-15

    Results from preliminary experimental research of neutron emission generated by a spherical plasma focus chamber filled with an equal-component deuterium-tritium mixture are presented. At a maximum current amplitude in the discharge chamber of {approx}1.5 MA, neutron pulses with a full width at half-maximum of 75-80 ns and an integral yield of {approx}1.3 Multiplication-Sign 10{sup 13} DT neutrons have been recorded.

  19. Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore

    PubMed Central

    Rich, Ryan M.; Stankowska, Dorota L.; Maliwal, Badri P.; Sørensen, Thomas Just; Laursen, Bo W.; Krishnamoorthy, Raghu R.; Gryczynski, Zygmunt; Borejdo, Julian

    2013-01-01

    Sample autofluorescence (fluorescence of inherent components of tissue and fixative-induced fluorescence) is a significant problem in direct imaging of molecular processes in biological samples. A large variety of naturally occurring fluorescent components in tissue results in broad emission that overlaps the emission of typical fluorescent dyes used for tissue labeling. In addition, autofluorescence is characterized by complex fluorescence intensity decay composed of multiple components whose lifetimes range from sub-nanoseconds to a few nanoseconds. For these reasons, the real fluorescence signal of the probe is difficult to separate from the unwanted autofluorescence. Here we present a method for reducing the autofluorescence problem by utilizing an azadioxatriangulenium (ADOTA) dye with a fluorescence lifetime of approximately 15 ns, much longer than those of most of the components of autofluorescence. A probe with such a long lifetime enables us to use time-gated intensity imaging to separate the signal of the targeting dye from the autofluorescence. We have shown experimentally that by discarding photons detected within the first 20 ns of the excitation pulse, the signal-to-background ratio is improved fivefold. This time-gating eliminates over 96 % of autofluorescence. Analysis using a variable time-gate may enable quantitative determination of the bound probe without the contributions from the background. PMID:23254457

  20. Extremely Hard X-ray Emission from Eta Carinae observed with XMM-Newton and NuSTAR around Periastron in 2014.5

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Takahashi, Hiromitsu; Yuasa, Tadayuki; Groh, Jose H.; Russell, Christopher Michael Post; Pittard, Julian M.; Madura, Thomas; Owocki, Stanley P.; Grefenstette, Brian

    2015-01-01

    The super massive colliding wind binary system, Eta Carinae, experienced another periastron passage in the summer of 2014. We monitored this event using the multiple X-ray observatories, Chandra, XMM-Newton, NuSTAR, Suzaku and Swift. With a high eccentricity of its 5.5 year orbit, X-ray emission from the wind-wind collision (WWC) increases strongly toward periastron but then drops sharply by more than two orders of magnitude in two weeks around periastron due probably to an eclipse and an intrinsic activity decline of the WWC plasma. In this observing campaign, XMM-Newton and NuSTAR coordinated two simultaneous observations around the X-ray flux maximum on June 6 and just before the flux minimum on July 28. These two observations captured Eta Carinae with X-ray focusing telescopes in the extreme hard X-ray band above 10 keV for the first time.During the first observation, XMM and NuSTAR detected stable X-ray emission from the central binary system between 1 - 40 keV. A fit of a 1-temperature bremsstrahlung model to the high energy slope in the NuSTAR spectrum derives an electron temperature of ~6 keV, which is significantly higher than an ionization temperature at ~4.5 keV, measured from the Fe K emission lines resolved in the XMM spectrum.This result suggests the presence of very hot plasma and/or X-ray reflection at surrounding cold material. During the second observation, the X-ray flux between 5 - 10 keV declined steadily by a factor of ~2 in a day, while the other energy bands were rather stable. This variation may be explained by an increase of the line of sight absorption to emission from the plasma component that dominates above 5 keV. NuSTAR did not detect, in either observation, the very hard non-thermal component that dominated emission above 25 keV seen in earlier INTEGRAL and Suzaku observations. We discuss the plasma condition and the wind structure of Eta Carinae around periastron, and the nature of the non-thermal component.

  1. 40 CFR 63.620 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of this subpart apply to the following emission points which are components of a granular triple... to the following emission points which are components of a granular triple superphosphate storage... emission points which are components of a diammonium and/or monoammonium phosphate process line: reactors...

  2. 40 CFR 63.620 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements of this subpart apply to the following emission points which are components of a granular triple... to the following emission points which are components of a granular triple superphosphate storage... emission points which are components of a diammonium and/or monoammonium phosphate process line: reactors...

  3. Network Level Carbon Dioxide Emissions From On-road Sources in the Portland OR, (USA) Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Powell, J.; Butenhoff, C. L.; Rice, A. L.

    2014-12-01

    To mitigate climate change, governments at multiple levels are developing policies to decrease anthropogenic carbon dioxide (CO2) emissions. The City of Portland (Oregon) and Multnomah County have adopted a Climate Action Plan with a stated goal of reducing emissions to 80% below 1990 levels by 2050. The transportation sector alone accounts for about 40% of total emissions in the Portland metropolitan area. Here we show a new street-level model of on-road mobile CO2 emissions for the Portland, OR metropolitan region. The model uses hourly traffic counter recordings made by the Portland Bureau of Transportation at 9,352 sites over 21 years (1986-2006), augmented with freeway loop detector data from the Portland Regional Transportation Archive Listing (PORTAL) transportation data archive. We constructed a land use regression model to fill in traffic network gaps with traffic counts as the dependent variable using GIS data such as road class (32 categories) and population density. The Environmental Protection Agency (EPA) MOtor Vehicle Emission Simulator (MOVES) model was used to estimate transportation CO2 emissions. The street-level emissions can be aggregated and gridded and used as input to atmospheric transport models for comparison with atmospheric measurements. This model also provides an independent assessment of top-down inventories that determine emissions from fuel sales, while being an important component of our ongoing effort to assess the effectiveness of emission mitigation strategies at the urban scale.

  4. 40 CFR 75.72 - Determination of NOX mass emissions for common stack and multiple stack configurations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Determination of NOX mass emissions... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING NOX Mass Emissions Provisions § 75.72 Determination of NOX mass emissions for common stack and multiple stack...

  5. Stars and reionization: the cross-correlation of the 21 cm line and the near-infrared background

    NASA Astrophysics Data System (ADS)

    Fernandez, Elizabeth R.; Zaroubi, Saleem; Iliev, Ilian T.; Mellema, Garrelt; Jelić, Vibor

    2014-05-01

    With improving telescopes, it may now be possible to observe the Epoch of Reionization in multiple ways. We examine two of these observables - the excess light in the near-infrared background that may be due to high-redshift stars and ionized HII bubbles, and the 21 cm emission from neutral hydrogen. Because these two forms of emission should result from different, mutually exclusive regions, an anticorrelation should exist between them. We discuss the strengths of using cross-correlations between these observations to learn more about high-redshift star formation and reionization history. In particular, we create simulated maps of emission from both the near-infrared background and 21 cm emission. We find that these observations are anticorrelated, with the strongest anticorrelation originating from times when the universe is half ionized. This result is robust and does not depend on the properties of the stars themselves. Rather, it depends on the ionization history. Cross-correlations can provide redshift information, which the near-infrared background cannot provide alone. In addition, cross-correlations can help separate foreground emission from the true high-redshift component, making it possible to say with greater certainty that we are indeed witnessing the Epoch of Reionization.

  6. Measurements of W Erosion using UV Emission from DIII-D and CTH

    NASA Astrophysics Data System (ADS)

    Johnson, Curtis; Ennis, David; Loch, Stuart; Balance, Connor; Victor, Brian; Allen, Steve; Samuell, Cameron; Abrams, Tyler; Unterberg, Ezekial

    2017-10-01

    of Plasma Facing Components (PFCs) will play a critical role in establishing the performance of reactor-relevant fusion devices, particularly for tungsten (W) divertor targets. Erosion can be diagnosed from spectral line emission together with atomic coefficients representing the `ionizations per photon' (S/XB). Emission from W I is most intense in the UV region. Thus, UV survey spectrometers (200-400 nm) are used to diagnose W PFCs erosion in the DIII-D divertor and from a W tipped probe in the CTH experiment. Nineteen W emission lines in the UV region are identified between the two experiments, allowing for multiple S/XB erosion measurements. Initial W erosion measurements are compared to erosion using the 400.9 nm W I line. Complete UV spectra will be presented and compared to synthetic spectra for varying plasma conditions. Analysis of the metastable states impact on the S/XB will be presented as well as possible electron temperature and density diagnosis from W I line ratios. Work supported by USDOE Grants DE-SC0015877 & DE-FC02-04ER54698.

  7. Method and apparatus for using magneto-acoustic remanence to determine embrittlement

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Namkung, Min (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1992-01-01

    A method and apparatus for testing steel components for temperature embrittlement uses magneto-acoustic emission to nondestructively evaluate the component are presented. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an AC current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a DC current to the electromagnets and then by turning the magnets off and observing the residual magnetic induction.

  8. Fourier analysis of blazar variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finke, Justin D.; Becker, Peter A., E-mail: justin.finke@nrl.navy.mil

    Blazars display strong variability on multiple timescales and in multiple radiation bands. Their variability is often characterized by power spectral densities (PSDs) and time lags plotted as functions of the Fourier frequency. We develop a new theoretical model based on the analysis of the electron transport (continuity) equation, carried out in the Fourier domain. The continuity equation includes electron cooling and escape, and a derivation of the emission properties includes light travel time effects associated with a radiating blob in a relativistic jet. The model successfully reproduces the general shapes of the observed PSDs and predicts specific PSD and timemore » lag behaviors associated with variability in the synchrotron, synchrotron self-Compton, and external Compton emission components, from submillimeter to γ-rays. We discuss applications to BL Lacertae objects and to flat-spectrum radio quasars (FSRQs), where there are hints that some of the predicted features have already been observed. We also find that FSRQs should have steeper γ-ray PSD power-law indices than BL Lac objects at Fourier frequencies ≲ 10{sup –4} Hz, in qualitative agreement with previously reported observations by the Fermi Large Area Telescope.« less

  9. A new LDMI decomposition approach to explain emission development in the EU: individual and set contribution.

    PubMed

    Madaleno, Mara; Moutinho, Victor

    2017-04-01

    This study breaks down carbon emissions into six effects within the current 28 European Union (EU) countries group, thereafter, they are divided into two different groups (the first 15 countries (EU-15) and the last 13 entering the EU (EU13)). Country-specific highlights are also examined. It analyses the evolution of the effects using a data span that runs from 1990 to 2014, to determine which of them had more impact on the intensity of emissions, while also breaking down the complete period into two distinct periods (before the Kyoto protocol (1990-2004) and after Kyoto (2005-2014)). In order to add more knowledge to the current literature, both the additive and multiplicative decomposition techniques were used to examine carbon dioxide (CO 2 ) emissions and the selected six components: carbon intensity, fossil fuel consumption, energy intensity, oil imports intensity, oil dependence, and population effect. Results point to different adapting velocities for Kyoto targets and necessary compromises. The different velocities were translated into different positive and negative impacts in the change of behavior of CO 2 emissions throughout Europe. A stress in the fluctuations in CO 2 variations before and after Kyoto and between the two different groups of EU countries could be noticed. Moreover, energy intensity and per capita dependence of oil products were identified as the major responsible components for the total and negative changes of emissions in recent years. A decrease in total changes of emissions is observed due to the fossil fuel energy consumption effect and total petroleum products effects. It is possible to infer from here that increased renewable capacity is contributing in a positive way to eco-efficiency, and should therefore be accounted for in national policymakers' decisions in the strongest way possible. Results also seem to indicate that per capita dependence of oil products has decreased, despite oil imports intensity constancy and increased renewable capacity, however, with clear heterogeneous effects, worthy of consideration when defining policies.

  10. Monocarboxylic and dicarboxylic acids over oceans from the East China Sea to the Arctic Ocean: Roles of ocean emissions, continental input and secondary formation.

    PubMed

    Hu, Qihou; Xie, Zhouqing; Wang, Xinming; Kang, Hui; Zhang, Yuqing; Ding, Xiang; Zhang, Pengfei

    2018-05-30

    Organic acids are major components in marine organic aerosols. Many studies on the occurrence, sources and sinks of organic acids over oceans in the low and middle latitudes have been conducted. However, the understanding of relative contributions of specific sources to organic acids over oceans, especially in the high latitudes, is still inadequate. This study measured organic acids, including C 14:0 - C 32:0 saturated monocarboxylic acids (MCAs), C 16:1 , C 18:1 and C 18:2 unsaturated MCAs, and di-C 4 - di-C 10 dicarboxylic acids (DCAs), in the marine boundary layer from the East China Sea to the Arctic Ocean during the 3rd Chinese Arctic Research Expedition (CHINARE 08). The average concentrations were 18 ± 16 ng/m 3 and 11 ± 5.4 ng/m 3 for ΣMCA and ΣDCA, respectively. The levels of saturated MCAs were much higher than those of unsaturated DCAs, with peaks at C 16:0 , C 18:0 and C 14:0 . DCAs peaked at di-C 4 , followed by di-C 9 and di-C 8 . Concentrations of MCAs and DCAs generally decreased with increasing latitudes. Sources of MCAs and DCAs were further investigated using principal component analysis with a multiple linear regression (PCA-MLR) model. Overall, carboxylic acids originated from ocean emissions, continental input (including biomass burning, anthropogenic emissions and terrestrial plant emissions), and secondary formation. All the five sources contributed to MCAs with ocean emissions as the predominant source (48%), followed by biomass burning (20%). In contrast, only 3 sources (i.e., secondary formation (50%), anthropogenic emissions (41%) and biomass burning (9%)) contributed to DCAs. Furthermore, the sources varied with regions. Over the Arctic Ocean, only secondary formation and anthropogenic emissions contributed to MCAs and DCAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Spatially extended K Iλ7699 emission in the nebula of VY CMa: kinematics and geometry

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2004-04-01

    Long-slit echelle spectra reveal bright extended emission from the K Iλ7699 resonance line in the reflection nebula surrounding the extreme red supergiant VY Canis Majoris. The central star has long been known for its unusually bright K I emission lines, but this is the first report of intrinsic emission from K I in the nebula. The extended emission is not just a reflected spectrum of the star, but is due to resonant scattering by K atoms in the outer nebula itself, and is therefore a valuable probe of the kinematics and geometry of the circumstellar environment of VY CMa. Dramatic velocity structure is seen in the long-slit spectra, and most lines of sight through the nebula intersect multiple distinct velocity components. A faint `halo' at large distances from the star does appear to show a reflected spectrum, however, and suggests a systemic velocity of +40 km s-1 with respect to the Sun. The most striking feature is blueshifted emission from the filled interior of a large shell seen in images; the kinematic structure is reminiscent of a Hubble flow, and provides strong evidence for asymmetric and episodic mass loss due to localized eruptions on the stellar surface.

  12. The Python Sky Model: software for simulating the Galactic microwave sky

    NASA Astrophysics Data System (ADS)

    Thorne, B.; Dunkley, J.; Alonso, D.; Næss, S.

    2017-08-01

    We present a numerical code to simulate maps of Galactic emission in intensity and polarization at microwave frequencies, aiding in the design of cosmic microwave background experiments. This python code builds on existing efforts to simulate the sky by providing an easy-to-use interface and is based on publicly available data from the WMAP (Wilkinson Microwave Anisotropy Probe) and Planck satellite missions. We simulate synchrotron, thermal dust, free-free and anomalous microwave emission over the whole sky, in addition to the cosmic microwave background, and include a set of alternative prescriptions for the frequency dependence of each component, for example, polarized dust with multiple temperatures and a decorrelation of the signals with frequency, which introduce complexity that is consistent with current data. We also present a new prescription for adding small-scale realizations of these components at resolutions greater than current all-sky measurements. The usefulness of the code is demonstrated by forecasting the impact of varying foreground complexity on the recovered tensor-to-scalar ratio for the LiteBIRD satellite. The code is available at: https://github.com/bthorne93/PySM_public.

  13. DHS Summary Report -- Robert Weldon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldon, Robert A.

    This summer I worked on benchmarking the Lawrence Livermore National Laboratory fission multiplicity capability used in the Monte Carlo particle transport code MCNPX. This work involved running simulations and then comparing the simulation results with experimental experiments. Outlined in this paper is a brief description of the work completed this summer, skills and knowledge gained, and how the internship has impacted my planning for the future. Neutron multiplicity counting is a neutron detection technique that leverages the multiplicity emissions of neutrons from fission to identify various actinides in a lump of material. The identification of individual actinides in lumps ofmore » material crossing our boarders, especially U-235 and Pu-239, is a key component for maintaining the safety of the country from nuclear threats. Several multiplicity emission options from spontaneous and induced fission already existed in MCNPX 2.4.0. These options can be accessed through use of the 6th entry on the PHYS:N card. Lawrence Livermore National Laboratory (LLNL) developed a physics model for the simulation of neutron and gamma ray emission from fission and photofission that was included in MCNPX 2.7.B as an undocumented feature and then was documented in MCNPX 2.7.C. The LLNL multiplicity capability provided a different means for MCNPX to simulate neutron and gamma-ray distributions for neutron induced, spontaneous and photonuclear fission reactions. The original testing on the model for implementation into MCNPX was conducted by Gregg McKinney and John Hendricks. The model is an encapsulation of measured data of neutron multiplicity distributions from Gwin, Spencer, and Ingle, along with the data from Zucker and Holden. One of the founding principles of MCNPX was that it would have several redundant capabilities, providing the means of testing and including various physics packages. Though several multiplicity sampling methodologies already existed within MCNPX, the LLNL fission multiplicity was included to provide a separate capability for computing multiplicity as well as including several new features not already included in MCNPX. These new features include: (1) prompt gamma emission/multiplicity from neutron-induced fission; (2) neutron multiplicity and gamma emission/multiplicity from photofission; and (3) an option to enforce energy correlation for gamma neutron multiplicity emission. These new capabilities allow correlated signal detection for identifying presence of special nuclear material (SNM). Therefore, these new capabilities help meet the missions of the Domestic Nuclear Detection Office (DNDO), which is tasked with developing nuclear detection strategies for identifying potential radiological and nuclear threats, by providing new simulation capability for detection strategies that leverage the new available physics in the LLNL multiplicity capability. Two types of tests were accomplished this summer to test the default LLNL neutron multiplicity capability: neutron-induced fission tests and spontaneous fission tests. Both cases set the 6th entry on the PHYS:N card to 5 (i.e. use LLNL multiplicity). The neutron-induced fission tests utilized a simple 0.001 cm radius sphere where 0.0253 eV neutrons were released at the sphere center. Neutrons were forced to immediately collide in the sphere and release all progeny from the sphere, without further collision, using the LCA card, LCA 7j -2 (therefore density and size of the sphere were irrelevant). Enough particles were run to ensure that the average error of any specific multiplicity did not exceed 0.36%. Neutron-induced fission multiplicities were computed for U-233, U-235, Pu-239, and Pu-241. The spontaneous fission tests also used the same spherical geometry, except: (1) the LCA card was removed; (2) the density of the sphere was set to 0.001 g/cm3; and (3) instead of emitting a thermal neutron, the PAR keyword was set to PAR=SF. The purpose of the small density was to ensure that the spontaneous fission neutrons would not further interact and induce fissions (i.e. the mean free path greatly exceeded the size of the sphere). Enough particles were run to ensure that the average error of any specific spontaneous multiplicity did not exceed 0.23%. Spontaneous fission multiplicities were computed for U-238, Pu-238, Pu-240, Pu-242, Cm-242, and Cm-244. All of the computed results were compared against experimental results compiled by Holden at Brookhaven National Laboratory.« less

  14. Uncertainty squared: Choosing among multiple input probability distributions and interpreting multiple output probability distributions in Monte Carlo climate risk models

    NASA Astrophysics Data System (ADS)

    Baer, P.; Mastrandrea, M.

    2006-12-01

    Simple probabilistic models which attempt to estimate likely transient temperature change from specified CO2 emissions scenarios must make assumptions about at least six uncertain aspects of the causal chain between emissions and temperature: current radiative forcing (including but not limited to aerosols), current land use emissions, carbon sinks, future non-CO2 forcing, ocean heat uptake, and climate sensitivity. Of these, multiple PDFs (probability density functions) have been published for the climate sensitivity, a couple for current forcing and ocean heat uptake, one for future non-CO2 forcing, and none for current land use emissions or carbon cycle uncertainty (which are interdependent). Different assumptions about these parameters, as well as different model structures, will lead to different estimates of likely temperature increase from the same emissions pathway. Thus policymakers will be faced with a range of temperature probability distributions for the same emissions scenarios, each described by a central tendency and spread. Because our conventional understanding of uncertainty and probability requires that a probabilistically defined variable of interest have only a single mean (or median, or modal) value and a well-defined spread, this "multidimensional" uncertainty defies straightforward utilization in policymaking. We suggest that there are no simple solutions to the questions raised. Crucially, we must dispel the notion that there is a "true" probability probabilities of this type are necessarily subjective, and reasonable people may disagree. Indeed, we suggest that what is at stake is precisely the question, what is it reasonable to believe, and to act as if we believe? As a preliminary suggestion, we demonstrate how the output of a simple probabilistic climate model might be evaluated regarding the reasonableness of the outputs it calculates with different input PDFs. We suggest further that where there is insufficient evidence to clearly favor one range of probabilistic projections over another, that the choice of results on which to base policy must necessarily involve ethical considerations, as they have inevitable consequences for the distribution of risk In particular, the choice to use a more "optimistic" PDF for climate sensitivity (or other components of the causal chain) leads to the allowance of higher emissions consistent with any specified goal for risk reduction, and thus leads to higher climate impacts, in exchange for lower mitigation costs.

  15. Methane source identification in Boston, Massachusetts using isotopic and ethane measurements

    NASA Astrophysics Data System (ADS)

    Down, A.; Jackson, R. B.; Plata, D.; McKain, K.; Wofsy, S. C.; Rella, C.; Crosson, E.; Phillips, N. G.

    2012-12-01

    Methane has substantial greenhouse warming potential and is the principle component of natural gas. Fugitive natural gas emissions could be a significant source of methane to the atmosphere. However, the cumulative magnitude of natural gas leaks is not yet well constrained. We used a combination of point source measurements and ambient monitoring to characterize the methane sources in the Boston urban area. We developed distinct fingerprints for natural gas and multiple biogenic methane sources based on hydrocarbon concentration and isotopic composition. We combine these data with periodic measurements of atmospheric methane and ethane concentration to estimate the fractional contribution of natural gas and biogenic methane sources to the cumulative urban methane flux in Boston. These results are used to inform an inverse model of urban methane concentration and emissions.

  16. EVIDENCE OF AN ASTEROID ENCOUNTERING A PULSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brook, P. R.; Karastergiou, A.; Buchner, S.

    Debris disks and asteroid belts are expected to form around young pulsars due to fallback material from their original supernova explosions. Disk material may migrate inward and interact with a pulsar's magnetosphere, causing changes in torque and emission. Long-term monitoring of PSR J0738–4042 reveals both effects. The pulse shape changes multiple times between 1988 and 2012. The torque, inferred via the derivative of the rotational period, changes abruptly from 2005 September. This change is accompanied by an emergent radio component that drifts with respect to the rest of the pulse. No known intrinsic pulsar processes can explain these timing andmore » radio emission signatures. The data lead us to postulate that we are witnessing an encounter with an asteroid or in-falling debris from a disk.« less

  17. 40 CFR 63.4890 - What emission limits must I meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... organic HAP-free coating technology can be used on the metal furniture components. The request must be... Standards for Hazardous Air Pollutants: Surface Coating of Metal Furniture Emission Limitations § 63.4890... emission limit for specific metal furniture components or type of components for which you believe the...

  18. Multilayered metal-insulator nanocavities: toward tunable multi-resonance nano-devices for integrated optics

    NASA Astrophysics Data System (ADS)

    Song, Junyeob; Zhou, Wei

    2017-02-01

    Plasmonic nanocavities can control light flows and enhance light-mater interactions at subwavelength scale, and thus can potentially be used as nanoscale components in integrated optics systems either for passive optical coupling, or for active optical modulation and emission. In this work, we investigated a new type of multilayered metal-insulator optical nanocavities that can support multiple localized plasmon resonances with ultra-small mode volumes. The total number of resonance peaks and their resonance wavelengths can be freely and accurately controlled by simple geometric design rules. Multi-resonance plasmonic nanocavities can serve as a nanoscale wavelength-multiplexed optical components in integrated optics systems, such as optical couplers, light emitters, nanolasers, optical sensors, and optical modulators.

  19. Multiple Emission Angle Surface-Atmosphere Separations of MGS Thermal Emission Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Bandfield, J. L.; Smith, M. D.

    2001-01-01

    Multiple emission angle observations taken by MGS-TES have been used to derive atmospheric opacities and surface temperatures and emissivities with increased accuracy and wavelength coverage. Martian high albedo region surface spectra have now been isolated. Additional information is contained in the original extended abstract.

  20. Quantum molecular dynamics and multistep-direct analyses of multiple preequilibrium emission

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Chiba, S.; Niita, K.; Maruyama, T.; Iwamoto, A.

    1995-11-01

    We study multiple preequilibrium emission in nucleon induced reactions at intermediate energies, and compare quantum molecular dynamics (QMD) calculations with multistep-direct Feshbach-Kerman-Koonin results [M. B. Chadwick, P. G. Young, D. C. George, and Y. Watanabe, Phys. Rev. C 50, 996 (1994)]. When the theoretical expressions of this reference are reformulated so that the definitions of primary and multiple emission correspond to those used in QMD, the two theories yield similar results for primary and multiple preequilibrium emission. We use QMD as a tool to determine the multiplicities of fast preequilibrium nucleons as a function of incident energy. For fast particle cross sections to exceed 5% of the inclusive preequilibrium emission cross sections we find that two particles should be included in reactions above 50 MeV, three above about 180 MeV, and four are only needed when the incident energy exceeds about 400 MeV.

  1. Distinct Interfacial Fluorescence in Oil-in-Water Emulsions via Exciton Migration of Conjugated Polymers.

    PubMed

    Koo, Byungjin; Swager, Timothy M

    2017-09-01

    Commercial dyes are extensively utilized to stain specific phases for the visualization applications in emulsions and bioimaging. In general, dyes emit only one specific fluorescence signal and thus, in order to stain various phases and/or interfaces, one needs to incorporate multiple dyes and carefully consider their compatibility to avoid undesirable interactions with each other and with the components in the system. Herein, surfactant-type, perylene-endcapped fluorescent conjugated polymers that exhibit two different emissions are reported, which are cyan in water and red at oil-water interfaces. The interfacially distinct red emission results from enhanced exciton migration from the higher-bandgap polymer backbone to the lower-bandgap perylene endgroup. The confocal microscopy images exhibit the localized red emission exclusively from the circumference of oil droplets. This exciton migration and dual fluorescence of the polymers in different physical environments can provide a new concept of visualization methods in many amphiphilic colloidal systems and bioimaging. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Chemometric techniques in distribution, characterisation and source apportionment of polycyclic aromatic hydrocarbons (PAHS) in aquaculture sediments in Malaysia.

    PubMed

    Retnam, Ananthy; Zakaria, Mohamad Pauzi; Juahir, Hafizan; Aris, Ahmad Zaharin; Zali, Munirah Abdul; Kasim, Mohd Fadhil

    2013-04-15

    This study investigated polycyclic aromatic hydrocarbons (PAHs) pollution in surface sediments within aquaculture areas in Peninsular Malaysia using chemometric techniques, forensics and univariate methods. The samples were analysed using soxhlet extraction, silica gel column clean-up and gas chromatography mass spectrometry. The total PAH concentrations ranged from 20 to 1841 ng/g with a mean of 363 ng/g dw. The application of chemometric techniques enabled clustering and discrimination of the aquaculture sediments into four groups according to the contamination levels. A combination of chemometric and molecular indices was used to identify the sources of PAHs, which could be attributed to vehicle emissions, oil combustion and biomass combustion. Source apportionment using absolute principle component scores-multiple linear regression showed that the main sources of PAHs are vehicle emissions 54%, oil 37% and biomass combustion 9%. Land-based pollution from vehicle emissions is the predominant contributor of PAHs in the aquaculture sediments of Peninsular Malaysia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Evaluating Anthropogenic Carbon Emissions in the Urban Salt Lake Valley through Inverse Modeling: Combining Long-term CO2 Observations and an Emission Inventory using a Multiple-box Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Catharine, D.; Strong, C.; Lin, J. C.; Cherkaev, E.; Mitchell, L.; Stephens, B. B.; Ehleringer, J. R.

    2016-12-01

    The rising level of atmospheric carbon dioxide (CO2), driven by anthropogenic emissions, is the leading cause of enhanced radiative forcing. Increasing societal interest in reducing anthropogenic greenhouse gas emissions call for a computationally efficient method of evaluating anthropogenic CO2 source emissions, particularly if future mitigation actions are to be developed. A multiple-box atmospheric transport model was constructed in conjunction with a pre-existing fossil fuel CO2 emission inventory to estimate near-surface CO2 mole fractions and the associated anthropogenic CO2 emissions in the Salt Lake Valley (SLV) of northern Utah, a metropolitan area with a population of 1 million. A 15-year multi-site dataset of observed CO2 mole fractions is used in conjunction with the multiple-box model to develop an efficient method to constrain anthropogenic emissions through inverse modeling. Preliminary results of the multiple-box model CO2 inversion indicate that the pre-existing anthropogenic emission inventory may over-estimate CO2 emissions in the SLV. In addition, inversion results displaying a complex spatial and temporal distribution of urban emissions, including the effects of residential development and vehicular traffic will be discussed.

  4. 40 CFR 75.82 - Monitoring of Hg mass emissions and heat input at common and multiple stacks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... heat input at common and multiple stacks. 75.82 Section 75.82 Protection of Environment ENVIRONMENTAL... Provisions § 75.82 Monitoring of Hg mass emissions and heat input at common and multiple stacks. (a) Unit... systems and perform the Hg emission testing described under § 75.81(b). If reporting of the unit heat...

  5. Spatially resolved spectroscopy analysis of the XMM-Newton large program on SN1006

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Decourchelle, Anne; Miceli, Marco; Vink, Jacco; Bocchino, Fabrizio

    2016-04-01

    We perform analysis of the XMM-Newton large program on SN1006 based on our newly developed methods of spatially resolved spectroscopy analysis. We extract spectra from low and high resolution meshes. The former (3596 meshes) is used to roughly decompose the thermal and non-thermal components and characterize the spatial distributions of different parameters, such as temperature, abundances of different elements, ionization age, and electron density of the thermal component, as well as photon index and cutoff frequency of the non-thermal component. On the other hand, the low resolution meshes (583 meshes) focus on the interior region dominated by the thermal emission and have enough counts to well characterize the Si lines. We fit the spectra from the low resolution meshes with different models, in order to decompose the multiple plasma components at different thermal and ionization states and compare their spatial distributions. In this poster, we will present the initial results of this project.

  6. The Multiple-component Binary Hyad, vA 351 - a Progress Report

    NASA Astrophysics Data System (ADS)

    Benedict, George Fritz; Franz, Otto G.; Wasserman, Lawrence H.

    2017-06-01

    We extend results first announced by Franz et al. (1998) in the abstract, http://adsabs.harvard.edu/abs/1998AAS...19310207F ,that identified vA 351 = H346 in the Hyades as a multiple star system containing a white dwarf. With HST/FGS fringe tracking and scanning, spanning four years, we establish a parallax, relative orbit, and mass fraction for the A-B components, with a period, P~5.47y. With ground-based radial velocities from the McDonald Observatory Struve 2.1m telescope and Sandiford Spectrograph, spanning 14 years, we find that component B consists of BC, two M dwarf stars orbiting with a very short period (P(BC)~0.75 days), having a mass ratio C/B~0.94. We confirm that the total mass of the system can only be reconciled with the distance and component photometry by including a fainter, higher mass component, proposed to be a ~0.8Msun white dwarf. Thus, the quadruple system consists of three M dwarfs (A,B,C) and one white dwarf (D). The M dwarf masses and absolute magnitudes are consistent with the Benedict et al. (2016, http://adsabs.harvard.edu/abs/2016AJ....152..141B) lower Main Sequence Mass-Luminosity Relation. The radial velocity signal has so far yielded a signature only for the short-period BC orbital motion. Velocities from H-α and He I emission lines confirm the BC period from absorption lines, with similar (He I) and higher (H-α) velocity amplitudes.

  7. Modelling terrestrial nitrous oxide emissions and implications for climate feedback.

    PubMed

    Xu-Ri; Prentice, I Colin; Spahni, Renato; Niu, Hai Shan

    2012-10-01

    Ecosystem nitrous oxide (N2O) emissions respond to changes in climate and CO2 concentration as well as anthropogenic nitrogen (N) enhancements. Here, we aimed to quantify the responses of natural ecosystem N2O emissions to multiple environmental drivers using a process-based global vegetation model (DyN-LPJ). We checked that modelled annual N2O emissions from nonagricultural ecosystems could reproduce field measurements worldwide, and experimentally observed responses to step changes in environmental factors. We then simulated global N2O emissions throughout the 20th century and analysed the effects of environmental changes. The model reproduced well the global pattern of N2O emissions and the observed responses of N cycle components to changes in environmental factors. Simulated 20th century global decadal-average soil emissions were c. 8.2-9.5 Tg N yr(-1) (or 8.3-10.3 Tg N yr(-1) with N deposition). Warming and N deposition contributed 0.85±0.41 and 0.80±0.14 Tg N yr(-1), respectively, to an overall upward trend. Rising CO2 also contributed, in part, through a positive interaction with warming. The modelled temperature dependence of N2O emission (c. 1 Tg N yr(-1) K(-1)) implies a positive climate feedback which, over the lifetime of N2O (114 yr), could become as important as the climate-carbon cycle feedback caused by soil CO2 release. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  8. Light emitting diode excitation emission matrix fluorescence spectroscopy.

    PubMed

    Hart, Sean J; JiJi, Renée D

    2002-12-01

    An excitation emission matrix (EEM) fluorescence instrument has been developed using a linear array of light emitting diodes (LED). The wavelengths covered extend from the upper UV through the visible spectrum: 370-640 nm. Using an LED array to excite fluorescence emission at multiple excitation wavelengths is a low-cost alternative to an expensive high power lamp and imaging spectrograph. The LED-EEM system is a departure from other EEM spectroscopy systems in that LEDs often have broad excitation ranges which may overlap with neighboring channels. The LED array can be considered a hybrid between a spectroscopic and sensor system, as the broad LED excitation range produces a partially selective optical measurement. The instrument has been tested and characterized using fluorescent dyes: limits of detection (LOD) for 9,10-bis(phenylethynyl)-anthracene and rhodamine B were in the mid parts-per-trillion range; detection limits for the other compounds were in the low parts-per-billion range (< 5 ppb). The LED-EEMs were analyzed using parallel factor analysis (PARAFAC), which allowed the mathematical resolution of the individual contributions of the mono- and dianion fluorescein tautomers a priori. Correct identification and quantitation of six fluorescent dyes in two to six component mixtures (concentrations between 12.5 and 500 ppb) has been achieved with root mean squared errors of prediction (RMSEP) of less than 4.0 ppb for all components.

  9. The background in a balloon-borne fluorescence-gated proportional counter

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Bower, C. R.; Dietz, K. L.; Weisskopf, M. C.

    1990-01-01

    The results of an analysis of the background in a fluorescence-gated proportional counter operating over the energy range 3-150 keV are presented. It is found that the dominant background component is that produced by high energy qamma-rays that penetrate the shields and undergo multiple scattering in the detector body, resulting in photoelectric absorption in the detector gas. A careful choice of materials and thickness can move the peak of this emission outside of the detector sensitive range, thereby dramatically reducing the residual background.

  10. Mercury's complex exosphere: results from MESSENGER's third flyby.

    PubMed

    Vervack, Ronald J; McClintock, William E; Killen, Rosemary M; Sprague, Ann L; Anderson, Brian J; Burger, Matthew H; Bradley, E Todd; Mouawad, Nelly; Solomon, Sean C; Izenberg, Noam R

    2010-08-06

    During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal altitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere.

  11. Very long baseline interferometric observations of the hydroxyl masers in VY Canis Majoris

    NASA Technical Reports Server (NTRS)

    Reid, M. J.; Muhleman, D. O.

    1978-01-01

    Results are presented for spectral-line VLBI observations of the OH emission from VY CMa. The main-line (1665 and 1667 MHz) emission was mapped with an angular resolution of 0.02 arcsec by analyzing interferometer phase data. The main-line emission comes from many maser components of apparent size less than 0.03 arcsec which are separated by up to 0.5 arcsec. New maser features near the center of the OH spectra were detected and found to lie within the region encompassed by the low-velocity OH emission. The 1612-MHz emission was mapped by Fourier inversion of the VLBI data from two baselines. All spatially isolated maser components appeared smaller than 0.15 arcsec; however, the maser emission is very complex at most velocities. Maser components within a velocity range of 1.3 km/s are often separated by more than 1 arcsec, while components more than 10 km/s apart in each emission complex are often coincident to 0.2 arcsec.

  12. Comparing Top-down and Bottom-up Estimates of Methane Emissions across Multiple U.S. Basins Provides Insights into National Oil and Gas Emissions and Mitigation Strategies

    NASA Astrophysics Data System (ADS)

    Hamburg, S.; Alvarez, R.; Lyon, D. R.; Zavala-Araiza, D.

    2016-12-01

    Several recent studies quantified regional methane emissions in U.S. oil and gas (O&G) basins using top-down approaches such as airborne mass balance measurements. These studies apportioned total methane emissions to O&G based on hydrocarbon ratios or subtracting bottom-up estimates of other sources. In most studies, top-down estimates of O&G methane emissions exceeded bottom-up emission inventories. An exception is the Barnett Shale Coordinated Campaign, which found agreement between aircraft mass balance estimates and a custom emission inventory. Reconciliation of Barnett Shale O&G emissions depended on two key features: 1) matching the spatial domains of top-down and bottom-up estimates, and 2) accounting for fat-tail sources in site-level emission factors. We construct spatially explicit custom emission inventories for domains with top-down O&G emission estimates in eight major U.S. oil and gas production basins using a variety of data sources including a spatially-allocated U.S. EPA Greenhouse Gas Inventory, the EPA Greenhouse Gas Reporting Program, state emission inventories, and recently published measurement studies. A comparison of top-down and our bottom-up estimates of O&G emissions constrains the gap between these approaches and elucidates regional variability in production-normalized loss rates. A comparison of component-level and site-level emission estimates of production sites in the Barnett Shale region - where comprehensive activity data and emissions estimates are available - indicates that abnormal process conditions contribute about 20% of regional O&G emissions. Combining these two analyses provides insights into the relative importance of different equipment, processes, and malfunctions to emissions in each basin. These data allow us to estimate the U.S. O&G supply chain loss rate, recommend mitigation strategies to reduce emissions from existing infrastructure, and discuss how a similar approach can be applied internationally.

  13. Iron K lines from low-mass X-ray binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; White, N. E.

    1989-01-01

    Models are presented for the 6-7 keV iron line emission from low-mass X-ray binaries. A simplified model for an accretion disk corona is used to examine the dependence of the observable line properties, line width and mean energy, on the radial distance of the emission region from the X-ray source, and on the fraction of the X-rays from the source which reach the disk surface. The effects of blending of multiple line components and of Comptonization of the line profile are included in numerical calculations of the emitted profile shape. The results of these calculations, when compared with the line properties observed from several low-mass X-ray binaries, suggest that the broadening is dominated either by rotation or by Compton scattering through a greater optical depth than is expected from an accretion disk corona.

  14. Source apportionment of PAH in Hamilton Harbour suspended sediments: comparison of two factor analysis methods.

    PubMed

    Sofowote, Uwayemi M; McCarry, Brian E; Marvin, Christopher H

    2008-08-15

    A total of 26 suspended sediment samples collected over a 5-year period in Hamilton Harbour, Ontario, Canada and surrounding creeks were analyzed for a suite of polycyclic aromatic hydrocarbons and sulfur heterocycles. Hamilton Harbour sediments contain relatively high levels of polycyclic aromatic compounds and heavy metals due to emissions from industrial and mobile sources. Two receptor modeling methods using factor analyses were compared to determine the profiles and relative contributions of pollution sources to the harbor; these methods are principal component analyses (PCA) with multiple linear regression analysis (MLR) and positive matrix factorization (PMF). Both methods identified four factors and gave excellent correlation coefficients between predicted and measured levels of 25 aromatic compounds; both methods predicted similar contributions from coal tar/coal combustion sources to the harbor (19 and 26%, respectively). One PCA factor was identified as contributions from vehicular emissions (61%); PMF was able to differentiate vehicular emissions into two factors, one attributed to gasoline emissions sources (28%) and the other to diesel emissions sources (24%). Overall, PMF afforded better source identification than PCA with MLR. This work constitutes one of the few examples of the application of PMF to the source apportionment of sediments; the addition of sulfur heterocycles to the analyte list greatly aided in the source identification process.

  15. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  16. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  17. Measurements of NOx emissions and in-service duty cycle from a towboat operating on the inland river system.

    PubMed

    Corbett, J J; Robinson, A L

    2001-04-01

    This paper describes measurements of NOx emissions from one engine on a commercial towboat operating on the Upper Ohio River system around the Port of Pittsburgh. Continuous measurements were made over a one-week period to characterize emissions during normal operations. The average NOx emission factor is 70 +/- 4.2 kg of NOx per t of fuel, similar to that of larger marine engines. A vessel-specific duty cycle is derived to characterize the towboat's operations; more than 50% of the time the vessel engines are at idle. Although recently promulgated EPA regulations apply only to new marine engines, these data provide insight into inland-river operations, which can be used to evaluate these regulations within the inland river context. This vessel operates as a courier service, scheduling pickups and deliveries of single- or multiple-barge loads per customers' requests; as many as 30% of the 277 towboats in the Pittsburgh region operate in this fashion. The EPA-prescribed ISO E3 duty cycle does not accurately describe inland-river operations of this towboat: its application overestimates actual NOx emissions by 14%. Only 41% of this vessel's operations fall within the Not-To-Exceed Zone defined by the EPA regulations, which limits the effectiveness of this component of the regulations to limit emissions from vessels that operate in a similar fashion.

  18. Exchange pattern of gaseous elemental mercury in landfill: mercury deposition under vegetation coverage and interactive effects of multiple meteorological conditions.

    PubMed

    Tao, Zhengkai; Liu, Yang; Zhou, Meng; Chai, Xiaoli

    2017-12-01

    Landfill is known as a potential source of atmospheric Hg and an important component of the local or regional atmospheric Hg budget. This study investigated the gaseous elemental Hg surface-air fluxes under differing conditions at a typical municipal solid waste landfill site, highlighting the interactive effects of plant coverage and meteorological conditions. The results indicated that Hg fluxes exhibited a feature represented by diel variation. In particular, Hg deposition was observed under a condition of Kochia sieversiana coverage, whereas emission that occurred after K. sieversiana was removed. Hg emission was the dominant mode under conditions of Setaria viridis coverage and its removal; however, the average Hg emission flux with the S. viridis coverage was nearly four times lower than after its removal. These findings verified that the plant coverage should be a key factor influencing the Hg emission from landfills. In addition, Hg fluxes were correlated positively with solar radiation and air/soil temperature and correlated inversely with relative humidity under all conditions, except K. sieversiana coverage. This suggested that the interactive effects of meteorological conditions and plant coverage played a jointly significant role in the Hg emission from landfills. It was established that K. sieversiana can inhibit Hg emission efficiently, and therefore, it could potentially be suitable for use as a plant-based method to control Hg pollution from landfills.

  19. Broad Absorption Lines in Qsos: Observations and Implications for Models.

    NASA Astrophysics Data System (ADS)

    Turnshek, David Alvin

    Spectroscopic observations of fourteen broad absorption line (BAL) QSOs are presented and analyzed. Other observations are summarized. The following major conclusions are reached. Broad absorption lines (BALs) are probably present in 3 to 10 percent of the spectra of moderate to high redshift QSOs. The BALs exhibit a variety of velocity structures, from seemingly smooth, continuous absorption to complexes of individual absorption lines. Outflow velocities up to 40,000 km s(' -1) are observed. The level of ionization is high. The minimum total absorption column densities are 10('20) to 10('22) cm('-2). The emission line properties of BAL QSOs appear to be different from those of non-BAL QSOs. For example, N V emission is generally stronger in BAL QSOs and the emission near C III} (lamda)1909 is generally broader in BAL QSOs. The distribution of multiplicities for isolated absorption troughs suggests that the large -scale spatial distribution of BAL clouds is non-random, possibly described by a disk geometry. The BAL clouds are incapable of accounting for all of the observed broad emission lines, particularly C III} (lamda)1909 and Mg II (lamda)2798. Therefore, if the BAL clouds give rise to observable emission, the generally adopted (optically thick, single component) model for the emission line region must be incorrect. Also, photoionization models, which utilize solar abundances and take the ionizing continuum to be a simple power law, are incapable of explaining the level of ionization in the BAL clouds. By considering the observed percentage of QSOs with BALs and resonance line scattering models, it is found that the absorption covering factor in BAL QSOs is between 3 and 20 percent. This suggests that possibly all, but not less than 15 percent, of the QSOs have BAL clouds associated with them. The amount of observable emission and polarization expected to be produced by the BAL clouds from resonance line scattering and collisional excitation is considered in detail. It seems likely that the BAL clouds contribute to the observed high ionization emission. A model worth exploring is one in which an inner, optically thick component gives rise to the low ionization emission, whereas an outer BAL cloud region gives rise to much of the high ionization emission.

  20. Webinar Presentation: Linking Regional Aerosol Emission Changes with Multiple Impact Measures through Direct and Cloud-Related Forcing Estimates

    EPA Pesticide Factsheets

    This presentation, Linking Regional Aerosol Emission Changes with Multiple Impact Measures through Direct and Cloud-Related Forcing Estimates, was given at the STAR Black Carbon 2016 Webinar Series: Accounting for Impact, Emissions, and Uncertainty.

  1. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Daw, C Stuart; Wagner, Robert M

    2013-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reducemore » fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.« less

  2. NuSTAR Observations of X-Ray Flares from Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Vievering, Juliana; Glesener, Lindsay; Grefenstette, Brian; Smith, David

    2018-01-01

    Young stellar objects (YSOs), which tend to flare more frequently and at higher temperatures than what is typically observed on Sun-like stars, are excellent targets for studying the physical processes behind large flaring events. In the hard x-ray regime, radiation can penetrate through dense circumstellar material, and it is possible to measure thermal emission from hot plasma and to search for nonthermal emission from accelerated particles, which are key components for understanding the nature of energy release in these flares. Additionally, high-energy x-ray emission can ionize material in the disk, which may have implications for planet formation. To investigate hard x-ray emission from YSOs, three 50ks observations of a star-forming region called rho Ophiuchi have been taken with the Nuclear Spectroscopic Telescope Array (NuSTAR). Through use of direct focusing optics, NuSTAR provides unprecedented sensitivity in the hard x-ray regime, making these YSO observations the first of their kind. Multiple stellar flares have been identified in the data set; here we present the current spectral and timing analyses of the brightest of the these events, exploring the way energy is released as well as the effects of these large flares on the surrounding environment.

  3. Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Cubison, M. J.; Froyd, K. D.; Zhao, Y.; Cliff, S. S.; Hu, W. W.; Toohey, D. W.; Flynn, J. H.; Lefer, B. L.; Grossberg, N.; Alvarez, S.; Rappenglück, B.; Taylor, J. W.; Allan, J. D.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Massoli, P.; Zhang, X.; Liu, J.; Weber, R. J.; Corrigan, A. L.; Russell, L. M.; Isaacman, G.; Worton, D. R.; Kreisberg, N. M.; Goldstein, A. H.; Thalman, R.; Waxman, E. M.; Volkamer, R.; Lin, Y. H.; Surratt, J. D.; Kleindienst, T. E.; Offenberg, J. H.; Dusanter, S.; Griffith, S.; Stevens, P. S.; Brioude, J.; Angevine, W. M.; Jimenez, J. L.

    2013-08-01

    Organic aerosols (OA) in Pasadena are characterized using multiple measurements from the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. Five OA components are identified using positive matrix factorization including hydrocarbon-like OA (HOA) and two types of oxygenated OA (OOA). The Pasadena OA elemental composition when plotted as H : C versus O : C follows a line less steep than that observed for Riverside, CA. The OOA components from both locations follow a common line, however, indicating similar secondary organic aerosol (SOA) oxidation chemistry at the two sites such as fragmentation reactions leading to acid formation. In addition to the similar evolution of elemental composition, the dependence of SOA concentration on photochemical age displays quantitatively the same trends across several North American urban sites. First, the OA/ΔCO values for Pasadena increase with photochemical age exhibiting a slope identical to or slightly higher than those for Mexico City and the northeastern United States. Second, the ratios of OOA to odd-oxygen (a photochemical oxidation marker) for Pasadena, Mexico City, and Riverside are similar, suggesting a proportional relationship between SOA and odd-oxygen formation rates. Weekly cycles of the OA components are examined as well. HOA exhibits lower concentrations on Sundays versus weekdays, and the decrease in HOA matches that predicted for primary vehicle emissions using fuel sales data, traffic counts, and vehicle emission ratios. OOA does not display a weekly cycle—after accounting for differences in photochemical aging —which suggests the dominance of gasoline emissions in SOA formation under the assumption that most urban SOA precursors are from motor vehicles.

  4. Polarization Characteristics of Zebra Patterns in Type IV Solar Radio Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneda, K.; Misawa, H.; Tsuchiya, F.

    The polarization characteristics of zebra patterns (ZPs) in type IV solar bursts were studied. We analyzed 21 ZP events observed by the Assembly of Metric-band Aperture Telescope and Real-time Analysis System between 2010 and 2015 and identified the following characteristics: a degree of circular polarization (DCP) in the range of 0%–70%, a temporal delay of 0–70 ms between the two circularly polarized components (i.e., the right- and left-handed components), and dominant ordinary-mode emission in about 81% of the events. For most events, the relation between the dominant and delayed components could be interpreted in the framework of fundamental plasma emissionmore » and depolarization during propagation, though the values of DCP and delay were distributed across wide ranges. Furthermore, it was found that the DCP and delay were positively correlated (rank correlation coefficient R = 0.62). As a possible interpretation of this relationship, we considered a model based on depolarization due to reflections at sharp density boundaries assuming fundamental plasma emission. The model calculations of depolarization including multiple reflections and group delay during propagation in the inhomogeneous corona showed that the DCP and delay decreased as the number of reflections increased, which is consistent with the observational results. The dispersive polarization characteristics could be explained by the different numbers of reflections causing depolarization.« less

  5. Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult's brain

    NASA Astrophysics Data System (ADS)

    Gerega, Anna; Milej, Daniel; Weigl, Wojciech; Botwicz, Marcin; Zolek, Norbert; Kacprzak, Michal; Wierzejski, Wojciech; Toczylowska, Beata; Mayzner-Zawadzka, Ewa; Maniewski, Roman; Liebert, Adam

    2012-08-01

    Optical technique based on diffuse reflectance measurement combined with indocyanine green (ICG) bolus tracking is extensively tested as a method for clinical assessment of brain perfusion in adults at the bedside. Methodology of multiwavelength and time-resolved detection of fluorescence light excited in the ICG is presented and advantages of measurements at multiple wavelengths are discussed. Measurements were carried out: 1. on a physical homogeneous phantom to study the concentration dependence of the fluorescence signal, 2. on the phantom to simulate the dynamic inflow of ICG at different depths, and 3. in vivo on surface of the human head. Pattern of inflow and washout of ICG in the head of healthy volunteers after intravenous injection of the dye was observed for the first time with time-resolved instrumentation at multiple emission wavelengths. The multiwavelength detection of fluorescence signal confirms that at longer emission wavelengths, probability of reabsorption of the fluorescence light by the dye itself is reduced. Considering different light penetration depths at different wavelengths, and the pronounced reabsorption at longer wavelengths, the time-resolved multiwavelength technique may be useful in signal decomposition, leading to evaluation of extra- and intracerebral components of the measured signals.

  6. A Label-Free Fluorescent Array Sensor Utilizing Liposome Encapsulating Calcein for Discriminating Target Proteins by Principal Component Analysis

    PubMed Central

    Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru

    2017-01-01

    A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots. PMID:28714873

  7. A Label-Free Fluorescent Array Sensor Utilizing Liposome Encapsulating Calcein for Discriminating Target Proteins by Principal Component Analysis.

    PubMed

    Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru

    2017-07-15

    A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots.

  8. Imaging and Spectroscopy of Natural Fluorophores in Pine Needles

    PubMed Central

    Williams, Nari

    2018-01-01

    Many plant tissues fluoresce due to the natural fluorophores present in cell walls or within the cell protoplast or lumen. While lignin and chlorophyll are well-known fluorophores, other components are less well characterized. Confocal fluorescence microscopy of fresh or fixed vibratome-cut sections of radiata pine needles revealed the presence of suberin, lignin, ferulate, and flavonoids associated with cell walls as well as several different extractive components and chlorophyll within tissues. Comparison of needles in different physiological states demonstrated the loss of chlorophyll in both chlorotic and necrotic needles. Necrotic needles showed a dramatic change in the fluorescence of extractives within mesophyll cells from ultraviolet (UV) excited weak blue fluorescence to blue excited strong green fluorescence associated with tissue browning. Comparisons were made among fluorophores in terms of optimal excitation, relative brightness compared to lignin, and the effect of pH of mounting medium. Fluorophores in cell walls and extractives in lumens were associated with blue or green emission, compared to the red emission of chlorophyll. Autofluorescence is, therefore, a useful method for comparing the histology of healthy and diseased needles without the need for multiple staining techniques, potentially aiding visual screening of host resistance and disease progression in needle tissue. PMID:29393922

  9. 40 CFR 86.1803-01 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operator prior to procurement. Auxiliary Emission Control Device (AECD) means any element of design which... components are those components which are designed primarily for emission control, or whose failure may... of design means any control system (i.e., computer software, electronic control system, emission...

  10. 40 CFR 86.1803-01 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... prior to procurement. Auxiliary Emission Control Device (AECD) means any element of design which senses... components are those components which are designed primarily for emission control, or whose failure may... of design means any control system (i.e., computer software, electronic control system, emission...

  11. Air pollution from industrial waste gas emissions is associated with cancer incidences in Shanghai, China.

    PubMed

    Cong, Xiaowei

    2018-05-01

    Outdoor air pollution may be associated with cancer risk at different sites. This study sought to investigate outdoor air pollution from waste gas emission effects on multiple cancer incidences in a retrospective population-based study in Shanghai, China. Trends in cancer incidence for males and females and trends in waste gas emissions for the total waste gas, industrial waste gas, other waste gas, SO 2 , and soot were investigated between 1983 and 2010 in Shanghai, China. Regression models after adjusting for confounding variables were constructed to estimate associations between waste gas emissions and multiple cancer incidences in the whole group and stratified by sex, Engel coefficient, life expectancy, and number of doctors per 10,000 populations to further explore whether changes of waste gas emissions were associated with multiple cancer incidences. More than 550,000 new cancer patients were enrolled and reviewed. Upward trends in multiple cancer incidences for males and females and in waste gas emissions were observed from 1983 to 2010 in Shanghai, China. Waste gas emissions came mainly from industrial waste gas. Waste gas emissions was significantly positively associated with cancer incidence of salivary gland, small intestine, colorectal, anus, gallbladder, thoracic organs, connective and soft tissue, prostate, kidney, bladder, thyroid, non-Hodgkin's lymphoma, lymphatic leukemia, myeloid leukemia, and other unspecified sites (all p < 0.05). Negative association between waste gas emissions and the esophagus cancer incidence was observed (p < 0.05). The results of the whole group were basically consistent with the results of the stratified analysis. The results from this retrospective population-based study suggest ambient air pollution from waste gas emissions was associated with multiple cancer incidences.

  12. Real Time Monitoring of Dissolved Organic Carbon Concentration and Disinfection By-Product Formation Potential in a Surface Water Treatment Plant with Simulaneous UV-VIS Absorbance and Fluorescence Excitation-Emission Mapping

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2015-12-01

    This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.

  13. The Multi-component X-ray Emission of 3C 273

    NASA Astrophysics Data System (ADS)

    Soldi, S.; Türler, M.; Paltani, S.; Courvoisier, T. J.-L.

    2009-05-01

    3C 273 is the brightest quasar in the sky and among the most extensively observed and studied AGN, therefore one of the most suitable targets for a long-term, multi-frequency study. The superposition of a thermal Comptonisation component, similar to that observed in Seyfert galaxies, and of a non-thermal component, related to the jet emission, seems to explain some of the spectral and timing properties of the X-ray emission of 3C 273. Yet, during some observations this dichotomy has not been observed and the variability properties could also be consistent with a single-component scenario, characterised by two parameters varying independently. In order to understand the nature of the X-ray emission in 3C 273, a series of observations up to 80-100 keV, possibly catching the source in different flux states, are essential. Simbol-X will be able to study the emission of 3C 273 in the broad 0.5-80 keV band with high sensitivity, allowing us to disentangle the emission from different spectral components, with 20-30 ks long observations. In addition, the shape and the origin of the high-energy emission of this quasar will be further constrained thanks to the AGILE and Fermi satellites, monitoring the γ-ray sky in the MeV-GeV energy domain.

  14. Observation of EX Hydrae with ASCA

    NASA Technical Reports Server (NTRS)

    Ishida, Manabu; Mukai, Koji; Osborne, Julian P.

    1994-01-01

    We have observed the intermediate polar EX Hya with Advanced Satellite for Cosmology and Astrophysics (ASCA), and have clearly detected He-like and H-like K alpha emission lines from Mg to Fe. The intensity ratios of these pairs of lines are not compatible with an isothermal plasma, and a temperature distribution can no longer be parameterized by the conventional two emission component model. We have successfully decomposed iron line emission into thermal plasma component and flourescent component. The equivalent width of the flourescent component is approximately 80 eV.

  15. Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille

    NASA Astrophysics Data System (ADS)

    El Haddad, I.; Marchand, N.; Wortham, H.; Piot, C.; Besombes, J.-L.; Cozic, J.; Chauvel, C.; Armengaud, A.; Robin, D.; Jaffrezo, J.-L.

    2011-03-01

    Marseille, the most important port of the Mediterranean Sea, represents a challenging case study for source apportionment exercises, combining an active photochemistry and multiple emission sources, including fugitive emissions from industrial sources and shipping. This paper presents a Chemical Mass Balance (CMB) approach based on organic markers and metals to apportion the primary sources of organic aerosol in Marseille, with a special focus on industrial emissions. Overall, the CMB model accounts for the major primary anthropogenic sources including motor vehicles, biomass burning and the aggregate emissions from three industrial processes (heavy fuel oil combustion/shipping, coke production and steel manufacturing) as well as some primary biogenic emissions. This source apportionment exercise is well corroborated by 14C measurements. Primary OC estimated by the CMB accounts on average for 22% of total OC and is dominated by the vehicular emissions that contribute on average for 17% of OC mass concentration (vehicular PM contributes for 17% of PM2.5). Even though industrial emissions contribute only 2.3% of the total OC (7% of PM2.5), they are associated with ultrafine particles (Dp<80 nm) and high concentrations of Polycyclic Aromatic Hydrocarbons (PAH) and heavy metals such as Pb, Ni and V. On one hand, given that industrial emissions governed key primary markers, their omission would lead to substantial uncertainties in the CMB analysis performed in areas heavily impacted by such sources, hindering accurate estimation of non-industrial primary sources and secondary sources. On the other hand, being associated with bursts of submicron particles and carcinogenic and mutagenic components such as PAH, these emissions are most likely related with acute ill-health outcomes and should be regulated despite their small contributions to OC. Another important result is the fact that 78% of OC mass cannot be attributed to the major primary sources and, thus, remains un-apportioned. We have consequently critically investigated the uncertainties underlying our CMB apportionments. While we have provided some evidence for photochemical decay of hopanes, this decay does not appear to significantly alter the CMB estimates of the total primary OC. Sampling artifacts and unaccounted primary sources also appear to marginally influence the amount of un-apportioned OC. Therefore, this significant amount of un-apportioned OC is mostly attributed to secondary organic carbon that appears to be the major component of OC during the whole period of study.

  16. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization.

    PubMed

    Miao, Xiang; Qu, Dan; Yang, Dongxue; Nie, Bing; Zhao, Yikang; Fan, Hongyou; Sun, Zaicheng

    2018-01-01

    Multiple-color-emissive carbon dots (CDots) have potential applications in various fields such as bioimaging, light-emitting devices, and photocatalysis. The majority of the current CDots to date exhibit excitation-wavelength-dependent emissions with their maximum emission limited at the blue-light region. Here, a synthesis of multiple-color-emission CDots by controlled graphitization and surface function is reported. The CDots are synthesized through controlled thermal pyrolysis of citric acid and urea. By regulating the thermal-pyrolysis temperature and ratio of reactants, the maximum emission of the resulting CDots gradually shifts from blue to red light, covering the entire light spectrum. Specifically, the emission position of the CDots can be tuned from 430 to 630 nm through controlling the extent of graphitization and the amount of surface functional groups, COOH. The relative photoluminescence quantum yields of the CDots with blue, green, and red emission reach up to 52.6%, 35.1%, and 12.9%, respectively. Furthermore, it is demonstrated that the CDots can be uniformly dispersed into epoxy resins and be fabricated as transparent CDots/epoxy composites for multiple-color- and white-light-emitting devices. This research opens a door for developing low-cost CDots as alternative phosphors for light-emitting devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 40 CFR 86.092-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...), general type of fuel system (i.e., carburetor or fuel injection), catalyst system (e.g., none, oxidization... control systems are emission control components or systems (and fuel metering systems) that have completed... emission control components or systems (and fuel metering systems) that do not qualify as proven emission...

  18. 40 CFR 86.092-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...), general type of fuel system (i.e., carburetor or fuel injection), catalyst system (e.g., none, oxidization... control systems are emission control components or systems (and fuel metering systems) that have completed... emission control components or systems (and fuel metering systems) that do not qualify as proven emission...

  19. 40 CFR 86.092-2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...), general type of fuel system (i.e., carburetor or fuel injection), catalyst system (e.g., none, oxidization... control systems are emission control components or systems (and fuel metering systems) that have completed... emission control components or systems (and fuel metering systems) that do not qualify as proven emission...

  20. Refinery evaluation of optical imaging to locate fugitive emissions.

    PubMed

    Robinson, Donald R; Luke-Boone, Ronke; Aggarwal, Vineet; Harris, Buzz; Anderson, Eric; Ranum, David; Kulp, Thomas J; Armstrong, Karla; Sommers, Ricky; McRae, Thomas G; Ritter, Karin; Siegell, Jeffrey H; Van Pelt, Doug; Smylie, Mike

    2007-07-01

    Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.

  1. Infrared Spectroscopy of HR 4796A's Bright Outer Cometary Ring + Tenuous Inner Hot Dust Cloud

    NASA Astrophysics Data System (ADS)

    Lisse, C. M.; Sitko, M. L.; Marengo, M.; Vervack, R. J., Jr.; Fernandez, Y. R.; Mittal, T.; Chen, C. H.

    2017-11-01

    We have obtained new NASA/IRTF SpeX spectra of the HR 4796A debris ring system. We find a unique red excess flux that extends out to ˜9 μm in Spitzer IRS spectra, where thermal emission from cold, ˜100 K dust from the system’s ring at ˜75 au takes over. Matching imaging ring photometry, we find the excess consists of NIR reflectance from the ring, which is as red as that of old, processed comet nuclei, plus a tenuous thermal emission component from close-in, T ˜ 850 K circumstellar material evincing an organic/silicate emission feature complex at 7-13 μm. Unusual, emission-like features due to atomic Si, S, Ca, and Sr were found at 0.96-1.07 μm, likely sourced by rocky dust evaporating in the 850 K component. An empirical cometary dust phase function can reproduce the scattered light excess and 1:5 balance of scattered versus thermal energy for the ring with optical depth < τ > ≥slant 0.10 in an 8 au wide belt of 4 au vertical height and M dust > 0.1-0.7 M Mars. Our results are consistent with HR 4796A, consisting of a narrow shepherded ring of devolatilized cometary material associated with multiple rocky planetesimal subcores and a small steady stream of dust inflowing from this belt to a rock sublimation zone at ˜1 au from the primary. These subcores were built from comets that have been actively emitting large, reddish dust for >0.4 Myr at ˜100 K, the temperature at which cometary activity onset is seen in our solar system.

  2. CO2 and CH4 emissions from streams in a lake-rich landscape: Patterns, controls, and regional significance

    USGS Publications Warehouse

    Crawford, John T.; Lottig, Noah R.; Stanley, Emily H.; Walker, John F.; Hanson, Paul C.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Aquatic ecosystems are important components of landscape carbon budgets. In lake-rich landscapes, both lakes and streams may be important sources of carbon gases (CO2 and CH4) to the atmosphere, but the processes that control gas concentrations and emissions in these interconnected landscapes have not been adequately addressed. We use multiple data sets that vary in their spatial and temporal extent during 2001–2012 to investigate the carbon gas source strength of streams in a lake-rich landscape and to determine the contribution of lakes, metabolism, and groundwater to stream CO2 and CH4. We show that streams emit roughly the same mass of CO2 (23.4 Gg C yr−1; 0.49 mol CO2 m−2 d−1) as lakes at a regional scale (27 Gg C yr−1) and that stream CH4 emissions (189 Mg C yr−1; 8.46 mmol CH4 m−2 d−1) are an important component of the regional greenhouse gas balance. Gas transfer velocity variability (range = 0.34 to 13.5 m d−1) contributed to the variability of gas flux in this landscape. Groundwater inputs and in-stream metabolism control stream gas supersaturation at the landscape scale, while carbon cycling in lakes and deep groundwaters does not control downstream gas emissions. Our results indicate the need to consider connectivity of all aquatic ecosystems (lakes, streams, wetlands, and groundwater) in lake-rich landscapes and their connections with the terrestrial environment in order to understand the full nature of the carbon cycle.

  3. Future Trends in Solar Radio Astronomy and Coronal Magnetic-Field Measurements

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory; Nita, Gelu; Gary, Dale

    Solar radio astronomy has an amazingly rich, but yet largely unexploited, potential for probing the solar corona and chromosphere. Radio emission offers multiple ways of detecting and tracking electron beams, studying chromospheric and coronal thermal structure, plasma processes, particle acceleration, and measuring magnetic fields. To turn the mentioned potential into real routine diagnostics, two major components are needed: (1) well-calibrated observations with high spatial, spectral, and temporal resolutions and (2) accurate and reliable theoretical models and fast numerical tools capable of recovering the emission source parameters from the radio data. This report gives a brief overview of the new, expanded, and planned radio facilities, such as Expanded Owens Valley Solar Array (EOVSA), Jansky Very Large Array (JVLA), Chinese Solar Radio Heliograph (CSRH), Upgraded Siberian Solar Radio Telescope (USSRT), and Frequency Agile Solar Radiotelescope (FASR) with the emphasis on their ability to measure the coronal magnetic fields in active regions and flares. In particular, we emphasize the new tools for 3D modeling of the radio emission and forward fitting tools in development needed to derive the magnetic field data from the radio measurements.

  4. A comparison between soft x-ray and magnetic phase data on the Madison symmetric torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanMeter, P. D., E-mail: pvanmeter@wisc.edu; Reusch, L. M.; Sarff, J. S.

    The Soft X-Ray (SXR) tomography system on the Madison Symmetric Torus uses four cameras to determine the emissivity structure of the plasma. This structure should directly correspond to the structure of the magnetic field; however, there is an apparent phase difference between the emissivity reconstructions and magnetic field reconstructions when using a cylindrical approximation. The difference between the phase of the dominant rotating helical mode of the magnetic field and the motion of the brightest line of sight for each SXR camera is dependent on both the camera viewing angle and the plasma conditions. Holding these parameters fixed, this phasemore » difference is shown to be consistent over multiple measurements when only toroidal or poloidal magnetic field components are considered. These differences emerge from physical effects of the toroidal geometry which are not captured in the cylindrical approximation.« less

  5. Electromagnetic Ion Cyclotron Waves in the Helium Branch Induced by Multiple Electromagnetic Ion Cyclotron Triggered Emissions

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  6. Electromagnetic ion cyclotron waves in the helium branch induced by multiple electromagnetic ion cyclotron triggered emissions

    NASA Astrophysics Data System (ADS)

    Shoji, Masafumi; Omura, Yoshiharu; Grison, Benjamin; Pickett, Jolene; Dandouras, Iannis; Engebretson, Mark

    2011-09-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  7. Probing the Hydrogen Enhanced Near-Field Emission of ITO without a Vacuum-Gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, Jacob L.; Yu, Yang; Ohodnicki, Paul R.

    In-situ monitoring of the multi-component gas streams in high temperature energy conversion devices offer the promises to higher efficiency via improved understanding of the chemical environments during device operation. While conventional resistive based metal oxide semiconductor gas sensors suffer from strong cross-sensitivity, optical sensing approaches offer intrinsic advantages to achieve gas selectivity based on wavelength specific interactions. This manuscript describes a novel method to achieve multicomponent gas sensing during gas exposure of H2, CO2, CH4and CO in humid high temperature environments. A single sensor element comprised of a perovskite La0.3Sr0.7TiO3(LSTO) oxide thin film layer coated on silica optical fiber wasmore » used. The sensing responses consisted of two wavelength-specific near infrared (NIR) mechanisms, namely broadband absorption associated with the metal oxide layer, and wavelength localized thermal emission responses associated with the hydroxyl defects within the silica fiber. Principal component analysis (PCA) was applied to couple the two mechanisms to achieve selective gas identification. Successful discrimination of H2and CO2on a single fiber sensor was achieved, where the results are both stable and reversible. This design demonstrates that by coupling multiple optical mechanisms on a single oxide coated fiber sensor, simple platforms can also achieve multi-component sensing functionality without the added complexity of a sensor array. Thus, it suggests a new approach to construct simple, robust and functional sensor designs capable of gas discrimination and quantification in multi-component gas streams.« less

  8. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water.

    PubMed

    Saito, Yasunori; Kakuda, Kei; Yokoyama, Mizuho; Kubota, Tomoki; Tomida, Takayuki; Park, Ho-Dong

    2016-08-20

    In this work, we developed mobile laser-induced fluorescence spectrum (LIFS) lidar based on preliminary experiments on the excitation emission matrix of a water sample and a method for reducing solar background light using the synchronous detection technique. The combination of a UV short-pulse laser (355 nm, 6 ns) for fluorescence excitation with a 10-100 ns short-time synchronous detection using a gated image-intensified multi-channel CCD of the fluorescence made the LIFS lidar operation possible even in daytime. The LIFS lidar with this construction demonstrated the potential of natural river/lake water quality monitoring at the Tenryu River/Lake Suwa. Three main components in the fluorescence data of the water, dissolved organic matter, phycocyanin, and chlorophyll, were extracted by spectral analysis using the standard spectral functions of these components. Their concentrations were estimated by adapting experimentally calibrated data. Results of long-term field observations using our LIFS lidar from 2010 to 2012 show the necessity of simultaneous multi-component detection to understand the natural water environment.

  9. Rapid Compton-thick/Compton-thin Transitions in the Seyfert 2 Galaxy NGC 1365

    NASA Technical Reports Server (NTRS)

    Risaliti, G.; Elvis, M.; Fabbiano, G.; Baldi, A.; Zezas, A.

    2006-01-01

    We present multiple Chandra and XMM-Newton observations of the type 1.8 Seyfert galaxy NGC 1365, which shows the most dramatic X-ray spectral changes observed so far in an active galactic nucleus: the source switched from reflection-dominated to transmission-dominated and back in just 6 weeks. During this time the soft thermal component, arising from a approx. 1 kpc region around the center, remained constant. The reflection component is constant at all timescales, and its high flux relative to the primary component implies the presence of thick gas covering a large fraction of the solid angle. The presence of this gas, and the fast variability timescale, suggest that the Compton-thick to Compton-thin change is due to variation in the line-of-sight absorber rather than to extreme intrinsic emission variability. We discuss a structure of the circumuclear absorber/reflector that can explain the observed X-ray spectral and temporal properties.

  10. A 100-3000 GHz model of thermal dust emission observed by Planck, DIRBE and IRAS

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anistropy on small angular scales. We have recently released maps and associated software utilities for obtaining thermal dust emission and reddening predictions using our Planck-based two-component model.

  11. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.

    PubMed

    Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-06-10

    We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81  μJ/pulse for single mode lasing emission and 2.25  μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

  12. Suzaku Observations of Thermal and Non-Thermal X-Ray Emission from the Middle-Aged Supernova Remnant G156.2+5.7

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Petre, Robert; Hwang, Una; Yamaguchi, Hiroya; Mori, Koji; Tsunemi, Hiroshi

    2008-01-01

    We present results from X-ray analysis of a Galactic middle-aged supernova remnant (SNR) G156.2+5.7 which is bright and largely extended in X-ray wavelengths, showing a clear circular shape (radius approx.50'). Using the Suzaku satellite, we observed this SNR in three pointings; partially covering the northwestern (NW) rim, the eastern (E) rim, and the central portion of this SNR. In the NW rim and the central portion, we confirm that the X-ray spectra consist of soft and hard-tail emission, while in the E rim we find no significant hard-tail emission. The soft emission is well fitted by either a one-component or two-component non-equilibrium ionization (NEI) model. In the NW and E rims, a one-component (the swept-up interstellar medium) NEI model well represents the soft emission. On the other hand, in the central portion, a two-component (the interstellar medium and the metal-rich ejecta) NEI model fits the soft emission better than the one-component NEI model from a statistical point of view. The relative abundances in the ejecta component suggest that G156.2+5.7 is a remnant from a core-collapse SN explosion whose progenitor mass is less than 15 Solar Mass. The origin of the hard-tail emission detected in the NW rim and the central portion of the SNR is highly likely non-thermal synchrotron emission from relativistic electrons. In the NW rim, the relativistic electrons seems to be accelerated by a forward shock with a slow velocity of APPROX.500 km/sec.

  13. HIFI Spectroscopy of H2O Submillimeter Lines in Nuclei of Actively Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Liu, L.; Weiß, A.; Perez-Beaupuits, J. P.; Güsten, R.; Liu, D.; Gao, Y.; Menten, K. M.; van der Werf, P.; Israel, F. P.; Harris, A.; Martin-Pintado, J.; Requena-Torres, M. A.; Stutzki, J.

    2017-09-01

    We present a systematic survey of multiple velocity-resolved H2O spectra using Herschel/Heterodyne Instrument for the Far Infrared (HIFI) toward nine nearby actively star-forming galaxies. The ground-state and low-excitation lines (E up ≤ 130 K) show profiles with emission and absorption blended together, while absorption-free medium-excitation lines (130 K ≤ E up ≤ 350 K) typically display line shapes similar to CO. We analyze the HIFI observation together with archival SPIRE/PACS H2O data using a state-of-the-art 3D radiative transfer code that includes the interaction between continuum and line emission. The water excitation models are combined with information on the dust and CO spectral line energy distribution to determine the physical structure of the interstellar medium (ISM). We identify two ISM components that are common to all galaxies: a warm ({T}{dust}˜ 40{--}70 K), dense (n({{H}})˜ {10}5{--}{10}6 {{cm}}-3) phase that dominates the emission of medium-excitation H2O lines. This gas phase also dominates the far-IR emission and the CO intensities for {J}{up}> 8. In addition, a cold ({T}{dust}˜ 20{--}30 K), dense (n({{H}})˜ {10}4{--}{10}5 {{cm}}-3), more extended phase is present. It outputs the emission in the low-excitation H2O lines and typically also produces the prominent line absorption features. For the two ULIRGs in our sample (Arp 220 and Mrk 231) an even hotter and more compact (R s ≤ 100 pc) region is present, which is possibly linked to AGN activity. We find that collisions dominate the water excitation in the cold gas and for lines with {E}{up}≤slant 300 K and {E}{up}≤slant 800 K in the warm and hot component, respectively. Higher-energy levels are mainly excited by IR pumping.

  14. Ethylene-Regulated Floral Volatile Synthesis in Petunia Corollas1[w

    PubMed Central

    Underwood, Beverly A.; Tieman, Denise M.; Shibuya, Kenichi; Dexter, Richard J.; Loucas, Holly M.; Simkin, Andrew J.; Sims, Charles A.; Schmelz, Eric A.; Klee, Harry J.; Clark, David G.

    2005-01-01

    In many flowering plants, such as petunia (Petunia × hybrida), ethylene produced in floral organs after pollination elicits a series of physiological and biochemical events, ultimately leading to senescence of petals and successful fertilization. Here, we demonstrate, using transgenic ethylene insensitive (44568) and Mitchell Diploid petunias, that multiple components of emission of volatile organic compounds (VOCs) are regulated by ethylene. Expression of benzoic acid/salicylic acid carboxyl methyltransferase (PhBSMT1 and 2) mRNA is temporally and spatially down-regulated in floral organs in a manner consistent with current models for postpollination ethylene synthesis in petunia corollas. Emission of methylbenzoate and other VOCs after pollination and exogenous ethylene treatment parallels a reduction in PhBSMT1 and 2 mRNA levels. Under cyclic light conditions (day/night), PhBSMT mRNA levels are rhythmic and precede emission of methylbenzoate by approximately 6 h. When shifted into constant dark or light conditions, PhBSMT mRNA levels and subsequent methylbenzoate emission correspondingly decrease or increase to minimum or maximum levels observed during normal conditions, thus suggesting that light may be a more critical influence on cyclic emission of methylbenzoate than a circadian clock. Transgenic PhBSMT RNAi flowers with reduced PhBSMT mRNA levels show a 75% to 99% decrease in methylbenzoate emission, with minimal changes in other petunia VOCs. These results implicate PhBSMT1 and 2 as genes responsible for synthesis of methylbenzoate in petunia. PMID:15849311

  15. MICRO AUTO GASIFICATION SYSTEM: EMISSIONS ...

    EPA Pesticide Factsheets

    A compact, CONEX-housed waste to energy unit, Micro Auto Gasification System (MAGS), was characterized for air emissions from burning of military waste types. The MAGS unit is a dual chamber gasifier with a secondary diesel-fired combustor. Eight tests were conducted with multiple waste types in a 7-day period at the Kilauea Military Camp in Hawai’i. The emissions characterized were chosen based on regulatory emissions limits as well as their ability to cause adverse health effects on humans: particulate matter (PM), mercury, heavy metals, volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Three military waste feedstock compositions reflecting the variety of wastes to be encountered in theatre were investigated: standard waste (SW), standard waste with increased plastic content (HP), standard waste without SW food components but added first strike ration (FSR) food and packaging material (termed FSR). A fourth waste was collected from the Kilauea dumpster that served the dining facility and room lodging (KMC). Limited scrubber water and solid ash residue samples were collected to obtain a preliminary characterization of these effluents/residues.Gasifying SW, HP, and KMC resulted in similar PCDD/PCDF stack concentrations, 0.26-0.27 ng TEQ/m3 at 7% O2, while FSR waste generated a notably higher stack concentration of 0.68 ng TEQ/m3 at 7% O2. The PM emission

  16. Biomass-based negative emissions difficult to reconcile with planetary boundaries

    NASA Astrophysics Data System (ADS)

    Heck, Vera; Gerten, Dieter; Lucht, Wolfgang; Popp, Alexander

    2018-01-01

    Under the Paris Agreement, 195 nations have committed to holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and to strive to limit the increase to 1.5 °C (ref. 1). It is noted that this requires "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of the century"1. This either calls for zero greenhouse gas (GHG) emissions or a balance between positive and negative emissions (NE)2,3. Roadmaps and socio-economic scenarios compatible with a 2 °C or 1.5 °C goal depend upon NE via bioenergy with carbon capture and storage (BECCS) to balance remaining GHG emissions4-7. However, large-scale deployment of BECCS would imply significant impacts on many Earth system components besides atmospheric CO2 concentrations8,9. Here we explore the feasibility of NE via BECCS from dedicated plantations and potential trade-offs with planetary boundaries (PBs)10,11 for multiple socio-economic pathways. We show that while large-scale BECCS is intended to lower the pressure on the PB for climate change, it would most likely steer the Earth system closer to the PB for freshwater use and lead to further transgression of the PBs for land-system change, biosphere integrity and biogeochemical flows.

  17. Design of fuel cell powered data centers for sufficient reliability and availability

    NASA Astrophysics Data System (ADS)

    Ritchie, Alexa J.; Brouwer, Jacob

    2018-04-01

    It is challenging to design a sufficiently reliable fuel cell electrical system for use in data centers, which require 99.9999% uptime. Such a system could lower emissions and increase data center efficiency, but the reliability and availability of such a system must be analyzed and understood. Currently, extensive backup equipment is used to ensure electricity availability. The proposed design alternative uses multiple fuel cell systems each supporting a small number of servers to eliminate backup power equipment provided the fuel cell design has sufficient reliability and availability. Potential system designs are explored for the entire data center and for individual fuel cells. Reliability block diagram analysis of the fuel cell systems was accomplished to understand the reliability of the systems without repair or redundant technologies. From this analysis, it was apparent that redundant components would be necessary. A program was written in MATLAB to show that the desired system reliability could be achieved by a combination of parallel components, regardless of the number of additional components needed. Having shown that the desired reliability was achievable through some combination of components, a dynamic programming analysis was undertaken to assess the ideal allocation of parallel components.

  18. 40 CFR 1060.120 - What emission-related warranty requirements apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of sale to the ultimate purchaser with the requirements of this part. (2) It is free from defects in... emission-related warranty must be valid for at least two years from the point of first retail sale. (c) Components covered. The emission-related warranty covers all components whose failure would increase the...

  19. 40 CFR 1036.205 - What must I include in my application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gas emissions, including all auxiliary emission control devices (AECDs) and all fuel-system components you will install on any production or test engine. Identify the part number of each component you....-directed production volume of configurations that have emission rates at or below the FCL must be at least...

  20. 40 CFR 1036.205 - What must I include in my application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gas emissions, including all auxiliary emission control devices (AECDs) and all fuel-system components you will install on any production or test engine. Identify the part number of each component you....-directed production volume of configurations that have emission rates at or below the FCL must be at least...

  1. Model for CO2 leakage including multiple geological layers and multiple leaky wells.

    PubMed

    Nordbotten, Jan M; Kavetski, Dmitri; Celia, Michael A; Bachu, Stefan

    2009-02-01

    Geological storage of carbon dioxide (CO2) is likely to be an integral component of any realistic plan to reduce anthropogenic greenhouse gas emissions. In conjunction with large-scale deployment of carbon storage as a technology, there is an urgent need for tools which provide reliable and quick assessments of aquifer storage performance. Previously, abandoned wells from over a century of oil and gas exploration and production have been identified as critical potential leakage paths. The practical importance of abandoned wells is emphasized by the correlation of heavy CO2 emitters (typically associated with industrialized areas) to oil and gas producing regions in North America. Herein, we describe a novel framework for predicting the leakage from large numbers of abandoned wells, forming leakage paths connecting multiple subsurface permeable formations. The framework is designed to exploit analytical solutions to various components of the problem and, ultimately, leads to a grid-free approximation to CO2 and brine leakage rates, as well as fluid distributions. We apply our model in a comparison to an established numerical solverforthe underlying governing equations. Thereafter, we demonstrate the capabilities of the model on typical field data taken from the vicinity of Edmonton, Alberta. This data set consists of over 500 wells and 7 permeable formations. Results show the flexibility and utility of the solution methods, and highlight the role that analytical and semianalytical solutions can play in this important problem.

  2. 40 CFR 1033.645 - Non-OEM component certification program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... needs of your component. (iv) An engineering analysis (including test data in some cases) demonstrating to us that your component will not cause emissions to increase. The analysis must address both low-hour and end-of-useful life emissions. The amount of information required for this analysis is less...

  3. 40 CFR 1033.645 - Non-OEM component certification program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... needs of your component. (iv) An engineering analysis (including test data in some cases) demonstrating to us that your component will not cause emissions to increase. The analysis must address both low-hour and end-of-useful life emissions. The amount of information required for this analysis is less...

  4. Deconstructing the Spectrum of the Soft X-ray Background

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2000-01-01

    The soft X-ray background in the 0.1-1.0 keV band is known to be produced by at least three sources; the Local Hot Bubble (LHB), the extragalactic power law (EPL), and a seemingly galactic component that lies outside the bulk of the absorption that is due to the ISM of the galactic disk. This last component, which we call the Trans-Absorption Emission (TAE), has been modeled by a number of groups who have derived disparate measures of its temperature. The differences have arisen from differing assumptions about the structure of the emitting gas and unrecognized methodological difficulties. In particular, spectral fitting methods do not uniquely separate the TAE from the foreground emission that is due the LHB. This "degeneracy" can be resolved using the angular variation of the absorption of the TAE. We show that the TAE cannot be characterized by a single thermal component; no single-component model can be consistent with both the spectral energy distribution of the TAE emission and the angular variation due to absorption by the galactic disk. We use the angular anticorrelation of the ROSAT All-Sky Survey with the galactic absorption to separate local from distant emission components, and to fit the spectral energy distribution of the resulting distant emission. We find that the emission is best described by a two-thermal-component model with logT(sub S) = 6.06(sup +0.14, sub -0.12) and log T(sub H) = 6.42(sup +0.14, sub -0.12). This two-thermal-component TAE fits the ROSAT spectral energy distribution significantly better than single-component models, and is consistent with both angular variation and spectral constraints.

  5. An inventory of nitrous oxide emissions from agriculture in the UK using the IPCC methodology: emission estimate, uncertainty and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Brown, L.; Armstrong Brown, S.; Jarvis, S. C.; Syed, B.; Goulding, K. W. T.; Phillips, V. R.; Sneath, R. W.; Pain, B. F.

    Nitrous oxide emission from UK agriculture was estimated, using the IPCC default values of all emission factors and parameters, to be 87 Gg N 2O-N in both 1990 and 1995. This estimate was shown, however, to have an overall uncertainty of 62%. The largest component of the emission (54%) was from the direct (soil) sector. Two of the three emission factors applied within the soil sector, EF1 (direct emission from soil) and EF3 PRP (emission from pasture range and paddock) were amongst the most influential on the total estimate, producing a ±31 and +11% to -17% change in emissions, respectively, when varied through the IPCC range from the default value. The indirect sector (from leached N and deposited ammonia) contributed 29% of the total emission, and had the largest uncertainty (126%). The factors determining the fraction of N leached (Frac LEACH) and emissions from it (EF5), were the two most influential. These parameters are poorly specified and there is great potential to improve the emission estimate for this component. Use of mathematical models (NCYCLE and SUNDIAL) to predict Frac LEACH suggested that the IPCC default value for this parameter may be too high for most situations in the UK. Comparison with other UK-derived inventories suggests that the IPCC methodology may overestimate emission. Although the IPCC approach includes additional components to the other inventories (most notably emission from indirect sources), estimates for the common components (i.e. fertiliser and animals), and emission factors used, are higher than those of other inventories. Whilst it is recognised that the IPCC approach is generalised in order to allow widespread applicability, sufficient data are available to specify at least two of the most influential parameters, i.e. EF1 and Frac LEACH, more accurately, and so provide an improved estimate of nitrous oxide emissions from UK agriculture.

  6. GW Orionis: Inner disk readjustments in a triple system

    NASA Astrophysics Data System (ADS)

    Fang, M.; Sicilia-Aguilar, A.; Roccatagliata, V.; Fedele, D.; Henning, Th.; Eiroa, C.; Müller, A.

    2014-10-01

    Context. Disks are expected to dissipate quickly in binary or multiple systems. Investigating such systems can improve our knowledge of the disk dispersal. The triple system GW Ori, still harboring a massive disk, is an excellent target. Aims: We study the young stellar system GW Ori, concentrating on its accretion, wind activity and disk properties. Methods: We use high-resolution optical spectra of GW Ori to do spectral classification and derive the radial velocities (RV). We analyze the wind and accretion activity using the emission lines in the spectra. We also use U-band photometry, which has been collected from the literature, to study the accretion variability of GW Ori. We characterize the disk properties of GW Ori by modeling its spectral energy distribution (SED). Results.By comparing our data to the synthetical spectra, we classify GW Ori as a G8 star. Based on the RVs derived from the optical spectra, we confirm the previous result as a close companion in GW Ori with a period of ~242 days and an orbital semi-major axis of ~1 AU. The RV residuals after the subtraction of the orbital solution with the equivalent widths (EW) of accretion-related emission lines vary with periods of 5-6.7 days during short-time intervals, which are caused by the rotational modulation. The Hα and Hβ line profiles of GW Ori can be decomposed in two central-peaked emission components and one blue-shifted absorption component. The blue-shifted absorption components are due to a disk wind modulated by the orbital motion of the close companion. Therefore, the systems like GW Ori can be used to study the extent of disk winds. We find that the accretion rates of GW Ori are rather constant but can occasionally be enhanced by a factor of 2-3. We reproduce the SED of GW Ori by using disk models with gaps ~25-55 AU in size. A small population of tiny dust particles within the gap produces the excess emission at near-infrared bands and the strong and sharp silicate feature at 10 μm. The SED of GW Ori exhibits dramatic changes on timescales of ~20 yr in the near-infrared bands, which can be explained as the change in the amount and distribution of small dust grains in the gap. We collect a sample of binary/multiple systems with disks in the literature and find a strong positive correlation between their gap sizes and separations from the primaries to companions, which is generally consistent with the prediction from the theory. Table 4 is available in electronic form at http://www.aanda.org

  7. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palou-Rivera, I.; Wang, M. Q.

    2010-12-08

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels suchmore » as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.« less

  8. ASCA Observation of an "X-Ray Shadow" in the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Park, Sangwook; Ebisawa, Ken

    2001-01-01

    The diffuse X-ray background (DXB) emission near the Galactic plane (l,b approximately 25.6 degrees, 0.78 degrees) has been observed with ASCA (Advanced Satellite for Cosmology and Astrophysics). The observed region is toward a Galactic molecular cloud which was recently reported to cast a deep X-ray shadow in the 0.5 - 2.0 keV band DXB. The selection of this particular region is intended to provide a constraint on the spatial distribution of the DXB emission along the line of sight: i.e., the molecular cloud is optically thick at <2 keV and so the bulk of the observed soft X-rays must originate in the foreground of the cloud, which is at approximately 3 kpc from the Sun. In the 0.8 - 9.0 keV band, the observed spectrum is primarily from multiple components of thermal plasmas. We here report a detection of soft X-ray (0.5 - 2 keV) emission from an approximately 10(exp 7) K thermal plasma. Comparisons with the ROSAT (Roentgen Satellite) data suggest that this soft X-ray emission is absorbed by N(sub H) = 1 - 3 x 10(exp 21) cm(exp -2), which implies a path-length through the soft X-ray emitting regions of approximately less than 1 kpc from the Sun.

  9. A hybrid study of multiple contributors to per capita household CO2 emissions (HCEs) in China.

    PubMed

    Qu, Jiansheng; Qin, Shanshan; Liu, Lina; Zeng, Jingjing; Bian, Yue

    2016-04-01

    Given the large expenditures by households on goods and services that contribute a large proportion of global CO2 emissions, increasing attention has been paid to household CO2 emissions (HCEs). However, compared with industrial CO2 emissions, efforts devoted to mitigating HCEs are relatively small. A good understanding of the effects of some driving factors (i.e., urbanization rate, per capita GDP, per capita income/disposable income, Engel coefficient, new energy ratio, carbon intensity, and household size) is urgently needed prior to considering policies for reducing HCEs. Given this, in the study, the direct and indirect per capita HCEs were quantified in rural and urban areas of China over the period 2000-2012. Correlation analysis and gray correlation analysis were initially used to identify the prime drivers of per capita HCEs. Our results showed that per capita income/disposable income, per capita GDP, urbanization rate, and household size were the most significantly correlated with per capita HCEs in rural areas. Moreover, the conjoint effects of the potential driving factors on per capita HCEs were determined by performing principal component regression analysis for all cases. Based on the combined analysis strategies, alternative polices were also examined for controlling and mitigating HCEs growth in China.

  10. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system

    NASA Astrophysics Data System (ADS)

    Hu, Jianlin; Chen, Jianjun; Ying, Qi; Zhang, Hongliang

    2016-08-01

    China has been experiencing severe air pollution in recent decades. Although an ambient air quality monitoring network for criteria pollutants has been constructed in over 100 cities since 2013 in China, the temporal and spatial characteristics of some important pollutants, such as particulate matter (PM) components, remain unknown, limiting further studies investigating potential air pollution control strategies to improve air quality and associating human health outcomes with air pollution exposure. In this study, a yearlong (2013) air quality simulation using the Weather Research and Forecasting (WRF) model and the Community Multi-scale Air Quality (CMAQ) model was conducted to provide detailed temporal and spatial information of ozone (O3), total PM2.5, and chemical components. Multi-resolution Emission Inventory for China (MEIC) was used for anthropogenic emissions and observation data obtained from the national air quality monitoring network were collected to validate model performance. The model successfully reproduces the O3 and PM2.5 concentrations at most cities for most months, with model performance statistics meeting the performance criteria. However, overprediction of O3 generally occurs at low concentration range while underprediction of PM2.5 happens at low concentration range in summer. Spatially, the model has better performance in southern China than in northern China, central China, and Sichuan Basin. Strong seasonal variations of PM2.5 exist and wind speed and direction play important roles in high PM2.5 events. Secondary components have more boarder distribution than primary components. Sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), and primary organic aerosol (POA) are the most important PM2.5 components. All components have the highest concentrations in winter except secondary organic aerosol (SOA). This study proves the ability of the CMAQ model to reproduce severe air pollution in China, identifies the directions where improvements are needed, and provides information for human exposure to multiple pollutants for assessing health effects.

  11. Infrared and X-Ray Spectroscopy of the KES 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli; Slane, Patrick; Arendt, Richard G.

    2009-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and ill emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  12. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Slane, Patrick; Arendt, Richard G.; Dwek, Eli

    2011-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of approximately 1.5 keY, or with two thermal components with temperatures of 1.5 and 0.2 keY. Previous studies suggest that the hot component may originate from reverse-shocked supernova (SN) ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from SN ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of approximately 140 K by a relatively dense, hot plasma that also gives rise to the hot X-my emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-my emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) x solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  13. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Shell Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Arendt, Richard G.; Dwek, Eli; Slane, Patrick

    2012-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of approx 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keY. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of approx 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) Solar Mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  14. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Astrophysics Data System (ADS)

    Temim, Tea; Slane, Patrick; Arendt, Richard G.; Dwek, Eli

    2012-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of ~1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked supernova (SN) ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from SN ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of ~140 K by a relatively dense, hot plasma that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 × 10-2 M ⊙, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  15. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOEpatents

    Reitz, Rolf D.; Thiel, Matthew P.

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  16. Evaluating the Effects of Emission Reductions on Multiple Pollutants Simultaneously

    EPA Science Inventory

    Modeling studies over the Philadelphia metropolitan area have examined how emission control strategies might affect several types of air pollutants simultaneously. This study supports considering effects of multiple pollutants in determining optimum pollution control strategies. ...

  17. Diffuse X-ray Emission from M101

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.; Pence, W. D.; Mukai, K.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The total 0.45-2.0 keV luminosity of M101 is 3.1 x 10(exp 39) ergs/s, of which 2.2 x 10(exp 39) ergs/s is due to diffuse emission. Of the diffuse emission, no more than 6% can be due to unresolved point sources such as X-ray binaries, and approx. 11% is due to dwarf stars. The diffuse emission traces the spiral arms and is roughly correlated with the H alpha and FUV (far ultraviolet) emission. The radial distribution closely follows the optical profile. The bulk of the diffuse emission is characterized by a two thermal component spectrum with kT = 0.20,0.75 keV, and the ratios of the emission measures of the two components is roughly constant as a function of both radius and surface brightness. The softer component has a sufficiently large covering factor that the bulk of the emission is likely extra-planar. We find no evidence of an extended axisymmetric X-ray halo, suggesting that any such halo has a strength much smaller than current predictions.

  18. [Verification of ballast water exchange for international ships anchored in Xiamen Port by CDOM tracer].

    PubMed

    Li, Chao; Zhang, Yan-po; Guo, Wei-dong; Zhu, Yue; Xu, Jing; Deng, Xun

    2010-09-01

    Fluorescence excitation-emission matrix (EEM) and absorption spectroscopy were applied to study the optical properties of 29 CDOM samples collected from different ballast tanks of nine international route vessels anchored in Xiamen Port between October 2007 and April 2008. The purpose was to examine the feasibility of these spectral properties as a tracer to verify if these vessels follow the mid-ocean ballast water exchange (BWE) regulation. Using parallel factor analysis, four fluorescent components were identified, including two humic-like components (C1: 245, 300/386 nm; C2: 250, 345/458 nm) and two protein-like components (C3: 220, 275/306 nm; C4: 235, 290/345 nm), of which C2 component was the suitable fluorescence verification indicator. The vertical distribution of all fluorescent components in ballast tank was nearly similar indicating that profile-mixing sampling was preferable. Combined use of C2 component, spectral slope ratio (SR) of absorption spectroscopy and salinity may provide reasonable verification if BWE carried out by these nine ships. The results suggested that the combined use of multiple parameters (fluorescence, absorption and salinity) would be much reliable to determine the origin of ballast water, and to provide the technical guarantee for fast examination of ballast water exchange in Chinese ports.

  19. The photo-oxidation of automobile emissions: measurements of the transformation products and their mutagenic activity

    NASA Astrophysics Data System (ADS)

    Kleindienst, Tadeusz E.; Smith, David F.; Hudgens, Edward E.; Snow, Richard F.; Perry, Erica; Claxton, Larry D.; Bufalini, Joseph J.; Black, Francis M.; Cupitt, Larry T.

    Dilute mixtures of automobile emissions (comprising 50% exhaust and 50% surrogate evaporative emissions) were irradiated in a 22.7 m 3 smog chamber and tested for mutagenic activity by using a variant of the Ames test. The exhaust was taken from a single vehicle, a 1977 Ford Mustang equipped with a catalytic converter. Irradiated and nonirradiated gas-phase emissions were used in exposures of the bacteria, Salmonella typhimurium, strains TA100 and TA98. A single set of vehicular operating conditions was used to perform multiple exposures. The mutagenic activities of extracts from the particulate phase were also measured with the standard plate incorporation assay. (In most experiments only direct-acting mutagenic compounds were measured.) The gas-phase data for TA100 and TA98 showed increased activity for the irradiated emissions when compared to the nonirradiated mixture, which exhibited negligible activity with respect to the control values. The particulate phase for both the irradiated and nonirradiated mixtures showed negligible activity when results were compared to the control values for both strains. However, the experimental conditions limited the amount of extractable mass which could be collected in the particulate phase. The measured activities from the gas phase and particulate phase were converted to the number of revertants per cubic meter of effluent (i.e. the mutagenic density) to compare the contributions of each of these phases to the total mutagenic activity for each strain. Under the experimental conditions of this study, the mutagenic density of the gas-phase component of the irradiated mixture contributed approximately two orders of magnitude more of the total TA100 activity than did the particulate phase. For TA98 the gas-phase component contributed approximately one order of magnitude more. However, caution must be exercised in extrapolating these results to urban atmospheres heavily impacted by automotive emissions, because the bacterial mutagenicity assay was used as a screening method, and additional assays using mammalian systems have not yet been conducted. In addition, only limited number of conditions were able to be tested. The significance and limitations of the results are discussed.

  20. Detection of an Optical/UV Jet/Counterjet and Multiple Spectral Components in M84

    NASA Astrophysics Data System (ADS)

    Meyer, Eileen T.; Petropoulou, Maria; Georganopoulos, Markos; Chiaberge, Marco; Breiding, Peter; Sparks, William B.

    2018-06-01

    We report an optical/UV jet and counterjet in M84, previously unreported in archival Hubble Space Telescope imaging. With archival VLA, ALMA, and Chandra imaging, we examine the first well-sampled spectral energy distribution of the inner jet of M84, where we find that multiple co-spatial spectral components are required. In particular, the ALMA data reveal that the radio spectrum of all four knots in the jet turns over at approximately 100 GHz, which requires a second component for the bright optical/UV emission. Further, the optical/UV has a soft spectrum and is inconsistent with the relatively flat X-ray spectrum, which indicates a third component at higher energies. Using archival VLA imaging, we have measured the proper motion of the innermost knots at 0.9 ± 0.6 and 1.1 ± 0.4c, which when combined with the low jet-to-counterjet flux ratio yields an orientation angle for the system of {74}-18+9°. In the radio, we find high fractional polarization of the inner jet of up to 30% while in the optical no polarization is detected (<8%). We investigate different scenarios for explaining the particular multicomponent spectral energy distribution (SED) of the knots. Inverse Compton models are ruled out due to the extreme departure from equipartition and the unrealistically high total jet power required. The multicomponent SED can be naturally explained within a leptohadronic scenario, but at the cost of very high power in relativistic protons. A two-component synchrotron model remains a viable explanation, but more theoretical work is needed to explain the origin and properties of the electron populations.

  1. Discernment of lint trash in raw cotton using multivariate analysis of excitation-emission luminescence spectra

    USDA-ARS?s Scientific Manuscript database

    Excitation-Emission luminescence spectra of basic (pH 12.5) phosphate buffer solution extracts were used to distinguish among botanical components of trash within seed cotton. All components were separated from whole plants removed from a field in southern New Mexico. Unfolded Principal Component An...

  2. Cathodoluminescence Study on Spatial Luminescence Properties of InN/GaN Multiple Quantum Wells Consisting of 1-Monolayer-Thick InN Wells/GaN Matrix

    NASA Astrophysics Data System (ADS)

    Hwang, E. S.; Che, S. B.; Saito, H.; Wang, X.; Ishitani, Y.; Yoshikawa, A.

    2008-05-01

    Spatially resolved luminescence properties of InN/GaN multiple quantum wells (MQWs) consisting of nominally one monolayer (1-ML)-thick InN QWs embedded in a GaN matrix are studied by cross-sectional and plan-view cathodoluminescence measurements. First it is confirmed that the dominant emission peaks observed at around 390 nm to 430 nm in the MQWs samples are attributed to the effects of inserting ˜1-ML-thick InN wells in the GaN matrix, resulting in efficient localization of GaN excitons at InN QWs. Furthermore, it is revealed that the detailed structure of the MQWs, such as the thickness distribution and interface sharpness, is very sensitive to the presence of surface defects such as hillocks around screw-component threading dislocations, resulting in different emission wavelengths/energies. This is because the epitaxy process for depositing such thin InN wells is seriously affected by the atomic-level surface structures/properties of the growth front. It will be concluded that it is necessary to use lower dislocation density GaN bulk templates to obtain much higher structural quality InN/GaN MQWs good enough for characterizing their optical properties.

  3. Inference of emission rates from multiple sources using Bayesian probability theory.

    PubMed

    Yee, Eugene; Flesch, Thomas K

    2010-03-01

    The determination of atmospheric emission rates from multiple sources using inversion (regularized least-squares or best-fit technique) is known to be very susceptible to measurement and model errors in the problem, rendering the solution unusable. In this paper, a new perspective is offered for this problem: namely, it is argued that the problem should be addressed as one of inference rather than inversion. Towards this objective, Bayesian probability theory is used to estimate the emission rates from multiple sources. The posterior probability distribution for the emission rates is derived, accounting fully for the measurement errors in the concentration data and the model errors in the dispersion model used to interpret the data. The Bayesian inferential methodology for emission rate recovery is validated against real dispersion data, obtained from a field experiment involving various source-sensor geometries (scenarios) consisting of four synthetic area sources and eight concentration sensors. The recovery of discrete emission rates from three different scenarios obtained using Bayesian inference and singular value decomposition inversion are compared and contrasted.

  4. Prompt fission neutron multiplicity and spectrum model for 30-80 MeV neutrons incident on 238U

    NASA Astrophysics Data System (ADS)

    Tudora, Anabella; Vladuca, G.; Morillon, B.

    2004-08-01

    The improved Los Alamos model is developed for the first time in order to provide prompt fission neutron multiplicity, prompt fission neutron spectra and other quantities at high incident neutron energies where the fission of secondary compound nuclei formed by charged particle emission occurs. In this model (exemplified by the n+ 238U reaction up to 80 MeV incident energy) the fission of the secondary nuclei formed by proton emission, neutron evaporation from the nuclei formed by proton emission, deuteron emission, alpha emission and neutron evaporation from the nuclei formed by alpha emission is taken into account. Input model parameters and related excitation energy dependences are determined using available experimental information and systematics as well as total and partial neutron induced fission cross-sections and their ratios obtained separately from a recent evaluation performed up to medium energies. Our present model predictions are in good agreement with the measured prompt neutron spectra and multiplicities.

  5. Solar flare impulsive phase emission observed with SDO/EVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Michael B.; Milligan, Ryan O.; Mathioudakis, Mihalis

    2013-12-10

    Differential emission measures (DEMs) during the impulsive phase of solar flares were constructed using observations from the EUV Variability Experiment (EVE) and the Markov-Chain Monte Carlo method. Emission lines from ions formed over the temperature range log T{sub e} = 5.8-7.2 allow the evolution of the DEM to be studied over a wide temperature range at 10 s cadence. The technique was applied to several M- and X-class flares, where impulsive phase EUV emission is observable in the disk-integrated EVE spectra from emission lines formed up to 3-4 MK and we use spatially unresolved EVE observations to infer the thermalmore » structure of the emitting region. For the nine events studied, the DEMs exhibited a two-component distribution during the impulsive phase, a low-temperature component with peak temperature of 1-2 MK, and a broad high-temperature component from 7 to 30 MK. A bimodal high-temperature component is also found for several events, with peaks at 8 and 25 MK during the impulsive phase. The origin of the emission was verified using Atmospheric Imaging Assembly images to be the flare ribbons and footpoints, indicating that the constructed DEMs represent the spatially average thermal structure of the chromospheric flare emission during the impulsive phase.« less

  6. Characterization of the lateral distribution of fluorescent lipid in binary-constituent lipid monolayers by principal component analysis.

    PubMed

    Sugár, István P; Zhai, Xiuhong; Boldyrev, Ivan A; Molotkovsky, Julian G; Brockman, Howard L; Brown, Rhoderick E

    2010-01-01

    Lipid lateral organization in binary-constituent monolayers consisting of fluorescent and nonfluorescent lipids has been investigated by acquiring multiple emission spectra during measurement of each force-area isotherm. The emission spectra reflect BODIPY-labeled lipid surface concentration and lateral mixing with different nonfluorescent lipid species. Using principal component analysis (PCA) each spectrum could be approximated as the linear combination of only two principal vectors. One point on a plane could be associated with each spectrum, where the coordinates of the point are the coefficients of the linear combination. Points belonging to the same lipid constituents and experimental conditions form a curve on the plane, where each point belongs to a different mole fraction. The location and shape of the curve reflects the lateral organization of the fluorescent lipid mixed with a specific nonfluorescent lipid. The method provides massive data compression that preserves and emphasizes key information pertaining to lipid distribution in different lipid monolayer phases. Collectively, the capacity of PCA for handling large spectral data sets, the nanoscale resolution afforded by the fluorescence signal, and the inherent versatility of monolayers for characterization of lipid lateral interactions enable significantly enhanced resolution of lipid lateral organizational changes induced by different lipid compositions.

  7. Source identification and apportionment of heavy metals in urban soil profiles.

    PubMed

    Luo, Xiao-San; Xue, Yan; Wang, Yan-Ling; Cang, Long; Xu, Bo; Ding, Jing

    2015-05-01

    Because heavy metals (HMs) occurring naturally in soils accumulate continuously due to human activities, identifying and apportioning their sources becomes a challenging task for pollution prevention in urban environments. Besides the enrichment factors (EFs) and principal component analysis (PCA) for source classification, the receptor model (Absolute Principal Component Scores-Multiple Linear Regression, APCS-MLR) and Pb isotopic mixing model were also developed to quantify the source contribution for typical HMs (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) in urban park soils of Xiamen, a representative megacity in southeast China. Furthermore, distribution patterns of their concentrations and sources in 13 soil profiles (top 20 cm) were investigated by different depths (0-5, 5-10, 10-20 cm). Currently the principal anthropogenic source for HMs in urban soil of China is atmospheric deposition from coal combustion rather than vehicle exhaust. Specifically for Pb source by isotopic model ((206)Pb/(207)Pb and (208)Pb/(207)Pb), the average contributions were natural (49%)>coal combustion (45%)≫traffic emissions (6%). Although the urban surface soils are usually more contaminated owing to recent and current human sources, leaching effects and historic vehicle emissions can also make deep soil layer contaminated by HMs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. PECULIAR NEAR-NUCLEUS OUTGASSING OF COMET 17P/HOLMES DURING ITS 2007 OUTBURST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Chunhua; Gurwell, Mark A.; Wilner, David J.

    2015-01-20

    We present high angular resolution Submillimeter Array observations of the outbursting Jupiter family comet 17P/Holmes on 2007 October 26-29, achieving a spatial resolution of 2.''5, or ∼3000 km at the comet distance. The observations resulted in detections of the rotational lines CO 3-2, HCN 4-3, H{sup 13}CN 4-3, CS 7-6, H{sub 2}CO 3{sub 1,} {sub 2}-2{sub 1,} {sub 1}, H{sub 2}S 2{sub 2,} {sub 0}-2{sub 1,} {sub 1}, and multiple CH{sub 3}OH lines, along with the associated dust continuum at 221 and 349 GHz. The continuum has a spectral index of 2.7 ± 0.3, slightly steeper than blackbody emission from large dust particles.more » From the imaging data, we identify two components in the molecular emission. One component is characterized by a relatively broad line width (∼1 km s{sup –1} FWHM) exhibiting a symmetric outgassing pattern with respect to the nucleus position. The second component has a narrower line width (<0.5 km s{sup –1} FWHM) with the line center redshifted by 0.1-0.2 km s{sup –1} (cometocentric frame), and shows a velocity shift across the nucleus position with the position angle gradually changing from 66° to 30° within the four days of observations. We determine distinctly different CO/HCN ratios for each of the components. For the broad-line component we find CO/HCN < 7, while in the narrow-line component, CO/HCN = 40 ± 5. We hypothesize that the narrow-line component originates from the ice grain halo found in near-nucleus photometry, believed to be created by sublimating recently released ice grains around the nucleus during the outburst. In this interpretation, the high CO/HCN ratio of this component reflects the more pristine volatile composition of nucleus material released in the outburst.« less

  9. Stellar wind variations in HD 45166: The continuing story. [Wolf-Rayet star

    NASA Technical Reports Server (NTRS)

    Willis, Allan J.; Stickland, David J.; Heap, Sara R.

    1988-01-01

    High resolution SWP IUE spectra of HD 45166 (qWR+B8V) obtained over a 36 hr continuous run, together with earlier observations, reveal 2 distinct modes of UV variability in this object. Gross, epoch-linked changes are seen in the strengths of the qWR emission lines, accompanied by large changes in its highly ionized photospheric absorption spectrum. Rapid (hours) variability in strong, multiple, high velocity, wind discrete absorption components (DAC), in the CIV lambda 1550 resonance lines, which superpose to give the appearance of a broad P Cygni absorption profile at many epochs is also observed. These multiple DAC's (often at least 3 are seen) propagate in velocity, from 0.6 to 1.0 v inf, on a timescale of 1 day, implying an acceleration of 180 cm/s comparable to that seen in O-type stars.

  10. Ultraviolet Changes of the Central Source and the Very Nearby Ejecta

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Nielsen, Krister; Vierira, Gladys; Hillier, John; Walborn, Nolan; Davidson, Kris

    2004-01-01

    We utilized the high spatial and high spectral resolution of the HST/STIS MAMA echelle modes in the ultraviolet (0.025 inch spatial resolution and 30,000 to 120,000 spectral resolving power) to view changes in and around Eta Carinae before and after the X-Ray drop which occurred on June 29, 2003 (M. Corcoran, IAUC 8160). Major changes in the spectra of the Central Source and nearby nebulosities occurred between June 22 and July 5. Visibility of the Central Source dropped, especially between 1175 and 1350 Angstroms, but not uniformly throughout the ultraviolet. This fading is likely due to multiple line absorptions both in the source and in the intervening ejecta. Nebular emission of Si III] and Fe III, located 0.09 sec. to the west, disappeared. By July 29, a bright feature extending up to 0.071 sec. east of the Central Source became prominent in broad emission lines near 2500 Angstroms, but was not noticeable longward of 2900 Angstroms. ACS/HRC imagery and STIS CCD spectra taken concurrently are being examined for larger scale changes. Numerous narrow velocity components between -146 and -585 kilometers per second were identified in spectra before the minimum. New components appeared primarily in Fe II absorption lines with velocities between -170 and -380 kilometers per second. While the lines of the -513 kilometers per second component did not change, most lines of the -146 kilometers per second component changed considerably. Lines originating from high energy levels diminished or disappeared, while lines originating from lower energy levels strengthened. Strong absorption lines of Ti II, not present before the X-Ray drop, appeared within seven days, but disappeared by July 29. Further analysis of these unprecedented data will provide significant new information about the structure of Eta Carinae and its periodic variations.

  11. Separating the Spectral Components of the Massive Triple Star System Delta Orionis

    NASA Astrophysics Data System (ADS)

    Gies, Douglas

    2013-10-01

    The multiple star system of delta Orionis represents one of the closest examples of a luminous O-star with a strong stellar wind, and it was the target of a recent multi-wavelength campaign to determine the source of the wind X-ray emission. It consists of aclose eclipsing binary with a more distant tertiary, and all the components are massive stars. Investigations of the radial velocity curves of the eclipsing system are made difficult by severe line blending with the spectral lines of the tertiary star, and the resulting mass estimates range by a factor of two. We propose that the solution to this problem is to isolate the flux of the tertiary through high angular resolutionspectroscopy with HST/STIS, and we show how a two visit program of ultraviolet and spatially resolved spectroscopy will provide us with the means to characterize the spectra of all three stars in the triple. This will allow us to reassess a large body of existing optical and UV spectroscopy and determine reliable radial velocity curves for the components in the close binary. By then fitting a new high precision light curve from MOST photometry, we will derive accurate masses, temperatures, radii, and projected rotational velocities for all the components. The inner binary also hasa measured apsidal period, and the new results will form a key test of models of interior structure. The analysis will also provide secure estimates for the geometry and size of the inner binary and the radius of the secondary, the parameters required to analyze the orbital phase variations and sites of origin of the wind X-ray emission documented in a recent Chandra/HETGS program.

  12. Exploring the Connection between Parsec-scale Jet Activity and Broadband Outbursts in 3C 279

    NASA Astrophysics Data System (ADS)

    Rani, B.; Jorstad, S. G.; Marscher, A. P.; Agudo, I.; Sokolovsky, K. V.; Larionov, V. M.; Smith, P.; Mosunova, D. A.; Borman, G. A.; Grishina, T. S.; Kopatskaya, E. N.; Mokrushina, A. A.; Morozova, D. A.; Savchenko, S. S.; Troitskaya, Yu. V.; Troitsky, I. S.; Thum, C.; Molina, S. N.; Casadio, C.

    2018-05-01

    We use a combination of high-resolution very long baseline interferometry (VLBI) radio and multiwavelength flux density and polarization observations to constrain the physics of the dissipation mechanism powering the broadband flares in 3C 279 during an episode of extreme flaring activity in 2013–2014. Six bright flares superimposed on a long-term outburst are detected at γ-ray energies. Four of the flares have optical and radio counterparts. The two modes of flaring activity (faster flares sitting on top of a long-term outburst) present at radio, optical, and γ-ray frequencies are missing in X-rays. X-ray counterparts are only observed for two flares. The first three flares are accompanied by ejection of a new VLBI component (NC2), suggesting the 43 GHz VLBI core as the site of energy dissipation. Another new component, NC3, is ejected after the last three flares, which suggests that the emission is produced upstream from the core (closer to the black hole). The study therefore indicates multiple sites of energy dissipation in the source. An anticorrelation is detected between the optical percentage polarization (PP) and optical/γ-ray flux variations, while the PP has a positive correlation with optical/γ-ray spectral indices. Given that the mean polarization is inversely proportional to the number of cells in the emission region, the PP versus optical/γ-ray anticorrelation could be due to more active cells during the outburst than at other times. In addition to the turbulent component, our analysis suggests the presence of a combined turbulent and ordered magnetic field, with the ordered component transverse to the jet axis.

  13. LOPES-3D - vectorial measurements of radio emission from cosmic ray induced air showers

    NASA Astrophysics Data System (ADS)

    Huber, D.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.

    2013-05-01

    LOPES-3D is able to measure all three components of the electric field vector of the radio emission from air showers. This allows a better comparison with emission models. The measurement of the vertical component increases the sensitivity to inclined showers. By measuring all three components of the electric field vector LOPES-3D demonstrates by how much the reconstruction accuracy of primary cosmic ray parameters increases. Thus LOPES-3D evaluates the usefulness of vectorial measurements for large scale applications.

  14. The Elusive Soft Emission from Hard X-ray Symbiotic System RT Cru

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2014-09-01

    RT Cru is a fascinating member of a new class of hard X-ray emitting symbiotic binaries showing X-ray emission extending to over 50keV. While its hard X-ray emission has been studied in detail, the soft component of the spectrum, including flares, remains elusive, since previous observations have focused on the high-energy regime. We propose Chandra HRC-S/LETG observations to determine the spatial, spectral, and temporal characteristics of the source of the soft X-ray emission with a goal to establish the origin of the soft component, and determine whether and how it is tied to the hard component. Determining the origin of the soft emission is a crucial piece of the puzzle to understanding the geometry, energetics, and the environment of WD accretion in this class of symbiotic systems.

  15. Plasma process control with optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, P. P.

    Plasma processes for cleaning, etching and desmear of electronic components and printed wiring boards (PWB) are difficult to predict and control. Non-uniformity of most plasma processes and sensitivity to environmental changes make it difficult to maintain process stability from day to day. To assure plasma process performance, weight loss coupons or post-plasma destructive testing must be used. The problem with these techniques is that they are not real-time methods and do not allow for immediate diagnosis and process correction. These methods often require scrapping some fraction of a batch to insure the integrity of the rest. Since these methods verify a successful cycle with post-plasma diagnostics, poor test results often determine that a batch is substandard and the resulting parts unusable. Both of these methods are a costly part of the overall fabrication cost. A more efficient method of testing would allow for constant monitoring of plasma conditions and process control. Process failures should be detected before the parts being treated. are damaged. Real time monitoring would allow for instantaneous corrections. Multiple site monitoring would allow for process mapping within one system or simultaneous monitoring of multiple systems. Optical emission spectroscopy conducted external to the plasma apparatus would allow for this sort of multifunctional analysis without perturbing the glow discharge. In this paper, optical emission spectroscopy for non-intrusive, in situ process control will be explored. A discussion of this technique as it applies towards process control, failure analysis and endpoint determination will be conducted. Methods for identifying process failures, progress and end of etch back and desmear processes will be discussed.

  16. Time resolved analysis of Fermi gamma-ray bursts with fast-and slow-cooled synchrotron photon models

    DOE PAGES

    Burgess, J. M.; Preece, R. D.; Connaughton, V.; ...

    2014-02-27

    Time-resolved spectroscopy is performed on eight bright, long gamma-ray bursts (GRBs) dominated by single emission pulses that were observed with the Fermi Gamma-Ray Space Telescope. Fitting the prompt radiation of GRBs by empirical spectral forms such as the Band function leads to ambiguous conclusions about the physical model for the prompt radiation. Moreover, the Band function is often inadequate to fit the data. Therefore, the GRB spectrum is modeled with two emission components consisting of optically thin non-thermal synchrotron radiation from relativistic electrons and, when significant, thermal emission from a jet photosphere, which is represented by a blackbody spectrum. Inmore » order to produce an acceptable fit, the addition of a blackbody component is required in five out of the eight cases. We also find that the low-energy spectral index α is consistent with a synchrotron component with α = –0.81 ± 0.1. This value lies between the limiting values of α = –2/3 and α = –3/2 for electrons in the slow- and fast-cooling regimes, respectively, suggesting ongoing acceleration at the emission site. The blackbody component can be more significant when using a physical synchrotron model instead of the Band function, illustrating that the Band function does not serve as a good proxy for a non-thermal synchrotron emission component. The temperature and characteristic emission-region size of the blackbody component are found to, respectively, decrease and increase as power laws with time during the prompt phase. Additionally, we find that the blackbody and non-thermal components have separate temporal behaviors as far as their respective flux and spectral evolutions.« less

  17. Subpercent-Scale Control of 3D Low Modes of Targets Imploded in Direct-Drive Configuration on OMEGA

    NASA Astrophysics Data System (ADS)

    Michel, D. T.; Igumenshchev, I. V.; Davis, A. K.; Edgell, D. H.; Froula, D. H.; Jacobs-Perkins, D. W.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.; Campbell, E. M.

    2018-03-01

    Multiple self-emission x-ray images are used to measure tomographically target modes 1, 2, and 3 up to the end of the target acceleration in direct-drive implosions on OMEGA. Results show that the modes consist of two components: the first varies linearly with the laser beam-energy balance and the second is static and results from physical effects including beam mistiming, mispointing, and uncertainty in beam energies. This is used to reduce the target low modes of low-adiabat implosions from 2.2% to 0.8% by adjusting the beam-energy balance to compensate these static modes.

  18. Reliable and Affordable Control Systems Active Combustor Pattern Factor Control

    NASA Technical Reports Server (NTRS)

    McCarty, Bob; Tomondi, Chris; McGinley, Ray

    2004-01-01

    Active, closed-loop control of combustor pattern factor is a cooperative effort between Honeywell (formerly AlliedSignal) Engines and Systems and the NASA Glenn Research Center to reduce emissions and turbine-stator vane temperature variations, thereby enhancing engine performance and life, and reducing direct operating costs. Total fuel flow supplied to the engine is established by the speed/power control, but the distribution to individual atomizers will be controlled by the Active Combustor Pattern Factor Control (ACPFC). This system consist of three major components: multiple, thin-film sensors located on the turbine-stator vanes; fuel-flow modulators for individual atomizers; and control logic and algorithms within the electronic control.

  19. The Influence of Anthropogenic Greenhouse Gases and Aerosols on the Surface Heat and Moisture Budgets.

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Freidenreich, S.; Ginoux, P. A.; Ming, Y.; Paynter, D.; Persad, G.; Schwarzkopf, M. D.

    2017-12-01

    Emissions of greenhouse gases and aerosols alter atmospheric composition and `force' major perturbations in the radiative fluxes at the top-of-the-atmosphere and surface. In this paper, we discuss the radiative changes caused by anthropogenic greenhouse gases and aerosols at the surface, and its importance in the context of effects on the global hydrologic cycle. An important characteristic of imbalances forced by radiative species is the tendency for responses to occur in the non-radiative components, in order for the surface energy and moisture budgets to re-establish equilibrium. Using the NOAA/ GFDL global climate models used in CMIP3 and CMIP5, and to be used in CMIP6, we investigate how the surface energy balance has evolved with time under the action of the emissions, and the manner of changes in the surface radiative, sensible and latent heat components. We diagnose the relative importance of the forcings on the global and continental scales, the differing mechanisms due to greenhouse gases and aerosols on surface heat and moisture budgets, and the relative roles of the atmospheric constituents on precipitation and evaporation. Scattering and absorbing properties of aerosols can have contrasting effects on precipitation, with the aerosol indirect effect presenting another complication owing to the uncertainty in its magnitude. We compare the modeled surface flux changes against observations made from multiple platforms over the 20th and the early period of the 21st centuries, and asses the models' strengths and weaknesses. We also explore the consequences for the surface balance and precipitation in the 21st century under various emission scenarios.

  20. New Spectral Evidence of an Unaccounted Component of the Near-infrared Extragalactic Background Light from the CIBER

    NASA Astrophysics Data System (ADS)

    Matsuura, Shuji; Arai, Toshiaki; Bock, James J.; Cooray, Asantha; Korngut, Phillip M.; Kim, Min Gyu; Lee, Hyung Mok; Lee, Dae Hee; Levenson, Louis R.; Matsumoto, Toshio; Onishi, Yosuke; Shirahata, Mai; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael

    2017-04-01

    The extragalactic background light (EBL) captures the total integrated emission from stars and galaxies throughout the cosmic history. The amplitude of the near-infrared EBL from space absolute photometry observations has been controversial and depends strongly on the modeling and subtraction of the zodiacal light (ZL) foreground. We report the first measurement of the diffuse background spectrum at 0.8-1.7 μm from the CIBER experiment. The observations were obtained with an absolute spectrometer over two flights in multiple sky fields to enable the subtraction of ZL, stars, terrestrial emission, and diffuse Galactic light. After subtracting foregrounds and accounting for systematic errors, we find the nominal EBL brightness, assuming the Kelsall ZL model, is {42.7}-10.6+11.9 nW m-2 sr-1 at 1.4 μm. We also analyzed the data using the Wright ZL model, which results in a worse statistical fit to the data and an unphysical EBL, falling below the known background light from galaxies at λ < 1.3 μm. Using a model-independent analysis based on the minimum EBL brightness, we find an EBL brightness of {28.7}-3.3+5.1 nWm-2 sr-1 at 1.4 μm. While the derived EBL amplitude strongly depends on the ZL model, we find that we cannot fit the spectral data to ZL, Galactic emission, and EBL from solely integrated galactic light from galaxy counts. The results require a new diffuse component, such as an additional foreground or an excess EBL with a redder spectrum than that of ZL.

  1. The Interstellar Medium Properties of Heavily Reddened Quasars & Companions at z ˜ 2.5 with ALMA & JVLA

    NASA Astrophysics Data System (ADS)

    Banerji, Manda; Jones, Gareth C.; Wagg, Jeff; Carilli, Chris L.; Bisbas, Thomas G.; Hewett, Paul C.

    2018-06-01

    We study the interstellar medium (ISM) properties of three heavily reddened quasars at z ˜ 2.5 as well as three millimetre-bright companion galaxies near these quasars. New JVLA and ALMA observations constrain the CO(1-0), CO(7-6) and [CI]3P2 - 3P1 line emission as well as the far infrared to radio continuum. The gas excitation and physical properties of the ISM are constrained by comparing our observations to photo-dissociation region (PDR) models. The ISM in our high-redshift quasars is composed of very high-density, high-temperature gas which is already highly enriched in elements like carbon. One of our quasar hosts is shown to be a close-separation (<2″) major merger with different line emission properties in the millimeter-bright galaxy and quasar components. Low angular resolution observations of high-redshift quasars used to assess quasar excitation properties should therefore be interpreted with caution as they could potentially be averaging over multiple components with different ISM conditions. Our quasars and their companion galaxies show a range of CO excitation properties spanning the full extent from starburst-like to quasar-like spectral line energy distributions. We compare gas masses based on CO, CI and dust emission, and find that these can disagree when standard assumptions are made regarding the values of αCO, the gas-to-dust ratio and the atomic carbon abundances. We conclude that the ISM properties of our quasars and their companion galaxies are diverse and likely vary spatially across the full extent of these complex, merging systems.

  2. Observations of Ellerman bomb emission features in He I D3 and He I 10 830 Å

    NASA Astrophysics Data System (ADS)

    Libbrecht, Tine; Joshi, Jayant; Rodríguez, Jaime de la Cruz; Leenaarts, Jorrit; Ramos, Andrés Asensio

    2017-02-01

    Context. Ellerman bombs (EBs) are short-lived emission features, characterised by extended wing emission in hydrogen Balmer lines. Until now, no distinct signature of EBs has been found in the He I 10 830 Å line, and conclusive observations of EBs in He I D3 have never been reported. Aims: We aim to study the signature of EBs in neutral helium triplet lines. Methods: The observations consisted of ten consecutive SST/TRIPPEL raster scans close to the limb, featuring the Hβ, He I D3 and He I 10 830 Å spectral regions. We also obtained raster scans with IRIS and made use of the SDO/AIA 1700 Å channel. We used Hazel to invert the neutral helium triplet lines. Results: Three EBs in our data show distinct emission signatures in neutral helium triplet lines, most prominently visible in the He I D3 line. The helium lines have two components: a broad and blueshifted emission component associated with the EB, and a narrower absorption component formed in the overlying chromosphere. One of the EBs in our data shows evidence of strong velocity gradients in its emission component. The emission component of the other two EBs could be fitted using a constant slab. Our analysis hints towards thermal Doppler motions having a large contribution to the broadening for helium and IRIS lines. We conclude that the EBs must have high temperatures to exhibit emission signals in neutral helium triplet lines. An order of magnitude estimate places our observed EBs in the range of T 2 × 104-105 K. Movies associated to Figs. 3-5 are available at http://www.aanda.org

  3. Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille

    NASA Astrophysics Data System (ADS)

    El Haddad, I.; Marchand, N.; Wortham, H.; Piot, C.; Besombes, J.-L.; Cozic, J.; Chauvel, C.; Armengaud, A.; Robin, D.; Jaffrezo, J.-L.

    2010-11-01

    Marseille, the most important port of the Mediterranean Sea, represents a challenging case study for source apportionment exercises, combining an active photochemistry and multiple emission sources, including fugitive emissions from industrial sources and shipping. This paper presents a Chemical Mass Balance (CMB) approach based on organic markers and metals to apportion the primary sources of organic aerosol in Marseille, with a special focus on industrial emissions. Overall, the CMB model accounts for the major primary anthropogenic sources including motor vehicles, biomass burning, and the aggregate emissions from three industrial processes (HFO combustion/shipping, coke production and steel manufacturing) as well as some primary biogenic emissions. This source apportionment exercise is well corroborated by 14C measurements. Primary OC estimated by the CMB accounts on average for 22% and is dominated by the vehicular emissions that contribute on average for 17% of OC mass concentration (17% of PM2.5). Even though, industrial emissions contribute for only 2.3% of the total OC (7% of PM2.5), they are associated with ultrafine particles (Dp<80 nm) and high concentrations of Polycyclic Aromatic Hydrocarbons (PAH) and heavy metals such as Pb, Ni and V. On one hand, given that industrial emissions governed key primary markers, their omission would lead to substantial uncertainties in the CMB analysis performed in areas heavily impacted by such sources, hindering accurate estimation of non-industrial primary sources and secondary sources. This result implies that CMB modelling should not be a straightforward exercise and one have to carefully investigate the marker behaviours and trends beforehand, especially in complex environments such as Marseille. On the other hand, being associated with bursts of submicron particles and carcinogenic and mutagenic components such as PAH, these emissions are most likely related with acute health outcomes and should be regulated despite their small contributions to OC. Another important result is the fact that 78% of OC mass cannot be attributed to the major primary sources and thus remains un-apportioned. We have consequently critically investigated the uncertainties underlying our CMB apportionments. While we have provided some evidence for photochemical decay of hopanes, this decay does not appear to significantly alter the CMB estimates of the total primary OC. Sampling artefacts and unaccounted primary sources also appear to marginally influence the amount of un-apportioned OC. Therefore, this significant amount of un-apportioned OC is mostly attributed to secondary organic carbon that appears to be the major component of OC, during the whole period of study.

  4. Refined Use of Satellite Aerosol Optical Depth Snapshots to Constrain Biomass Burning Emissions in the GOCART Model

    NASA Astrophysics Data System (ADS)

    Petrenko, Mariya; Kahn, Ralph; Chin, Mian; Limbacher, James

    2017-10-01

    Simulations of biomass burning (BB) emissions in global chemistry and aerosol transport models depend on external inventories, which provide location and strength for BB aerosol sources. Our previous work shows that to first order, satellite snapshots of aerosol optical depth (AOD) near the emitted smoke plume can be used to constrain model-simulated AOD, and effectively, the smoke source strength. We now refine the satellite-snapshot method and investigate where applying simple multiplicative emission adjustment factors alone to the widely used Global Fire Emission Database version 3 emission inventory can achieve regional-scale consistency between Moderate Resolution Imaging Spectroradiometer (MODIS) AOD snapshots and the Goddard Chemistry Aerosol Radiation and Transport model. The model and satellite AOD are compared globally, over a set of BB cases observed by the MODIS instrument during the 2004, and 2006-2008 biomass burning seasons. Regional discrepancies between the model and satellite are diverse around the globe yet quite consistent within most ecosystems. We refine our approach to address physically based limitations of our earlier work (1) by expanding the number of fire cases from 124 to almost 900, (2) by using scaled reanalysis-model simulations to fill missing AOD retrievals in the MODIS observations, (3) by distinguishing the BB components of the total aerosol load from background aerosol in the near-source regions, and (4) by including emissions from fires too small to be identified explicitly in the satellite observations. The small-fire emission adjustment shows the complimentary nature of correcting for source strength and adding geographically distinct missing sources. Our analysis indicates that the method works best for fire cases where the BB fraction of total AOD is high, primarily evergreen or deciduous forests. In heavily polluted or agricultural burning regions, where smoke and background AOD values tend to be comparable, this approach encounters large uncertainties, and in some regions, other model- or measurement-related factors might contribute significantly to model-satellite discrepancies. This work sets the stage for a larger study within the Aerosol Comparison between Observations and Models (AeroCOM) multimodel biomass burning experiment. By comparing multiple model results using the refined technique presented here, we aim to separate BB inventory from model-specific contributions to the remaining discrepancies.

  5. Comparing top-down and bottom-up estimates of methane emissions across multiple U.S. oil and gas basins provides insights into national O&G emissions, mitigation strategies, and research priorities

    NASA Astrophysics Data System (ADS)

    Lyon, D. R.; Alvarez, R.; Zavala Araiza, D.; Hamburg, S.

    2017-12-01

    We develop a county-level inventory of U.S. anthropogenic methane emissions by integrating multiple data sources including the Drillinginfo oil and gas (O&G) production database, Environmental Protection Agency (EPA) Greenhouse Gas Reporting Program, a previously published gridded EPA Greenhouse Gas Inventory (Maasakkers et al 2016), and recent measurements studies of O&G pneumatic devices, equipment leaks, abandoned wells, and midstream facilities. Our bottom-up estimates of total and O&G methane emissions are consistently lower than top-down, aerial mass balance estimates in ten O&G production areas. We evaluate several hypotheses for the top-down/bottom-up discrepancy including potential bias of the aerial mass balance method, temporal mismatch of top-down and bottom-up emission estimates, and source attribution errors. In most basins, the top-down/bottom-up gap cannot be explained fully without additional O&G emissions from sources not included in traditional inventories, such as super-emitters caused by malfunctions or abnormal process conditions. Top-down/bottom-up differences across multiple basins are analyzed to estimate the magnitude of these additional emissions and constrain total methane emissions from the U.S. O&G supply chain. We discuss the implications for mitigating O&G methane emissions and suggest research priorities for increasing the accuracy of future emission inventories.

  6. Agriculture-driven deforestation in the tropics from 1990-2015: emissions, trends and uncertainties

    NASA Astrophysics Data System (ADS)

    Carter, Sarah; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; De Sy, Veronique; Kooistra, Lammert; Rufino, Mariana C.

    2018-01-01

    Limited data exists on emissions from agriculture-driven deforestation, and available data are typically uncertain. In this paper, we provide comparable estimates of emissions from both all deforestation and agriculture-driven deforestation, with uncertainties for 91 countries across the tropics between 1990 and 2015. Uncertainties associated with input datasets (activity data and emissions factors) were used to combine the datasets, where most certain datasets contribute the most. This method utilizes all the input data, while minimizing the uncertainty of the emissions estimate. The uncertainty of input datasets was influenced by the quality of the data, the sample size (for sample-based datasets), and the extent to which the timeframe of the data matches the period of interest. Area of deforestation, and the agriculture-driver factor (extent to which agriculture drives deforestation), were the most uncertain components of the emissions estimates, thus improvement in the uncertainties related to these estimates will provide the greatest reductions in uncertainties of emissions estimates. Over the period of the study, Latin America had the highest proportion of deforestation driven by agriculture (78%), and Africa had the lowest (62%). Latin America had the highest emissions from agriculture-driven deforestation, and these peaked at 974 ± 148 Mt CO2 yr-1 in 2000-2005. Africa saw a continuous increase in emissions between 1990 and 2015 (from 154 ± 21-412 ± 75 Mt CO2 yr-1), so mitigation initiatives could be prioritized there. Uncertainties for emissions from agriculture-driven deforestation are ± 62.4% (average over 1990-2015), and uncertainties were highest in Asia and lowest in Latin America. Uncertainty information is crucial for transparency when reporting, and gives credibility to related mitigation initiatives. We demonstrate that uncertainty data can also be useful when combining multiple open datasets, so we recommend new data providers to include this information.

  7. Relation between aerosol sources and meteorological parameters for inhalable atmospheric particles in Sao Paulo City, Brazil

    NASA Astrophysics Data System (ADS)

    Andrade, Fatima; Orsini, Celso; Maenhaut, Willy

    Stacked filter units were used to collect atmospheric particles in separate coarse and fine fractions at the Sao Paulo University Campus during the winter of 1989. The samples were analysed by particle-induced X-ray emission (PIXE) and the data were subjected to an absolute principal component analysis (APCA). Five sources were identified for the fine particles: industrial emissions, which accounted for 13% of the fine mass; emissions from residual oil and diesel, explaining 41%; resuspended soil dust, with 28%; and emissions of Cu and of Mg, together with 18%. For the coarse particles, four sources were identified: soil dust, accounting for 59% of the coarse mass; industrial emissions, with 19%; oil burning, with 8%; and sea salt aerosol, with 14% of the coarse mass. A data set with various meteorological parameters was also subjected to APCA, and a correlation analysis was performed between the meteorological "absolute principal component scores" (APCS) and the APCS from the fine and coarse particle data sets. The soil dust sources for the fine and coarse aerosol were highly correlated with each other and were anticorrelated with the sea breeze component. The industrial components in the fine and coarse size fractions were also highly positively correlated. Furthermore, the industrial component was related with the northeasterly wind direction and, to a lesser extent, with the sea breeze component.

  8. Probing the radio emission from air showers with polarization measurements

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  9. Voyager planetary radio astronomy studies

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Eikenberry, Stephen S.

    1993-01-01

    Analysis of nonthermal radio emission data obtained by the Planetary Radio Astronomy (PRA) spectrometers on the Voyager 1 and 2 spacecraft was performed. This PRA data provided unique insights into the radio emission characteristics of the outer planets because of PRA's unique spectral response below the terrestrial ionospheric plasma frequency and its unprecedented proximity to the source. Of those results which were documented or published, this final report surveys only the highlights and cites references for more complete discussions. Unpublished results for Uranus, Neptune, and theoretical Ionian current distributions are presented at greater length. The most important conclusion to be drawn from these observations is that banded spectral emission is common to the radio emission below 1-2 MHz observed from all four Jovian planets. In every case multiple spectral features evolve on time scales of seconds to minutes. To the extent these features drift in frequency, they appear never to cross one another. The Neptunian spectral features appear to drift little or not at all, their evolution consisting principally of waxing and waning. Since other evidence strongly suggests that most or all of this radio emission is occurring near the local magnetospheric electron cyclotron frequency, this implies that this emission preferentially occurs at certain continually changing planetary radii. It remains unknown why certain radii might be favored, unless radial electric field components or other means serve to differentiate radially the magnetospheric plasma density, particle energy vectors, or particle coherence. Calculation of the spatial distribution and intensity of the Io-generated magnetospheric currents are also presented; these currents may be limited principally by wave impedance and local field strengths.

  10. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Single/multiple component metallic bone fixation....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  11. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Single/multiple component metallic bone fixation....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  12. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Single/multiple component metallic bone fixation....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  13. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Single/multiple component metallic bone fixation....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  14. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Single/multiple component metallic bone fixation....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  15. Optical studies of the X-ray transient XTE J2123-058 - II. Phase-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Hynes, R. I.; Charles, P. A.; Haswell, C. A.; Casares, J.; Zurita, C.; Serra-Ricart, M.

    2001-06-01

    We present time-resolved spectroscopy of the soft X-ray transient XTEJ2123-058 in outburst. A useful spectral coverage of 3700-6700Å was achieved spanning two orbits of the binary, with single-epoch coverage extending to ~9000Å. The optical spectrum approximates a steep blue power law, consistent with emission on the Rayleigh-Jeans tail of a hot blackbody spectrum. The strongest spectral lines are Heii 4686Å and Ciii/Niii 4640Å (Bowen blend) in emission. Their relative strengths suggest that XTEJ2123-058 was formed in the Galactic plane, not in the halo. Other weak emission lines of Heii and Civ are present, and Balmer lines show a complex structure, blended with Heii. Heii 4686-Å profiles show a complex multiple S-wave structure, with the strongest component appearing at low velocities in the lower-left quadrant of a Doppler tomogram. Hα shows transient absorption between phases 0.35 and 0.55. Both of these effects appear to be analogous to similar behaviour in SW Sex type cataclysmic variables. We therefore consider whether the spectral line behaviour of XTEJ2123-058 can be explained by the same models invoked for those systems.

  16. Dust emission: small-scale processes with global consequences

    USGS Publications Warehouse

    Okin, Gregory S.; Bullard, Joanna E.; Reynolds, Richard L.; Ballantine, John-Andrew C.; Schepanski, Kerstin; Todd, Martin C.; Belnap, Jayne; Baddock, Matthew C.; Gill, Thomas E.; Miller, Mark E.

    2011-01-01

    Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored.

  17. DISCOVERY OF SMOOTHLY EVOLVING BLACKBODIES IN THE EARLY AFTERGLOW OF GRB 090618: EVIDENCE FOR A SPINE–SHEATH JET?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basak, Rupal; Rao, A. R., E-mail: rupalb@tifr.res.in, E-mail: arrao@tifr.res.in

    2015-10-20

    GRB 090618 is a bright gamma-ray burst (GRB) with multiple pulses. It shows evidence of thermal emission in the initial pulses as well as in the early afterglow phase. Because high-resolution spectral data from the Swift/X-ray Telescope (XRT) are available for the early afterglow, we investigate the shape and evolution of the thermal component in this phase using data from the Swift/Burst Alert Telescope (BAT), the Swift/XRT, and the Fermi/Gamma-ray Burst Monitor detectors. An independent fit to the BAT and XRT data reveals two correlated blackbodies with monotonically decreasing temperatures. Hence, we investigated the combined data with a model consistingmore » of two blackbodies and a power law (2BBPL), a model suggested for several bright GRBs. We elicit the following interesting features of the 2BBPL model: (1) the same model is applicable from the peak of the last pulse in the prompt emission to the afterglow emission, (2) the ratio of temperatures and the fluxes of the two blackbodies remains constant throughout the observations, (3) the blackbody temperatures and fluxes show a monotonic decrease with time, with the BB fluxes dropping about a factor of two faster than that of the power-law (PL) emission, and (4) attributing the blackbody emission to photospheric emissions, we find that the photospheric radii increase very slowly with time, and the lower-temperature blackbody shows a larger emitting radius than that of the higher-temperature blackbody. We find some evidence that the underlying shape of the nonthermal emission is a cutoff power law rather than a PL. We sketch a spine–sheath jet model to explain our observations.« less

  18. Regional carbon fluxes from land use and land cover change in Asia, 1980–2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calle, Leonardo; Canadell, Josep G.; Patra, Prabir

    We present a synthesis of the land-atmosphere carbon flux from land use and land cover change (LULCC) in Asia using multiple data sources and paying particular attention to deforestation and forest regrowth fluxes. The data sources are quasi-independent and include the U.N. Food and Agriculture Organization-Forest Resource Assessment (FAO-FRA 2015; country-level inventory estimates), the Emission Database for Global Atmospheric Research (EDGARv4.3), the 'Houghton' bookkeeping model that incorporates FAO-FRA data, an ensemble of 8 state-of-the-art Dynamic Global Vegetation Models (DGVM), and 2 recently published independent studies using primarily remote sensing techniques. The estimates are aggregated spatially to Southeast, East, and Southmore » Asia and temporally for three decades, 1980–1989, 1990–1999 and 2000–2009. Since 1980, net carbon emissions from LULCC in Asia were responsible for 20%–40% of global LULCC emissions, with emissions from Southeast Asia alone accounting for 15%–25% of global LULCC emissions during the same period. In the 2000s and for all Asia, three estimates (FAO-FRA, DGVM, Houghton) were in agreement of a net source of carbon to the atmosphere, with mean estimates ranging between 0.24 to 0.41 Pg C yr -1, whereas EDGARv4.3 suggested a net carbon sink of -0.17 Pg C yr -1. Three of 4 estimates suggest that LULCC carbon emissions declined by at least 34% in the preceding decade (1990–2000). Spread in the estimates is due to the inclusion of different flux components and their treatments, showing the importance to include emissions from carbon rich peatlands and land management, such as shifting cultivation and wood harvesting, which appear to be consistently underreported.« less

  19. Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary.

    PubMed

    Main, Robert; Yang, I-Sheng; Chan, Victor; Li, Dongzi; Lin, Fang Xi; Mahajan, Nikhil; Pen, Ue-Li; Vanderlinde, Keith; van Kerkwijk, Marten H

    2018-05-01

    Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as 'interstellar lenses' to localize pulsar emission regions 1,2 . Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts 3-5 . As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants 6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the 'black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow 7-9 . During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses 10 .

  20. Regional carbon fluxes from land use and land cover change in Asia, 1980–2009

    DOE PAGES

    Calle, Leonardo; Canadell, Josep G.; Patra, Prabir; ...

    2016-07-08

    We present a synthesis of the land-atmosphere carbon flux from land use and land cover change (LULCC) in Asia using multiple data sources and paying particular attention to deforestation and forest regrowth fluxes. The data sources are quasi-independent and include the U.N. Food and Agriculture Organization-Forest Resource Assessment (FAO-FRA 2015; country-level inventory estimates), the Emission Database for Global Atmospheric Research (EDGARv4.3), the 'Houghton' bookkeeping model that incorporates FAO-FRA data, an ensemble of 8 state-of-the-art Dynamic Global Vegetation Models (DGVM), and 2 recently published independent studies using primarily remote sensing techniques. The estimates are aggregated spatially to Southeast, East, and Southmore » Asia and temporally for three decades, 1980–1989, 1990–1999 and 2000–2009. Since 1980, net carbon emissions from LULCC in Asia were responsible for 20%–40% of global LULCC emissions, with emissions from Southeast Asia alone accounting for 15%–25% of global LULCC emissions during the same period. In the 2000s and for all Asia, three estimates (FAO-FRA, DGVM, Houghton) were in agreement of a net source of carbon to the atmosphere, with mean estimates ranging between 0.24 to 0.41 Pg C yr -1, whereas EDGARv4.3 suggested a net carbon sink of -0.17 Pg C yr -1. Three of 4 estimates suggest that LULCC carbon emissions declined by at least 34% in the preceding decade (1990–2000). Spread in the estimates is due to the inclusion of different flux components and their treatments, showing the importance to include emissions from carbon rich peatlands and land management, such as shifting cultivation and wood harvesting, which appear to be consistently underreported.« less

  1. Multiple Sensitivity Testing for Regional Air Quality Model in summer 2014

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Lee, P.; Pan, L.; Tong, D.; Kim, H. C.; Huang, M.; Wang, J.; McQueen, J.; Lu, C. H.; Artz, R. S.

    2015-12-01

    The NOAA Air Resources laboratory leads to improve the performance of the U.S. Air Quality Forecasting Capability (NAQFC). It is operational in NOAA National Centers for Environmental Prediction (NCEP) which focuses on predicting surface ozone and PM2.5. In order to improve its performance, we tested several approaches, including NOAA Environmental Modeling System Global Aerosol Component (NGAC) simulation derived ozone and aerosol lateral boundary conditions (LBC), bi-direction NH3 emission and HMS(Hazard Mapping System)-BlueSky emission with the latest U.S. EPA Community Multi-scale Air Quality model (CMAQ) version and the U.S EPA National Emission Inventory (NEI)-2011 anthropogenic emissions. The operational NAQFC uses static profiles for its lateral boundary condition (LBC), which does not impose severe issue for near-surface air quality prediction. However, its degraded performance for the upper layer (e.g. above 3km) is evident when comparing with aircraft measured ozone. NCEP's Global Forecast System (GFS) has tracer O3 prediction treated as 3-D prognostic variable (Moorthi and Iredell, 1998) after being initialized with Solar Backscatter Ultra Violet-2 (SBUV-2) satellite data. We applied that ozone LBC to the CMAQ's upper layers and yield more reasonable O3 prediction than that with static LBC comparing with the aircraft data in Discover-AQ Colorado campaign. NGAC's aerosol LBC also improved the PM2.5 prediction with more realistic background aerosols. The bi-direction NH3 emission used in CMAQ also help reduce the NH3 and nitrate under-prediction issue. During summer 2014, strong wildfires occurred in northwestern USA, and we used the US Forest Service's BlueSky fire emission with HMS fire counts to drive CMAQ and tested the difference of day-1 and day-2 fire emission estimation. Other related issues were also discussed.

  2. Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary

    NASA Astrophysics Data System (ADS)

    Main, Robert; Yang, I.-Sheng; Chan, Victor; Li, Dongzi; Lin, Fang Xi; Mahajan, Nikhil; Pen, Ue-Li; Vanderlinde, Keith; van Kerkwijk, Marten H.

    2018-05-01

    Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as `interstellar lenses' to localize pulsar emission regions1,2. Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts3-5. As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the `black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow7-9. During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses10.

  3. Carbon dioxide and methane emissions from the Yukon River system

    USGS Publications Warehouse

    Striegl, Robert G.; Dornblaser, Mark M.; McDonald, Cory P.; Rover, Jennifer R.; Stets, Edward G.

    2012-01-01

    Carbon dioxide (CO2) and methane (CH4) emissions are important, but poorly quantified, components of riverine carbon (C) budgets. This is largely because the data needed for gas flux calculations are sparse and are spatially and temporally variable. Additionally, the importance of C gas emissions relative to lateral C exports is not well known because gaseous and aqueous fluxes are not commonly measured on the same rivers. We couple measurements of aqueous CO2 and CH4 partial pressures (pCO2, pCH4) and flux across the water-air interface with gas transfer models to calculate subbasin distributions of gas flux density. We then combine those flux densities with remote and direct observations of stream and river water surface area and ice duration, to calculate C gas emissions from flowing waters throughout the Yukon River basin. CO2emissions were 7.68 Tg C yr−1 (95% CI: 5.84 −10.46), averaging 750 g C m−2 yr−1 normalized to water surface area, and 9.0 g C m−2 yr−1 normalized to river basin area. River CH4 emissions totaled 55 Gg C yr−1 or 0.7% of the total mass of C emitted as CO2 plus CH4 and ∼6.4% of their combined radiative forcing. When combined with lateral inorganic plus organic C exports to below head of tide, C gas emissions comprised 50% of total C exported by the Yukon River and its tributaries. River CO2 and CH4 derive from multiple sources, including groundwater, surface water runoff, carbonate equilibrium reactions, and benthic and water column microbial processing of organic C. The exact role of each of these processes is not yet quantified in the overall river C budget.

  4. Experimental determination of drift and PM10 cooling tower emissions: Influence of components and operating conditions.

    PubMed

    Ruiz, J; Kaiser, A S; Lucas, M

    2017-11-01

    Cooling tower emissions have become an increasingly common hazard to the environment (air polluting, ice formation and salts deposition) and to the health (Legionella disease) in the last decades. Several environmental policies have emerged in recent years limiting cooling tower emissions but they have not prevented an increasing intensity of outbreaks. Since the level of emissions depends mainly on cooling tower component design and the operating conditions, this paper deals with an experimental investigation of the amount of emissions, drift and PM 10 , emitted by a cooling tower with different configurations (drift eliminators and distribution systems) and working under several operating conditions. This objective is met by the measurement of cooling tower source emission parameters by means of the sensitive paper technique. Secondary objectives were to contextualize the observed emission rates according to international regulations. Our measurements showed that the drift rates included in the relevant international standards are significantly higher than the obtained results (an average of 100 times higher) and hence, the environmental problems may occur. Therefore, a revision of the standards is recommended with the aim of reducing the environmental and human health impact. By changing the operating conditions and the distribution system, emissions can be reduced by 52.03% and 82% on average. In the case of drift eliminators, the difference ranges from 18.18% to 98.43% on average. As the emissions level is clearly influenced by operating conditions and components, regulation tests should be referred to default conditions. Finally, guidelines to perform emission tests and a selection criterion of components and conditions for the tested cooling tower are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Relativistic Iron K Emission and Absorption in the Seyfert 1.9 Galaxy MCG-05-23-16

    NASA Technical Reports Server (NTRS)

    Braito, V.; Reeves, J. N.; Dewangan, G. C.; George, I.; Griffiths, R.; Markowitz, A.; Nandra, K.; Porquet, D.; Ptak, A.; Turner, T. J.; hide

    2007-01-01

    We present the results of the simultaneous deep XMM-Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of the best known examples of a relativistically broadened iron Kalpha line. We detected a narrow sporadic absorption line at 7.7 keV which appears to be variable on a time-scale of 20 ksec. If associated with FeXXVI this absorption is indicative of a possible variable high ionization, high velocity outflow. The time averaged spectral analysis shows that the iron K-shell complex is best modeled with an unresolved narrow emission component (FWHM less than 5000 kilometers per second, EW approx. 60 eV) plus a broad component. This latter component has FWHM approx. 44000 kilometers per second, an EW approx. 50 eV and its profile is well described with an emission line originating from the accretion disk viewed with an inclination angle approx. 40 deg. and with the emission arising from within a few tens of gravitational radii of the central black hole. The time-resolved spectral analysis of the XMM-Newton EPIC-pn spectrum shows that both the narrow and broad components of the Fe K emission line appear to be constant within the errors. The analysis of the XMM-Newton/RGS spectrum reveals that the soft X-ray emission of MCG-5-23-16 is likely dominated by several emission lines superimposed on an unabsorbed scattered power-law continuum. The lack of strong Fe L shell emission together with the detection of a strong forbidden line in the O VII triplet supports a scenario where the soft X ray emission lines are produced in a plasma photoionized by the nuclear emission.

  6. The inception of star cluster formation revealed by [C II] emission around an Infrared Dark Cloud

    NASA Astrophysics Data System (ADS)

    Bisbas, Thomas G.; Tan, Jonathan C.; Csengeri, Timea; Wu, Benjamin; Lim, Wanggi; Caselli, Paola; Güsten, Rolf; Ricken, Oliver; Riquelme, Denise

    2018-07-01

    We present SOFIA-upGREAT observations of [C II] emission of Infrared Dark Cloud (IRDC) G035.39-00.33, designed to trace its atomic gas envelope and thus test models of the origins of such clouds. Several velocity components of [C II] emission are detected, tracing structures that are at a wide range of distances in the Galactic plane. We find a main component that is likely associated with the IRDC and its immediate surroundings. This strongest emission component has a velocity similar to that of the 13CO(2-1) emission of the IRDC, but offset by ˜3 km s-1 and with a larger velocity width of ˜9 km s-1. The spatial distribution of the [C II] emission of this component is also offset predominantly to one side of the dense filamentary structure of the IRDC. The C II column density is estimated to be of the order of ˜1017-1018 cm-2. We compare these results to the [C II] emission from numerical simulations of magnetized, dense gas filaments formed from giant molecular cloud (GMC) collisions, finding similar spatial and kinematic offsets. These observations and modellingof [C II] add further to the evidence that IRDC G035.39-00.33 has been formed by a process of GMC-GMC collision, which may thus be an important mechanism for initiating star cluster formation.

  7. GaInNAsSb/GaAs vertical cavity surface-emitting lasers (VCSELs): current challenges and techniques to realize multiple-wavelength laser arrays at 1.55 μm

    NASA Astrophysics Data System (ADS)

    Gobet, Mathilde; Bae, Hopil P.; Sarmiento, Tomas; Harris, James S.

    2008-02-01

    Multiple-wavelength laser arrays at 1.55 μm are key components of wavelength division multiplexing (WDM) systems for increased bandwidth. Vertical cavity surface-emitting lasers (VCSELs) grown on GaAs substrates outperform their InP counterparts in several points. We summarize the current challenges to realize continuous-wave (CW) GaInNAsSb VCSELs on GaAs with 1.55 μm emission wavelength and explain the work in progress to realize CW GaInNAsSb VCSELs. Finally, we detail two techniques to realize GaInNAsSb multiple-wavelength VCSEL arrays at 1.55 μm. The first technique involves the incorporation of a photonic crystal into the upper mirror. Simulation results for GaAs-based VCSEL arrays at 1.55 μm are shown. The second technique uses non-uniform molecular beam epitaxy (MBE). We have successfully demonstrated 1x6 resonant cavity light-emitting diode arrays at 850 nm using this technique, with wavelength spacing of 0.4 nm between devices and present these results.

  8. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  9. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  10. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  11. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  12. Gas Emissions Acquired during the Aircraft Particle Emission Experiment (APEX) Series

    NASA Technical Reports Server (NTRS)

    Changlie, Wey; Chowen, Chou Wey

    2007-01-01

    NASA, in collaboration with other US federal agencies, engine/airframe manufacturers, airlines, and airport authorities, recently sponsored a series of 3 ground-based field investigations to examine the particle and gas emissions from a variety of in-use commercial aircraft. Emissions parameters were measured at multiple engine power settings, ranging from idle to maximum thrust, in samples collected at 3 different down stream locations of the exhaust. Sampling rakes at nominally 1 meter down stream contained multiple probes to facilitate a study of the spatial variation of emissions across the engine exhaust plane. Emission indices measured at 1 m were in good agreement with the engine certification data as well as predictions provided by the engine company. However at low power settings, trace species emissions were observed to be highly dependent on ambient conditions and engine temperature.

  13. Ultraviolet continuum variability and visual flickering in the peculiar object MWC 560

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Perez, M.; Shore, S. N.; Maran, S. P.; Karovska, M.; Sonneborn, G.; Webb, J. R.; Barnes, Thomas G., III; Frueh, Marian L.; Oliversen, R. J.

    1993-01-01

    High-speed U-band photometry of the peculiar emission object MWC 560 obtained with the ground-based instrumentation, and V-band photometry obtained with the International Ultraviolet Explorer-Fine Error Sensor indicates irregular brightness variations are quasi-periodic. Multiple peaks of relative brightness power indicate statistically significant quasi periods existing in a range of 3-35 minutes, that are superposed on slower hourly varying components. We present a preliminary model that explains the minute and hourly time-scale variations in MWC 560 in terms of a velocity-shear instability that arises because a white dwarf magnetosphere impinges on an accretion disk. We also find evidence for Fe II multiplet pseudocontinuum absorption opacity in far-UV spectra of CH Cygni which is also present in MWC 560. Both CH Cyg and MWC 560 may be in an evolutionary stage that is characterized by strong UV continuum opacity which changes significantly during outburst, occurring before they permanently enter the symbiotic nebular emission phase.

  14. U.S. Natural Gas System Methane Emissions: State of Knowledge from LCAs, Inventories, and Atmospheric Measurements (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heath, G.

    Natural gas (NG) is a potential "bridge fuel" during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity. During this presentation, Garvin will review evidence from multiple perspectives - life cycle assessments (LCAs), inventories and measurementsmore » - about NG leakage in the US. Particular attention will be paid to a recent article in Science magazine which reviewed over 20 years of published measurements to better understand what we know about total methane emissions and those from the oil and gas sectors. Scientific and policy implications of the state of knowledge will be discussed.« less

  15. Use of volatile organic components in scat to identify canid species

    USGS Publications Warehouse

    Burnham, E.; Bender, L.C.; Eiceman, G.A.; Pierce, K.M.; Prasad, S.

    2008-01-01

    Identification of wildlife species from indirect evidence can be an important part of wildlife management, and conventional +methods can be expensive or have high error rates. We used chemical characterization of the volatile organic constituents (VOCs) in scat as a method to identify 5 species of North American canids from multiple individuals. We sampled vapors of scats in the headspace over a sample using solid-phase microextraction and determined VOC content using gas chromatography with a flame ionization detector. We used linear discriminant analysis to develop models for differentiating species with bootstrapping to estimate accuracy. Our method correcdy classified 82.4% (bootstrapped 95% CI = 68.8-93.8%) of scat samples. Red fox (Vulpes vulpes) scat was most frequendy misclassified (25.0% of scats misclassified); red fox was also the most common destination for misclassified samples. Our findings are the first reported identification of animal species using VOCs in vapor emissions from scat and suggest that identification of wildlife species may be plausible through chemical characterization of vapor emissions of scat.

  16. The Connection between Different Tracers of the Diffuse Interstellar Medium: Kinematics

    NASA Astrophysics Data System (ADS)

    Rice, Johnathan S.; Federman, S. R.; Flagey, Nicolas; Goldsmith, Paul F.; Langer, William D.; Pineda, Jorge L.; Lambert, D. L.

    2018-05-01

    Using visible, radio, microwave, and submillimeter data, we study several lines of sight toward stars generally closer than 1 kpc on a component-by-component basis. We derive the component structure seen in absorption at visible wavelengths from Ca II, Ca I, K I, CH, CH+, and CN and compare it to emission from H I, CO and its isotopologues, and C+ from the GOT C+ survey. The correspondence between components in emission and absorption helps create a more unified picture of diffuse atomic and molecular gas in the interstellar medium. We also discuss how these tracers are related to the CO-dark H2 gas probed by C+ emission and discuss the kinematic connections among the species observed.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahadi, S., E-mail: su4idi@yahoo.com; Puspito, N. T.; Ibrahim, G.

    Determination of onset time precursors of strong earthquakes (Mw > 5) and distance (d < 500 km) using geomagnetic data from Geomagnetic station KTB, Sumatra and two station references DAV, Philippine and DAW, Australia. separate techniques are required in its determination. Not the same as that recorded in the kinetic wave seismograms can be determined by direct time domain. Difficulties associated with electromagnetic waves seismogenic activities require analysis of the transformed signal in the frequency domain. Determination of the frequency spectrum will determine the frequency of emissions emitted from the earthquake source. The aim is to analyze the power amplitudemore » of the ULF emissions in the horizontal component (H) and vertical component (Z). Polarization power ratio Z/H is used for determining the sign of earthquake precursors controlled by the standard deviation. The pattern recognition polarization ratio should be obtained which can differentiate emissions from seismogenic effects of geomagnetic activity. ULF emission patterns generated that seismogenic effect has duration > 5 days and the dominance of emission intensity recorded at the Z component and for the dominance of the emission intensity of geomagnetic activity recorded in the component H. The result shows that the onset time is determined when the polarization power ratio Z/H standard deviation over the limit (p ± 2 σ) which has a duration of > 5 days.« less

  18. A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots.

    PubMed

    Knowles, Kathryn E; McArthur, Eric A; Weiss, Emily A

    2011-03-22

    A combination of transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopies performed on solution-phase samples of colloidal CdSe quantum dots (QDs) allows the construction of a time-resolved, charge carrier-resolved map of decay from the first excitonic state of the QD. Data from TA and TRPL yield the same six exponential components, with time constants ranging from ∼1 ps to 50 ns, for excitonic decay. Comparison of TA signals in the visible and near-infrared (NIR) spectral regions enables determination of the relative contributions of electron and hole dynamics to each decay component, and comparison of TA and TRPL reveals that each component represents a competition between radiative and nonradiative decay pathways. In total, these data suggest that the QD sample comprises at least three distinct populations that differ in both the radiative and nonradiative decay pathways available to the excitonic charge carriers, and provide evidence for multiple emissive excitonic states in which the hole is not in the valence band, but rather a relaxed or trapped state.

  19. Simulated Fuel Economy and Emissions Performance during City and Interstate Driving for a Heavy-Duty Hybrid Truck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, C. Stuart; Gao, Zhiming; Smith, David E.

    2013-04-08

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulatedmore » for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.« less

  20. An Empirical Decomposition of Near-IR Emission into Galactic and Extragalactic Components

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Arendt, Richard G.

    2002-01-01

    We decompose the COBE/DIRBE observations of the near-IR sky brightness (minus zodiacal light) into Galactic stellar and interstellar medium (ISM) components and an extragalactic background. This empirical procedure allows us to estimate the 4.9 micron cosmic infrared background (CIB) as a function of the CIB intensity at shorter wavelengths. A weak indication of a rising CIB intensity at wavelengths greater than 3.5$ microns hints at interesting astrophysics in the CIB spectrum, or warns that the foreground zodiacal emission may be incompletely subtracted. Subtraction of only the stellar component from the zodiacal-light-subtracted all--sky map reveals the clearest 3.5 micron ISM emission map, which is found to be tightly correlated with the ISM emission at far-IR wavelengths.

  1. NEAR-INFRARED SPECTROSCOPY OF THE TYPE IIn SN 2010jl: EVIDENCE FOR HIGH VELOCITY EJECTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borish, H. Jacob; Huang, Chenliang; Chevalier, Roger A.

    2015-03-01

    The Type IIn supernova SN 2010jl was relatively nearby and luminous, allowing detailed studies of the near-infrared (NIR) emission. We present 1-2.4 μm spectroscopy over the age range of 36-565 days from the earliest detection of the supernova. On day 36, the H lines show an unresolved narrow emission component along with a symmetric broad component that can be modeled as the result of electron scattering by a thermal distribution of electrons. Over the next hundreds of days, the broad components of the H lines shift to the blue by 700 km s{sup –1}, as is also observed in optical lines.more » The narrow lines do not show a shift, indicating they originate in a different region. He I λ10830 and λ20587 lines both show an asymmetric broad emission component, with a shoulder on the blue side that varies in prominence and velocity from –5500 km s{sup –1} on day 108 to –4000 km s{sup –1} on day 219. This component may be associated with the higher velocity flow indicated by X-ray observations of the supernova. The absence of the feature in the H lines suggests that this is from a He-rich ejecta flow. The He I λ10830 feature has a narrow P Cygni line, with absorption extending to ∼100 km s{sup –1} and strengthening over the first 200 days, and an emission component which weakens with time. At day 403, the continuum emission becomes dominated by a blackbody spectrum with a temperature of ∼1900 K, suggestive of dust emission.« less

  2. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel

    PubMed Central

    Sapcariu, Sean C.; Kanashova, Tamara; Dilger, Marco; Diabaté, Silvia; Oeder, Sebastian; Passig, Johannes; Radischat, Christian; Buters, Jeroen; Sippula, Olli; Streibel, Thorsten; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Krebs, Tobias; Karg, Erwin; Gröger, Thomas; Weiss, Carsten; Dittmar, Gunnar; Hiller, Karsten; Zimmermann, Ralf

    2016-01-01

    Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the response to combustion aerosols. PMID:27348622

  3. Disentangling X-Ray Emission Processes in Vela-Like Pulsars

    NASA Technical Reports Server (NTRS)

    Gaensler, Bryan; Mushotzky, Richard (Technical Monitor)

    2003-01-01

    We present a deep observation with the X-Ray Multimirror Mission of PSR B1823-13, a young pulsar with similar properties to the Vela pulsar. We detect two components to the X-ray emission associated with PSR B1823-13: an elongated core of extent 30 min immediately surrounding the pulsar embedded in a fainter, diffuse component of emission 5 sec in extent, seen only on the southern side of the pulsar. The pulsar itself is not detected, either as a point source or through its pulsations. Both components of the X-ray emission are well fitted by a power-law spectrum, with photon index Gamma approx. 1.6 and X-ray luminosity (0.5-10 keV) L(sub X) approx. 9 x 10(exp 32) ergs/s for the core and Gamma approx. 2.3 and L(sub X) approx. 3 x 10(exp 33) ergs/s for the diffuse emission, for a distance of 4 kpc. We interpret both components of emission as corresponding to a pulsar wind nebula, which we designate G18.0-0.7. We argue that the core region represents the wind termination shock of this nebula, while the diffuse component indicates the shocked downstream wind. We propose that the asymmetric morphology of the diffuse emission with respect to the pulsar is the result of a reverse shock from an associated supernova remnant, which has compressed and distorted the pulsar-powered nebula. Such an interaction might be typical for pulsars at this stage in their evolution. The associated supernova remnant is not detected directly, most likely being too faint to be seen in existing X-ray and radio observations.

  4. Herschel PACS and SPIRE Observations of Blazar PKS 1510-089: A Case for Two Blazar Zones

    DOE PAGES

    Nalewajko, Krzysztof; Sikora, Marek; Madejski, Greg M.; ...

    2012-11-06

    In this paper, we present the results of observations of blazar PKS 1510–089 with the Herschel Space Observatory PACS and SPIRE instruments, together with multiwavelength data from Fermi/LAT, Swift, SMARTS, and Submillimeter Array. The source was found in a quiet state, and its far-infrared spectrum is consistent with a power law with a spectral index of α ≃ 0.7. Our Herschel observations were preceded by two "orphan" gamma-ray flares. The near-infrared data reveal the high-energy cutoff in the main synchrotron component, which cannot be associated with the main gamma-ray component in a one-zone leptonic model. This is because in suchmore » a model the luminosity ratio of the external-Compton (EC) and synchrotron components is tightly related to the frequency ratio of these components, and in this particular case an unrealistically high energy density of the external radiation would be implied. Therefore, we consider a well-constrained two-zone blazar model to interpret the entire data set. Finally, in this framework, the observed infrared emission is associated with the synchrotron component produced in the hot-dust region at the supra-parsec scale, while the gamma-ray emission is associated with the EC component produced in the broad-line region at the sub-parsec scale. In addition, the optical/UV emission is associated with the accretion disk thermal emission, with the accretion disk corona likely contributing to the X-ray emission.« less

  5. High-energy emissions from the gamma-ray binary LS 5039

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takata, J.; Leung, Gene C. K.; Cheng, K. S.

    2014-07-20

    We study mechanisms of multi-wavelength emissions (X-ray, GeV, and TeV gamma-rays) from the gamma-ray binary LS 5039. This paper is composed of two parts. In the first part, we report on results of observational analysis using 4 yr data of the Fermi Large Area Telescope. Due to the improvement of instrumental response function and increase of the statistics, the observational uncertainties of the spectrum in the ∼100-300 MeV bands and >10 GeV bands are significantly improved. The present data analysis suggests that the 0.1-100 GeV emissions from LS 5039 contain three different components: (1) the first component contributes to <1more » GeV emissions around superior conjunction, (2) the second component dominates in the 1-10 GeV energy bands, and (3) the third component is compatible with the lower-energy tail of the TeV emissions. In the second part, we develop an emission model to explain the properties of the phase-resolved emissions in multi-wavelength observations. Assuming that LS 5039 includes a pulsar, we argue that emissions from both the magnetospheric outer gap and the inverse-Compton scattering process of cold-relativistic pulsar wind contribute to the observed GeV emissions. We assume that the pulsar is wrapped by two kinds of termination shock: Shock-I due to the interaction between the pulsar wind and the stellar wind and Shock-II due to the effect of the orbital motion. We propose that the X-rays are produced by the synchrotron radiation at the Shock-I region and the TeV gamma-rays are produced by the inverse-Compton scattering process at the Shock-II region.« less

  6. Solar radio continuum storms and a breathing magnetic field model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms.

  7. Identification of biased sectors in emission data using a combination of chemical transport model and receptor model

    NASA Astrophysics Data System (ADS)

    Uranishi, Katsushige; Ikemori, Fumikazu; Nakatsubo, Ryohei; Shimadera, Hikari; Kondo, Akira; Kikutani, Yuki; Asano, Katsuyoshi; Sugata, Seiji

    2017-10-01

    This study presented a comparison approach with multiple source apportionment methods to identify which sectors of emission data have large biases. The source apportionment methods for the comparison approach included both receptor and chemical transport models, which are widely used to quantify the impacts of emission sources on fine particulate matter of less than 2.5 μm in diameter (PM2.5). We used daily chemical component concentration data in the year 2013, including data for water-soluble ions, elements, and carbonaceous species of PM2.5 at 11 sites in the Kinki-Tokai district in Japan in order to apply the Positive Matrix Factorization (PMF) model for the source apportionment. Seven PMF factors of PM2.5 were identified with the temporal and spatial variation patterns and also retained features of the sites. These factors comprised two types of secondary sulfate, road transportation, heavy oil combustion by ships, biomass burning, secondary nitrate, and soil and industrial dust, accounting for 46%, 17%, 7%, 14%, 13%, and 3% of the PM2.5, respectively. The multiple-site data enabled a comprehensive identification of the PM2.5 sources. For the same period, source contributions were estimated by air quality simulations using the Community Multiscale Air Quality model (CMAQ) with the brute-force method (BFM) for four source categories. Both models provided consistent results for the following three of the four source categories: secondary sulfates, road transportation, and heavy oil combustion sources. For these three target categories, the models' agreement was supported by the small differences and high correlations between the CMAQ/BFM- and PMF-estimated source contributions to the concentrations of PM2.5, SO42-, and EC. In contrast, contributions of the biomass burning sources apportioned by CMAQ/BFM were much lower than and little correlated with those captured by the PMF model, indicating large uncertainties in the biomass burning emissions used in the CMAQ simulations. Thus, this comparison approach using the two antithetical models enables us to identify which sectors of emission data have large biases for improvement of future air quality simulations.

  8. Bimodal Long-lasting Components in Short Gamma-Ray Bursts: Promising Electromagnetic Counterparts to Neutron Star Binary Mergers

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Ioka, Kunihito; Sakamoto, Takanori

    2017-09-01

    Long-lasting emission of short gamma-ray bursts (GRBs) is crucial to reveal the physical origin of the central engine as well as to detect electromagnetic (EM) counterparts to gravitational waves (GWs) from neutron star binary mergers. We investigate 65 X-ray light curves of short GRBs, which is six times more than previous studies, by combining both Swift/BAT and XRT data. The light curves are found to consist of two distinct components at >5σ with bimodal distributions of luminosity and duration, I.e., extended (with a timescale of ≲103 s) and plateau emission (with a timescale of ≳103 s), which are likely the central engine activities, but not afterglows. The extended emission has an isotropic energy comparable to the prompt emission, while the plateau emission has ˜0.01-1 times this energy. Half (50%) of our sample has both components, while the other half is consistent with having both components. This leads us to conjecture that almost all short GRBs have both the extended and plateau emission. The long-lasting emission can be explained by the jets from black holes with fallback ejecta, and could power macronovae (or kilonovae) like GRB 130603B and GRB 160821B. Based on the observed properties, we quantify the detectability of EM counterparts to GWs, including the plateau emission scattered to the off-axis angle, with CALET/HXM, INTEGRAL/SPI-ACS, Fermi/GBM, MAXI/GSC, Swift/BAT, XRT, the future ISS-Lobster/WFI, Einstein Probe/WXT, and eROSITA.

  9. Bimodal Long-lasting Components in Short Gamma-Ray Bursts: Promising Electromagnetic Counterparts to Neutron Star Binary Mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisaka, Shota; Sakamoto, Takanori; Ioka, Kunihito, E-mail: kisaka@phys.aoyama.ac.jp, E-mail: tsakamoto@phys.aoyama.ac.jp, E-mail: kunihito.ioka@yukawa.kyoto-u.ac.jp

    Long-lasting emission of short gamma-ray bursts (GRBs) is crucial to reveal the physical origin of the central engine as well as to detect electromagnetic (EM) counterparts to gravitational waves (GWs) from neutron star binary mergers. We investigate 65 X-ray light curves of short GRBs, which is six times more than previous studies, by combining both Swift /BAT and XRT data. The light curves are found to consist of two distinct components at >5 σ with bimodal distributions of luminosity and duration, i.e., extended (with a timescale of ≲10{sup 3} s) and plateau emission (with a timescale of ≳10{sup 3} s),more » which are likely the central engine activities, but not afterglows. The extended emission has an isotropic energy comparable to the prompt emission, while the plateau emission has ∼0.01–1 times this energy. Half (50%) of our sample has both components, while the other half is consistent with having both components. This leads us to conjecture that almost all short GRBs have both the extended and plateau emission. The long-lasting emission can be explained by the jets from black holes with fallback ejecta, and could power macronovae (or kilonovae) like GRB 130603B and GRB 160821B. Based on the observed properties, we quantify the detectability of EM counterparts to GWs, including the plateau emission scattered to the off-axis angle, with CALET /HXM, INTEGRAL /SPI-ACS, Fermi /GBM, MAXI /GSC, Swift /BAT, XRT, the future ISS-Lobster /WFI, Einstein Probe /WXT, and eROSITA .« less

  10. 40 CFR 86.1803-01 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... procurement. Auxiliary Emission Control Device (AECD) means any element of design which senses temperature... components are those components which are designed primarily for emission control, or whose failure may... system as a means of providing electrical energy. Element of design means any control system (i.e...

  11. 40 CFR 1068.501 - How do I report emission-related defects?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Electronic control units, aftertreatment devices, fuel-metering components, EGR-system components, crankcase...) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR HIGHWAY, STATIONARY, AND NONROAD PROGRAMS Reporting Defects and Recalling Engines/Equipment § 1068.501 How do I report emission-related defects? This...

  12. 40 CFR 1068.501 - How do I report emission-related defects?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Electronic control units, aftertreatment devices, fuel-metering components, EGR-system components, crankcase...) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR HIGHWAY, STATIONARY, AND NONROAD PROGRAMS Reporting Defects and Recalling Engines/Equipment § 1068.501 How do I report emission-related defects? This...

  13. 40 CFR 1068.501 - How do I report emission-related defects?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Electronic control units, aftertreatment devices, fuel-metering components, EGR-system components, crankcase...) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR HIGHWAY, STATIONARY, AND NONROAD PROGRAMS Reporting Defects and Recalling Engines/Equipment § 1068.501 How do I report emission-related defects? This...

  14. New strategies for SHM based on a multichannel wireless AE node

    NASA Astrophysics Data System (ADS)

    Godinez-Azcuaga, Valery; Ley, Obdulia

    2014-03-01

    This paper discusses the development of an Acoustic Emission (AE) wireless node and its application for SHM (Structural Health Monitoring). The instrument development was planned for applications monitoring steel and concrete bridges components. The final product, now commercially available, is a sensor node which includes multiple sensing elements, on board signal processing and analysis capabilities, signal conditioning electronics, power management circuits, wireless data transmission element and energy harvesting unit. The sensing elements are capable of functioning in both passive and active modes, while the multiple parametric inputs are available for connecting various sensor types to measure external characteristics affecting the performance of the structure under monitoring. The output of all these sensors are combined and analyzed at the node in order to minimize the data transmission rate, which consumes significant amount of power. Power management circuits are used to reduce the data collection intervals through selective data acquisition strategies and minimize the sensor node power consumption. This instrument, known as the 1284, is an excellent platform to deploy SHM in the original bridge applications, but initial prototypes has shown significant potential in monitoring composite wind turbine blades and composites mockups of Unmanned Autonomous Vehicles (UAV) components; currently we are working to extend the use of this system to fields such as coal flow, power transformer, and off-shore platform monitoring.

  15. Application of band-target entropy minimization to infrared emission spectroscopy and the reconstruction of pure component emissivities from thin films and liquid samples.

    PubMed

    Cheng, Shuying; Rajarathnam, D; Meiling, Tan; Garland, Marc

    2006-05-01

    Thermal emission spectral data sets were collected for a thin solid film (parafilm) and a thin liquid film (isopropanol) on the interval of 298-348 K. The measurements were performed using a conventional Fourier transform infrared (FT-IR) spectrometer with external optical bench and in-house-designed emission cell. Both DTGS and MCT detectors were used. The data sets were analyzed with band-target entropy minimization (BTEM), which is a pure component spectral reconstruction program. Pure component emissivities of the parafilm, isopropanol, and thermal background were all recovered without any a priori information. Furthermore, the emissivities were obtained with increased signal-to-noise ratios, and the signals due to absorbance of thermal radiation by gas-phase moisture and CO2 were significantly reduced. As expected, the MCT results displayed better signal-to-noise ratios than the DTGS results, but the latter results were still rather impressive given the low temperatures used in this study. Comparison is made with spectral reconstruction using the orthogonal projection approach-alternating least squares (OPA-ALS) technique. This contribution introduces the primary equation for emission spectral reconstruction using BTEM and discusses some of the unusual characteristics of thermal emission and their impact on the analysis.

  16. Greenhouse Gas Emissions from Solid and Liquid Organic Fertilizers Applied to Lettuce.

    PubMed

    Toonsiri, Phasita; Del Grosso, Stephen J; Sukor, Arina; Davis, Jessica G

    2016-11-01

    Improper application of nitrogen (N) fertilizer and environmental factors can cause the loss of nitrous oxide (NO) to the environment. Different types of fertilizers with different C/N ratios may have different effects on the environment. The focus of this study was to evaluate the effects of environmental factors and four organic fertilizers (feather meal, blood meal, fish emulsion, and cyano-fertilizer) applied at different rates (0, 28, 56, and 112 kg N ha) on NO emissions and to track CO emissions from a lettuce field ( L.). The study was conducted in 2013 and 2014 and compared preplant-applied solid fertilizers (feather meal and blood meal) and multiple applications of liquid fertilizers (fish emulsion and cyano-fertilizer). Three days a week, NO and CO emissions were measured twice per day in 2013 and once per day in 2014 using a closed-static chamber, and gas samples were analyzed by gas chromatography. Preplant-applied solid fertilizers significantly increased cumulative NO emissions as compared with control, but multiple applications of liquid fertilizers did not. Emission factors for NO ranged from 0 to 0.1% for multiple applications of liquid fertilizers and 0.6 to 11% for preplant-applied solid fertilizers, which could be overestimated due to chamber placement over fertilizer bands. In 2014, solid fertilizers with higher C/N ratios (3.3-3.5) resulted in higher CO emissions than liquid fertilizers (C/N ratio, 0.9-1.5). Therefore, organic farmers should consider the use of multiple applications of liquid fertilizers as a means to reduce soil greenhouse gas emissions while maintaining high yields. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. The Chandra M10l Megasecond: Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2009-01-01

    Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.

  18. Synthesis-identification integration: One-pot hydrothermal preparation of fluorescent nitrogen-doped carbon nanodots for differentiating nucleobases with the aid of multivariate chemometrics analysis.

    PubMed

    Zhuang, Qianfen; Cao, Wei; Ni, Yongnian; Wang, Yong

    2018-08-01

    Most of the conventional multidimensional differential sensors currently need at least two-step fabrication, namely synthesis of probe(s) and identification of multiple analytes by mixing of analytes with probe(s), and were conducted using multiple sensing elements or several devices. In the study, we chose five different nucleobases (adenine, cytosine, guanine, thymine, and uracil) as model analytes, and found that under hydrothermal conditions, sodium citrate could react directly with various nucleobases to yield different nitrogen-doped carbon nanodots (CDs). The CDs synthesized from different nucleobases exhibited different fluorescent properties, leading to their respective characteristic fluorescence spectra. Hence, we combined the fluorescence spectra of the CDs with advanced chemometrics like principle component analysis (PCA), hierarchical cluster analysis (HCA), K-nearest neighbor (KNN) and soft independent modeling of class analogy (SIMCA), to present a conceptually novel "synthesis-identification integration" strategy to construct a multidimensional differential sensor for nucleobase discrimination. Single-wavelength excitation fluorescence spectral data, single-wavelength emission fluorescence spectral data, and fluorescence Excitation-Emission Matrices (EEMs) of the CDs were respectively used as input data of the differential sensor. The results showed that the discrimination ability of the multidimensional differential sensor with EEM data set as input data was superior to those with single-wavelength excitation/emission fluorescence data set, suggesting that increasing the number of the data input could improve the discrimination power. Two supervised pattern recognition methods, namely KNN and SIMCA, correctly identified the five nucleobases with a classification accuracy of 100%. The proposed "synthesis-identification integration" strategy together with a multidimensional array of experimental data holds great promise in the construction of differential sensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study

    NASA Astrophysics Data System (ADS)

    Hattermann, F. F.; Vetter, T.; Breuer, L.; Su, Buda; Daggupati, P.; Donnelly, C.; Fekete, B.; Flörke, F.; Gosling, S. N.; Hoffmann, P.; Liersch, S.; Masaki, Y.; Motovilov, Y.; Müller, C.; Samaniego, L.; Stacke, T.; Wada, Y.; Yang, T.; Krysnaova, V.

    2018-01-01

    Climate change impacts on water availability and hydrological extremes are major concerns as regards the Sustainable Development Goals. Impacts on hydrology are normally investigated as part of a modelling chain, in which climate projections from multiple climate models are used as inputs to multiple impact models, under different greenhouse gas emissions scenarios, which result in different amounts of global temperature rise. While the goal is generally to investigate the relevance of changes in climate for the water cycle, water resources or hydrological extremes, it is often the case that variations in other components of the model chain obscure the effect of climate scenario variation. This is particularly important when assessing the impacts of relatively lower magnitudes of global warming, such as those associated with the aspirational goals of the Paris Agreement. In our study, we use ANOVA (analyses of variance) to allocate and quantify the main sources of uncertainty in the hydrological impact modelling chain. In turn we determine the statistical significance of different sources of uncertainty. We achieve this by using a set of five climate models and up to 13 hydrological models, for nine large scale river basins across the globe, under four emissions scenarios. The impact variable we consider in our analysis is daily river discharge. We analyze overall water availability and flow regime, including seasonality, high flows and low flows. Scaling effects are investigated by separately looking at discharge generated by global and regional hydrological models respectively. Finally, we compare our results with other recently published studies. We find that small differences in global temperature rise associated with some emissions scenarios have mostly significant impacts on river discharge—however, climate model related uncertainty is so large that it obscures the sensitivity of the hydrological system.

  20. White OLED with a single-component europium complex.

    PubMed

    Law, Ga-Lai; Wong, Ka-Leung; Tam, Hoi-Lam; Cheah, Kok-Wai; Wong, Wing-Tak

    2009-11-16

    A new direction for white organic light-emitting devices is shown, fabricated from a novel europium complex; this single component contains a double emission center of bluish-green and red, combined to a give a pure white emission (CIE x = 0.34 and y = 0.35).

  1. 40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...

  2. 40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...

  3. 40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...

  4. Turbomachine monitoring system and method

    DOEpatents

    Delvaux, John McConnell

    2016-02-23

    In an embodiment, a system includes a turbomachine having a first turbomachine component including a first mechanoluminescent material. The first turbomachine component is configured to produce a first light emission upon exposure to a mechanical stimulus sufficient to cause mechanoluminescence by the first mechanoluminescent material. The system also includes a turbomachine monitoring system configured to monitor the structural health of the first component based on detection of the first light emission.

  5. Compression and neutron and ion beams emission mechanisms within a plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yousefi, H. R.; Mohanty, S. R.; Nakada, Y.

    This paper reports some results of investigations of the neutron emission from middle energy Mather-type plasma focus. Multiple compressions were observed, and it seems that multiple compression regimes can occur at low pressure, while single compression appeared at higher pressure, which is favorable for neutron production. The multiple compression mechanism can be attributed to the (m=0 type) instability. The m=0 type instability is a necessary condition for fusion activity and x-ray production, but is not sufficient by itself. Accompanying the multiple compressions, multiple deuteron and neutron pulses were detected, which implies that there are different kinds of acceleration mechanisms.

  6. Emission wavelength of AlGaAs-GaAs multiple quantum well lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blood, P.; Fletcher, E.D.; Hulyer, P.J.

    1986-04-28

    We have recorded spontaneous emission spectra from multiple quantum well lasers grown by molecular beam epitaxy with 25-A-wide GaAs wells by opening a window in the top contact stripe. These spectra have a low-energy tail and consequently the gain spectra derived from them show that laser emission occurs at a lower photon energy than the lowest energy confined particle transition. The observed laser wavelength and threshold current are consistent with the position of the peak in the gain spectrum.

  7. Integration of biogenic emissions in environmental fate, transport, and exposure systems

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christos I.

    Biogenic emissions make a significant contribution to the levels of aeroallergens and secondary air pollutants such as ozone. Understanding major factors contributing to allergic airway diseases requires accurate characterization of emissions and transport/transformation of biogenic emissions. However, biogenic emission estimates are laden with large uncertainties. Furthermore, the current biogenic emission estimation models use low-resolution data for estimating land use, vegetation biomass and VOC emissions. Furthermore, there are currently no established methods for estimating bioaerosol emissions over continental or regional scale, which can impact the ambient levels of pollent that have synergestic effects with other gaseous pollutants. In the first part of the thesis, an detailed review of different approaches and available databases for estimating biogenic emissions was conducted, and multiple geodatabases and satellite imagery were used in a consistent manner to improve the estimates of biogenic emissions over the continental United States. These emissions represent more realistic, higher resolution estimates of biogenic emissions (including those of highly reactive species such as isoprene). The impact of these emissions on tropospheric ozone levels was studied at a regional scale through the application of the USEPA's Community Multiscale Air Quality (CMAQ) model. Minor, but significant differences in the levels of ambient ozone were observed. In the second part of the thesis, an algorithm for estimating emissions of pollen particles from major allergenic tree and plant families in the United States was developed, extending the approach for modeling biogenic gas emissions in the Biogenic Emission Inventory System (BEIS). A spatio-temporal vegetation map was constructed from different remote sensing sources and local surveys, and was coupled with a meteorological model to develop pollen emissions rates. This model overcomes limitations posed by the lack of temporally resolved dynamic vegetation mapping in traditional pollen emission estimation methods. The pollen emissions model was applied to study the pollen emissions for North East US at 12 km resolution for comparison with ground level tree pollen data. A pollen transport model that simulates complex dispersion and deposition was developed through modifications to the USEPA's Community Multiscale Air Quality (CMAQ) model. The peak pollen emission predictions were within a day of peak pollen counts measured, thus corroborating independent model verification. Furthermore, the peak predicted pollen concentration estimates were within two days of the peak measured pollen counts, thus providing independent corroboration. The models for emissions and dispersion allow data-independent estimation of pollen levels, and provide an important component in assessing exposures of populations to pollen, especially under different climate change scenarios.

  8. Cathodoluminescence study on local high-energy emissions at dark spots in AlGaN/AlGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Kurai, Satoshi; Imura, Nobuto; Jin, Li; Miyake, Hideto; Hiramatsu, Kazumasa; Yamada, Yoichi

    2018-06-01

    We investigated the spatial distribution of luminescence near threading dislocations in AlGaN/AlGaN multiple quantum wells (MQWs) by cathodoluminescence mapping. Emission at the higher-energy side of the AlGaN MQW peak was locally observed near the threading dislocations, which were not accompanied by any surface V-pits. Such higher-energy emission was not observed in the AlGaN epilayers. The energy difference between the AlGaN MQW peak and the higher-energy emission peak increased with increasing barrier-layer Al composition. These results suggest that the origin of the higher-energy emission is likely local thickness fluctuation around dislocations in very thin AlGaN MQWs.

  9. Near Zero Emissions at 50 Percent Thermal Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2012-12-31

    Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called Near-Zero Emission at 50 Percent Thermal Efficiency, and was completed in 2007. The second phase was initiated in 2006, and this phase was named Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines. This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: Quantify thermal efficiency degradation associated with reductionmore » of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under EPA 2010 emissions regulations. Experimentally demonstrate brake efficiency of 48.5% at EPA 2010 emission level at single steady-state point. Analytically demonstrated additional brake efficiency benefits using advanced aftertreatment configuration concept and air system enhancement including, but not limited to, turbo-compound, variable valve actuator system, and new cylinder head redesign, thus helping to achieve the final program goals. Experimentally demonstrated EPA 2010 emissions over FTP cycles using advanced integrated engine and aftertreatment system. These aggressive thermal efficiency and emissions results were achieved by applying a robust systems technology development methodology. It used integrated analytical and experimental tools for subsystem component optimization encompassing advanced fuel injection system, increased EGR cooling capacity, combustion process optimization, and advanced aftertreatment technologies. Model based controls employing multiple input and output techniques enabled efficient integration of the various subsystems and ensured optimal performance of each system within the total engine package. . The key objective of the NZ-50 program for the second phase was to explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize cylinder-out emissions, targeting a 10% efficiency improvement. The most noteworthy achievements in this phase of the program are summarized as follows: Experimentally and analytically evaluated numerous air system improvements related to the turbocharger and variable valve actuation. Some of the items tested proved to be very successful and modifications to the turbine discovered in this program have since been incorporated into production hardware. The combustion system development continued with evaluation of various designs of the 2-step piston bowl. Significant improvements in engine emissions have been obtained, but fuel economy improvements have been tougher to realize. Development of a neural network control system progressed to the point that the system was fully functional and showing significant fuel economy gains in transient engine testing. Development of the QuantLogic injector with the capability of both a hollow cone spray during early injection and conventional diesel injection at later injection timings was undertaken and proved to be problematic. This injector was designed to be a key component in a PCCI combustion system, but this innovative fuel injector required significantly more development effort than this programâ's resources or timing would allow.« less

  10. The Origin of the Excess Near-Infrared Diffuse Sky Brightness: Population III Stars or Zodiacal Light?

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2006-01-01

    The intensity of the diffuse 1 to 5 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval. The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from H-II regions formed by the first generation of very massive stars. In this talk I will present the implications of this excess emission for our understanding of the zodiacal dust cloud, the formation rate of Pop III stars, and the TeV gamma-ray opacity to nearby blazars.

  11. Bowen emission from Aquila X-1: evidence for multiple components and constraint on the accretion disc vertical structure

    NASA Astrophysics Data System (ADS)

    Jiménez-Ibarra, F.; Muñoz-Darias, T.; Wang, L.; Casares, J.; Mata Sánchez, D.; Steeghs, D.; Armas Padilla, M.; Charles, P. A.

    2018-03-01

    We present a detailed spectroscopic study of the optical counterpart of the neutron star X-ray transient Aquila X-1 during its 2011, 2013 and 2016 outbursts. We use 65 intermediate resolution GTC-10.4 m spectra with the aim of detecting irradiation-induced Bowen blend emission from the donor star. While Gaussian fitting does not yield conclusive results, our full phase coverage allows us to exploit Doppler mapping techniques to independently constrain the donor star radial velocity. By using the component N III 4640.64/4641.84 Å, we measure Kem = 102 ± 6 km s-1. This highly significant detection (≳13σ) is fully compatible with the true companion star radial velocity obtained from near-infrared spectroscopy during quiescence. Combining these two velocities we determine, for the first time, the accretion disc opening angle and its associated error from direct spectroscopic measurements and detailed modelling, obtaining α = 15.5 ^{+ 2.5}_{-5} deg. This value is consistent with theoretical work if significant X-ray irradiation is taken into account and is important in the light of recent observations of GX339-4, where discrepant results were obtained between the donor's intrinsic radial velocity and the Bowen-inferred value. We also discuss the limitations of the Bowen technique when complete phase coverage is not available.

  12. Prediction of BOD, COD, and total nitrogen concentrations in a typical urban river using a fluorescence excitation-emission matrix with PARAFAC and UV absorption indices.

    PubMed

    Hur, Jin; Cho, Jinwoo

    2012-01-01

    The development of a real-time monitoring tool for the estimation of water quality is essential for efficient management of river pollution in urban areas. The Gap River in Korea is a typical urban river, which is affected by the effluent of a wastewater treatment plant (WWTP) and various anthropogenic activities. In this study, fluorescence excitation-emission matrices (EEM) with parallel factor analysis (PARAFAC) and UV absorption values at 220 nm and 254 nm were applied to evaluate the estimation capabilities for biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total nitrogen (TN) concentrations of the river samples. Three components were successfully identified by the PARAFAC modeling from the fluorescence EEM data, in which each fluorophore group represents microbial humic-like (C1), terrestrial humic-like organic substances (C2), and protein-like organic substances (C3), and UV absorption indices (UV(220) and UV(254)), and the score values of the three PARAFAC components were selected as the estimation parameters for the nitrogen and the organic pollution of the river samples. Among the selected indices, UV(220), C3 and C1 exhibited the highest correlation coefficients with BOD, COD, and TN concentrations, respectively. Multiple regression analysis using UV(220) and C3 demonstrated the enhancement of the prediction capability for TN.

  13. Spectral Monitoring of NGC 1365: Nucleus and Variable ULX

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Fabbiano, G.

    2004-01-01

    A letter has been submitted to ApJ, and is in the final stages of revision on the spectral variability of the nuclear source. We presented multiple Chandra and XMM-Newton observations of the Seyfert Galaxy NGC 1365, which shows the most dramatic X-ray spectral changes observed so far in an AGN: the source switched from reflection dominated to Compton- thin and back in just 6 weeks. During this time the soft thermal component, arising from a 1-kpc region around the center, remained constant. The reflection component is constant at all timescales, and its flux is a fraction of 5% or higher of the direct 2-10 keV emission, implying the presence of thick gas covering a big fraction of the solid angle. The presence of this gas, and the hst variability time scale, suggest that the Compton-thick to Compton thin change is due to variation in the line-of-sight absorber, rather than to extreme intrinsic emission variability. We discuss a structure of the circumnuclear absorbed reflector which can explain the observed X-ray spectral and temporal properties. But these important results come only from scratching the surface of the data, since we did not need any detailed spectral analysis to distinguish between the Compton thick and Compton thin states of the source, the difference in both spectral shape and flux being huge.

  14. Starburst to Quiescent from HST/ALMA: Stars and Dust Unveil Minor Mergers in Submillimeter Galaxies at z ∼ 4.5

    NASA Astrophysics Data System (ADS)

    Gómez-Guijarro, C.; Toft, S.; Karim, A.; Magnelli, B.; Magdis, G. E.; Jiménez-Andrade, E. F.; Capak, P. L.; Fraternali, F.; Fujimoto, S.; Riechers, D. A.; Schinnerer, E.; Smolčić, V.; Aravena, M.; Bertoldi, F.; Cortzen, I.; Hasinger, G.; Hu, E. M.; Jones, G. C.; Koekemoer, A. M.; Lee, N.; McCracken, H. J.; Michałowski, M. J.; Navarrete, F.; Pović, M.; Puglisi, A.; Romano-Díaz, E.; Sheth, K.; Silverman, J. D.; Staguhn, J.; Steinhardt, C. L.; Stockmann, M.; Tanaka, M.; Valentino, F.; van Kampen, E.; Zirm, A.

    2018-04-01

    Dust-enshrouded, starbursting, submillimeter galaxies (SMGs) at z ≥ 3 have been proposed as progenitors of z ≥ 2 compact quiescent galaxies (cQGs). To test this connection, we present a detailed spatially resolved study of the stars, dust, and stellar mass in a sample of six submillimeter-bright starburst galaxies at z ∼ 4.5. The stellar UV emission probed by HST is extended and irregular and shows evidence of multiple components. Informed by HST, we deblend Spitzer/IRAC data at rest-frame optical, finding that the systems are undergoing minor mergers with a typical stellar mass ratio of 1:6.5. The FIR dust continuum emission traced by ALMA locates the bulk of star formation in extremely compact regions (median r e = 0.70 ± 0.29 kpc), and it is in all cases associated with the most massive component of the mergers (median {log}({M}* /{M}ȯ )=10.49+/- 0.32). We compare spatially resolved UV slope (β) maps with the FIR dust continuum to study the infrared excess (IRX = L IR/L UV)–β relation. The SMGs display systematically higher IRX values than expected from the nominal trend, demonstrating that the FIR and UV emissions are spatially disconnected. Finally, we show that the SMGs fall on the mass–size plane at smaller stellar masses and sizes than the cQGs at z = 2. Taking into account the expected evolution in stellar mass and size between z = 4.5 and z = 2 due to the ongoing starburst and mergers with minor companions, this is in agreement with a direct evolutionary connection between the two populations.

  15. PULMONARY AND SYSTEMIC EFFECTS OF ZINC-CONTAINING EMISSION PARTICLES IN THREE RAT STRAINS: MULTIPLE EXPOSURE SCENARIOS

    EPA Science Inventory

    Abstract
    Pulmonary and Systemic Effects of Zinc-Containing Emission Particles in Three Rat Strains: Multiple Exposure Scenarios. Kodavanti, U. P., Schladweiler, M. C. J., Ledbetter, A. D., Hauser, R.*, Christiani, D. C.*, McGee, J., Richards, J. R., and Costa, D. L. (2002)....

  16. Meterwavelength Single-pulse Polarimetric Emission Survey. IV. The Period Dependence of Component Widths of Pulsars

    NASA Astrophysics Data System (ADS)

    Skrzypczak, Anna; Basu, Rahul; Mitra, Dipanjan; Melikidze, George I.; Maciesiak, Krzysztof; Koralewska, Olga; Filothodoros, Alexandros

    2018-02-01

    The core component width in normal pulsars, with periods (P) > 0.1 s, measured at the half-power point at 1 GHz, has a lower boundary line (LBL) that closely follows the P ‑0.5 scaling relation. This result is of fundamental importance for understanding the emission process and requires extended studies over a wider frequency range. In this paper we have carried out a detailed study of the profile component widths of 123 normal pulsars observed in the Meterwavelength Single-pulse Polarimetric Emission Survey at 333 and 618 MHz. The components in the pulse profile were separated into core and conal classes. We found that at both frequencies, the core, as well as the conal component widths versus period, had a LBL that followed the P ‑0.5 relation with a similar lower boundary. The radio emission in normal pulsars has been observationally shown to arise from a narrow range of heights around a few hundred kilometers above the stellar surface. In the past the P ‑0.5 relation has been considered as evidence for emission arising from last open dipolar magnetic field lines. We show that the P ‑0.5 dependence only holds if the trailing and leading half-power points of the component are associated with the last open field line. In such a scenario we do not find any physical motivation that can explain the P ‑0.5 dependence for both core and conal components as evidence for dipolar geometry in normal pulsars. We believe the period dependence is a result of a currently unexplained physical phenomenon.

  17. The X-ray Emitting Components towards l = 111 deg: The Local Hot Bubble and Beyond

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2006-01-01

    We have obtained an XMM-Newton spectrum of the diffuse X-ray emission towards (l, b) = (111.14,1.11), a line of sight with a relatively simple distribution of absorbing clouds; > 9 x 10(exp 19)/sq cm at R>170 pc, a 6 x 10(exp 21)/sq cm molecular cloud at 2.5-3.3 kpc, and a total column of 1.2 x 10(exp 22)/sq cm. We find that the analysis of the XMM-Newton spectrum in conjunction with the RASS spectral energy distribution for the same direction requires three thermal components to be well fit: a "standard" Local Hot Bubble component with kT = 0.089, a component beyond the molecular cloud with kT = 0.59, and a component before the molecular cloud with kT = 0.21. The strength of the O VII 0.56 keV line from the Local Hot Bubble, 2.1+/-0.7 photons/sq cm/s/sr, is consistent with other recent measures. The 0.21 keV component has an emission measure of 0.0022+/-0.0006 pc and is not localized save as diffuse emission within the Galactic plane; it is the best candidate for a pervasive hot medium. The spatial separation of the approx. 0.2 keV component from the approx. 0.6 keV component suggests that the spectral decompositions of the emission from late-type spiral disks found in the literature do represent real temperature components rather than reflecting more complex temperature distributions.

  18. Volatile organic compound emissions from green waste composting: Characterization and ozone formation

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Alaimo, Christopher P.; Horowitz, Robert; Mitloehner, Frank M.; Kleeman, Michael J.; Green, Peter G.

    2011-04-01

    Composting of green waste separated from the disposed solid waste stream reduces biodegradable inputs into landfills, and contributes valuable soil amendments to agriculture. Agencies in regions with severe air quality challenges, such as California's San Joaquin Valley (SJV), have raised concerns about gases emitted during the composting process, which are suspected to contribute to persistent high levels of ground-level ozone formation. The goal of the current study is to thoroughly characterize volatile organic compound (VOC) emissions from green waste compost piles of different ages (fresh tipped piles, 3-6 day old windrows, and 2-3 week old windrows). Multiple sampling and analytical approaches were applied to ensure the detection of most gaseous organic components emitted. More than 100 VOCs were detected and quantified in this study, including aliphatic alkanes, alkenes, aromatic hydrocarbons, biogenic organics, aldehydes, ketones, alcohols, furans, acids, esters, ether, halogenated hydrocarbons and dimethyl disulfide (DMDS). Alcohols were found to be the dominating VOC in the emissions from a compost pile regardless of age, with fluxes ranging from 2.6 to 13.0 mg m -2 min -1 with the highest emissions coming from the younger composting windrows (3-6 days). Average VOC emissions other than alcohols were determined to be 2.3 mg m -2 min -1 from younger windows, which was roughly two times higher than either the fresh tipping pile (1.2 mg m -2 min -1) or the older windrows (1.4 mg m -2 min -1). It was also observed that the older windrows emit a slightly larger proportion of more reactive compounds. Approximately 90% of the total VOCs were found to have maximum incremental reactivity of less than 2. Net ozone formation potential of the emissions was also assessed.

  19. Sparse reconstruction localization of multiple acoustic emissions in large diameter pipelines

    NASA Astrophysics Data System (ADS)

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-04-01

    A sparse reconstruction localization method is proposed, which is capable of localizing multiple acoustic emission events occurring closely in time. The events may be due to a number of sources, such as the growth of corrosion patches or cracks. Such acoustic emissions may yield localization failure if a triangulation method is used. The proposed method is implemented both theoretically and experimentally on large diameter thin-walled pipes. Experimental examples are presented, which demonstrate the failure of a triangulation method when multiple sources are present in this structure, while highlighting the capabilities of the proposed method. The examples are generated from experimental data of simulated acoustic emission events. The data corresponds to helical guided ultrasonic waves generated in a 3 m long large diameter pipe by pencil lead breaks on its outer surface. Acoustic emission waveforms are recorded by six sparsely distributed low-profile piezoelectric transducers instrumented on the outer surface of the pipe. The same array of transducers is used for both the proposed and the triangulation method. It is demonstrated that the proposed method is able to localize multiple events occurring closely in time. Furthermore, the matching pursuit algorithm and the basis pursuit densoising approach are each evaluated as potential numerical tools in the proposed sparse reconstruction method.

  20. An improved car-following model with multiple preceding cars' velocity fluctuation feedback

    NASA Astrophysics Data System (ADS)

    Guo, Lantian; Zhao, Xiangmo; Yu, Shaowei; Li, Xiuhai; Shi, Zhongke

    2017-04-01

    In order to explore and evaluate the effects of velocity variation trend of multiple preceding cars used in the Cooperative Adaptive Cruise Control (CACC) strategy on the dynamic characteristic, fuel economy and emission of the corresponding traffic flow, we conduct a study as follows: firstly, with the real-time car-following (CF) data, the close relationship between multiple preceding cars' velocity fluctuation feedback and the host car's behaviors is explored, the evaluation results clearly show that multiple preceding cars' velocity fluctuation with different time window-width are highly correlated to the host car's acceleration/deceleration. Then, a microscopic traffic flow model is proposed to evaluate the effects of multiple preceding cars' velocity fluctuation feedback in the CACC strategy on the traffic flow evolution process. Finally, numerical simulations on fuel economy and exhaust emission of the traffic flow are also implemented by utilizing VT-micro model. Simulation results prove that considering multiple preceding cars' velocity fluctuation feedback in the control strategy of the CACC system can improve roadway traffic mobility, fuel economy and exhaust emission performance.

  1. 40 CFR 94.211 - Emission-related maintenance instructions for purchasers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Administrator's satisfaction that the engine will function properly only if the component or... section are defined as critical emission-related components. (i) Catalytic convertor. (ii) Electronic... which satisfy one of the conditions defined in paragraphs (j)(2)(i) through (j)(2)(vi) of this section...

  2. Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City

    NASA Astrophysics Data System (ADS)

    Zavala, Miguel; Molina, Luisa T.; Yacovitch, Tara I.; Fortner, Edward C.; Roscioli, Joseph R.; Floerchinger, Cody; Herndon, Scott C.; Kolb, Charles E.; Knighton, Walter B.; Paramo, Victor Hugo; Zirath, Sergio; Mejía, José Antonio; Jazcilevich, Aron

    2017-12-01

    Diesel-powered vehicles are intensively used in urban areas for transporting goods and people but can substantially contribute to high emissions of black carbon (BC), organic carbon (OC), and other gaseous pollutants. Strategies aimed at controlling mobile emissions sources thus have the potential to improve air quality and help mitigate the impacts of air pollutants on climate, ecosystems, and human health. However, in developing countries there are limited data on the BC and OC emission characteristics of diesel-powered vehicles, and thus there are large uncertainties in the estimation of the emission contributions from these sources. We measured BC, OC, and other inorganic components of fine particulate matter (PM), as well as carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), ethane, acetylene, benzene, toluene, and C2-benzenes under real-world driving conditions for 20 diesel-powered vehicles encompassing multiple emission level technologies in Mexico City with the chasing technique using the Aerodyne mobile laboratory. Average BC emission factors ranged from 0.41-2.48 g kg-1 of fuel depending on vehicle type. The vehicles were also simultaneously measured using the cross-road remote sensing technique to obtain the emission factors of nitrogen oxide (NO), CO, total hydrocarbons, and fine PM, thus allowing for the intercomparison of the results from the two techniques. There is overall good agreement between the two techniques and both can identify high and low emitters, but substantial differences were found in some of the vehicles, probably due to the ability of the chasing technique to capture a larger diversity of driving conditions in comparison to the remote sensing technique. A comparison of the results with the US EPA MOVES2014b model showed that the model underestimates CO, OC, and selected VOC species, whereas there is better agreement for NOx and BC. Larger OC / BC ratios were found in comparison to ratios measured in California using the same technique, further demonstrating the need for using locally obtained diesel-powered vehicle emission factor database in developing countries in order to reduce the uncertainty in the emissions estimates and to improve the evaluation of the effectiveness of emissions reduction measures.

  3. High-resolution Near-IR Spectral Mapping with H2 and [Fe II] Lines of Multiple Outflows around LkHα 234

    NASA Astrophysics Data System (ADS)

    Oh, Heeyoung; Pyo, Tae-Soo; Koo, Bon-Chul; Yuk, In-Soo; Kaplan, Kyle F.; Lee, Yong-Hyun; Sokal, Kimberly R.; Mace, Gregory N.; Park, Chan; Lee, Jae-Joon; Park, Byeong-Gon; Hwang, Narae; Kim, Hwihyun; Jaffe, Daniel T.

    2018-05-01

    We present a high-resolution, near-IR spectroscopic study of multiple outflows in the LkHα 234 star formation region using the Immersion GRating INfrared Spectrometer (IGRINS). Spectral mapping over the blueshifted emission of HH 167 allowed us to distinguish at least three separate, spatially overlapped outflows in H2 and [Fe II] emission. We show that the H2 emission represents not a single jet but rather complex multiple outflows driven by three known embedded sources: MM1, VLA 2, and VLA 3. There is a redshifted H2 outflow at a low velocity, V LSR <+50 km s‑1, with respect to the systemic velocity of V LSR = ‑11.5 km s‑1, that coincides with the H2O masers seen in earlier radio observations 2″ southwest of VLA 2. We found that the previously detected [Fe II] jet with | {V}LSR}| > 100 km s‑1 driven by VLA 3B is also detected in H2 emission and confirm that this jet has a position angle of about 240°. Spectra of the redshifted knots at 14″–65″ northeast of LkHα 234 are presented for the first time. These spectra also provide clues to the existence of multiple outflows. We detected high-velocity (50–120 km s‑1) H2 gas in the multiple outflows around LkHα 234. Since these gases move at speeds well over the dissociation velocity (>40 km s‑1), the emission must originate from the jet itself rather than H2 gas in the ambient medium. Also, position–velocity and excitation diagrams indicate that emission from knot C in HH 167 comes from two different phenomena, shocks and photodissociation.

  4. Fine structure in plasma waves and radiation near the plasma frequency in Earth's foreshock

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1994-01-01

    Novel observations are presented of intrunsic fine structure in the frequency spectrum of electomagnetic (EM) radiation and plasma waves near the electron plasma frequency f(sub p) during a period of unusually high interplanetary magnetic field strength. Measured using the wideband receiver on the International Sun-Earth Explorer (ISEE) 1 spacecraft, fine-structured emissions are observed both in the solar wind and the foreshock, The fine structure is shown to correspond to emissions spaced above f(sub p) near half harmonies of the electon cyclotron frequency f(sub ce), i.e., near f(sub p) + nf(sub ce)/2. These appear to be the first space physics observations of emissions spaced by f(sub ce)/2. Indirect but strong arguments are used to discriminate between EM and electrostatic (ES) signals, to identify whether ISEE 1 is in the solar wind or the foreshock, and to determine the relative frequencies of the emissions and the local f(sub p). The data are consistent with generation of the ES and EM emissions in the foreshock, with subsequent propagation of the EM emissions into the solar wind. It remains possible that some emissions currently identified as ES have significant EM character. The ES and EM emisions often merge into one another with minimal changes in frequency, arguing that their source regions and generation mechanisms are related and imposing significant constraints on theories. The f(sub ce)/2 ES and EM fine structures observed may be intrinsic to the emission mechanisms or to superposition of two series of signals with f(sub ce) spacing that differ in starting frequency by f(sub ce)/2. Present theories for nonlinear wave coupling processes, cyclotron maser emission, and other linear instability processes are all unable to explain multiple EM and/or ES components spaced by approximately f(sub ce)/2 above f(sub p) for f(sub p)/f(sub ce) much greater than 1 and typical for shock beams parameters. Suitable avenues for further theoretical research are identified. Empirically, the observed fine structures appear very similar to those in split bnad and multiple-lane type II solar radio bursts; interpretation of both these type II fine structures in terms of f(sub ce)/2 splitting is suggested, thereby supporting and generalizing a suggestion by Wild (1950). A possible application to continuum radiation is mentioned. The ubiquity of these fine structures in the Earth's f(sub p) radiation and foreshock waves remains unknown. Only the ISEE 1 wideband receiver has sufficient frequency resolution (approximately less than or equal to 100 Hz) to perform a dedicated search. Further study of the ubiquity of these fine structures, of how reliably the splitting corresponds to f(sub ce)/2, and of the other interpretations above is necessary.

  5. The nuclear region of low luminosity flat radio spectrum sources. II. Emission-line spectra

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. C.; Serote Roos, M.

    2004-01-01

    We report on the spectroscopic study of 19 low luminosity Flat Radio Spectrum (LL FRS) sources selected from Marchã's et al. (\\cite{March96}) 200 mJy sample. In the optical, these objects are mainly dominated by the host galaxy starlight. After correcting the data for this effect, we obtain a new set of spectra clearly displaying weak emission lines; such features carry valuable information concerning the excitation mechanisms at work in the nuclear regions of LL FRS sources. We have used a special routine to model the spectra and assess the intensities and velocities of the emission lines; we have analyzed the results in terms of diagnostic diagrams. Our analysis shows that 79% of the studied objects harbour a Low Ionization Nuclear Emission-line Region (or LINER) whose contribution was swamped by the host galaxy starlight. The remaining objects display a higher ionization spectrum, more typical of Seyferts; due to the poor quality of the spectra, it was not possible to identify any possible large Balmer components. The fact that we observe a LINER-type spectrum in LL FRS sources supports the idea that some of these objects could be undergoing an ADAF phase; in addition, such a low ionization emission-line spectrum is in agreement with the black hole mass values and sub-Eddington accretion rates published for some FRS sources. Based on observations collected at the Multiple Mirror Telescope on Mt. Hopkins. Full Fig. 1 is only available in electronic form at http://www.edpsciences.org

  6. Diffuse Ionized Gas in the Milky Way Disk

    NASA Astrophysics Data System (ADS)

    Luisi, Matteo; Anderson, L. D.; Balser, Dana S.; Wenger, Trey V.; Bania, T. M.

    2017-11-01

    We analyze the diffuse ionized gas (DIG) in the first Galactic quadrant from {\\ell }=18^\\circ to 40° using radio recombination line (RRL) data from the Green Bank Telescope. These data allow us to distinguish DIG emission from H II region emission and thus study the diffuse gas essentially unaffected by confusion from discrete sources. We find that the DIG has two dominant velocity components, one centered around 100 {km} {{{s}}}-1 associated with the luminous H II region W43, and the other centered around 45 {km} {{{s}}}-1 not associated with any large H II region. Our analysis suggests that the two velocity components near W43 may be caused by noncircular streaming motions originating near the end of the Galactic bar. At lower Galactic longitudes, the two velocities may instead arise from gas at two distinct distances from the Sun, with the most likely distances being ˜6 kpc for the 100 {km} {{{s}}}-1 component and ˜12 kpc for the 45 {km} {{{s}}}-1 component. We show that the intensity of diffuse Spitzer GLIMPSE 8.0 μm emission caused by excitation of polyaromatic hydrocarbons (PAHs) is correlated with both the locations of discrete H II regions and the intensity of the RRL emission from the DIG. This implies that the soft ultraviolet photons responsible for creating the infrared emission have a similar origin as the harder ultraviolet photons required for the RRL emission. The 8.0 μm emission increases with RRL intensity but flattens out for directions with the most intense RRL emission, suggesting that PAHs are partially destroyed by the energetic radiation field at these locations.

  7. Ammonia emissions from dairy production in Wisconsin.

    PubMed

    Harper, L A; Flesch, T K; Powell, J M; Coblentz, W K; Jokela, W E; Martin, N P

    2009-05-01

    Ammonia gas is the only significant basic gas that neutralizes atmospheric acid gases produced from combustion of fossil fuels. This reaction produces an aerosol that is a component of atmospheric haze, is implicated in nitrogen (N) deposition, and may be a potential human health hazard. Because of the potential impact of NH3 emissions, environmentally and economically, the objective of this study was to obtain representative and accurate NH3 emissions data from large dairy farms (>800 cows) in Wisconsin. Ammonia concentrations and climatic measurements were made on 3 dairy farms during winter, summer, and autumn to calculate emissions using an inverse-dispersion analysis technique. These study farms were confinement systems utilizing freestall housing with nearby sand separators and lagoons for waste management. Emissions were calculated from the whole farm including the barns and any waste management components (lagoons and sand separators), and from these components alone when possible. During winter, the lagoons' NH3 emissions were very low and not measurable. During autumn and summer, whole-farm emissions were significantly larger than during winter, with about two-thirds of the total emissions originating from the waste management systems. The mean whole-farm NH3 emissions in winter, autumn, and summer were 1.5, 7.5, and 13.7% of feed N inputs emitted as NH3-N, respectively. Average annual emission comparisons on a unit basis between the 3 farms were similar at 7.0, 7.5, and 8.4% of input feed N emitted as NH3-N, with an annual average for all 3 farms of 7.6 +/- 1.5%. These winter, summer, autumn, and average annual NH3 emissions are considerably smaller than currently used estimates for dairy farms, and smaller than emissions from other types of animal-feeding operations.

  8. Emission Rates of Volatile Organic Compounds Released from Newly Produced Household Furniture Products Using a Large-Scale Chamber Testing Method

    PubMed Central

    Ho, Duy Xuan; Kim, Ki-Hyun; Ryeul Sohn, Jong; Hee Oh, Youn; Ahn, Ji-Won

    2011-01-01

    The emission rates of volatile organic compounds (VOCs) were measured to investigate the emission characteristics of five types of common furniture products using a 5 m3 size chamber at 25°C and 50% humidity. The results indicated that toluene and α-pinene are the most dominant components. The emission rates of individual components decreased constantly through time, approaching the equilibrium emission level. The relative ordering of their emission rates, if assessed in terms of total VOC (TVOC), can be arranged as follows: dining table > sofa > desk chair > bedside table > cabinet. If the emission rates of VOCs are examined between different chemical groups, they can also be arranged in the following order: aromatic (AR) > terpenes (TER) > carbonyl (CBN) > others > paraffin (PR) > olefin (HOL) > halogenated paraffin (HPR). In addition, if emission strengths are compared between coated and uncoated furniture, there is no significant difference in terms of emission magnitude. Our results indicate that the emission characteristics of VOC are greatly distinguished between different furniture products in terms of relative dominance between different chemicals. PMID:22125421

  9. A-TEEMTM, a new molecular fingerprinting technique: simultaneous absorbance-transmission and fluorescence excitation-emission matrix method

    NASA Astrophysics Data System (ADS)

    Quatela, Alessia; Gilmore, Adam M.; Steege Gall, Karen E.; Sandros, Marinella; Csatorday, Karoly; Siemiarczuk, Alex; (Ben Yang, Boqian; Camenen, Loïc

    2018-04-01

    We investigate the new simultaneous absorbance-transmission and fluorescence excitation-emission matrix method for rapid and effective characterization of the varying components from a mixture. The absorbance-transmission and fluorescence excitation-emission matrix method uniquely facilitates correction of fluorescence inner-filter effects to yield quantitative fluorescence spectral information that is largely independent of component concentration. This is significant because it allows one to effectively monitor quantitative component changes using multivariate methods and to generate and evaluate spectral libraries. We present the use of this novel instrument in different fields: i.e. tracking changes in complex mixtures including natural water, wine as well as monitoring stability and aggregation of hormones for biotherapeutics.

  10. Relation between metric and decametric noise storm sources and microwave S-component emissions

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1974-01-01

    Various activities are reported by taking into account the properties of the active region and its relationship to low frequency burst emissions observed by the IMP-6 satellite. The relation of metric noise continuum storms (200 MHz) with the S-component of microwave emissions (2800 MHz) are examined. Taking the results analyzed, a model on the growth of radio noise continuum sources in metric and decametric frequencies and its relation to microwave and other solar active phenomena are considered.

  11. Considerations in projecting energy-related emissions multiple decades into the future

    EPA Science Inventory

    Use of fossil fuels for energy is the primary source of anthropogenic emissions of many air pollutants. Thus, the evolution of the energy system into the future can influence future emissions, driving those emissions up or down as a function of shifts in energy demand and fuel us...

  12. Manganese-Doped One-Dimensional Organic Lead Bromide Perovskites with Bright White Emissions.

    PubMed

    Zhou, Chenkun; Tian, Yu; Khabou, Oussama; Worku, Michael; Zhou, Yan; Hurley, Joseph; Lin, Haoran; Ma, Biwu

    2017-11-22

    Single-component white-emitting phosphors are highly promising to simplify the fabrication of optically pumped white light-emitting diodes. To achieve white emission, precise control of the excited state dynamics is required for a single-component system to generate emissions with different energies in the steady state. Here, we report a new class of white phosphors based on manganese (Mn)-doped one-dimensional (1D) organic lead bromide perovskites. The bright white emission is the combination of broadband blue emission from the self-trapped excited states of the 1D perovskites and red emission from the doped Mn 2+ ions. Because of the indirect nature of the self-trapped excited states in 1D perovskites, there is no energy transfer from these states to the Mn 2+ ions, resulting in an efficient dual emission. As compared to the pristine 1D perovskites with bluish-white emission, these Mn-doped 1D perovskites exhibit much higher color rendering index of up to 87 and photoluminescence quantum efficiency of up to 28%.

  13. Solar radio continuum storms

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Radio noise continuum emission observed in metric and decametric wave frequencies is discussed. The radio noise is associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. It is shown that the S-component emission in microwave frequencies generally occurs several days before the emission of the noise continuum storms of lower frequencies. It is likely that energetic electrons, 10 to 100 Kev, accelerated in association with the variation of sunspot magnetic fields, are the sources of the radio emissions. A model is considered to explain the relation of burst storms on radio noise. An analysis of the role of energetic electrons on the emissions of both noise continuum and type III burst storms is presented. It is shown that instabilities associated with the electrons and their relation to their own stabilizing effects are important in interpreting both of these storms.

  14. HEMCO v1.0: A Versatile, ESMF-Compliant Component for Calculating Emissions in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Keller, C. A.; Long, M. S.; Yantosca, R. M.; Da Silva, A. M.; Pawson, S.; Jacob, D. J.

    2014-01-01

    We describe the Harvard-NASA Emission Component version 1.0 (HEMCO), a stand-alone software component for computing emissions in global atmospheric models. HEMCO determines emissions from different sources, regions, and species on a user-defined grid and can combine, overlay, and update a set of data inventories and scale factors, as specified by the user through the HEMCO configuration file. New emission inventories at any spatial and temporal resolution are readily added to HEMCO and can be accessed by the user without any preprocessing of the data files or modification of the source code. Emissions that depend on dynamic source types and local environmental variables such as wind speed or surface temperature are calculated in separate HEMCO extensions. HEMCO is fully compliant with the Earth System Modeling Framework (ESMF) environment. It is highly portable and can be deployed in a new model environment with only few adjustments at the top-level interface. So far, we have implemented HEMCO in the NASA Goddard Earth Observing System (GEOS-5) Earth system model (ESM) and in the GEOS-Chem chemical transport model (CTM). By providing a widely applicable framework for specifying constituent emissions, HEMCO is designed to ease sensitivity studies and model comparisons, as well as inverse modeling in which emissions are adjusted iteratively. The HEMCO code, extensions, and the full set of emissions data files used in GEOS-Chem are available at http: //wiki.geos-chem.org/HEMCO.

  15. Tuning Fluorescence Direction with Plasmonic Metal–Dielectric– Metal Substrates

    PubMed Central

    Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Nowaczyk, Kazimierz; Ray, Krishanu; Lakowicz, Joseph R.

    2013-01-01

    Controlling the emission properties of fluorophores is essential for improving the performance of fluorescence-based techniques in modern biochemical research, medical diagnosis, and sensing. Fluorescence emission is isotropic in nature, which makes it difficult to capture more than a small fraction of the total emission. Metal– dielectric–metal (MDM) substrates, discussed in this Letter, convert isotropic fluorescence into beaming emission normal to the substrate. This improves fluorescence collection efficiency and also opens up new avenues for a wide range of fluorescence-based applications. We suggest that MDM substrates can be readily adapted for multiple uses, such as in microarray formats, for directional fluorescence studies of multiple probes or for molecule-specific sensing with a high degree of spatial control over the fluorescence emission. SECTION: Physical Processes in Nanomaterials and Nanostructures PMID:24013521

  16. An ASCA observation of the Castor system

    NASA Technical Reports Server (NTRS)

    Gotthelf, Eric V.; Jalota, Lalit; Mukai, Koji; White, Nicholas E.

    1994-01-01

    We report on a day-long ASCA broadband (1-10 keV) spectro-imaging observation of the X-ray emission from the Castor multibinary system. Significant flares were detected from both the flare star system YY Gem (Castor C) and from Castor AB located 73 sec away. Using an optimal viewing geometry and image restoration techniques, we are able to spatially resolve the emission from the two X-ray components. Broadband flare activity from Castor AB is confirmed, and quiescent flux is detected. The quiescent spectrum of YY Gem is a complex blend of emission lines across the ASCA bandpass which requires multitemperature components or two-temperature variable metal-poor abundances (approximately 5-10 below solar) to obtain a satisfactory fit to both the Mewe-Kaastra and Raymond-Smith models. The flare spectrum is consistent with an increase in the emissivity of the hotter component.

  17. A likely planet-induced gap in the disc around T Cha

    NASA Astrophysics Data System (ADS)

    Hendler, Nathanial P.; Pinilla, Paola; Pascucci, Ilaria; Pohl, Adriana; Mulders, Gijs; Henning, Thomas; Dong, Ruobing; Clarke, Cathie; Owen, James; Hollenbach, David

    2018-03-01

    We present high-resolution (0.11 × 0.06 arcsec2) 3 mm ALMA observations of the highly inclined transition disc around the star T Cha. Our continuum image reveals multiple dust structures: an inner disc, a spatially resolved dust gap, and an outer ring. When fitting sky-brightness models to the real component of the 3 mm visibilities, we infer that the inner emission is compact (≤1 au in radius), the gap width is between 18 and 28 au, and the emission from the outer ring peaks at ˜36 au. We compare our ALMA image with previously published 1.6 μm VLT/SPHERE imagery. This comparison reveals that the location of the outer ring is wavelength dependent. More specifically, the peak emission of the 3 mm ring is at a larger radial distance than that of the 1.6 μm ring, suggesting that millimeter-sized grains in the outer disc are located farther away from the central star than micron-sized grains. We discuss different scenarios to explain our findings, including dead zones, star-driven photoevaporation, and planet-disc interactions. We find that the most likely origin of the dust gap is from an embedded planet, and estimate - for a single planet scenario - that T Cha's gap is carved by a 1.2MJup planet.

  18. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.

    PubMed

    Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt

    2014-01-01

    The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways.

  19. No Expanding Fireball: Resolving the Recurrent Nova RS Ophiuchi with Infrared Interferometry

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Barry, R. K.; Traub, W. A.; Lane, B. F.; Akeson, R. L.; Ragland, S.; Schuller, P. A.; Le Coroller, H.; Berger, J.-P.; Millan-Gabet, R.; Pedretti, E.; Schloerb, F. P.; Koresko, C.; Carleton, N. P.; Lacasse, M. G.; Kern, P.; Malbet, F.; Perraut, K.; Kuchner, M. J.; Muterspaugh, M. W.

    2006-08-01

    Following the recent outburst of the recurrent nova RS Oph on 2006 February 12, we measured its near-infrared size using the IOTA, Keck, and PTI Interferometers at multiple epochs. The characteristic size of ~3 mas hardly changed over the first 60 days of the outburst, ruling out currently popular models whereby the near-infrared emission arises from hot gas in the expanding shock. The emission was also found to be significantly asymmetric, evidenced by nonzero closure phases detected by IOTA. The physical interpretation of these data depends strongly on the adopted distance to RS Oph. Our data can be interpreted as the first direct detection of the underlying RS Oph binary, lending support to the recent ``reborn red giant'' models of Hachisu & Kato. However, this result hinges on an RS Oph distance of <~540 pc, in strong disagreement with the widely adopted distance of ~1.6 kpc. At the farther distance, our observations imply instead the existence of a nonexpanding, dense, and ionized circumbinary gaseous disk or reservoir responsible for the bulk of the near-infrared emission. Longer baseline infrared interferometry is uniquely suited to distinguish between these models and to ultimately determine the distance, binary orbit, and component masses for RS Oph, one of the closest known (candidate) Type 1a supernova progenitor systems.

  20. 40 CFR 1036.205 - What must I include in my application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gas emissions, including all auxiliary emission control devices (AECDs) and all fuel-system components you will install on any production or test engine. Identify the part number of each component you.... (e) Identify the CO2 FCLs with which you are certifying engines in the engine family; also identify...

  1. Multi-epoch VLBA Imaging of 20 New TeV Blazars: Apparent Jet Speeds

    NASA Astrophysics Data System (ADS)

    Piner, B. Glenn; Edwards, Philip G.

    2018-01-01

    We present 88 multi-epoch Very Long Baseline Array (VLBA) images (most at an observing frequency of 8 GHz) of 20 TeV blazars, all of the high-frequency-peaked BL Lac (HBL) class, that have not been previously studied at multiple epochs on the parsec scale. From these 20 sources, we analyze the apparent speeds of 43 jet components that are all detected at four or more epochs. As has been found for other TeV HBLs, the apparent speeds of these components are relatively slow. About two-thirds of the components have an apparent speed that is consistent (within 2σ) with no motion, and some of these components may be stationary patterns whose apparent speed does not relate to the underlying bulk flow speed. In addition, a superluminal tail to the apparent speed distribution of the TeV HBLs is detected for the first time, with eight components in seven sources having a 2σ lower limit on the apparent speed exceeding 1c. We combine the data from these 20 sources with an additional 18 sources from the literature to analyze the complete apparent speed distribution of all 38 TeV HBLs that have been studied with very long baseline interferometry at multiple epochs. The highest 2σ apparent speed lower limit considering all sources is 3.6c. This suggests that bulk Lorentz factors of up to about 4, but probably not much higher, exist in the parsec-scale radio-emitting regions of these sources, consistent with estimates obtained in the radio by other means such as brightness temperatures. This can be reconciled with the high Lorentz factors estimated from the high-energy data if the jet has velocity structures consisting of different emission regions with different Lorentz factors. In particular, we analyze the current apparent speed data for the TeV HBLs in the context of a model with a fast central spine and a slower outer layer.

  2. Principal Component-Based Radiative Transfer Model (PCRTM) for Hyperspectral Sensors. Part I; Theoretical Concept

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Smith, William L.; Zhou, Daniel K.; Larar, Allen

    2005-01-01

    Modern infrared satellite sensors such as Atmospheric Infrared Sounder (AIRS), Cosmic Ray Isotope Spectrometer (CrIS), Thermal Emission Spectrometer (TES), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, super fast radiative transfer models are needed. This paper presents a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the Principal Component-based Radiative Transfer Model (PCRTM) predicts the Principal Component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from properties of PC scores and instrument line shape functions. The PCRTM is very accurate and flexible. Due to its high speed and compressed spectral information format, it has great potential for super fast one-dimensional physical retrievals and for Numerical Weather Prediction (NWP) large volume radiance data assimilation applications. The model has been successfully developed for the National Polar-orbiting Operational Environmental Satellite System Airborne Sounder Testbed - Interferometer (NAST-I) and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.

  3. Modelling the Effect of Diet Composition on Enteric Methane Emissions across Sheep, Beef Cattle and Dairy Cows

    PubMed Central

    Bell, Matt; Eckard, Richard; Moate, Peter J.; Yan, Tianhai

    2016-01-01

    Simple Summary Enteric methane emissions produced by ruminant livestock has gained global interest due to methane being a potent greenhouse gas and ruminants being a significant source of emissions. In the absence of measurements, prediction models can facilitate the estimation of enteric methane emissions from ruminant livestock and aid investigation of mitigation options. This study developed a practical method using feed analysis information for predicting enteric methane emissions from sheep, beef cattle and dairy cows fed diets encompassing a wide range of nutrient concentrations. Abstract Enteric methane (CH4) is a by-product from fermentation of feed consumed by ruminants, which represents a nutritional loss and is also considered a contributor to climate change. The aim of this research was to use individual animal data from 17 published experiments that included sheep (n = 288), beef cattle (n = 71) and dairy cows (n = 284) to develop an empirical model to describe enteric CH4 emissions from both cattle and sheep, and then evaluate the model alongside equations from the literature. Data were obtained from studies in the United Kingdom (UK) and Australia, which measured enteric CH4 emissions from individual animals in calorimeters. Animals were either fed solely forage or a mixed ration of forage with a compound feed. The feed intake of sheep was restricted to a maintenance amount of 875 g of DM per day (maintenance level), whereas beef cattle and dairy cows were fed to meet their metabolizable energy (ME) requirement (i.e., production level). A linear mixed model approach was used to develop a multiple linear regression model to predict an individual animal’s CH4 yield (g CH4/kg dry matter intake) from the composition of its diet. The diet components that had significant effects on CH4 yield were digestible organic matter (DOMD), ether extract (EE) (both g/kg DM) and feeding level above maintenance intake: CH4 (g/kg DM intake) = 0.046 (±0.001) × DOMD − 0.113 (±0.023) × EE − 2.47 (±0.29) × (feeding level − 1), with concordance correlation coefficient (CCC) = 0.655 and RMSPE = 14.0%. The predictive ability of the model developed was as reliable as other models assessed from the literature. These components can be used to predict effects of diet composition on enteric CH4 yield from sheep, beef and dairy cattle from feed analysis information. PMID:27618107

  4. Chemical analyses of fossil bone.

    PubMed

    Zheng, Wenxia; Schweitzer, Mary Higby

    2012-01-01

    The preservation of microstructures consistent with soft tissues, cells, and other biological components in demineralized fragments of dinosaur bone tens of millions of years old was unexpected, and counter to current hypotheses of tissue, cellular, and molecular degradation. Although the morphological similarity of these tissues to extant counterparts was unmistakable, after at least 80 million years exposed to geochemical influences, morphological similarity is insufficient to support an endogenous source. To test this hypothesis, and to characterize these materials at a molecular level, we applied multiple independent chemical, molecular, and microscopic analyses to identify the presence of original components produced by the extinct organisms. Microscopic techniques included field emission scanning electron microscopy, analytical transmission electron microscopy, transmitted light microscopy (LM), and fluorescence microscopy (FM). The chemical and molecular techniques include enzyme-linked immunosorbant assay, sodium dodecyl sulfate polyacrylamide gel electrophoresis, western blot (immunoblot), and attenuated total reflectance infrared spectroscopy. In situ analyses performed directly on tissues included immunohistochemistry and time-of-flight secondary ion mass spectrometry. The details of sample preparation and methodology are described in detail herein.

  5. Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M., E-mail: D.J.Pascoe@warwick.ac.uk

    2017-10-01

    Quasi-periodic rapidly propagating wave trains are frequently observed in extreme ultraviolet observations of the solar corona, or are inferred by the quasi-periodic modulation of radio emission. The dispersive nature of fast magnetohydrodynamic waves in coronal structures provides a robust mechanism to explain the detected quasi-periodic patterns. We perform 2D numerical simulations of impulsively generated wave trains in coronal plasma slabs and investigate how the behavior of the trapped and leaky components depend on the properties of the initial perturbation. For large amplitude compressive perturbations, the geometrical dispersion associated with the waveguide suppresses the nonlinear steepening for the trapped wave train.more » The wave train formed by the leaky components does not experience dispersion once it leaves the waveguide and so can steepen and form shocks. The mechanism we consider can lead to the formation of multiple shock fronts by a single, large amplitude, impulsive event and so can account for quasi-periodic features observed in radio spectra.« less

  6. The Multimedia Environmental Pollutant Assessment System (MEPAS){reg_sign}: Atmospheric pathway formulations. Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Droppo, J.G.; Buck, J.W.

    1996-03-01

    The Multimedia Environmental Pollutant Assessment System (MEPAS) is an integrated software implementation of physics-based fate and transport models for health and environmental risk assessments of both radioactive and hazardous pollutants. This atmospheric component report is one of a series of formulation reports that document the MEPAS mathematical models. MEPAS is a multimedia model; pollutant transport is modeled within, through, and between multiple media (air, soil, groundwater, and surface water). The estimated concentrations in the various media are used to compute exposures and impacts to the environment, to maximum individuals, and to populations. The MEPAS atmospheric component for the air mediamore » documented in this report includes models for emission from a source to the air, initial plume rise and dispersion, airborne pollutant transport and dispersion, and deposition to soils and crops. The material in this report is documentation for MEPAS Versions 3.0 and 3.1 and the MEPAS version used in the Remedial Action Assessment System (RAAS) Version 1.0.« less

  7. Effects of alcohols on fluorescence intensity and color of a discharged-obelin-based biomarker.

    PubMed

    Alieva, Roza R; Belogurova, Nadezhda V; Petrova, Alena S; Kudryasheva, Nadezhda S

    2014-05-01

    Photoproteins are responsible for bioluminescence of marine coelenterates; bioluminescent and fluorescent biomarkers based on photoproteins are useful for monitoring of calcium-dependent processes in medical investigations. Here, we present the analysis of intensity and color of light-induced fluorescence of Ca(2+)-discharged photoprotein obelin in the presence of alcohols (ethanol and glycerol). Complex obelin spectra obtained at different concentrations of the alcohols at 350- and 280-nm excitation (corresponding to polypeptide-bound coelenteramide and tryptophan absorption regions) were deconvoluted into Gaussian components; fluorescent intensity and contributions of the components to experimental spectra were analyzed. Five Gaussian components were found in different spectral regions-ultraviolet (tryptophan emission), blue-green (coelenteramide emission), and red (hypothetical indole-coelenteramide exciplex emission). Inhibition coefficients and contributions of the components to experimental fluorescent spectra showed that presence of alcohols increased contributions of ultraviolet, violet, and red components, but decreased contributions of components in the blue-green region. The effects were related to (1) changes of proton transfer efficiency in fluorescent S*1 state of coelenteramide in the obelin active center and (2) formation of indole-coelenteramide exciplex at 280-nm photoexcitation. The data show that variation of fluorescence color and intensity in the presence of alcohols and dependence of emission spectra on excitation wavelength should be considered while applying the discharged obelin as a fluorescence biomarker.

  8. Resolved Structure of the Arp 220 Nuclei at λ ≈ 3 mm

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kazushi; Aalto, Susanne; Barcos-Muñoz, Loreto; Costagliola, Francesco; Evans, Aaron S.; Harada, Nanase; Martín, Sergio; Wiedner, Martina; Wilner, David

    2017-11-01

    We analyze the 3 mm emission of the ultraluminous infrared galaxy Arp 220 for the spatially resolved structure and the spectral properties of the merger nuclei. ALMA archival data at ˜0.″05 resolution are used for extensive visibility fitting and deep imaging of the continuum emission. The data are fitted well by two concentric components for each nucleus, such as two Gaussians or one Gaussian plus one exponential disk. The larger components in the individual nuclei are similar in shape and extent, ˜100-150 pc, to the centimeter wave emission due to supernovae. They are therefore identified with the known starburst nuclear disks. The smaller components in both nuclei have about a few 10 pc sizes and peak brightness temperatures ({T}{{b}}) more than twice higher than those in previous single-Gaussian fitting. They correspond to the dust emission that we find centrally concentrated in both nuclei by subtracting the plasma emission measured at 33 GHz. The dust emission in the western nucleus is found to have a peak {T}{{b}}≈ 530 K and an FWHM of about 20 pc. This component is estimated to have a bolometric luminosity on the order of {10}12.5 {L}⊙ and a 20 pc scale luminosity surface density {10}15.5 {{L}}⊙ {{{k}}{{p}}{{c}}}-2. A luminous active galactic nucleus is a plausible energy source for these high values while other explanations remain to be explored. Our continuum image also reveals a third structural component of the western nucleus—a pair of faint spurs perpendicular to the disk major axis. We attribute it to a bipolar outflow from the highly inclined (I≈ 60^\\circ ) western nuclear disk.

  9. A molecular gas-rich GRB host galaxy at the peak of cosmic star formation

    NASA Astrophysics Data System (ADS)

    Arabsalmani, M.; Le Floc'h, E.; Dannerbauer, H.; Feruglio, C.; Daddi, E.; Ciesla, L.; Charmandaris, V.; Japelj, J.; Vergani, S. D.; Duc, P.-A.; Basa, S.; Bournaud, F.; Elbaz, D.

    2018-05-01

    We report the detection of the CO(3-2) emission line from the host galaxy of gamma-ray burst (GRB) 080207 at z = 2.086. This is the first detection of molecular gas in emission from a GRB host galaxy beyond redshift 1. We find this galaxy to be rich in molecular gas with a mass of 1.1 × 10^{11} M_{{\\odot }} assuming αCO = 4.36 M_{{\\odot }} (K km s^{-1} pc^2)^{-1}. The molecular gas mass fraction of the galaxy is ˜0.5, typical of star-forming galaxies (SFGs) with similar stellar masses and redshifts. With an SFR_{FIR} of 260 M_{{\\odot }} yr^{-1}, we measure a molecular gas depletion time-scale of 0.43 Gyr, near the peak of the depletion time-scale distribution of SFGs at similar redshifts. Our findings are therefore in contradiction with the proposed molecular gas deficiency in GRB host galaxies. We argue that the reported molecular gas deficiency for GRB hosts could be the artefact of improper comparisons or neglecting the effect of the typical low metallicities of GRB hosts on the CO-to-molecular-gas conversion factor. We also compare the kinematics of the CO(3-2) emission line to that of the H α emission line from the host galaxy. We find the H α emission to have contributions from two separate components, a narrow and a broad one. The narrow component matches the CO emission well in velocity space. The broad component, with a full width at half-maximum of ˜1100 km s^{-1}, is separated by +390 km s^{-1} in velocity space from the narrow component. We speculate this broad component to be associated with a powerful outflow in the host galaxy or in an interacting system.

  10. The NuSTAR View of the Non-Thermal Emission from PSR J0437-4715

    NASA Technical Reports Server (NTRS)

    Guillot, S.; Kaspi, V. M.; Archibald, R. F.; Bachetti, M.; Flynn, C.; Jankowski, F.; Bailes, M.; Boggs, S.; Christensen, F. E.; Craig, W. W.; hide

    2016-01-01

    We present a hard X-ray Nuclear Spectroscopic Telescope Array (NuSTAR) observation of PSR J0437-4715, the nearest millisecond pulsar. The known pulsations at the apparent pulse period approximately 5.76 ms are observed with a significance of 3.7sigma, at energies up to 20 keV above which the NuSTAR background dominates. We measure a photon index gamma = 1.50 +/- 0.25(90 per cent confidence) for the power-law fit to the non-thermal emission. It had been shown that spectral models with two or three thermal components fit the XMM-Newton spectrum of PSR J0437-4715, depending on the slope of the power-law component, and the amount of absorption of soft X-rays. The new constraint on the high-energy emission provided by NuSTAR removes ambiguities regarding the thermal components of the emission below 3 keV. We performed a simultaneous spectral analysis of the XMM-Newton and NuSTAR data to confirm that three thermal components and a power law are required to fit the 0.3-20 keV emission of PSR J0437-4715. Adding a ROSAT-PSPC spectrum further confirmed this result and allowed us to better constrain the temperatures of the three thermal components. A phase resolved analysis of the NuSTAR data revealed no significant change in the photon index of the high-energy emission. This NuSTAR observation provides further impetus for future observations with the NICER mission (Neutron Star Interior Composition Explorer) whose sensitivity will provide much stricter constraints on the equation of state of nuclear matter by combining model fits to the pulsars phase-folded light curve with the pulsars well-defined mass and distance from radio timing observations.

  11. Polarized curvature radiation in pulsar magnetosphere

    NASA Astrophysics Data System (ADS)

    Wang, P. F.; Wang, C.; Han, J. L.

    2014-07-01

    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.

  12. STUDYING THE INTERSTELLAR MEDIUM AND THE INNER REGION OF NPS/LOOP 1 WITH SHADOW OBSERVATIONS TOWARD MBM36

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ursino, E.; Galeazzi, M.; Liu, W., E-mail: galeazzi@physics.miami.edu

    2016-01-01

    We analyzed data from a shadow observation of the high density molecular cloud MBM36 (l ∼ 4°, b ∼ 35°) with Suzaku. MBM36 is located in a region that emits relatively weakly in the 3/4 keV band compared to the surrounding North Polar Spur (NPS)/Loop 1 structure and the Galactic Bulge (GB). The contrast between high and low density targets in the MBM36 area allows one to separate the local and distant contributors to the soft diffuse X-ray background, providing a much better characterization of the individual components compared to single pointing observations. We identify two non-local thermal components, one at kT ≈ 0.12 keV andmore » one at kT ≈ 0.29 keV. The colder component matches well with models of emission from the higher latitude region of the GB. The emission of the warmer component is in agreement with models predicting that the NPS is due to a hypershell from the center of the Milky Way. Geometrical and pressure calculations rule out a nearby bubble as responsible for the emission associated with the NPS. Any Galactic Halo/circumgalactic halo emission, if present, is outshined by the other components. We also report an excess emission around 0.9 keV, likely due to an overabundance of Ne ix.« less

  13. Signs of magnetic acceleration and multizone emission in GRB 080825C

    DOE PAGES

    Moretti, Elena; Axelsson, Magnus

    2016-03-03

    One of the major results from the study of gamma-ray bursts with the Fermi Gamma-ray Space Telescope has been the confirmation that several emission components can be present in the energy spectrum. In this paper, we reanalyse the spectrum of GRB 080825C using data from the Fermi-Large Area Telescope (LAT) and Gamma-ray Burst Monitor instruments. Although fairly weak, it is the first gamma-ray burst detected by the Fermi-LAT. We improve on the original analysis by using the LAT Low Energy events covering the 30–100 MeV band. We find evidence of an additional component above the main emission peak (modelled usingmore » a Band function) with a significance of 3.5σ in two out of the four time bins. The component is well fitted by a Planck function, but shows unusual behaviour: the peak energy increases in the prompt emission phase, reaching energies of several MeV. This is the first time such a trend has been seen, and implies that the origin of this component is different from those previously detected. We suggest that the two spectral components likely arise in different regions of the outflow, and that strong constraints can be achieved by assuming one of them originates from the photosphere. Finally, the most promising model appears to be that the high-energy peak is the result of photospheric emission in a Poynting flux dominated outflow where the magnetization increases with time.« less

  14. CO Component Estimation Based on the Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Ichiki, Kiyotomo; Kaji, Ryohei; Yamamoto, Hiroaki; Takeuchi, Tsutomu T.; Fukui, Yasuo

    2014-01-01

    Fast Independent Component Analysis (FastICA) is a component separation algorithm based on the levels of non-Gaussianity. Here we apply FastICA to the component separation problem of the microwave background, including carbon monoxide (CO) line emissions that are found to contaminate the PLANCK High Frequency Instrument (HFI) data. Specifically, we prepare 100 GHz, 143 GHz, and 217 GHz mock microwave sky maps, which include galactic thermal dust, NANTEN CO line, and the cosmic microwave background (CMB) emissions, and then estimate the independent components based on the kurtosis. We find that FastICA can successfully estimate the CO component as the first independent component in our deflection algorithm because its distribution has the largest degree of non-Gaussianity among the components. Thus, FastICA can be a promising technique to extract CO-like components without prior assumptions about their distributions and frequency dependences.

  15. CO component estimation based on the independent component analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichiki, Kiyotomo; Kaji, Ryohei; Yamamoto, Hiroaki

    2014-01-01

    Fast Independent Component Analysis (FastICA) is a component separation algorithm based on the levels of non-Gaussianity. Here we apply FastICA to the component separation problem of the microwave background, including carbon monoxide (CO) line emissions that are found to contaminate the PLANCK High Frequency Instrument (HFI) data. Specifically, we prepare 100 GHz, 143 GHz, and 217 GHz mock microwave sky maps, which include galactic thermal dust, NANTEN CO line, and the cosmic microwave background (CMB) emissions, and then estimate the independent components based on the kurtosis. We find that FastICA can successfully estimate the CO component as the first independentmore » component in our deflection algorithm because its distribution has the largest degree of non-Gaussianity among the components. Thus, FastICA can be a promising technique to extract CO-like components without prior assumptions about their distributions and frequency dependences.« less

  16. Characterizing and locating air pollution sources in a complex industrial district using optical remote sensing technology and multivariate statistical modeling.

    PubMed

    Chang, Pao-Erh Paul; Yang, Jen-Chih Rena; Den, Walter; Wu, Chang-Fu

    2014-09-01

    Emissions of volatile organic compounds (VOCs) are most frequent environmental nuisance complaints in urban areas, especially where industrial districts are nearby. Unfortunately, identifying the responsible emission sources of VOCs is essentially a difficult task. In this study, we proposed a dynamic approach to gradually confine the location of potential VOC emission sources in an industrial complex, by combining multi-path open-path Fourier transform infrared spectrometry (OP-FTIR) measurement and the statistical method of principal component analysis (PCA). Close-cell FTIR was further used to verify the VOC emission source by measuring emitted VOCs from selected exhaust stacks at factories in the confined areas. Multiple open-path monitoring lines were deployed during a 3-month monitoring campaign in a complex industrial district. The emission patterns were identified and locations of emissions were confined by the wind data collected simultaneously. N,N-Dimethyl formamide (DMF), 2-butanone, toluene, and ethyl acetate with mean concentrations of 80.0 ± 1.8, 34.5 ± 0.8, 103.7 ± 2.8, and 26.6 ± 0.7 ppbv, respectively, were identified as the major VOC mixture at all times of the day around the receptor site. As the toxic air pollutant, the concentrations of DMF in air samples were found exceeding the ambient standard despite the path-average effect of OP-FTIR upon concentration levels. The PCA data identified three major emission sources, including PU coating, chemical packaging, and lithographic printing industries. Applying instrumental measurement and statistical modeling, this study has established a systematic approach for locating emission sources. Statistical modeling (PCA) plays an important role in reducing dimensionality of a large measured dataset and identifying underlying emission sources. Instrumental measurement, however, helps verify the outcomes of the statistical modeling. The field study has demonstrated the feasibility of using multi-path OP-FTIR measurement. The wind data incorporating with the statistical modeling (PCA) may successfully identify the major emission source in a complex industrial district.

  17. Development of the crop residue and rangeland burning in the 2014 National Emissions Inventory using information from multiple sources.

    PubMed

    Pouliot, George; Rao, Venkatesh; McCarty, Jessica L; Soja, Amber

    2017-05-01

    Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. One component of the biomass burning inventory, crop residue burning, has been poorly characterized in the National Emissions Inventory (NEI). In the 2011 NEI, wildland fires, prescribed fires, and crop residue burning collectively were the largest source of PM 2.5 . This paper summarizes our 2014 NEI method to estimate crop residue burning emissions and grass/pasture burning emissions using remote sensing data and field information and literature-based, crop-specific emission factors. We focus on both the postharvest and pre-harvest burning that takes place with bluegrass, corn, cotton, rice, soybeans, sugarcane and wheat. Estimates for 2014 indicate that over the continental United States (CONUS), crop residue burning excluding all areas identified as Pasture/Grass, Grassland Herbaceous, and Pasture/Hay occurred over approximately 1.5 million acres of land and produced 19,600 short tons of PM 2.5 . For areas identified as Pasture/Grass, Grassland Herbaceous, and Pasture/Hay, biomass burning emissions occurred over approximately 1.6 million acres of land and produced 30,000 short tons of PM 2.5 . This estimate compares with the 2011 NEI and 2008 NEI as follows: 2008: 49,650 short tons and 2011: 141,180 short tons. Note that in the previous two NEIs rangeland burning was not well defined and so the comparison is not exact. The remote sensing data also provided verification of our existing diurnal profile for crop residue burning emissions used in chemical transport modeling. In addition, the entire database used to estimate this sector of emissions is available on EPA's Clearinghouse for Inventories and Emission Factors (CHIEF, http://www3.epa.gov/ttn/chief/index.html ). Estimates of crop residue burning and rangeland burning emissions can be improved by using satellite detections. Local information is helpful in distinguishing crop residue and rangeland burning from all other types of fires.

  18. Multiple-component covalent organic frameworks

    PubMed Central

    Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin

    2016-01-01

    Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor–acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts. PMID:27460607

  19. Multiple-component covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin

    2016-07-01

    Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor-acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts.

  20. ORFEUS spectroscopy of the O BT VI lines in symbiotic stars and the Raman scattering process

    NASA Astrophysics Data System (ADS)

    Schmid, H. M.; Krautter, J.; Appenzeller, I.; Barnstedt, J.; Dumm, T.; Fromm, A.; Gölz, M.; Grewing, M.; Gringel, W.; Haas, C.; Hopfensitz, W.; Kappelmann, N.; Krämer, G.; Lindenberger, A.; Mandel, H.; Mürset, U.; Schild, H.; Schmutz, W.; Widmann, H.

    1999-08-01

    We present orfeus spectra of the O vi lambda lambda 1032,1038 emission lines in the symbiotic stars AG Dra, V1016 Cyg, RR Tel, CD-43(deg) 14304, AG Peg and Z And. The O vi emission lines can convert into broad and highly polarized emission lines at lambda 6825 and lambda 7082 in a Raman scattering process by neutral hydrogen. From a comparison of direct and Raman scattered radiation we extract new information on the scattering geometry in symbiotic systems. The nebular O vi emission lines are in all objects redshifted by about +40 km s(-1) . This can be explained as a radiative line transfer effect in a slowly expanding emission region. A comparable redshift is measured in the Raman scattered O vi lines. In AG Peg the O vi emissions show beside a narrow nebular line a broad component from a fast stellar wind outflow. Many interstellar absorption lines of molecular hydrogen are detected, particularly near the O vi lambda 1038 component. With model calculations we investigate their impact on the O vi lines. From the dereddened line fluxes of the direct and Raman scattered O vi lines we derive the scattering efficiency, which is defined as photon flux ratio N_Raman/N_O VI. The efficiencies derived for RR Tel, V1016 Cyg and Z And indicate that about 30% of the released O vi lambda 1032 photons interact with the neutral scattering region. The efficiencies for AG Dra and CD-43(deg14304) are much higher, which may suggest that the O vi nebulosity is embedded in a H(0) -region. The D-type system RR Tel shows strong line profile differences between the direct O vi emission, which is single-peaked, and the Raman scattered emission, which is double-peaked. This indicates that the neutral scattering region in RR Tel ``sees'' different O vi line profiles, implying that the O vi nebulosity is far from spherically symmetric. In a tentative model we suggest for RR Tel an O vi flow pattern where material streams from the cool giant towards the hot component, which further accelerates the gas radially. For the S-type systems AG Dra, CD-43(deg14304) and Z And the line profile differences between the direct and the Raman scattered O vi emissions are less pronounced. This may suggest that the O vi profiles depend less on the emission direction than in the D-type system RR Tel. For AG Peg we detect for the first time the Raman scattered emission at lambda 6825. The Raman line shows a narrow, nebular component as the O vi line, but no equivalent emission to the broad O vi wind component. The higher conversion efficiency for the narrow component indicates that the nebular O vi emission is significantly closer to the cool giant than the hot, mass losing component, and strongly supports previous colliding wind models for this object. Based on observations taken during the orfeus-spas i and orfeus-spas ii space shuttle missions, and ground based data collected at the ESO 2.2m and 3.6m telescopes at La Silla, Chile, and the 4.2m William Herschel Telescope at La Palma, Canary Islands. ESO observations were granted for the programs 52.7-040 and 58.D-0866.

  1. Preform spar cap for a wind turbine rotor blade

    DOEpatents

    Livingston, Jamie T [Simpsonville, SC; Driver, Howard D [Greer, SC; van Breugel, Sjef [Enschede, NL; Jenkins, Thomas B [Cantonment, FL; Bakhuis, Jan Willem [Nijverdal, NL; Billen, Andrew J [Daarlerveen, NL; Riahi, Amir [Pensacola, FL

    2011-07-12

    A spar cap for a wind turbine rotor blade. The spar cap may include multiple preform components. The multiple preform components may be planar sheets having a swept shape with a first end and a second end. The multiple preform components may be joined by mating the first end of a first preform component to the second end of a next preform component, forming the spar cap.

  2. 40 CFR 75.16 - Special provisions for monitoring emissions from common, bypass, and multiple stacks for SO2...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maintain an SO2 continuous emission monitoring system and flow monitoring system in the duct to the common... emission monitoring system and flow monitoring system in the common stack and combine emissions for the... continuous emission monitoring system and flow monitoring system in the duct to the common stack from each...

  3. Clustering the Orion B giant molecular cloud based on its molecular emission.

    PubMed

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. A clustering analysis based only on the J = 1 - 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes ( n H ~ 100 cm -3 , ~ 500 cm -3 , and > 1000 cm -3 ), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 - 0 line of HCO + and the N = 1 - 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO + and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO + intensity ratio in UV-illuminated regions. Finer distinctions in density classes ( n H ~ 7 × 10 3 cm -3 ~ 4 × 10 4 cm -3 ) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO + (1 - 0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers.

  4. Evaluation of the multi-model CORDEX-Africa hindcast using RCMES

    NASA Astrophysics Data System (ADS)

    Kim, J.; Waliser, D. E.; Lean, P.; Mattmann, C. A.; Goodale, C. E.; Hart, A.; Zimdars, P.; Hewitson, B.; Jones, C.

    2011-12-01

    Recent global climate change studies have concluded with a high confidence level that the observed increasing trend in the global-mean surface air temperatures since mid-20th century is triggered by the emission of anthropogenic greenhouse gases (GHGs). The increase in the global-mean temperature due to anthropogenic emissions is nearly monotonic and may alter the climatological norms resulting in a new climate normal. In the presence of anthropogenic climate change, assessing regional impacts of the altered climate state and developing the plans for mitigating any adverse impacts are an important concern. Assessing future climate state and its impact remains a difficult task largely because of the uncertainties in future emissions and model errors. Uncertainties in climate projections propagates into impact assessment models and result in uncertainties in the impact assessments. In order to facilitate the evaluation of model data, a fundamental step for assessing model errors, the JPL Regional Climate Model Evaluation System (RCMES: Lean et al. 2010; Hart et al. 2011) has been developed through a joint effort of the investigators from UCLA and JPL. RCMES is also a regional climate component of a larger worldwide ExArch project. We will present the evaluation of the surface temperatures and precipitation from multiple RCMs participating in the African component of the Coordinated Regional Climate Downscaling Experiment (CORDEX) that has organized a suite of regional climate projection experiments in which multiple RCMs and GCMs are incorporated. As a part of the project, CORDEX organized a 20-year regional climate hindcast study in order to quantify and understand the uncertainties originating from model errors. Investigators from JPL, UCLA, and the CORDEX-Africa team collaborate to analyze the RCM hindcast data using RCMES. The analysis is focused on measuring the closeness between individual regional climate model outputs as well as their ensembles and observed data. The model evaluation is quantified in terms of widely used metrics. Details on the conceptual outline and architecture of RCMES is presented in two companion papers "The Regional climate model Evaluation System (RCMES) based on contemporary satellite and other observations for assessing regional climate model fidelity" and "A Reusable Framework for Regional Climate Model Evaluation" in GC07 and IN30, respectively.

  5. Small-Scale Spatial Fluctuations in the Soft X-Ray Background. Degree awarded by Maryland Univ., 2000

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; White, Nicolas E. (Technical Monitor)

    2001-01-01

    In order to isolate the diffuse extragalactic component of the soft X-ray background, we have used a combination of ROSAT All-Sky Survey and IRAS 100 micron data to separate the soft X-ray background into five components. We find a Local Hot Bubble similar to that described by Snowden et al (1998). We make a first calculation of the contribution by unresolved Galactic stars to the diffuse background. We constrain the normalization of the Extragalactic Power Law (the contribution of the unresolved extragalactic point sources such as AGN, QSO'S, and normal galaxies) to 9.5 +/- 0.9 keV/(sq cm s sr keV), assuming a power-law index of 1.46. We show that the remaining emission, which is some combination of Galactic halo emission and the putative diffuse extragalactic emission, must be composed of at least two components which we have characterized by thermal spectra. The softer component has log T - 6.08 and a patchy distribution; thus it is most probably part of the Galactic halo. The harder component has log T - 6.46 and is nearly isotropic; some portion may be due to the Galactic halo and some portion may be due to the diffuse extragalactic emission. The maximum upper limit to the strength of the emission by the diffuse extragalactic component is the total of the hard component, approx. 7.4 +/- 1.0 keV/(sq cm s sr keV) in the 3/4 keV band. We have made the first direct measure of the fluctuations due to the diffuse extragalactic emission in the 3/4 keV band. Physical arguments suggest that small angular scale (approx. 10') fluctuations in the Local Hot Bubble or the Galactic halo will have very short dissipation times (about 10(exp 5) years). Therefore, the fluctuation spectrum of the soft X-ray background should measure the distribution of the diffuse extragalactic emission. Using mosaics of deep, overlapping PSPC pointings, we find an autocorrelation function value of approx. 0.0025 for 10' < theta < 20', and a value consistent with zero on larger scales. Measurement of the fluctuations with a delta I/I method produces consistent results.

  6. CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...

  7. Thermal components in the early X-ray afterglows of GRBs: likely cocoon emission and constraints on the progenitors

    NASA Astrophysics Data System (ADS)

    Valan, Vlasta; Larsson, Josefin; Ahlgren, Björn

    2018-02-01

    The early X-ray afterglows of gamma-ray bursts (GRBs) are usually well described by absorbed power laws. However, in some cases, additional thermal components have been identified. The origin of this emission is debated, with proposed explanations including supernova shock breakout, emission from a cocoon surrounding the jet, as well as emission from the jet itself. A larger sample of detections is needed in order to place constraints on these different models. Here, we present a time-resolved spectral analysis of 74 GRBs observed by Swift X-ray Telescope in a search for thermal components. We report six detections in our sample, and also confirm an additional three cases that were previously reported in the literature. The majority of these bursts have a narrow range of blackbody radii around ˜2 × 1012 cm, despite having a large range of luminosities (Lpeak ˜ 1047-1051 erg s-1). This points to an origin connected to the progenitor stars, and we suggest that emission from a cocoon breaking out from a thick wind may explain the observations. For two of the bursts in the sample, an explanation in terms of late prompt emission from the jet is instead more likely. We also find that these thermal components are preferentially detected when the X-ray luminosity is low, which suggests that they may be hidden by bright afterglows in the majority of GRBs.

  8. Phosphor-Free Apple-White LEDs with Embedded Indium-Rich Nanostructures Grown on Strain Relaxed Nano-epitaxy GaN.

    PubMed

    Soh, C B; Liu, W; Yong, A M; Chua, S J; Chow, S Y; Tripathy, S; Tan, R J N

    2010-08-01

    Phosphor-free apple-white light emitting diodes have been fabricated using a dual stacked InGaN/GaN multiple quantum wells comprising of a lower set of long wavelength emitting indium-rich nanostructures incorporated in multiple quantum wells with an upper set of cyan-green emitting multiple quantum wells. The light-emitting diodes were grown on nano-epitaxially lateral overgrown GaN template formed by regrowth of GaN over SiO(2) film patterned with an anodic aluminum oxide mask with holes of 125 nm diameter and a period of 250 nm. The growth of InGaN/GaN multiple quantum wells on these stress relaxed low defect density templates improves the internal quantum efficiency by 15% for the cyan-green multiple quantum wells. Higher emission intensity with redshift in the PL peak emission wavelength is obtained for the indium-rich nanostructures incorporated in multiple quantum wells. The quantum wells grown on the nano-epitaxially lateral overgrown GaN has a weaker piezoelectric field and hence shows a minimal peak shift with application of higher injection current. An enhancement of external quantum efficiency is achieved for the apple-white light emitting diodes grown on the nano-epitaxially lateral overgrown GaN template based on the light -output power measurement. The improvement in light extraction efficiency, η(extraction,) was found to be 34% for the cyan-green emission peak and 15% from the broad long wavelength emission with optimized lattice period.

  9. Phosphor-Free Apple-White LEDs with Embedded Indium-Rich Nanostructures Grown on Strain Relaxed Nano-epitaxy GaN

    NASA Astrophysics Data System (ADS)

    Soh, C. B.; Liu, W.; Yong, A. M.; Chua, S. J.; Chow, S. Y.; Tripathy, S.; Tan, R. J. N.

    2010-11-01

    Phosphor-free apple-white light emitting diodes have been fabricated using a dual stacked InGaN/GaN multiple quantum wells comprising of a lower set of long wavelength emitting indium-rich nanostructures incorporated in multiple quantum wells with an upper set of cyan-green emitting multiple quantum wells. The light-emitting diodes were grown on nano-epitaxially lateral overgrown GaN template formed by regrowth of GaN over SiO2 film patterned with an anodic aluminum oxide mask with holes of 125 nm diameter and a period of 250 nm. The growth of InGaN/GaN multiple quantum wells on these stress relaxed low defect density templates improves the internal quantum efficiency by 15% for the cyan-green multiple quantum wells. Higher emission intensity with redshift in the PL peak emission wavelength is obtained for the indium-rich nanostructures incorporated in multiple quantum wells. The quantum wells grown on the nano-epitaxially lateral overgrown GaN has a weaker piezoelectric field and hence shows a minimal peak shift with application of higher injection current. An enhancement of external quantum efficiency is achieved for the apple-white light emitting diodes grown on the nano-epitaxially lateral overgrown GaN template based on the light -output power measurement. The improvement in light extraction efficiency, ηextraction, was found to be 34% for the cyan-green emission peak and 15% from the broad long wavelength emission with optimized lattice period.

  10. Multicolor Super-Resolution Fluorescence Imaging via Multi-Parameter Fluorophore Detection

    PubMed Central

    Bates, Mark; Dempsey, Graham T; Chen, Kok Hao; Zhuang, Xiaowei

    2012-01-01

    Understanding the complexity of the cellular environment will benefit from the ability to unambiguously resolve multiple cellular components, simultaneously and with nanometer-scale spatial resolution. Multicolor super-resolution fluorescence microscopy techniques have been developed to achieve this goal, yet challenges remain in terms of the number of targets that can be simultaneously imaged and the crosstalk between color channels. Herein, we demonstrate multicolor stochastic optical reconstruction microscopy (STORM) based on a multi-parameter detection strategy, which uses both the fluorescence activation wavelength and the emission color to discriminate between photo-activatable fluorescent probes. First, we obtained two-color super-resolution images using the near-infrared cyanine dye Alexa 750 in conjunction with a red cyanine dye Alexa 647, and quantified color crosstalk levels and image registration accuracy. Combinatorial pairing of these two switchable dyes with fluorophores which enhance photo-activation enabled multi-parameter detection of six different probes. Using this approach, we obtained six-color super-resolution fluorescence images of a model sample. The combination of multiple fluorescence detection parameters for improved fluorophore discrimination promises to substantially enhance our ability to visualize multiple cellular targets with sub-diffraction-limit resolution. PMID:22213647

  11. A spectroscopic search for colliding stellar winds in O-type close binary systems. III - 29 UW Canis Majoris

    NASA Technical Reports Server (NTRS)

    Wiggs, Michael S.; Gies, Douglas R.

    1993-01-01

    The orbital-phase variations in the optical emission lines and UV P Cygni lines of the massive O-type binary 29 UW Canis Majoris are investigated in a search for evidence of colliding winds. High SNR spectra of the H-alpha and He I 6678-A emission lines are presented, and radial velocity curves for several features associated with the photosphere of the more luminous primary star are given. The H-alpha features consists of a P Cygni component that shares the motion of the primary, and which probably originates at the base of its wind, and a broad, stationary emission component. It is proposed that the broad emission forms in a plane midway between the stars where the winds collide. A simple geometric model is used to show that this placement of the broad component can explain the lack of orbital velocity shifts, the near-constancy of the emission strength throughout the orbit, the large velocities associated with the H-alpha wings, and the constancy of the velocity range observed.

  12. Two component X-ray emission from RS CVn binaries

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; White, N. E.; Holt, S. S.; Becker, R. H.

    1980-01-01

    A summary of results from the solid state spectrometer on the Einstein Observatory for 7 RS CVn binaries is presented. The spectra of all require two emission components, evidenced by line emission characteristic of plasma at 4 to 8 x 10 to the 6th power and bremsstrahlung characteristic of 20 to 100 x 10 to the 6th power K. The data are interpreted in terms of magnetic coronal loops similar to those seen on the Sun, although with different characteristic parameters. The emission regions could be defined by separate magnetic structures. For pressure less than approximately 10 dynes/sq cm the low temperature plasma would be confined within the stellar radii, while the high temperature plasma would, for the synchronous close binaries, fill the binary orbits. However, for loop pressures exceeding 100 dynes/sq cm, the high temperature components would also be confined to within the stellar radii, in loops covering only small fractions of the stellar surfaces. While the radio properties and the occurrence of X-ray flares suggest the larger emission regions, the observations of time variations leave the ambiguity unresolved.

  13. Variability of wildland fire emissions across the contiguous United States

    Treesearch

    YongQiang Liu

    2004-01-01

    This study analyzes spatial and temporal variability of emissions from wildland fires across the contiguous US. The emissions are estimates based on a recently constructed dataset of historical fire records collected by multiple US governlnental agencies. Both wildfire and prescribed fires have the highest emissions over the Pacific coastal states. Prescribed fire...

  14. X-Ray Emission from a Merger Remnant, NGC 7252 (the ``Atoms-for-Peace'' Galaxy)

    NASA Astrophysics Data System (ADS)

    Awaki, Hisamitsu; Matsumoto, Hironori; Tomida, Hiroshi

    2002-03-01

    We observed a nearby merger remnant NGC 7252 with the X-ray satellite ASCA and detected X-ray emission with the X-ray flux of (1.8+/-0.3)×10-13 ergs s-1 cm-2 in the 0.5-10 keV band. This corresponds to the X-ray luminosity of 8.1×1040 ergs s-1. The X-ray emission is well described with a two-component model: a soft component with kT=0.72+/-0.13 keV and a hard component with kT>5.1 keV. Although NGC 7252 is referred to as a dynamically young protoelliptical, the 0.5-4 keV luminosity of the soft component is about 2×1040 ergs s-1, which is low for an early-type galaxy. The ratio of LX/LFIR suggests that the soft component originated from the hot gas due to star formation. Its low luminosity can be explained by the gas ejection from the galaxy as galaxy winds. Our observation reveals the existence of hard X-ray emission with the 2-10 keV luminosity of 5.6×1040 ergs s-1. This may indicate the existence of nuclear activity or an intermediate-mass black hole in NGC 7252.

  15. ALMA Detection of Extended [C II] Emission in Himiko at z = 6.6

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Maiolino, R.; Smit, R.; Amorín, R.

    2018-02-01

    Himiko is one of the most luminous Lyα emitters at z = 6.595. It has three star-forming clumps detected in the rest-frame UV, with a total SFR = 20 M ⊙ yr‑1. We report the Atacama Large Millimeter/submillimeter Array (ALMA) detection of the [C II]158 μm line emission in this Galaxy with a significance of 8σ. The total [C II] luminosity (L [C II] = 1.2 × 108 L ⊙) is fully consistent with the local L [C II]–SFR relation. The ALMA high-angular resolution reveals that the [C II] emission is made of two distinct components. The brightest [C II] clump is extended over 4 kpc and is located on the peak of the Lyα nebula, which is spatially offset by 1 kpc relative to the brightest UV clump. The second [C II] component is spatially unresolved (size <2 kpc) and coincident with one of the three UV clumps. While the latter component is consistent with the local L [C II]–SFR relation, the other components are scattered above and below the local relation. We shortly discuss the possible origin of the [C II] components and their relation with the star-forming clumps traced by the UV emission.

  16. X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Reale, F.; Gburek, S.; Terzo, S.; Barbera, M.; Collura, A.; Sylwester, J.; Kowalinski, M.; Podgorski, P.; Gryciuk, M.

    2012-08-01

    Aims: The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods: We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. Results: The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistical significance of the count rates and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 × 1044 cm-3. The X-ray emission from the hot plasma dominates the solar X-ray spectrum above 4 keV. We checked that this hot component is invariably present in both the high and low emission regimes, i.e. even excluding resolvable microflares. We also present and discuss the possibility of a non-thermal origin (which would be compatible with a weak contribution from thick-target bremsstrahlung) for this hard emission component. Conclusions: Our results support the nanoflare scenario and might confirm that a minor flaring activity is ever-present in the quiescent corona, as also inferred for the coronae of other stars.

  17. FERMI Observations of GRB 090902B: A Distinct Spectral Component in the Prompt and Delayed Emission

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-11-03

    Here, we report on the observation of the bright, long gamma-ray burst (GRB), GRB 090902B, by the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on-board the Fermi observatory. This was one of the brightest GRBs to have been observed by the LAT, which detected several hundred photons during the prompt phase. With a redshift of z = 1.822, this burst is among the most luminous detected by Fermi. Time-resolved spectral analysis reveals a significant power-law component in the LAT data that is distinct from the usual Band model emission that is seen in the sub-MeV energy range.more » This power-law component appears to extrapolate from the GeV range to the lowest energies and is more intense than the Band component, both below ~50 keV and above 100 MeV. The Band component undergoes substantial spectral evolution over the entire course of the burst, while the photon index of the power-law component remains constant for most of the prompt phase, then hardens significantly toward the end. After the prompt phase, power-law emission persists in the LAT data as late as 1 ks post-trigger, with its flux declining as t –1.5. The LAT detected a photon with the highest energy so far measured from a GRB, 33.4 +2.7 –3.5 GeV. This event arrived 82 s after the GBM trigger and ~50 s after the prompt phase emission had ended in the GBM band. In conclusion, we discuss the implications of these results for models of GRB emission and for constraints on models of the extragalactic background light.« less

  18. Evidence for hot clumpy accretion flow in the transitional millisecond pulsar PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Shahbaz, T.; Dallilar, Y.; Garner, A.; Eikenberry, S.; Veledina, A.; Gandhi, P.

    2018-06-01

    We present simultaneous optical and near-infrared (IR) photometry of the millisecond pulsar PSR J1023+0038 during its low-mass X-ray binary phase. The r΄- and Ks-band light curves show rectangular, flat-bottomed dips, similar to the X-ray mode-switching (active-passive state transitions) behaviour observed previously. The cross-correlation function (CCF) of the optical and near-IR data reveals a strong, broad negative anticorrelation at negative lags, a broad positive correlation at positive lags, with a strong, positive narrow correlation superimposed. The shape of the CCF resembles the CCF of black hole X-ray binaries but the time-scales are different. The features can be explained by reprocessing and a hot accretion flow close to the neutron star's magnetospheric radius. The optical emission is dominated by the reprocessed component, whereas the near-IR emission contains the emission from plasmoids in the hot accretion flow and a reprocessed component. The rapid active-passive state transition occurs when the hot accretion flow material is channelled on to the neutron star and is expelled from its magnetosphere. During the transition the optical reprocessing component decreases resulting in the removal of a blue spectral component. The accretion of clumpy material through the magnetic barrier of the neutron star produces the observed near-IR/optical CCF and variability. The dip at negative lags corresponds to the suppression of the near-IR synchrotron component in the hot flow, whereas the broad positive correlation at positive lags is driven by the increased synchrotron emission of the outflowing plasmoids. The narrow peak in the CCF is due to the delayed reprocessed component, enhanced by the increased X-ray emission.

  19. Tunable multiple emissions in manganese-concentrated sulfide through simultaneous tailoring of Mn-site coordination and Mn-Mn pair geometry

    NASA Astrophysics Data System (ADS)

    Chen, Zitao; Song, Enhai; Ye, Shi; Zhang, Qinyuan

    2017-12-01

    In contrast to generally single-band visible emission feature from Mn2+, simultaneous visible (VIS) and near-infrared (NIR) multiple emissions are demonstrated in Mn2+ concentrated sulfide (MnS) by only involving a single crystallographic site. Upon varying the Mn2+-site coordination and/or Mn-Mn pairs geometry in different structural MnS, the multiple emissions from divalent manganese can be easily tuned from 575 to 720 nm (VIS) or from 880 to 900 or 1380 nm (NIR), respectively. The excitation spectroscopy and the luminescent decay, together with crystal structural analyses, are employed to investigate the electronic transition and the excited state dynamics of these Mn2+ concentrated systems. It is found that the VIS and NIR emissions can be ascribed to the isolated Mn2+ ion and exchange coupled Mn-Mn pair center, respectively. The effect of crystal field and bridging geometry, as well as temperature on the exchange coupled Mn2+ pairs NIR emissive center, is also investigated in detail. This work not only provides keen insights into the de-excitation pathway of Mn2+-concentrated material, but also offers the possibilities of designing a novel NIR emitting source for various photonic applications.

  20. 40 CFR Table 3 to Subpart Mmmm of... - Model Rule-Emission Limits and Standards for Existing Multiple Hearth Sewage Sludge Incineration...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Model Rule-Emission Limits and Standards for Existing Multiple Hearth Sewage Sludge Incineration Units 3 Table 3 to Subpart MMMM of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  1. 40 CFR Table 3 to Subpart Mmmm of... - Model Rule-Emission Limits and Standards for Existing Multiple Hearth Sewage Sludge Incineration...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Model Rule-Emission Limits and Standards for Existing Multiple Hearth Sewage Sludge Incineration Units 3 Table 3 to Subpart MMMM of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  2. 40 CFR 86.004-25 - Maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... either emission-related or non-emission-related and each of these can be classified as either scheduled... component whose sole or primary purpose is to reduce emissions or whose failure will significantly degrade emissions control and whose function is not integral to the design and performance of the engine.) (iv) For...

  3. 40 CFR 86.004-25 - Maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... either emission-related or non-emission-related and each of these can be classified as either scheduled... component whose sole or primary purpose is to reduce emissions or whose failure will significantly degrade emissions control and whose function is not integral to the design and performance of the engine.) (iv...

  4. Reduction of PM emissions from specific sources reflected on key components concentrations of ambient PM10

    NASA Astrophysics Data System (ADS)

    Minguillon, M. C.; Querol, X.; Monfort, E.; Alastuey, A.; Escrig, A.; Celades, I.; Miro, J. V.

    2009-04-01

    The relationship between specific particulate emission control and ambient levels of some PM10 components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits (middle product for the manufacture of ceramic glaze) are produced. The PM10 emissions from the ceramic processes were calculated over the period 2000 to 2007 taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems (mainly bag filters) were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/CE, leading to a marked decrease in PM10 emissions. On the other hand, ambient PM10 sampling was carried out from April 2002 to July 2008 at three urban sites and one suburban site of the area and a complete chemical analysis was made for about 35 % of the collected samples, by means of different techniques (ICP-AES, ICP-MS, Ion Chromatography, selective electrode and elemental analyser). The series of chemical composition of PM10 allowed us to apply a source contribution model (Principal Component Analysis), followed by a multilinear regression analysis, so that PM10 sources were identified and their contribution to bulk ambient PM10 was quantified on a daily basis, as well as the contribution to bulk ambient concentrations of the identified key components (Zn, As, Pb, Cs, Tl). The contribution of the sources identified as the manufacture and use of ceramic glaze components, including the manufacture of ceramic frits, accounted for more than 65, 75, 58, 53, and 53% of ambient Zn, As, Pb, Cs and Tl levels, respectively (with the exception of Tl contribution at one of the sites). The important emission reductions of these sources during the study period had an impact on ambient key components levels, such that there was a high correlation between PM10 emissions from these sources and ambient key components levels (R2= 0.61-0.98).

  5. On the origin of the 40-120 micron emission of galaxy disks: A comparison with H-alpha fluxes

    NASA Technical Reports Server (NTRS)

    Persson, Carol J. Lonsdale; Helou, George

    1987-01-01

    A comparison of 40 to 120 micron Infrared Astronomy Satellite (IRAS) fluxes with published H alpha and UBV photometry shows that the far infrared emission of galaxy disks consists of at least two components: a warm one associated with OB stars in HII-regions and young star-forming complexes, and a cooler one from dust in the diffuse, neutral interstellar medium, heated by the more general interstellar radiation field of the old disk population (a cirrus-like component). Most spiral galaxies are dominated by emission from the cooler component in this model. A significant fraction of the power for the cool component must originate with non-ionizing stars. For a normal spiral disk there is a substantial uncertainty in a star formation rate derived using either the H alpha or the far infrared luminosity.

  6. The Extragalactic Radio Background

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.; Levin, S. M.; Limon, M.; Lubin, P. M.; Seiffert, M.; Singal, J.; Villela, T.; Wollack, E.; Wuensche, C. A.

    2011-01-01

    The existence of an isotropic component of the high-latitude radio sky has been recognized for nearly fifty years, but has typically been assumed to be Galactic in origin. We use recent radio observations to test whether the observed high-latitude component could originate within either an extended Galactic halo or a more local "bubble" structure. The lack of significant polarization from the isotropic component, combined with the lack of significant correlation with the Galactic far-infrared emission, rule out an origin within the Galaxy. We conclude that an extragalactic origin is the only viable alternative for the bulk of the isotropic high-latitude emission. The extragalactic component is 2-3 times brighter than local (Galactic) emission towards the Galactic poles and is consistent with a power law in frequency with amplitude T(sub r) = 24.1 plus or minus 2.1 K and spectral index beta = -2.599 plus or minus 0.036 evaluated at reference frequency 310 MHz.

  7. CGRO/BATSE Data Support the New Paradigm For GRB Prompt Emission and the New L-i(nTh)-E-peak,i(nTh,rest) Relation

    NASA Technical Reports Server (NTRS)

    Guiriec, S.; Gonzalez, M.M.; Sacahui, J.R.; Kouveliotou, C.; Gehrels, N.; McEnery, J.

    2016-01-01

    The paradigm for gamma-ray burst (GRB) prompt emission is changing. Since early in the Compton Gamma RayObservatory (CGRO) era, the empirical Band function has been considered a good description of the keV-MeV-gamma-ray prompt emission spectra despite the fact that its shape was very often inconsistent with the theoretical predictions, especially those expected in pure synchrotron emission scenarios. We have recently established a new observational model analyzing data of the NASA Fermi Gamma-ray Space Telescope. In this model, GRB prompt emission would be a combination of three main emission components: (i) a thermal-like component that we have interpreted so far as emission from the jet photosphere, (ii) a non-thermal component that we have interpreted so far as either synchrotron radiation from the propagating and accelerated charged particles within the jet or reprocessed jet photospheric emission, and (iii) an additional non-thermal (cutoff) power law (PL) extending from low to high energies in gamma-rays and most likely of inverse Compton origin. In this article we reanalyze some of the bright GRBs, namely GRBs 941017, 970111, and 990123, observed with the Burst And Transient Source Experiment (BATSE) on board CGRO with the new model. We conclude that BATSE data for these three GRBs are fully consistent with the recent results obtained with Fermi: some bright BATSE GRBs exhibit three separate components during the prompt phase with similar spectral parameters as those reported from Fermi data. In addition, the analysis of the BATSE GRBs with the new prompt emission model results in a relation between the time-resolved energy flux of the non-thermal component, F(in)(Th), and its corresponding nuFnu spectral peak energy,Epeak,inTh (i.e., FinThEpeak,inTh ), which has a similar index when fitted to a PL as the one initially derived from Fermi data. For GRBs with known redshifts (z) this results in a possible universal relation between the luminosity of the non-thermal component, LinTh, and its corresponding nuFnu spectral peak energy in the rest frame, Epeak,iNT,rest (i.e.,LinThEpeak,iNT,rest). We estimated the redshifts of GRBs 941017 and 970111 using GRB 990123 with z = 1.61as a reference. The estimated redshift for GRB 941017 is typical for long GRBs and the estimated redshift for GRB970111 is right in the range of the expected values for this burst.

  8. Detection of the thermal component in GRB 160107A

    NASA Astrophysics Data System (ADS)

    Kawakubo, Yuta; Sakamoto, Takanori; Nakahira, Satoshi; Yamaoka, Kazutaka; Serino, Motoko; saoka, Yoichi; Cherry, Michael L.; Matsukawa, Shohei; Mori, Masaki; Nakagawa, Yujin; Ozawa, Shunsuke; Penacchioni, Ana V.; Ricciarini, Sergio B.; Tezuka, Akira; Torii, Shoji; Yamada, Yusuke; Yoshida, Atsumasa

    2018-01-01

    We present the detection of a blackbody component in gamma-ray burst GRB 160107A emission by using the combined spectral data of the CALET Gamma-ray Burst Monitor (CGBM) and the MAXI Gas Slit Camera (GSC). MAXI/GSC detected the emission ˜45 s prior to the main burst episode observed by the CGBM. The MAXI/GSC and the CGBM spectrum of this prior emission period is fitted well by a blackbody with temperature 1.0^{+0.3}_{-0.2} keV plus a power law with a photon index of -1.6 ± 0.3. We discuss the radius of the photospheric emission and the main burst emission based on the observational properties. We stress the importance of coordinated observations via various instruments collecting high-quality data over a broad energy coverage in order to understand the GRB prompt emission mechanism.

  9. The Compact Radio Sources in the Nucleus of NGC 1068

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Colbert, E. J. M.; Wilson, A. S.; Ulvestad, J. S.

    1998-09-01

    We report VLBA images of the nucleus of the Seyfert galaxy NGC 1068 at 1.7, 5, and 15 GHz, with resolutions between 3 and 10 mas (0.2-0.7 pc) and a sensitivity of ~106 K at all three frequencies. Our goals are to study the morphology of the radio emission at subparsec resolution and to investigate thermal gas in the putative obscuring disk or torus and in the narrow-line region clouds through free-free absorption of the radio emission. All four known radio components in the central arcsecond (S2, S1, C, and NE, from south to north) have been detected at either 1.7 or 5 GHz, or both. No radio emission was detected at 15 GHz. Component S1 is probably associated with the active nucleus, with radio emission originating from the inner edge of the obscuring torus according to Gallimore et al. Our observed flux densities at 1.7 and 5 GHz are in agreement with their thermal bremsstrahlung emission model, and we find that the nuclear radiation may be strong enough to heat the gas in S1 to the required temperature of ~4 × 106 K. The bremsstrahlung power would be 0.15(frefl/0.01) times the bolometric luminosity of the nucleus between 1014.6 and 1018.4 Hz (where frefl is the fraction of radiation reflected into our line of sight by the electron-scattering mirror) and so the model is energetically reasonable. We also discuss two other models for S1 that also match the observed radio spectrum: electron scattering by the torus of radio emission from a compact synchrotron self-absorbed source and synchrotron radiation from the torus itself. Components NE and S2 have spectra consistent with optically thin synchrotron emission, without significant absorption. Both of these components are elongated roughly perpendicular to the larger scale radio jet, suggesting that their synchrotron emission is related to transverse shocks in the jet or to bow shocks in the external medium. Component C has a nonthermal spectrum absorbed at low frequency. This absorption is consistent with free-free absorption by plasma with conditions typical of narrow-line region clouds.

  10. 15 CFR 921.33 - Boundary changes, amendments to the management plan, and addition of multiple-site components.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... management plan, and addition of multiple-site components. 921.33 Section 921.33 Commerce and Foreign Trade... management plan, and addition of multiple-site components. (a) Changes in the boundary of a Reserve and major... management plan shall address goals and objectives for all components of the multi-site Reserve and the...

  11. DISINTEGRATING ASTEROID P/2013 R3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jewitt, David; Li, Jing; Agarwal, Jessica

    Splitting of the nuclei of comets into multiple components has been frequently observed but, to date, no main-belt asteroid has been observed to break up. Using the Hubble Space Telescope, we find that main-belt asteroid P/2013 R3 consists of 10 or more distinct components, the largest up to 200 m in radius (assumed geometric albedo of 0.05) each of which produces a coma and comet-like dust tail. A diffuse debris cloud with total mass ∼2 × 10{sup 8} kg further envelopes the entire system. The velocity dispersion among the components, ΔV ∼ 0.2-0.5 m s{sup –1}, is comparable to the gravitational escape speeds ofmore » the largest members, while their extrapolated plane-of-sky motions suggest a break up between 2013 February and September. The broadband optical colors are those of a C-type asteroid. We find no spectral evidence for gaseous emission, placing model-dependent upper limits to the water production rate ≤1 kg s{sup –1}. Breakup may be due to a rotationally induced structural failure of the precursor body.« less

  12. Imaging the molecular outflows of the prototypical ULIRG NGC 6240 with ALMA

    NASA Astrophysics Data System (ADS)

    Saito, T.; Iono, D.; Ueda, J.; Espada, D.; Sliwa, K.; Nakanishi, K.; Lu, N.; Xu, C. K.; Michiyama, T.; Kaneko, H.; Yamashita, T.; Ando, M.; Yun, M. S.; Motohara, K.; Kawabe, R.

    2018-03-01

    We present 0.97 × 0.53 arcsec2 (470 pc × 250 pc) resolution CO (J = 2-1) observations towards the nearby luminous merging galaxy NGC 6240 with the Atacama Large Millimeter/submillimeter Array. We confirmed a strong CO concentration within the central 700 pc, which peaks between the double nuclei, surrounded by extended CO features along the optical dust lanes (˜11 kpc). We found that the CO emission around the central, a few kpc, has extremely broad velocity wings with full width at zero intensity ˜ 2000 km s-1, suggesting a possible signature of molecular outflow(s). In order to extract and visualize the high-velocity components in NGC 6240, we performed a multiple Gaussian fit to the CO data cube. The distribution of the broad CO components shows four extremely large line width regions (˜1000 km s-1) located 1-2 kpc away from both nuclei. Spatial coincidence of the large line width regions with H α, near-IR H2, and X-ray suggests that the broad CO (2-1) components are associated with nuclear outflows launched from the double nuclei.

  13. Trends and Patterns in a New Time Series of Natural and Anthropogenic Methane Emissions, 1980-2000

    NASA Astrophysics Data System (ADS)

    Matthews, E.; Bruhwiler, L.; Themelis, N. J.

    2007-12-01

    We report on a new time series of methane (CH4) emissions from anthropogenic and natural sources developed for a multi-decadal methane modeling study (see following presentation by Bruhwiler et al.). The emission series extends from 1980 through the early 2000s with annual emissions for all countries has several features distinct from the source histories based on IPCC methods typically employed in modeling the global methane cycle. Fossil fuel emissions rely on 7 fuel-process emission combinations and minimize reliance on highly-uncertain emission factors. Emissions from ruminant animals employ regional profiles of bovine populations that account for the influence of variable age- and size-demographics on emissions and are ~15% lower than other estimates. Waste-related emissions are developed using an approach that avoids using of data-poor emission factors and accounts for impacts of recycling and thermal treatment of waste on diverting material from landfills and CH4 capture at landfill facilities. Emissions from irrigated rice use rice-harvest areas under 3 water-management systems and a new historical data set that analyzes multiple sources for trends in water management since 1980. A time series of emissions from natural wetlands was developed by applying a multiple-regression model derived from full process-based model of Walter with analyzed meteorology from the ERA-40 reanalysis.

  14. Anatomy of the AGN in NGC 5548. IX. Photoionized emission features in the soft X-ray spectra

    NASA Astrophysics Data System (ADS)

    Mao, Junjie; Kaastra, J. S.; Mehdipour, M.; Gu, Liyi; Costantini, E.; Kriss, G. A.; Bianchi, S.; Branduardi-Raymont, G.; Behar, E.; Di Gesu, L.; Ponti, G.; Petrucci, P.-O.; Ebrero, J.

    2018-04-01

    The X-ray narrow emission line region (NELR) of the archetypal Seyfert 1 galaxy NGC 5548 has been interpreted as a single-phase photoionized plasma that is absorbed by some of the warm absorber components. This scenario requires those overlaying warm absorber components to have larger distance (to the central engine) than the X-ray NELR, which is not fully consistent with the distance estimates found in the literature. Therefore, we reanalyze the high-resolution spectra obtained in 2013-2014 with the Reflection Grating Spectrometer (RGS) aboard XMM-Newton to provide an alternative interpretation of the X-ray narrow emission features. We find that the X-ray narrow emission features in NGC 5548 can be described by a two-phase photoionized plasma with different ionization parameters (logξ = 1.3 and 0.1) and kinematics (vout = -50 and -400 km s-1), and no further absorption by the warm absorber components. The X-ray and optical NELR might be the same multi-phase photoionized plasma. Both X-ray and optical NELR have comparable distances, asymmetric line profiles, and the underlying photoionized plasma is turbulent and compact in size. The X-ray NELR is not the counterpart of the UV/X-ray absorber outside the line of sight because their distances and kinematics are not consistent. In addition, X-ray broad emission features that we find in the spectrum can be accounted for by a third photoionized emission component. The RGS spectrum obtained in 2016 is analyzed as well, where the luminosity of most prominent emission lines (the O VII forbidden line and O VIII Lyα line) are the same (at a 1σ confidence level) as in 2013-2014.

  15. Super-emitters in natural gas infrastructure are caused by abnormal process conditions

    NASA Astrophysics Data System (ADS)

    Zavala-Araiza, Daniel; Alvarez, Ramón A.; Lyon, David R.; Allen, David T.; Marchese, Anthony J.; Zimmerle, Daniel J.; Hamburg, Steven P.

    2017-01-01

    Effectively mitigating methane emissions from the natural gas supply chain requires addressing the disproportionate influence of high-emitting sources. Here we use a Monte Carlo simulation to aggregate methane emissions from all components on natural gas production sites in the Barnett Shale production region (Texas). Our total emission estimates are two-thirds of those derived from independent site-based measurements. Although some high-emitting operations occur by design (condensate flashing and liquid unloadings), they occur more than an order of magnitude less frequently than required to explain the reported frequency at which high site-based emissions are observed. We conclude that the occurrence of abnormal process conditions (for example, malfunctions upstream of the point of emissions; equipment issues) cause additional emissions that explain the gap between component-based and site-based emissions. Such abnormal conditions can cause a substantial proportion of a site's gas production to be emitted to the atmosphere and are the defining attribute of super-emitting sites.

  16. Disentangling X-Ray Emission Processes In Vela-Like Pulsars

    NASA Technical Reports Server (NTRS)

    Gaensler, Bryan; Mushotzky, Richard (Technical Monitor)

    2002-01-01

    This grant is to support analysis of data from the X-ray Multi-mirror Mission (XMM). Specifically, we have been awarded time to observe two young neutron stars, B1823-13 and B1046-58, whose X-ray emission is expected to be a complicated combination of emission from an associated supernova remnant, from a wind-powered synchrotron nebula, from magnetospheric pulsations, and from the surface of the neutron star itself. It is only with XMM's unique combination of spectral, temporal and angular resolution that all these different processes can be separated and studied. Observations of B1823-13 have been conducted and analyzed. We interpret the data as follows: The unpulsed extended non-thermal nature of the central core argues that the extended source of emission corresponds to synchrotron emission from a nebula powered by the pulsar. The temperature of the diffuse component is too high to be interpreted as thermal emission; we rather argue that this extended component is non-thermal emission from a surrounding supernova remnant shell.

  17. Energy-dependent intensity variation of the persistent X-ray emission of magnetars observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yujin; Ebisawa, Ken; Enoto, Teruaki

    2018-03-01

    The emission mechanism of magnetars is still controversial even though various observational and theoretical studies have been made. In order to investigate mechanisms of both the persistent X-ray emission and the burst emission of the magnetars, we propose a model in which the persistent X-ray emission consists of numerous micro-bursts of various sizes. If this model is correct, root mean square (rms) intensity variations of the persistent emission would exceed the values expected from the Poisson distribution. Using Suzaku archive data of 11 magnetars (22 observations), the rms intensity variations were calculated from 0.2 keV to 70 keV. As a result, we found significant excess rms intensity variations from all 11 magnetars. We suppose that numerous micro-bursts constituting the persistent X-ray emission cause the observed variations, suggesting that the persistent X-ray emission and the burst emission have identical emission mechanisms. In addition, we found that the rms intensity variations clearly increase toward higher energy bands for four magnetars (six observations). The energy-dependent rms intensity variations imply that the soft thermal component and the hard X-ray component are emitted from different regions far apart from each other.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Michelle; Page, Lyman; Dunkley, Joanna

    In 1969 Edward Conklin measured the anisotropy in celestial emission at 8 GHz with a resolution of 16.{sup 0}2 and used the data to report a detection of the cosmic microwave background dipole. Given the paucity of 8 GHz observations over large angular scales and the clear evidence for non-power-law Galactic emission near 8 GHz, a new analysis of Conklin's data is informative. In this paper, we compare Conklin's data to that from Haslam et al. (0.4 GHz), Reich and Reich (1.4 GHz), and the Wilkinson Microwave Anisotropy Probe (WMAP; 23-94 GHz). We show that the spectral index between Conklin'smore » data and the 23 GHz WMAP data is {beta} = -1.7 {+-} 0.1, where we model the emission temperature as T{proportional_to}{nu}{sup {beta}}. Free-free emission has {beta} Almost-Equal-To - 2.15 and synchrotron emission has {beta} Almost-Equal-To - 2.7 to -3. Thermal dust emission ({beta} Almost-Equal-To 1.7) is negligible at 8 GHz. We conclude that there must be another distinct non-power-law component of diffuse foreground emission that emits near 10 GHz, consistent with other observations in this frequency range. By comparing to the full complement of data sets, we show that a model with an anomalous emission component, assumed to be spinning dust, is preferred over a model without spinning dust at 5{sigma} ({Delta}{chi}{sup 2} = 31). However, the source of the new component cannot be determined uniquely.« less

  19. Temporal-spatial variation and source apportionment of soil heavy metals in the representative river-alluviation depositional system.

    PubMed

    Wang, Cheng; Yang, Zhongfang; Zhong, Cong; Ji, Junfeng

    2016-09-01

    The contributions of major driving forces on temporal changes of heavy metals in the soil in a representative river-alluviation area at the lower of Yangtze River were successfully quantified by combining geostatistics analysis with the modified principal component scores & multiple linear regressions approach (PCS-MLR). The results showed that the temporal (2003-2014) changes of Cu, Zn, Ni and Cr presented a similar spatial distribution pattern, whereas the Cd and Hg showed the distinctive patterns. The temporal changes of soil Cu, Zn, Ni and Cr may be predominated by the emission of the shipbuilding industry, whereas the significant changes of Cd and Hg were possibly predominated by the geochemical and geographical processes, such as the erosion of the Yangtze River water and leaching because of soil acidification. The emission of metal-bearing shipbuilding industry contributed an estimated 74%-83% of the changes in concentrations of Cu, Zn, Ni and Cr, whereas the geochemical and geographical processes may contribute 58% of change of Cd in the soil and 59% of decrease of Hg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. On the origin of multiply-impulsive emission from solar flares. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karpen, J. T.

    1980-01-01

    A set of solar hard X-ray bursts observed with the hard X-ray burst spectrometer on board the OSO-5 satellite was analyzed. The multiply-impulsive two stage events were selected on the basis of both morphological characteristics and association with appropriate phenomena at other wavelengths. Coincident radio, soft X-ray, H-alpha interplanetary particle, and magnetographic data were obtained from several observatories, to aid in developing a comprehensive picture of the physical processes underlying these complex bursts. Two classes of multiply impulsive bursts were identified: events whose components spikes apparently originate in one location, and events in which groups of spikes appear to come from separate regions which flare sequentially. The origin of multiplicity in the case of a single source region remains unidentified. Purely impulsive emissions show no sign of betatron acceleration, thus eliminating this mechanisn as a candidate for inducing multiply spiked structure. The majority of the two stage bursts, however, exhibited spectral behavior consistent with the betatron model, for the first few minutes of the second stage. Betatron acceleration thus has been identified as a common second stage phenomenon.

  1. A Five- Year CMAQ Model Performance for Wildfires and ...

    EPA Pesticide Factsheets

    Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. Two components of the biomass burning inventory, wildfires and prescribed fires are routinely estimated in the national emissions inventory. However, there is a large amount of uncertainty in the development of these emission inventory sectors. We have completed a 5 year set of CMAQ model simulations (2008-2012) in which we have simulated regional air quality with and without the wildfire and prescribed fire inventory. We will examine CMAQ model performance over regions with significant PM2.5 and Ozone contribution from prescribed fires and wildfires. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  2. Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films

    PubMed Central

    Aslan, Kadir; Previte, Michael J.R.; Zhang, Yongxia; Geddes, Chris D.

    2009-01-01

    A detailed study of metal-enhanced fluorescence (MEF) from fluorophores in the blue-to- red spectral region placed in close proximity to thermally evaporated zinc nanostructured films is reported. The zinc nanostructured films were deposited onto glass microscope slides as individual particles and were 1–10 nm in height and 20–100 nm in width, as characterized by Atomic Force Microscopy. The surface plasmon resonance peak of the zinc nanostructured films was ≈ 400 nm. Finite-difference time-domain calculations for single and multiple nanostructures organized in a staggered fashion on a solid support predict, as expected, that the electric fields are concentrated both around and between the nanostructures. Additionally, Mie scattering calculations show that the absorption and scattering components of the extinction spectrum are dominant in the UV and visible spectral ranges, respectively. Enhanced fluorescence emission accompanied by no significant changes in excited state lifetimes of fluorophores with emission wavelengths in the visible blue-to-red spectral range near-to zinc nanostructured films were observed, implying that MEF from zinc nanostructured films is mostly due to an electric field enhancement effect. PMID:19946356

  3. Characteristics of interplanetary type II radio emission and the relationship to shock and plasma properties

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Stone, R. G.

    1989-01-01

    A large sample of type II events is the basis of the present study of the properties of interplanetary type II bursts' radio-emission properties. Type II spectra seem to be composed of fundamental and harmonic components of plasma emission, where the intensity of the fundamental component increases relative to the harmonic as the burst evolves with heliocentric distance; burst average flux density increases as a power of the associated shock's average velocity. Solar wind density structures may have a significant influence on type II bandwidths.

  4. LX Persei, an eclipsing binary with H and K emission

    NASA Technical Reports Server (NTRS)

    Weiler, E. J.

    1974-01-01

    The masses and MK classes were calculated for the eclipsing spectroscopic binary LX Persei. Its spectrum shows strong H and K emission and doubled lines in the photographic region. The Ca II emission velocity shifts vary in phase with the secondary's absorption lines and are presumably associated with this component. The stars are tentatively classed as G0 V and K0 IV, and the cooler component is the more massive by a ratio of 0.96. The system has a period of 8.0 days.

  5. Near-field microscopy and fluorescence spectroscopy: application to chromosomes labelled with different fluorophores.

    PubMed

    Mahieu-Williame, L; Falgayrettes, P; Nativel, L; Gall-Borrut, P; Costa, L; Salehzada, T; Bisbal, C

    2010-04-01

    We have coupled a spectrophotometer with a scanning near-field optical microscope to obtain, with a single scan, simultaneously scanning near-field optical microscope fluorescence images at different wavelengths as well as topography and transmission images. Extraction of the fluorescence spectra enabled us to decompose the different wavelengths of the fluorescence signals which normally overlap. We thus obtained images of the different fluorescence emissions of acridine orange bound to single or double stranded nucleic acids in human metaphase chromosomes before and after DNAse I or RNAse A treatment. The analysis of these images allowed us to visualize some specific chromatin areas where RNA is associated with DNA showing that such a technique could be used to identify multiple components within a cell.

  6. Automatic cytometric device using multiple wavelength excitations

    NASA Astrophysics Data System (ADS)

    Rongeat, Nelly; Ledroit, Sylvain; Chauvet, Laurence; Cremien, Didier; Urankar, Alexandra; Couderc, Vincent; Nérin, Philippe

    2011-05-01

    Precise identification of eosinophils, basophils, and specific subpopulations of blood cells (B lymphocytes) in an unconventional automatic hematology analyzer is demonstrated. Our specific apparatus mixes two excitation radiations by means of an acousto-optics tunable filter to properly control fluorescence emission of phycoerythrin cyanin 5 (PC5) conjugated to antibodies (anti-CD20 or anti-CRTH2) and Thiazole Orange. This way our analyzer combining techniques of hematology analysis and flow cytometry based on multiple fluorescence detection, drastically improves the signal to noise ratio and decreases the spectral overlaps impact coming from multiple fluorescence emissions.

  7. What Can TRAPPIST-1 Tell Us About Radiation From M-Dwarf Chromospheres And Coronae

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey

    2017-05-01

    The recent discovery of 7 planets orbiting the nearby star TRAPPIST-1 (Gillon et al. Nature 2017) and the discovery that this M8 V host star has very weak chromospheric compared to coronal emission (Bourrier et al. A+A 2017) raises the broader question of the relation of chromospheres to coronae in host stars. This question is important because chromospheric emission, primarily in the Lyman-alpha line, controls photochemical reactions in the outer atmospheres of exoplanets, whereas coronal X-ray emission and associated coronal mass ejections play critical roles in atmospheric mass loss. Both chromospheric and coronal emission from the host star can, therefore, determine whether a planet is habitable. I will show that the amount of emission in the Lyman-alpha line is proportional to that in X-rays for F-K dwarf stars, but that chromospheric emission becomes relatively weak in the early M dwarfs and very weak in the late-M dwarfs such as TRAPPIST-1.Stellar emission lines formed in a star's chromosphere and transition region can be separated into narrow and broad Gaussian components with the broad components formed by microflaring events or high speed flows. I will show how the broad component activity indicator depends on stellar effective temperature and age.I will also describe the results concerning star-planet interactions obtained by MUSCLES Treasury Survey team.

  8. Water distribution in shocked regions of the NGC 1333-IRAS 4A protostellar outflow

    NASA Astrophysics Data System (ADS)

    Santangelo, G.; Nisini, B.; Codella, C.; Lorenzani, A.; Yıldız, U. A.; Antoniucci, S.; Bjerkeli, P.; Cabrit, S.; Giannini, T.; Kristensen, L. E.; Liseau, R.; Mottram, J. C.; Tafalla, M.; van Dishoeck, E. F.

    2014-08-01

    Context. Water is a key molecule in protostellar environments because its line emission is very sensitive to both the chemistry and the physical conditions of the gas. Observations of H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observatory have highlighted the complexity of H2O line profiles, in which different kinematic components can be distinguished. Aims: The goal is to study the spatial distribution of H2O, in particular of the different kinematic components detected in H2O emission, at two bright shocked regions along IRAS 4A, one of the strongest H2O emitters among the Class 0 outflows. Methods: We obtained Herschel-PACS maps of the IRAS 4A outflow and HIFI observations of two shocked positions. The largest HIFI beam of 38'' at 557 GHz was mapped in several key water lines with different upper energy levels, to reveal possible spatial variations of the line profiles. A large velocity gradient (LVG) analysis was performed to determine the excitation conditions of the gas. Results: We detect four H2O lines and CO (16-15) at the two selected shocked positions. In addition, transitions from related outflow and envelope tracers are detected. Different gas components associated with the shock are identified in the H2O emission. In particular, at the head of the red lobe of the outflow, two distinct gas components with different excitation conditions are distinguished in the HIFI emission maps: a compact component, detected in the ground-state water lines, and a more extended one. Assuming that these two components correspond to two different temperature components observed in previous H2O and CO studies, the LVG analysis of the H2O emission suggests that the compact (about 3'', corresponding to about 700 AU) component is associated with a hot (T ~ 1000 K) gas with densities nH2 ~ (1-4) × 105 cm-3, whereas the extended (10''-17'', corresponding to 2400-4000 AU) one traces a warm (T ~ 300-500 K) and dense gas (nH2 ~ (3-5) × 107 cm-3). Finally, using the CO (16-15) emission observed at R2 and assuming a typical CO/H2 abundance of 10-4, we estimate the H2O/H2 abundance of the warm and hot components to be (7-10) × 10-7 and (3-7) × 10-5. Conclusions: Our data allowed us, for the first time, to resolve spatially the two temperature components previously observed with HIFI and PACS. We propose that the compact hot component may be associated with the jet that impacts the surrounding material, whereas the warm, dense, and extended component originates from the compression of the ambient gas by the propagating flow. PACS maps and HIFI spectra (FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A125

  9. Helium Abundance in the Most Metal-deficient Blue Compact Galaxies: I ZW 18 and SBS 0335-052

    NASA Astrophysics Data System (ADS)

    Izotov, Yuri I.; Chaffee, Frederic H.; Foltz, Craig B.; Green, Richard F.; Guseva, Natalia G.; Thuan, Trinh X.

    1999-12-01

    We present high-quality spectroscopic observations of the two most metal-deficient blue compact galaxies known, I Zw 18 and SBS 0335-052. We use the data to determine the heavy-element and helium abundances. The oxygen abundances in the northwest and the southeast components of I Zw 18 are found to be the same within the errors, 7.17+/-0.03 and 7.18+/-0.03, respectively, although marginally statistically significant spatial variations of oxygen abundance might be present. In contrast, we find a statistically significant gradient of oxygen abundance in SBS 0335-052. The largest oxygen abundance, 12+logO/H=7.338+/-0.012, is found in the region 0.6" to the northeast of the brightest part of the galaxy, and it decreases toward the southwest to values of ~7.2, comparable to that in I Zw 18. The underlying stellar absorption strongly influences the observed intensities of He I emission lines in the brightest northwest component of I Zw 18, and hence this component should not be used for primordial He abundance determination. The effect of underlying stellar absorption, though present, is much smaller in the southeast component. Assuming all systematic uncertainties are negligible, the He mass fraction Y=0.243+/-0.007 derived in this component is in excellent agreement with recent measurements by Izotov & Thuan, suggesting the robustness of the technique applied in measurements of the helium abundance in low-metallicity blue compact galaxies. The high signal-to-noise ratio spectrum (>=100 in the continuum) of SBS 0335-052 allows us to measure the helium mass fraction with a precision better than 2%-5% in nine different regions along the slit. We show that, while underlying stellar absorption in SBS 0335-052 is important only for the He I 4471 Å emission line, other mechanisms such as collisional and fluorescent enhancements are influencing the intensities of all He I emission lines and should be properly taken into account. When the electron number density derived from [S II] emission lines is used in SBS 0335-052, the correction of He I emission lines for collisional enhancement leads to systematically different He mass fractions for different He I emission lines. This unphysical result implies that the use of the electron number density derived from [S II] emission lines, being characteristic of the S+ zone but not of the He+ zone, will lead to an incorrect inferred value of Y. In the case of SBS 0335-052 it leads to a significant underestimate of the He mass fraction. In contrast, the self-consistent method using the five strongest He I emission lines in the optical spectrum for correction for collisional and fluorescent enhancements shows excellent agreement of the He mass fraction derived from the He I 5876 Å and He I 6678 Å emission lines in all nine regions of SBS 0335-052 used for the He abundance determination. Assuming all systematic uncertainties are negligible, the weighted mean He mass fraction in SBS 0335-052 is Y=0.2437+/-0.0014 when the three He I 4471, 5876 and 6678 Å emission lines are used, and it is 0.2463+/-0.0015 when the He I 4471 Å emission line is excluded. These values are in very good agreement with recent measurements of the He mass fraction in SBS 0335-052 by Izotov and coworkers. The weighted mean helium mass fraction in the two most metal-deficient blue compact galaxies, I Zw 18 and SBS 0335-052, Y=0.2462+/-0.0015, after correction for the stellar He production results in a primordial He mass fraction Yp=0.2452+/-0.0015. The derived Yp leads to a baryon-to-photon ratio of 4.7+1.0-0.8×10-10 and to a baryon mass fraction in the universe Ωbh250=0.068+0.015-0.012, consistent with the values derived from the primordial D and 7Li abundances, and supporting the standard big bang nucleosynthesis theory. For the most consistent set of primordial D, 4He, and 7Li abundances we derive an equivalent number of light neutrino species Nν=3.0+/-0.3 (2 σ). The observations reported here were obtained at the Multiple Mirror Telescope Observatory, a joint facility of the Smithsonian Institution and the University of Arizona, and at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. TRACING INFALL AND ROTATION ALONG THE OUTFLOW CAVITY WALLS OF THE L483 PROTOSTELLAR ENVELOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Gigi Y.C.; Lim, Jeremy; Takakuwa, Shigehisa

    2016-12-10

    Single-dish observations in CS(7–6) reveal emission extending out to thousands of au along the outflow axis of low-mass protostars and having a velocity gradient in the opposite direction to that of their outflows. This emission has been attributed to dense and warm gas flowing outward along the walls of bipolar outflow cavities. Here, we present combined single-dish and interferometric CS(7–6) maps for the low-mass protostar L483, revealing a newly discovered compact central component (radius ≲800 au) and previously unknown features in its extended component (visible out to ∼4000 au). The velocity gradient and skewed (toward the redshifted side) brightness distributionmore » of the extended component are detectable out to a radius of ∼2000 au, but not beyond. The compact central component exhibits a velocity gradient in the same direction as, but which is steeper than that of, the extended component. Furthermore, both components exhibit a velocity gradient with an approximately constant magnitude across the outflow axis, apparent in the extended component not just through but also away from the center out to 2000 au. We point out contradictions between our results and model predictions for outflowing gas and propose a new model in which all of the aforementioned emission can be qualitatively explained by gas inflowing along the outflow cavity walls of a rigidly rotating envelope. Our model also can explain the extended CS(7–6) emission observed around other low-mass protostars.« less

  11. A Comparison of Single-Cycle Versus Multiple-Cycle Proof Testing Strategies

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Millwater, H. R.; Russell, D. A.; Millwater, H. R.

    1999-01-01

    Single-cycle and multiple-cycle proof testing (SCPT and MCPT) strategies for reusable aerospace propulsion system components are critically evaluated and compared from a rigorous elastic-plastic fracture mechanics perspective. Earlier MCPT studies are briefly reviewed. New J-integral estimation methods for semielliptical surface cracks and cracks at notches are derived and validated. Engineering methods are developed to characterize crack growth rates during elastic-plastic fatigue crack growth (FCG) and the tear-fatigue interaction near instability. Surface crack growth experiments are conducted with Inconel 718 to characterize tearing resistance, FCG under small-scale yielding and elastic-plastic conditions, and crack growth during simulated MCPT. Fractography and acoustic emission studies provide additional insight. The relative merits of SCPT and MCPT are directly compared using a probabilistic analysis linked with an elastic-plastic crack growth computer code. The conditional probability of failure in service is computed for a population of components that have survived a previous proof test, based on an assumed distribution of initial crack depths. Parameter studies investigate the influence of proof factor, tearing resistance, crack shape, initial crack depth distribution, and notches on the MCPT versus SCPT comparison. The parameter studies provide a rational basis to formulate conclusions about the relative advantages and disadvantages of SCPT and MCPT. Practical engineering guidelines are proposed to help select the optimum proof test protocol in a given application.

  12. A Comparison of Single-Cycle Versus Multiple-Cycle Proof Testing Strategies

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Millwater, H. R.; Russell, D. A.; Orient, G. E.

    1996-01-01

    Single-cycle and multiple-cycle proof testing (SCPT and MCPT) strategies for reusable aerospace propulsion system components are critically evaluated and compared from a rigorous elastic-plastic fracture mechanics perspective. Earlier MCPT studies are briefly reviewed. New J-integral estimation methods for semi-elliptical surface cracks and cracks at notches are derived and validated. Engineering methods are developed to characterize crack growth rates during elastic-plastic fatigue crack growth (FCG) and the tear-fatigue interaction near instability. Surface crack growth experiments are conducted with Inconel 718 to characterize tearing resistance, FCG under small-scale yielding and elastic-plastic conditions, and crack growth during simulated MCPT. Fractography and acoustic emission studies provide additional insight. The relative merits of SCPT and MCPT are directly compared using a probabilistic analysis linked with an elastic-plastic crack growth computer code. The conditional probability of failure in service is computed for a population of components that have survived a previous proof test, based on an assumed distribution of initial crack depths. Parameter studies investigate the influence of proof factor, tearing resistance, crack shape, initial crack depth distribution, and notches on the MCPT vs. SCPT comparison. The parameter studies provide a rational basis to formulate conclusions about the relative advantages and disadvantages of SCPT and MCPT. Practical engineering guidelines are proposed to help select the optimum proof test protocol in a given application.

  13. Joint Optimization of Distribution Network Design and Two-Echelon Inventory Control with Stochastic Demand and CO2 Emission Tax Charges.

    PubMed

    Li, Shuangyan; Li, Xialian; Zhang, Dezhi; Zhou, Lingyun

    2017-01-01

    This study develops an optimization model to integrate facility location and inventory control for a three-level distribution network consisting of a supplier, multiple distribution centers (DCs), and multiple retailers. The integrated model addressed in this study simultaneously determines three types of decisions: (1) facility location (optimal number, location, and size of DCs); (2) allocation (assignment of suppliers to located DCs and retailers to located DCs, and corresponding optimal transport mode choices); and (3) inventory control decisions on order quantities, reorder points, and amount of safety stock at each retailer and opened DC. A mixed-integer programming model is presented, which considers the carbon emission taxes, multiple transport modes, stochastic demand, and replenishment lead time. The goal is to minimize the total cost, which covers the fixed costs of logistics facilities, inventory, transportation, and CO2 emission tax charges. The aforementioned optimal model was solved using commercial software LINGO 11. A numerical example is provided to illustrate the applications of the proposed model. The findings show that carbon emission taxes can significantly affect the supply chain structure, inventory level, and carbon emission reduction levels. The delay rate directly affects the replenishment decision of a retailer.

  14. 40 CFR 75.72 - Determination of NOX mass emissions for common stack and multiple stack configurations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the affected units as the difference between NOX mass emissions measured in the common stack and NOX... emissions using the maximum potential NOX emission rate, the maximum potential flow rate, and either the maximum potential CO2 concentration or the minimum potential O2 concentration (as applicable). The maximum...

  15. The contribution of microbunching instability to solar flare emission in the GHz to THz range of frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klopf, J. Michael; Kaufmann, Pierre; Raulin, Jean-Pierre

    2014-07-01

    Recent solar flare observations in the sub-terahertz range have provided evidence of a new spectral component with fluxes increasing for larger frequencies, separated from the well-known microwave emission that maximizes in the gigahertz range. Suggested interpretations explain the terahertz spectral component but do not account for the simultaneous microwave component. We present a mechanism for producing the observed "double spectra." Based on coherent enhancement of synchrotron emission at long wavelengths in laboratory accelerators, we consider how similar processes may occur within a solar flare. The instability known as microbunching arises from perturbations that produce electron beam density modulations, giving risemore » to broadband coherent synchrotron emission at wavelengths comparable to the characteristic size of the microbunch structure. The spectral intensity of this coherent synchrotron radiation (CSR) can far exceed that of the incoherent synchrotron radiation (ISR), which peaks at a higher frequency, thus producing a double-peaked spectrum. Successful CSR simulations are shown to fit actual burst spectral observations, using typical flaring physical parameters and power-law energy distributions for the accelerated electrons. The simulations consider an energy threshold below which microbunching is not possible because of Coulomb repulsion. Only a small fraction of the radiating charges accelerated to energies above the threshold is required to produce the microwave component observed for several events. The ISR/CSR mechanism can occur together with other emission processes producing the microwave component. It may bring an important contribution to microwaves, at least for certain events where physical conditions for the occurrence of the ISR/CSR microbunching mechanism are possible.« less

  16. Construction of energy transfer pathways self-assembled from DNA-templated stacks of anthracene.

    PubMed

    Iwaura, Rika; Yui, Hiroharu; Someya, Yuu; Ohnishi-Kameyama, Mayumi

    2014-01-05

    We describe optical properties of anthracene stacks formed from single-component self-assembly of thymidylic acid-appended anthracene 2,6-bis[5-(3'-thymidylic acid)pentyloxy] anthracene (TACT) and the binary self-assembly of TACT and complementary 20-meric oligoadenylic acid (TACT/dA20) in an aqueous buffer. UV-Vis and emission spectra for the single-component self-assembly of TACT and the binary self-assembly of TACT/dA20 were very consistent with stacked acene moieties in both self-assemblies. Interestingly, time-resolved fluorescence spectra from anthracene stacks exhibited very different features of the single-component and binary self-assemblies. In the single-component self-assembly of TACT, a dynamic Stokes shift (DSS) and relatively short fluorescence lifetime (τ=0.35ns) observed at around 450nm suggested that the anthracene moieties were flexible. Moreover, a broad emission at 530nm suggested the formation of an excited dimer (excimer). In the binary self-assembly of TACT/dA20, we detected a broad, red-shifted emission component at 534nm with a lifetime (τ=0.4ns) shorter than that observed in the TACT single-component self-assembly. Combining these results with the emission spectrum of the binary self-assembly of TACT/5'-HEX dA20, we concluded that the energy transfer pathway was constructed by columnar anthracene stacks formed from the DNA-templated self-assembly of TACT. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Infrared dust bubble CS51 and its interaction with the surrounding interstellar medium

    NASA Astrophysics Data System (ADS)

    Das, Swagat R.; Tej, Anandmayee; Vig, Sarita; Liu, Hong-Li; Liu, Tie; Ishwara Chandra, C. H.; Ghosh, Swarna K.

    2017-12-01

    A multiwavelength investigation of the southern infrared dust bubble CS51 is presented in this paper. We probe the associated ionized, cold dust, molecular and stellar components. Radio continuum emission mapped at 610 and 1300 MHz, using the Giant Metrewave Radio Telescope, India, reveals the presence of three compact emission components (A, B, and C) apart from large-scale diffuse emission within the bubble interior. Radio spectral index map shows the co-existence of thermal and non-thermal emission components. Modified blackbody fits to the thermal dust emission using Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver data is performed to generate dust temperature and column density maps. We identify five dust clumps associated with CS51 with masses and radius in the range 810-4600 M⊙ and 1.0-1.9 pc, respectively. We further construct the column density probability distribution functions of the surrounding cold dust which display the impact of ionization feedback from high-mass stars. The estimated dynamical and fragmentation time-scales indicate the possibility of collect and collapse mechanism in play at the bubble border. Molecular line emission from the Millimeter Astronomy Legacy Team 90 GHz survey is used to understand the nature of two clumps which show signatures of expansion of CS51.

  18. Acidic and alkaline precipitation components in the mesoscale range under the aspect of meteorological factors and the emissions

    NASA Astrophysics Data System (ADS)

    Marquardt, W.; Ihle, P.

    At two sites in the north of the G.D.R. 80-100 km distant from industry rain from individual precipitation events was collected by automatic samplers and relevant ionic species were analyzed. The sampler is described. The cloud routes at the 850 hPa level were traced back 1 day and then seven sectors were formed for each collection site taking into consideration geographical aspects and features of the emission pattern for the rea concerned. Investigating the precipitation components as a function of the emission pattern knowledge of meteorological input parameters are required. The influence of these parameters is reported. Contrary to the combustion of other fossil fuels, in the case of brown coal combustion a considerable emission of neutralizing components (especially CaO) occurs, counteracting the formation of "acid rain". This effect is clearly proven by means of individual examples and average considerations, i.e. the formation of acid rain does not only depend on the SO 2 and NO x emissions. The wet deposition of all types of ions at the measuring site for every emission sector was calculated by means of precipitation statistics. Using these investigations reference points with regard to border crossing transport are given.

  19. The Effects of Chlordiazepoxide and d-Amphetamine during a Three-Component Multiple Schedule

    PubMed Central

    Romanowich, Paul; Lamb, R. J.

    2013-01-01

    Multiple schedules have been used in behavioral pharmacology research to show that a drug’s effect on behavior can be a function of the schedule of reinforcement that supports that behavior. However, less research has examined whether the context of the schedule of reinforcement in a multiple schedule can change the drug’s effect on behavior. We examined the effects of acute chlordiazepoxide and d-amphetamine injections on the behavior of two groups of pigeons trained on a three-component multiple schedule with identical schedules of reinforcement in the first and last components. For one group of pigeons reinforcement was unavailable during the middle component (decreased-middle-component). For the second group reinforcement rate was higher during the middle component than during the first or third components (increased-middle-component). In the decreased-middle-component group, chlordiazepoxide (3.2-32 mg/kg) decreased third-component response rates less than it decreased responding in the first component. Conversely, in the increased-middle-component group, chlordiazepoxide (3.2-10 mg/kg) decreased third-component response rates more than in the first component. In both groups, d-amphetamine did not differentially affect response rates across components. These results are consistent with previous research showing that drugs can differentially affect responding to two different schedules of reinforcement during the same session, and suggest that pharmacological preparations may be helpful in elucidating the mechanisms that control multiple schedule interactions. PMID:23633164

  20. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    PubMed

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. UV And X-Ray Emission from Impacts of Fragmented Accretion Streams on Classical T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Colombo, Salvatore; Orlando, Salvatore; Peres, Giovanni; Argiroffi, Costanza; Reale, Fabio

    2016-07-01

    According to the magnetoshperic accretion scenario, during their evo- lution, Classical T Tauri stars accrete material from their circumstellar disk. The accretion process is regulated by the stellar magnetic eld and produces hot and dense post-shocks on the stellar surface as a result of impacts of the downfalling material. The impact regions are expected to strongly radiate in UV and X-rays. Several lines of evidence support the magnetospheric accretion scenario, especially in optical and infrared bands. However several points still remain unclear as, for instance,where the complex-pro le UV lines originate, or whether and how UV and X-ray emission is produced in the same shock region. The analysis of a large solar eruption has shown that EUV excesses might be e ectively produced by the impact of dense fragments onto the stellar surface. Since a steady accretion stream does not reprouce observations, in this work we investi- gate the e ects of a fragmented accretion stream on the uxes and pro les of C IV and O VIII emission lines. To this end we model the impact of a fragmented accretion stream onto the chromosphere of a CTTS with 2D axysimmetric magneto-hydrodynamic simulations. Our model takes into account of the gravity, the stellar magnetic eld, the thermal conduction and the radiative cooling from an optically thin plasma. From the model results, we synthesize the UV and X-ray emission including the e ect of Doppler shift along the line of sight. We nd that a fragmented accretion stream produces complex pro les of UV emission lines which consists of multiple components with di erent Doppler shifts. Our model predicts line pro les that are consistent with those observed and explain their origin as due to the stream fragmentation.

  2. High Precision Wavelength Monitor for Tunable Laser Systems

    NASA Technical Reports Server (NTRS)

    Froggatt, Mark E. (Inventor); Childers, Brooks A. (Inventor)

    2002-01-01

    A solid-state apparatus for tracking the wavelength of a laser emission has a power splitter that divides the laser emission into at least three equal components. Differing phase shifts are detected and processed to track variations of the laser emission.

  3. 40 CFR 89.117 - Test fleet selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and... establishing deterioration factors, the manufacturer shall select the engines, subsystems, or components to be used to determine exhaust emission deterioration factors for each engine-family control system...

  4. Public perception of rural environmental quality: Moving towards a multi-pollutant approach

    NASA Astrophysics Data System (ADS)

    Cantuaria, Manuella Lech; Brandt, Jørgen; Løfstrøm, Per; Blanes-Vidal, Victoria

    2017-12-01

    Most environmental epidemiology studies have examined pollutants individually. Multi-pollutant approaches have been recognized recently, but to the extent of our knowledge, no study to date has specifically investigated exposures to multiple air pollutants in rural environments. In this paper we characterized and quantified residential exposures to air pollutant mixtures in rural populations, provided a better understanding of the relationships between air pollutant mixtures and annoyance responses to environmental stressors, particularly odor, and quantified their predictive abilities. We used validated and highly spatially resolved atmospheric modeling of 14 air pollutants for four rural areas of Denmark, and the annoyance responses considered were annoyance due to odor, noise, dust, smoke and vibrations. We found significant associations between odor annoyance and principal components predominantly described by nitrate (NO3-), ammonium (NH4+), particulate matter (PM10 and PM2.5) and NH3, which are usually related to agricultural emission sources. Among these components, NH3 showed the lowest error when comparing observed population data and predicted probabilities. The combination of these compounds in a predictive model resulted in the most accurate model, being able to correctly predict 66% of odor annoyance responses. Furthermore, noise annoyance was found to be significantly associated with traffic-related air pollutants. In general terms, our results suggest that emissions from the agricultural and livestock production sectors are the main contributors to environmental annoyance, but also identify traffic and biomass burning as potential sources of annoyance.

  5. Temporal Arctic longwave surface emissivity feedbacks in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Yang, P.; Chen, X.

    2017-12-01

    We have investigated how the inclusion of realistic and consistent surface emissivity in both land-surface and atmospheric components of the CESM coupled-climate model affects a wide range of climate variables. We did this by replacing the unit emissivity values in RRTMG_LW for water, fine-grained snow, and desert scenes with spectral emissivity values, and by replacing broadband emissivity values in surface components with the Planck-curve weighted counterparts. We find that this harmonized treatment of surface emissivity within CESM can be important for reducing high-latitude temperature biases. We also find that short-term effects of atmospheric dynamics and spectral information need to be considered to understand radiative effects in higher detail, and are possible with radiative kernels computed for every grid and time point for the entire model integration period. We find that conventional climatological feedback calculations indicate that sea-ice emissivity feedback is positive in sign, but that the radiative effects of the difference in emissivity between frozen and unfrozen surfaces exhibit seasonal dependence. Furthermore, this seasonality itself exhibits meridional asymmetry due to differences in sea-ice response to climate forcing between the Arctic and the Antarctic. In the Arctic, this seasonal, temporally higher order analysis exhibits increasing outgoing surface emissivity radiative response in a warming climate. While the sea-ice emissivity feedback and seasonal sea-ice emissivity radiative response amplitudes are a few percent of surface albedo feedbacks, the feedback analysis methods outlined in this work demonstrate that spatially and temporally localized feedback analysis can give insight into the mechanisms at work on those scales which differ in amplitude and sign from conventional climatological analyses. We note that the inclusion of this realistic physics leads to improved agreement between CESM model results and Arctic surface temperatures and sea-ice trends. This reduction of persistent high-latitude model biases suggests that the current unrealistic representation of surface emissivity in model component radiation routines may be an important contributing factor to cold-pole biases.

  6. Following subtraction of the dipole anisotropy and components of the detected emission arising from

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Following subtraction of the dipole anisotropy and components of the detected emission arising from dust (thermal emission), hot gas (free-free emission), and charged particles interacting with magnetic fields (synchrotron emission) in the Milky Way Galaxy, the cosmic microwave background (CMB) anisotropy can be seen. CMB anisotropy - tiny fluctuations in the sky brightness at a level of a part in one hundred thousand - was first detected by the COBE DMR instrument. The CMB radiation is a remnant of the Big Bang, and the fluctuations are the imprint of density contrast in the early Universe (see slide 24 caption). This image represents the anisotropy detected in data collected during the first two years of DMR operation. Ultimately the DMR was operated for four years. See slide 19 caption for information about map smoothing and projection.

  7. One-zone synchrotron self-Compton model for the core emission of Centaurus A revisited

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Lefa, E.; Dimitrakoudis, S.; Mastichiadis, A.

    2014-02-01

    Aims: We investigate the role of the second synchrotron self-Compton (SSC) photon generation to the multiwavelength emission from the compact regions of sources that are characterized as misaligned blazars. For this, we focus on the nearest high-energy emitting radio galaxy Centaurus A and we revisit the one-zone SSC model for its core emission. Methods: We have calculated analytically the peak luminosities of the first and second SSC components by first deriving the steady-state electron distribution in the presence of synchrotron and SSC cooling, and then by using appropriate expressions for the positions of the spectral peaks. We have also tested our analytical results against those derived from a numerical code where the full emissivities and cross-sections were used. Results: We show that the one-zone SSC model cannot account for the core emission of Centaurus A above a few GeV, where the peak of the second SSC component appears. We thus propose an alternative explanation for the origin of the high-energy (≳0.4 GeV) and TeV emission, where these are attributed to the radiation emitted by a relativistic proton component through photohadronic interactions with the photons produced by the primary leptonic component. We show that the required proton luminosities are not extremely high, i.e. ~1043 erg/s, provided that the injection spectra are modelled by a power law with a high value of the lower energy cutoff. Finally, we find that the contribution of the core emitting region of Cen A to the observed neutrino and ultra-high-energy cosmic-ray fluxes is negligible.

  8. Variation of the H-Beta Emission Lines of Yy-Geminorum - Part Two - Change of Sectorial Structures of Active Regions

    NASA Astrophysics Data System (ADS)

    Kodaira, K.; Ichimura, K.

    Sixty-three image-tube spectrograms of YY Gem (4 Å mm-1, λλ4820-4900 Å) are analyzed to yield the radial-velocity curves and the variations in the intensities and the widths of Hβ emission lines during the quiescent phase at epochs 1980 February 11-16, 1981 January 14-15, and 1981 March 11. The emission-line intensity of component A varied in a single-wave mode over an orbital period, with an apparent phase drift, -0.006019 fraction of the period per day from one epoch to another. The pattern of the intensity variation of component B changed within a few years. The ratio of the amplitudes of radial-velocity curves (KA/KB) of Hβ emission was found to be 0.91 in February 1980 but 1.01 in January 1981. This modulation in the ratio is interpreted as the results of the varying inhomogeneous distributions of emission intensities over the stellar surfaces which are inferred from the observed intensity variations under the assumption of synchronous rotation. A ratio KA/KB = 1.00±001 is proposed as the actual value which would be observed if the effects of inhomogeneities were negligible. The double-wave mode of the line-width variation over a period, which was found by Kodaira and Ichimura (1980), persisted for component A but changed into a single-wave mode for component B. No appreciable changes were detected in the average levels of both the intensity and width of Hβ emission lines within the last few years.

  9. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour

    PubMed Central

    Nette, Antonia; Wolf, Patricia; Schlüter, Oliver; Meyer-Aurich, Andreas

    2016-01-01

    Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG) and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein–based pasta products proved to cause 0.57 kg CO2 equivalents (CO2eq) (31%) per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta. PMID:28231112

  10. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour.

    PubMed

    Nette, Antonia; Wolf, Patricia; Schlüter, Oliver; Meyer-Aurich, Andreas

    2016-03-04

    Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG) and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein-based pasta products proved to cause 0.57 kg CO₂ equivalents (CO₂eq) (31%) per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta.

  11. Emissions from oil and gas operations in the United States and their air quality implications.

    PubMed

    Allen, David T

    2016-06-01

    The energy supply infrastructure in the United States has been changing dramatically over the past decade. Increased production of oil and natural gas, particularly from shale resources using horizontal drilling and hydraulic fracturing, made the United States the world's largest producer of oil and natural gas in 2014. This review examines air quality impacts, specifically, changes in greenhouse gas, criteria air pollutant, and air toxics emissions from oil and gas production activities that are a result of these changes in energy supplies and use. National emission inventories indicate that volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from oil and gas supply chains in the United States have been increasing significantly, whereas emission inventories for greenhouse gases have seen slight declines over the past decade. These emission inventories are based on counts of equipment and operational activities (activity factors), multiplied by average emission factors, and therefore are subject to uncertainties in these factors. Although uncertainties associated with activity data and missing emission source types can be significant, multiple recent measurement studies indicate that the greatest uncertainties are associated with emission factors. In many source categories, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. When super-emitters are accounted for, multiple measurement approaches, at multiple scales, produce similar results for estimated emissions. Challenges moving forward include identifying super-emitters and reducing their emission magnitudes. Work done to date suggests that both equipment malfunction and operational practices can be important. Finally, although most of this review focuses on emissions from energy supply infrastructures, the regional air quality implications of some coupled energy production and use scenarios are examined. These case studies suggest that both energy production and use should be considered in assessing air quality implications of changes in energy infrastructures, and that impacts are likely to vary among regions. The energy supply infrastructure in the United States has been changing dramatically over the past decade, leading to changes in emissions from oil and natural gas supply chain sources. In many source categories along these supply chains, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. Effective emission reductions will require technologies for both identifying super-emitters and reducing their emission magnitudes.

  12. Influence of in doping in GaN barriers on luminescence properties of InGaN/GaN multiple quantum well LEDs

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowei; Yang, Jing; Zhao, Degang; Jiang, Desheng; Liu, Zongshun; Liu, Wei; Liang, Feng; Liu, Shuangtao; Xing, Yao; Wang, Wenjie; Li, Mo

    2018-02-01

    Room-temperature photoluminescence (RT PL) spectra of InGaN/GaN multiple quantum well (MQW) structures grown by metalorganic chemical vapor deposition (MOCVD) was investigated. It is found that with increasing In content in GaN barriers, the FWHM and emission intensity decreases, and the emission wavelength is first red shift and then blue shift. The shrinkage of FWHM and emission wavelength blue shift can be attributed to the reduction of piezoelectric field, and the lower height of potential barrier will make carrier confinement weaker and ground state level lower, which resulting in emission intensity decreasing and wavelength red shift. In addition, doping the barrier with In will induce more inhomogeneous and deeper localized states in InGaN QWs, which also contribute to a red shift of PL emission wavelength.

  13. Optical spectrum variations of IL Cep A

    NASA Astrophysics Data System (ADS)

    Ismailov, N. Z.; Khalilov, O. V.; Bakhaddinova, G. R.

    2016-02-01

    The results of many-year uniform spectroscopic observations of the Herbig Ae/Be star IL Cep A are presented. Its Hα line has either a single or a barely resolved two-component emission profile. The H β emission line is clearly divided into two components with a deep central absorption. Smooth variations of the observed parameters of individual spectral lines over nine years are observed. The He I λ5876 Å line has a complex absorption profile, probably with superposed emission components. The NaI D1, D2 doublet exhibits weak changes due to variations in the circumstellar envelope. The variations observed in the stellar spectrum can be explained by either binarity or variations of the magnetic field in the stellar disk. Difficulties associated with both these possibilities are discussed.

  14. Observation of Nonthermal Emission from the Supernova Remnant IC443 with RXTE

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Keohane, J. W.; Reimer, O.

    2002-01-01

    In this paper we present analysis of X-ray spectra from the supernova remnant IC443 obtained using the PCA on RXTE. The spectra in the 3 - 20 keV band are well fit by a two-component model consisting of thermal and nonthermal components. We compare these results with recent results of other X-ray missions and discuss the need for a cut-off in the nonthermal spectrum. Recent Chandra and XMM-Newton observations suggest that much of the nonthermal emission from IC443 can be attributed to a pulsar wind nebula. We present the results of our search for periodic emission in the RXTE PCA data. We then discuss the origin o f the nonthermal component and its possible association with the unidentified EGRET source.

  15. Suzaku Observations of the Broad-Line Radio Galaxy 3C390.3

    NASA Technical Reports Server (NTRS)

    Sambruna, rita

    2007-01-01

    We present the results of a 100ks Suzaku observation of the BLRG 3C390.3. The observations were performed to attempt to disentangle the contributions to the X-ray emission of this galaxy from an AGN and a jet component, via variability and/or the spectrum. The source was detected at high energies up to 80 keV, with a complex 0.3--80keV spectrum. Preliminary analysis of the data shows significant flux variability, with the largest amplitudes at higher energies. Deconvolution of the spectrum shows that, besides a standard Seyfert-like spectrum dominating the 0.3--8keV emission, an additional, hard power law component is required, dominating the emission above 10 keV. We attribute this component to a variable jet.

  16. The State-of-Play of Anomalous Microwave Emission (AME) research

    NASA Astrophysics Data System (ADS)

    Dickinson, Clive; Ali-Haïmoud, Y.; Barr, A.; Battistelli, E. S.; Bell, A.; Bernstein, L.; Casassus, S.; Cleary, K.; Draine, B. T.; Génova-Santos, R.; Harper, S. E.; Hensley, B.; Hill-Valler, J.; Hoang, Thiem; Israel, F. P.; Jew, L.; Lazarian, A.; Leahy, J. P.; Leech, J.; López-Caraballo, C. H.; McDonald, I.; Murphy, E. J.; Onaka, T.; Paladini, R.; Peel, M. W.; Perrott, Y.; Poidevin, F.; Readhead, A. C. S.; Rubiño-Martín, J.-A.; Taylor, A. C.; Tibbs, C. T.; Todorović, M.; Vidal, Matias

    2018-02-01

    Anomalous Microwave Emission (AME) is a component of diffuse Galactic radiation observed at frequencies in the range ≈ 10-60 GHz. AME was first detected in 1996 and recognised as an additional component of emission in 1997. Since then, AME has been observed by a range of experiments and in a variety of environments. AME is spatially correlated with far-IR thermal dust emission but cannot be explained by synchrotron or free-free emission mechanisms, and is far in excess of the emission contributed by thermal dust emission with the power-law opacity consistent with the observed emission at sub-mm wavelengths. Polarization observations have shown that AME is very weakly polarized ( ≲ 1 %). The most natural explanation for AME is rotational emission from ultra-small dust grains ("spinning dust"), first postulated in 1957. Magnetic dipole radiation from thermal fluctuations in the magnetization of magnetic grain materials may also be contributing to the AME, particularly at higher frequencies ( ≳ 50 GHz). AME is also an important foreground for Cosmic Microwave Background analyses. This paper presents a review and the current state-of-play in AME research, which was discussed in an AME workshop held at ESTEC, The Netherlands, June 2016.

  17. Life-cycle environmental inventory of passenger transportation modes in the United States

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail Vin

    To appropriately mitigate environmental impacts from transportation, it is necessary for decision makers to consider the life-cycle energy consumption and emissions associated with each mode. A life-cycle energy, greenhouse gas, and criteria air pollutant emissions inventory is created for the passenger transportation modes of automobiles, urban buses, heavy rail transit, light rail transit, and aircraft in the U.S. Each mode's inventory includes an assessment of vehicles, infrastructure, and fuel components. For each component, analysis is performed for material extraction through use and maintenance in both direct and indirect (supply chain) processes. For each mode's life-cycle components, energy inputs and emission outputs are determined. Energy inputs include electricity and petroleum-based fuels. Emission outputs include greenhouse gases (CO2, CH4, and N2O) and criteria pollutants (CO, SO2, NOx , VOCs, and PM). The inputs and outputs are normalized by vehicle lifetime, vehicle mile traveled, and passenger mile traveled. A consistent system boundary is applied to all modal inventories which captures the entire life-cycle, except for end-of-life. For each modal life-cycle component, both direct and indirect processes are included if possible. A hybrid life-cycle assessment approach is used to estimate the components in the inventories. We find that life-cycle energy inputs and emission outputs increase significantly compared to the vehicle operational phase. Life-cycle energy consumption is 39-56% larger than vehicle operation for autos, 38% for buses, 93-160% for rail, and 19-24% for air systems per passenger mile traveled. Life-cycle greenhouse gas emissions are 47-65% larger than vehicle operation for autos, 43% for buses, 39-150% for rail, and 24-31% for air systems per passenger mile traveled. The energy and greenhouse gas increases are primarily due to vehicle manufacturing and maintenance, infrastructure construction, and fuel production. For criteria air pollutants, life-cycle components often dominate total emissions and can be a magnitude larger than operational counterparts. Per passenger mile traveled, total SO2 emissions (between 350 and 460 mg) are 19-27 times larger than operational emissions as a result of electricity generation in vehicle manufacturing, infrastructure construction, and fuel production. NOx emissions increase 50-73% for automobiles, 24% for buses, 13-1300% for rail, and 19-24% for aircraft. Non-tailpipe VOCs are 27-40% of total automobile, 71-95% of rail, and 51-81% of air total emissions. Infrastructure and parking construction are major components of total PM10 emissions resulting in total emissions over three times larger than operational emissions for autos and even larger for many rail systems and aircraft (the major contributor being emissions from hot-mix asphalt plants and concrete production). Infrastructure construction and operation as well as vehicle manufacturing increase total CO emissions by 5-17 times from tailpipe performance for rail and 3-9 times for air. A case study comparing the environmental performance of metropolitan regions is presented as an application of the inventory results. The San Francisco Bay Area, Chicago, and New York City are evaluated capturing passenger transportation life-cycle energy inputs and greenhouse gas and criteria air pollutant emissions. The regions are compared between off-peak and peak travel as well as personal and public transit. Additionally, healthcare externalities are computed from vehicle emissions. It is estimated that life-cycle energy varies from 6.3 MJ/PMT in the Bay Area to 5.7 MJ/PMT in Chicago and 5.3 MJ/PMT in New York for an average trip. Life-cycle GHG emissions range from 480 g CO2e/PMT in the Bay Area to 440 g CO2e/PMT for Chicago and 410 g CO 2e/PMT in New York. CAP emissions vary depending on the pollutant with differences as large as 25% between regions. Life-cycle CAP emissions are between 11% and 380% larger than their operational counterparts. Peak travel, with typical higher riderships, does not necessarily environmentally outperform off-peak travel due to the large share of auto PMT and less than ideal operating conditions during congestion. The social costs of travel range from ¢51 (in ¢2007) per auto passenger per trip during peak in New York to ¢6 per public transit passenger per trip during peak hours in the Bay Area and New York. Average personal transit costs are around ¢30 while public transit ranges from ¢28 to ¢41. (Abstract shortened by UMI.)

  18. Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies.

    PubMed

    Gharekhan, Anita H; Arora, Siddharth; Oza, Ashok N; Sureshkumar, Mundan B; Pradhan, Asima; Panigrahi, Prasanta K

    2011-08-01

    Using the multiresolution ability of wavelets and effectiveness of singular value decomposition (SVD) to identify statistically robust parameters, we find a number of local and global features, capturing spectral correlations in the co- and cross-polarized channels, at different scales (of human breast tissues). The copolarized component, being sensitive to intrinsic fluorescence, shows different behavior for normal, benign, and cancerous tissues, in the emission domain of known fluorophores, whereas the perpendicular component, being more prone to the diffusive effect of scattering, points out differences in the Kernel-Smoother density estimate employed to the principal components, between malignant, normal, and benign tissues. The eigenvectors, corresponding to the dominant eigenvalues of the correlation matrix in SVD, also exhibit significant differences between the three tissue types, which clearly reflects the differences in the spectral correlation behavior. Interestingly, the most significant distinguishing feature manifests in the perpendicular component, corresponding to porphyrin emission range in the cancerous tissue. The fact that perpendicular component is strongly influenced by depolarization, and porphyrin emissions in cancerous tissue has been found to be strongly depolarized, may be the possible cause of the above observation.

  19. Simultaneous acquisition of differing image types

    DOEpatents

    Demos, Stavros G

    2012-10-09

    A system in one embodiment includes an image forming device for forming an image from an area of interest containing different image components; an illumination device for illuminating the area of interest with light containing multiple components; at least one light source coupled to the illumination device, the at least one light source providing light to the illumination device containing different components, each component having distinct spectral characteristics and relative intensity; an image analyzer coupled to the image forming device, the image analyzer decomposing the image formed by the image forming device into multiple component parts based on type of imaging; and multiple image capture devices, each image capture device receiving one of the component parts of the image. A method in one embodiment includes receiving an image from an image forming device; decomposing the image formed by the image forming device into multiple component parts based on type of imaging; receiving the component parts of the image; and outputting image information based on the component parts of the image. Additional systems and methods are presented.

  20. Determination of the Far-Infrared Cosmic Background Using COBE/DIRBE and WHAM Data

    NASA Technical Reports Server (NTRS)

    Odegard, N.; Arendt, R. G.; Dwek, E.; Haffner, L. M.; Hauser, M. G.; Reynolds, R. J.

    2007-01-01

    Determination of the cosmic infrared background (CIB) at far infrared wavelengths using COBE/DIRBE data is limited by the accuracy to which foreground interplanetary and Galactic dust emission can be modeled and subtracted. Previous determinations of the far infrared CIB (e.g., Hauser et al. 1998) were based on the detection of residual isotropic emission in skymaps from which the emission from interplanetary dust and the neutral interstellar medium were removed. In this paper we use the Wisconsin H(alpha) Mapper (WHAM) Northern Sky Survey as a tracer of the ionized medium to examine the effect of this foreground component on determination of the CIB. We decompose the DIRBE far infrared data for five high Galactic latitude regions into HI- and H(alpha)- correlated components and a residual component. Eased on FUSE H2 absorption line observations, the contribution of a11 H2-correlated component is expected to he negligible. We find the H(alpha)-correlated component to be consistent with zero for each region, and we find that addition of an H(alpha)-correlated component in modeling the foreground emission has negligible effect on derived CIB results. Our CIB detections and 2(sigma) upper limits are essentially the same as those derived by Hauser et al. and are given by (nu)I(sub nu)(nW/sq m/sr) < 75, < 32, 25+/-8, and 13+/-3 at gamma = 60, 100, 140, and 240 microns, respectively. Our residuals have not been subjected to a detailed anisotropy test, so our CIB results do not supersede those of Hauser et al. Mie derive upper limits on the 100 micron emissivity of the ionized medium that are typically about 40% of the 100 micron emissivity of the neutral atomic medium. This low value may be caused in part by a lower dust-to-gas mass ratio in the ionized medium than in the neutral medium, and in part by a shortcoming of using H(alpha) intensity as a tracer of far infrared emission. If H(alpha) is not a reliable tracer, our analysis would underestimate the emissivity of the ionized medium, and both our analysis and the Hauser et al. analysis may slightly overestimate the CIB. We estimate the possible effect for the CIB to be only about 5%, which is much smaller than the quoted uncertainties. From a comparison of the Hauser et al. CIB results with the integrated galaxy brightness from Spitzer source counts, we obtain 2(sigma) upper limits on a possible diffuse CIB component that are 26 nW/sq m/sr at 140 microns and 8.5 nW/sq m/sr at 240 microns.

  1. A Search for Strong Radio Emission from the Magnetic Interactions of Trappist-1 and its Satellites

    NASA Astrophysics Data System (ADS)

    Pineda, J. Sebastian; Hallinan, Gregg

    2018-06-01

    The first nearby very-low mass star planet-host discovered, Trappist-1, presents not only a unique opportunity for studying a system of multiple terrestrial planets, but a means to examine the possibility of significant star-planet magnetic interactions at the end of the main sequence. These very-low mass stars and brown dwarfs have been observationally confirmed as capable of generating strong radio emissions produced by the electron cyclotron maser instability as a consequence of currents coupling the magnetospheric environment to the stellar atmosphere. However, multiple electrodynamic mechanisms have been proposed to power these magnetospheric processes, including a potentially significant role for short-period satellites analogous to the auroral interactions between Jupiter and its moons or the Sun and the solar system planets. With multiple close in terrestrial satellites, the Trappist-1 system is an important test case of these potential theories. We present a search for these radio emissions from the seven-planet Trappist-1 system using the Karl G. Jansky Very Large Array, looking for both highly circularly polarized radio emission and persistent quiescent emissions at GHz frequencies. We place these observations in the context of the possible electrodynamic engines driving radio emissions in very-low mass stars and brown dwarfs, and their relation to magnetic field topology, with implications for future radio surveys of planet-hosts at the end of the main sequence.

  2. Direct Final Rule for Exhaust Emission Standards for 2012 and Later Model Year Snowmobiles

    EPA Pesticide Factsheets

    In this action removing the NOX component from the Phase 3 emission standard calculation and deferring action on the 2012 CO and HC emission standards portion of the court’s remand to a separate rulemaking action.

  3. 40 CFR 75.40 - General demonstration requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CONTINUOUS EMISSION MONITORING Alternative Monitoring Systems § 75.40 General demonstration... continuous emission monitoring system may apply to the Administrator for approval of an alternative monitoring system (or system component) to determine average hourly emission data for SO2, NOX, and/or...

  4. Development of a Biomass Burning Emissions Inventory by Combining Satellite and Ground-based Information

    EPA Science Inventory

    A 2005 biomass burning (wildfire, prescribed, and agricultural) emission inventory has been developed for the contiguous United States using a newly developed simplified method of combining information from multiple sources for use in the US EPA’s national Emission Inventory (NEI...

  5. LINKING REGIONAL AEROSOL EMISSION CHANGES WITH MULTIPLE IMPACT MEASURES THROUGH DIRECT AND CLOUD-RELATED FORCING ESTIMATES

    EPA Science Inventory

    Outputs expected from this project include improved confidence in direct radiative forcing and cloud radiative forcing, particularly over the United States and with regard to United States emissions publicly available, documented data sets including emission inventories of siz...

  6. Nature of radio feature formed by re-started jet activity in 3C 84 and its relation with γ-ray emissions

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Chida, H.; Kino, M.; Orienti, M.; D'Ammando, F.; Giovannini, G.; Hiura, K.

    2016-02-01

    Re-started jet activity occurred in the bright nearby radio source 3C 84 in about 2005. The re-started jet is forming a prominent component (namely C3) at the tip of jet. The component has showed an increase in radio flux density for more than 7 years while the radio spectrum remains optically thin. This suggests that the component is the head of a radio lobe including a hotspot where the particle acceleration occurs. Thus, 3C 84 is a unique laboratory to study the physical properties at the very early stage of radio source evolution. Another important aspect is that high energy and very high energy γ-ray emissions are detected from this source. The quest for the site of γ-ray emission is quite important to obtain a better understanding of γ-ray emission mechanisms in radio galaxies. In this paper, we review the observational results from very long baseline interferometry (VLBI) monitoring of 3C 84 reported in series of our previous papers. We argue the nature of re-started jet/radio lobe and its relation with high-energy emission.

  7. Improving combustion characteristics and NO(x) emissions of a down-fired 350 MW(e) utility boiler with multiple injection and multiple staging.

    PubMed

    Kuang, Min; Li, Zhengqi; Xu, Shantian; Zhu, Qunyi

    2011-04-15

    Within a Mitsui Babcock Energy Limited down-fired pulverized-coal 350 MW(e) utility boiler, in situ experiments were performed, with measurements taken of gas temperatures in the burner and near the right-wall regions, and of gas concentrations (O(2) and NO) from the near-wall region. Large combustion differences between zones near the front and rear walls and particularly high NO(x) emissions were found in the boiler. With focus on minimizing these problems, a new technology based on multiple-injection and multiple-staging has been developed. Combustion improvements and NO(x) reductions were validated by investigating three aspects. First, numerical simulations of the pulverized-coal combustion process and NO(x) emissions were compared in both the original and new technologies. Good agreement was found between simulations and in situ measurements with the original technology. Second, with the new technology, gas temperature and concentration distributions were found to be symmetric near the front and rear walls. A relatively low-temperature and high-oxygen-concentration zone formed in the near-wall region that helps mitigate slagging in the lower furnace. Third, NO(x) emissions were found to have decreased by as much as 50%, yielding a slight decrease in the levels of unburnt carbon in the fly ash.

  8. Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf

    2004-01-01

    Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.

  9. Time-resolved spectrophotometry of the AM Herculis system E2003 + 225

    NASA Technical Reports Server (NTRS)

    Mccarthy, Patrick; Bowyer, Stuart; Clarke, John T.

    1986-01-01

    Time-resolved, medium-resolution photometry is reported for the binary system E2003 + 225 over a complete orbital period in 1984. The object was 1.5-2 mag fainter than when viewed earlier in 1984. The fluxes, equivalent widths and full widths at FWHM for dominant lines are presented for four points in the cycle. A coincidence of emission lines and a 4860 A continuum line was observed for the faster component, which had a 500 km/sec velocity amplitude that was symmetric around the zero line. An aberrant emission line component, i.e., stationary narrow emission lines displaced about 9 A from the rest wavelengths, is modeled as Zeeman splitting of emission from material close to the primary.

  10. CO in Protostars (COPS): Herschel-SPIRE Spectroscopy of Embedded Protostars

    NASA Astrophysics Data System (ADS)

    Yang, Yao-Lun; Green, Joel; COPS Team

    2018-01-01

    We present full spectral scans from 200 μm - 670 μm of 27 Class 0/I protostellar sources, obtained with Herschel-SPIRE, as part of the "COPS-SPIRE" Open Time program, complementary to the DIGIT and WISH Key programs. Only 16 of 27 protostars have the same Class classification with Tbol and Lbol/Lsubmm. We found that the spectral index at 500 μm evolves with Lbol/Lsubmm, suggesting that it may be sensitive to the evolution during the Class 0 phase by probing the envelope. We identify rotational transitions of CO lines from J = 4→3 to J = 13→12, along with a number of lines of 13CO, HCO+, H2O, and [C I] lines. The ratios of 12CO to 13CO suggest that 12CO emission remains optically thick until Jup > 17. We fit up to four components of temperature from the rotational diagram with flexible break points which separate the components. The distribution of rotational temperature shows a primary population around 100 K with a secondary population at 400 K. We quantify the correlations of each line pair found in our dataset, and find the strength of correlation of CO lines decreases as the difference of J-level between two CO lines increases. The multiple origins of CO emission previously revealed by velocity-resolved profiles is consistent with this smooth distribution, if each origin contributes to a wide range of CO lines with significant overlap in the CO ladder. The spatial extent of the CO emission is investigated by projecting the flux ratio from the outer spatial pixel (spaxel) to the central spaxel as a function of azimuthal angle, which allows us to identify the bipolarity of the morphology. We find that the morphology of CO emission is more centralized and less bipolar at higher J lines. The difference of the maximum and minimum ratios in the projected profile (peak-to-valley difference) quantifies the bipolarity of the identified bipolar feature. We found the peak-to-valley difference declines as the J-level increases, suggesting that the bipolar feature is less dominant at higher J-level.

  11. Limitation of using Angstrom exponent for source apportionment of black carbon in complex environments - A case study from the North West Indo- Gangetic plain

    NASA Astrophysics Data System (ADS)

    Garg, S.; Sinha, B.; Sinha, V.; Chandra, P.; Sarda Esteve, R.; Gros, V.

    2015-12-01

    Determining the contribution of different sources to the total BC is necessary for targeted mitigation. Absorption Angstrom exponent (αabs) measurements of black carbon (BC) have recently been introduced as a novel tool to apportion the contribution of biomass burning sources to BC. Two-component Aethalometer model for apportioning BC to biomass burning sources and fossil fuel combustion sources, which uses αabs as a generic indicator of the source type, is widely used for determining the contribution of the two types of sources to the total BC. Our work studies BC emissions in the highly-populated, anthropogenic emissions-dominated Indo-Gangetic Plain and demonstrates that the αabs cannot be used as a generic tracer for biomass burning emissions in a complex environment. Simultaneously collected high time resolution data from a 7-wavelength Aethalometer (AE 42, Magee Scientific, USA) and a high sensitivity Proton Transfer Reaction- Quadrupole Mass Spectrometer (PTR-MS) installed at a sub-urban site in Mohali (Punjab), India, were used to identify a number of biomass combustion plumes during which BC enhancements correlated strongly with an increase in acetonitrile (a well-established biomass burning tracer) mixing ratio. Each type of biomass combustion is classified and characterized by distinct emission ratios of aromatic compounds and oxygenated VOCs to acetonitrile. The identified types of biomass combustion include two different types of crop residue burning (paddy and wheat), burning of leaf-litter, and garbage burning. Traffic (fossil-fuel burning) plumes were also selected for comparison. We find that the two-component Aethalometer source-apportionment method cannot be extrapolated to all types of biomass combustion and αabs of traffic plumes can be >1 in developing countries like India, where use of adulterated fuel in vehicles is common. Thus in a complex environment, where multiple anthropogenic BC sources and air masses of variable photochemical age impact a receptor site, the angstrom exponent is not representative of the combustion type and therefore, cannot be used as a generic tracer to constrain source contributions.

  12. Testing the association between anomalous microwave emission and PAHs in the diffuse ISM

    NASA Astrophysics Data System (ADS)

    Berkeley, Matthew R.; Chuss, David; Kogut, Al

    2018-01-01

    Testing cosmic inflation is currently a primary focus of the Cosmology community. In order to verify the theory and to determine the energy scale of inflation, it is necessary to identify the characteristic B-mode polarization signal in the CMB. This signal, predicted by inflation theory, is expected to be very faint. It is therefore important to accurately characterize and remove foreground polarization components such as thermal dust and synchrotron emission.Some of these components have already been accurately characterized, but there are others that are not so well understood. In 1996, a new galactic foreground emission component was discovered. Dubbed 'anomalous microwave emission' (AME), this new foreground has yet to be identified. Though its physical origin remains uncertain, the leading hypothesis for the origin of this foreground proposes that the emission comes from rapidly rotating small dust grains called Polycyclic Aromatic Hydrocarbons (PAHs), or 'spinning dust'. PAHs are a family of hydrocarbon molecules with characteristic bending and stretching modes that have identifiable emission spectra in the mid-infrared region. The Wide-field Infrared Survey Explorer (WISE) is a satellite that was launched in 2010 into a polar orbit, enabling it to take images of the entire sky at four different mid-infrared wavelengths. These wavelengths cover the spectral region with the aforementioned PAH emission features in the mid-infrared. WISE archival data therefore makes it possible to construct a full-sky map of PAH emission.We present full sky maps using WISE data as a preliminary result towards creating a full sky PAH map.

  13. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Spinoglio, Luigi; Smith, Howard A.; Gonzalez-Alfonso, Eduardo; Fisher, Jacqueline

    2005-01-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 microns) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO). In addition to the 7 expected ionic fine structure emission lines, the OH rotational lines at 79, 119 and 163 microns were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 micron line, where detected, is always in absorption. The observed line intensities were modelled together with IS0 Short Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the AGN component and the starburst component in the circumnuclear ring of approximately 3kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a big blue bump is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Br gamma equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low ionization parameter (U=10(exp -3.5)) and low densities (n=100 cm (exp -3)) are derived. Combining the AGN and starburst components, we succeed in modeling the overall UV to far-IR atomic spectrum of SGC 1068, reproducing the line fluxes to within a factor 2.0 on average with a standard deviation of 1.4. The OH 119 micron emission indicates that the line is collisionally excited, and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, non-local, non-LTE radiative transfer models. The models indicate that the bulk of the emission arises from the nuclear region, although some extended contribution from the starburst is not ruled out. The OH abundance in the nuclear region is expected to be approximately 10(exp -5), characteristic of X-ray dominated regions.

  14. Is Stacking Intervention Components Cost-Effective? An Analysis of the Incredible Years Program

    ERIC Educational Resources Information Center

    Foster, E. Michael; Olchowski, Allison E.; Webster-Stratton, Carolyn H.

    2007-01-01

    The cost-effectiveness of delivering stacked multiple intervention components for children is compared to implementing single intervention by analyzing the Incredible Years Series program. The result suggests multiple intervention components are more cost-effective than single intervention components.

  15. Multiplicity characteristics in relativistic 24Mg-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Abdelsalam, A.; A. Shaat, E.; Abou-Moussa, Z.; M. Badawy, B.; S. Mater, Z.

    2013-08-01

    This work is concerned with the analyses of the shower and gray particle production in 4.5 A GeV/c 24Mg collision with emulsion nuclei. The highest particle production occurs in the region of the low impact parameters. While the multiplicity of the shower particles emitted in the forward direction depends on the projectile mass number and energy, the multiplicity of the backward ones shows a limiting behaviour. The source of the emission of the forward shower particles is completely different from that of the backward ones. The target fragments are produced in a thermalized system of emission.

  16. The multiple infrared source GL 437

    NASA Technical Reports Server (NTRS)

    Wynn-Williams, C. G.; Becklin, E. E.; Beichman, C. A.; Capps, R.; Shakeshaft, J. R.

    1981-01-01

    Infrared and radio continuum observations of the multiple infrared source GL 437 show that it consists of a compact H II region plus two objects which are probably early B stars undergoing rapid mass loss. The group of sources appears to be a multiple system of young stars that have recently emerged from the near side of a molecular cloud. Emission in the unidentified 3.3 micron feature is associated with, but more extended than, the emission from the compact H II region; it probably arises from hot dust grains at the interface between the H II region and the molecular cloud.

  17. Faint Object Camera imaging and spectroscopy of NGC 4151

    NASA Technical Reports Server (NTRS)

    Boksenberg, A.; Catchpole, R. M.; Macchetto, F.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.

    1995-01-01

    We describe ultraviolet and optical imaging and spectroscopy within the central few arcseconds of the Seyfert galaxy NGC 4151, obtained with the Faint Object Camera on the Hubble Space Telescope. A narrowband image including (O III) lambda(5007) shows a bright nucleus centered on a complex biconical structure having apparent opening angle approximately 65 deg and axis at a position angle along 65 deg-245 deg; images in bands including Lyman-alpha and C IV lambda(1550) and in the optical continuum near 5500 A, show only the bright nucleus. In an off-nuclear optical long-slit spectrum we find a high and a low radial velocity component within the narrow emission lines. We identify the low-velocity component with the bright, extended, knotty structure within the cones, and the high-velocity component with more confined diffuse emission. Also present are strong continuum emission and broad Balmer emission line components, which we attribute to the extended point spread function arising from the intense nuclear emission. Adopting the geometry pointed out by Pedlar et al. (1993) to explain the observed misalignment of the radio jets and the main optical structure we model an ionizing radiation bicone, originating within a galactic disk, with apex at the active nucleus and axis centered on the extended radio jets. We confirm that through density bounding the gross spatial structure of the emission line region can be reproduced with a wide opening angle that includes the line of sight, consistent with the presence of a simple opaque torus allowing direct view of the nucleus. In particular, our modelling reproduces the observed decrease in position angle with distance from the nucleus, progressing initially from the direction of the extended radio jet, through our optical structure, and on to the extended narrow-line region. We explore the kinematics of the narrow-line low- and high-velocity components on the basis of our spectroscopy and adopted model structure.

  18. Investigating the contribution of shipping emissions to atmospheric PM2.5 using a combined source apportionment approach.

    PubMed

    Lang, Jianlei; Zhou, Ying; Chen, Dongsheng; Xing, Xiaofan; Wei, Lin; Wang, Xiaotong; Zhao, Na; Zhang, Yanyun; Guo, Xiurui; Han, Lihui; Cheng, Shuiyuan

    2017-10-01

    Many studies have been conducted focusing on the contribution of land emission sources to PM 2.5 in China; however, little attention had been paid to other contributions, especially the secondary contributions from shipping emissions to atmospheric PM 2.5 . In this study, a combined source apportionment approach, including principle component analysis (PCA) and WRF-CMAQ simulation, was applied to identify both primary and secondary contributions from ships to atmospheric PM 2.5 . An intensive PM 2.5 observation was conducted from April 2014 to January 2015 in Qinhuangdao, which was close to the largest energy output port of China. The chemical components analysis results showed that the primary component was the major contributor to PM 2.5 , with proportions of 48.3%, 48.9%, 55.1% and 55.4% in spring, summer, autumn and winter, respectively. The secondary component contributed higher fractions in summer (48.2%) and winter (36.8%), but had lower percentages in spring (30.1%) and autumn (32.7%). The hybrid source apportionment results indicated that the secondary contribution (SC) of shipping emissions to PM 2.5 could not be ignored. The annual average SC was 2.7%, which was comparable to the primary contribution (2.9%). The SC was higher in summer (5.3%), but lower in winter (1.1%). The primary contributions to atmospheric PM 2.5 were 3.0%, 2.5%, 3.4% and 2.7% in spring, summer, autumn and winter, respectively. As for the detailed chemical components, the contributions of shipping emissions were 2.3%, 0.5%, 0.1%, 1.0%, 1.7% and 0.1% to elements & sea salt, primary organic aerosol (POA), element carbon (EC), nitrate, sulfate and secondary organic carbon (SOA), respectively. The results of this study will further the understanding of the implications of shipping emissions in PM 2.5 pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of EMF Emissions from Cables and Junction Boxes on Marine Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhanak, Manhar; Spieler, Richard; Kilfoyle, Kirk

    Studies have shown that diverse aquatic species are electrosensitive. Many fishes, and marine mammals, can either detect, navigate by, or are affected by electromagnetic fields (EMF) with various sensitivities, and their behavior may be impacted by unnatural EMF emissions in the water column. Sharks, rays and skates are known to have the highest sensitivity to electric fields. Electric field emissions in the range 0.5–100 micro volt/m appear to attract them, and emissions over 100 micro volt/m to repulse them. A marine hydrokinetic MHK device will have multiple components and associated multiple submarine cables on the seafloor and running through themore » water column and would potentially increase the level of EMF emissions to which the marine species at the site may be exposed to. There are therefore concerns amongst stakeholders that EMF emissions associated with MHK devices and their components may act as barriers to species migration, cause disorientation, change community compositions and ecosystems, and that they may attract sharks, leading to a local increase in the risk of shark attacks. However, field data to validate and model potential relationships between observed responses and the EMF emissions in situ are sparse. A program of experimental field surveys were conducted off the coast of South Florida, USA to characterize the electromagnetic field (EMF) emissions in the water column from a submarine cable, and to monitor for responses of local aquatic species. The field surveys were conducted at the South Florida Ocean Measurement Facility (SFOMF) off Fort Lauderdale, which is a cabled offshore in-water navy range. It consists of multiple active submarine power cables and a number of junction boxes, with the capability to transmit AC/DC power at a range of strength and frequencies. The site includes significant marine life activities and community structure, including highly mobile species, such as sharks, stingrays, mammals and turtles. SFOMF therefore typifies a setting representative of an offshore location where a MHK device may be sited. Background electromagnetic field (EMF) levels and EMF emissions due to submarine cables were measured using a custom E-field sensor and a commercial magnetometer deployed from an autonomous underwater vehicle (AUV) at various fixed altitudes above the seafloor. EMF signatures detected from power cables and junction boxes are contrasted against ambient background levels and other EMF sources. The potential responses of local marine species were observed at selected representative locations using divers on SCUBA, complemented with fixed cameras on the sea bottom and by a set of video cameras mounted on the AUV. The objectives of the study were: 1) to characterize the EMF emission levels associated with submarine cables 2) to monitor potential responses of aquatic animals to the emissions and 3) to develop an associated database of field observations. As control, observations of EMF levels and in situ marine species were conducted with power in the cable turned off. Good quality measurements of EMF emissions were obtained using the mobile AUV platform and the data from the surveys were used to develop contour maps of the EMF levels in the water column above the live cable as well as to provide information about how the field decays away from the cable. The measurements show good agreement with theoretical models of the how EMF levels decay away from the cable in deep and shallow water environment. Electric fields in excess of 200µV/m were measured in the vicinity of the cable during the power on state. Quarterly surveys by SCUBA divers were conducted, using point and transect count methods, over a period of one year at three locations, one at a shallow site where the water depth is approximately 5m, and the other at the Barracuda Reef where the water depth is approximately 10m. The sampling results were analyzed to determine if the presence of an SFOMF generated EMF alters: (1) abundance, species richness, and assemblage structure of coral reef fishes, (2) the behavior of fishes including elasmobranchs, and (3) the distribution of marine turtles and mammals. Diver observations were also used in attempt to discern if there were any noticeable organismal responses during the transitional period between ambient OFF to energized AC or DC power states, and video footage was intended to augment the in-situ visual survey data and aid in interpretation of the results. Comparisons are provided between observation datasets between the three sites and between the point and transect count methods. Presence of several individual elasmobranch species, including sharks and stingrays, were recorded during the surveys. No apparent effect on richness could be discerned between the power on and off states. No apparent sudden animal movements were observed during transitions between power states.« less

  20. Relating N2O emissions during biological nitrogen removal with operating conditions using multivariate statistical techniques.

    PubMed

    Vasilaki, V; Volcke, E I P; Nandi, A K; van Loosdrecht, M C M; Katsou, E

    2018-04-26

    Multivariate statistical analysis was applied to investigate the dependencies and underlying patterns between N 2 O emissions and online operational variables (dissolved oxygen and nitrogen component concentrations, temperature and influent flow-rate) during biological nitrogen removal from wastewater. The system under study was a full-scale reactor, for which hourly sensor data were available. The 15-month long monitoring campaign was divided into 10 sub-periods based on the profile of N 2 O emissions, using Binary Segmentation. The dependencies between operating variables and N 2 O emissions fluctuated according to Spearman's rank correlation. The correlation between N 2 O emissions and nitrite concentrations ranged between 0.51 and 0.78. Correlation >0.7 between N 2 O emissions and nitrate concentrations was observed at sub-periods with average temperature lower than 12 °C. Hierarchical k-means clustering and principal component analysis linked N 2 O emission peaks with precipitation events and ammonium concentrations higher than 2 mg/L, especially in sub-periods characterized by low N 2 O fluxes. Additionally, the highest ranges of measured N 2 O fluxes belonged to clusters corresponding with NO 3 -N concentration less than 1 mg/L in the upstream plug-flow reactor (middle of oxic zone), indicating slow nitrification rates. The results showed that the range of N 2 O emissions partially depends on the prior behavior of the system. The principal component analysis validated the findings from the clustering analysis and showed that ammonium, nitrate, nitrite and temperature explained a considerable percentage of the variance in the system for the majority of the sub-periods. The applied statistical methods, linked the different ranges of emissions with the system variables, provided insights on the effect of operating conditions on N 2 O emissions in each sub-period and can be integrated into N 2 O emissions data processing at wastewater treatment plants. Copyright © 2018. Published by Elsevier Ltd.

  1. X-Ray Study of Variable Gamma-Ray Pulsar PSR J2021+4026

    NASA Astrophysics Data System (ADS)

    Wang, H. H.; Takata, J.; Hu, C.-P.; Lin, L. C. C.; Zhao, J.

    2018-04-01

    PSR J2021+4026 showed a sudden decrease in the gamma-ray emission at the glitch that occurred around 2011 October 16, and a relaxation of the flux to the pre-glitch state at around 2014 December. We report X-ray analysis results of the data observed by XMM-Newton on 2015 December 20 in the post-relaxation state. To examine any change in the X-ray emission, we compare the properties of the pulse profiles and spectra at the low gamma-ray flux state and at the post-relaxation state. The phase-averaged spectra for both states can be well described by a power-law component plus a blackbody component. The former is dominated by unpulsed emission and probably originated from the pulsar wind nebula as reported by Hui et al. The emission property of the blackbody component is consistent with the emission from the polar cap heated by the back-flow bombardment of the high-energy electrons or positrons that were accelerated in the magnetosphere. We found no significant change in the X-ray emission properties between two states. We suggest that the change of the X-ray luminosity is at an order of ∼4%, which is difficult to measure with the current observations. We model the observed X-ray light curve with the heated polar cap emission, and we speculate that the observed large pulsed fraction is owing to asymmetric magnetospheric structure.

  2. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    DOE PAGES

    Gao, Zhiming; Finney, Charles; Daw, Charles; ...

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energymore » (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH 3 emissions could be slipped from the Urea SCR, but the average NH 3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.« less

  3. Electroluminescence and cathodoluminescence from polyethylene and polypropylene films: Spectra reconstruction from elementary components and underlying mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, B.; Teyssedre, G.; Laurent, C.

    The mechanisms of electroluminescence from large band gap polymers used as insulation in electric components are still under debate. It becomes important to unravel the underlying physics of the emission because of increasing thermo-electric stress and a possible relationship between electroluminescence and field withstand. We report herein on the cathodoluminescence spectra of polyethylene and polypropylene films as a way to uncover the nature of its contributions to electroluminescence emission. It is shown that spectra from the two materials are structured around four elementary components, each of them being associated with a specific process contributing to the overall emission with differentmore » weights depending on excitation conditions and on materials. The cathodoluminescence and electroluminescence spectra of each material are reconstructed from the four spectral components and their relative contribution are discussed. It is shown that electroluminescence from polyethylene and polypropylene has the same origin pointing towards generic mechanisms in both.« less

  4. Rapid Spectral Variability of the Symbiotic Star CH Cyg During One Night

    NASA Astrophysics Data System (ADS)

    Mikayilov, Kh. M.; Rustamov, B. N.; Alakbarov, I. A.; Rustamova, A. B.

    2017-06-01

    During one night (15.07.2015), within 6 hours 14 echelle spectrograms of this star were obtained. It was revealed that the profile of Ha and Hβ lines have two-component emission structure with a central absorption, parameters which vary from spectrum to spectrum during the night. The intensity of blue emission component (V) have been changed strongly during the night: the value of ratio of intensities of violet and red components (V/R) of line Hα decreased from 0:93 to 0:49 in the beginning and then increased to a value of 0.97. The synchronous variations of values of V/R for the Hα and Hβ lines have been revealed. The parameters of blue emission components of Hα and of line Hel λ5876 Å are correlated. We propose that revealed by us the rapid spectral changes in the spectrum of the star CH Cyg could be connected with a flickering in the optical brightness of the star that is typical for the active phase of this system.

  5. REVIEW OF INDOOR EMISSION SOURCE MODELS--PART 1. OVERVIEW

    EPA Science Inventory

    Indoor emission source models are mainly used as a component in indoor air quality (IAQ) and exposure modeling. They are also widely used to interpret the experimental data obtained from environmental chambers and buildings. This paper compiles 46 indoor emission source models fo...

  6. Locomotive biofuel study - rail yard and over the road measurements using portable emissions measurement system : final report.

    DOT National Transportation Integrated Search

    2015-01-01

    The emissions of three locomotive engines were measured with ULSD and multiple biofuel blends, including B10, B20, and B40. : B20 biodiesel fuel reduced emissions of carbon dioxide (CO2), carbon monoxide (CO), hydrocarbon (HC), and particulate matter...

  7. Origin and z-distribution of Galactic diffuse [C II] emission

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.

    2014-12-01

    Context. The [C ii] emission is an important probe of star formation in the Galaxy and in external galaxies. The GOT C+ survey and its follow up observations of spectrally resolved 1.9 THz [C ii] emission using Herschel HIFI provides the data needed to quantify the Galactic interstellar [C ii] gas components as tracers of star formation. Aims: We determine the source of the diffuse [C ii] emission by studying its spatial (radial and vertical) distributions by separating and evaluating the fractions of [C ii] and CO emissions in the Galactic ISM gas components. Methods: We used the HIFI [C ii] Galactic survey (GOT C+), along with ancillary H i, 12CO, 13CO, and C18O data toward 354 lines of sight, and several HIFI [C ii] and [C i] position-velocity maps. We quantified the emission in each spectral line profile by evaluating the intensities in 3 km s-1 wide velocity bins, "spaxels". Using the detection of [C ii] with CO or [C i], we separated the dense and diffuse gas components. We derived 2D Galactic disk maps using the spaxel velocities for kinematic distances. We separated the warm and cold H2 gases by comparing CO emissions with and without associated [C ii]. Results: We find evidence of widespread diffuse [C ii] emission with a z-scale distribution larger than that for the total [C ii] or CO. The diffuse [C ii] emission consists of (i) diffuse molecular (CO-faint) H2 clouds and (ii) diffuse H i clouds and/or WIM. In the inner Galaxy we find a lack of [C ii] detections in a majority (~62%) of H i spaxels and show that the diffuse component primarily comes from the WIM (~21%) and that the H i gas is not a major contributor to the diffuse component (~6%). The warm-H2 radial profile shows an excess in the range 4 to 7 kpc, consistent with enhanced star formation there. Conclusions: We derive, for the first time, the 2D [C ii] spatial distribution in the plane and the z-distributions of the individual [C ii] gas component. From the GOT C+ detections we estimate the fractional [C ii] emission tracing (i) H2 gas in dense and diffuse molecular clouds as ~48% and ~14%, respectively, (ii) in the H i gas ~18%, and (iii) in the WIM ~21%. Including non-detections from H i increases the [C ii] in H i to ~27%. The z-scale distributions FWHM from smallest to largest are [C ii] sources with CO, ~130 pc, (CO-faint) diffuse H2 gas, ~200 pc, and the diffuse H i and WIM, ~330 pc. When combined with [C ii], CO observations probe the warm-H2 gas, tracing star formation. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. Identification of the odour and chemical composition of alumina refinery air emissions.

    PubMed

    Coffey, P S; Ioppolo-Armanios, M

    2004-01-01

    Alcoa World Alumina Australia has undertaken comprehensive air emissions monitoring aimed at characterising and quantifying the complete range of emissions to the atmosphere from Bayer refining of alumina at its Western Australian refineries. To the best of our knowledge, this project represents the most complete air emissions inventory of a Bayer refinery conducted in the worldwide alumina industry. It adds considerably to knowledge of air emission factors available for use in emissions estimation required under national pollutant release and transfer registers (NPRTs), such as the Toxic Releases Inventory, USA, and the National Pollutant Inventory, Australia. It also allows the preliminary identification of the key chemical components responsible for characteristic alumina refinery odours and the contribution of these components to the quality, or hedonic tone, of the odours. The strength and acceptability of refinery odours to employees and neighbours appears to be dependent upon where and in what proportion the odorous gases have been emitted from the refineries. This paper presents the results of the programme and develops a basis for classifying the odour properties of the key emission sources in the alumina-refining process.

  9. Detection of a Substantial Molecular Gas Reservoir in a Brightest Cluster Galaxy at z = 1.7

    NASA Astrophysics Data System (ADS)

    Webb, Tracy M. A.; Lowenthal, James; Yun, Min; Noble, Allison G.; Muzzin, Adam; Wilson, Gillian; Yee, H. K. C.; Cybulski, Ryan; Aretxaga, I.; Hughes, D. H.

    2017-08-01

    We report the detection of CO(2-1) emission coincident with the brightest cluster galaxy (BCG) of the high-redshift galaxy cluster SpARCS1049+56, with the Redshift Search Receiver (RSR) on the Large Millimeter Telescope (LMT). We confirm a spectroscopic redshift for the gas of z = 1.7091 ± 0.0004, which is consistent with the systemic redshift of the cluster galaxies of z = 1.709. The line is well fit by a single-component Gaussian with an RSR-resolution-corrected FWHM of 569 ± 63 km s-1. We see no evidence for multiple velocity components in the gas, as might be expected from the multiple image components seen in near-infrared imaging with the Hubble Space Telescope. We measure the integrated flux of the line to be 3.6 ± 0.3 Jy km s-1, and using {α }{CO} = 0.8 M ⊙ (K km s-1 pc2)-1, we estimate a total molecular gas mass of 1.1 ± 0.1 × 1011 M ⊙ and a M H2/M ⋆ ˜ 0.4. This is the largest gas reservoir detected in a BCG above z > 1 to date. Given the infrared-estimated star formation rate of 860 ± 130 M ⊙ yr-1, this corresponds to a gas depletion timescale of ˜0.1 Gyr. We discuss several possible mechanisms for depositing such a large gas reservoir to the cluster center—e.g., a cooling flow, a major galaxy-galaxy merger, or the stripping of gas from several galaxies—but conclude that these LMT data are not sufficient to differentiate between them.

  10. Vadose Zone and Surficial Monitoring a Controlled Release of Methane in the Borden Aquifer, Ontario.

    NASA Astrophysics Data System (ADS)

    Forde, O.; Mayer, K. U.; Cahill, A.; Parker, B. L.; Cherry, J. A.

    2015-12-01

    Development of shale gas resources and potential impacts on groundwater and fugitive gas emissions necessitates further research on subsurface methane gas (CH4) migration and fate. To address this issue, a controlled release experiment is undertaken at the Borden research aquifer, Ontario, Canada. Due to low solubility, it is expected that the injection will lead to gas exsolution and ebullition. Gas migration is expected to extend to the unsaturated zone and towards the ground surface, and may possibly be affected by CH4 oxidation. The project consists of multiple components targeting the saturated zone, unsaturated zone, and gas emissions at the ground surface. This presentation will focus on the analysis of surficial CO2 and CH4 effluxes and vadose zone gas composition to track the temporal and spatial evolution of fugitive gas. Surface effluxes are measured with flux chambers connected to a laser-based gas analyzer, and subsurface gas samples are being collected via monitoring wells equipped with sensors for oxygen, volumetric water content, electrical conductivity, and temperature to correlate with changes in gas composition. First results indicate rapid migration of CH4 to the ground surface in the vicinity of the injection locations. We will present preliminary data from this experiment and evaluate the distribution and rate of gas migration. This research specifically assesses environmental risks associated with fugitive gas emissions related to shale gas resource development.

  11. A modified receptor model for source apportionment of heavy metal pollution in soil.

    PubMed

    Huang, Ying; Deng, Meihua; Wu, Shaofu; Japenga, Jan; Li, Tingqiang; Yang, Xiaoe; He, Zhenli

    2018-07-15

    Source apportionment is a crucial step toward reduction of heavy metal pollution in soil. Existing methods are generally based on receptor models. However, overestimation or underestimation occurs when they are applied to heavy metal source apportionment in soil. Therefore, a modified model (PCA-MLRD) was developed, which is based on principal component analysis (PCA) and multiple linear regression with distance (MLRD). This model was applied to a case study conducted in a peri-urban area in southeast China where soils were contaminated by arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb). Compared with existing models, PCA-MLRD is able to identify specific sources and quantify the extent of influence for each emission. The zinc (Zn)-Pb mine was identified as the most important anthropogenic emission, which affected approximately half area for Pb and As accumulation, and approximately one third for Cd. Overall, the influence extent of the anthropogenic emissions decreased in the order of mine (3 km) > dyeing mill (2 km) ≈ industrial hub (2 km) > fluorescent factory (1.5 km) > road (0.5 km). Although algorithm still needs to improved, the PCA-MLRD model has the potential to become a useful tool for heavy metal source apportionment in soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Quantitative Förster resonance energy transfer analysis for kinetic determinations of SUMO-specific protease.

    PubMed

    Liu, Yan; Song, Yang; Madahar, Vipul; Liao, Jiayu

    2012-03-01

    Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research, and it is a very powerful tool for elucidating protein interactions in either dynamic or steady state. SUMOylation (the process of SUMO [small ubiquitin-like modifier] conjugation to substrates) is an important posttranslational protein modification with critical roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENPs) act as an endopeptidase to process the pre-SUMO or as an isopeptidase to deconjugate SUMO from its substrate. To fully understand the roles of SENPs in the SUMOylation cycle, it is critical to understand their kinetics. Here, we report a novel development of a quantitative FRET-based protease assay for SENP1 kinetic parameter determination. The assay is based on the quantitative analysis of the FRET signal from the total fluorescent signal at acceptor emission wavelength, which consists of three components: donor (CyPet-SUMO1) emission, acceptor (YPet) emission, and FRET signal during the digestion process. Subsequently, we developed novel theoretical and experimental procedures to determine the kinetic parameters, k(cat), K(M), and catalytic efficiency (k(cat)/K(M)) of catalytic domain SENP1 toward pre-SUMO1. Importantly, the general principles of this quantitative FRET-based protease kinetic determination can be applied to other proteases. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Enhancement of emission of InGaN/GaN multiple-quantum-well nanorods by coupling to Au-nanoparticle plasmons

    NASA Astrophysics Data System (ADS)

    Xing, Jieying; Chen, Yinsong; Liu, Yuebo; Liang, Jiezhi; Chen, Jie; Ren, Yuan; Han, Xiaobiao; Zhong, Changming; Yang, Hang; Huang, Dejia; Hou, Yaqian; Wu, Zhisheng; Liu, Yang; Zhang, Baijun

    2018-05-01

    We demonstrate the enhancement of emission of InGaN/GaN multiple-quantum-well nanorods by nearly a factor of 2 by coupling them to localized surface plasmons of Au nano-particles (NPs). The Au NPs are fabricated in situ on the nanorods using a Ni/SiO2/Au/SiNx compound functional layer. This layer serves as a combination dry-etch mask for fabricating the nanorods and the Au NPs, as well as providing isolation necessary to prevent fluorescence quenching. Time-resolved photoluminescence measurements confirm that emission enhancement originates from the coupling.

  14. Interacting Cosmic Rays with Molecular Clouds: A Bremsstrahlung Origin of Diffuse High-energy Emission from the Inner 2°×1° of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Hewitt, J. W.; Wardle, M.; Tatischeff, V.; Roberts, D. A.; Cotton, W.; Uchiyama, H.; Nobukawa, M.; Tsuru, T. G.; Heinke, C.; Royster, M.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and γ-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of ~GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner ~300 × 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate ~1-10 × 10-15 s-1, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10-6-10-5, large-scale magnetic field 10-20 μG, the density of diffuse and dense molecular gas ~100 and ~103 cm-3 over 300 pc and 50 pc path lengths, and the variability of Fe I Kα 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV γ-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.

  15. Structure and physical conditions in the Huygens region of the Orion nebula

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.; Ferland, G. J.; Peimbert, M.

    2017-02-01

    Hubble Space Telescope images, MUSE maps of emission lines, and an atlas of high velocity resolution emission-line spectra have been used to establish for the first time correlations of the electron temperature, electron density, radial velocity, turbulence, and orientation within the main ionization front of the nebula. From the study of the combined properties of multiple features, it is established that variations in the radial velocity are primarily caused by the photoevaporating ionization front being viewed at different angles. There is a progressive increase of the electron temperature and density with decreasing distance from the dominant ionizing star θ1 Ori C. The product of these characteristics (ne × Te) is the most relevant parameter in modelling a blister-type nebula like the Huygens region, where this quantity should vary with the surface brightness in Hα. Several lines of evidence indicate that small-scale structure and turbulence exist down to the level of our resolution of a few arcseconds. Although photoevaporative flow must contribute at some level to the well-known non-thermal broadening of the emission lines, comparison of quantitative predictions with the observed optical line widths indicates that it is not the major additive broadening component. Derivation of Te values for H+ from radio+optical and optical-only ionized hydrogen emission showed that this temperature is close to that derived from [N II] and that the transition from the well-known flat extinction curve which applies in the Huygens region to a more normal steep extinction curve occurs immediately outside of the Bright Bar feature of the nebula.

  16. Stochastic Industrial Source Detection Using Lower Cost Methods

    NASA Astrophysics Data System (ADS)

    Thoma, E.; George, I. J.; Brantley, H.; Deshmukh, P.; Cansler, J.; Tang, W.

    2017-12-01

    Hazardous air pollutants (HAPs) can be emitted from a variety of sources in industrial facilities, energy production, and commercial operations. Stochastic industrial sources (SISs) represent a subcategory of emissions from fugitive leaks, variable area sources, malfunctioning processes, and improperly controlled operations. From the shared perspective of industries and communities, cost-effective detection of mitigable SIS emissions can yield benefits such as safer working environments, cost saving through reduced product loss, lower air shed pollutant impacts, and improved transparency and community relations. Methods for SIS detection can be categorized by their spatial regime of operation, ranging from component-level inspection to high-sensitivity kilometer scale surveys. Methods can be temporally intensive (providing snap-shot measures) or sustained in both time-integrated and continuous forms. Each method category has demonstrated utility, however, broad adoption (or routine use) has thus far been limited by cost and implementation viability. Described here are a subset of SIS methods explored by the U.S EPA's next generation emission measurement (NGEM) program that focus on lower cost methods and models. An emerging systems approach that combines multiple forms to help compensate for reduced performance factors of lower cost systems is discussed. A case study of a multi-day HAP emission event observed by a combination of low cost sensors, open-path spectroscopy, and passive samplers is detailed. Early field results of a novel field gas chromatograph coupled with a fast HAP concentration sensor is described. Progress toward near real-time inverse source triangulation assisted by pre-modeled facility profiles using the Los Alamos Quick Urban & Industrial Complex (QUIC) model is discussed.

  17. Differences Between the HUT Snow Emission Model and MEMLS and Their Effects on Brightness Temperature Simulation

    NASA Technical Reports Server (NTRS)

    Pan, Jinmei; Durand, Michael; Sandells, Melody; Lemmetyinen, Juha; Kim, Edward J.; Pulliainen, Jouni; Kontu, Anna; Derksen, Chris

    2015-01-01

    Microwave emission models are a critical component of snow water equivalent retrieval algorithms applied to passive microwave measurements. Several such emission models exist, but their differences need to be systematically compared. This paper compares the basic theories of two models: the multiple-layer HUT (Helsinki University of Technology) model and MEMLS (Microwave Emission Model of Layered Snowpacks). By comparing the mathematical formulation side-by-side, three major differences were identified: (1) by assuming the scattered intensity is mostly (96) in the forward direction, the HUT model simplifies the radiative transfer (RT) equation into 1-flux; whereas MEMLS uses a 2-flux theory; (2) the HUT scattering coefficient is much larger than MEMLS; (3 ) MEMLS considers the trapped radiation inside snow due to internal reflection by a 6-flux model, which is not included in HUT. Simulation experiments indicate that, the large scattering coefficient of the HUT model compensates for its large forward scattering ratio to some extent, but the effects of 1-flux simplification and the trapped radiation still result in different T(sub B) simulations between the HUT model and MEMLS. The models were compared with observations of natural snow cover at Sodankyl, Finland; Churchill, Canada; and Colorado, USA. No optimization of the snow grain size was performed. It shows that HUT model tends to under estimate T(sub B) for deep snow. MEMLS with the physically-based improved Born approximation performed best among the models, with a bias of -1.4 K, and an RMSE of 11.0 K.

  18. Industrial air pollution: British progress—a review

    NASA Astrophysics Data System (ADS)

    Nonhebel, G.

    Recent Annual Reports on industrial air pollution issued by the U.K. Health and Safety Executive show that considerable progress has been made. Further "Presumptive Limits of Emission" and "Notes on Best Practicable Means" have been published by H.M. Alkali and Clean Air Inspectorate. The lists given in this journal [9, 709 (1975)] are extended in the Appendices. An abstract is given of BPM for oil refineries. Heavy smoke from blue brick manufacture and from shaft lime kilns has been eliminated by gas firing. Steps have been taken to reduce emissions of vinyl chloride, PCBs, compounds of fluorine and of toxic metals, As, Sb, Cd, Cu, Ni, Pb, Sn, Zn and radioactives. Reduction of low-level emissions is a continuing problem in improving local amenity. Considerable attention has been paid to continuous monitoring of massive emissions and of concentrations of pollutants outside factories, including odours. Arrestment equipment supplied to small firms has given trouble through poor design of components and monitors, inadequate help by suppliers during commissioning, and by lack of training and correct maintenance by management; tight specifications requiring quality engineering should be prepared by purchasers. Lectures to workers, backed by booklets, are assisting in making difficult works better neighbours. The Inspectorate has six sampling teams, mainly for dust, and nine task groups for special programmes. A computer programme for calculation of ground concentrations from multiple sources is assisting inspectors to assess complex situations. It is the author's opinion that research workers on environmental problems should examine these Reports to find more industrial subjects for study.

  19. Chandra X-ray Observation of a Mature Cloud-Shock Interaction in the Bright Eastern Knot of Puppis A

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Flanagan, Kathryn A.; Petre, Robert

    2005-01-01

    We present Chandra X-ray images and spectra of the most prominent cloud-shock interaction region in the Puppis A supernova remnant. The Bright Eastern Knot (BEK) has two main morphological components: (1) a bright compact knot that lies directly behind the apex of an indentation in the eastern X-ray boundary and (2) lying 1 westward behind the shock, a curved vertical structure (bar) that is separated from a smaller bright cloud (cap) by faint diffuse emission. Based on hardness images and spectra, we identify the bar and cap as a single shocked interstellar cloud. Its morphology strongly resembles the "voided sphere" structures seen at late times in Klein et al. experimental simulat.ions of cloud-shock interactions, when the crushing of the cloud by shear instabilities is well underway. We infer an intera.ction time of roughly cloud-crushing timescales, which translates to 2000-4000 years, based on the X-ray temperature, physical size, and estimated expansion of the shocked cloud. This is the first X-ray identified example of a cloud-shock interaction in this advanced phase. Closer t o the shock front, the X-ray emission of the compact knot in the eastern part of the BEK region implies a recent interaction with relatively denser gas, some of which lies in front of the remnant. The complex spatial relationship of the X-ray emission of the compact knot to optical [O III] emission suggests that there are multiple cloud interactions occurring along the line of sight.

  20. D-A type sensor array for differentiation and identification of white wine varieties based on specific solvent effect activated by CT-LE transition

    NASA Astrophysics Data System (ADS)

    Han, Jingqi; Zhang, Xin; Li, Hao; Hou, Yue; Hou, Jingdan; Li, Zhongfeng; Yang, Feng; Liu, Yang; Han, Tianyu

    2018-02-01

    In this work, we synthesize a series of compounds with electron donor (D) and acceptor (A) units. They show general solvent effect in aprotic solvents, suggesting a charge transfer (CT) process. While in protic solvents including water, ethanol and methanol, the spectra exert no polarity-dependence but a remarkable hypochromatic shift together with the fading of CT band. Dynamic analysis implies that intermolecular hydrogen bond will be formed between carboxylic acid and protic solvent, boosting another deactivation pathway that jumps off a bigger energy gap, in other words, favoring the locally excited (LE) state emission. The CT-LE transition involves variations in both absorption and emission spectra, and further poses competition with other mechanisms including activated/restricted intramolecular rotation (IR/RIR). Inspired by the cross-reactivity, we turn our attention to the development of sensor array, in order to identify white wine varieties. The differential spectral responses are recorded, generating multiple factors including absorption wavelength (λab), emission wavelength (λem), absorbance (Abs.) and emission intensity (Int.). These factors are processed with principal component analysis (PCA), creating a three-dimensional fingerprint data base for white wines. The data points in the coordinate system are clustered into 10 different groups, demonstrating a clear differentiation of all the white wines. More importantly, as our final test for whether the sensor array can identify the counterfeits, an adulterated liquor sample, which is provided by police officers, is fingerprinted on the three-dimensional diagram. Its canonical factors fall into an area distinct from the adulterated wine, indicating a clear identification.

  1. Diagnosis of aged prescribed burning plumes impacting an urban area.

    PubMed

    Lee, Sangil; Kim, Hyeon K; Yan, Bo; Cobb, Charles E; Hennigan, Chris; Nichols, Sara; Chamber, Michael; Edgerton, Eric S; Jansen, John J; Hu, Yongtao; Zheng, Mei; Weber, Rodney J; Russell, Armistead G

    2008-03-01

    An unanticipated wind shift led to the advection of plumes from two prescribed burning sites that impacted Atlanta, GA, producing a heavy smoke event late in the afternoon on February 28, 2007. Observed PM2.5 concentrations increased to over 140 microg/m3 and O3 concentrations up to 30 ppb in a couple of hours, despite the late hour in February when photochemistry is less vigorous. A detailed investigation of PM2.5 chemical composition and source apportionment analysis showed that the increase in PM2.5 mass was driven mainly by organic carbon (OC). However, both results from source apportionment and an observed nonlinear relationship between OC and PM2.5 potassium (K) indicate that the increased OC was not due solely to primary emissions. Most of the OC was water-soluble organic carbon (WSOC) and was dominated by hydrophobic compounds. The data are consistent with large enhancements in isoprenoid (isoprene and monoterpenes) and other volatile organic compounds emitted from prescribed burning that led to both significant O3 and secondary organic aerosol (SOA) production. Formation of oligomers from oxidation products of isoprenoid compounds or condensation of volatile organic compounds (VOCs) with multiple functional groups emitted during prescribed burning appears to be a major component of the secondary organic contributor of the SOA. The results from this study imply that enhanced emissions due to the fire itself and elevated temperature in the burning region should be considered in air quality models (e.g., receptor and emission-based models) to assess impacts of prescribed burning emissions on ambient air quality.

  2. Models of Uranium continuum radio emission

    NASA Technical Reports Server (NTRS)

    Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Schweitzer, Andrea E.; Warwick, James W.

    1987-01-01

    Uranium continuum radio emission detected by the Voyager 2 Planetary Radio Astronomy experiment during the January 1986 encounter is considered. The continuum emissions comprised four components (equatorial emissions, anomaly emissions, strong nightside emissions, and weak nightside emissions) associated with different sources. The equatorial emissions appeared most prominently during the days before closest approach and extended from 40 kHz or below to about 120 kHz. The anomaly emissions were seen about 12 hours before closest approach and extended to about 250 kHz. The agreement found between Miranda's phase and strong radio emission at 20.4 kHz, just after closest approach, suggests intense dynamic activity on the Miranda L shell.

  3. Joint Optimization of Distribution Network Design and Two-Echelon Inventory Control with Stochastic Demand and CO2 Emission Tax Charges

    PubMed Central

    Li, Shuangyan; Li, Xialian; Zhang, Dezhi; Zhou, Lingyun

    2017-01-01

    This study develops an optimization model to integrate facility location and inventory control for a three-level distribution network consisting of a supplier, multiple distribution centers (DCs), and multiple retailers. The integrated model addressed in this study simultaneously determines three types of decisions: (1) facility location (optimal number, location, and size of DCs); (2) allocation (assignment of suppliers to located DCs and retailers to located DCs, and corresponding optimal transport mode choices); and (3) inventory control decisions on order quantities, reorder points, and amount of safety stock at each retailer and opened DC. A mixed-integer programming model is presented, which considers the carbon emission taxes, multiple transport modes, stochastic demand, and replenishment lead time. The goal is to minimize the total cost, which covers the fixed costs of logistics facilities, inventory, transportation, and CO2 emission tax charges. The aforementioned optimal model was solved using commercial software LINGO 11. A numerical example is provided to illustrate the applications of the proposed model. The findings show that carbon emission taxes can significantly affect the supply chain structure, inventory level, and carbon emission reduction levels. The delay rate directly affects the replenishment decision of a retailer. PMID:28103246

  4. Synchronous x-ray and radio mode switches: a rapid global transformation of the pulsar magnetosphere.

    PubMed

    Hermsen, W; Hessels, J W T; Kuiper, L; van Leeuwen, J; Mitra, D; de Plaa, J; Rankin, J M; Stappers, B W; Wright, G A E; Basu, R; Alexov, A; Coenen, T; Grießmeier, J-M; Hassall, T E; Karastergiou, A; Keane, E; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Noutsos, A; Serylak, M; Pilia, M; Sobey, C; Weltevrede, P; Zagkouris, K; Asgekar, A; Avruch, I M; Batejat, F; Bell, M E; Bell, M R; Bentum, M J; Bernardi, G; Best, P; Bîrzan, L; Bonafede, A; Breitling, F; Broderick, J; Brüggen, M; Butcher, H R; Ciardi, B; Duscha, S; Eislöffel, J; Falcke, H; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; de Gasperin, F; de Geus, E; Gunst, A W; Heald, G; Hoeft, M; Horneffer, A; Iacobelli, M; Kuper, G; Maat, P; Macario, G; Markoff, S; McKean, J P; Mevius, M; Miller-Jones, J C A; Morganti, R; Munk, H; Orrú, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pizzo, R; Polatidis, A G; Rawlings, S; Reich, W; Röttgering, H; Scaife, A M M; Schoenmakers, A; Shulevski, A; Sluman, J; Steinmetz, M; Tagger, M; Tang, Y; Tasse, C; ter Veen, S; Vermeulen, R; van de Brink, R H; van Weeren, R J; Wijers, R A M J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P

    2013-01-25

    Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.

  5. 40 CFR Table W - 4 of Subpart W-Default Total Hydrocarbon Emission Factors for Underground Natural Gas Storage

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Connector 5.59 Open-Ended Line 17.27 Pressure Relief Valve 39.66 Meter 19.33 Population Emission Factors... Population Emission Factors—Other Components, Gas Service Low Continuous Bleed Pneumatic Device Vents 2 1.37... Valves include control valves, block valves and regulator valves. 2 Emission Factor is in units of “scf...

  6. Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan.

    PubMed

    Yen, Chia-Hsien; Horng, Jao-Jia

    2009-11-01

    This study investigated VOC emissions from the largest petrochemical industrial district in Taiwan and recommended some control measures to reduce VOC emissions. In addition to the petrochemical industry, the district encompasses a chemical and fiber industry, a plastics industry and a harbor, which together produce more than 95% of the VOC emissions in the area. The sequence of VOC emission was as follows: components (e.g., valves, flanges, and pumps) (47%) > tanks (29%) > stacks (15%) > wastewater treatment facility (6%) > loading (2%) > flares (1%). Other plants producing high-density polyethylene (HDPE), styrene, ethylene glycol (EG), gas oil, and iso-nonyl-alchol (INA) were measured to determine the VOC leaching in the district. The VOC emissions of these 35 plants (90% of all plants) were less than 100 tons/year. About 74% of the tanks were fixed-roof tanks that leached more VOCs than the other types of tanks. To reduce leaching, the components should be checked periodically, and companies should be required to follow the Taiwan EPA regulations. A VOC emission management system was developed in state implementation plans (SIPs) to inspect and reduce emissions in the industrial district.

  7. Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality.

    PubMed

    Gosling, Simon N; Hondula, David M; Bunker, Aditi; Ibarreta, Dolores; Liu, Junguo; Zhang, Xinxin; Sauerborn, Rainer

    2017-08-16

    Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to "adaptation uncertainty" (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. This study had three aims: a ) Compare the range in projected impacts that arises from using different adaptation modeling methods; b ) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c ) recommend modeling method(s) to use in future impact assessments. We estimated impacts for 2070-2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634.

  8. The Nova-like star RW Sextantis

    NASA Astrophysics Data System (ADS)

    Stokes, S. J.; Evans, J. M.; Bianchini, A.; Canterna, R.

    2000-12-01

    We have analyzed 17 medium resolution spectra of RW Sex taken in 1988 at La Silla in the spectral range is 4000-5000 Å with a dispersion of 60 Å/mm and spectral resolution of about 2 Å/pixel. The mean spectrum of the object shows the continuum energy distribution slightly brighter and steeper than that observed by Beuermann, Stasiewski and Schwope (1992). In both cases the slope seems to be steeper that the λ -2.33 power law predicted for standard accretion discs (see Warner 1995). This might be due to uncertain flux calibration or to the dramatic intrinsic variability of this nova-like system (Honeycutt et al. 1998). Like in Beuerman et al.'s, the hydrogen and the HeI lines appear in absorption with superimposed central emission components. Relatively weak emissions from HeII at λ λ 4542,4686 and the blend CIII+NIII at λ4640 -50 are also seen. The peaks of the narrow emissions components of Hβ , HeIλ4471 and HeIλ4922 have been measured using Gaussian fittings. The new ephemeris are: T0(HJD) = 2446486.5061 +/- 0.0010 + 0.245064 +/- 0.000004 The radial velocity curve produced by the absorption components of the hydrogen and the HeI lines are in antiphase with respect to that produced by the emission cores. The amplitudes of all the radial velocity curves are consistent with those shown by Beuermann, Stasiewski and Schwope (1992). According to these authors the absorption lines are produced in the optically thick accretion disc while the narrow emissions arise from the heated atmosphere of the secondary. We fail however to detect the broad emission components observed by these authors and attributed to the hot disc corona. This point should deserve future investigation.

  9. Evaluation of multiple emission point facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miltenberger, R.P.; Hull, A.P.; Strachan, S.

    In 1970, the New York State Department of Environmental Conservation (NYSDEC) assumed responsibility for the environmental aspect of the state's regulatory program for by-product, source, and special nuclear material. The major objective of this study was to provide consultation to NYSDEC and the US NRC to assist NYSDEC in determining if broad-based licensed facilities with multiple emission points were in compliance with NYCRR Part 380. Under this contract, BNL would evaluate a multiple emission point facility, identified by NYSDEC, as a case study. The review would be a nonbinding evaluation of the facility to determine likely dispersion characteristics, compliance withmore » specified release limits, and implementation of the ALARA philosophy regarding effluent release practices. From the data collected, guidance as to areas of future investigation and the impact of new federal regulations were to be developed. Reported here is the case study for the University of Rochester, Strong Memorial Medical Center and Riverside Campus.« less

  10. Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013

    NASA Astrophysics Data System (ADS)

    Warneke, Carsten; Trainer, Michael; de Gouw, Joost A.; Parrish, David D.; Fahey, David W.; Ravishankara, A. R.; Middlebrook, Ann M.; Brock, Charles A.; Roberts, James M.; Brown, Steven S.; Neuman, Jonathan A.; Lerner, Brian M.; Lack, Daniel; Law, Daniel; Hübler, Gerhard; Pollack, Iliana; Sjostedt, Steven; Ryerson, Thomas B.; Gilman, Jessica B.; Liao, Jin; Holloway, John; Peischl, Jeff; Nowak, John B.; Aikin, Kenneth C.; Min, Kyung-Eun; Washenfelder, Rebecca A.; Graus, Martin G.; Richardson, Mathew; Markovic, Milos Z.; Wagner, Nick L.; Welti, André; Veres, Patrick R.; Edwards, Peter; Schwarz, Joshua P.; Gordon, Timothy; Dube, William P.; McKeen, Stuart A.; Brioude, Jerome; Ahmadov, Ravan; Bougiatioti, Aikaterini; Lin, Jack J.; Nenes, Athanasios; Wolfe, Glenn M.; Hanisco, Thomas F.; Lee, Ben H.; Lopez-Hilfiker, Felipe D.; Thornton, Joel A.; Keutsch, Frank N.; Kaiser, Jennifer; Mao, Jingqiu; Hatch, Courtney D.

    2016-07-01

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

  11. Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013

    PubMed Central

    Warneke, C.; Trainer, M.; de Gouw, J.A.; Parrish, D.D.; Fahey, D.W.; Ravishankara, A.R.; Middlebrook, A.M.; Brock, C.A.; Roberts, J.M.; Brown, S.S.; Neuman, J.A.; Lerner, B.M.; Lack, D.; Law, D.; Hübler, G.; Pollack, I.; Sjostedt, S.; Ryerson, T.B.; Gilman, J.B.; Liao, J.; Holloway, J.; Peischl, J.; Nowak, J.B.; Aikin, K.; Min, K.-E.; Washenfelder, R.A.; Graus, M.G.; Richardson, M.; Markovic, M.Z.; Wagner, N.L.; Welti, A.; Veres, P.R.; Edwards, P.; Schwarz, J.P.; Gordon, T.; Dube, W.P.; McKeen, S.; Brioude, J.; Ahmadov, R.; Bougiatioti, A.; Lin, J.J.; Nenes, A.; Wolfe, G.M.; Hanisco, T.F.; Lee, B.H.; Lopez-Hilfiker, F.D.; Thornton, J.A.; Keutsch, F.N.; Kaiser, J.; Mao, J.; Hatch, C.

    2018-01-01

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions. PMID:29619117

  12. Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013

    NASA Technical Reports Server (NTRS)

    Warneke, C.; Trainer, M.; de Gouw, J. A.; Parrish, D. D.; Fahey, D. W.; Ravishankara, A. R.; Middlebrook, A. M.; Brock, C. A.; Roberts, J. M.; Brown, S. S.; hide

    2016-01-01

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

  13. Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013.

    PubMed

    Warneke, C; Trainer, M; de Gouw, J A; Parrish, D D; Fahey, D W; Ravishankara, A R; Middlebrook, A M; Brock, C A; Roberts, J M; Brown, S S; Neuman, J A; Lerner, B M; Lack, D; Law, D; Hübler, G; Pollack, I; Sjostedt, S; Ryerson, T B; Gilman, J B; Liao, J; Holloway, J; Peischl, J; Nowak, J B; Aikin, K; Min, K-E; Washenfelder, R A; Graus, M G; Richardson, M; Markovic, M Z; Wagner, N L; Welti, A; Veres, P R; Edwards, P; Schwarz, J P; Gordon, T; Dube, W P; McKeen, S; Brioude, J; Ahmadov, R; Bougiatioti, A; Lin, J J; Nenes, A; Wolfe, G M; Hanisco, T F; Lee, B H; Lopez-Hilfiker, F D; Thornton, J A; Keutsch, F N; Kaiser, J; Mao, J; Hatch, C

    2016-01-01

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO 2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

  14. First Detection of Near-infrared Line Emission from Organics in Young Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Mandell, Avi M.; Bast, Jeanette; van Dishoeck, Ewine F.; Blake, Geoffrey A.; Salyk, Colette; Mumma, Michael J.; Villanueva, Geronimo

    2012-03-01

    We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope, revealing the first detections of emission from HCN and C2H2 in circumstellar disks at near-infrared wavelengths. Using advanced data reduction techniques, we achieve a dynamic range with respect to the disk continuum of ~500 at 3 μm, revealing multiple emission features of H2O, OH, HCN, and C2H2. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH4 and NH3. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20°, suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we compare these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU). Based partially on observations collected at the European Southern Observatory Very Large Telescope under program ID 179.C-0151, program ID 283.C-5016, and program ID 082.C-0432 (P.I.: Pontopiddan).

  15. The Kinematics of Multiple-peaked Lyα Emission in Star-forming Galaxies at z ~ 2-3

    NASA Astrophysics Data System (ADS)

    Kulas, Kristin R.; Shapley, Alice E.; Kollmeier, Juna A.; Zheng, Zheng; Steidel, Charles C.; Hainline, Kevin N.

    2012-01-01

    We present new results on the Lyα emission-line kinematics of 18 z ~ 2-3 star-forming galaxies with multiple-peaked Lyα profiles. With our large spectroscopic database of UV-selected star-forming galaxies at these redshifts, we have determined that ~30% of such objects with detectable Lyα emission display multiple-peaked emission profiles. These profiles provide additional constraints on the escape of Lyα photons due to the rich velocity structure in the emergent line. Despite recent advances in modeling the escape of Lyα from star-forming galaxies at high redshifts, comparisons between models and data are often missing crucial observational information. Using Keck II NIRSPEC spectra of Hα (z ~ 2) and [O III]λ5007 (z ~ 3), we have measured accurate systemic redshifts, rest-frame optical nebular velocity dispersions, and emission-line fluxes for the objects in the sample. In addition, rest-frame UV luminosities and colors provide estimates of star formation rates and the degree of dust extinction. In concert with the profile sub-structure, these measurements provide critical constraints on the geometry and kinematics of interstellar gas in high-redshift galaxies. Accurate systemic redshifts allow us to translate the multiple-peaked Lyα profiles into velocity space, revealing that the majority (11/18) display double-peaked emission straddling the velocity-field zero point with stronger red-side emission. Interstellar absorption-line kinematics suggest the presence of large-scale outflows for the majority of objects in our sample, with an average measured interstellar absorption velocity offset of langΔv absrang = -230 km s-1. A comparison of the interstellar absorption kinematics for objects with multiple- and single-peaked Lyα profiles indicate that the multiple-peaked objects are characterized by significantly narrower absorption line widths. We compare our data with the predictions of simple models for outflowing and infalling gas distributions around high-redshift galaxies. While popular "shell" models provide a qualitative match with many of the observations of Lyα emission, we find that in detail there are important discrepancies between the models and data, as well as problems with applying the framework of an expanding thin shell of gas to explain high-redshift galaxy spectra. Our data highlight these inconsistencies, as well as illuminating critical elements for success in future models of outflow and infall in high-redshift galaxies. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  16. util_2comp: Planck-based two-component dust model utilities

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron

    2014-11-01

    The util_2comp software utilities generate predictions of far-infrared Galactic dust emission and reddening based on a two-component dust emission model fit to Planck HFI, DIRBE and IRAS data from 100 GHz to 3000 GHz. These predictions and the associated dust temperature map have angular resolution of 6.1 arcminutes and are available over the entire sky. Implementations in IDL and Python are included.

  17. Classifying four-category visual objects using multiple ERP components in single-trial ERP.

    PubMed

    Qin, Yu; Zhan, Yu; Wang, Changming; Zhang, Jiacai; Yao, Li; Guo, Xiaojuan; Wu, Xia; Hu, Bin

    2016-08-01

    Object categorization using single-trial electroencephalography (EEG) data measured while participants view images has been studied intensively. In previous studies, multiple event-related potential (ERP) components (e.g., P1, N1, P2, and P3) were used to improve the performance of object categorization of visual stimuli. In this study, we introduce a novel method that uses multiple-kernel support vector machine to fuse multiple ERP component features. We investigate whether fusing the potential complementary information of different ERP components (e.g., P1, N1, P2a, and P2b) can improve the performance of four-category visual object classification in single-trial EEGs. We also compare the classification accuracy of different ERP component fusion methods. Our experimental results indicate that the classification accuracy increases through multiple ERP fusion. Additional comparative analyses indicate that the multiple-kernel fusion method can achieve a mean classification accuracy higher than 72 %, which is substantially better than that achieved with any single ERP component feature (55.07 % for the best single ERP component, N1). We compare the classification results with those of other fusion methods and determine that the accuracy of the multiple-kernel fusion method is 5.47, 4.06, and 16.90 % higher than those of feature concatenation, feature extraction, and decision fusion, respectively. Our study shows that our multiple-kernel fusion method outperforms other fusion methods and thus provides a means to improve the classification performance of single-trial ERPs in brain-computer interface research.

  18. Constraining atmospheric ammonia emissions through new observations with an open-path, laser-based sensor

    NASA Astrophysics Data System (ADS)

    Sun, Kang

    As the third most abundant nitrogen species in the atmosphere, ammonia (NH3) is a key component of the global nitrogen cycle. Since the industrial revolution, humans have more than doubled the emissions of NH3 to the atmosphere by industrial nitrogen fixation, revolutionizing agricultural practices, and burning fossil fuels. NH3 is a major precursor to fine particulate matter (PM2.5), which has adverse impacts on air quality and human health. The direct and indirect aerosol radiative forcings currently constitute the largest uncertainties for future climate change predictions. Gas and particle phase NH3 eventually deposits back to the Earth's surface as reactive nitrogen, leading to the exceedance of ecosystem critical loads and perturbation of ecosystem productivity. Large uncertainties still remain in estimating the magnitude and spatiotemporal patterns of NH3 emissions from all sources and over a range of scales. These uncertainties in emissions also propagate to the deposition of reactive nitrogen. To improve our understanding of NH3 emissions, observational constraints are needed from local to global scales. The first part of this thesis is to provide quality-controlled, reliable NH3 measurements in the field using an open-path, quantum cascade laser-based NH3 sensor. As the second and third part of my research, NH3 emissions were quantified from a cattle feedlot using eddy covariance (EC) flux measurements, and the similarities between NH3 turbulent fluxes and those of other scalars (temperature, water vapor, and CO2) were investigated. The fourth part involves applying a mobile laboratory equipped with the open-path NH3 sensor and other important chemical/meteorological measurements to quantify fleet-integrated NH3 emissions from on-road vehicles. In the fifth part, the on-road measurements were extended to multiple major urban areas in both the US and China in the context of five observation campaigns. The results significantly improved current urban NH3 emission estimates. Finally, NH3 observations from the TES instrument on NASA Aura satellite were validated with mobile measurements and aircraft observations. Improved validations will help to constrain NH3 emissions at continental to global scales. Ultimately, these efforts will improve the understanding of NH3 emissions from all scales, with implications on the global nitrogen cycle and atmospheric chemistry-climate interactions.

  19. The IR emission features - Emission from PAH molecules and amorphous carbon particles

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    Techniques for the assessment of the importance of the various forms of PAHs, and recent infrared observations concerning the PAH problem, are considered. Spectroscopic data suggest that the observed interstellar spectrum is due to both free molecule-sized PAHs producing the narrow features, and amorphous carbon particles contributing to the broad underlying components. Explanations for the multicomponent emission spectrum are discussed. A model of the emission mechanism for the example of chrysene is presented, and an exact treatment of the IR fluorescence from highly vibrationally excited large molecules shows that species containing 20-30 carbon atoms are responsible for the narrow features, although the spectra more closely resemble those of amorphous carbon particles. It is suggested that future emphasis should be placed on the spatial characteristics of the component spectra.

  20. ROSAT observations of NGC 2146: Evidence for a starburst-driven superwind

    NASA Technical Reports Server (NTRS)

    Armus, L.; Heckman, T. M.; Weaver, K. A.; Lehnert, M. D.

    1995-01-01

    We have imaged the edge-on starburst galaxy NGC 2146 with the Position Sensitive Proportional Counter (PSPC) and the High Resolution Imager (HRI) on board ROSAT and have compared these data to optical images and long-slit spectra. NGC 2146 possesses a very large X-ray nebula with a half-light radius of 1 min (4 kpc) and a maximum diameter of approximately 4 min, or 17 kpc. The X-ray emission is resolved by the PSPC and preferentially oriented along the minor axis, with a total flux of 1.1 x 10(exp -12) ergs/sq cm/s over 0.2 - 2.4 keV and a luminosity of approximately 3 x 10(exp 40) ergs/s. The inner X-ray nebula is resolved by the HRI into at least four bright knots together with strong diffuse emission responsible for at least 50% of the flux within a radius of 0.5 min (approximately 2 kpc). The brightest knot has a luminosity of (2 - 3) x 10(exp 39) ergs/s. The X-ray nebula has a spatial extent much larger than the starburst ridge seen at centimeter wavelengths by Kronberg & Biermann (1981) and is oriented in a `X-like' pattern along the galaxy minor axis at a position angle of approximately 30 degrees. This minor-axis X-ray emission is associated with a region of H alpha and dust filaments seen in optical images. Optical spectra show that the emission-line gas along the minor axis is characterized by relatively broad lines (approximately 250 km/s full width half-maximum (FWHM)) and by `shocklike' emission-line flux ratios. Together with the blue-asymmetric nuclear emission-line and NaD interstellar absorption-line profiles, these optical data strongly suggest the presence of a starburst-driven superwind. The X-ray spectrum extracted from the central 5 min contains a strong Fe L emission-line complex at 0.6 - 1.0 keV and a hard excess above 1.0 keV. The spectrum is best described with a two-component model, containing a soft (kT approximately 400 - 500 eV) Raymond-Smith thermal plasma together with either a Gamma = 1.7 power-law or a kT greater than 2.2 keV bremsstrahlung component. The soft thermal component provides approximately 30% of the total luminosity over 0.2 - 2.4 keV, or approximately 10(exp 40) ergs/s. The pressure derived from the soft component of the X-ray spectrum is consistent with that predicted from a starburst-driven superwind if the filling factor of the warm gas is approximately 1% - 10 %. If the hard X-ray component is thermal gas associated with the galactic outflow, the filling factor must be close to unity. Predictions of the luminosity, temperature, and size of an adiabatic starburst-generated windblown bubble are consistent with those measured for the soft thermal X-ray emission in NGC 2146. The hard X-ray component, however, has a luminosity much larger than predicted by the superwind model if this component is thermal emission from gas heated by an internal shock in the expanding bubble. We briefly review various possibilities as to the nature of the hard X-ray component in NGC 2146.

  1. Strategies for emission reduction of air pollutants produced from a chemical plant.

    PubMed

    Lee, Byeong-Kyu; Cho, Sung-Woong

    2003-01-01

    Various air pollution control (APC) techniques were employed in order to reduce emissions of air pollutants produced from chemical plants, which have many different chemical production facilities. For an emission reduction of acid gases, this study employed a method to improve solubility of pollutants by decreasing the operating temperature of the scrubbers, increasing the surface area for effective contact of gas and liquid, and modifying processes in the acid scrubbers. To reduce emission of both amines and acid gases, pollutant gas components were first separated, then condensation and/or acid scrubbing, depending on the chemical and physical properties of pollutant components, were used. To reduce emission of solvents, condensation and activated carbon adsorption were employed. To reduce emission of a mixture gases containing acid gases and solvents, the mixed gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. As a strategy to reduce emission of pollutants at the source, this study also employed the simple pollution prevention concept of modification of the previously operating APC control device. Finally, air emissions of pollutants produced from the chemical plants were much more reduced by applying proper APC methods, depending upon the types (physical or chemical properties) and the specific emission situations of pollutants.

  2. Comparison on electrically pumped random laser actions of hydrothermal and sputtered ZnO films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Canxing; Jiang, Haotian; Li, Yunpeng

    2013-10-07

    Random lasing (RL) in polycrystalline ZnO films is an intriguing research subject. Here, we have comparatively investigated electrically pumped RL behaviors of two metal-insulator-semiconductor structured devices using the hydrothermal and sputtered ZnO films as the semiconductor components, i.e., the light-emitting layers, respectively. It is demonstrated that the device using the hydrothermal ZnO film exhibits smaller threshold current and larger output optical power of the electrically pumped RL. The morphological characterization shows that the hydrothermal ZnO film is somewhat porous and is much rougher than the sputtered one, suggesting that in the former stronger multiple light scattering can occur. Moreover, themore » photoluminescence characterization indicates that there are fewer defects in the hydrothermal ZnO film than in the sputtered one, which means that the photons can pick up larger optical gain through stimulated emission in the hydrothermal ZnO film. Therefore, it is believed that the stronger multiple light scattering and larger optical gain contribute to the improved performance of the electrically pumped RL from the device using the hydrothermal ZnO film.« less

  3. EMISSIONS OF SULFUR TRIOXIDE FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough not to cause opacity violations and acid deposition. Generally, a small fraction of sulfur in coal is converted to SO3 in coal-fired co...

  4. 40 CFR 98.363 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Calculating GHG emissions. 98.363 Section 98.363 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.363 Calculating GHG emissions. (a) For all manure management system components listed...

  5. 40 CFR 98.363 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Calculating GHG emissions. 98.363 Section 98.363 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.363 Calculating GHG emissions. (a) For all manure management system components listed...

  6. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    Health risk evaluation needs precise measurement and modeling of human exposures in microenvironments to support review of current air quality standards. The particulate matter emissions from motor vehicles are a major component of human exposures in urban microenvironments. Cu...

  7. 40 CFR 86.1830-01 - Acceptance of vehicles for emission testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tolerance range. The manufacturer will determine which components affect emissions using good engineering... hardware and software must be installed and operational during all mileage accumulation after the 5000-mile... representativeness of the emission results will not be affected. Manufacturers shall use good engineering judgment in...

  8. 40 CFR 63.11519 - What are my notification, recordkeeping, and reporting requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., a brief characterization of the types of products (e.g., aerospace components, sports equipment, etc... of emissions opacity. (9) Site-specific Welding Emissions Management Plan reporting. You must submit...-Specific Welding Emissions Management Plan and any subsequent revisions to the plan pursuant to § 63.11516...

  9. [Bioacoustic of the advertisement call of Ceratophrys cranwelli (Anura: Ceratophryidae)].

    PubMed

    Valetti, Julián Alonso; Salas, Nancy Edith; Martino, Adolfo Ludovico

    2013-03-01

    The advertisement call plays an important role in the life history of anuran amphibians, mainly during the breeding season. Call features represent an important character to discriminate species, and sound emissions are very effective to assure or reinforce genetic incompatibility, especially in the case of sibling species. Since frogs are ectotherms, acoustic properties of their calls will vary with temperature. In this study, we described the advertisement call of C. cranwelli, quantifying the temperature effect on its components. The acoustic emissions were recorded during 2007 using a DAT record Sony TCD-100 with stereo microphone ECM-MS907 Sony and tape TDK DAT-RGX 60. As males emit their calls floating in temporary ponds, water temperatures were registered after recording the advertisement calls with a digital thermometer TES 1300+/-0.1 degreeC. Altogether, 54 calls from 18 males were analyzed. The temporal variables of each advertisement call were measured using oscillograms and sonograms and the analyses of dominant frequency were performed using a spectrogram. Multiple correlation analysis was used to identify the temperature-dependent acoustic variables and the temperature effect on these variables was quantified using linear regression models. The advertisement call of C. cranwelli consists of a single pulse group. Call duration, Pulse duration and Pulse interval decreased with the temperature, whereas the Pulse rate increased with temperature. The temperature-dependent variables were standardized at 25 degreeC according to the linear regression model obtained. The acoustic variables that were correlated with the temperature are the variables which emissions depend on laryngeal muscles and the temperature constraints the contractile properties of muscles. Our results indicated that temperature explains an important fraction of the variability in some acoustic variables (79% in the Pulse rate), and demonstrated the importance of considering the effect of temperature in acoustic components. The results suggest that acoustic variables show geographic variation to compare data with previous works.

  10. A {sup 13}CO Detection in a Brightest Cluster Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vantyghem, A. N.; McNamara, B. R.; Hogan, M. T.

    We present ALMA Cycle 4 observations of CO(1-0), CO(3-2), and {sup 13}CO(3-2) line emission in the brightest cluster galaxy (BCG) of RXJ0821+0752. This is one of the first detections of {sup 13}CO line emission in a galaxy cluster. Half of the CO(3-2) line emission originates from two clumps of molecular gas that are spatially offset from the galactic center. These clumps are surrounded by diffuse emission that extends 8 kpc in length. The detected {sup 13}CO emission is confined entirely to the two bright clumps, with any emission outside of this region lying below our detection threshold. Two distinct velocitymore » components with similar integrated fluxes are detected in the {sup 12}CO spectra. The narrower component (60 km s{sup −1} FWHM) is consistent in both velocity centroid and linewidth with {sup 13}CO(3-2) emission, while the broader (130–160 km s{sup −1}), slightly blueshifted wing has no associated {sup 13}CO(3-2) emission. A simple local thermodynamic model indicates that the {sup 13}CO emission traces 2.1 × 10{sup 9} M {sub ⊙} of molecular gas. Isolating the {sup 12}CO velocity component that accompanies the {sup 13}CO emission yields a CO-to-H{sub 2} conversion factor of α {sub CO} = 2.3 M {sub ⊙} (K km s{sup −1}){sup −1}, which is a factor of two lower than the Galactic value. Adopting the Galactic CO-to-H{sub 2} conversion factor in BCGs may therefore overestimate their molecular gas masses by a factor of two. This is within the object-to-object scatter from extragalactic sources, so calibrations in a larger sample of clusters are necessary in order to confirm a sub-Galactic conversion factor.« less

  11. Trace gas emissions from a sun and shade grown ornamental crop

    USDA-ARS?s Scientific Manuscript database

    Previous work has begun to establish baseline approximations for greenhouse gas (GHG) (CO2, CH4, and N2O) emissions of several horticultural crops, though much work is still needed to expand contingencies for multiple best management practices. In this study, GHG emissions from one shade-grown speci...

  12. Observations of X-ray flares in G-K dwarfs by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Pandey, Jeewan Chandra

    Eclipsing binary BD +5 706 is best investigated member of rare class of cool Algols, which differ from clasical Algol systems in that the mass gaining component is also a late-type star. The analysis of X-ray lightcurve of this system registered by ROSAT suggested the primary component to be the dominant source of activity in the system (Torres et al, AJ 125, 3237, 2003). We reconstruct the spatial structure of coronal emission within the system according to the method proposed by Siarkowski, and show that coronal emission is most likely attributed to both components.

  13. Microchannel plate detector and methods for their fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elam, Jeffrey W.; Mane, Anil U.; Peng, Qing

    A multi-component tunable resistive coating and methods of depositing the coating on the surfaces of a microchannel plate (MCP) detector. The resistive coating composed of a plurality of alternating layers of a metal oxide resistive component layer and a conductive component layer composed of at least one of a metal, a metal nitride and a metal sulfide. The coating may further include an emissive layer configured to produce a secondary electron emission in response to a particle interacting with the MCP and a neutron-absorbing layer configured to respond to a neutron interacting with the MCP.

  14. Anticounterfeiting Quick Response Code with Emission Color of Invisible Metal-Organic Frameworks as Encoding Information.

    PubMed

    Wang, Yong-Mei; Tian, Xue-Tao; Zhang, Hui; Yang, Zhong-Rui; Yin, Xue-Bo

    2018-06-21

    Counterfeiting is a global epidemic that is compelling the development of new anticounterfeiting strategy. Herein, we report a novel multiple anticounterfeiting encoding strategy of invisible fluorescent quick response (QR) codes with emission color as information storage unit. The strategy requires red, green, and blue (RGB) light-emitting materials for different emission colors as encrypting information, single excitation for all of the emission for practicability, and ultraviolet (UV) excitation for invisibility under daylight. Therefore, RGB light-emitting nanoscale metal-organic frameworks (NMOFs) are designed as inks to construct the colorful light-emitting boxes for information encrypting, while three black vertex boxes were used for positioning. Full-color emissions are obtained by mixing the trichromatic NMOFs inks through inkjet printer. The encrypting information capacity is easily adjusted by the number of light-emitting boxes with the infinite emission colors. The information is decoded with specific excitation light at 275 nm, making the QR codes invisible under daylight. The composition of inks, invisibility, inkjet printing, and the abundant encrypting information all contribute to multiple anticounterfeiting. The proposed QR codes pattern holds great potential for advanced anticounterfeiting.

  15. Pre-compound emission in low-energy heavy-ion interactions

    NASA Astrophysics Data System (ADS)

    Sharma, Manoj Kumar; Shuaib, Mohd.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Singh, Devendra P.; Unnati; Singh, B. P.; Prasad, R.

    2017-11-01

    Recent experimental studies have shown the presence of pre-compound emission component in heavy ion reactions at low projectile energy ranging from 4 to 7 MeV/nucleons. In earlier measurements strength of the pre-compound component has been estimated from the difference in forward-backward distributions of emitted particles. Present measurement is a part of an ongoing program on the study of reaction dynamics of heavy ion interactions at low energies aimed at investigating the effect of momentum transfer in compound, precompound, complete and incomplete fusion processes in heavy ion reactions. In the present work on the basis of momentum transfer the measurement of the recoil range distributions of heavy residues has been used to decipher the components of compound and pre-compound emission processes in the fusion of 16O projectile with 159Tb and 169Tm targets. The analysis of recoil range distribution measurements show two distinct linear momentum transfer components corresponding to pre-compound and compound nucleus processes are involved. In order to obtain the mean input angular momentum associated with compound and pre-compound emission processes, an online measurement of the spin distributions of the residues has been performed. The analysis of spin distribution indicate that the mean input angular momentum associated with pre-compound products is found to be relatively lower than that associated with compound nucleus process. The pre-compound components obtained from the present analysis are consistent with those obtained from the analysis of excitation functions.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moretti, Elena; Axelsson, Magnus

    One of the major results from the study of gamma-ray bursts with the Fermi Gamma-ray Space Telescope has been the confirmation that several emission components can be present in the energy spectrum. In this paper, we reanalyse the spectrum of GRB 080825C using data from the Fermi-Large Area Telescope (LAT) and Gamma-ray Burst Monitor instruments. Although fairly weak, it is the first gamma-ray burst detected by the Fermi-LAT. We improve on the original analysis by using the LAT Low Energy events covering the 30–100 MeV band. We find evidence of an additional component above the main emission peak (modelled usingmore » a Band function) with a significance of 3.5σ in two out of the four time bins. The component is well fitted by a Planck function, but shows unusual behaviour: the peak energy increases in the prompt emission phase, reaching energies of several MeV. This is the first time such a trend has been seen, and implies that the origin of this component is different from those previously detected. We suggest that the two spectral components likely arise in different regions of the outflow, and that strong constraints can be achieved by assuming one of them originates from the photosphere. Finally, the most promising model appears to be that the high-energy peak is the result of photospheric emission in a Poynting flux dominated outflow where the magnetization increases with time.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resmi, Lekshmi; Zhang, Bing, E-mail: l.resmi@iist.ac.in

    Reverse shock (RS) emission from gamma-ray bursts is an important tool in investigating the nature of the ejecta from the central engine. If the magnetization of the ejecta is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would provide an important contribution to early afterglow light curve. In the radio band, synchrotron self-absorption may suppress early RS emission and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band under different dynamical conditions. In particular, we stress that themore » RS radio emission is subject to self-absorption in both RSs and forward shocks (FSs). We calculate the ratio between the RS to FS flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS emission which is enhanced by moderate magnetization, moderately magnetized ejecta do not necessarily produce a brighter radio RS due to the self-absorption effect. For typical parameters, the RS emission component would not be detectable below 1 GHz unless the medium density is very low (e.g., n < 10{sup −3} cm{sup −3} for the interstellar medium and A {sub *} < 5 × 10{sup −4} for wind). These predictions can be tested using the afterglow observations from current and upcoming radio facilities such as the Karl G. Jansky Very Large Array, the Low-Frequency Array, the Five Hundred Meter Aperture Spherical Telescope, and the Square Kilometer Array.« less

  18. The EPIC-MOS Particle-Induced Background Spectra

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Sowden, S. L.

    2007-01-01

    In order to analyse diffuse emission that fills the field of view, one must accurately characterize the instrumental backgrounds. For the XMM-Newton EPIC instrument these backgrounds include a temporally variable "quiescent" component. as well as the strongly variable soft proton contamination. We have characterized the spectral and spatial response of the EPIC detectors to these background components and have developed tools to remove these backgrounds from observations. The "quiescent" component was characterized using a combination of the filter-wheel-closed data and a database of unexposed-region data. The soft proton contamination was characterized by differencing images and spectra taken during flared and flare-free intervals. After application of our modeled backgrounds, the differences between independent observations of the same region of "blank sky" are consistent with the statistical uncertainties except when there is clear spectral evidence of solar wind charge exchange emission. Using a large sample of blank sky data, we show that strong magnetospheric SWCX emission requires elevated solar wind fluxes; observations through the densest part of the magnetosheath are not necessarily strongly contaminated with SWCX emission.

  19. The "Cool Algol" BD+05 706 : Photometric observations of a new eclipsing double-lined spectroscopic binary

    NASA Astrophysics Data System (ADS)

    Marschall, L. A.; Torres, G.; Neuhauser, R.

    1998-05-01

    BVRI Observations of the star BD+05 706, carried out between January, 1997, and April 1998 using the 0.4m reflector and Photometrics CCD camera at the Gettysburg College Observatory, show that the star is an eclipsing binary system with a light curve characteristic of a class of semi-detached binaries known as the "cool Algols". These results are in good agreement with the previous report of BD+05 706 as a cool Algol by Torres, Neuhauser, and Wichmann,(Astron. J., 115, May 1998) who based their classification on the strong X-ray emission detected by Rosat and on a series of spectroscopic observations of the radial velocities of both components of the system obtained at the Oak Ridge Observatory, the Fred L. Whipple Observatory, and the Multiple Mirror Telescope. Only 10 other examples of cool Algols are known, and the current photometric light curve, together with the radial velocity curves obtained previously, allows us to derive a complete solution for the physical parameters of each component, providing important constraints on models for these interesting systems.

  20. Ultrafast photoinduced electron transfer in the micelle and the gel phase of a PEO-PPO-PEO triblock copolymer

    NASA Astrophysics Data System (ADS)

    Mandal, Ujjwal; Ghosh, Subhadip; Dey, Shantanu; Adhikari, Aniruddha; Bhattacharyya, Kankan

    2008-04-01

    Ultrafast photoinduced electron transfer (PET) from N,N-dimethylaniline (DMA) to coumarin dyes is studied in the micelle and the gel phase of a triblock copolymer, (PEO)20-(PPO)70-(PEO)20 (Pluronic P123) by picosecond and femtosecond emission spectroscopies. The rate of PET in a P123 micelle and gel is found to be nonexponential and faster than the slow components of solvation dynamics. In a P123 micelle and gel, PET occurs on multiple time scales ranging from a subpicosecond time scale to a few nanoseconds. In the gel phase, the highest rate constant (9.3×109M-1s-1) of ET for C152 is about two times higher than that (3.8×109M-1s-1) observed in micelle phase. The ultrafast components of electron transfer (ET) exhibits a bell shaped dependence with the free energy change which is similar to the Marcus inversion. Possible reasons for slower PET in P123 micelle compared to other micelles and relative to P123 gel are discussed.

Top