The limits for life under multiple extremes.
Harrison, Jesse P; Gheeraert, Nicolas; Tsigelnitskiy, Dmitry; Cockell, Charles S
2013-04-01
Life on Earth is limited by physical and chemical extremes that define the 'habitable space' within which it operates. Aside from its requirement for liquid water, no definite limits have been established for life under any extreme. Here, we employ growth data published for 67 prokaryotic strains to explore the limitations for microbial life under combined extremes of temperature, pH, salt (NaCl) concentrations, and pressure. Our review reveals a fundamental lack of information on the tolerance of microorganisms to multiple extremes that impedes several areas of science, ranging from environmental and industrial microbiology to the search for extraterrestrial life. Copyright © 2013 Elsevier Ltd. All rights reserved.
Microbial diversity of extreme habitats in human homes.
Savage, Amy M; Hills, Justin; Driscoll, Katherine; Fergus, Daniel J; Grunden, Amy M; Dunn, Robert R
2016-01-01
High-throughput sequencing techniques have opened up the world of microbial diversity to scientists, and a flurry of studies in the most remote and extreme habitats on earth have begun to elucidate the key roles of microbes in ecosystems with extreme conditions. These same environmental extremes can also be found closer to humans, even in our homes. Here, we used high-throughput sequencing techniques to assess bacterial and archaeal diversity in the extreme environments inside human homes (e.g., dishwashers, hot water heaters, washing machine bleach reservoirs, etc.). We focused on habitats in the home with extreme temperature, pH, and chemical environmental conditions. We found a lower diversity of microbes in these extreme home environments compared to less extreme habitats in the home. However, we were nonetheless able to detect sequences from a relatively diverse array of bacteria and archaea. Habitats with extreme temperatures alone appeared to be able to support a greater diversity of microbes than habitats with extreme pH or extreme chemical environments alone. Microbial diversity was lowest when habitats had both extreme temperature and one of these other extremes. In habitats with both extreme temperatures and extreme pH, taxa with known associations with extreme conditions dominated. Our findings highlight the importance of examining interactive effects of multiple environmental extremes on microbial communities. Inasmuch as taxa from extreme environments can be both beneficial and harmful to humans, our findings also suggest future work to understand both the threats and opportunities posed by the life in these habitats.
Burguener, Germán F; Maldonado, Marcos J; Revale, Santiago; Fernández Do Porto, Darío; Rascován, Nicolás; Vázquez, Martín; Farías, María Eugenia; Marti, Marcelo A; Turjanski, Adrián Gustavo
2014-02-06
Halorubrum sp. strain AJ67, an extreme halophilic UV-resistant archaeon, was isolated from Laguna Antofalla in the Argentinian Puna. The draft genome sequence suggests the presence of potent enzyme candidates that are essential for survival under multiple environmental extreme conditions, such as high UV radiation, elevated salinity, and the presence of critical arsenic concentrations.
Burguener, Germán F.; Maldonado, Marcos J.; Revale, Santiago; Fernández Do Porto, Darío; Rascován, Nicolás; Vázquez, Martín; Farías, María Eugenia; Marti, Marcelo A.
2014-01-01
Halorubrum sp. strain AJ67, an extreme halophilic UV-resistant archaeon, was isolated from Laguna Antofalla in the Argentinian Puna. The draft genome sequence suggests the presence of potent enzyme candidates that are essential for survival under multiple environmental extreme conditions, such as high UV radiation, elevated salinity, and the presence of critical arsenic concentrations. PMID:24503991
Boros, Emil; Katalin, V-Balogh; Vörös, Lajos; Horváth, Zsófia
2017-01-01
Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n=84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009-2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L -1 , max: 16 g L -1 ), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L -1 ), and total phosphorus concentration was also extremely high (median: 2 mg L -1 , max: 32 mg L -1 ). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem.
Jones, Alice R; Bull, C Michael; Brook, Barry W; Wells, Konstans; Pollock, Kenneth H; Fordham, Damien A
2016-03-01
Assessing the impacts of multiple, often synergistic, stressors on the population dynamics of long-lived species is becoming increasingly important due to recent and future global change. Tiliqua rugosa (sleepy lizard) is a long-lived skink (>30 years) that is adapted to survive in semi-arid environments with varying levels of parasite exposure and highly seasonal food availability. We used an exhaustive database of 30 years of capture-mark-recapture records to quantify the impacts of both parasite exposure and environmental conditions on the lizard's survival rates and long-term population dynamics. Lizard abundance was relatively stable throughout the study period; however, there were changing patterns in adult and juvenile apparent survival rates, driven by spatial and temporal variation in levels of tick exposure and temporal variation in environmental conditions. Extreme weather events during the winter and spring seasons were identified as important environmental drivers of survival. Climate models predict a dramatic increase in the frequency of extreme hot and dry winter and spring seasons in our South Australian study region; from a contemporary probability of 0.17 up to 0.47-0.83 in 2080 depending on the emissions scenario. Our stochastic population model projections showed that these future climatic conditions will induce a decline in the abundance of this long-lived reptile of up to 67% within 30 years from 2080, under worst case scenario modelling. The results have broad implications for future work investigating the drivers of population dynamics and persistence. We highlight the importance of long-term data sets and accounting for synergistic impacts between multiple stressors. We show that predicted increases in the frequency of extreme climate events have the potential to considerably and negatively influence a long-lived species, which might previously have been assumed to be resilient to environmental perturbations. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Filippidou, Sevasti; Wunderlin, Tina; Junier, Thomas; Jeanneret, Nicole; Dorador, Cristina; Molina, Veronica; Johnson, David R.; Junier, Pilar
2016-01-01
Environmental conditions unsuitable for microbial growth are the rule rather than the exception in most habitats. In response to this, microorganisms have developed various strategies to withstand environmental conditions that limit active growth. Endospore-forming Firmicutes (EFF) deploy a myriad of survival strategies in order to resist adverse conditions. Like many bacterial groups, they can form biofilms and detect nutrient scarcity through chemotaxis. Moreover, within this paraphyletic group of Firmicutes, ecophysiological optima are diverse. Nonetheless, a response to adversity that delimits this group is the formation of wet-heat resistant spores. These strategies are energetically demanding and therefore might affect the biological success of EFF. Therefore, we hypothesize that abundance and diversity of EFF should be maximized in those environments in which the benefits of these survival strategies offsets the energetic cost. In order to address this hypothesis, geothermal and mineral springs and drillings were selected because in these environments of steep physicochemical gradients, diversified survival strategies may become a successful strategy.We collected 71 samples from geothermal and mineral environments characterized by none (null), single or multiple limiting environmental factors (temperature, pH, UV radiation, and specific mineral composition). To measure success, we quantified EFF gene copy numbers (GCN; spo0A gene) in relation to total bacterial GCN (16S rRNA gene), as well as the contribution of EFF to community composition. The quantification showed that relative GCN for EFF reached up to 20% at sites characterized by multiple limiting environmental factors, whereas it corresponded to less than 1% at sites with one or no limiting environmental factor. Pyrosequencing of the 16S rRNA gene supports a higher contribution of EFF at sites with multiple limiting factors. Community composition suggested a combination of phylotypes for which active growth could be expected, and phylotypes that are most likely in the state of endospores, in all the sites. In summary, our results suggest that diversified survival strategies, including sporulation and metabolic adaptations, explain the biological success of EFF in geothermal and natural springs, and that multiple extreme environmental factors favor the prevalence of EFF. PMID:27857706
Filippidou, Sevasti; Wunderlin, Tina; Junier, Thomas; Jeanneret, Nicole; Dorador, Cristina; Molina, Veronica; Johnson, David R; Junier, Pilar
2016-01-01
Environmental conditions unsuitable for microbial growth are the rule rather than the exception in most habitats. In response to this, microorganisms have developed various strategies to withstand environmental conditions that limit active growth. Endospore-forming Firmicutes (EFF) deploy a myriad of survival strategies in order to resist adverse conditions. Like many bacterial groups, they can form biofilms and detect nutrient scarcity through chemotaxis. Moreover, within this paraphyletic group of Firmicutes, ecophysiological optima are diverse. Nonetheless, a response to adversity that delimits this group is the formation of wet-heat resistant spores. These strategies are energetically demanding and therefore might affect the biological success of EFF. Therefore, we hypothesize that abundance and diversity of EFF should be maximized in those environments in which the benefits of these survival strategies offsets the energetic cost. In order to address this hypothesis, geothermal and mineral springs and drillings were selected because in these environments of steep physicochemical gradients, diversified survival strategies may become a successful strategy.We collected 71 samples from geothermal and mineral environments characterized by none (null), single or multiple limiting environmental factors (temperature, pH, UV radiation, and specific mineral composition). To measure success, we quantified EFF gene copy numbers (GCN; spo0A gene) in relation to total bacterial GCN (16S rRNA gene), as well as the contribution of EFF to community composition. The quantification showed that relative GCN for EFF reached up to 20% at sites characterized by multiple limiting environmental factors, whereas it corresponded to less than 1% at sites with one or no limiting environmental factor. Pyrosequencing of the 16S rRNA gene supports a higher contribution of EFF at sites with multiple limiting factors. Community composition suggested a combination of phylotypes for which active growth could be expected, and phylotypes that are most likely in the state of endospores, in all the sites. In summary, our results suggest that diversified survival strategies, including sporulation and metabolic adaptations, explain the biological success of EFF in geothermal and natural springs, and that multiple extreme environmental factors favor the prevalence of EFF.
Boros, Emil; Katalin, V.-Balogh; Vörös, Lajos; Horváth, Zsófia
2017-01-01
Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n=84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009–2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L–1, max: 16 g L–1), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L–1), and total phosphorus concentration was also extremely high (median: 2 mg L–1, max: 32 mg L–1). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem. PMID:28572691
Environmental Stress and Pathogen Dynamics in the Blue Crab Callinectes sapidus
NASA Astrophysics Data System (ADS)
Sullivan, T. J.; Neigel, J.; Gelpi, C. G.
2016-02-01
The blue crab Callinectes sapidus is an ecologically and economically valuable species along the Gulf of Mexico and Atlantic coasts of North America. Throughout its range, the blue crab encounters a diverse array of parasitic and pathogenic microorganisms that have episodic and occasionally severe impacts on population numbers and viability. This makes understanding factors that influence pathogen dynamics, such as host stress, an important priority. To explore the role of environmental stress on the susceptibility of blue crabs to pathogens we screened individuals collected during the summers of 2014 and 2015 for a number of infectious agents. We sampled three life stages (megalopae, juvenile, and adult) from multiple marsh and offshore locations in Louisiana. Duration of stressful environmental conditions at each location was quantified from hourly recordings provided by the Louisiana Coastwide Reference Monitoring System. Pathogenic microorganisms were detected in crabs from multiple locations and multiple years. Some of the variability in prevalence of infection can be explained by exposure to stressful extremes of temperature and salinity during summer months.
Cockell, Charles S.
2017-01-01
Physical and chemical boundaries for microbial multiplication on Earth are strongly influenced by interactions between environmental extremes. However, little is known about how interactions between multiple stress parameters affect the sensitivity of microorganisms to antibiotics. Here, we assessed how 12 distinct permutations of salinity, availability of an essential nutrient (iron) and atmospheric composition (aerobic or microaerobic) affect the susceptibility of a polyextremotolerant bacterium, Halomonas hydrothermalis, to ampicillin, kanamycin and ofloxacin. While salinity had a significant impact on sensitivity to all three antibiotics (as shown by turbidimetric analyses), the nature of this impact was modified by iron availability and the ambient gas composition, with differing effects observed for each compound. These two parameters were found to be of particular importance when considered in combination and, in the case of ampicillin, had a stronger combined influence on antibiotic tolerance than salinity. Our data show how investigating microbial responses to multiple extremes, which are more representative of natural habitats than single extremes, can improve our understanding of the effects of antimicrobial compounds and suggest how studies of habitability, motivated by the desire to map the limits of life, can be used to systematically assess the effectiveness of antibiotics. PMID:28123098
Harrison, Jesse P; Angel, Roey; Cockell, Charles S
2017-01-01
Physical and chemical boundaries for microbial multiplication on Earth are strongly influenced by interactions between environmental extremes. However, little is known about how interactions between multiple stress parameters affect the sensitivity of microorganisms to antibiotics. Here, we assessed how 12 distinct permutations of salinity, availability of an essential nutrient (iron) and atmospheric composition (aerobic or microaerobic) affect the susceptibility of a polyextremotolerant bacterium, Halomonas hydrothermalis, to ampicillin, kanamycin and ofloxacin. While salinity had a significant impact on sensitivity to all three antibiotics (as shown by turbidimetric analyses), the nature of this impact was modified by iron availability and the ambient gas composition, with differing effects observed for each compound. These two parameters were found to be of particular importance when considered in combination and, in the case of ampicillin, had a stronger combined influence on antibiotic tolerance than salinity. Our data show how investigating microbial responses to multiple extremes, which are more representative of natural habitats than single extremes, can improve our understanding of the effects of antimicrobial compounds and suggest how studies of habitability, motivated by the desire to map the limits of life, can be used to systematically assess the effectiveness of antibiotics. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Wong, N.; Grace, J. M.; Liang, J.; Owyang, S.; Storrs, A.; Zhou, J.; Rothschild, L. J.; Gentry, D.
2014-12-01
Life acclimated to harsh conditions is frequently difficult to study using normal lab techniques and conventional equipment. Simplified studies using in-lab 'simulated' extreme environments, such as UV bulbs or cold blocks, are manually intensive, error-prone, and lose many complexities of the microbe/environment interaction. We have built a prototype instrument to address this dilemma by allowing automated iterations of microbial cultures to be subject to combinations of modular environmental pressures such as heat, radiation, and chemical exposure. The presence of multiple sensors allows the state of the culture and internal environment to be continuously monitored and adjusted in response.Our first prototype showed successful iterations of microbial growth and thermal exposure. Our second prototype, presented here, performs an demonstration of repeated exposure of Escherichia coli to ultraviolet radiation, a well-established procedure. As the E. coli becomes more resistant to ultraviolet radiation, the device detects their increased survival and growth and increases the dosage accordingly. Calibration data for the instrument was generated by performing the same proof-of-concept exposure experiment, at a smaller scale, by hand. Current performance data indicates that our finalized instrument will have the ability to run hundreds of iterations with multiple selection pressures. The automated sensing and adaptive exposure that the device provides will inform the challenges of managing and culturing life tailored to uncommon environmental stresses. We have designed this device to be flexible, extensible, low-cost and easy to reproduce. We hope that it enter wide use as a tool for conducting scalable studies of the interaction between extremophiles and multiple environmental stresses, and potentially for generating artificial extremophiles as analogues for life we might find in extreme environments here on Earth or elsewhere.
Enabling Resiliency Operations across Multiple Microgrids with Grid Friendly Appliance Controllers
Schneider, Kevin P.; Tuffner, Frank K.; Elizondo, Marcelo A.; ...
2017-02-16
Changes in economic, technological, and environmental policies are resulting in a re-evaluation of the dependence on large central generation facilities and their associated transmission networks. Emerging concepts of smart communities/cities are examining the potential to leverage cleaner sources of generation, as well as integrating electricity generation with other municipal functions. When grid connected, these generation assets can supplement the existing interconnections with the bulk transmission system, and in the event of an extreme event, they can provide power via a collection of microgrids. To achieve the highest level of resiliency, it may be necessary to conduct switching operations to interconnectmore » individual microgrids. While the interconnection of multiple microgrids can increase the resiliency of the system, the associated switching operations can cause large transients in low inertia microgrids. The combination of low system inertia and IEEE 1547 and 1547a-compliant inverters can prevent multiple microgrids from being interconnected during extreme weather events. This study will present a method of using end-use loads equipped with Grid Friendly™ Appliance controllers to facilitate the switching operations between multiple microgrids; operations that are necessary for optimal operations when islanded for resiliency.« less
Enabling Resiliency Operations across Multiple Microgrids with Grid Friendly Appliance Controllers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Kevin P.; Tuffner, Frank K.; Elizondo, Marcelo A.
Changes in economic, technological, and environmental policies are resulting in a re-evaluation of the dependence on large central generation facilities and their associated transmission networks. Emerging concepts of smart communities/cities are examining the potential to leverage cleaner sources of generation, as well as integrating electricity generation with other municipal functions. When grid connected, these generation assets can supplement the existing interconnections with the bulk transmission system, and in the event of an extreme event, they can provide power via a collection of microgrids. To achieve the highest level of resiliency, it may be necessary to conduct switching operations to interconnectmore » individual microgrids. While the interconnection of multiple microgrids can increase the resiliency of the system, the associated switching operations can cause large transients in low inertia microgrids. The combination of low system inertia and IEEE 1547 and 1547a-compliant inverters can prevent multiple microgrids from being interconnected during extreme weather events. This study will present a method of using end-use loads equipped with Grid Friendly™ Appliance controllers to facilitate the switching operations between multiple microgrids; operations that are necessary for optimal operations when islanded for resiliency.« less
Ordoñez, Omar F; Lanzarotti, Esteban; Kurth, Daniel; Gorriti, Marta F; Revale, Santiago; Cortez, Néstor; Vazquez, Martin P; Farías, María E; Turjanski, Adrian G
2013-07-25
Exiguobacterium sp. strain S17 is a moderately halotolerant, arsenic-resistant bacterium that was isolated from Laguna Socompa stromatolites in the Argentinian Puna. The draft genome sequence suggests potent enzyme candidates that are essential for survival under multiple environmental extreme conditions, such as high levels of UV radiation, elevated salinity, and the presence of critical arsenic concentrations.
Wireless Multiplexed Surface Acoustic Wave Sensors Project
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.
2014-01-01
Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).
El-Niño Grande and the Great Famine (1876-78)
NASA Astrophysics Data System (ADS)
Singh, D.; Seager, R.; Cook, B. I.; Cane, M. A.; Ting, M.; Cook, E. R.; Davis, M.
2017-12-01
The 1876-1878 Great Famine impacted multiple regions across the globe including parts of Asia, Nordeste Brazil, and northern and southern Africa, with total human fatalities exceeding 50 million people, arguably the worst environmental disaster to befall humanity. While socio-economic factors in the Late Victorian colonial world were responsible for the global humanitarian disaster, the triggers for famine were acute droughts that caused widespread crop failures. We combine instrumental observations, tree-ring drought estimates, and sea-surface temperature (SST) reconstructions to present the first characterization of this multi-year drought and investigate its associated global climatic conditions. We show that this extremely severe and widespread drought was largely caused by an El-Niño that exceeded the extreme intensities of the 1982-83 and 1997-98 El-Niños. Its higher peak intensity, the central Pacific location of the peak SST anomalies, and longer persistence, were critical in generating extreme droughts over multiple seasons in several regions. The cascading influence of the extreme tropical Pacific SSTs led to unprecedented conditions in the tropical Indian and Atlantic basins that likely influenced the intensity and persistence of regional droughts in parts of the world. The climatic conditions associated with the Great Famine arose from natural variability, indicating a similar event could occur in the future and simultaneously induce drought conditions across multiple major grain producing areas of the world, undermining global food-security. Improved understanding of the causes and character of the 1876-1878 global climate and food crisis should lead to better anticipation and prediction of such events to help avert similar catastrophes.
Arismendi, Ivan; Safeeq, Mohammad; Johnson, Sherri L.; Dunham, Jason B.; Haggerty, Roy
2013-01-01
Flow and temperature are strongly linked environmental factors driving ecosystem processes in streams. Stream temperature maxima (Tmax_w) and stream flow minima (Qmin) can create periods of stress for aquatic organisms. In mountainous areas, such as western North America, recent shifts toward an earlier spring peak flow and decreases in low flow during summer/fall have been reported. We hypothesized that an earlier peak flow could be shifting the timing of low flow and leading to a decrease in the interval between Tmax_w and Qmin. We also examined if years with extreme low Qmin were associated with years of extreme high Tmax_w. We tested these hypotheses using long32 term data from 22 minimally human-influenced streams for the period 1950-2010. We found trends toward a shorter time lag between Tmax_w and Qmin over time and a strong negative association between their magnitudes. Our findings show that aquatic biota may be increasingly experiencing narrower time windows to recover or adapt between these extreme events of low flow and high temperature. This study highlights the importance of evaluating multiple environmental drivers to better gauge the effects of the recent climate variability in freshwaters.
Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard.
Campbell-Staton, Shane C; Cheviron, Zachary A; Rochette, Nicholas; Catchen, Julian; Losos, Jonathan B; Edwards, Scott V
2017-08-04
Extreme environmental perturbations offer opportunities to observe the effects of natural selection in wild populations. During the winter of 2013-2014, the southeastern United States endured an extreme cold event. We used thermal performance, transcriptomics, and genome scans to measure responses of lizard populations to storm-induced selection. We found significant increases in cold tolerance at the species' southern limit. Gene expression in southern survivors shifted toward patterns characteristic of northern populations. Comparing samples before and after the extreme winter, 14 genomic regions were differentiated in the surviving southern population; four also exhibited signatures of local adaptation across the latitudinal gradient and implicate genes involved in nervous system function. Together, our results suggest that extreme winter events can rapidly produce strong selection on natural populations at multiple biological levels that recapitulate geographic patterns of local adaptation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Violent aggression predicted by multiple pre-adult environmental hits.
Mitjans, Marina; Seidel, Jan; Begemann, Martin; Bockhop, Fabian; Moya-Higueras, Jorge; Bansal, Vikas; Wesolowski, Janina; Seelbach, Anna; Ibáñez, Manuel Ignacio; Kovacevic, Fatka; Duvar, Oguzhan; Fañanás, Lourdes; Wolf, Hannah-Ulrike; Ortet, Generós; Zwanzger, Peter; Klein, Verena; Lange, Ina; Tänzer, Andreas; Dudeck, Manuela; Penke, Lars; van Elst, Ludger Tebartz; Bittner, Robert A; Schmidmeier, Richard; Freese, Roland; Müller-Isberner, Rüdiger; Wiltfang, Jens; Bliesener, Thomas; Bonn, Stefan; Poustka, Luise; Müller, Jürgen L; Arias, Bárbara; Ehrenreich, Hannelore
2018-05-24
Early exposure to negative environmental impact shapes individual behavior and potentially contributes to any mental disease. We reported previously that accumulated environmental risk markedly decreases age at schizophrenia onset. Follow-up of matched extreme group individuals (≤1 vs. ≥3 risks) unexpectedly revealed that high-risk subjects had >5 times greater probability of forensic hospitalization. In line with longstanding sociological theories, we hypothesized that risk accumulation before adulthood induces violent aggression and criminal conduct, independent of mental illness. We determined in 6 independent cohorts (4 schizophrenia and 2 general population samples) pre-adult risk exposure, comprising urbanicity, migration, physical and sexual abuse as primary, and cannabis or alcohol as secondary hits. All single hits by themselves were marginally associated with higher violent aggression. Most strikingly, however, their accumulation strongly predicted violent aggression (odds ratio 10.5). An epigenome-wide association scan to detect differential methylation of blood-derived DNA of selected extreme group individuals yielded overall negative results. Conversely, determination in peripheral blood mononuclear cells of histone-deacetylase1 mRNA as 'umbrella mediator' of epigenetic processes revealed an increase in the high-risk group, suggesting lasting epigenetic alterations. Together, we provide sound evidence of a disease-independent unfortunate relationship between well-defined pre-adult environmental hits and violent aggression, calling for more efficient prevention.
Szabó, Attila; Korponai, Kristóf; Kerepesi, Csaba; Somogyi, Boglárka; Vörös, Lajos; Bartha, Dániel; Márialigeti, Károly; Felföldi, Tamás
2017-05-01
Soda pans of the Pannonian steppe are unique environments regarding their physical and chemical characteristics: shallowness, high turbidity, intermittent character, alkaline pH, polyhumic organic carbon concentration, hypertrophic condition, moderately high salinity, sodium and carbonate ion dominance. The pans are highly productive environments with picophytoplankton predominance. Little is known about the planktonic bacterial communities inhabiting these aquatic habitats; therefore, amplicon sequencing and shotgun metagenomics were applied to reveal their composition and functional properties. Results showed a taxonomically complex bacterial community which was distinct from other soda lakes regarding its composition, e.g. the dominance of class Alphaproteobacteria was observed within phylum Proteobacteria. The shotgun metagenomic analysis revealed several functional gene components related to the harsh and at the same time hypertrophic environmental conditions, e.g. proteins involved in stress response, transport and hydrolase systems targeting phytoplankton-derived organic matter. This is the first detailed report on the indigenous planktonic bacterial communities coping with the multiple extreme conditions present in the unique soda pans of the Pannonian steppe.
Schipper, Aafke M; Posthuma, Leo; de Zwart, Dick; Huijbregts, Mark A J
2014-12-16
Quantitative relationships between species richness and single environmental factors, also called species sensitivity distributions (SSDs), are helpful to understand and predict biodiversity patterns, identify environmental management options and set environmental quality standards. However, species richness is typically dependent on a variety of environmental factors, implying that it is not straightforward to quantify SSDs from field monitoring data. Here, we present a novel and flexible approach to solve this, based on the method of stacked species distribution modeling. First, a species distribution model (SDM) is established for each species, describing its probability of occurrence in relation to multiple environmental factors. Next, the predictions of the SDMs are stacked along the gradient of each environmental factor with the remaining environmental factors at fixed levels. By varying those fixed levels, our approach can be used to investigate how field-based SSDs for a given environmental factor change in relation to changing confounding influences, including for example optimal, typical, or extreme environmental conditions. This provides an asset in the evaluation of potential management measures to reach good ecological status.
Luci, Monica
2017-04-01
This paper presents a tentative understanding of the characteristics of the extreme traumas, elsewhere called 'complex PTSD', that some refugees and asylum-seekers bring into therapy. It suggests that these kinds of traumas suffered during adulthood may involve a disintegration of the self and a loss of 'psychic skin'. This conceptualization is derived from the treatment of a refugee who survived multiple extreme traumas and with whom efforts were made in therapy to identify a complex methodology making use of supplementary therapeutic tools in addition to individual psychotherapy. The case demonstrates how the disintegration of self implies not only a deep somato-psychic dissociation, but also a loss of intrapsychic and interpersonal space. In the treatment this was worked through via repetition of the victim-aggressor dynamics at multiple levels. In the end, the therapeutic context was structured like a set of concentric layers, creating a 'bandage' over the patient's wounds whilst his 'psychic skin' was able to regenerate. The conditions triggered by extreme traumas in refugees challenge some of the cornerstones of individual psychoanalytic technique, as well as the idea that individual therapy may be thought of as existing in an environmental vacuum. © 2017, The Society of Analytical Psychology.
Environmental health risk assessment and management for global climate change
NASA Astrophysics Data System (ADS)
Carter, P.
2014-12-01
This environmental health risk assessment and management approach for atmospheric greenhouse gas (GHG) pollution is based almost entirely on IPCC AR5 (2014) content, but the IPCC does not make recommendations. Large climate model uncertainties may be large environmental health risks. In accordance with environmental health risk management, we use the standard (IPCC-endorsed) formula of risk as the product of magnitude times probability, with an extremely high standard of precaution. Atmospheric GHG pollution, causing global warming, climate change and ocean acidification, is increasing as fast as ever. Time is of the essence to inform and make recommendations to governments and the public. While the 2ºC target is the only formally agreed-upon policy limit, for the most vulnerable nations, a 1.5ºC limit is being considered by the UNFCCC Secretariat. The Climate Action Network International (2014), representing civil society, recommends that the 1.5ºC limit be kept open and that emissions decline from 2015. James Hansen et al (2013) have argued that 1ºC is the danger limit. Taking into account committed global warming, its millennial duration, multiple large sources of amplifying climate feedbacks and multiple adverse impacts of global warming and climate change on crops, and population health impacts, all the IPCC AR5 scenarios carry extreme environmental health risks to large human populations and to the future of humanity as a whole. Our risk consideration finds that 2ºC carries high risks of many catastrophic impacts, that 1.5ºC carries high risks of many disastrous impacts, and that 1ºC is the danger limit. IPCC AR4 (2007) showed that emissions must be reversed by 2015 for a 2ºC warming limit. For the IPCC AR5 only the best-case scenario RCP2.6, is projected to stay under 2ºC by 2100 but the upper range is just above 2ºC. It calls for emissions to decline by 2020. We recommend that for catastrophic environmental health risk aversion, emissions decline from 2015 (CAN International 2014), and if policy makers are limited to the IPCC AR5 we recommend RCP2.6, with emissions declining by 2020.
Biological Extreme Events - Past, Present, and Future
NASA Astrophysics Data System (ADS)
Gutschick, V. P.
2010-12-01
Biological extreme events span wide ranges temporally and spatially and in type - population dieoffs, extinctions, ecological reorganizations, changes in biogeochemical fluxes, and more. Driving variables consist in meteorology, tectonics, orbital changes, anthropogenic changes (land-use change, species introductions, reactive N injection into the biosphere), and evolution (esp. of diseases). However, the mapping of extremes in the drivers onto biological extremes as organismal responses is complex, as laid out originally in the theoretical framework of Gutschick and BassiriRad (New Phytologist [2003] 100:21-42). Responses are nonlinear and dependent on (mostly unknown and) complex temporal sequences - often of multiple environmental variables. The responses are species- and genotype specific. I review extreme events over from past to present over wide temporal scales, while noting that they are not wholly informative of responses to the current and near-future drivers for at least two reasons: 1) the current combination of numerous environmental extremes - changes in CO2, temperature, precipitation, reactive N, land fragmentation, O3, etc. -is unprecedented in scope, and 2) adaptive genetic variation for organismal responses is constrained by poorly-characterized genetic structures (in organisms and populations) and by loss of genetic variation by genetic drift over long periods. We may expect radical reorganizations of ecosystem and biogeochemical functions. These changes include many ecosystem services in flood control, crop pollination and insect/disease control, C-water-mineral cycling, and more, as well as direct effects on human health. Predictions of such changes will necessarily be very weak in the critical next few decades, given the great deal of observation, experimentation, and theory construction that will be necessary, on both organisms and drivers. To make the research efforts most effective will require extensive, insightful planning, beginning immediately. Massive dieoff of conifers in the US Southwest, an extreme event driven by a remarkably uncommon co-occurrence of high temperature, drought, and long active season for insects
Impact of Seasonal Forecasts on Agriculture
NASA Astrophysics Data System (ADS)
Aldor-Noiman, S. C.
2014-12-01
More extreme and volatile weather conditions are a threat to U.S. agricultural productivity today, as multiple environmental conditions during the growing season impact crop yields. That's why farmers' agronomic management decisions are dominated by consideration for near, medium and seasonal forecasts of climate. The Climate Corporation aims to help farmers around the world protect and improve their farming operations by providing agronomic decision support tools that leverage forecasts on multiple timescales to provide valuable insights directly to farmers. In this talk, we will discuss the impact of accurate seasonal forecasts on major decisions growers face each season. We will also discuss assessment and evaluation of seasonal forecasts in the context of agricultural applications.
Filazzola, Alessandro; Liczner, Amanda Rae; Westphal, Michael; Lortie, Christopher J
2018-01-01
Environmental extremes resulting from a changing climate can have profound implications for plant interactions in desert communities. Positive interactions can buffer plant communities from abiotic stress and consumer pressure caused by climatic extremes, but limited research has explored this empirically. We tested the hypothesis that the mechanism of shrub facilitation on an annual plant community can change with precipitation extremes in deserts. During years of extreme drought and above-average rainfall in a desert, we measured plant interactions and biomass while manipulating a soil moisture gradient and reducing consumer pressure. Shrubs facilitated the annual plant community at all levels of soil moisture through reductions in microclimatic stress in both years and herbivore protection in the wet year only. Shrub facilitation and the high rainfall year contributed to the dominance of a competitive annual species in the plant community. Precipitation patterns in deserts determine the magnitude and type of facilitation mechanisms. Moreover, shrub facilitation mediates the interspecific competition within the associated annual community between years with different rainfall amounts. Examining multiple drivers during extreme climate events is a challenging area of research, but it is a necessary consideration given forecasts predicting that these events will increase in frequency and magnitude. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Gutiérrez-Preciado, Ana; Vargas-Chávez, Carlos; Reyes-Prieto, Mariana; Ordoñez, Omar F; Santos-García, Diego; Rosas-Pérez, Tania; Valdivia-Anistro, Jorge; Rebollar, Eria A; Saralegui, Andrés; Moya, Andrés; Merino, Enrique; Farías, María Eugenia; Latorre, Amparo; Souza, Valeria
2017-01-01
We report the genome sequence of Exiguobacterium chiriqhucha str. N139, isolated from a high-altitude Andean lake. Comparative genomic analyses of the Exiguobacterium genomes available suggest that our strain belongs to the same species as the previously reported E. pavilionensis str. RW-2 and Exiguobacterium str. GIC 31. We describe this species and propose the chiriqhucha name to group them. 'Chiri qhucha' in Quechua means 'cold lake', which is a common origin of these three cosmopolitan Exiguobacteria. The 2,952,588-bp E. chiriqhucha str. N139 genome contains one chromosome and three megaplasmids. The genome analysis of the Andean strain suggests the presence of enzymes that confer E. chiriqhucha str. N139 the ability to grow under multiple environmental extreme conditions, including high concentrations of different metals, high ultraviolet B radiation, scavenging for phosphorous and coping with high salinity. Moreover, the regulation of its tryptophan biosynthesis suggests that novel pathways remain to be discovered, and that these pathways might be fundamental in the amino acid metabolism of the microbial community from Laguna Negra, Argentina.
Chen, Lin-xing; Hu, Min; Huang, Li-nan; Hua, Zheng-shuang; Kuang, Jia-liang; Li, Sheng-jin; Shu, Wen-sheng
2015-07-01
The microbial communities in acid mine drainage have been extensively studied to reveal their roles in acid generation and adaption to this environment. Lacking, however, are integrated community- and organism-wide comparative gene transcriptional analyses that could reveal the response and adaptation mechanisms of these extraordinary microorganisms to different environmental conditions. In this study, comparative metagenomics and metatranscriptomics were performed on microbial assemblages collected from four geochemically distinct acid mine drainage (AMD) sites. Taxonomic analysis uncovered unexpectedly high microbial biodiversity of these extremely acidophilic communities, and the abundant taxa of Acidithiobacillus, Leptospirillum and Acidiphilium exhibited high transcriptional activities. Community-wide comparative analyses clearly showed that the AMD microorganisms adapted to the different environmental conditions via regulating the expression of genes involved in multiple in situ functional activities, including low-pH adaptation, carbon, nitrogen and phosphate assimilation, energy generation, environmental stress resistance, and other functions. Organism-wide comparative analyses of the active taxa revealed environment-dependent gene transcriptional profiles, especially the distinct strategies used by Acidithiobacillus ferrivorans and Leptospirillum ferrodiazotrophum in nutrients assimilation and energy generation for survival under different conditions. Overall, these findings demonstrate that the gene transcriptional profiles of AMD microorganisms are closely related to the site physiochemical characteristics, providing clues into the microbial response and adaptation mechanisms in the oligotrophic, extremely acidic environments.
Greven, Corina U; Merwood, Andrew; van der Meer, Jolanda M J; Haworth, Claire M A; Rommelse, Nanda; Buitelaar, Jan K
2016-04-01
Although attention deficit hyperactivity disorder (ADHD) is thought to reflect a continuously distributed quantitative trait, it is assessed through binary diagnosis or skewed measures biased towards its high, symptomatic extreme. A growing trend is to study the positive tail of normally distributed traits, a promising avenue, for example, to study high intelligence to increase power for gene-hunting for intelligence. However, the emergence of such a 'positive genetics' model has been tempered for ADHD due to poor phenotypic resolution at the low extreme. Overcoming this methodological limitation, we conduct the first study to assess the aetiologies of low extreme ADHD traits. In a population-representative sample of 2,143 twins, the Strength and Weaknesses of ADHD Symptoms and Normal behaviour (SWAN) questionnaire was used to assess ADHD traits on a continuum from low to high. Aetiological influences on extreme ADHD traits were estimated using DeFries-Fulker extremes analysis. ADHD traits were related to behavioural, cognitive and home environmental outcomes using regression. Low extreme ADHD traits were significantly influenced by shared environmental factors (23-35%) but were not significantly heritable. In contrast, high-extreme ADHD traits showed significant heritability (39-51%) but no shared environmental influences. Compared to individuals with high extreme or with average levels of ADHD traits, individuals with low extreme ADHD traits showed fewer internalizing and externalizing behaviour problems, better cognitive performance and more positive behaviours and positive home environmental outcomes. Shared environmental influences on low extreme ADHD traits may reflect passive gene-environment correlation, which arises because parents provide environments as well as passing on genes. Studying the low extreme opens new avenues to study mechanisms underlying previously neglected positive behaviours. This is different from the current deficit-based model of intervention, but congruent with a population-level approach to improving youth wellbeing. © 2015 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health.
Parsons, Peter A.
2009-01-01
Free living organisms typically occur in harsh environments challenged by abiotic stresses of varying intensities. Taking ionizing radiation and caloric restriction as examples, environmental variation from benign to extreme gives a fitness-stress continuum where energetic efficiency, a measure of fitness, is inversely related to stress level. Hormesis occurs in benign regions for these examples. In contrast aging emphasizes survival towards the limits of survival under accumulating stress from Reactive Oxygen Species, ROS. An energetic evolutionary approach underlies an ecological aging theory based principally upon survival, which incorporates hormesis. Multiple environmental agents contributing to hormesis should be considered by those attempting to improve the quality of life by delaying the onset of senescence, so enhancing survival. Caloric restriction has wider acceptance in this process than ionizing radiation. PMID:20221282
White, Richard S A; Wintle, Brendan A; McHugh, Peter A; Booker, Douglas J; McIntosh, Angus R
2017-06-14
Despite growing concerns regarding increasing frequency of extreme climate events and declining population sizes, the influence of environmental stochasticity on the relationship between population carrying capacity and time-to-extinction has received little empirical attention. While time-to-extinction increases exponentially with carrying capacity in constant environments, theoretical models suggest increasing environmental stochasticity causes asymptotic scaling, thus making minimum viable carrying capacity vastly uncertain in variable environments. Using empirical estimates of environmental stochasticity in fish metapopulations, we showed that increasing environmental stochasticity resulting from extreme droughts was insufficient to create asymptotic scaling of time-to-extinction with carrying capacity in local populations as predicted by theory. Local time-to-extinction increased with carrying capacity due to declining sensitivity to demographic stochasticity, and the slope of this relationship declined significantly as environmental stochasticity increased. However, recent 1 in 25 yr extreme droughts were insufficient to extirpate populations with large carrying capacity. Consequently, large populations may be more resilient to environmental stochasticity than previously thought. The lack of carrying capacity-related asymptotes in persistence under extreme climate variability reveals how small populations affected by habitat loss or overharvesting, may be disproportionately threatened by increases in extreme climate events with global warming. © 2017 The Author(s).
[The acclimatization to extreme environments and its physiological mechanisms].
Wang, Hai; Liu, Wei; Yang, Dan-Feng; Zhao, Xiao-Ling; Long, Chao-Liang; Yin, Zhao-Yun; Liu, Jia-Ying
2012-11-01
Acclimatization is a process of biological adaptation when exposed to environmental factors such as hypoxia, cold and heat for prolonged periods of time, where non-genetical variations play a role in allowing subjects to tolerate hypoxic, cold or hot environments. This review focuses on the characteristics and mechanisms of acclimatization found through major research advances by our institute. First, the mechanisms underlying the acclimatization to extreme environments are complex. In our investigations, the physiological changes of multiple systems including the nervous, circulatory, respiratory, and hemopoietic system were demonstrated when the acclimatization to hypoxia was developed, and the underlying significance of hypoxia-inducible factor-1 (HIF-1) was investigated. Second, it is suggested that the development of acclimatization to extreme environments is complicated. Hypoxia and cold coexist at high altitude. Our investigations revealed the characteristics of negative cross-relationship in the acclimatization to hypoxia and cold. And third, it is interesting for us to understand that acclimatization to extreme environments is transferable among individuals, and the characteristics of heat acclimatization-inducing factor (HAlF) were presented. The above findings will provide a theoretical guidance for protective operations and help to establish a solid foundation for future research related to acclimatization.
Sakari, Ritva; Rantakokko, Merja; Portegijs, Erja; Iwarsson, Susanne; Sipilä, Sarianna; Viljanen, Anne; Rantanen, Taina
2017-06-01
The aim of this study was to analyze whether the associations between perceived environmental and individual characteristics and perceived walking limitations in older people differ between those with intact and those with poorer lower extremity performance. Persons aged 75 to 90 ( N = 834) participated in interviews and performance tests in their homes. Standard questionnaires were used to obtain walking difficulties; environmental barriers to and, facilitators of, mobility; and perceived individual hindrances to outdoor mobility. Lower extremity performance was tested using Short Physical Performance Battery (SPPB). Among those with poorer lower extremity performance, the likelihood for advanced walking limitations was, in particular, related to perceived poor safety in the environment, and among those with intact performance to perceived social issues, such as lack of company, as well as to long distances. The environmental correlates of walking limitations seem to depend on the level of lower extremity performance.
Ball, W.P.
1961-01-01
An electron multiplier device is described. It has a plurality of dynodes between an anode and cathode arranged to measure pressure, temperature, or other environmental physical conditions that proportionately iinfuences the quantity of gas molecules between the dynodes. The output current of the device is influenced by the reduction in electron multiplication at the dynodes due to energy reducing collisions of the electrons with the gas molecules between the dynodes. More particularly, the current is inversely proportional to the quantity of gas molecules, viz., the gas pressure. The device is, hence, extremely sensitive to low pressures.
Acácio, Vanda; Dias, Filipe S; Catry, Filipe X; Rocha, Marta; Moreira, Francisco
2017-03-01
The Mediterranean region is projected to be extremely vulnerable to global change, which will affect the distribution of typical forest types such as native oak forests. However, our understanding of Mediterranean oak forest responses to future conditions is still very limited by the lack of knowledge on oak forest dynamics and species-specific responses to multiple drivers. We compared the long-term (1966-2006) forest persistence and land cover change among evergreen (cork oak and holm oak) and deciduous oak forests and evaluated the importance of anthropogenic and environmental drivers on observed changes for Portugal. We used National Forest Inventories to quantify the changes in oak forests and explored the drivers of change using multinomial logistic regression analysis and an information theoretical approach. We found distinct trends among oak forest types, reflecting the differences in oak economic value, protection status and management schemes: cork oak forests were the most persistent (62%), changing mostly to pines and eucalypt; holm oak forests were less persistent (53.2%), changing mostly to agriculture; and deciduous oak forests were the least persistent (45.7%), changing mostly to shrublands. Drivers of change had distinct importance across oak forest types, but drivers from anthropogenic origin (wildfires, population density, and land accessibility) were always among the most important. Climatic extremes were also important predictors of oak forest changes, namely extreme temperatures for evergreen oak forests and deficit of precipitation for deciduous oak forests. Our results indicate that under increasing human pressure and forecasted climate change, evergreen oak forests will continue declining and deciduous oak forests will be replaced by forests dominated by more xeric species. In the long run, multiple disturbances may change competitive dominance from oak forests to pyrophytic shrublands. A better understanding of forest dynamics and the inclusion of anthropogenic drivers on models of vegetation change will improve predicting the future of Mediterranean oak forests. © 2016 John Wiley & Sons Ltd.
Application of data on climate extremes for the southwestern United States
NASA Astrophysics Data System (ADS)
Redmond, K. T.; Fleishman, E.; Cayan, D. R.; Daudert, B.; Gershunov, A.
2015-12-01
We are improving the scientific capacity to evaluate responses of natural resources to climate extremes. We also are enhancing a platform for derivation of and access to customized climate information for the full extent or any subset of the southwestern United States. Extreme climate can have substantial effects on species, ecological and evolutionary processes, and the health of visitors to public lands. We are working with federal and state managers and with researchers who collaborate with decision-makers to use data on climate extremes to inform resource management. Current applications include sudden oak death, estuarine management, and fine-resolution manipulation of montane vegetation. To facilitate practical use of data on climate extremes, we are screening global climate models on the basis of their realism in representing natural regional patterns and extremes of temperature and precipitation, including those driven by El Niño and La Niña. We are assessing how well each model represents different climate elements. We also are delivering point and gridded observations and downscaled model projections, all at daily and 6 km resolution, on past and future climate extremes. Additionally, we are using the downscaled outputs to drive a hydrologic model and derive multiple probabilistic measures of water availability, flood, and drought. Moreover, we are extending the capacity of the Southwest Climate and Environmental Information Collaborative (SCENIC; wrcc.dri.edu/csc/scenic), a product developed by the Western Regional Climate Center, to provide access to diverse observed and simulated data on regional weather and climate, particularly on extremes.
Burggren, Warren
2018-05-10
The slow, inexorable rise in annual average global temperatures and acidification of the oceans are often advanced as consequences of global change. However, many environmental changes, especially those involving weather (as opposed to climate), are often stochastic, variable and extreme, particularly in temperate terrestrial or freshwater habitats. Moreover, few studies of animal and plant phenotypic plasticity employ realistic (i.e. short-term, stochastic) environmental change in their protocols. Here, I posit that the frequently abrupt environmental changes (days, weeks, months) accompanying much longer-term general climate change (e.g. global warming over decades or centuries) require consideration of the true nature of environmental change (as opposed to statistical means) coupled with an expansion of focus to consider developmental phenotypic plasticity. Such plasticity can be in multiple forms - obligatory/facultative, beneficial/deleterious - depending upon the degree and rate of environmental variability at specific points in organismal development. Essentially, adult phenotypic plasticity, as important as it is, will be irrelevant if developing offspring lack sufficient plasticity to create modified phenotypes necessary for survival. © 2018. Published by The Company of Biologists Ltd.
Exploring Citizen Infrastructure and Environmental Priorities in Mumbai, India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperling, Joshua; Romero-Lankao, Patricia; Beig, Gufran
Many cities worldwide seek to understand local policy priorities among their general populations. This study explores how differences in local conditions and among citizens within and across Mumbai, India shape local infrastructure (e.g. energy, water, transport) and environmental (e.g. managing pollution, climate-related extreme weather events) policy priorities for change that may or may not be aligned with local government action or global environmental sustainability concerns such as low-carbon development. In this rapidly urbanizing city, multiple issues compete for prominence, ranging from improved management of pollution and extreme weather to energy and other infrastructure services. To inform a broader perspective ofmore » policy priorities for urban development and risk mitigation, a survey was conducted among over 1200 citizens. The survey explored the state of local conditions, the challenges citizens face, and the ways in which differences in local conditions (socio-institutional, infrastructure, and health-related) demonstrate inequities and influence how citizens perceive risks and rank priorities for the future design and implementation of local planning, policy, and community-based efforts. With growing discussion and tensions surrounding the new urban sustainable development goal, announced by the UN in late September 2015, and a new global urban agenda document to be agreed upon at 'Habitat III', issues on whether sustainable urbanization priorities should be set at the international, national or local level remain controversial. As such, this study aims to first understand determinants of and variations in local priorities across one city, with implications discussed for local-to-global urban sustainability. Findings from survey results indicate the determinants and variation in conditions such as age, assets, levels of participation in residential action groups, the health outcome of chronic asthma, and the infrastructure service of piped water provision to homes are significant in shaping the top infrastructure and environmental policy priorities that include water supply and sanitation, air pollution, waste, and extreme heat.« less
A Fiducial Approach to Extremes and Multiple Comparisons
ERIC Educational Resources Information Center
Wandler, Damian V.
2010-01-01
Generalized fiducial inference is a powerful tool for many difficult problems. Based on an extension of R. A. Fisher's work, we used generalized fiducial inference for two extreme value problems and a multiple comparison procedure. The first extreme value problem is dealing with the generalized Pareto distribution. The generalized Pareto…
Reyes-Prieto, Mariana; Ordoñez, Omar F.; Santos-García, Diego; Rosas-Pérez, Tania; Valdivia-Anistro, Jorge; Rebollar, Eria A.; Saralegui, Andrés; Moya, Andrés; Merino, Enrique; Farías, María Eugenia
2017-01-01
We report the genome sequence of Exiguobacterium chiriqhucha str. N139, isolated from a high-altitude Andean lake. Comparative genomic analyses of the Exiguobacterium genomes available suggest that our strain belongs to the same species as the previously reported E. pavilionensis str. RW-2 and Exiguobacterium str. GIC 31. We describe this species and propose the chiriqhucha name to group them. ‘Chiri qhucha’ in Quechua means ‘cold lake’, which is a common origin of these three cosmopolitan Exiguobacteria. The 2,952,588-bp E. chiriqhucha str. N139 genome contains one chromosome and three megaplasmids. The genome analysis of the Andean strain suggests the presence of enzymes that confer E. chiriqhucha str. N139 the ability to grow under multiple environmental extreme conditions, including high concentrations of different metals, high ultraviolet B radiation, scavenging for phosphorous and coping with high salinity. Moreover, the regulation of its tryptophan biosynthesis suggests that novel pathways remain to be discovered, and that these pathways might be fundamental in the amino acid metabolism of the microbial community from Laguna Negra, Argentina. PMID:28439458
A Risk Score for Predicting Multiple Sclerosis.
Dobson, Ruth; Ramagopalan, Sreeram; Topping, Joanne; Smith, Paul; Solanky, Bhavana; Schmierer, Klaus; Chard, Declan; Giovannoni, Gavin
2016-01-01
Multiple sclerosis (MS) develops as a result of environmental influences on the genetically susceptible. Siblings of people with MS have an increased risk of both MS and demonstrating asymptomatic changes in keeping with MS. We set out to develop an MS risk score integrating both genetic and environmental risk factors. We used this score to identify siblings at extremes of MS risk and attempted to validate the score using brain MRI. 78 probands with MS, 121 of their unaffected siblings and 103 healthy controls were studied. Personal history was taken, and serological and genetic analysis using the illumina immunochip was performed. Odds ratios for MS associated with each risk factor were derived from existing literature, and the log values of the odds ratios from each of the risk factors were combined in an additive model to provide an overall score. Scores were initially calculated using log odds ratio from the HLA-DRB1*1501 allele only, secondly using data from all MS-associated SNPs identified in the 2011 GWAS. Subjects with extreme risk scores underwent validation studies. MRI was performed on selected individuals. There was a significant difference in the both risk scores between people with MS, their unaffected siblings and healthy controls (p<0.0005). Unaffected siblings had a risk score intermediate to people with MS and controls (p<0.0005). The best performing risk score generated an AUC of 0.82 (95%CI 0.75-0.88). The risk score demonstrates an AUC on the threshold for clinical utility. Our score enables the identification of a high-risk sibling group to inform pre-symptomatic longitudinal studies.
The Belmont Forum - Facilitating International Collaboration through New Funding Opportunities
NASA Astrophysics Data System (ADS)
von Schneidemesser, E.
2012-12-01
The Belmont Forum is an international group of the world's main funders of environmental change research and international science councils, committed to 'delivering knowledge needed for action to avoid and adapt to detrimental environmental change, including extreme hazardous events.' It aims to do so by mobilizing international resources at a scale that matches this challenge 'in order to catalyze delivery of the environmental science-derived solutions that society needs.' To achieve this goal, the member countries of the Belmont Forum have formed a new working partnership that launched the International Opportunities Fund (IOF) - an open call for proposals with focus themes and the intention of new themes for a new funding round each year. The IOF effectively lowers the activation energy needed for international collaboration while preserving national control over funding monies that stay within borders. This mechanism enables international collaboration to tackle global problems, while removing barriers such as the uncertainty of multiple proposal review processes for funding when partners from multiple countries wish to collaborate. During this presentation, perspectives on the Belmont Forum process will be shared, including the development of research themes for the IOF calls, mechanisms for collaboration, methods of information dissemination to various communities, lessons learned, and plans for future cooperation.
Delineation of potential deep seated landslides in a watershed using environmental index
NASA Astrophysics Data System (ADS)
Lai, Siao Ying; Lin, Chao Yuan; Lin, Cheng Yu
2016-04-01
The extreme rainfall induced deep seated landslides cause more attentions recently. Extreme rainfall can accelerate soil moisture content and surface runoff in slopeland which usually results in severe headward erosion and slope failures in an upstream watershed. It's a crucial issue for disaster prevention to extract the sites of potential deep seated landslide dynamically. Landslide risk and scale in a watershed were well discussed in this study. Risk of landslide occurrence in a watershed can be calculated from the multiplication of hazard and vulnerability for a certain event. A synthesis indicator derived from the indices of inverted extreme rainfall, road development and inverted normalized difference vegetation index can be effectively used as vulnerability for a watershed before the event. Landslide scale estimated from the indices of soil depth, headward erosion, river concave and dip slope could be applied to locate the hotspots of deep seated landslide in a watershed. The events of Typhoon Morakot in 2009 and Soudelor in 2015 were also selected in this study to verify the delineation accuracy of the model for the references of related authorities.
Self-Healing of Microcracks in Engineered Cementitious Composites (ECC) Under a Natural Environment
Herbert, Emily N.; Li, Victor C.
2013-01-01
This paper builds on previous self-healing engineered cementitious composites (ECC) research by allowing ECC to heal outdoors, in the natural environment, under random and sometimes extreme environmental conditions. Development of an ECC material that can heal itself in the natural environment could lower infrastructure maintenance costs and allow for more sustainable development in the future by increasing service life and decreasing the amount of resources and energy needed for repairs. Determining to what extent current ECC materials self-heal in the natural environment is the first step in the development of an ECC that can completely heal itself when exposed to everyday environmental conditions. This study monitored outdoor ECC specimens for one year using resonant frequency (RF) and mechanical reloading to determine the rate and extent of self-healing in the natural environment. It was found that the level of RF, stiffness, and first cracking strength recovery increased as the duration of natural environment exposure increased. For specimens that underwent multiple damage cycles, it was found that the level of recovery was highly dependent on the average temperature and amount of precipitation between each damage event. However, RF, stiffness, and first cracking strength recovery data for specimens that underwent multiple loading cycles suggest that self-healing functionality can be maintained under multiple damage events. PMID:28811411
Utility of High Temporal Resolution Observations for Heat Health Event Characterization
NASA Astrophysics Data System (ADS)
Palecki, M. A.
2017-12-01
Many heat health watch systems produce a binary on/off warning when conditions are predicted to exceed a given threshold during a day. Days with warnings and their mortality/morbidity statistics are analyzed relative to days not warned to determine the impacts of the event on human health, the effectiveness of warnings, and other statistics. The climate analyses of the heat waves or extreme temperature events are often performed with hourly or daily observations of air temperature, humidity, and other measured or derived variables, especially the maxima and minima of these data. However, since the beginning of the century, 5-minute observations are readily available for many weather and climate stations in the United States. NOAA National Centers for Environmental Information (NCEI) has been collecting 5-minute observations from the NOAA Automated Surface Observing System (ASOS) stations since 2000, and from the U.S. Climate Reference Network (USCRN) stations since 2005. This presentation will demonstrate the efficacy of utilizing 5-minute environmental observations to characterize heat waves by counting the length of time conditions exceed extreme thresholds based on individual and multiple variables and on derived variables such as the heat index. The length and depth of recovery periods between daytime heating periods will also be examined. The length of time under extreme conditions will influence health outcomes for those directly exposed. Longer periods of dangerous conditions also could increase the chances for poor health outcomes for those only exposed intermittently through cumulative impacts.
NASA Astrophysics Data System (ADS)
Bi, R.; Liu, H.
2016-02-01
Understanding how biological components respond to environmental changes could be insightful to predict ecosystem trajectories under different climate scenarios. Zooplankton are key components of marine ecosystems and changes in their dynamics could have major impact on ecosystem structure. We developed an individual-based model of a common coastal calanoid copepod Acartia tonsa to examine how environmental factors affect zooplankton population dynamics and explore the role of individual variability in sustaining population under various environmental conditions consisting of temperature, food concentration and salinity. Total abundance, egg production and proportion of survival were used to measure population success. Results suggested population benefits from high level of individual variability under extreme environmental conditions including unfavorable temperature, salinity, as well as low food concentration, and selection on fast-growers becomes stronger with increasing individual variability and increasing environmental stress. Multiple regression analysis showed that temperature, food concentration, salinity and individual variability have significant effects on survival of A. tonsa population. These results suggest that environmental factors have great influence on zooplankton population, and individual variability has important implications for population survivability under unfavorable conditions. Given that marine ecosystems are at risk from drastic environmental changes, understanding how individual variability sustains populations could increase our capability to predict population dynamics in a changing environment.
Changes in Concurrent Risk of Warm and Dry Years under Impact of Climate Change
NASA Astrophysics Data System (ADS)
Sarhadi, A.; Wiper, M.; Touma, D. E.; Ausín, M. C.; Diffenbaugh, N. S.
2017-12-01
Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena. The changing concurrence of multiple climatic extremes (warm and dry years) may result in intensification of undesirable consequences for water resources, human and ecosystem health, and environmental equity. The present study assesses how global warming influences the probability that warm and dry years co-occur in a global scale. In the first step of the study a designed multivariate Mann-Kendall trend analysis is used to detect the areas in which the concurrence of warm and dry years has increased in the historical climate records and also climate models in the global scale. The next step investigates the concurrent risk of the extremes under dynamic nonstationary conditions. A fully generalized multivariate risk framework is designed to evolve through time under dynamic nonstationary conditions. In this methodology, Bayesian, dynamic copulas are developed to model the time-varying dependence structure between the two different climate extremes (warm and dry years). The results reveal an increasing trend in the concurrence risk of warm and dry years, which are in agreement with the multivariate trend analysis from historical and climate models. In addition to providing a novel quantification of the changing probability of compound extreme events, the results of this study can help decision makers develop short- and long-term strategies to prepare for climate stresses now and in the future.
Bilateral macrodystrophia lipomatosa of the upper extremities with syndactyly and multiple lipomas.
van der Meer, Saskia; Nicolai, Jean-Philippe A; Schut, Simone M; Meek, Marcel F
2011-12-01
Macrodystrophia lipomatosa is a rare disease that causes congenital local gigantism of part of an extremity, which is characterised by an increase in all mesenchymal elements, particularly fibroadipose tissue. This is the first report to our knowledge of a case of histologically confirmed bilateral macrodystrophia lipomatosa of the upper extremities with syndactyly and multiple lipomas.
Modified Inverse First Order Reliability Method (I-FORM) for Predicting Extreme Sea States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckert-Gallup, Aubrey Celia; Sallaberry, Cedric Jean-Marie; Dallman, Ann Renee
Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulation s as a part of the stand ard current practice for designing marine structure s to survive extreme sea states. Such environmental contours are characterized by combinations of significant wave height ( ) and energy period ( ) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first - order reliability method (IFORM) i s standard design practice for generating environmental contours.more » In this paper, the traditional appli cation of the IFORM to generating environmental contours representing extreme sea states is described in detail and its merits and drawbacks are assessed. The application of additional methods for analyzing sea state data including the use of principal component analysis (PCA) to create an uncorrelated representation of the data under consideration is proposed. A reexamination of the components of the IFORM application to the problem at hand including the use of new distribution fitting techniques are shown to contribute to the development of more accurate a nd reasonable representations of extreme sea states for use in survivability analysis for marine struc tures. Keywords: In verse FORM, Principal Component Analysis , Environmental Contours, Extreme Sea State Characteri zation, Wave Energy Converters« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hettiarachchi, Ganga M.; Donner, Erica; Doelsch, Emmanuel
To understand the biogeochemistry of nutrients and contaminants in environmental media, their speciation and behavior under different conditions and at multiple scales must be determined. Synchrotron radiation-based X-ray techniques allow scientists to elucidate the underlying mechanisms responsible for nutrient and contaminant mobility, bioavailability, and behavior. The continuous improvement of synchrotron light sources and X-ray beamlines around the world has led to a profound transformation in the field of environmental biogeochemistry and, subsequently, to significant scientific breakthroughs. Following this introductory paper, this special collection includes 10 papers that either present targeted reviews of recent advancements in spectroscopic methods that are applicablemore » to environmental biogeochemistry or describe original research studies conducted on complex environmental samples that have been significantly enhanced by incorporating synchrotron radiation-based X-ray technique(s). We believe that the current focus on improving the speciation of ultra-dilute elements in environmental media through the ongoing optimization of synchrotron technologies (e.g., brighter light sources, improved monochromators, more efficient detectors) will help to significantly push back the frontiers of environmental biogeochemistry research. As many of the relevant techniques produce extremely large datasets, we also identify ongoing improvements in data processing and analysis (e.g., software improvements and harmonization of analytical methods) as a significant requirement for environmental biogeochemists to maximize the information that can be gained using these powerful tools.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xueyun; Wojcik, Roza; Zhang, Xing
Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. IMS alone is useful, but its coupling with mass spectrometry (MS) and front-end separations has been extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information in biological and environmental sample analyses. Multiple studies in disease screening and environmental evaluations have even shown these IMS-based multidimensional separations extract information not possible with each technique individually. This review highlights 3-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography (GC),more » supercritical fluid chromatography (SFC), liquid chromatography (LC), solid phase extractions (SPE), capillary electrophoresis (CE), field asymmetric ion mobility spectrometry (FAIMS), and microfluidic devices. The origination, current state, various applications, and future capabilities for these multidimensional approaches are described to provide insight into the utility and potential of each technique.« less
Zheng, Xueyun; Wojcik, Roza; Zhang, Xing; Ibrahim, Yehia M.; Burnum-Johnson, Kristin E.; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Baker, Erin S.
2017-01-01
Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits. PMID:28301728
Catelan, Dolores; Biggeri, Annibale
2008-11-01
In environmental epidemiology, long lists of relative risk estimates from exposed populations are compared to a reference to scrutinize the dataset for extremes. Here, inference on disease profiles for given areas, or for fixed disease population signatures, are of interest and summaries can be obtained averaging over areas or diseases. We have developed a multivariate hierarchical Bayesian approach to estimate posterior rank distributions and we show how to produce league tables of ranks with credibility intervals useful to address the above mentioned inferential problems. Applying the procedure to a real dataset from the report "Environment and Health in Sardinia (Italy)" we selected 18 areas characterized by high environmental pressure for industrial, mining or military activities investigated for 29 causes of deaths among male residents. Ranking diseases highlighted the increased burdens of neoplastic (cancerous), and non-neoplastic respiratory diseases in the heavily polluted area of Portoscuso. The averaged ranks by disease over areas showed lung cancer among the three highest positions.
Making Energy-Water Nexus Scenarios more Fit-for-Purpose through Better Characterization of Extremes
NASA Astrophysics Data System (ADS)
Yetman, G.; Levy, M. A.; Chen, R. S.; Schnarr, E.
2017-12-01
Often quantitative scenarios of future trends exhibit less variability than the historic data upon which the models that generate them are based. The problem of dampened variability, which typically also entails dampened extremes, manifests both temporally and spatially. As a result, risk assessments that rely on such scenarios are in danger of producing misleading results. This danger is pronounced in nexus issues, because of the multiple dimensions of change that are relevant. We illustrate the above problem by developing alternative joint distributions of the probability of drought and of human population totals, across U.S. counties over the period 2010-2030. For the dampened-extremes case we use drought frequencies derived from climate models used in the U.S. National Climate Assessment and the Environmental Protection Agency's population and land use projections contained in its Integrated Climate and Land Use Scenarios (ICLUS). For the elevated extremes case we use an alternative spatial drought frequency estimate based on tree-ring data, covering a 555-year period (Ho et al 2017); and we introduce greater temporal and spatial extremes in the ICLUS socioeconomic projections so that they conform to observed extremes in the historical U.S. spatial census data 1790-present (National Historical Geographic Information System). We use spatial and temporal coincidence of high population and extreme drought as a proxy for energy-water nexus risk. We compare the representation of risk in the dampened-extreme and elevated-extreme scenario analysis. We identify areas of the country where using more realistic portrayals of extremes makes the biggest difference in estimate risk and suggest implications for future risk assessments. References: Michelle Ho, Upmanu Lall, Xun Sun, Edward R. Cook. 2017. Multiscale temporal variability and regional patterns in 555 years of conterminous U.S. streamflow. Water Resources Research. . doi: 10.1002/2016WR019632
Combining multiple sources of data to inform conservation of Lesser Prairie-Chicken populations
Ross, Beth; Haukos, David A.; Hagen, Christian A.; Pitman, James
2018-01-01
Conservation of small populations is often based on limited data from spatially and temporally restricted studies, resulting in management actions based on an incomplete assessment of the population drivers. If fluctuations in abundance are related to changes in weather, proper management is especially important, because extreme weather events could disproportionately affect population abundance. Conservation assessments, especially for vulnerable populations, are aided by a knowledge of how extreme events influence population status and trends. Although important for conservation efforts, data may be limited for small or vulnerable populations. Integrated population models maximize information from various sources of data to yield population estimates that fully incorporate uncertainty from multiple data sources while allowing for the explicit incorporation of environmental covariates of interest. Our goal was to assess the relative influence of population drivers for the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) in the core of its range, western and southern Kansas, USA. We used data from roadside lek count surveys, nest monitoring surveys, and survival data from telemetry monitoring combined with climate (Palmer drought severity index) data in an integrated population model. Our results indicate that variability in population growth rate was most influenced by variability in juvenile survival. The Palmer drought severity index had no measurable direct effects on adult survival or mean number of offspring per female; however, there were declines in population growth rate following severe drought. Because declines in population growth rate occurred at a broad spatial scale, declines in response to drought were likely due to decreases in chick and juvenile survival rather than emigration outside of the study area. Overall, our model highlights the importance of accounting for environmental and demographic sources of variability, and provides a thorough method for simultaneously evaluating population demography in response to long-term climate effects.
NASA Astrophysics Data System (ADS)
Reaney, S. M.; Snell, M. A.; Barker, P. A.; Aftab, A.; Barber, N. J.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Perks, M. T.; Quinn, P. F.; Surridge, B.
2016-12-01
Low order streams are spatially extensive, temporally dynamic, systems within the agricultural landscape. This dynamism extends to the aquatic communities within these streams, including the phytobentos, which demonstrates considerable resilience to diffuse anthropogenic nutrient pressures and changing climate dynamics. The phytobenthos community can substantially contribute to the food web, in particular diatoms, which dominate photo-autotrophic assemblages in low order streams. Diatoms are widely used in ecological monitoring because of their high sensitivity to environmental condition, but knowledge is limited on the ecological effects of winter disturbances and variance introduced by multiple and interacting pressures (N, P, sediment), introducing bias in understanding temporal dynamics in benthic diatom communities. Using the environmental time series data from long term monitoring within the River Eden Demonstration Test Catchment programme, we assess the impact of multiple hydro-chemical stressors on phytobenthic community resilience, and synthesize the impact of an extreme winter event. Monthly data from diatom communities collected in the Eden DTC from March 2011 to present show that river flow, strongly coupled to precipitation, is a key driver of these communities. Discharge has a direct effect on communities through scouring, but is also tightly correlated to nutrient delivery, such that 80% of the annual TP load arrives in 10% of the time. Trophic Diatom Index (TDI) values demonstrated considerable resilience by the stability of inter-monthly TDI scores over 5 seasonal cycles against the characterised highly variable hydrological regime. This research demonstrates that well characterised winter disturbances are critical to understanding drivers of aquatic dynamics. This has implications for catchment diffuse pollution policy, farm management and economics, given the climate projections of increases in frequency and intensity of extreme winter events, which may alter instream nutrient fluxes.
Weak linkage between the heaviest rainfall and tallest storms.
Hamada, Atsushi; Takayabu, Yukari N; Liu, Chuntao; Zipser, Edward J
2015-02-24
Conventionally, the heaviest rainfall has been linked to the tallest, most intense convective storms. However, the global picture of the linkage between extreme rainfall and convection remains unclear. Here we analyse an 11-year record of spaceborne precipitation radar observations and establish that a relatively small fraction of extreme convective events produces extreme rainfall rates in any region of the tropics and subtropics. Robust differences between extreme rainfall and convective events are found in the rainfall characteristics and environmental conditions, irrespective of region; most extreme rainfall events are characterized by less intense convection with intense radar echoes not extending to extremely high altitudes. Rainfall characteristics and environmental conditions both indicate the importance of warm-rain processes in producing extreme rainfall rates. Our results demonstrate that, even in regions where severe convective storms are representative extreme weather events, the heaviest rainfall events are mostly associated with less intense convection.
NASA Astrophysics Data System (ADS)
Zhu, Kefeng; Xue, Ming
2016-11-01
On 21 July 2012, an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm, occurred in Beijing, China. Most operational models failed to predict such an extreme amount. In this study, a convective-permitting ensemble forecast system (CEFS), at 4-km grid spacing, covering the entire mainland of China, is applied to this extreme rainfall case. CEFS consists of 22 members and uses multiple physics parameterizations. For the event, the predicted maximum is 415 mm d-1 in the probability-matched ensemble mean. The predicted high-probability heavy rain region is located in southwest Beijing, as was observed. Ensemble-based verification scores are then investigated. For a small verification domain covering Beijing and its surrounding areas, the precipitation rank histogram of CEFS is much flatter than that of a reference global ensemble. CEFS has a lower (higher) Brier score and a higher resolution than the global ensemble for precipitation, indicating more reliable probabilistic forecasting by CEFS. Additionally, forecasts of different ensemble members are compared and discussed. Most of the extreme rainfall comes from convection in the warm sector east of an approaching cold front. A few members of CEFS successfully reproduce such precipitation, and orographic lift of highly moist low-level flows with a significantly southeasterly component is suggested to have played important roles in producing the initial convection. Comparisons between good and bad forecast members indicate a strong sensitivity of the extreme rainfall to the mesoscale environmental conditions, and, to less of an extent, the model physics.
NASA Astrophysics Data System (ADS)
Goehring, E. C.; Carlsen, W.; Larsen, J.; Simms, E.; Smith, M.
2007-12-01
From Local to EXtreme Environments (FLEXE) is an innovative new project of the GLOBE Program that involves middle and high school students in systematic, facilitated analyses and comparisons of real environmental data. Through FLEXE, students collect and analyze data from various sources, including the multi-year GLOBE database, deep-sea scientific research projects, and direct measurements of the local environment collected by students using GLOBE sampling protocols. Initial FLEXE materials and training have focused on student understanding of energy transfer through components of the Earth system, including a comparison of how local environmental conditions differ from those found at deep-sea hydrothermal vent communities. While the importance of data acquisition, accuracy and replication is emphasized, FLEXE is also uniquely structured to deepen students' understanding of multiple aspects of the process and nature of science, including written communication of results and on-line peer review. Analyses of data are facilitated through structured, web-based interactions and culminating activities with at-sea scientists through an online forum. The project benefits from the involvement of a professional evaluator, and as the model is tested and refined, it may serve as a template for the inclusion of additional "extreme" earth systems. FLEXE is a partnership of the international GLOBE web- based education program and the NSF Ridge 2000 mid-ocean ridge and hydrothermal vent research program, and includes the expertise of the Center for Science and the Schools at Penn State University. International collaborators also include the InterRidge and ChEss international research programs.
The environmental and medical geochemistry of potentially hazardous materials produced by disasters
Plumlee, Geoffrey S.; Morman, Suzette A.; Meeker, G.P.; Hoefen, Todd M.; Hageman, Philip L.; Wolf, Ruth E.
2014-01-01
Many natural or human-caused disasters release potentially hazardous materials (HM) that may pose threats to the environment and health of exposed humans, wildlife, and livestock. This chapter summarizes the environmentally and toxicologically significant physical, mineralogical, and geochemical characteristics of materials produced by a wide variety of recent disasters, such as volcanic eruptions, hurricanes and extreme storms, spills of mining/mineral-processing wastes or coal extraction by-products, and the 2001 attacks on and collapse of the World Trade Center towers. In describing these characteristics, this chapter also illustrates the important roles that geochemists and other earth scientists can play in environmental disaster response and preparedness. In addition to characterizing in detail the physical, chemical, and microbial makeup of HM generated by the disasters, these roles also include (1) identifying and discriminating potential multiple sources of the materials; (2) monitoring, mapping, and modeling dispersal and evolution of the materials in the environment; (3) understanding how the materials are modified by environmental processes; (4) identifying key characteristics and processes that influence the materials' toxicity to exposed humans and ecosystems; (5) estimating shifts away from predisaster environmental baseline conditions; and (6) using geochemical insights learned from past disasters to help estimate, prepare for, and increase societal resilience to the environmental and related health impacts of future disasters.
Tanisawa, Kumpei; Arai, Yasumichi; Hirose, Nobuyoshi; Shimokata, Hiroshi; Yamada, Yoshiji; Kawai, Hisashi; Kojima, Motonaga; Obuchi, Shuichi; Hirano, Hirohiko; Yoshida, Hideyo; Suzuki, Hiroyuki; Fujiwara, Yoshinori; Ihara, Kazushige; Sugaya, Maki; Arai, Tomio; Mori, Seijiro; Sawabe, Motoji; Sato, Noriko; Muramatsu, Masaaki; Higuchi, Mitsuru; Liu, Yao-Wen; Kong, Qing-Peng
2017-01-01
Abstract Life span is a complex trait regulated by multiple genetic and environmental factors; however, the genetic determinants of extreme longevity have been largely unknown. To identify the functional coding variants associated with extreme longevity, we performed an exome-wide association study (EWAS) on a Japanese population by using an Illumina HumanExome Beadchip and a focused replication study on a Chinese population. The EWAS on two independent Japanese cohorts consisting of 530 nonagenarians/centenarians demonstrated that the G allele of CLEC3B missense variant p.S106G was associated with extreme longevity at the exome-wide level of significance (p = 2.33×10–7, odds ratio [OR] = 1.50). The CLEC3B gene encodes tetranectin, a protein implicated in the mineralization process in osteogenesis as well as in the prognosis and metastasis of cancer. The replication study consisting of 448 Chinese nonagenarians/centenarians showed that the G allele of CLEC3B p.S106G was also associated with extreme longevity (p = .027, OR = 1.51), and the p value of this variant reached 1.87×10–8 in the meta-analysis of Japanese and Chinese populations. In conclusion, the present study identified the CLEC3B p.S106G as a novel longevity-associated variant, raising the novel hypothesis that tetranectin, encoded by CLEC3B, plays a role in human longevity and aging. PMID:27154906
Arctic Sea Ice, Eurasia Snow, and Extreme Winter Haze in China
NASA Astrophysics Data System (ADS)
Zou, Y.; Wang, Y.; Xie, Z.; Zhang, Y.; Koo, J. H.
2017-12-01
Eastern China is experiencing more severe haze pollution in winter during recent years. Though the environmental deterioration in this region is usually attributed to the high intensity of anthropogenic emissions and large contributions from secondary aerosol formation, the impact of climate variability is also indispensable given its significant influence on regional weather systems and pollution ventilation. Here we analyzed the air quality related winter meteorological conditions over Eastern China in the last four decades and showed a worsening trend in poor regional air pollutant ventilation. Such variations increased the probability of extreme air pollution events, which is in good agreement with aerosol observations of recent years. We further identified the key circulation pattern that is conducive to the weakening ventilation and investigated the relationship between synoptic circulation changes and multiple climate forcing variables. Both statistical analysis and numerical sensitivity experiments suggested that the poor ventilation condition is linked to boreal cryosphere changes including Arctic sea ice in preceding autumn and Eurasia snowfall in earlier winter. We conducted comprehensive dynamic diagnosis and proposed a physical mechanism to explain the observed and simulated circulation changes. At last, we examined future projections of winter extreme stagnation events based on the CMIP5 projection data.
A multi-scale spatial approach to address environmental effects of small hydropower development.
McManamay, Ryan A; Samu, Nicole; Kao, Shih-Chieh; Bevelhimer, Mark S; Hetrick, Shelaine C
2015-01-01
Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.
Sediment dynamics of muddy coasts and estuaries in China: An introduction
NASA Astrophysics Data System (ADS)
Wang, Xiao Hua; Gan, Jianping; Lowe, Ryan
2018-06-01
Sustainable livelihoods and economic development is supported by effective management of coastal and estuarine assets, which represents a huge and, in many instances, extremely costly challenge, in particular given the multiple stakeholders with mixed interests in ports and harbours and the adjacent coastal and marine environments. Given the importance of the well-being of coastal environments, the rapid expansion of major ports has caused concerns within both the scientific community and the general public about the possible environmental consequences. The implications of these rapid coastal changes, including urbanization and industrialization, are often highly degraded natural systems, ecosystems with compromised functions, and intense conflict and competition between users.
Sea ice microorganisms: environmental constraints and extracellular responses.
Ewert, Marcela; Deming, Jody W
2013-03-28
Inherent to sea ice, like other high latitude environments, is the strong seasonality driven by changes in insolation throughout the year. Sea-ice organisms are exposed to shifting, sometimes limiting, conditions of temperature and salinity. An array of adaptations to survive these and other challenges has been acquired by those organisms that inhabit the ice. One key adaptive response is the production of extracellular polymeric substances (EPS), which play multiple roles in the entrapment, retention and survival of microorganisms in sea ice. In this concept paper we consider two main areas of sea-ice microbiology: the physico-chemical properties that define sea ice as a microbial habitat, imparting particular advantages and limits; and extracellular responses elicited in microbial inhabitants as they exploit or survive these conditions. Emphasis is placed on protective strategies used in the face of fluctuating and extreme environmental conditions in sea ice. Gaps in knowledge and testable hypotheses are identified for future research.
Sea Ice Microorganisms: Environmental Constraints and Extracellular Responses
Ewert, Marcela; Deming, Jody W.
2013-01-01
Inherent to sea ice, like other high latitude environments, is the strong seasonality driven by changes in insolation throughout the year. Sea-ice organisms are exposed to shifting, sometimes limiting, conditions of temperature and salinity. An array of adaptations to survive these and other challenges has been acquired by those organisms that inhabit the ice. One key adaptive response is the production of extracellular polymeric substances (EPS), which play multiple roles in the entrapment, retention and survival of microorganisms in sea ice. In this concept paper we consider two main areas of sea-ice microbiology: the physico-chemical properties that define sea ice as a microbial habitat, imparting particular advantages and limits; and extracellular responses elicited in microbial inhabitants as they exploit or survive these conditions. Emphasis is placed on protective strategies used in the face of fluctuating and extreme environmental conditions in sea ice. Gaps in knowledge and testable hypotheses are identified for future research. PMID:24832800
Modeling Spatial Dependence of Rainfall Extremes Across Multiple Durations
NASA Astrophysics Data System (ADS)
Le, Phuong Dong; Leonard, Michael; Westra, Seth
2018-03-01
Determining the probability of a flood event in a catchment given that another flood has occurred in a nearby catchment is useful in the design of infrastructure such as road networks that have multiple river crossings. These conditional flood probabilities can be estimated by calculating conditional probabilities of extreme rainfall and then transforming rainfall to runoff through a hydrologic model. Each catchment's hydrological response times are unlikely to be the same, so in order to estimate these conditional probabilities one must consider the dependence of extreme rainfall both across space and across critical storm durations. To represent these types of dependence, this study proposes a new approach for combining extreme rainfall across different durations within a spatial extreme value model using max-stable process theory. This is achieved in a stepwise manner. The first step defines a set of common parameters for the marginal distributions across multiple durations. The parameters are then spatially interpolated to develop a spatial field. Storm-level dependence is represented through the max-stable process for rainfall extremes across different durations. The dependence model shows a reasonable fit between the observed pairwise extremal coefficients and the theoretical pairwise extremal coefficient function across all durations. The study demonstrates how the approach can be applied to develop conditional maps of the return period and return level across different durations.
Insertion sequences enrichment in extreme Red sea brine pool vent.
Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania
2017-03-01
Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world's largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.
Nunes, Vera L; Beaumont, Mark A; Butlin, Roger K; Paulo, Octávio S
2011-01-01
Identification of loci with adaptive importance is a key step to understand the speciation process in natural populations, because those loci are responsible for phenotypic variation that affects fitness in different environments. We conducted an AFLP genome scan in populations of ocellated lizards (Lacerta lepida) to search for candidate loci influenced by selection along an environmental gradient in the Iberian Peninsula. This gradient is strongly influenced by climatic variables, and two subspecies can be recognized at the opposite extremes: L. lepida iberica in the northwest and L. lepida nevadensis in the southeast. Both subspecies show substantial morphological differences that may be involved in their local adaptation to the climatic extremes. To investigate how the use of a particular outlier detection method can influence the results, a frequentist method, DFDIST, and a Bayesian method, BayeScan, were used to search for outliers influenced by selection. Additionally, the spatial analysis method was used to test for associations of AFLP marker band frequencies with 54 climatic variables by logistic regression. Results obtained with each method highlight differences in their sensitivity. DFDIST and BayeScan detected a similar proportion of outliers (3-4%), but only a few loci were simultaneously detected by both methods. Several loci detected as outliers were also associated with temperature, insolation or precipitation according to spatial analysis method. These results are in accordance with reported data in the literature about morphological and life-history variation of L. lepida subspecies along the environmental gradient. © 2010 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Barros, A. P.
2008-12-01
--"The last major climatic oscillation peak was about 1856, or 74 years ago. Practically all of our important railroad and public highway work has been done since that time. Most of our parks systems driveways, and roads of all type for auto travel, in the various States, have been completed within the past 30 years, namely, beginning at the very lowest point of our climatic swing (1900-1910). There is every reason to believe, therefore, as the next 20 years comes on apace, we will witness considerable damage to work done during the past regime of weather."-- Schuman, 1931 At the beginning of the 21st century, as at the beginning of the 20th century, the fundamental question is whether the nation is more prepared for natural disasters today than it was eight decades ago. Indeed, the question is whether the best science, engineering and policy tools are in place to prepare for and respond to extreme events. Changes in the risk and magnitude of extreme precipitation events rank among the most studied impacts, and indicators (symptoms) of climatic variations. Extreme precipitation translates generally into extreme flooding, landslides, collapse of lifeline infrastructure, and the breakdown of public health services among others. In approaching the problem of quantifying the risk and magnitude of extreme precipitation events, there are two major challenges: 1) it is difficult to characterize "observed" (20th century) conditions due to the lack of long-term observations - i.e., short and incomplete historical records; and 2) it is difficult to characterize "predicted" (21st century) conditions due to the lack of skill of precipitation forecasts at spatial and temporal scales meaningful for impact studies, and the short-duration of climate model simulations themselves. The first challenge translates in estimating the probability of occurrence (rare) and magnitude (very large) of events that may have not happened yet. The second challenge is that of quantifying uncertainty and separating climatic variability and change from model error. Nonstationarity and persistence at multiple scales confound the problem. From an economics perspective, the unprecedented success of environmental control and "conservation" in the 20th century, present another yet challenge in terms of social expectations and human development, including the right to sustainable (high) quality of life. In this presentation, we illustrate these challenges by considering first the estimation of Probable Maximum Precipitation, an engineering design criterion typically used in dam design, and examine how it varies spatially across the continental US according to physiographic region and as a function of climate regime. Second, we explore the spatial and temporal scales that link climate variability to macroscale environmental planning, and the notion of place-based adaptive riskgrade analysis.
Multiple Lower Extremity Mononeuropathies by Segmental Schwannomatosis: A Case Report
Kwon, Na Yeon; Oh, Hyun-Mi
2015-01-01
Schwannoma is an encapsulated nerve sheath tumor that is distinct from neurofibromatosis. It is defined as the occurrence of multiple schwannomas without any bilateral vestibular schwannomas. A 46-year-old man with multiple schwannomas involving peripheral nerves of the ipsilateral lower extremity presented with neurologic symptoms. Electrodiagnostic studies revealed multiple mononeuropathies involving the left sciatic, common peroneal, tibial, femoral and superior gluteal nerves. Histologic findings confirmed the diagnosis of schwannoma. We reported this rare case of segmental schwannomatosis that presented with neurologic symptoms including motor weakness, which was confirmed as multiple mononeuropathies by electrodiagnostic studies. PMID:26605183
Multiple Lower Extremity Mononeuropathies by Segmental Schwannomatosis: A Case Report.
Kwon, Na Yeon; Oh, Hyun-Mi; Ko, Young Jin
2015-10-01
Schwannoma is an encapsulated nerve sheath tumor that is distinct from neurofibromatosis. It is defined as the occurrence of multiple schwannomas without any bilateral vestibular schwannomas. A 46-year-old man with multiple schwannomas involving peripheral nerves of the ipsilateral lower extremity presented with neurologic symptoms. Electrodiagnostic studies revealed multiple mononeuropathies involving the left sciatic, common peroneal, tibial, femoral and superior gluteal nerves. Histologic findings confirmed the diagnosis of schwannoma. We reported this rare case of segmental schwannomatosis that presented with neurologic symptoms including motor weakness, which was confirmed as multiple mononeuropathies by electrodiagnostic studies.
What is environmental stress? Insights from fish living in a variable environment.
Schulte, Patricia M
2014-01-01
Although the term environmental stress is used across multiple fields in biology, the inherent ambiguity associated with its definition has caused confusion when attempting to understand organismal responses to environmental change. Here I provide a brief summary of existing definitions of the term stress, and the related concepts of homeostasis and allostasis, and attempt to unify them to develop a general framework for understanding how organisms respond to environmental stressors. I suggest that viewing stressors as environmental changes that cause reductions in performance or fitness provides the broadest and most useful conception of the phenomenon of stress. I examine this framework in the context of animals that have evolved in highly variable environments, using the Atlantic killifish, Fundulus heteroclitus, as a case study. Consistent with the extreme environmental variation that they experience in their salt marsh habitats, killifish have substantial capacity for both short-term resistance and long-term plasticity in the face of changing temperature, salinity and oxygenation. There is inter-population variation in the sensitivity of killifish to environmental stressors, and in their ability to acclimate, suggesting that local adaptation can shape the stress response even in organisms that are broadly tolerant and highly plastic. Whole-organism differences between populations in stressor sensitivity and phenotypic plasticity are reflected at the biochemical and molecular levels in killifish, emphasizing the integrative nature of the response to environmental stressors. Examination of this empirical example highlights the utility of using an evolutionary perspective on stressors, stress and stress responses.
Tu, Tongbi; Carr, Kara J; Ercan, Ali; Trinh, Toan; Kavvas, M Levent; Nosacka, John
2017-12-31
Extreme floods are regarded as one of the most catastrophic natural hazards and can result in significant morphological changes induced by pronounced sediment erosion and deposition processes over the landscape. However, the effects of extreme floods of different return intervals on the floodplain and river channel morphological evolution with the associated sediment transport processes are not well explored. Furthermore, different basin management action plans, such as engineering structure modifications, may also greatly affect the flood inundation, sediment transport, solute transport and morphological processes within extreme flood events. In this study, a coupled two-dimensional hydrodynamic, sediment transport and morphological model is applied to evaluate the impact of different river and basin management strategies on the flood inundation, sediment transport dynamics and morphological changes within extreme flood events of different magnitudes. The 10-year, 50-year, 100-year and 200-year floods are evaluated for the Lower Cache Creek system in California under existing condition and a potential future modification scenario. Modeling results showed that select locations of flood inundation within the study area tend to experience larger inundation depth and more sediment is likely to be trapped in the study area under potential modification scenario. The proposed two dimensional flow and sediment transport modeling approach implemented with a variety of inflow conditions can provide guidance to decision-makers when considering implementation of potential modification plans, especially as they relate to competing management strategies of large water bodies, such as the modeling area in this study. Copyright © 2017 Elsevier B.V. All rights reserved.
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-06-19
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.
NASA Technical Reports Server (NTRS)
Hock, R. A.; Woods, T. N.; Crotser, D.; Eparvier, F. G.; Woodraska, D. L.; Chamberlin, P. C.; Woods, E. C.
2010-01-01
The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et al. . In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments.
Developing Model Benchtop Systems for Microbial Experimental Evolution
NASA Astrophysics Data System (ADS)
Gentry, D.; Wang, J.; Arismendi, D.; Alvarez, J.; Ouandji, C.; Blaich, J.
2017-12-01
Understanding how microbes impact an ecosystem has improved through advances of molecular and genetic tools, but creating complex systems that emulate natural biology goes beyond current technology. In fact, many chemical, biological, and metabolic pathways of even model organisms are still poorly characterized. Even then, standard laboratory techniques for testing microbial impact on environmental change can have many drawbacks; they are time-consuming, labor intensive, and are at risk of contamination. By having an automated process, many of these problems can be reduced or even eliminated. We are developing a benchtop system that can run for long periods of time without the need for human intervention, involve multiple environmental stressors at once, perform real-time adjustments of stressor exposure based on current state of the population, and minimize contamination risks. Our prototype device allows operators to generate an analogue of real world micro-scale ecosystems that can be used to model the effects of disruptive environmental change on microbial ecosystems. It comprises of electronics, mechatronics, and fluidics based systems to control, measure, and evaluate the before and after state of microbial cultures from exposure to environmental stressors. Currently, it uses four parallel growth chambers to perform tests on liquid cultures. To measure the population state, optical sensors (LED/photodiode) are used. Its primary selection pressure is UV-C radiation, a well-studied stressor known for its cell- and DNA- damaging effects and as a mutagen. Future work will involve improving the current growth chambers, as well as implementing additional sensors and environmental stressors into the system. Full integration of multiple culture testing will allow inter-culture comparisons. Besides the temperature and OD sensors, other types of sensors can be integrated such as conductivity, biomass, pH, and dissolved gasses such as CO2 and O2. Additional environmental stressor systems like temperature (extreme heat or cold), metal toxicity, and other forms of radiation will increase the scale and testing range.
Developing Model Benchtop Systems for Microbial Experimental Evolution
NASA Technical Reports Server (NTRS)
Wang, Jonathan; Arismendi, Dillon; Alvarez, Jennifer; Ouandji, Cynthia; Blaich, Justin; Gentry, Diana
2017-01-01
Understanding how microbes impact an ecosystem has improved through advances of molecular and genetic tools, but creating complex systems that emulate natural biology goes beyond current technology. In fact, many chemical, biological, and metabolic pathways of even model organisms are still poorly characterized. Even then, standard laboratory techniques for testing microbial impact on environmental change can have many drawbacks; they are time-consuming, labor intensive, and are at risk of contamination. By having an automated process, many of these problems can be reduced or even eliminated. We are developing a benchtop system that can run for long periods of time without the need for human intervention, involve multiple environmental stressors at once, perform real-time adjustments of stressor exposure based on current state of the population, and minimize contamination risks. Our prototype device allows operators to generate an analogue of real world micro-scale ecosystems that can be used to model the effects of disruptive environmental change on microbial ecosystems. It comprises of electronics, mechatronics, and fluidics based systems to control, measure, and evaluate the before and after state of microbial cultures from exposure to environmental stressors. Currently, it uses four parallel growth chambers to perform tests on liquid cultures. To measure the population state, optical sensors (LED/photodiode) are used. Its primary selection pressure is UV-C radiation, a well-studied stressor known for its cell- and DNA-damaging effects and as a mutagen. Future work will involve improving the current growth chambers, as well as implementing additional sensors and environmental stressors into the system. Full integration of multiple culture testing will allow inter-culture comparisons. Besides the temperature and OD sensors, other types of sensors can be integrated such as conductivity, biomass, pH, and dissolved gasses such as CO and O. Additional environmental stressor systems like temperature (extreme heat or cold), metal toxicity, and other forms of radiation will increase the scale and testing range.
NASA Astrophysics Data System (ADS)
Pan, S.; Yang, J.; Zhang, J.; Xu, R.; Dangal, S. R. S.; Zhang, B.; Tian, H.
2016-12-01
Africa is one of the most vulnerable regions in the world to climate change and climate variability. Much concern has been raised about the impacts of climate and other environmental factors on water resource and food security through the climate-water-food nexus. Understanding the responses of crop yield and water use efficiency to environmental changes is particularly important because Africa is well known for widespread poverty, slow economic growth and agricultural systems particularly sensitive to frequent and persistent droughts. However, the lack of integrated understanding has limited our ability to quantify and predict the potential of Africa's agricultural sustainability and freshwater supply, and to better manage the system for meeting an increasing food demand in a way that is socially and environmentally or ecologically sustainable. By using the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed the spatial and temporal patterns of crop yield, evapotranspiration (ET) and water use efficiency across entire Africa in the past 35 years (1980-2015) and the rest of the 21st century (2016-2099). Our preliminary results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion (about 50%), elevated atmospheric CO2 concentration, and nitrogen deposition. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Climate extremes especially droughts and heat wave have largely reduced crop yield in the most vulnerable regions. Our results indicate that N fertilizer could be a major driver to improve food security in Africa. Future climate warming could reduce crop yield and shift cropland distribution. Our study further suggests that improving water use efficiency through land management practices including the increased uses of fertilizers and irrigation will be the key for reducing the loss of crop yield in a warming climate and extreme weather.
NASA Astrophysics Data System (ADS)
Panulla, Brian J.; More, Loretta D.; Shumaker, Wade R.; Jones, Michael D.; Hooper, Robert; Vernon, Jeffrey M.; Aungst, Stanley G.
2009-05-01
Rapid improvements in communications infrastructure and sophistication of commercial hand-held devices provide a major new source of information for assessing extreme situations such as environmental crises. In particular, ad hoc collections of humans can act as "soft sensors" to augment data collected by traditional sensors in a net-centric environment (in effect, "crowd-sourcing" observational data). A need exists to understand how to task such soft sensors, characterize their performance and fuse the data with traditional data sources. In order to quantitatively study such situations, as well as study distributed decision-making, we have developed an Extreme Events Laboratory (EEL) at The Pennsylvania State University. This facility provides a network-centric, collaborative situation assessment and decision-making capability by supporting experiments involving human observers, distributed decision making and cognition, and crisis management. The EEL spans the information chain from energy detection via sensors, human observations, signal and image processing, pattern recognition, statistical estimation, multi-sensor data fusion, visualization and analytics, and modeling and simulation. The EEL command center combines COTS and custom collaboration tools in innovative ways, providing capabilities such as geo-spatial visualization and dynamic mash-ups of multiple data sources. This paper describes the EEL and several on-going human-in-the-loop experiments aimed at understanding the new collective observation and analysis landscape.
2018-06-18
Multiple Sclerosis; Pathologic Processes; Demyelinating Diseases; Demyelinating Autoimmune Diseases; Nervous System Diseases; Autoimmune Diseases; Immune System Diseases; Primary Progressive Multiple Sclerosis; Relapsing Remitting Multiple Sclerosis
Conditional probability of rainfall extremes across multiple durations
NASA Astrophysics Data System (ADS)
Le, Phuong Dong; Leonard, Michael; Westra, Seth
2017-04-01
The conditional probability that extreme rainfall will occur at one location given that it is occurring at another location is critical in engineering design and management circumstances including planning of evacuation routes and the sitting of emergency infrastructure. A challenge with this conditional simulation is that in many situations the interest is not so much the conditional distributions of rainfall of the same duration at two locations, but rather the conditional distribution of flooding in two neighbouring catchments, which may be influenced by rainfall of different critical durations. To deal with this challenge, a model that can consider both spatial and duration dependence of extremes is required. The aim of this research is to develop a model that can take account both spatial dependence and duration dependence into the dependence structure of extreme rainfalls. To achieve this aim, this study is a first attempt at combining extreme rainfall for multiple durations within a spatial extreme model framework based on max-stable process theory. Max-stable processes provide a general framework for modelling multivariate extremes with spatial dependence for just a single duration extreme rainfall. To achieve dependence across multiple timescales, this study proposes a new approach that includes addition elements representing duration dependence of extremes to the covariance matrix of max-stable model. To improve the efficiency of calculation, a re-parameterization proposed by Koutsoyiannis et al. (1998) is used to reduce the number of parameters necessary to be estimated. This re-parameterization enables the GEV parameters to be represented as a function of timescale. A stepwise framework has been adopted to achieve the overall aims of this research. Firstly, the re-parameterization is used to define a new set of common parameters for marginal distribution across multiple durations. Secondly, spatial interpolation of the new parameter set is used to estimate marginal parameters across the full spatial domain. Finally, spatial interpolation result is used as initial condition to estimate dependence parameters via a likelihood function of max-stable model for multiple durations. The Hawkesbury-Nepean catchment near Sydney in Australia was selected as case study for this research. This catchment has 25 sub-daily rain gauges with the minimum record length of 24 years over a region of 300 km × 300 km area. The re-parameterization was applied for each station for durations from 1 hour to 24 hours and then is evaluated by comparing with the at-site fitted GEV. The evaluation showed that the average R2 for all station is around 0.80 with the range from 0.26 to 1.0. The output of re-parameterization then was used to construct the spatial surface based on covariates including longitude, latitude, and elevation. The dependence model showed good agreements between empirical extremal coefficient and theoretical extremal coefficient for multiple durations. For the overall model, a leave-one-out cross-validation for all stations showed it works well for 20 out of 25 stations. The potential application of this model framework was illustrated through a conditional map of return period and return level across multiple durations, both of which are important for engineering design and management.
Van Wyngaarden, Mallory; Snelgrove, Paul V R; DiBacco, Claudio; Hamilton, Lorraine C; Rodríguez-Ezpeleta, Naiara; Zhan, Luyao; Beiko, Robert G; Bradbury, Ian R
2018-03-01
Environmental factors can influence diversity and population structure in marine species and accurate understanding of this influence can both improve fisheries management and help predict responses to environmental change. We used 7163 SNPs derived from restriction site-associated DNA sequencing genotyped in 245 individuals of the economically important sea scallop, Placopecten magellanicus , to evaluate the correlations between oceanographic variation and a previously identified latitudinal genomic cline. Sea scallops span a broad latitudinal area (>10 degrees), and we hypothesized that climatic variation significantly drives clinal trends in allele frequency. Using a large environmental dataset, including temperature, salinity, chlorophyll a, and nutrient concentrations, we identified a suite of SNPs (285-621, depending on analysis and environmental dataset) potentially under selection through correlations with environmental variation. Principal components analysis of different outlier SNPs and environmental datasets revealed similar northern and southern clusters, with significant associations between the first axes of each ( R 2 adj = .66-.79). Multivariate redundancy analysis of outlier SNPs and the environmental principal components indicated that environmental factors explained more than 32% of the variance. Similarly, multiple linear regressions and random-forest analysis identified winter average and minimum ocean temperatures as significant parameters in the link between genetic and environmental variation. This work indicates that oceanographic variation is associated with the observed genomic cline in this species and that seasonal periods of extreme cold may restrict gene flow along a latitudinal gradient in this marine benthic bivalve. Incorporating this finding into management may improve accuracy of management strategies and future predictions.
NASA Astrophysics Data System (ADS)
Ruane, A. C.
2016-12-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to build a modeling framework capable of representing the complexities of agriculture, its dependence on climate, and the many elements of society that depend on food systems. AgMIP's 30+ activities explore the interconnected nature of climate, crop, livestock, economics, food security, and nutrition, using common protocols to systematically evaluate the components of agricultural assessment and allow multi-model, multi-scale, and multi-method analysis of intertwining changes in socioeconomic development, environmental change, and technological adaptation. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) with a particular focus on unforeseen consequences of development strategies, interactions between global and local systems, and the resilience of agricultural systems to extreme climate events. Climate extremes shock the agricultural system through local, direct impacts (e.g., droughts, heat waves, floods, severe storms) and also through teleconnections propagated through international trade. As the climate changes, the nature of climate extremes affecting agriculture is also likely to change, leading to shifting intensity, duration, frequency, and geographic extents of extremes. AgMIP researchers are developing new scenario methodologies to represent near-term extreme droughts in a probabilistic manner, field experiments that impose heat wave conditions on crops, increased resolution to differentiate sub-national drought impacts, new behavioral functions that mimic the response of market actors faced with production shortfalls, analysis of impacts from simultaneous failures of multiple breadbasket regions, and more detailed mapping of food and socioeconomic indicators into food security and nutrition metrics that describe the human impact in diverse populations. Agricultural models illustrate the challenges facing agriculture, allowing resilience planning even as precise prediction of extremes remains difficult. Increased research is necessary to understand hazards, vulnerability, and exposure of populations to characterize the risk of shocks and mechanisms by which unexpected losses drive land-use transitions.
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-01-01
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202
Cavallari, Jennifer M.; Wakai, Sara; Schenck, Paula; Simcox, Nancy; Morse, Tim; Meyer, John D.; Cherniack, Martin
2015-01-01
Background We investigated the associations between traditional and environmentally preferable cleaning product exposure and dermal, respiratory, and musculoskeletal symptoms in a population of custodians. Methods We analyzed associations between symptoms and exposure to traditional and environmentally preferable cleaning product exposure among 329 custodians. Results We observed increased odds of dermal (P < 0.01), upper (P = 0.01) and lower respiratory (P = 0.01), and upper extremity (P < 0.01), back (P < 0.01), and lower extremity (P = 0.01) musculoskeletal symptoms associated with increased typical traditional cleaning product exposure. We observed significant trends for increased odds of dermal (P = 0.03) and back (P = 0.04) and lower (P = 0.02) extremity musculoskeletal symptoms associated with increased typical environmentally preferable cleaning product exposure. Conclusions Fewer positive associations and reduced odds of health symptoms associated with environmentally preferable cleaning product exposure suggest that these products may represent a safer alternative to traditional cleaning products. Am. J. Ind. Med. 58:988–995, 2015. © 2015 The Authors. American Journal of Industrial Medicine Published by Wiley Periodicals, Inc. PMID:26040239
Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review.
Burtscher, Martin; Gatterer, Hannes; Burtscher, Johannes; Mairbäurl, Heimo
2018-01-01
Living, working and exercising in extreme terrestrial environments are challenging tasks even for healthy humans of the modern new age. The issue is not just survival in remote environments but rather the achievement of optimal performance in everyday life, occupation, and sports. Various adaptive biological processes can take place to cope with the specific stressors of extreme terrestrial environments like cold, heat, and hypoxia (high altitude). This review provides an overview of the physiological and morphological aspects of adaptive responses in these environmental stressors at the level of organs, tissues, and cells. Furthermore, adjustments existing in native people living in such extreme conditions on the earth as well as acute adaptive responses in newcomers are discussed. These insights into general adaptability of humans are complemented by outcomes of specific acclimatization/acclimation studies adding important information how to cope appropriately with extreme environmental temperatures and hypoxia.
Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review
Burtscher, Martin; Gatterer, Hannes; Burtscher, Johannes; Mairbäurl, Heimo
2018-01-01
Living, working and exercising in extreme terrestrial environments are challenging tasks even for healthy humans of the modern new age. The issue is not just survival in remote environments but rather the achievement of optimal performance in everyday life, occupation, and sports. Various adaptive biological processes can take place to cope with the specific stressors of extreme terrestrial environments like cold, heat, and hypoxia (high altitude). This review provides an overview of the physiological and morphological aspects of adaptive responses in these environmental stressors at the level of organs, tissues, and cells. Furthermore, adjustments existing in native people living in such extreme conditions on the earth as well as acute adaptive responses in newcomers are discussed. These insights into general adaptability of humans are complemented by outcomes of specific acclimatization/acclimation studies adding important information how to cope appropriately with extreme environmental temperatures and hypoxia. PMID:29867589
Comparison of iSTAT and EPOC Blood Analyzers
2017-10-25
requires accurate blood analysis across a range of environmental conditions and, in extreme circumstances, use beyond the expiration date. We compared... analysis across a range of environmental conditions and, in extreme circumstances, use beyond the expiration date. We compared gold standard laboratory...temperatures for either device can result in spurious results, particularly for blood gases. 2.0 BACKGROUND Blood analysis is a critical aspect of
Evolution caused by extreme events.
Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna
2017-06-19
Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
Bartrem, Casey; Tirima, Simba; von Lindern, Ian; von Braun, Margrit; Worrell, Mary Claire; Mohammad Anka, Shehu; Abdullahi, Aishat; Moller, Gregory
2014-08-01
The lead poisoning crisis in Zamfara State, Northern Nigeria has been called the worst such case in modern history and it presents unique challenges for risk assessment and management of co-exposure to multiple heavy metals. More than 400 children have died in Zamfara as a result of ongoing lead intoxication since early in 2010. A review of the common toxic endpoints of the major heavy metals advances analysis of co-exposures and their common pathologies. Environmental contamination in Bagega village, examined by X-ray fluorescence of soils, includes lead, mercury, cadmium, arsenic and manganese. Co-exposure risk is explored by scoring common toxic endpoints and hazard indices to calculate a common pathology hazard risk ranking of Pb > As > Hg > Cd > Mn. Zamfara presents an extreme picture of both lead and multiple heavy metal mortality and morbidity, but similar situations have become increasingly prevalent worldwide.
Rasuk, María Cecilia; Ferrer, Gabriela Mónica; Kurth, Daniel; Portero, Luciano Raúl; Farías, María Eugenia; Albarracín, Virginia Helena
2017-05-01
Polyextremophiles are present in a wide variety of extreme environments in which they must overcome various hostile conditions simultaneously such as high UVB radiation, extreme pHs and temperatures, elevated salt and heavy-metal concentration, low-oxygen pressure and scarce nutrients. High-altitude Andean lakes (HAALs; between 2000 and 4000 m) are one example of these kinds of ecosystems suffering from the highest total solar and UVB radiation on Earth where an abundant and diverse polyextremophilic microbiota was reported. In this work, we performed the first extensive isolation of UV-resistant actinobacteria from soils, water, sediments and modern stromatolites at HAALs. Based on the 16S rRNA sequence, the strains were identified as members of the genera Streptomyces, Micrococcus, Nesterenkonia, Rhodococcus, Microbacterium, Kocuria, Arthrobacter, Micromonospora, Blastococcus, Citrococcus and Brevibacterium. Most isolates displayed resistance to multiple environmental stress factors confirming their polyextremophilic nature and were able to produce effective antimicrobial compounds. HAALs constitute a largely unexplored repository of UV-resistant actinobacteria, with high potential for the biodiscovery of novel natural products. © 2017 The American Society of Photobiology.
Forecasting daily streamflow using online sequential extreme learning machines
NASA Astrophysics Data System (ADS)
Lima, Aranildo R.; Cannon, Alex J.; Hsieh, William W.
2016-06-01
While nonlinear machine methods have been widely used in environmental forecasting, in situations where new data arrive continually, the need to make frequent model updates can become cumbersome and computationally costly. To alleviate this problem, an online sequential learning algorithm for single hidden layer feedforward neural networks - the online sequential extreme learning machine (OSELM) - is automatically updated inexpensively as new data arrive (and the new data can then be discarded). OSELM was applied to forecast daily streamflow at two small watersheds in British Columbia, Canada, at lead times of 1-3 days. Predictors used were weather forecast data generated by the NOAA Global Ensemble Forecasting System (GEFS), and local hydro-meteorological observations. OSELM forecasts were tested with daily, monthly or yearly model updates. More frequent updating gave smaller forecast errors, including errors for data above the 90th percentile. Larger datasets used in the initial training of OSELM helped to find better parameters (number of hidden nodes) for the model, yielding better predictions. With the online sequential multiple linear regression (OSMLR) as benchmark, we concluded that OSELM is an attractive approach as it easily outperformed OSMLR in forecast accuracy.
NASA Astrophysics Data System (ADS)
Sadegh, M.; Moftakhari, H.; AghaKouchak, A.
2017-12-01
Many natural hazards are driven by multiple forcing variables, and concurrence/consecutive extreme events significantly increases risk of infrastructure/system failure. It is a common practice to use univariate analysis based upon a perceived ruling driver to estimate design quantiles and/or return periods of extreme events. A multivariate analysis, however, permits modeling simultaneous occurrence of multiple forcing variables. In this presentation, we introduce the Multi-hazard Assessment and Scenario Toolbox (MhAST) that comprehensively analyzes marginal and joint probability distributions of natural hazards. MhAST also offers a wide range of scenarios of return period and design levels and their likelihoods. Contribution of this study is four-fold: 1. comprehensive analysis of marginal and joint probability of multiple drivers through 17 continuous distributions and 26 copulas, 2. multiple scenario analysis of concurrent extremes based upon the most likely joint occurrence, one ruling variable, and weighted random sampling of joint occurrences with similar exceedance probabilities, 3. weighted average scenario analysis based on a expected event, and 4. uncertainty analysis of the most likely joint occurrence scenario using a Bayesian framework.
Study of Environmental Data Complexity using Extreme Learning Machine
NASA Astrophysics Data System (ADS)
Leuenberger, Michael; Kanevski, Mikhail
2017-04-01
The main goals of environmental data science using machine learning algorithm deal, in a broad sense, around the calibration, the prediction and the visualization of hidden relationship between input and output variables. In order to optimize the models and to understand the phenomenon under study, the characterization of the complexity (at different levels) should be taken into account. Therefore, the identification of the linear or non-linear behavior between input and output variables adds valuable information for the knowledge of the phenomenon complexity. The present research highlights and investigates the different issues that can occur when identifying the complexity (linear/non-linear) of environmental data using machine learning algorithm. In particular, the main attention is paid to the description of a self-consistent methodology for the use of Extreme Learning Machines (ELM, Huang et al., 2006), which recently gained a great popularity. By applying two ELM models (with linear and non-linear activation functions) and by comparing their efficiency, quantification of the linearity can be evaluated. The considered approach is accompanied by simulated and real high dimensional and multivariate data case studies. In conclusion, the current challenges and future development in complexity quantification using environmental data mining are discussed. References - Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2006. Extreme learning machine: theory and applications. Neurocomputing 70 (1-3), 489-501. - Kanevski, M., Pozdnoukhov, A., Timonin, V., 2009. Machine Learning for Spatial Environmental Data. EPFL Press; Lausanne, Switzerland, p.392. - Leuenberger, M., Kanevski, M., 2015. Extreme Learning Machines for spatial environmental data. Computers and Geosciences 85, 64-73.
Extreme Environments: The Ghetto and the South Pole.
ERIC Educational Resources Information Center
Pierce, Chester M.
Extreme environments, such as polar regions or space crafts, provide an analogue for speculations concerning the needs of, educational provisions for, and environmental impacts on ghetto youth in kindergarten through the third grade. This discussion first centers on the common qualities of an extreme environment (whether exotic or mundane): forced…
Extreme Radiation Hardness and Space Qualification of AlGaN Optoelectronic Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ke-Xun; Balakrishnan, Kathik; Hultgren, Eric
2010-09-21
Unprecedented radiation hardness and environment robustness are required in the new generation of high energy density physics (HEDP) experiments and deep space exploration. National Ignition Facility (NIF) break-even shots will have a neutron yield of 1015 or higher. The Europa Jupiter System Mission (EJSM) mission instruments will be irradiated with a total fluence of 1012 protons/cm2 during the space journey. In addition, large temperature variations and mechanical shocks are expected in these applications under extreme conditions. Hefty radiation and thermal shields are required for Si and GaAs based electronics and optoelectronics devices. However, for direct illumination and imaging applications, shieldingmore » is not a viable option. It is an urgent task to search for new semiconductor technologies and to develop radiation hard and environmentally robust optoelectronic devices. We will report on our latest systematic experimental studies on radiation hardness and space qualifications of AlGaN optoelectronic devices: Deep UV Light Emitting Diodes (DUV LEDs) and solarblind UV Photodiodes (PDs). For custom designed AlGaN DUV LEDs with a central emission wavelength of 255 nm, we have demonstrated its extreme radiation hardness up to 2x1012 protons/cm2 with 63.9 MeV proton beams. We have demonstrated an operation lifetime of over 26,000 hours in a nitrogen rich environment, and 23,000 hours of operation in vacuum without significant power drop and spectral shift. The DUV LEDs with multiple packaging styles have passed stringent space qualifications with 14 g random vibrations, and 21 cycles of 100K temperature cycles. The driving voltage, current, emission spectra and optical power (V-I-P) operation characteristics exhibited no significant changes after the space environmental tests. The DUV LEDs will be used for photoelectric charge management in space flights. For custom designed AlGaN UV photodiodes with a central response wavelength of 255 nm, we have demonstrated its extreme radiation hardness using a 65 MeV proton beam line. The solar-blind AlGaN photodiodes retained ~50% responsivity up to 3x1012 protons/cm2 fluence. The Stanford-NSTec-SETI team will continue to develop radiation hard optoelectronic devices for applications under extreme conditions.« less
Do climate extreme events foster violent civil conflicts? A coincidence analysis
NASA Astrophysics Data System (ADS)
Schleussner, Carl-Friedrich; Donges, Jonathan F.; Donner, Reik V.
2014-05-01
Civil conflicts promoted by adverse environmental conditions represent one of the most important potential feedbacks in the global socio-environmental nexus. While the role of climate extremes as a triggering factor is often discussed, no consensus is yet reached about the cause-and-effect relation in the observed data record. Here we present results of a rigorous statistical coincidence analysis based on the Munich Re Inc. extreme events database and the Uppsala conflict data program. We report evidence for statistically significant synchronicity between climate extremes with high economic impact and violent conflicts for various regions, although no coherent global signal emerges from our analysis. Our results indicate the importance of regional vulnerability and might aid to identify hot-spot regions for potential climate-triggered violent social conflicts.
2014-01-01
In this study, we analyze the Genetic Analysis Workshop 18 (GAW18) data to identify regions of single-nucleotide polymorphisms (SNPs), which significantly influence hypertension status among individuals. We have studied the marginal impact of these regions on disease status in the past, but we extend the method to deal with environmental factors present in data collected over several exam periods. We consider the respective interactions between such traits as smoking status and age with the genetic information and hope to augment those genetic regions deemed influential marginally with those that contribute via an interactive effect. In particular, we focus only on rare variants and apply a procedure to combine signal among rare variants in a number of "fixed bins" along the chromosome. We extend the procedure in Agne et al [1] to incorporate environmental factors by dichotomizing subjects via traits such as smoking status and age, running the marginal procedure among each respective category (i.e., smokers or nonsmokers), and then combining their scores into a score for interaction. To avoid overlap of subjects, we examine each exam period individually. Out of a possible 629 fixed-bin regions in chromosome 3, we observe that 11 show up in multiple exam periods for gene-smoking score. Fifteen regions exhibit significance for multiple exam periods for gene-age score, with 4 regions deemed significant for all 3 exam periods. The procedure pinpoints SNPs in 8 "answer" genes, with 5 of these showing up as significant in multiple testing schemes (Gene-Smoking, Gene-Age for Exams 1, 2, and 3). PMID:25519400
The effects of urban green space on environmental health equity and resilience to extreme weather
Introduction Exposure to environmental hazards and beneficial factors varies with income and other socioeconomic and demographic factors. The resulting environmental inequalities have direct and indirect impacts on health and wellbeing. Many environmental inequalities relate to n...
Increasing weather-related impacts on European population under climate and demographic change
NASA Astrophysics Data System (ADS)
Forzieri, Giovanni; Cescatti, Alessandro; Batista e Silva, Filipe; Kovats, Sari R.; Feyen, Luc
2017-04-01
Over the last three decades the overwhelming majority of disasters have been caused by weather-related events. The observed rise in weather-related disaster losses has been largely attributed to increased exposure and to a lesser degree to global warming. Recent studies suggest an intensification in the climatology of multiple weather extremes in Europe over the coming decades in view of climate change, while urbanization continues. In view of these pressures, understanding and quantifying the potential impacts of extreme weather events on future societies is imperative in order to identify where and to what extent their livelihoods will be at risk in the future, and develop timely and effective adaptation and disaster risk reduction strategies. Here we show a comprehensive assessment of single- and multi-hazard impacts on the European population until the year 2100. For this purpose, we developed a novel methodology that quantifies the human impacts as a multiplicative function of hazard, exposure and population vulnerability. We focus on seven of the most impacting weather-related hazards - including heat and cold waves, wildfires, droughts, river and coastal floods and windstorms - and evaluated their spatial and temporal variations in intensity and frequency under a business-as-usual climate scenario. Long-term demographic dynamics were modelled to assess exposure developments under a corresponding middle-of-the-road scenario. Vulnerability of humans to weather extremes was appraised based on more than 2300 records of weather-related disasters. The integration of these elements provides a range of plausible estimates of extreme weather-related risks for future European generations. Expected impacts on population are quantified in terms of fatalities and number of people exposed. We find a staggering rise in fatalities from extreme weather events, with the projected death toll by the end of the century amounting to more than 50 times the present number of people killed. Approximately two-thirds of European citizens could then be exposed to a weather-related disaster each year, which will bring about huge rises in health costs to society. Future impacts show a prominent spatial gradient towards southern regions, where weather extremes could become the greatest environmental risk factor for people. The projected changes are dominated by global warming, mainly through a rise in heatwaves, but ongoing urbanization, development in hazard-prone areas and ageing population will likely further increase human risk. The results call for immediate action to achieve the Paris goals on climate mitigation and adaptation in order to protect future European generations.
Terrestrial Applications of Extreme Environment Stirling Space Power Systems
NASA Technical Reports Server (NTRS)
Dyson, Rodger. W.
2012-01-01
NASA has been developing power systems capable of long-term operation in extreme environments such as the surface of Venus. This technology can use any external heat source to efficiently provide electrical power and cooling; and it is designed to be extremely efficient and reliable for extended space missions. Terrestrial applications include: use in electric hybrid vehicles; distributed home co-generation/cooling; and quiet recreational vehicle power generation. This technology can reduce environmental emissions, petroleum consumption, and noise while eliminating maintenance and environmental damage from automotive fluids such as oil lubricants and air conditioning coolant. This report will provide an overview of this new technology and its applications.
Marine species in ambient low-oxygen regions subject to double jeopardy impacts of climate change.
Stortini, Christine H; Chabot, Denis; Shackell, Nancy L
2017-06-01
We have learned much about the impacts of warming on the productivity and distribution of marine organisms, but less about the impact of warming combined with other environmental stressors, including oxygen depletion. Also, the combined impact of multiple environmental stressors requires evaluation at the scales most relevant to resource managers. We use the Gulf of St. Lawrence, Canada, characterized by a large permanently hypoxic zone, as a case study. Species distribution models were used to predict the impact of multiple scenarios of warming and oxygen depletion on the local density of three commercially and ecologically important species. Substantial changes are projected within 20-40 years. A eurythermal depleted species already limited to shallow, oxygen-rich refuge habitat (Atlantic cod) may be relatively uninfluenced by oxygen depletion but increase in density within refuge areas with warming. A more stenothermal, deep-dwelling species (Greenland halibut) is projected to lose ~55% of its high-density areas under the combined impacts of warming and oxygen depletion. Another deep-dwelling, more eurythermal species (Northern shrimp) would lose ~4% of its high-density areas due to oxygen depletion alone, but these impacts may be buffered by warming, which may increase density by 8% in less hypoxic areas, but decrease density by ~20% in the warmest parts of the region. Due to local climate variability and extreme events, and that our models cannot project changes in species sensitivity to hypoxia with warming, our results should be considered conservative. We present an approach to effectively evaluate the individual and cumulative impacts of multiple environmental stressors on a species-by-species basis at the scales most relevant to managers. Our study may provide a basis for work in other low-oxygen regions and should contribute to a growing literature base in climate science, which will continue to be of support for resource managers as climate change accelerates. © 2016 John Wiley & Sons Ltd.
Palliative Care for Extremely Premature Infants and Their Families
ERIC Educational Resources Information Center
Boss, Renee D.
2010-01-01
Extremely premature infants face multiple acute and chronic life-threatening conditions. In addition, the treatments to ameliorate or cure these conditions often entail pain and discomfort. Integrating palliative care from the moment that extremely premature labor is diagnosed offers families and clinicians support through the process of defining…
Mulder, Herman A.; Hill, William G.; Knol, Egbert F.
2015-01-01
There is recent evidence from laboratory experiments and analysis of livestock populations that not only the phenotype itself, but also its environmental variance, is under genetic control. Little is known about the relationships between the environmental variance of one trait and mean levels of other traits, however. A genetic covariance between these is expected to lead to nonlinearity between them, for example between birth weight and survival of piglets, where animals of extreme weights have lower survival. The objectives were to derive this nonlinear relationship analytically using multiple regression and apply it to data on piglet birth weight and survival. This study provides a framework to study such nonlinear relationships caused by genetic covariance of environmental variance of one trait and the mean of the other. It is shown that positions of phenotypic and genetic optima may differ and that genetic relationships are likely to be more curvilinear than phenotypic relationships, dependent mainly on the environmental correlation between these traits. Genetic correlations may change if the population means change relative to the optimal phenotypes. Data of piglet birth weight and survival show that the presence of nonlinearity can be partly explained by the genetic covariance between environmental variance of birth weight and survival. The framework developed can be used to assess effects of artificial and natural selection on means and variances of traits and the statistical method presented can be used to estimate trade-offs between environmental variance of one trait and mean levels of others. PMID:25631318
Genetic, environmental, and epigenetic factors in the development of personality disturbance.
Depue, Richard A
2009-01-01
A dimensional model of personality disturbance is presented that is defined by extreme values on interacting subsets of seven major personality traits. Being at the extreme has marked effects on the threshold for eliciting those traits under stimulus conditions: that is, the extent to which the environment affects the neurobiological functioning underlying the traits. To explore the nature of development of extreme values on these traits, each trait is discussed in terms of three major issues: (a) the neurobiological variables associated with the trait, (b) individual variation in this neurobiology as a function of genetic polymorphisms, and (c) the effects of environmental adversity on these neurobiological variables through the action of epigenetic processes. It is noted that gene-environment interaction appears to be dependent on two main factors: (a) both genetic and environmental variables appear to have the most profound and enduring effects when they exert their effects during early postnatal periods, times when the forebrain is undergoing exuberant experience-expectant dendritic and axonal growth; and (b) environmental effects on neurobiology are strongly modified by individual differences in "traitlike" functioning of neurobiological variables. A model of the nature of the interaction between environmental and neurobiological variables in the development of personality disturbance is presented.
Survey of upper extremity injuries among martial arts participants.
Diesselhorst, Matthew M; Rayan, Ghazi M; Pasque, Charles B; Peyton Holder, R
2013-01-01
To survey participants at various experience levels of different martial arts (MA) about upper extremity injuries sustained during training and fighting. A 21-s question survey was designed and utilised. The survey was divided into four groups (Demographics, Injury Description, Injury Mechanism, and Miscellaneous information) to gain knowledge about upper extremity injuries sustained during martial arts participation. Chi-square testing was utilised to assess for significant associations. Males comprised 81% of respondents. Involvement in multiple forms of MA was the most prevalent (38%). The hand/wrist was the most common area injured (53%), followed by the shoulder/upper arm (27%) and the forearm/elbow (19%). Joint sprains/muscle strains were the most frequent injuries reported overall (47%), followed by abrasions/bruises (26%). Dislocations of the upper extremity were reported by 47% of participants while fractures occurred in 39%. Surgeries were required for 30% of participants. Females were less likely to require surgery and more likely to have shoulder and elbow injuries. Males were more likely to have hand injuries. Participants of Karate and Tae Kwon Do were more likely to have injuries to their hands, while participants of multiple forms were more likely to sustain injuries to their shoulders/upper arms and more likely to develop chronic upper extremity symptoms. With advanced level of training the likelihood of developing chronic upper extremity symptoms increases, and multiple surgeries were required. Hand protection was associated with a lower risk of hand injuries. Martial arts can be associated with substantial upper extremity injuries that may require surgery and extended time away from participation. Injuries may result in chronic upper extremity symptoms. Hand protection is important for reducing injuries to the hand and wrist.
76 FR 74776 - Forum-Trends in Extreme Winds, Waves, and Extratropical Storms Along the Coasts
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
... Winds, Waves, and Extratropical Storms Along the Coasts AGENCY: National Environmental Satellite, Data... information, please check the forum Web site at https://sites.google.com/a/noaa.gov/extreme-winds-waves.../noaa.gov/extreme-winds-waves-extratropical-storms/home . Topics To Be Addressed This forum will address...
Development of a Comprehensive Neck Injury Criterion for Aircraft-Related Incidences
1995-02-15
flight into ground because of distraction in cockpit. No attempt to eject, multiple extreme injuries. 38B 2 Multiple extreme FATAL; FATAL A-37B. Pilot...hypesthesia and hypalesthesia to the level of the lesion. (Reference 26) Pillar fracture A vertical fracture of the articular pillar (mass) resulting...from an Extension impaction of the involved mass by the ipsilateral superior (Hyperextension) articular mass during hyperextension and rotation. with
Tipping Points in Resource Abundance Drive Irreversible Changes in Community Structure.
Haney, Seth D; Siepielski, Adam M
2018-05-01
Global climate change has made what were seemingly extraordinary environmental conditions, such as prolonged droughts, commonplace. One consequence of extreme environmental change is concomitant changes in resource abundance. How will such extreme resource changes impact biodiversity? We developed a trait-based consumer-resource model to examine how resource abundance affects the potential for adaptive evolution and coexistence among competitors. We found that moderate changes in resource abundance have little effect on trait evolution. However, when resource scarcities were sufficiently extreme, a critical transition-a tipping point-occurred, which caused consumer traits to diverge and restructured the community in a way that outlasted the scarcity. Therefore, even though traits can evolve in response to minor resource fluctuations, large environmental shifts may be necessary for producing long-lasting impacts on community structure. These results may also help to illuminate patterns of stasis frequently observed in nature, despite the considerable evidence demonstrating rapid evolutionary change.
Axelsson, Charles; van Sebille, Erik
2017-11-15
The leakage of large plastic litter (macroplastics) into the ocean is a major environmental problem. A significant fraction of this leakage originates from coastal cities, particularly during extreme rainfall events. As coastal cities continue to grow, finding ways to reduce this macroplastic leakage is extremely pertinent. Here, we explore why and how coastal cities can reduce macroplastic leakages during extreme rainfall events. Using nine global cities as a basis, we establish that while cities actively create policies that reduce plastic leakages, more needs to be done. Nonetheless, these policies are economically, socially and environmentally cobeneficial to the city environment. While the lack of political engagement and economic concerns limit these policies, lacking social motivation and engagement is the largest limitation towards implementing policy. We recommend cities to incentivize citizen and municipal engagement with responsible usage of plastics, cleaning the environment and preparing for future extreme rainfall events. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
NOAA Environmental Satellite Measurements of Extreme Space Weather Events
NASA Astrophysics Data System (ADS)
Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.
2015-12-01
For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.
ERIC Educational Resources Information Center
Gola, Beata
2017-01-01
Due to the increased interest in ecology, global warming and numerous environmental problems, ecological issues are becoming extremely important in education. Many researchers and thinkers believe that solutions to environmental problems are affected by the environmental ethics adopted. This article identifies which of the three branches of…
Monazzam, Shafagh; Goodell, Parker B; Salcedo, Edgardo S; Nelson, Sandahl H; Wolinsky, Philip R
2017-01-01
Computed tomography angiogram (CTA) is frequently utilized to detect vascular injuries even without examination findings indicating a vascular injury. We had the following hypotheses: (1) a CTA for lower extremity fractures with no clinical signs of a vascular injury is not indicated, and (2) fracture location and pattern would correlate with the risk of a vascular injury. A retrospective review was conducted on patients who had an acute lower extremity fracture(s) and a CTA. Their charts were reviewed for multiple factors including the presence or absence of hard or soft signs of a vascular injury, soft tissue status, and fracture location/pattern. Every CTA radiology report was reviewed and any vascular intervention or amputation resulting from a vascular injury was recorded. Statistical analysis was performed. Of the 275 CTAs of fractured extremities reviewed, 80 (29%) had a positive CTA finding and 16 (6%) required treatment. A total of 109 (40%) of the extremities had no hard or soft signs; all had normal CTAs. Having at least one hard or soft sign was a significant risk factor for having a positive CTA. An open fracture, isolated proximal third fibula fracture, distal and shaft tibia fractures, and the presence of multiple fractures in one extremity were also associated with an increased risk for having a positive CTA. We found no evidence to support the routine use of CTAs to evaluate lower extremity fractures unless at least one hard or soft sign is present. The presence of an open fracture, distal tibia or tibial shaft fractures, multiple fractures in one extremity, and/or an isolated proximal third fibula fracture increases the risk of having a finding consistent with a vascular injury on a CTA. Only 6% of the cases required treatment, and all of them had diminished or absent distal pulses on presentation. Diagnostic test, level III.
An Integrated Hydrologic Monitoring Network
NASA Astrophysics Data System (ADS)
Tedesco, L. P.; Baker, M. P.; Hall, B. E.
2004-12-01
Ecological studies depend on the ability to monitor an environment, collect data at appropriate spatial and temporal scales, and analyze that data from the diverse viewpoints of many relevant disciplines. Historically, environmental studies have been conducted by small teams of researchers, usually collecting data by hand at some set but low frequency, and organizing it according to ad hoc, project-specific goals. Recent years have seen dramatic advancement in the ability to gather environmental data remotely and therefore at much higher frequency. We are working to create a dynamic and integrated network of environmental sensors in natural environments to acquire real time data and create tools for visualization appropriate for different audiences to promote scientific exploration. Instrumentation includes an array of water quality and water level sondes and probes distributed throughout three Central Indiana counties. Instrument platforms currently include five river monitoring platforms utilizing YSI water quality and level probes; a lake buoy array that includes three YSI sonde packages monitoring physical, chemical and biological parameters; and over fifteen YSI and Solinist groundwater probes recording both level and water quality. Many sites are providing real-time data and several additional sites are scheduled to be online in the coming months. Visualization of this real time data from remote sensors distributed throughout Central Indiana provides numerous challenges. The benefits of successfully integrating remotely deployed environmental sensors in a post 9-11 world is obvious. We are working to bridge both the extremes associated with the frequency of data collection and the lack of data coordination by creating techniques for data networking and retrieval, and data management, analysis, and visualization capabilities that operate across a range of computing platforms to make this data immediately accessible and useful to a range of interested parties, across multiple disciplines. We are working to integrate multiple data streams into a coherent data base and create applications that allow users to view data from multiple instruments at different sites. Creating visualizations of real time, dynamic data from the everyday world and delivering it via web applications as well as through innovative display spaces will be a key outcome of this program. On-line tools for QA/QC, data queries, graphing, and sensitivity analysis are under development. Our goal is to use the instrumented sites to create analysis and presentation applications to foster a community of learners interested in understanding these ecosystems, and the larger environmental issues that they represent. This broad-based community will include environmental researchers, university faculty in lecture halls, math and science teachers, university and K-12 students, civic leaders, and educators at informal learning centers.
Analysis of the dependence of extreme rainfalls
NASA Astrophysics Data System (ADS)
Padoan, Simone; Ancey, Christophe; Parlange, Marc
2010-05-01
The aim of spatial analysis is to quantitatively describe the behavior of environmental phenomena such as precipitation levels, wind speed or daily temperatures. A number of generic approaches to spatial modeling have been developed[1], but these are not necessarily ideal for handling extremal aspects given their focus on mean process levels. The areal modelling of the extremes of a natural process observed at points in space is important in environmental statistics; for example, understanding extremal spatial rainfall is crucial in flood protection. In light of recent concerns over climate change, the use of robust mathematical and statistical methods for such analyses has grown in importance. Multivariate extreme value models and the class of maxstable processes [2] have a similar asymptotic motivation to the univariate Generalized Extreme Value (GEV) distribution , but providing a general approach to modeling extreme processes incorporating temporal or spatial dependence. Statistical methods for max-stable processes and data analyses of practical problems are discussed by [3] and [4]. This work illustrates methods to the statistical modelling of spatial extremes and gives examples of their use by means of a real extremal data analysis of Switzerland precipitation levels. [1] Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley, New York. [2] de Haan, L and Ferreria A. (2006). Extreme Value Theory An Introduction. Springer, USA. [3] Padoan, S. A., Ribatet, M and Sisson, S. A. (2009). Likelihood-Based Inference for Max-Stable Processes. Journal of the American Statistical Association, Theory & Methods. In press. [4] Davison, A. C. and Gholamrezaee, M. (2009), Geostatistics of extremes. Journal of the Royal Statistical Society, Series B. To appear.
NASA Astrophysics Data System (ADS)
Cooley, D. S.; Castillo, F.; Thibaud, E.
2017-12-01
A 2015 heatwave in Pakistan is blamed for over a thousand deaths. This event consisted of several days of very high temperatures and unusually high humidity for this region. However, none of these days exceeded the threshold for "extreme danger" in terms of the heat index. The heat index is a univariate function of both temperature and humidity which is universally applied at all locations regardless of local climate. Understanding extremes which arise from multiple factors is challenging. In this paper we will present a tool for examining bivariate extreme behavior. The tool, developed in the statistical software R, draws isolines of equal exceedance probability. These isolines can be understood as bivariate "return levels". The tool is based on a dependence framework specific for extremes, is semiparametric, and is able to extrapolate isolines beyond the range of the data. We illustrate this tool using the Pakistan heat wave data and other bivariate data.
Overview of the biology of extreme events
NASA Astrophysics Data System (ADS)
Gutschick, V. P.; Bassirirad, H.
2008-12-01
Extreme events have, variously, meteorological origins as in heat waves or precipitation extremes, or biological origins as in pest and disease eruptions (or tectonic, earth-orbital, or impact-body origins). Despite growing recognition that these events are changing in frequency and intensity, a universal model of ecological responses to these events is slow to emerge. Extreme events, negative and positive, contrast with normal events in terms of their effects on the physiology, ecology, and evolution of organisms, hence also on water, carbon, and nutrient cycles. They structure biogeographic ranges and biomes, almost surely more than mean values often used to define biogeography. They are challenging to study for obvious reasons of field-readiness but also because they are defined by sequences of driving variables such as temperature, not point events. As sequences, their statistics (return times, for example) are challenging to develop, as also from the involvement of multiple environmental variables. These statistics are not captured well by climate models. They are expected to change with climate and land-use change but our predictive capacity is currently limited. A number of tools for description and analysis of extreme events are available, if not widely applied to date. Extremes for organisms are defined by their fitness effects on those organisms, and are specific to genotypes, making them major agents of natural selection. There is evidence that effects of extreme events may be concentrated in an extended recovery phase. We review selected events covering ranges of time and magnitude, from Snowball Earth to leaf functional loss in weather events. A number of events, such as the 2003 European heat wave, evidence effects on water and carbon cycles over large regions. Rising CO2 is the recent extreme of note, for its climatic effects and consequences for growing seasons, transpiration, etc., but also directly in its action as a substrate of photosynthesis. Effects on water and N cycles are already marked. Adaptive responses of plants are very irregularly distributed among species and genotypes, most adaptive responses having been lost over 20 My of minimal or virtually accidental genetic selection for correlated traits. Offsets of plant activity from those of pollinators and pests may amplify direct physiological effects on plants. Another extreme of interest is the insect-mediated mass dieoff of conifers across western North America tied to a rare combination of drought and year-long high temperatures.
Devine, Darragh P
2014-03-01
Self-injurious behaviour is not one of the three core symptoms that define autism. However, children on the autism spectrum appear to be particularly vulnerable. Afflicted children typically slap their faces, punch or bang their heads, and bite or pinch themselves. These behaviours can be extremely destructive, and they interfere with normal social and educational activities. However, the neurobiological mechanisms that confer vulnerability in children with autism have not been adequately described. This review explores behavioural and neurobiological characteristics of children with autism that may be relevant for an increased understanding of their vulnerability for self-injurious behaviour. Behavioural characteristics that are co-morbid for self-injurious behaviour in children with autism are examined. In addition, the contributions of social and environmental deprivation in self-injurious institutionalized orphans, isolated rhesus macaques, and additional animal models are reviewed. There is extensive evidence that social and environmental deprivation promotes self-injurious behaviour in both humans (including children with autism) and animal models. Moreover, there are multiple lines of convergent neuroanatomical, neurophysiological, and neurochemical data that draw parallels between self-injurious children with autism and environmentally deprived humans and animals. A hypothesis is presented that describes how the core symptoms of autism make these children particularly vulnerable for self-injurious behaviour. Relevant neurodevelopmental pathology is described in cortical, limbic, and basal ganglia brain regions, and additional research is suggested.
Cheng, Allen C; Jacups, Susan P; Gal, Daniel; Mayo, Mark; Currie, Bart J
2006-04-01
Melioidosis, the infection due to the environmental organism Burkholderia pseudomallei, is endemic to northern Australia and South East Asia. It is associated with exposure to mud and pooled surface water, but environmental determinants of this disease are poorly understood. We defined case-clusters in northern Australia, determined their contribution to the observed rate of melioidosis, and explored clinical features and associated environmental factors. Using geographical information systems data, we examined clustering of melioidosis cases in time and geographical space in the Top End of the Northern Territory of Australia between 1990 and 2002 using a scan statistic. DNA macrorestriction analysis, resolved by pulsed field gel electrophoresis, was performed on isolates from patients. We defined five case-clusters involving 27 patients that occurred within 7-28 days and/or a radius of 100-300 km. Clustered cases were associated with extreme weather events or environmental contamination; no difference in the clinical pattern of disease was noted from other patients not involved in clusters. Isolates from patients linked to environmental contamination were caused by isolates with similar DNA macrorestriction patterns, but isolates from patients linked to severe weather events had more diverse DNA macrorestriction patterns. Case-clusters of melioidosis where isolates exhibit diverse DNA macrorestriction patterns in our region are linked to extreme weather events and outbreaks where isolates are predominantly of the same DNA macrorestriction pattern are linked with contamination of an environmental source.
NASA Astrophysics Data System (ADS)
Hazeli, K.; Kingstedt, O. T.
2017-05-01
It is critical to investigate the performance of electronic systems and their components under the environments experienced during proposed missions to improve spacecraft and robotic vehicle functionality and performance in extreme environments.
NASA Astrophysics Data System (ADS)
González-Llana, Arturo; González-Bárcena, David; Pérez-Grande, Isabel; Sanz-Andrés, Ángel
2018-07-01
The selection of the extreme thermal environmental conditions -albedo coefficient and Earth infrared radiation- for the thermal design of stratospheric balloon missions is usually based on the methodologies applied in space missions. However, the particularities of stratospheric balloon missions, such as the much higher residence time of the balloon payload over a determined area, make necessary an approach centered in the actual environment the balloon is going to find, in terms of geographic area and season of flight. In this sense, this work is focussed on stratospheric balloon missions circumnavigating the North Pole during the summer period. Pairs of albedo and Earth infrared radiation satellite data restricted to this area and season of interest have been treated statistically. Furthermore, the environmental conditions leading to the extreme temperatures of the payload depend in turn on the surface finish, and more particularly on the ratio between the solar absorptance and the infrared emissivity α/ε. A simple but representative thermal model of a balloon and its payload has been set up in order to identify the pairs of albedo coefficient and Earth infrared radiation leading to extreme temperatures for each value of α/ε.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckert-Gallup, Aubrey C.; Sallaberry, Cédric J.; Dallman, Ann R.
Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of significant wave height (H s) and either energy period (T e) or peak period (T p) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first-order reliability method (I-FORM) is a standard design practice for generating environmentalmore » contours. This paper develops enhanced methodologies for data analysis prior to the application of the I-FORM, including the use of principal component analysis (PCA) to create an uncorrelated representation of the variables under consideration as well as new distribution and parameter fitting techniques. As a result, these modifications better represent the measured data and, therefore, should contribute to the development of more realistic representations of environmental contours of extreme sea states for determining design loads for marine structures.« less
Eckert-Gallup, Aubrey C.; Sallaberry, Cédric J.; Dallman, Ann R.; ...
2016-01-06
Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of significant wave height (H s) and either energy period (T e) or peak period (T p) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first-order reliability method (I-FORM) is a standard design practice for generating environmentalmore » contours. This paper develops enhanced methodologies for data analysis prior to the application of the I-FORM, including the use of principal component analysis (PCA) to create an uncorrelated representation of the variables under consideration as well as new distribution and parameter fitting techniques. As a result, these modifications better represent the measured data and, therefore, should contribute to the development of more realistic representations of environmental contours of extreme sea states for determining design loads for marine structures.« less
NASA Astrophysics Data System (ADS)
Ajayakumar, J.; Shook, E.; Turner, V. K.
2017-10-01
With social media becoming increasingly location-based, there has been a greater push from researchers across various domains including social science, public health, and disaster management, to tap in the spatial, temporal, and textual data available from these sources to analyze public response during extreme events such as an epidemic outbreak or a natural disaster. Studies based on demographics and other socio-economic factors suggests that social media data could be highly skewed based on the variations of population density with respect to place. To capture the spatio-temporal variations in public response during extreme events we have developed the Socio-Environmental Data Explorer (SEDE). SEDE collects and integrates social media, news and environmental data to support exploration and assessment of public response to extreme events. For this study, using SEDE, we conduct spatio-temporal social media response analysis on four major extreme events in the United States including the "North American storm complex" in December 2015, the "snowstorm Jonas" in January 2016, the "West Virginia floods" in June 2016, and the "Hurricane Matthew" in October 2016. Analysis is conducted on geo-tagged social media data from Twitter and warnings from the storm events database provided by National Centers For Environmental Information (NCEI) for analysis. Results demonstrate that, to support complex social media analyses, spatial and population-based normalization and filtering is necessary. The implications of these results suggests that, while developing software solutions to support analysis of non-conventional data sources such as social media, it is quintessential to identify the inherent biases associated with the data sources, and adapt techniques and enhance capabilities to mitigate the bias. The normalization strategies that we have developed and incorporated to SEDE will be helpful in reducing the population bias associated with social media data and will be useful for researchers and decision makers to enhance their analysis on spatio-temporal social media responses during extreme events.
Death of the bee hive: understanding the failure of an insect society.
Barron, Andrew B
2015-08-01
Since 2007 honey bee colony failure rates overwinter have averaged about 30% across much of North America. In addition, cases of extremely rapid colony failure have been reported, which has been termed colony collapse disorder. Both phenomena result from an increase in the frequency and intensity of chronic diseases and environmental stressors. Colonies are often challenged by multiple stressors, which can interact: for example, pesticides can enhance disease transmission in colonies. Colonies may be particularly vulnerable to sublethal effects of pathogens and pesticides since colony functions are compromised whether a stressor kills workers, or causes them to fail at foraging. Modelling provides a way to understand the processes of colony failure by relating impacts of stressors to colony-level functions. Copyright © 2015 Elsevier Inc. All rights reserved.
Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments
Nicholson, Wayne L.; Munakata, Nobuo; Horneck, Gerda; Melosh, Henry J.; Setlow, Peter
2000-01-01
Endospores of Bacillus spp., especially Bacillus subtilis, have served as experimental models for exploring the molecular mechanisms underlying the incredible longevity of spores and their resistance to environmental insults. In this review we summarize the molecular laboratory model of spore resistance mechanisms and attempt to use the model as a basis for exploration of the resistance of spores to environmental extremes both on Earth and during postulated interplanetary transfer through space as a result of natural impact processes. PMID:10974126
Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon K.-M. R.
2015-01-01
Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens. PMID:26703739
[The heart in extreme sports: hyperbaric activity and microgravity].
Berrettini, Umberto; Landolfi, Angelo; Patteri, Giovanna
2008-10-01
The study of the cardiovascular and respiratory modifications in extreme environments could be useful for the understanding of the adaptive mechanisms of the body in particular conditions. The knowledge of how different environmental conditions in terms of extreme pressure, temperature and gravity modify the neurovegetative and cardiovascular system could be useful in daily practice for hypobaric and hyperbaric sports.
Portegijs, Erja; Rantakokko, Merja; Viljanen, Anne; Rantanen, Taina; Iwarsson, Susanne
We studied whether entrance-related environmental barriers, perceived and objectively recorded, were associated with moving out-of-home daily in older people with and without limitations in lower extremity performance. Cross-sectional analyses of the "Life-space mobility in old age" cohort including 848 community-dwelling 75-90-year-old of central Finland. Participants reported their frequency of moving out-of-home (daily vs. 0-6 times/week) and perceived entrance-related environmental barriers (yes/no). Lower extremity performance was assessed (Short Physical Performance Battery) and categorized as poorer (score 0-9) or good (score 10-12). Environmental barriers at entrances and in exterior surroundings were objectively registered (Housing Enabler screening tool) and divided into tertiles. Logistic regression analyses were adjusted for age, sex, number of chronic diseases, cognitive function, month of assessment, type of neighborhood, and years lived in the current home. At home entrances a median of 6 and in the exterior surroundings 5 environmental barriers were objectively recorded, and 20% of the participants perceived entrance-related barriers. The odds for moving out-of-home less than daily increased when participants perceived entrance-related barrier(s) or when they lived in homes with higher numbers of objectively recorded environmental barriers at entrances. Participants with limitations in lower extremity performance were more susceptible to these environmental barriers. Objectively recorded environmental barriers in the exterior surroundings did not compromise out-of-home mobility. Entrance-related environmental barriers may hinder community-dwelling older people to move out-of-home daily especially when their functional capacity is compromised. Potentially, reducing entrance-related barriers may help to prevent confinement to the home. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Schmidt, Hans C.
2017-01-01
While the scale of the environmental problems facing the planet mean that effective environmental journalism is now more important than ever, the environmental beat can be extremely challenging for journalists. One way to address this is by providing specialized training for future journalists. This study involves an investigation of the extent to…
Kohno, Tadasu; Mun, Mingyon; Yoshiya, Tomoharu
2014-01-01
Myelolipoma in the mediastinum is an extremely rare entity. In this report, we present the case of a 79-year-old asymptomatic man who had three bilateral paravertebral mediastinal tumors. The three tumors were resected simultaneously using bilateral three-port video-assisted thoracoscopic surgery (VATS). There has been no evidence of recurrence within four years after the operation. Multiple bilateral mediastinal myelolipomas are extremely rare. There are no reports in the English literature of multiple bilateral thoracic myelolipomas that were resected simultaneously using bilateral VATS. We also present characteristic features of myelolipomas, which are helpful for diagnosis. PMID:24782978
Tullius, Stefan G; Pomahac, Bohdan; Kim, Heung Bae; Carty, Matthew J; Talbot, Simon G; Nelson, Helen M; Delmonico, Francis L
2016-10-01
We report on the to date largest recovery of 11 organs from a single deceased donor with the transplantation of face, bilateral upper extremities, heart, 1 lung, liver (split for 2 recipients), kidneys, pancreas, and intestine. Although logistically challenging, this case demonstrates the feasibility and safety of the recovery of multiple thoracic and abdominal organs with multiple vascular composite allotransplants and tissues. Our experience of 8 additional successful multiple vascular composite allotransplants, thoracic, and abdominal organ recoveries suggests that such procedures are readily accomplishable from the same deceased donor.
Wang, Jun; Yi, Si; Li, Mengya; Wang, Lei; Song, Chengcheng
2018-04-15
We compared the effects of three key environmental factors of coastal flooding: sea level rise (SLR), land subsidence (LS) and bathymetric change (BC) in the coastal areas of Shanghai. We use the hydrological simulation model MIKE 21 to simulate flood magnitudes under multiple scenarios created from combinations of the key environmental factors projected to year 2030 and 2050. Historical typhoons (TC9711, TC8114, TC0012, TC0205 and TC1109), which caused extremely high surges and considerable losses, were selected as reference tracks to generate potential typhoon events that would make landfalls in Shanghai (SHLD), in the north of Zhejiang (ZNLD) and moving northwards in the offshore area of Shanghai (MNS) under those scenarios. The model results provided assessment of impact of single and compound effects of the three factors (SLR, LS and BC) on coastal flooding in Shanghai for the next few decades. Model simulation showed that by the year 2030, the magnitude of storm flooding will increase due to the environmental changes defined by SLR, LS, and BC. Particularly, the compound scenario of the three factors will generate coastal floods that are 3.1, 2.7, and 1.9 times greater than the single factor change scenarios by, respectively, SLR, LS, and BC. Even more drastically, in 2050, the compound impact of the three factors would be 8.5, 7.5, and 23.4 times of the single factors. It indicates that the impact of environmental changes is not simple addition of the effects from individual factors, but rather multiple times greater of that when the projection time is longer. We also found for short-term scenarios, the bathymetry change is the most important factor for the changes in coastal flooding; and for long-term scenarios, sea level rise and land subsidence are the major factors that coastal flood prevention and management should address. Copyright © 2017 Elsevier B.V. All rights reserved.
Chee, Gab-Joo; Takami, Hideto
2011-01-01
Group II introns inserted into genes often undergo splicing at unexpected sites, and participate in the transcription of host genes. We identified five copies of a group II intron, designated Oi.Int, in the genome of an extremely halotolerant and alkaliphilic bacillus, Oceanobacillus iheyensis. The Oi.Int4 differs from the Oi.Int3 at four bases. The ligated exons of the Oi.Int4 could not be detected by RT-PCR assays in vivo or in vitro although group II introns can generally self-splice in vitro without the involvement of an intron-encoded open reading frame (ORF). In the Oi.Int4 mutants with base substitutions within the ORF, ligated exons were detected by in vitro self-splicing. It was clear that the ligation of exons during splicing is affected by the sequence of the intron-encoded ORF since the splice sites corresponded to the joining sites of the intron. In addition, the mutant introns showed unexpected multiple products with alternative 5' splice sites. These findings imply that alternative 5' splicing which causes a functional change of ligated exons presumably has influenced past adaptations of O. iheyensis to various environmental changes.
Environmental epidemiology studies can be an effective means to assess impacts on human health from exposure to environmental stressors. Exposure scenarios are often extremely complex and proper assessment is critical for interpreting epidemiological study results. Biomarkers are...
NASA Astrophysics Data System (ADS)
Ramesham, Rajeshuni
2013-03-01
Life testing/qualification of reflowed (1st reflow) and reworked (1st reflow, 1st removal, and then 1st rework) advanced ceramic column grid array (CCGA) surface mount interconnect electronic packaging technologies for future flight projects has been studied to enhance the mission assurance of JPL-NASA projects. The reliability of reworked/reflowed surface mount technology (SMT) packages is very important for short-duration and long-duration deep space harsh extreme thermal environmental missions. The life testing of CCGA electronic packages under extreme thermal environments (for example: -185°C to +125°C) has been performed with reference to various JPL/NASA project requirements which encompass the temperature range studied. The test boards of reflowed and reworked CCGA packages (717 Xilinx package, 624, 1152, and 1272 column Actel Packages) were selected for the study to survive three times the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations, and mission phases or cycles to failure to assess the life of the hardware. Qualification/life testing was performed by subjecting test boards to the environmental harsh temperature extremes and assessing any structural failures, mechanical failures or degradation in electrical performance solder-joint failures due to either overstress or thermal cycle fatigue. The large, high density, high input/output (I/O) electronic interconnect SMT packages such as CCGA have increased usage in avionics hardware of NASA projects during the last two decades. The test boards built with CCGA packages are expensive and often require a rework to replace a reflowed, reprogrammed, failed, redesigned, etc., CCGA packages. Theoretically speaking, a good rework process should have similar temperature-time profile as that used for the original manufacturing process of solder reflow. A multiple rework processes may be implemented with CCGA packaging technology to understand the effect of number of reworks on the reliability of this technology for harsh thermal environments. In general, reliability of the assembled electronic packages reduces as a function of number of reworks and the extent is not known yet. A CCGA rework process has been tried and implemented to design a daisy-chain test board consists of 624 and 717 packages. Reworked CCGA interconnect electronic packages of printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging and optical microscope techniques. The assembled boards after 1st rework and 1st reflow were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space JPL/NASA for moderate to harsh thermal mission environments. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling to determine intermittent failures. This paper provides the experimental reliability test results to failure of assemblies for the first time of reflowed and reworked CCGA packages under extreme harsh thermal environments.
Pálffy, Károly; Felföldi, Tamás; Mentes, Anikó; Horváth, Hajnalka; Márialigeti, Károly; Boros, Emil; Vörös, Lajos; Somogyi, Boglárka
2014-01-01
Winter phytoplankton communities in the shallow alkaline pans of Hungary are frequently dominated by picoeukaryotes, sometimes in particularly high abundance. In winter 2012, the ice-covered alkaline Zab-szék pan was found to be extraordinarily rich in picoeukaryotic green algae (42-82 × 10(6) cells ml(-1)) despite the simultaneous presence of multiple stressors (low temperature and light intensity with high pH and salinity). The maximum photosynthetic rate of the picoeukaryote community was 1.4 μg C μg chlorophyll a (-1) h(-1) at 125 μmol m(-2) s(-1). The assimilation rates compared with the available light intensity measured on the field show that the community was considerably light-limited. Estimated areal primary production was 180 mg C m(-2) d(-1). On the basis of the 18S rRNA gene analysis (cloning and DGGE), the community was phylogenetically heterogeneous with several previously undescribed chlorophyte lineages, which indicates the ability of picoeukaryotic communities to maintain high genetic diversity under extreme conditions.
Polygenic determinants in extremes of high-density lipoprotein cholesterol[S
Dron, Jacqueline S.; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A.; Robinson, John F.; McIntyre, Adam D.; Ban, Matthew R.; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J.; Lettre, Guillaume; Tardif, Jean-Claude
2017-01-01
HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. PMID:28870971
Polygenic determinants in extremes of high-density lipoprotein cholesterol.
Dron, Jacqueline S; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A; Robinson, John F; McIntyre, Adam D; Ban, Matthew R; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J; Lettre, Guillaume; Tardif, Jean-Claude; Hegele, Robert A
2017-11-01
HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Dependence of drivers affects risks associated with compound events
NASA Astrophysics Data System (ADS)
Zscheischler, Jakob; Seneviratne, Sonia I.
2017-04-01
Compound climate extremes are receiving increasing attention because of their disproportionate impacts on humans and ecosystems. Risks assessments, however, generally focus on univariate statistics even when multiple stressors are considered. Concurrent extreme droughts and heatwaves have been observed to cause a suite of extreme impacts on natural and human systems alike. For example, they can substantially affect vegetation health, prompting tree mortality, and thereby facilitating insect outbreaks and fires. In addition, hot droughts have the potential to trigger and intensify fires and can cause severe economical damage. By promoting disease spread, extremely hot and dry conditions also strongly affect human health. We analyse the co-occurrence of dry and hot summers and show that these are strongly correlated for many regions, inducing a much higher frequency of concurrent hot and dry summers than what would be assumed from the independent combination of the univariate statistics. Our results demonstrate how the dependence structure between variables affects the occurrence frequency of multivariate extremes. Assessments based on univariate statistics can thus strongly underestimate risks associated with given extremes, if impacts depend on multiple (dependent) variables. We conclude that a multivariate perspective is necessary in order to appropriately assess changes in climate extremes and their impacts, and to design adaptation strategies.
The transformative potential of an integrative approach to pregnancy.
Eidem, Haley R; McGary, Kriston L; Capra, John A; Abbot, Patrick; Rokas, Antonis
2017-09-01
Complex traits typically involve diverse biological pathways and are shaped by numerous genetic and environmental factors. Pregnancy-associated traits and pathologies are further complicated by extensive communication across multiple tissues in two individuals, interactions between two genomes-maternal and fetal-that obscure causal variants and lead to genetic conflict, and rapid evolution of pregnancy-associated traits across mammals and in the human lineage. Given the multi-faceted complexity of human pregnancy, integrative approaches that synthesize diverse data types and analyses harbor tremendous promise to identify the genetic architecture and environmental influences underlying pregnancy-associated traits and pathologies. We review current research that addresses the extreme complexities of traits and pathologies associated with human pregnancy. We find that successful efforts to address the many complexities of pregnancy-associated traits and pathologies often harness the power of many and diverse types of data, including genome-wide association studies, evolutionary analyses, multi-tissue transcriptomic profiles, and environmental conditions. We propose that understanding of pregnancy and its pathologies will be accelerated by computational platforms that provide easy access to integrated data and analyses. By simplifying the integration of diverse data, such platforms will provide a comprehensive synthesis that transcends many of the inherent challenges present in studies of pregnancy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Interactions among invasive plants: Lessons from Hawai‘i
D'Antonio, Carla M.; Ostertag, Rebecca; Cordell, Susan; Yelenik, Stephanie G.
2017-01-01
Most ecosystems have multiple-plant invaders rather than single-plant invaders, yet ecological studies and management actions focus largely on single invader species. There is a need for general principles regarding invader interactions across varying environmental conditions, so that secondary invasions can be anticipated and managers can allocate resources toward pretreatment or postremoval actions. By reviewing removal experiments conducted in three Hawaiian ecosystems (a dry tropical forest, a seasonally dry mesic forest, and a lowland wet forest), we evaluate the roles environmental harshness, priority effects, productivity potential, and species interactions have in influencing secondary invasions, defined here as invasions that are influenced either positively (facilitation) or negatively (inhibition/priority effects) by existing invaders. We generate a conceptual model with a surprise index to describe whether long-term plant invader composition and dominance is predictable or stochastic after a system perturbation such as a removal experiment. Under extremely low resource availability, the surprise index is low, whereas under intermediate-level resource environments, invader dominance is more stochastic and the surprise index is high. At high resource levels, the surprise index is intermediate: Invaders are likely abundant in the environment but their response to a perturbation is more predictable than at intermediate resource levels. We suggest further testing across environmental gradients to determine key variables that dictate the predictability of postremoval invader composition.
This is a presentation titled Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures that was given for the National Center for Environmental Economics
Jöres, A P W; Heverhagen, J T; Bonél, H; Exadaktylos, A; Klink, T
2016-02-01
The purpose of this study was to evaluate the diagnostic accuracy of full-body linear X-ray scanning (LS) in multiple trauma patients in comparison to 128-multislice computed tomography (MSCT). 106 multiple trauma patients (female: 33; male: 73) were retrospectively included in this study. All patients underwent LS of the whole body, including extremities, and MSCT covering the neck, thorax, abdomen, and pelvis. The diagnostic accuracy of LS for the detection of fractures of the truncal skeleton and pneumothoraces was evaluated in comparison to MSCT by two observers in consensus. Extremity fractures detected by LS were documented. The overall sensitivity of LS was 49.2 %, the specificity was 93.3 %, the positive predictive value was 91 %, and the negative predictive value was 57.5 %. The overall sensitivity for vertebral fractures was 16.7 %, and the specificity was 100 %. The sensitivity was 48.7 % and the specificity 98.2 % for all other fractures. Pneumothoraces were detected in 12 patients by CT, but not by LS. 40 extremity fractures were detected by LS, of which 4 fractures were dislocated, and 2 were fully covered by MSCT. The diagnostic accuracy of LS is limited in the evaluation of acute trauma of the truncal skeleton. LS allows fast whole-body X-ray imaging, and may be valuable for detecting extremity fractures in trauma patients in addition to MSCT. The overall sensitivity of LS for truncal skeleton injuries in multiple-trauma patients was < 50 %. The diagnostic reference standard MSCT is the preferred and reliable imaging modality. LS may be valuable for quick detection of extremity fractures. © Georg Thieme Verlag KG Stuttgart · New York.
2010-07-01
Final Environmental Assessment 22 Several invasive exotic plant species are also found on the station , particularly in disturbed areas such as...Department of Transportation EA Environmental Assessment Ec Debris Casualty Area EELV Evolved Expendable Launch Vehicle EIS Environmental Impact...Canaveral Air Force Station (CCAFS) in Florida (FL). This Environmental Assessment (EA) documents the results of a study of the potential
NASA Astrophysics Data System (ADS)
Wilmking, Martin; Buras, Allan; Heinrich, Ingo; Scharnweber, Tobias; Simard, Sonia; Smiljanic, Marko; van der Maaten, Ernst; van der Maaten-Theunissen, Marieke
2014-05-01
Trees are sessile, long-living organisms and as such constantly need to adapt to changing environmental conditions. Accordingly, they often show high phenotypic plasticity (the ability to change phenotypic traits, such as allocation of resources) in response to environmental change. This high phenotypic plasticity is generally considered as one of the main ingredients for a sessile organism to survive and reach high ages. Precisely because of the ability of trees to reach old age and their in-ability to simply run away when conditions get worse, growth information recorded in tree rings has long been used as a major environmental proxy, covering time scales from decades to millennia. Past environmental conditions (e.g. climate) are recorded in i.e. annual tree-ring width, early- and latewood width, wood density, isotopic concentrations, cell anatomy or wood chemistry. One prerequisite for a reconstruction is that the relationship between the environmental variable influencing tree growth and the tree-growth variable itself is stable through time. This, however, might contrast the ecological theory of high plasticity and the trees ability to adapt to change. To untangle possible mechanisms leading to stable or unstable relationships between tree growth and environmental variables, it is helpful to have exact site information and several proxy variables of each tree-ring series available. Although we gain insight into the environmental history of a sampling site when sampling today, this is extremely difficult when using archeological wood. In this latter case, we face the additional challenge of unknown origin, provenance and (or) site conditions, making it even more important to use multiple proxy time-series from the same sample. Here, we review typical examples, where the relationship between tree growth and environmental variables seems 1) stable and 2) instable through time, and relate these two cases to ecological theory. Based on ecological theory, we then give recommendations to improve the reliability of environmental reconstructions using tree rings.
Kovas, Y.; Haworth, C.M.A.; Harlaar, N.; Petrill, S.A.; Dale, P.S.; Plomin, R.
2009-01-01
Background To what extent do genetic and environmental influences on reading disability overlap with those on mathematics disability? Multivariate genetic research on the normal range of variation in unselected samples has led to a Generalist Genes Hypothesis which posits that the same genes largely affect individual differences in these abilities in the normal range. However, little is known about the etiology of co-morbidity for the disability extremes of reading and mathematics. Method From 2596 pairs of 10-year-old monozygotic and dizygotic twins assessed on a web-based battery of reading and mathematics tests, we selected the lowest 15% on reading and on mathematics. We conducted bivariate DeFries–Fulker (DF) extremes analyses to assess overlap and specificity of genetic and environmental influences on reading and mathematics disability defined by a 15% cut-off. Results Both reading and mathematics disability are moderately heritable (47% and 43%, respectively) and show only modest shared environmental influence (16% and 20%). There is substantial phenotypic co-morbidity between reading and mathematics disability. Bivariate DF extremes analyses yielded a genetic correlation of .67 between reading disability and mathematics disability, suggesting that they are affected largely by the same genetic factors. The shared environmental correlation is .96 and the non-shared environmental correlation is .08. Conclusions In line with the Generalist Genes Hypothesis, the same set of generalist genes largely affects mathematical and reading disabilities. The dissociation between the disabilities occurs largely due to independent non-shared environmental influences. PMID:17714376
Food and Environmental Science.
ERIC Educational Resources Information Center
Falvey, Lindsay
1997-01-01
Argues that intensive agriculture restricted to suitable lands will be required in the future due to global population growth, declining food prices, and extreme poverty. Discusses the challenge of balancing environmental care with food production. (DDR)
Climate change may alter regional weather extremes resulting in a range of environmental impacts including changes in air quality, water quality and availability, energy demands, agriculture, and ecology. Dynamical downscaling simulations were conducted with the Weather Research...
Extreme Weather Events and Impacts on Vector-borne Diseases and Agriculture
USDA-ARS?s Scientific Manuscript database
Extreme weather events during the period 2010-2012 impacted agriculture and vector-borne disease throughout the world. We evaluated specific weather events with satellite remotely sensed environmental data and evaluated crop production and diseases associated with these events. Significant droughts ...
Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits
Lubin, Jay H.; Colt, Joanne S.; Camann, David; Davis, Scott; Cerhan, James R.; Severson, Richard K.; Bernstein, Leslie; Hartge, Patricia
2004-01-01
Quantitative measurements of environmental factors greatly improve the quality of epidemiologic studies but can pose challenges because of the presence of upper or lower detection limits or interfering compounds, which do not allow for precise measured values. We consider the regression of an environmental measurement (dependent variable) on several covariates (independent variables). Various strategies are commonly employed to impute values for interval-measured data, including assignment of one-half the detection limit to nondetected values or of “fill-in” values randomly selected from an appropriate distribution. On the basis of a limited simulation study, we found that the former approach can be biased unless the percentage of measurements below detection limits is small (5–10%). The fill-in approach generally produces unbiased parameter estimates but may produce biased variance estimates and thereby distort inference when 30% or more of the data are below detection limits. Truncated data methods (e.g., Tobit regression) and multiple imputation offer two unbiased approaches for analyzing measurement data with detection limits. If interest resides solely on regression parameters, then Tobit regression can be used. If individualized values for measurements below detection limits are needed for additional analysis, such as relative risk regression or graphical display, then multiple imputation produces unbiased estimates and nominal confidence intervals unless the proportion of missing data is extreme. We illustrate various approaches using measurements of pesticide residues in carpet dust in control subjects from a case–control study of non-Hodgkin lymphoma. PMID:15579415
Environmental conditions and reproductive health outcomes
Environmental exposures range across multiple domains to affect human health. In an effort to learn how environmental factors combine to contribute to health outcomes we constructed a multiple environmental domain index (MEDI) for use in health research. We used principal compone...
NASA Technical Reports Server (NTRS)
Chuang, C.-H.; Goodson, Troy D.; Ledsinger, Laura A.
1995-01-01
This report describes current work in the numerical computation of multiple burn, fuel-optimal orbit transfers and presents an analysis of the second variation for extremal multiple burn orbital transfers as well as a discussion of a guidance scheme which may be implemented for such transfers. The discussion of numerical computation focuses on the use of multivariate interpolation to aid the computation in the numerical optimization. The second variation analysis includes the development of the conditions for the examination of both fixed and free final time transfers. Evaluations for fixed final time are presented for extremal one, two, and three burn solutions of the first variation. The free final time problem is considered for an extremal two burn solution. In addition, corresponding changes of the second variation formulation over thrust arcs and coast arcs are included. The guidance scheme discussed is an implicit scheme which implements a neighboring optimal feedback guidance strategy to calculate both thrust direction and thrust on-off times.
Determining molecular responses to environmental change in soybeans
USDA-ARS?s Scientific Manuscript database
As the global climate changes, plants will be challenged by environmental stresses that are more extreme and more frequent. The average yield loss due to environmental stresses is currently estimated to be more than 50% for major crop species and is the major limitation to world food production. The...
Heat Waves, Droughts, and Preferences for Environmental Policy
ERIC Educational Resources Information Center
Owen, Ann L.; Conover, Emily; Videras, Julio; Wu, Stephen
2012-01-01
Using data from a new household survey on environmental attitudes, behaviors, and policy preferences, we find that current weather conditions affect preferences for environmental regulation. Individuals who have recently experienced extreme weather (heat waves or droughts) are more likely to support laws to protect the environment. We find…
The Potential of Free-Choice Learning for Environmental Participation in Greece
ERIC Educational Resources Information Center
Skanavis, Constantina; Sakellari, Maria; Petreniti, Vassiliki
2005-01-01
Citizen participation in environmental decision-making is of extreme importance in securing a good quality of life. Local communities know best what alternate solutions should be implemented for appropriate management of their area. This paper presents findings about the environmental characteristics of various Greek citizens' groups, where…
Changing Pattern of Indian Monsoon Extremes: Global and Local Factors
NASA Astrophysics Data System (ADS)
Ghosh, Subimal; Shastri, Hiteshri; Pathak, Amey; Paul, Supantha
2017-04-01
Indian Summer Monsoon Rainfall (ISMR) extremes have remained a major topic of discussion in the field of global change and hydro-climatology over the last decade. This attributes to multiple conclusions on changing pattern of extremes along with poor understanding of multiple processes at global and local scales associated with monsoon extremes. At a spatially aggregate scale, when number of extremes in the grids are summed over, a statistically significant increasing trend is observed for both Central India (Goswami et al., 2006) and all India (Rajeevan et al., 2008). However, such a result over Central India does not satisfy flied significance test of increase and no decrease (Krishnamurthy et al., 2009). Statistically rigorous extreme value analysis that deals with the tail of the distribution reveals a spatially non-uniform trend of extremes over India (Ghosh et al., 2012). This results into statistically significant increasing trend of spatial variability. Such an increase of spatial variability points to the importance of local factors such as deforestation and urbanization. We hypothesize that increase of spatial average of extremes is associated with the increase of events occurring over large region, while increase in spatial variability attributes to local factors. A Lagrangian approach based dynamic recycling model reveals that the major contributor of moisture to wide spread extremes is Western Indian Ocean, while land surface also contributes around 25-30% of moisture during the extremes in Central India. We further test the impacts of local urbanization on extremes and find the impacts are more visible over West central, Southern and North East India. Regional atmospheric simulations coupled with Urban Canopy Model (UCM) shows that urbanization intensifies extremes in city areas, but not uniformly all over the city. The intensification occurs over specific pockets of the urban region, resulting an increase in spatial variability even within the city. This also points to the need of setting up multiple weather stations over the city at a finer resolution for better understanding of urban extremes. We conclude that the conventional method of considering large scale factors is not sufficient for analysing the monsoon extremes and characterization of the same needs a blending of both global and local factors. Ghosh, S., Das, D., Kao, S-C. & Ganguly, A. R. Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nature Clim. Change 2, 86-91 (2012) Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. & Xavier, P. K. Increasing trend of extreme rain events over India in a warming environment. Science 314, 1442-1445 (2006). Krishnamurthy, C. K. B., Lall, U. & Kwon, H-H. Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J. Clim. 22, 4737-4746 (2009). Rajeevan, M., Bhate, J. & Jaswal, A. K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 35, L18707 (2008).
Changes in extreme events and the potential impacts on human health.
Bell, Jesse E; Brown, Claudia Langford; Conlon, Kathryn; Herring, Stephanie; Kunkel, Kenneth E; Lawrimore, Jay; Luber, George; Schreck, Carl; Smith, Adam; Uejio, Christopher
2018-04-01
Extreme weather and climate-related events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, dust storms, flooding rains, coastal flooding, storm surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden. More information is needed about the impacts of climate change on public health and economies to effectively plan for and adapt to climate change. This paper describes some of the ways extreme events are changing and provides examples of the potential impacts on human health and infrastructure. It also identifies key research gaps to be addressed to improve the resilience of public health to extreme events in the future. Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, flooding rains, coastal flooding, surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden.
Low-pass sequencing for microbial comparative genomics
Goo, Young Ah; Roach, Jared; Glusman, Gustavo; Baliga, Nitin S; Deutsch, Kerry; Pan, Min; Kennedy, Sean; DasSarma, Shiladitya; Victor Ng, Wailap; Hood, Leroy
2004-01-01
Background We studied four extremely halophilic archaea by low-pass shotgun sequencing: (1) the metabolically versatile Haloarcula marismortui; (2) the non-pigmented Natrialba asiatica; (3) the psychrophile Halorubrum lacusprofundi and (4) the Dead Sea isolate Halobaculum gomorrense. Approximately one thousand single pass genomic sequences per genome were obtained. The data were analyzed by comparative genomic analyses using the completed Halobacterium sp. NRC-1 genome as a reference. Low-pass shotgun sequencing is a simple, inexpensive, and rapid approach that can readily be performed on any cultured microbe. Results As expected, the four archaeal halophiles analyzed exhibit both bacterial and eukaryotic characteristics as well as uniquely archaeal traits. All five halophiles exhibit greater than sixty percent GC content and low isoelectric points (pI) for their predicted proteins. Multiple insertion sequence (IS) elements, often involved in genome rearrangements, were identified in H. lacusprofundi and H. marismortui. The core biological functions that govern cellular and genetic mechanisms of H. sp. NRC-1 appear to be conserved in these four other halophiles. Multiple TATA box binding protein (TBP) and transcription factor IIB (TFB) homologs were identified from most of the four shotgunned halophiles. The reconstructed molecular tree of all five halophiles shows a large divergence between these species, but with the closest relationship being between H. sp. NRC-1 and H. lacusprofundi. Conclusion Despite the diverse habitats of these species, all five halophiles share (1) high GC content and (2) low protein isoelectric points, which are characteristics associated with environmental exposure to UV radiation and hypersalinity, respectively. Identification of multiple IS elements in the genome of H. lacusprofundi and H. marismortui suggest that genome structure and dynamic genome reorganization might be similar to that previously observed in the IS-element rich genome of H. sp. NRC-1. Identification of multiple TBP and TFB homologs in these four halophiles are consistent with the hypothesis that different types of complex transcriptional regulation may occur through multiple TBP-TFB combinations in response to rapidly changing environmental conditions. Low-pass shotgun sequence analyses of genomes permit extensive and diverse analyses, and should be generally useful for comparative microbial genomics. PMID:14718067
Atmospheric rivers and the mass mortality of wild oysters: insight into an extreme future?
Chang, Andrew L.; Deck, Anna; Ferner, Matthew C.
2016-01-01
Climate change is predicted to increase the frequency and severity of extreme events. However, the biological consequences of extremes remain poorly resolved owing to their unpredictable nature and difficulty in quantifying their mechanisms and impacts. One key feature delivering precipitation extremes is an atmospheric river (AR), a long and narrow filament of enhanced water vapour transport. Despite recent attention, the biological impacts of ARs remain undocumented. Here, we use biological data coupled with remotely sensed and in situ environmental data to describe the role of ARs in the near 100% mass mortality of wild oysters in northern San Francisco Bay. In March 2011, a series of ARs made landfall within California, contributing an estimated 69.3% of the precipitation within the watershed and driving an extreme freshwater discharge into San Francisco Bay. This discharge caused sustained low salinities (less than 6.3) that almost perfectly matched the known oyster critical salinity tolerance and was coincident with a mass mortality of one of the most abundant populations throughout this species' range. This is a concern, because wild oysters remain a fraction of their historical abundance and have yet to recover. This study highlights a novel mechanism by which precipitation extremes may affect natural systems and the persistence of sensitive species in the face of environmental change. PMID:27974516
DOT National Transportation Integrated Search
2016-06-01
This paper develops a microeconomic theory-based multiple discrete continuous choice model that considers: (a) that both goods consumption and time allocations (to work and non-work activities) enter separately as decision variables in the utility fu...
A Drosophila model for toxicogenomics: Genetic variation in susceptibility to heavy metal exposure
Luoma, Sarah E.; St. Armour, Genevieve E.; Thakkar, Esha
2017-01-01
The genetic factors that give rise to variation in susceptibility to environmental toxins remain largely unexplored. Studies on genetic variation in susceptibility to environmental toxins are challenging in human populations, due to the variety of clinical symptoms and difficulty in determining which symptoms causally result from toxic exposure; uncontrolled environments, often with exposure to multiple toxicants; and difficulty in relating phenotypic effect size to toxic dose, especially when symptoms become manifest with a substantial time lag. Drosophila melanogaster is a powerful model that enables genome-wide studies for the identification of allelic variants that contribute to variation in susceptibility to environmental toxins, since the genetic background, environmental rearing conditions and toxic exposure can be precisely controlled. Here, we used extreme QTL mapping in an outbred population derived from the D. melanogaster Genetic Reference Panel to identify alleles associated with resistance to lead and/or cadmium, two ubiquitous environmental toxins that present serious health risks. We identified single nucleotide polymorphisms (SNPs) associated with variation in resistance to both heavy metals as well as SNPs associated with resistance specific to each of them. The effects of these SNPs were largely sex-specific. We applied mutational and RNAi analyses to 33 candidate genes and functionally validated 28 of them. We constructed networks of candidate genes as blueprints for orthologous networks of human genes. The latter not only provided functional contexts for known human targets of heavy metal toxicity, but also implicated novel candidate susceptibility genes. These studies validate Drosophila as a translational toxicogenomics gene discovery system. PMID:28732062
Tedesco Triccas, L; Burridge, J H; Hughes, A M; Pickering, R M; Desikan, M; Rothwell, J C; Verheyden, G
2016-01-01
To systematically review the methodology in particular treatment options and outcomes and the effect of multiple sessions of transcranial direct current stimulation (tDCS) with rehabilitation programmes for upper extremity recovery post stroke. A search was conducted for randomised controlled trials involving tDCS and rehabilitation for the upper extremity in stroke. Quality of included studies was analysed using the Modified Downs and Black form. The extent of, and effect of variation in treatment parameters such as anodal, cathodal and bi-hemispheric tDCS on upper extremity outcome measures of impairment and activity were analysed using meta-analysis. Nine studies (371 participants with acute, sub-acute and chronic stroke) were included. Different methodologies of tDCS and upper extremity intervention, outcome measures and timing of assessments were identified. Real tDCS combined with rehabilitation had a small non-significant effect of +0.11 (p=0.44) and +0.24 (p=0.11) on upper extremity impairments and activities at post-intervention respectively. Various tDCS methods have been used in stroke rehabilitation. The evidence so far is not statistically significant, but is suggestive of, at best, a small beneficial effect on upper extremity impairment. Future research should focus on which patients and rehabilitation programmes are likely to respond to different tDCS regimes. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Optimization as a Tool for Consistency Maintenance in Multi-Resolution Simulation
NASA Technical Reports Server (NTRS)
Drewry, Darren T; Reynolds, Jr , Paul F; Emanuel, William R
2006-01-01
The need for new approaches to the consistent simulation of related phenomena at multiple levels of resolution is great. While many fields of application would benefit from a complete and approachable solution to this problem, such solutions have proven extremely difficult. We present a multi-resolution simulation methodology that uses numerical optimization as a tool for maintaining external consistency between models of the same phenomena operating at different levels of temporal and/or spatial resolution. Our approach follows from previous work in the disparate fields of inverse modeling and spacetime constraint-based animation. As a case study, our methodology is applied to two environmental models of forest canopy processes that make overlapping predictions under unique sets of operating assumptions, and which execute at different temporal resolutions. Experimental results are presented and future directions are addressed.
Does energy consumption contribute to environmental pollutants? Evidence from SAARC countries.
Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Irfan, Danish; Khan, Muhammad Mushtaq
2014-05-01
The objective of the study is to examine the causal relationship between energy consumption and environmental pollutants in selected South Asian Association for Regional Cooperation (SAARC) countries, namely, Bangladesh, India, Nepal, Pakistan, and Srilanka, over the period of 1975-2011. The results indicate that energy consumption acts as an important driver to increase environmental pollutants in SAARC countries. Granger causality runs from energy consumption to environmental pollutants, but not vice versa, except carbon dioxide (CO2) emissions in Nepal where there exists a bidirectional causality between CO2 and energy consumption. Methane emissions in Bangladesh, Pakistan, and Srilanka and extreme temperature in India and Srilanka do not Granger cause energy consumption via both routes, which holds neutrality hypothesis. Variance decomposition analysis shows that among all the environmental indicators, CO2 in Bangladesh and Nepal exerts the largest contribution to changes in electric power consumption. Average precipitation in India, methane emissions in Pakistan, and extreme temperature in Srilanka exert the largest contribution.
Ko, Yi-An; Mukherjee, Bhramar; Smith, Jennifer A; Kardia, Sharon L R; Allison, Matthew; Diez Roux, Ana V
2016-11-01
There has been an increased interest in identifying gene-environment interaction (G × E) in the context of multiple environmental exposures. Most G × E studies analyze one exposure at a time, but we are exposed to multiple exposures in reality. Efficient analysis strategies for complex G × E with multiple environmental factors in a single model are still lacking. Using the data from the Multiethnic Study of Atherosclerosis, we illustrate a two-step approach for modeling G × E with multiple environmental factors. First, we utilize common clustering and classification strategies (e.g., k-means, latent class analysis, classification and regression trees, Bayesian clustering using Dirichlet Process) to define subgroups corresponding to distinct environmental exposure profiles. Second, we illustrate the use of an additive main effects and multiplicative interaction model, instead of the conventional saturated interaction model using product terms of factors, to study G × E with the data-driven exposure subgroups defined in the first step. We demonstrate useful analytical approaches to translate multiple environmental exposures into one summary class. These tools not only allow researchers to consider several environmental exposures in G × E analysis but also provide some insight into how genes modify the effect of a comprehensive exposure profile instead of examining effect modification for each exposure in isolation.
System Mapping to Promote Resilient Decision-Making in Port Communities
Port communities are particularly vulnerable to environmental hazards including: extreme weather, toxic air pollution, hazardous materials storage and transport, and operational and accidental environmental emissions from industry. Following the Panama Canal expansion, port expa...
Environmental risk assessment of Polish wastewater treatment plant activity.
Kudłak, Błażej; Wieczerzak, Monika; Yotova, Galina; Tsakovski, Stefan; Simeonov, Vasil; Namieśnik, Jacek
2016-10-01
Wastewater treatment plants (WWTPs) play an extremely important role in shaping modern society's environmental well-being and awareness, however only well operated and supervised systems can be considered as environmentally sustainable. For this reason, an attempt was undertaken to assess the environmental burden posed by WWTPs in major Polish cities by collecting water samples prior to and just after wastewater release points. Both classical and biological methods (Microtox(®), Ostracodtoxkit F™ and comet assay) were utilized to assess environmental impact of given WWTP. Interestingly, in some cases, water quality improvement indicated as a toxicity decrement toward one of the bio-indicating organisms makes water worse for others in the systems. This fact is particularly noticeable in case of Silesian cities where heavy industry and high population density is present. It proves that WWTP should undergo individual evaluation of pollutant removal efficiency and tuned to selectively remove pollutants of highest risk to surrounding regional ecosystems. Biotests again proved to be an extremely important tool to fully assess the impact of environmental stressors on water bodies receiving effluents from WWTPs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Plumlee, Geoffrey S.; Alpers, Charles N.; Morman, Suzette A.; San Juan, Carma A.
2016-01-01
The ARkStorm Scenario predicts that a prolonged winter storm event across California would cause extreme precipitation, flooding, winds, physical damages, and economic impacts. This study uses a literature review and geographic information system-based analysis of national and state databases to infer how and where ARkStorm could cause environmental damages, release contamination from diverse natural and anthropogenic sources, affect ecosystem and human health, and cause economic impacts from environmental-remediation, liability, and health-care costs. Examples of plausible ARkStorm environmental and health concerns include complex mixtures of contaminants such as petroleum, mercury, asbestos, persistent organic pollutants, molds, and pathogens; adverse physical and contamination impacts on riverine and coastal marine ecosystems; and increased incidences of mold-related health concerns, some vector-borne diseases, and valley fever. Coastal cities, the San Francisco Bay area, the Sacramento-San Joaquin River Delta, parts of the Central Valley, and some mountainous areas would likely be most affected. This type of screening analysis, coupled with follow-up local assessments, can help stakeholders in California and disaster-prone areas elsewhere better plan for, mitigate, and respond to future environmental disasters.
Extreme weather-year sequences have nonadditive effects on environmental nitrogen losses.
Iqbal, Javed; Necpalova, Magdalena; Archontoulis, Sotirios V; Anex, Robert P; Bourguignon, Marie; Herzmann, Daryl; Mitchell, David C; Sawyer, John E; Zhu, Qing; Castellano, Michael J
2018-01-01
The frequency and intensity of extreme weather years, characterized by abnormal precipitation and temperature, are increasing. In isolation, these years have disproportionately large effects on environmental N losses. However, the sequence of extreme weather years (e.g., wet-dry vs. dry-wet) may affect cumulative N losses. We calibrated and validated the DAYCENT ecosystem process model with a comprehensive set of biogeophysical measurements from a corn-soybean rotation managed at three N fertilizer inputs with and without a winter cover crop in Iowa, USA. Our objectives were to determine: (i) how 2-year sequences of extreme weather affect 2-year cumulative N losses across the crop rotation, and (ii) if N fertilizer management and the inclusion of a winter cover crop between corn and soybean mitigate the effect of extreme weather on N losses. Using historical weather (1951-2013), we created nine 2-year scenarios with all possible combinations of the driest ("dry"), wettest ("wet"), and average ("normal") weather years. We analyzed the effects of these scenarios following several consecutive years of relatively normal weather. Compared with the normal-normal 2-year weather scenario, 2-year extreme weather scenarios affected 2-year cumulative NO 3 - leaching (range: -93 to +290%) more than N 2 O emissions (range: -49 to +18%). The 2-year weather scenarios had nonadditive effects on N losses: compared with the normal-normal scenario, the dry-wet sequence decreased 2-year cumulative N 2 O emissions while the wet-dry sequence increased 2-year cumulative N 2 O emissions. Although dry weather decreased NO 3 - leaching and N 2 O emissions in isolation, 2-year cumulative N losses from the wet-dry scenario were greater than the dry-wet scenario. Cover crops reduced the effects of extreme weather on NO 3 - leaching but had a lesser effect on N 2 O emissions. As the frequency of extreme weather is expected to increase, these data suggest that the sequence of interannual weather patterns can be used to develop short-term mitigation strategies that manipulate N fertilizer and crop rotation to maximize crop N uptake while reducing environmental N losses. © 2017 John Wiley & Sons Ltd.
Born, D-P; Hoppe, M W; Lindner, N; Freiwald, J; Holmberg, H-C; Sperlich, B
2014-03-01
Football is played worldwide and players often have to cope with hot and cold temperatures as well as high altitude conditions. The upcoming and past world championships in Brazil, Qatar and South Africa illustrate the necessity for behavioural strategies and adaptation to extreme environmental conditions. When playing football in the heat or cold, special clothing, hydration and nutritional and acclimatisation strategies are vital for high-level performance. When playing at high altitude, the reduced oxygen partial pressure impairs endurance performance and alters the technical and tactical requirements. Special high-altitude adaptation and preparation strategies are essential for football teams based at sea-level in order to perform well and compete successfully. Therefore, the aim of the underlying review is: 1) to highlight the difficulties and needs of football teams competing in extreme environmental conditions, 2) to summarise the thermoregulatory, physiological, neuronal and psychological mechanism, and 3) to provide recommendations for coping with extreme environmental conditions in order to perform at a high level when playing football in the heat, cold and at high altitude. © Georg Thieme Verlag KG Stuttgart · New York.
Satellite Data Visualization, Processing and Mapping using VIIRS Imager Data
NASA Astrophysics Data System (ADS)
Phyu, A. N.
2016-12-01
A satellite is a manmade machine that is launched into space and orbits the Earth. These satellites are used for various purposes for examples: Environmental satellites help us monitor and protect our environment; Navigation (GPS) satellites provides accurate time and position information: and Communication satellites allows us the interact with each other over long distances. Suomi NPP is part of the constellation of Joint Polar Satellite System (JPSS) fleet of satellites which is an Environmental satellite that carries the Visual Infrared Imaging Radiometer Suite (VIIRS) instrument. VIIRS is a scanning radiometer that takes high resolution images of the Earth. VIIRS takes visible, infrared and radiometric measurements of the land, oceans, atmosphere and cryosphere. These high resolution images provide information that helps weather prediction and environmental forecasting of extreme events such as forest fires, ice jams, thunder storms and hurricane. This project will describe how VIIRS instrument data is processed, mapped, and visualized using variety of software and application. It will focus on extreme events like Hurricane Sandy and demonstrate how to use the satellite to map the extent of a storm. Data from environmental satellites such as Suomi NPP-VIIRS is important for monitoring climate change, sea level rise, land surface temperature changes as well as extreme weather events.
Environmental Symposium Held in Crystal City, Virginia on May 5-6, 1992
1992-05-01
addition, the Act creat a new program designed to prevent sudden, accidental releases of extremely hazardo substances . Generally, the Act sets forth a... prevent of sudden, The owner or operator of any facility handling an extremely hazardous substance will also be required to prepare and implement a risk...management plan to detect and prevent or minimize the potential for an accidental release of extremely hazardous substances . EPA may require that such
Necrotizing Fasciitis of the Lower Extremity Caused by Serratia marcescens A Case Report.
Heigh, Evelyn G; Maletta-Bailey, April; Haight, John; Landis, Gregg S
2016-03-01
Necrotizing fasciitis is a rare and potentially fatal infection, with mortality of up to 30%. This case report describes a patient recovering from a laryngectomy for laryngeal squamous cell cancer who developed nosocomial necrotizing fasciitis of the lower extremity due to Serratia marcescens . Only eight cases of necrotizing fasciitis exclusive to the lower extremity due to S marcescens have been previously reported. Patients with S marcescens necrotizing fasciitis of the lower extremity often have multiple comorbidities, are frequently immunosuppressed, and have a strikingly high mortality rate.
Tales from the Paleoclimate Underground: Lessons Learned from Reconstructing Extreme Events
NASA Astrophysics Data System (ADS)
Frappier, A. E.
2017-12-01
Tracing patterns of paleoclimate extremes over the past two millennia is becoming ever more important in the effort to understand and predict costly weather hazards and their varied societal impacts. I present three paleoclimate vignettes from the past ten years of different paleotempestology projects I have worked on closely, illustrating our collective challenges and productive pathways in reconstructing rainfall extremes: temporal, spatial, and combining information from disparate proxies. Finally, I aim to share new results from modeling multiple extremes and hazards in Yucatan, a climate change hotspot.
Paleo-event data standards for dendrochronology
Elaine Kennedy Sutherland; P. Brewer; W. Gross
2017-01-01
Extreme environmental events, such as storm winds, landslides, insect infestations, and wildfire, cause loss of life, resources, and human infrastructure. Disaster riskreduction analysis can be improved with information about past frequency, intensity, and spatial patterns of extreme events. Tree-ring analyses can provide such information: tree rings reflect events as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 28 2011-07-01 2011-07-01 false What quantities of extremely hazardous substances trigger emergency planning requirements? 355.12 Section 355.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS...
Leveraging organismal biology to forecast the effects of climate change.
Buckley, Lauren B; Cannistra, Anthony F; John, Aji
2018-04-26
Despite the pressing need for accurate forecasts of ecological and evolutionary responses to environmental change, commonly used modelling approaches exhibit mixed performance because they omit many important aspects of how organisms respond to spatially and temporally variable environments. Integrating models based on organismal phenotypes at the physiological, performance and fitness levels can improve model performance. We summarize current limitations of environmental data and models and discuss potential remedies. The paper reviews emerging techniques for sensing environments at fine spatial and temporal scales, accounting for environmental extremes, and capturing how organisms experience the environment. Intertidal mussel data illustrate biologically important aspects of environmental variability. We then discuss key challenges in translating environmental conditions into organismal performance including accounting for the varied timescales of physiological processes, for responses to environmental fluctuations including the onset of stress and other thresholds, and for how environmental sensitivities vary across lifecycles. We call for the creation of phenotypic databases to parameterize forecasting models and advocate for improved sharing of model code and data for model testing. We conclude with challenges in organismal biology that must be solved to improve forecasts over the next decade.acclimation, biophysical models, ecological forecasting, extremes, microclimate, spatial and temporal variability.
Martian Magmatic-Driven Hydrothermal Sites: Potential Sources of Energy, Water, and Life
NASA Technical Reports Server (NTRS)
Anderson, R. C.; Dohm, J. M.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Tanaka, K. L.; Klemaszewski, J. E.; Skinner, J. A.; Scott, D. H.
2000-01-01
Magmatic-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant evidence of past and present-day water/ice, above and below the martian surface, indicate that hydrothermal environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived magmatic-driven hydrothermal environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, magmatic-driven hydrothermal activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around hydrothermal vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to identify prime target sites of hydrothermal activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.
The Immediacy of Arctic Change
NASA Astrophysics Data System (ADS)
Overland, J. E.; Wang, M.; Soreide, N. N.
2015-12-01
Ongoing temperature changes in the Arctic are large relative to lower latitudes; a process known as Arctic Amplification. Arctic temperatures have increased at least 3 times the rate of mid-latitude temperatures relative to the late 20th century, due to multiple interacting feedbacks driven by modest global change. Even if global temperature increases are contained to +2° C by 2040, Arctic (North of 60° N) monthly mean temperatures in fall will increase by +5° C. The Arctic is very likely to be sea ice free during summer before 2040, with the sea ice free duration limited to <5 months. Snow cover will be absent in May and June on most land masses. Whether these changes impact mid-latitude weather events is complex and controversial, as the time period for observing such linkages is short [<10 years] and involves understanding direct forcing by Arctic changes on a chaotic climatic system. Although chaotic internal variability dominates the dynamics of atmospheric circulation, Arctic thermodynamic influences can reinforce regional weather patterns. Extreme Arctic temperature events, as a combination of mean temperature increases combined with natural variability, will become common, nearing and exceeding previous thresholds. Such an event as an analog for the future was the +4° C anomalies for Alaska in November-December 2014 related to recent warm Pacific sea surface temperatures. Thus for the next few decades out to 2040, continuing rapid environmental changes in the Arctic are very likely, despite any mitigation activities, and the appropriate response is to plan for adaptation to meet these mean and extreme event changes. Mitigation is essential to forestall further disasters in the second half of the century. It is important to note such future rapid Arctic amplification, and the potential for environmental surprises, to support those making planning decisions and encourage action.
2014-01-01
Background The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. Results We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5′ splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Conclusion Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock and environmental stress adaptation in plants. It is also envisioned that alternative splicing of the clock genes plays more complex roles than previously expected. PMID:24885185
NASA Astrophysics Data System (ADS)
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; Bulanov, S. S.; Gong, Z.; Yan, X. Q.; Kando, M.
2017-04-01
The multiple colliding laser pulse concept formulated by Bulanov et al. (Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motion resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.
The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; ...
2017-03-09
The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less
Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smallwood, David O.
2007-01-01
A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less
NASA Astrophysics Data System (ADS)
Rodríguez, Estiven; Salazar, Juan Fernando; Villegas, Juan Camilo; Mercado-Bettín, Daniel
2018-07-01
Extreme flows are key components of river flow regimes that affect manifold hydrological, geomorphological and ecological processes with societal relevance. One fundamental characteristic of extreme flows in river basins is that they exhibit scaling properties which can be identified through scaling (power) laws. Understanding the physical mechanisms behind such scaling laws is a continuing challenge in hydrology, with potential implications for the prediction of river flow regimes in a changing environment and ungauged basins. After highlighting that the scaling properties are sensitive to environmental change, we develop a physical interpretation of how temporal changes in scaling exponents relate to the capacity of river basins to regulate extreme river flows. Regulation is defined here as the basins' capacity to either dampen high flows or to enhance low flows. Further, we use this framework to infer temporal changes in the regulation capacity of five large basins in tropical South America. Our results indicate that, during the last few decades, the Amazon river basin has been reducing its capacity to enhance low flows, likely as a consequence of pronounced environmental change in its south and south-eastern sub-basins. The proposed framework is widely applicable to different basins, and provides foundations for using scaling laws as empirical tools for inferring temporal changes of hydrological regulation, particularly relevant for identifying and managing hydrological consequences of environmental change.
NASA Astrophysics Data System (ADS)
Terando, A. J.; Reich, B. J.; Pacifici, K.
2013-12-01
Fire is an important disturbance process in many coupled natural-human systems. Changes in the frequency and severity of fires due to anthropogenic climate change could have significant costs to society and the plant and animal communities that are adapted to a particular fire regime Planning for these changes requires a robust model of the relationship between climate and fire that accounts for multiple sources of uncertainty that are present when simulating ecological and climatological processes. Here we model how anthropogenic climate change could affect the wildfire regime for a region in the Southeast US whose natural ecosystems are dependent on frequent, low-intensity fires while humans are at risk from large catastrophic fires. We develop a modeling framework that incorporates three major sources of uncertainty: (1) uncertainty in the ecological drivers of expected monthly area burned, (2) uncertainty in the environmental drivers influencing the probability of an extreme fire event, and (3) structural uncertainty in different downscaled climate models. In addition we use two policy-relevant emission scenarios (climate stabilization and 'business-as-usual') to characterize the uncertainty in future greenhouse gas forcings. We use a Bayesian framework to incorporate different sources of uncertainty including simulation of predictive errors and Stochastic Search Variable Selection. Our results suggest that although the mean process remains stationary, the probability of extreme fires declines through time, owing to the persistence of high atmospheric moisture content during the peak fire season that dampens the effect of increasing temperatures. Including multiple sources of uncertainty leads to wide prediction intervals, but is potentially more useful for decision-makers that will require adaptation strategies that are robust to rapid but uncertain climate and ecological change.
ERIC Educational Resources Information Center
Coordination in Development, New York, NY.
This booklet was produced in response to the growing need for reliable environmental assessment techniques that can be applied to small-scale development projects. The suggested techniques emphasize low-technology environmental analysis. Although these techniques may lack precision, they can be extremely valuable in helping to assure the success…
CONTAMINANT-INDUCED ENDOCRINE DISRUPTION IN WILDLIFE
Environmental contaminants have posed a threat to the health of wildlife since the onset of the industrial age. Over the last four decades, much concern has focused on the lethal, carcinogenic and/or extreme teratogenic manifestations of environmental pollution. During the last d...
Atmospheric rivers and the mass mortality of wild oysters: insight into an extreme future?
Cheng, Brian S; Chang, Andrew L; Deck, Anna; Ferner, Matthew C
2016-12-14
Climate change is predicted to increase the frequency and severity of extreme events. However, the biological consequences of extremes remain poorly resolved owing to their unpredictable nature and difficulty in quantifying their mechanisms and impacts. One key feature delivering precipitation extremes is an atmospheric river (AR), a long and narrow filament of enhanced water vapour transport. Despite recent attention, the biological impacts of ARs remain undocumented. Here, we use biological data coupled with remotely sensed and in situ environmental data to describe the role of ARs in the near 100% mass mortality of wild oysters in northern San Francisco Bay. In March 2011, a series of ARs made landfall within California, contributing an estimated 69.3% of the precipitation within the watershed and driving an extreme freshwater discharge into San Francisco Bay. This discharge caused sustained low salinities (less than 6.3) that almost perfectly matched the known oyster critical salinity tolerance and was coincident with a mass mortality of one of the most abundant populations throughout this species' range. This is a concern, because wild oysters remain a fraction of their historical abundance and have yet to recover. This study highlights a novel mechanism by which precipitation extremes may affect natural systems and the persistence of sensitive species in the face of environmental change. © 2016 The Author(s).
Climate extremes and the carbon cycle.
Reichstein, Markus; Bahn, Michael; Ciais, Philippe; Frank, Dorothea; Mahecha, Miguel D; Seneviratne, Sonia I; Zscheischler, Jakob; Beer, Christian; Buchmann, Nina; Frank, David C; Papale, Dario; Rammig, Anja; Smith, Pete; Thonicke, Kirsten; van der Velde, Marijn; Vicca, Sara; Walz, Ariane; Wattenbach, Martin
2013-08-15
The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.
NASA Astrophysics Data System (ADS)
Cordero, M. J.; Hénault-Brunet, V.; Pilachowski, C. A.; Balbinot, E.; Johnson, C. I.; Varri, A. L.
2017-03-01
We use radial velocities from spectra of giants obtained with the WIYN telescope, coupled with existing chemical abundance measurements of Na and O for the same stars, to probe the presence of kinematic differences among the multiple populations of the globular cluster (GC) M13. To characterize the kinematics of various chemical subsamples, we introduce a method using Bayesian inference along with a Markov chain Monte Carlo algorithm to fit a six-parameter kinematic model (including rotation) to these subsamples. We find that the so-called extreme population (Na-enhanced and extremely O-depleted) exhibits faster rotation around the centre of the cluster than the other cluster stars, in particular, when compared with the dominant `intermediate' population (moderately Na-enhanced and O-depleted). The most likely difference between the rotational amplitude of this extreme population and that of the intermediate population is found to be ˜4 km s-1 , with a 98.4 per cent probability that the rotational amplitude of the extreme population is larger than that of the intermediate population. We argue that the observed difference in rotational amplitudes, obtained when splitting subsamples according to their chemistry, is not a product of the long-term dynamical evolution of the cluster, but more likely a surviving feature imprinted early in the formation history of this GC and its multiple populations. We also find an agreement (within uncertainties) in the inferred position angle of the rotation axis of the different subpopulations considered. We discuss the constraints that these results may place on various formation scenarios.
Multiscale Measurement of Extreme Response Style
ERIC Educational Resources Information Center
Bolt, Daniel M.; Newton, Joseph R.
2011-01-01
This article extends a methodological approach considered by Bolt and Johnson for the measurement and control of extreme response style (ERS) to the analysis of rating data from multiple scales. Specifically, it is shown how the simultaneous analysis of item responses across scales allows for more accurate identification of ERS, and more effective…
IMPACTS OF CLIMATE-INDUCED CHANGES IN EXTREME EVENTS ON OZONE AND PARTICULATE MATTER AIR QUALITY
Historical data records of air pollution meteorology from multiple datasets will be compiled and analyzed to identify possible trends in extreme events. Changes in climate and air quality between 2010 and 2050 will be simulated with a suite of models. The consequential effe...
Arai, Yasumichi; Inagaki, Hiroki; Takayama, Michiyo; Abe, Yukiko; Saito, Yasuhiko; Takebayashi, Toru; Gondo, Yasuyuki; Hirose, Nobuyoshi
2014-04-01
Prevention of disability is a major challenge in aging populations; however, the extent to which physical independence can be maintained toward the limit of human life span remains to be determined. We examined the health and functional status of 642 centenarians: 207 younger centenarians (age: 100-104 years), 351 semi-supercentenarians (age: 105-109 years), and 84 supercentenarians (age: >110 years). All-cause mortality was followed by means of an annual telephone or mailed survey. Age-specific disability patterns revealed that the older the age group, the higher the proportion of those manifesting independence in activities of daily living at any given age of entry. Multiple logistic regression analysis identified male gender and better cognitive function as consistent determinants of physical independence across all age categories. In a longitudinal analysis, better physical function was significantly associated with survival advantage until the age of 110. However, mortality beyond that age was predicted neither by functional status nor biomedical measurements, indicating alternative trajectories of mortality at the highest ages. These findings suggest that maintaining physical independence is a key feature of survival into extreme old age. Future studies illuminating genetic and environmental underpinnings of supercentenarians' phenotypes will provide invaluable opportunities not only to improve preventive strategies but also to test the central hypotheses of human aging.
Hormonally mediated maternal effects, individual strategy and global change
Meylan, Sandrine; Miles, Donald B.; Clobert, Jean
2012-01-01
A challenge to ecologists and evolutionary biologists is predicting organismal responses to the anticipated changes to global ecosystems through climate change. Most evidence suggests that short-term global change may involve increasing occurrences of extreme events, therefore the immediate response of individuals will be determined by physiological capacities and life-history adaptations to cope with extreme environmental conditions. Here, we consider the role of hormones and maternal effects in determining the persistence of species in altered environments. Hormones, specifically steroids, are critical for patterning the behaviour and morphology of parents and their offspring. Hence, steroids have a pervasive influence on multiple aspects of the offspring phenotype over its lifespan. Stress hormones, e.g. glucocorticoids, modulate and perturb phenotypes both early in development and later into adulthood. Females exposed to abiotic stressors during reproduction may alter the phenotypes by manipulation of hormones to the embryos. Thus, hormone-mediated maternal effects, which generate phenotypic plasticity, may be one avenue for coping with global change. Variation in exposure to hormones during development influences both the propensity to disperse, which alters metapopulation dynamics, and population dynamics, by affecting either recruitment to the population or subsequent life-history characteristics of the offspring. We suggest that hormones may be an informative index to the potential for populations to adapt to changing environments. PMID:22566673
An Indian scenario on renewable and sustainable energy sources with emphasis on algae.
Hemaiswarya, S; Raja, Rathinam; Carvalho, Isabel S; Ravikumar, R; Zambare, Vasudeo; Barh, Debmalya
2012-12-01
India is the fifth largest primary energy consumer and fourth largest petroleum consumer after USA, China, and Japan. Despite the global economic crisis, India's economy is expected to grow at 6 to 8 %/year. There is an extreme dependence on petroleum products with considerable risks and environmental issues. Petroleum-derived transport fuels are of limited availability and contribute to global warming, making renewable biofuel as the best alternative. The focus on biogas and biomass-based energy, such as bioethanol and biohydrogen, will enhance cost-effectiveness and provide an opportunity for the rural community. Among all energy sources, microalgae have received, so far, more attention due to their facile adaptability to grow in the photobioreactors or open ponds, high yields, and multiple applications. Microalgae can produce a substantial amount of triacylglycerols as a storage lipid under photooxidative stress or other adverse environmental conditions. In addition to renewable biofuels, they can provide different types of high-value bioproducts added to their advantages, such as higher photosynthetic efficiency, higher biomass production, and faster growth compared to any other energy crops. The viability of first-generation biofuels production is, however, questionable because of the conflict with food supply. In the future, biofuels should ideally create the environmental, economic, and social benefits to the communities and reflect energy efficiency so as to plan a road map for the industry to produce third-generation biofuels.
Phillips, Ryan D.; Hopper, Stephen D.; Dixon, Kingsley W.
2010-01-01
The Southwest Australian Biodiversity Hotspot contains an exceptionally diverse flora on an ancient, low-relief but edaphically diverse landscape. Since European colonization, the primary threat to the flora has been habitat clearance, though climate change is an impending threat. Here, we review (i) the ecology of nectarivores and biotic pollination systems in the region, (ii) the evidence that trends in pollination strategies are a consequence of characteristics of the landscape, and (iii) based on these discussions, provide predictions to be tested on the impacts of environmental change on pollination systems. The flora of southwestern Australia has an exceptionally high level of vertebrate pollination, providing the advantage of highly mobile, generalist pollinators. Nectarivorous invertebrates are primarily generalist foragers, though an increasing number of colletid bees are being recognized as being specialized at the level of plant family or more rarely genus. While generalist pollination strategies dominate among insect-pollinated plants, there are some cases of extreme specialization, most notably the multiple evolutions of sexual deception in the Orchidaceae. Preliminary data suggest that bird pollination confers an advantage of greater pollen movement and may represent a mechanism for minimizing inbreeding in naturally fragmented populations. The effects of future environmental change are predicted to result from a combination of the resilience of pollination guilds and changes in their foraging and dispersal behaviour. PMID:20047877
Phillips, Ryan D; Hopper, Stephen D; Dixon, Kingsley W
2010-02-12
The Southwest Australian Biodiversity Hotspot contains an exceptionally diverse flora on an ancient, low-relief but edaphically diverse landscape. Since European colonization, the primary threat to the flora has been habitat clearance, though climate change is an impending threat. Here, we review (i) the ecology of nectarivores and biotic pollination systems in the region, (ii) the evidence that trends in pollination strategies are a consequence of characteristics of the landscape, and (iii) based on these discussions, provide predictions to be tested on the impacts of environmental change on pollination systems. The flora of southwestern Australia has an exceptionally high level of vertebrate pollination, providing the advantage of highly mobile, generalist pollinators. Nectarivorous invertebrates are primarily generalist foragers, though an increasing number of colletid bees are being recognized as being specialized at the level of plant family or more rarely genus. While generalist pollination strategies dominate among insect-pollinated plants, there are some cases of extreme specialization, most notably the multiple evolutions of sexual deception in the Orchidaceae. Preliminary data suggest that bird pollination confers an advantage of greater pollen movement and may represent a mechanism for minimizing inbreeding in naturally fragmented populations. The effects of future environmental change are predicted to result from a combination of the resilience of pollination guilds and changes in their foraging and dispersal behaviour.
Citaker, Seyit; Guclu-Gunduz, Arzu; Yazici, Gokhan; Bayraktar, Deniz; Nazliel, Bijen; Irkec, Ceyla
2013-01-01
Muscle strength and standing balance decrease in patients with Multiple Sclerosis (MS). The aim of the present study was to investigate the relationship between the lower extremity isometric muscle strength and standing balance in patients with MS. Forty-seven patients with MS and 10 healthy volunteers were included. Neurological disability level was assessed using Expanded Disability Status Scale (EDSS). Isometric strength of seven lower extremity muscles (hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor) was assessed using hand-held dynamometer. Duration of static one-leg standing balance was measured using digital chronometer. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength, and duration of one-leg standing balance were decreased in patients with MS when compared with controls (p < 0.05). All assessed lower extremity isometric muscle strength and EDSS level was related duration of one-leg standing balance in patients with MS. All assessed lower extremity isometric muscle strength (except ankle dorsal flexor) was related with EDSS. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength decreases in ambulatory MS patients. Lower extremity muscle weakness and neurological disability level are related with imbalance in MS population. Hip and knee region muscles weakness increases the neurological disability level. For the better balance and decrease neurological disability level whole lower extremity muscle strengthening should be included in rehabilitation programs.
Changes in the probability of co-occurring extreme climate events
NASA Astrophysics Data System (ADS)
Diffenbaugh, N. S.
2017-12-01
Extreme climate events such as floods, droughts, heatwaves, and severe storms exert acute stresses on natural and human systems. When multiple extreme events co-occur, either in space or time, the impacts can be substantially compounded. A diverse set of human interests - including supply chains, agricultural commodities markets, reinsurance, and deployment of humanitarian aid - have historically relied on the rarity of extreme events to provide a geographic hedge against the compounded impacts of co-occuring extremes. However, changes in the frequency of extreme events in recent decades imply that the probability of co-occuring extremes is also changing, and is likely to continue to change in the future in response to additional global warming. This presentation will review the evidence for historical changes in extreme climate events and the response of extreme events to continued global warming, and will provide some perspective on methods for quantifying changes in the probability of co-occurring extremes in the past and future.
NASA Astrophysics Data System (ADS)
Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro
2016-04-01
High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude
Adaptive evolution of Mediterranean pines.
Grivet, Delphine; Climent, José; Zabal-Aguirre, Mario; Neale, David B; Vendramin, Giovanni G; González-Martínez, Santiago C
2013-09-01
Mediterranean pines represent an extremely heterogeneous assembly. Although they have evolved under similar environmental conditions, they diversified long ago, ca. 10 Mya, and present distinct biogeographic and demographic histories. Therefore, it is of special interest to understand whether and to what extent they have developed specific strategies of adaptive evolution through time and space. To explore evolutionary patterns, the Mediterranean pines' phylogeny was first reconstructed analyzing a new set of 21 low-copy nuclear genes with multilocus Bayesian tree reconstruction methods. Secondly, a phylogenetic approach was used to search for footprints of natural selection and to examine the evolution of multiple phenotypic traits. We identified two genes (involved in pines' defense and stress responses) that have likely played a role in the adaptation of Mediterranean pines to their environment. Moreover, few life-history traits showed historical or evolutionary adaptive convergence in Mediterranean lineages, while patterns of character evolution revealed various evolutionary trade-offs linking growth-development, reproduction and fire-related traits. Assessing the evolutionary path of important life-history traits, as well as the genomic basis of adaptive variation is central to understanding the past evolutionary success of Mediterranean pines and their future response to environmental changes. Copyright © 2013 Elsevier Inc. All rights reserved.
Bonnefoy, Violaine; Holmes, David S
2012-07-01
This minireview presents recent advances in our understanding of iron oxidation and homeostasis in acidophilic Bacteria and Archaea. These processes influence the flux of metals and nutrients in pristine and man-made acidic environments such as acid mine drainage and industrial bioleaching operations. Acidophiles are also being studied to understand life in extreme conditions and their role in the generation of biomarkers used in the search for evidence of existing or past extra-terrestrial life. Iron oxidation in acidophiles is best understood in the model organism Acidithiobacillus ferrooxidans. However, recent functional genomic analysis of acidophiles is leading to a deeper appreciation of the diversity of acidophilic iron-oxidizing pathways. Although it is too early to paint a detailed picture of the role played by lateral gene transfer in the evolution of iron oxidation, emerging evidence tends to support the view that iron oxidation arose independently more than once in evolution. Acidic environments are generally rich in soluble iron and extreme acidophiles (e.g. the Leptospirillum genus) have considerably fewer iron uptake systems compared with neutrophiles. However, some acidophiles have been shown to grow as high as pH 6 and, in the case of the Acidithiobacillus genus, to have multiple iron uptake systems. This could be an adaption allowing them to respond to different iron concentrations via the use of a multiplicity of different siderophores. Both Leptospirillum spp. and Acidithiobacillus spp. are predicted to synthesize the acid stable citrate siderophore for Fe(III) uptake. In addition, both groups have predicted receptors for siderophores produced by other microorganisms, suggesting that competition for iron occurs influencing the ecophysiology of acidic environments. Little is known about the genetic regulation of iron oxidation and iron uptake in acidophiles, especially how the use of iron as an energy source is balanced with its need to take up iron for metabolism. It is anticipated that integrated and complex regulatory networks sensing different environmental signals, such as the energy source and/or the redox state of the cell as well as the oxygen availability, are involved. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Large Scale Meteorological Pattern of Extreme Rainfall in Indonesia
NASA Astrophysics Data System (ADS)
Kuswanto, Heri; Grotjahn, Richard; Rachmi, Arinda; Suhermi, Novri; Oktania, Erma; Wijaya, Yosep
2014-05-01
Extreme Weather Events (EWEs) cause negative impacts socially, economically, and environmentally. Considering these facts, forecasting EWEs is crucial work. Indonesia has been identified as being among the countries most vulnerable to the risk of natural disasters, such as floods, heat waves, and droughts. Current forecasting of extreme events in Indonesia is carried out by interpreting synoptic maps for several fields without taking into account the link between the observed events in the 'target' area with remote conditions. This situation may cause misidentification of the event leading to an inaccurate prediction. Grotjahn and Faure (2008) compute composite maps from extreme events (including heat waves and intense rainfall) to help forecasters identify such events in model output. The composite maps show large scale meteorological patterns (LSMP) that occurred during historical EWEs. Some vital information about the EWEs can be acquired from studying such maps, in addition to providing forecaster guidance. Such maps have robust mid-latitude meteorological patterns (for Sacramento and California Central Valley, USA EWEs). We study the performance of the composite approach for tropical weather condition such as Indonesia. Initially, the composite maps are developed to identify and forecast the extreme weather events in Indramayu district- West Java, the main producer of rice in Indonesia and contributes to about 60% of the national total rice production. Studying extreme weather events happening in Indramayu is important since EWEs there affect national agricultural and fisheries activities. During a recent EWE more than a thousand houses in Indramayu suffered from serious flooding with each home more than one meter underwater. The flood also destroyed a thousand hectares of rice plantings in 5 regencies. Identifying the dates of extreme events is one of the most important steps and has to be carried out carefully. An approach has been applied to identify the dates involving observations from multiple sites (rain gauges). The approach combines the POT (Peaks Over Threshold) with 'declustering' of the data to approximate independence based on the autocorrelation structure of each rainfall series. The cross correlation among sites is considered also to develop the event's criteria yielding a rational choice of the extreme dates given the 'spotty' nature of the intense convection. Based on the identified dates, we are developing a supporting tool for forecasting extreme rainfall based on the corresponding large-scale meteorological patterns (LSMPs). The LSMPs methodology focuses on the larger-scale patterns that the model are better able to forecast, as those larger-scale patterns create the conditions fostering the local EWE. Bootstrap resampling method is applied to highlight the key features that statistically significant with the extreme events. Grotjahn, R., and G. Faure. 2008: Composite Predictor Maps of Extraordinary Weather Events in the Sacramento California Region. Weather and Forecasting. 23: 313-335.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Do I have to aggregate extremely hazardous substances to determine the total quantity present? 355.14 Section 355.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO...
Microbial Diversity in Extreme Marine Habitats and Their Biomolecules
Poli, Annarita; Finore, Ilaria; Romano, Ida; Gioiello, Alessia; Lama, Licia; Nicolaus, Barbara
2017-01-01
Extreme marine environments have been the subject of many studies and scientific publications. For many years, these environmental niches, which are characterized by high or low temperatures, high-pressure, low pH, high salt concentrations and also two or more extreme parameters in combination, have been thought to be incompatible to any life forms. Thanks to new technologies such as metagenomics, it is now possible to detect life in most extreme environments. Starting from the discovery of deep sea hydrothermal vents up to the study of marine biodiversity, new microorganisms have been identified, and their potential uses in several applied fields have been outlined. Thermophile, halophile, alkalophile, psychrophile, piezophile and polyextremophile microorganisms have been isolated from these marine environments; they proliferate thanks to adaptation strategies involving diverse cellular metabolic mechanisms. Therefore, a vast number of new biomolecules such as enzymes, polymers and osmolytes from the inhabitant microbial community of the sea have been studied, and there is a growing interest in the potential returns of several industrial production processes concerning the pharmaceutical, medical, environmental and food fields. PMID:28509857
Multiple Waveband Temperature Sensor (MWTS)
NASA Technical Reports Server (NTRS)
Bandara, Sumith V.; Gunapala, Sarath; Wilson, Daniel; Stirbl, Robert; Blea, Anthony; Harding, Gilbert
2006-01-01
This slide presentation reviews the development of Multiple Waveband Temperature Sensor (MWTS). The MWTS project will result in a highly stable, monolithically integrated, high resolution infrared detector array sensor that records registered thermal imagery in four infrared wavebands to infer dynamic temperature profiles on a laser-irradiated ground target. An accurate surface temperature measurement of a target in extreme environments in a non-intrusive manner is required. The development challenge is to: determine optimum wavebands (suitable for target temperatures, nature of the targets and environments) to measure accurate target surface temperature independent of the emissivity, integrate simultaneously readable multiband Quantum Well Infrared Photodetectors (QWIPs) in a single monolithic focal plane array (FPA) sensor and to integrate the hardware/software and system calibration for remote temperature measurements. The charge was therefore to develop and demonstrate a multiband infrared imaging camera with the detectors simultaneously sensitive to multiple distinct color bands for front surface temperature measurements Wavelength ( m) measurements. Amongst the requirements are: that the measurement system will not affect target dynamics or response to the laser irradiation and that the simplest criterion for spectral band selection is to choose those practically feasible spectral bands that create the most contrast between the objects or scenes of interest in the expected environmental conditions. There is in the presentation a review of the modeling and simulation of multi-wave infrared temperature measurement and also a review of the detector development and QWIP capacities.
Vegetation engineers marsh morphology through multiple competing stable states
NASA Astrophysics Data System (ADS)
Marani, Marco; Da Lio, Cristina; D'Alpaos, Andrea
2013-02-01
Marshes display impressive biogeomorphic features, such as zonation, a mosaic of extensive vegetation patches of rather uniform composition, exhibiting sharp transitions in the presence of extremely small topographic gradients. Although generally associated with the accretion processes necessary for marshes to keep up with relative sea level rise, competing environmental constraints, and ecologic controls, zonation is still poorly understood in terms of the underlying biogeomorphic mechanisms. Here we find, through observations and modeling interpretation, that zonation is the result of coupled geomorphological-biological dynamics and that it stems from the ability of vegetation to actively engineer the landscape by tuning soil elevation within preferential ranges of optimal adaptation. We find multiple peaks in the frequency distribution of observed topographic elevation and identify them as the signature of biologic controls on geomorphodynamics through competing stable states modulated by the interplay of inorganic and organic deposition. Interestingly, the stable biogeomorphic equilibria correspond to suboptimal rates of biomass production, a result coherent with recent observations. The emerging biogeomorphic structures may display varying degrees of robustness to changes in the rate of sea level rise and sediment availability, with implications for the overall resilience of marsh ecosystems to climatic changes.
A systems-level approach for investigating organophosphorus pesticide toxicity.
Zhu, Jingbo; Wang, Jing; Ding, Yan; Liu, Baoyue; Xiao, Wei
2018-03-01
The full understanding of the single and joint toxicity of a variety of organophosphorus (OP) pesticides is still unavailable, because of the extreme complex mechanism of action. This study established a systems-level approach based on systems toxicology to investigate OP pesticide toxicity by incorporating ADME/T properties, protein prediction, and network and pathway analysis. The results showed that most OP pesticides are highly toxic according to the ADME/T parameters, and can interact with significant receptor proteins to cooperatively lead to various diseases by the established OP pesticide -protein and protein-disease networks. Furthermore, the studies that multiple OP pesticides potentially act on the same receptor proteins and/or the functionally diverse proteins explained that multiple OP pesticides could mutually enhance toxicological synergy or additive on a molecular/systematic level. To the end, the integrated pathways revealed the mechanism of toxicity of the interaction of OP pesticides and elucidated the pathogenesis induced by OP pesticides. This study demonstrates a systems-level approach for investigating OP pesticide toxicity that can be further applied to risk assessments of various toxins, which is of significant interest to food security and environmental protection. Copyright © 2017 Elsevier Inc. All rights reserved.
Vegetation engineers marsh morphology through multiple competing stable states
Marani, Marco; Da Lio, Cristina; D’Alpaos, Andrea
2013-01-01
Marshes display impressive biogeomorphic features, such as zonation, a mosaic of extensive vegetation patches of rather uniform composition, exhibiting sharp transitions in the presence of extremely small topographic gradients. Although generally associated with the accretion processes necessary for marshes to keep up with relative sea level rise, competing environmental constraints, and ecologic controls, zonation is still poorly understood in terms of the underlying biogeomorphic mechanisms. Here we find, through observations and modeling interpretation, that zonation is the result of coupled geomorphological–biological dynamics and that it stems from the ability of vegetation to actively engineer the landscape by tuning soil elevation within preferential ranges of optimal adaptation. We find multiple peaks in the frequency distribution of observed topographic elevation and identify them as the signature of biologic controls on geomorphodynamics through competing stable states modulated by the interplay of inorganic and organic deposition. Interestingly, the stable biogeomorphic equilibria correspond to suboptimal rates of biomass production, a result coherent with recent observations. The emerging biogeomorphic structures may display varying degrees of robustness to changes in the rate of sea level rise and sediment availability, with implications for the overall resilience of marsh ecosystems to climatic changes. PMID:23401529
Wiegel, Juergen
2012-01-01
Around the world, there are numerous alkaline, hypersaline environments that are heated either geothermally or through intense solar radiation. It was once thought that such harsh environments were inhospitable and incapable of supporting a variety of life. However, numerous culture-dependent and -independent studies revealed the presence of an extensive diversity of aerobic and anaerobic bacteria and archaea that survive and grow under these multiple harsh conditions. This diversity includes the halophilic alkalithermophiles, a novel group of polyextremophiles that require for growth and proliferation the multiple extremes of high salinity, alkaline pH, and elevated temperature. Life under these conditions undoubtedly involves the development of unique physiological characteristics, phenotypic properties, and adaptive mechanisms that enable control of membrane permeability, control of intracellular osmotic balance, and stability of the cell wall, intracellular proteins, and other cellular constituents. This minireview highlights the ecology and growth characteristics of the extremely halophilic alkalithermophiles that have been isolated thus far. Biochemical, metabolic, and physiological properties of the extremely halophilic alkalithermophiles are described, and their roles in resistance to the combined stressors of high salinity, alkaline pH, and high temperature are discussed. The isolation of halophilic alkalithermophiles broadens the physicochemical boundaries for life and extends the boundaries for the combinations of the maximum salinity, pH, and temperature that can support microbial growth. PMID:22492435
RELATIONSHIPS BETWEEN NEAR-BOTTOM DISSOLVED OXYGEN AND SEDIMENT PROFILE CAMERA MEASUREMENTS
The United States Environmental Protection Agency (U.S. EPA) and other environmental authorities regulate concentrations of dissolved oxygen (DO) as a measure of nutrient-related eutrophication in estuarine and coastal waters. However, in situ DO concentrations are extremely var...
Lightning and severe thunderstorms in event management.
Walsh, Katie M
2012-01-01
There are a few national position stands/guidelines that address environmental conditions in athletics, yet they do not govern all outdoor sports. Extreme heat and cold, lightning, and severe wind can all be fatal, yet the majority of outdoor sports have no published guidelines addressing these conditions in relation to activity. Available research on extreme heat and cold conditions in athletics provides prevention strategies, to include acclimatization. Lightning and severe wind are two environmental conditions to which humans cannot accommodate, and they both can be deadly. There are strong positions on extreme heat/cold and lightning safety in athletics, but none affiliated with severe winds. Medical personnel involved in planning large outdoor sporting events must know of the presence of nationally published weather-related documents and apply them to their event. In addition, research needs to be expanded in the realm of establishing guidelines for safety to participants and spectators in severe wind conditions.
Compact genome of the Antarctic midge is likely an adaptation to an extreme environment.
Kelley, Joanna L; Peyton, Justin T; Fiston-Lavier, Anna-Sophie; Teets, Nicholas M; Yee, Muh-Ching; Johnston, J Spencer; Bustamante, Carlos D; Lee, Richard E; Denlinger, David L
2014-08-12
The midge, Belgica antarctica, is the only insect endemic to Antarctica, and thus it offers a powerful model for probing responses to extreme temperatures, freeze tolerance, dehydration, osmotic stress, ultraviolet radiation and other forms of environmental stress. Here we present the first genome assembly of an extremophile, the first dipteran in the family Chironomidae, and the first Antarctic eukaryote to be sequenced. At 99 megabases, B. antarctica has the smallest insect genome sequenced thus far. Although it has a similar number of genes as other Diptera, the midge genome has very low repeat density and a reduction in intron length. Environmental extremes appear to constrain genome architecture, not gene content. The few transposable elements present are mainly ancient, inactive retroelements. An abundance of genes associated with development, regulation of metabolism and responses to external stimuli may reflect adaptations for surviving in this harsh environment.
Compact genome of the Antarctic midge is likely an adaptation to an extreme environment
Kelley, Joanna L.; Peyton, Justin T.; Fiston-Lavier, Anna-Sophie; Teets, Nicholas M.; Yee, Muh-Ching; Johnston, J. Spencer; Bustamante, Carlos D.; Lee, Richard E.; Denlinger, David L.
2014-01-01
The midge, Belgica antarctica, is the only insect endemic to Antarctica, and thus it offers a powerful model for probing responses to extreme temperatures, freeze tolerance, dehydration, osmotic stress, ultraviolet radiation and other forms of environmental stress. Here we present the first genome assembly of an extremophile, the first dipteran in the family Chironomidae, and the first Antarctic eukaryote to be sequenced. At 99 megabases, B. antarctica has the smallest insect genome sequenced thus far. Although it has a similar number of genes as other Diptera, the midge genome has very low repeat density and a reduction in intron length. Environmental extremes appear to constrain genome architecture, not gene content. The few transposable elements present are mainly ancient, inactive retroelements. An abundance of genes associated with development, regulation of metabolism and responses to external stimuli may reflect adaptations for surviving in this harsh environment. PMID:25118180
NASA Astrophysics Data System (ADS)
Chetty, S.; Field, L. A.
2014-12-01
SWIMS III, is a low cost, autonomous sensor data gathering platform developed specifically for extreme/harsh cold environments. Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally inert materials that when deployed will increase the albedo, enabling the formation and/preservation of multi-year ice. SWIMS III's sophisticated autonomous sensors are designed to measure the albedo, weather, water temperature and other environmental parameters. This platform uses low cost, high accuracy/precision sensors, extreme environment command and data handling computer system using satellite and terrestrial wireless solution. The system also incorporates tilt sensors and sonar based ice thickness sensors. The system is light weight and can be deployed by hand by a single person. This presentation covers the technical, and design challenges in developing and deploying these platforms.
Multiaxial and thermomechanical fatigue considerations in damage tolerant design
NASA Technical Reports Server (NTRS)
Leese, G. E.; Bill, R. C.
1985-01-01
In considering damage tolerant design concepts for gas turbine hot section components, several challenging concerns arise: Complex multiaxial loading situations are encountered; Thermomechanical fatigue loading involving very wide temperature ranges is imposed on components; Some hot section materials are extremely anisotropic; and coatings and environmental interactions play an important role in crack propagation. The effects of multiaxiality and thermomechanical fatigue are considered from the standpoint of their impact on damage tolerant design concepts. Recently obtained research results as well as results from the open literature are examined and their implications for damage tolerant design are discussed. Three important needs required to advance analytical capabilities in support of damage tolerant design become readily apparent: (1) a theoretical basis to account for the effect of nonproportional loading (mechanical and mechanical/thermal); (2) the development of practical crack growth parameters that are applicable to thermomechanical fatigue situations; and (3) the development of crack growth models that address multiple crack failures.
Structure and functioning of dryland ecosystems in a changing world.
Maestre, Fernando T; Eldridge, David J; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel
2016-11-01
Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change.
Control Design for a Generic Commercial Aircraft Engine
NASA Technical Reports Server (NTRS)
Csank, Jeffrey; May, Ryan D.
2010-01-01
This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements
Structure and functioning of dryland ecosystems in a changing world
Maestre, Fernando T.; Eldridge, David J.; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel
2017-01-01
Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change. PMID:28239303
NASA Astrophysics Data System (ADS)
Wu, Yanling
2018-05-01
In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.
Webster, Peter J.; Jian, Jun
2011-01-01
The uncertainty associated with predicting extreme weather events has serious implications for the developing world, owing to the greater societal vulnerability to such events. Continual exposure to unanticipated extreme events is a contributing factor for the descent into perpetual and structural rural poverty. We provide two examples of how probabilistic environmental prediction of extreme weather events can support dynamic adaptation. In the current climate era, we describe how short-term flood forecasts have been developed and implemented in Bangladesh. Forecasts of impending floods with horizons of 10 days are used to change agricultural practices and planning, store food and household items and evacuate those in peril. For the first time in Bangladesh, floods were anticipated in 2007 and 2008, with broad actions taking place in advance of the floods, grossing agricultural and household savings measured in units of annual income. We argue that probabilistic environmental forecasts disseminated to an informed user community can reduce poverty caused by exposure to unanticipated extreme events. Second, it is also realized that not all decisions in the future can be made at the village level and that grand plans for water resource management require extensive planning and funding. Based on imperfect models and scenarios of economic and population growth, we further suggest that flood frequency and intensity will increase in the Ganges, Brahmaputra and Yangtze catchments as greenhouse-gas concentrations increase. However, irrespective of the climate-change scenario chosen, the availability of fresh water in the latter half of the twenty-first century seems to be dominated by population increases that far outweigh climate-change effects. Paradoxically, fresh water availability may become more critical if there is no climate change. PMID:22042897
Extreme Events and Disaster Risk Reduction - a Future Earth KAN initiative
NASA Astrophysics Data System (ADS)
Frank, Dorothea; Reichstein, Markus
2017-04-01
The topic of Extreme Events in the context of global environmental change is both a scientifically challenging and exciting topic, and of very high societal relevance. The Future Earth Cluster initiative E3S organized in 2016 a cross-community/co-design workshop on Extreme Events and Environments from Climate to Society (http://www.e3s-future-earth.eu/index.php/ConferencesEvents/ConferencesAmpEvents). Based on the results, co-design research strategies and established network of the workshop, and previous activities, E3S is thriving to establish the basis for a longer-term research effort under the umbrella of Future Earth. These led to an initiative for a Future Earth Knowledge Action Network on Extreme Events and Disaster Risk Reduction. Example initial key question in this context include: What are meaningful indices to describe and quantify impact-relevant (e.g. climate) extremes? Which system properties yield resistance and resilience to extreme conditions? What are the key interactions between global urbanization processes, extreme events, and social and infrastructure vulnerability and resilience? The long-term goal of this KAN is to contribute to enhancing the resistance, resilience, and adaptive capacity of socio-ecological systems across spatial, temporal and institutional scales, in particular in the light of hazards affected by ongoing environmental change (e.g. climate change, global urbanization and land use/land cover change). This can be achieved by enhanced understanding, prediction, improved and open data and knowledge bases for detection and early warning decision making, and by new insights on natural and societal conditions and governance for resilience and adaptive capacity.
2014-01-01
Background Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. Results In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. Conclusions In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist. PMID:24447386
Kesäniemi, Jenni E; Mustonen, Marina; Boström, Christoffer; Hansen, Benni W; Knott, K Emily
2014-01-22
Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist.
ENVIRONMENTAL QUALITY AND LANDSCAPE-RISK ASSESSMENT IN THE YANTRA RIVER BASIN
Landscape characteristics exert their impact on the processes occurring in river basins in many directions and may influence in a different way the environmental security and some related constraints like extreme natural events. The complex nature of landscape structure and dynam...
42 CFR 84.307 - Environmental treatments.
Code of Federal Regulations, 2013 CFR
2013-10-01
... environmental treatments simulating extreme storage temperatures, shock, and vibration. (b) The units will be...) The units will be subjected to vibration according to the following procedure: (1) The unit will be...; and (3) The vibration frequency regimen applied to each axis will be cyclical, repeating the sequence...
42 CFR 84.307 - Environmental treatments.
Code of Federal Regulations, 2012 CFR
2012-10-01
... environmental treatments simulating extreme storage temperatures, shock, and vibration. (b) The units will be...) The units will be subjected to vibration according to the following procedure: (1) The unit will be...; and (3) The vibration frequency regimen applied to each axis will be cyclical, repeating the sequence...
42 CFR 84.307 - Environmental treatments.
Code of Federal Regulations, 2014 CFR
2014-10-01
... environmental treatments simulating extreme storage temperatures, shock, and vibration. (b) The units will be...) The units will be subjected to vibration according to the following procedure: (1) The unit will be...; and (3) The vibration frequency regimen applied to each axis will be cyclical, repeating the sequence...
Critical parts are stored and shipped in environmentally controlled reusable container
NASA Technical Reports Server (NTRS)
Kummerfeld, K. R.
1966-01-01
Environmentally controlled, hermetically sealed, reusable metal cabinet with storage drawers is used to ship and store sensitive electronic, pneumatic, or hydraulic parts or medical supplies under extreme weather or handling conditions. This container is compatible with on-site and transportation handling facilities.
Hecht, Alan D; Ferster, Aaron; Summers, Kevin
2017-10-16
When the U.S. Environmental Protection Agency (EPA) was established nearly 50 years ago, the nation faced serious threats to its air, land, and water, which in turn impacted human health. These threats were effectively addressed by the creation of EPA (in 1970) and many subsequent landmark environmental legislations which in turn significantly reduced threats to the Nation's environment and public health. A key element of historic legislation is research aimed at dealing with current and future problems. Today we face national and global challenges that go beyond classic media-specific (air, land, water) environmental legislation and require an integrated paradigm of action and engagement based on (1) innovation based on science and technology, (2) stakeholder engagement and collaboration, and (3) public education and support. This three-pronged approach recognizes that current environmental problems, include social as well as physical and environmental factors, are best addressed through collaborative problem solving, the application of innovation in science and technology, and multiple stakeholder engagement. To achieve that goal, EPA's Office of Research and Development (ORD) is working directly with states and local communities to develop and apply a suite of accessible decision support tools (DST) that aim to improve environmental conditions, protect human health, enhance economic opportunity, and advance a resilient and sustainability society. This paper showcases joint EPA and state actions to develop tools and approaches that not only meet current environmental and public health challenges, but do so in a way that advances sustainable, healthy, and resilient communities well into the future. EPA's future plans should build on current work but aim to effectively respond to growing external pressures. Growing pressures from megatrends are a major challenge for the new Administration and for cities and states across the country. The recent hurricanes hitting Texas and the Gulf Coast, part of the increase in extreme weather events, make it clear that building resilient infrastructure is a crucial step to sustainability.
Schwager, Monika; Johst, Karin; Jeltsch, Florian
2006-06-01
Recent theoretical studies have shown contrasting effects of temporal correlation of environmental fluctuations (red noise) on the risk of population extinction. It is still debated whether and under which conditions red noise increases or decreases extinction risk compared with uncorrelated (white) noise. Here, we explain the opposing effects by introducing two features of red noise time series. On the one hand, positive autocorrelation increases the probability of series of poor environmental conditions, implying increasing extinction risk. On the other hand, for a given time period, the probability of at least one extremely bad year ("catastrophe") is reduced compared with white noise, implying decreasing extinction risk. Which of these two features determines extinction risk depends on the strength of environmental fluctuations and the sensitivity of population dynamics to these fluctuations. If extreme (catastrophic) events can occur (strong noise) or sensitivity is high (overcompensatory density dependence), then temporal correlation decreases extinction risk; otherwise, it increases it. Thus, our results provide a simple explanation for the contrasting previous findings and are a crucial step toward a general understanding of the effect of noise color on extinction risk.
Boghossian, Nansi S.; McDonald, Scott A.; Bell, Edward F.; Carlo, Waldemar A.; Brumbaugh, Jane E.; Stoll, Barbara J.; Laptook, Abbot R.; Shankaran, Seetha; Walsh, Michele C.; Das, Abhik; Higgins, Rosemary D.
2017-01-01
Importance Little is known about the benefits of antenatal corticosteroids on extremely preterm multiples. Objective To examine in extremely preterm multiples if use of antenatal corticosteroids is associated with improvement in major outcomes. Design, Setting, and Participants Infants with gestational age 22–28 weeks born at an NICHD Neonatal Research Network center (1998–2013) were studied. Generalized estimating equation models were used to generate adjusted relative risks (aRR) controlling for important maternal and neonatal variables. Main Outcome Measures In-hospital mortality, the composite outcome of neurodevelopmental impairment at 18–22 months’ corrected age or death before assessment. Results Of 6925 multiple-birth infants, 6094 (88%) were born to women who received antenatal corticosteroids. In-hospital mortality was lower among infants with exposure to antenatal corticosteroids vs no exposure (aRR=0.87, 95% CI 0.78–0.96). Neurodevelopmental impairment or death was not significantly lower among those exposed to antenatal corticosteroids vs no exposure (aRR=0.93, 95% CI 0.84–1.03). Other adverse outcomes that occurred less frequently among infants of women receiving antenatal corticosteroids included severe intraventricular hemorrhage (aRR=0.68, 95% CI 0.58–0.78) and the combined outcomes of necrotizing enterocolitis or death and severe intraventricular hemorrhage or death. Subgroup analyses indicated that exposure to antenatal corticosteroids was associated with a lower risk of mortality and the composite of neurodevelopmental impairment or mortality among non-small for gestational age multiples (aRR=0.82, 95% CI 0.74–0.92 and aRR=0.89, 95% CI 0.80–0.98, respectively) and a higher risk among small for gestational age multiples (aRR=1.40, 95% CI 1.02–1.93 and aRR=1.62, 95% CI 1.22–2.16, respectively). Antenatal corticosteroids were associated with higher neurodevelopmental impairment or mortality among multiple-birth infants of mothers with diabetes (aRR=1.55, 95% CI 1.00–2.38) but not among infants of mothers without diabetes (aRR=0.91, 95% CI 0.83–1.01). Conclusion In extremely preterm multiples, exposure to antenatal corticosteroids compared with no exposure was associated with a lower risk of mortality with no significant differences for the composite of neurodevelopmental impairment or death. Future research should investigate the increased risks of mortality and the composite of neurodevelopmental impairment or death associated with exposure to corticosteroids among small for gestational age multiples. PMID:27088897
Intraspecific variation shapes community-level behavioral responses to urbanization in spiders.
Dahirel, Maxime; Dierick, Jasper; De Cock, Maarten; Bonte, Dries
2017-09-01
Urban areas are an extreme example of human-changed environments, exposing organisms to multiple and strong selection pressures. Adaptive behavioral responses are thought to play a major role in animals' success or failure in such new environments. Approaches based on functional traits have proven especially valuable to understand how species communities respond to environmental gradients. Until recently, they have, however, often ignored the potential consequences of intraspecific trait variation (ITV). When ITV is prevalent, it may highly impact ecological processes and resilience against stressors. This may be especially relevant in animals, in which behavioral traits can be altered very flexibly at the individual level to track environmental changes. We investigated how species turnover and ITV influenced community-level behavioral responses in a set of 62 sites of varying levels of urbanization, using orb web spiders and their webs as models of foraging behavior. ITV alone explained around one-third of the total trait variation observed among communities. Spider web structure changed according to urbanization, in ways that increase the capture efficiency of webs in a context of smaller urban prey. These trait shifts were partly mediated by species turnover, but ITV increased their magnitude, potentially helping to buffer the effects of environmental changes on communities. The importance of ITV varied depending on traits and on the spatial scale at which urbanization was considered. Despite being neglected from community-level analyses in animals, our results highlight the importance of accounting for intraspecific trait variation to fully understand trait responses to (human-induced) environmental changes and their impact on ecosystem functioning. © 2017 by the Ecological Society of America.
Land Systems Impacts of Hydropower Development
NASA Astrophysics Data System (ADS)
Wu, G. C.; Torn, M. S.
2016-12-01
Hydropower is often seen as the low-cost, low-carbon, and high-return technology for meeting rising electricity demand and fueling economic growth. Despite the magnitude and pace of hydropower expansion in many developing countries, the potential land use and land cover change (LULCC), particularly indirect LULCC, resulting from hydropower development is poorly understood. Hydropower-driven LULCC can have multiple impacts ranging from global and local climate modification (e.g., increased extreme precipitation events or increased greenhouse gas emissions), ecosystem degradation and fragmentation, to feedbacks on hydropower generation (e.g., increased sedimentation of the reservoir). As a result, a better understanding of both direct and indirect LULCC impacts can inform a more integrated and low-impact model for energy planning in countries with transitioning or growing energy portfolios. This study uses multi-scale remote sensing imagery (Landsat, MODIS, fine-resolution commercial imagery) to estimate LULCC from past hydropower projects intended primarily for electricity generation in 12 countries in Africa, South and Central America, South Asia, and Southeast Asia. It is important to examine multiple locations to determine how socio-political and environmental context determines the magnitude of LULCC. Previous studies have called for the need to scale-up local case studies to examine "cumulative impacts" of multiple development activities within a watershed. We use a pre-test/post-test quasi-experimental design using a time series of classified images and vegetation indices before and after hydropower plant construction as the response variable in an interrupted time series regression analysis. This statistical technique measures the "treatment" effect of hydropower development on indirect LULCC. Preliminary results show land use change and landscape fragmentation following hydropower development, primarily agricultural and urban in nature. These results suggest that indirect land use change should be considered in the energy planning process and design of environmental impact assessments. The large-scale land system impact assessment method used in this study can be extended to examine other intensive development projects such as road construction and mining.
ERIC Educational Resources Information Center
Haverkort-Yeh, Roxanne Dominique; Tamaru, Clyde S.; Gorospe, Kelvin Dalauta; Rivera, Malia Ana J.
2013-01-01
As a result of shifting marine environmental conditions caused by global climate change and localized water pollution, marine organisms are becoming increasingly exposed to changing water quality conditions. For example, they are exposed to more extreme salinity fluctuations as a result of heavier rainfall, melting polar caps, or extreme droughts.…
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 28 2011-07-01 2011-07-01 false How do I calculate the quantity of an extremely hazardous substance present in mixtures? 355.13 Section 355.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS...
Extreme habitats as refuge from parasite infections? Evidence from an extremophile fish
NASA Astrophysics Data System (ADS)
Tobler, Michael; Schlupp, Ingo; García de León, Francisco J.; Glaubrecht, Matthias; Plath, Martin
2007-05-01
Living in extreme habitats typically requires costly adaptations of any organism tolerating these conditions, but very little is known about potential benefits that trade off these costs. We suggest that extreme habitats may function as refuge from parasite infections, since parasites can become locally extinct either directly, through selection by an extreme environmental parameter on free-living parasite stages, or indirectly, through selection on other host species involved in its life cycle. We tested this hypothesis in a small freshwater fish, the Atlantic molly ( Poecilia mexicana) that inhabits normal freshwaters as well as extreme habitats containing high concentrations of toxic hydrogen sulfide. Populations from such extreme habitats are significantly less parasitized by the trematode Uvulifer sp. than a population from a non-sulfidic habitat. We suggest that reduced parasite prevalence may be a benefit of living in sulfidic habitats.
Integrating plant ecological responses to climate extremes from individual to ecosystem levels.
Felton, Andrew J; Smith, Melinda D
2017-06-19
Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
Takacs, Judit; Leiter, Jeff R S; Peeler, Jason D
2011-06-01
Lower extremity fractures, if not treated appropriately, can increase the risk of morbidity. Partial weight-bearing after surgical repair is recommended; however, current methods of partial weight-bearing may cause excessive loads through the lower extremity. A new rehabilitation tool that uses lower body positive-pressure is described, that may allow partial weight-bearing while preventing excessive loads, thereby improving functional outcomes. A patient with multiple lower extremity fractures underwent a 6-month rehabilitation programme using bodyweight support technology 3 times per week, post-surgery. The patient experienced a reduction in pain and an improvement in ankle range of motion (p=0.002), walking speed (p>0.05) and physical function (p=0.004), as assessed by the Foot and Ankle Module of the American Academy of Orthopaedic Surgeons Lower Limb Outcomes Assessment Instrument. Training did not appear to affect fracture healing, as was evident on radiograph. The effect of lower body positive-pressure on effusion, which has not previously been reported in the literature, was also investigated. No significant difference in effusion of the foot and ankle when using lower body positive-pressure was found. Initial results suggest that this new technology may be a useful rehabilitation tool that allows partial weight-bearing during the treatment of lower extremity injuries.
Predicting Flood Hazards in Systems with Multiple Flooding Mechanisms
NASA Astrophysics Data System (ADS)
Luke, A.; Schubert, J.; Cheng, L.; AghaKouchak, A.; Sanders, B. F.
2014-12-01
Delineating flood zones in systems that are susceptible to flooding from a single mechanism (riverine flooding) is a relatively well defined procedure with specific guidance from agencies such as FEMA and USACE. However, there is little guidance in delineating flood zones in systems that are susceptible to flooding from multiple mechanisms such as storm surge, waves, tidal influence, and riverine flooding. In this study, a new flood mapping method which accounts for multiple extremes occurring simultaneously is developed and exemplified. The study site in which the method is employed is the Tijuana River Estuary (TRE) located in Southern California adjacent to the U.S./Mexico border. TRE is an intertidal coastal estuary that receives freshwater flows from the Tijuana River. Extreme discharge from the Tijuana River is the primary driver of flooding within TRE, however tide level and storm surge also play a significant role in flooding extent and depth. A comparison between measured flows at the Tijuana River and ocean levels revealed a correlation between extreme discharge and ocean height. Using a novel statistical method based upon extreme value theory, ocean heights were predicted conditioned up extreme discharge occurring within the Tijuana River. This statistical technique could also be applied to other systems in which different factors are identified as the primary drivers of flooding, such as significant wave height conditioned upon tide level, for example. Using the predicted ocean levels conditioned upon varying return levels of discharge as forcing parameters for the 2D hydraulic model BreZo, the 100, 50, 20, and 10 year floodplains were delineated. The results will then be compared to floodplains delineated using the standard methods recommended by FEMA for riverine zones with a downstream ocean boundary.
Changes in Extreme Events and the Potential Impacts on National Security
NASA Astrophysics Data System (ADS)
Bell, J.
2017-12-01
Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socio-economic impacts. Climate change has caused changes in extreme event frequency, intensity and geographic distribution, and will continue to be a driver for changes in the future. Some of the extreme events that have already changed are heat waves, droughts, wildfires, flooding rains, coastal flooding, storm surge, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local intricacies of societal and environmental factors that influences the level of exposure. The goal of this presentation is to discuss the national security implications of changes in extreme weather events and demonstrate how changes in extremes can lead to a host cascading issues. To illustrate this point, this presentation will provide examples of the various pathways that extreme events can increase disease burden and cause economic stress.
NASA Astrophysics Data System (ADS)
Huang, Wen-Cheng
2014-05-01
Global climate change results in extreme weather, especially ex-treme precipitation in Taiwan. Though the total amount of precipi-tation remains unchanged, the frequency of rainfall return period increases which affects slopeland and causes sediment disaster. In Taiwan, slopeland occupies about 73% of national territory. Under harsh environmental stress, soil and water conservation of slope-land becomes more important. In response to the trends of global-ization impacts of climate change, long term strategic planning be-comes more necessary. This study reviewed international practices and decision making process about soil and water conservation of slopeland; and conducted the compilation and analysis of water and soil conservation related research projects in Taiwan within the past five years. It is necessary for Taiwan to design timely adaptive strategies about conducting the all-inclusive conservation of na-tional territory, management and business operation of watershed based on the existing regulation with the effects of extreme weather induced by climate change and the changes of social-economic en-vironments. In order to realize the policy vision of "Under the premise of multiple uses, operating the sustainable business and management of the water and soil resources in the watershed through territorial planning in response to the climate and so-cial-economic environment change". This study concluded the future tasks for soil and water con-servation: 1.Design and timely amend strategies for soil and wand water conservation in response to extreme weather. 2. Strengthen the planning and operating of the land management and integrated conservation of the water and soil resources of key watershed. 3. Manage and operate the prevention of debris flow disaster and large-scale landslide. 4. Formulate polices, related regulations and assessment indicators of soil and water conservation. 5. Maintain the biodiversity of the slopeland and reduce the ecological footprint. 6. Conduct soil and water conservation research according to the importance and urgency of policies. 7. Implement the international cooperation, technology communication, talent cultivation, and integrated education and promotion.
Jenerette, G Darrel; Harlan, Sharon L; Stefanov, William L; Martin, Chris A
2011-10-01
Urban ecosystems are subjected to high temperatures--extreme heat events, chronically hot weather, or both-through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better understand patterns of urban vegetated cooling, the potential water requirements to supply these services, and differential access to these services between residential neighborhoods, we evaluated three decades (1970-2000) of land surface characteristics and residential segregation by income in the Phoenix, Arizona, USA metropolitan region. We developed an ecosystem service trade-offs approach to assess the urban heat riskscape, defined as the spatial variation in risk exposure and potential human vulnerability to extreme heat. In this region, vegetation provided nearly a 25 degrees C surface cooling compared to bare soil on low-humidity summer days; the magnitude of this service was strongly coupled to air temperature and vapor pressure deficits. To estimate the water loss associated with land-surface cooling, we applied a surface energy balance model. Our initial estimates suggest 2.7 mm/d of water may be used in supplying cooling ecosystem services in the Phoenix region on a summer day. The availability and corresponding resource use requirements of these ecosystem services had a strongly positive relationship with neighborhood income in the year 2000. However, economic stratification in access to services is a recent development: no vegetation-income relationship was observed in 1970, and a clear trend of increasing correlation was evident through 2000. To alleviate neighborhood inequality in risks from extreme heat through increased vegetation and evaporative cooling, large increases in regional water use would be required. Together, these results suggest the need for a systems evaluation of the benefits, costs, spatial structure, and temporal trajectory for the use of ecosystem services to moderate climate extremes. Increasing vegetation is one strategy for moderating regional climate changes in urban areas and simultaneously providing multiple ecosystem services. However, vegetation has economic, water, and social equity implications that vary dramatically across neighborhoods and need to be managed through informed environmental policies.
NASA Astrophysics Data System (ADS)
Tryby, M.; Fries, J. S.; Baranowski, C.
2014-12-01
Extreme precipitation events can cause significant impacts to drinking water and wastewater utilities, including facility damage, water quality impacts, service interruptions and potential risks to human health and the environment due to localized flooding and combined sewer overflows (CSOs). These impacts will become more pronounced with the projected increases in frequency and intensity of extreme precipitation events due to climate change. To model the impacts of extreme precipitation events, wastewater utilities often develop Intensity, Duration, and Frequency (IDF) rainfall curves and "design storms" for use in the U.S. Environmental Protection Agency's (EPA) Storm Water Management Model (SWMM). Wastewater utilities use SWMM for planning, analysis, and facility design related to stormwater runoff, combined and sanitary sewers, and other drainage systems in urban and non-urban areas. SWMM tracks (1) the quantity and quality of runoff made within each sub-catchment; and (2) the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period made up of multiple time steps. In its current format, EPA SWMM does not consider climate change projection data. Climate change may affect the relationship between intensity, duration, and frequency described by past rainfall events. Therefore, EPA is integrating climate projection data available in the Climate Resilience Evaluation and Awareness Tool (CREAT) into SWMM. CREAT is a climate risk assessment tool for utilities that provides downscaled climate change projection data for changes in the amount of rainfall in a 24-hour period for various extreme precipitation events (e.g., from 5-year to 100-year storm events). Incorporating climate change projections into SWMM will provide wastewater utilities with more comprehensive data they can use in planning for future storm events, thereby reducing the impacts to the utility and customers served from flooding and stormwater issues.
The Generation of a Stochastic Flood Event Catalogue for Continental USA
NASA Astrophysics Data System (ADS)
Quinn, N.; Wing, O.; Smith, A.; Sampson, C. C.; Neal, J. C.; Bates, P. D.
2017-12-01
Recent advances in the acquisition of spatiotemporal environmental data and improvements in computational capabilities has enabled the generation of large scale, even global, flood hazard layers which serve as a critical decision-making tool for a range of end users. However, these datasets are designed to indicate only the probability and depth of inundation at a given location and are unable to describe the likelihood of concurrent flooding across multiple sites.Recent research has highlighted that although the estimation of large, widespread flood events is of great value to flood mitigation and insurance industries, to date it has been difficult to deal with this spatial dependence structure in flood risk over relatively large scales. Many existing approaches have been restricted to empirical estimates of risk based on historic events, limiting their capability of assessing risk over the full range of plausible scenarios. Therefore, this research utilises a recently developed model-based approach to describe the multisite joint distribution of extreme river flows across continental USA river gauges. Given an extreme event at a site, the model characterises the likelihood neighbouring sites are also impacted. This information is used to simulate an ensemble of plausible synthetic extreme event footprints from which flood depths are extracted from an existing global flood hazard catalogue. Expected economic losses are then estimated by overlaying flood depths with national datasets defining asset locations, characteristics and depth damage functions. The ability of this approach to quantify probabilistic economic risk and rare threshold exceeding events is expected to be of value to those interested in the flood mitigation and insurance sectors.This work describes the methodological steps taken to create the flood loss catalogue over a national scale; highlights the uncertainty in the expected annual economic vulnerability within the USA from extreme river flows; and presents future developments to the modelling approach.
Environmental Conditions for Space Flight Hardware: A Survey
NASA Technical Reports Server (NTRS)
Plante, Jeannette; Lee, Brandon
2005-01-01
Interest in generalization of the physical environment experienced by NASA hardware from the natural Earth environment (on the launch pad), man-made environment on Earth (storage acceptance an d qualification testing), the launch environment, and the space environment, is ed to find commonality among our hardware in an effort to reduce cost and complexity. NASA is entering a period of increase in its number of planetary missions and it is important to understand how our qualification requirements will evolve with and track these new environments. Environmental conditions are described for NASA projects in several ways for the different periods of the mission life cycle. At the beginning, the mission manager defines survivability requirements based on the mission length, orbit, launch date, launch vehicle, and other factors . such as the use of reactor engines. Margins are then applied to these values (temperature extremes, vibration extremes, radiation tolerances, etc,) and a new set of conditions is generalized for design requirements. Mission assurance documents will then assign an additional margin for reliability, and a third set of values is provided for during testing. A fourth set of environmental condition values may evolve intermittently from heritage hardware that has been tested to a level beyond the actual mission requirement. These various sets of environment figures can make it quite confusing and difficult to capture common hardware environmental requirements. Environmental requirement information can be found in a wide variety of places. The most obvious is with the individual projects. We can easily get answers to questions about temperature extremes being used and radiation tolerance goals, but it is more difficult to map the answers to the process that created these requirements: for design, for qualification, and for actual environment with no margin applied. Not everyone assigned to a NASA project may have that kind of insight, as many have only the environmental requirement numbers needed to do their jobs but do not necessarily have a programmatic-level understanding of how all of the environmental requirements fit together.
Recent advances in environmental data mining
NASA Astrophysics Data System (ADS)
Leuenberger, Michael; Kanevski, Mikhail
2016-04-01
Due to the large amount and complexity of data available nowadays in geo- and environmental sciences, we face the need to develop and incorporate more robust and efficient methods for their analysis, modelling and visualization. An important part of these developments deals with an elaboration and application of a contemporary and coherent methodology following the process from data collection to the justification and communication of the results. Recent fundamental progress in machine learning (ML) can considerably contribute to the development of the emerging field - environmental data science. The present research highlights and investigates the different issues that can occur when dealing with environmental data mining using cutting-edge machine learning algorithms. In particular, the main attention is paid to the description of the self-consistent methodology and two efficient algorithms - Random Forest (RF, Breiman, 2001) and Extreme Learning Machines (ELM, Huang et al., 2006), which recently gained a great popularity. Despite the fact that they are based on two different concepts, i.e. decision trees vs artificial neural networks, they both propose promising results for complex, high dimensional and non-linear data modelling. In addition, the study discusses several important issues of data driven modelling, including feature selection and uncertainties. The approach considered is accompanied by simulated and real data case studies from renewable resources assessment and natural hazards tasks. In conclusion, the current challenges and future developments in statistical environmental data learning are discussed. References - Breiman, L., 2001. Random Forests. Machine Learning 45 (1), 5-32. - Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2006. Extreme learning machine: theory and applications. Neurocomputing 70 (1-3), 489-501. - Kanevski, M., Pozdnoukhov, A., Timonin, V., 2009. Machine Learning for Spatial Environmental Data. EPFL Press; Lausanne, Switzerland, p.392. - Leuenberger, M., Kanevski, M., 2015. Extreme Learning Machines for spatial environmental data. Computers and Geosciences 85, 64-73.
Catabolite and Oxygen Regulation of Enterohemorrhagic Escherichia coli Virulence.
Carlson-Banning, Kimberly M; Sperandio, Vanessa
2016-11-22
The biogeography of the gut is diverse in its longitudinal axis, as well as within specific microenvironments. Differential oxygenation and nutrient composition drive the membership of microbial communities in these habitats. Moreover, enteric pathogens can orchestrate further modifications to gain a competitive advantage toward host colonization. These pathogens are versatile and adept when exploiting the human colon. They expertly navigate complex environmental cues and interkingdom signaling to colonize and infect their hosts. Here we demonstrate how enterohemorrhagic Escherichia coli (EHEC) uses three sugar-sensing transcription factors, Cra, KdpE, and FusR, to exquisitely regulate the expression of virulence factors associated with its type III secretion system (T3SS) when exposed to various oxygen concentrations. We also explored the effect of mucin-derived nonpreferred carbon sources on EHEC growth and expression of virulence genes. Taken together, the results show that EHEC represses the expression of its T3SS when oxygen is absent, mimicking the largely anaerobic lumen, and activates its T3SS when oxygen is available through Cra. In addition, when EHEC senses mucin-derived sugars heavily present in the O-linked and N-linked glycans of the large intestine, virulence gene expression is initiated. Sugars derived from pectin, a complex plant polysaccharide digested in the large intestine, also increased virulence gene expression. Not only does EHEC sense host- and microbiota-derived interkingdom signals, it also uses oxygen availability and mucin-derived sugars liberated by the microbiota to stimulate expression of the T3SS. This precision in gene regulation allows EHEC to be an efficient pathogen with an extremely low infectious dose. Enteric pathogens have to be crafty when interpreting multiple environmental cues to successfully establish themselves within complex and diverse gut microenvironments. Differences in oxygen tension and nutrient composition determine the biogeography of the gut microbiota and provide unique niches that can be exploited by enteric pathogens. EHEC is an enteric pathogen that colonizes the colon and causes outbreaks of bloody diarrhea and hemolytic-uremic syndrome worldwide. It has a very low infectious dose, which requires it to be an extremely effective pathogen. Hence, here we show that EHEC senses multiple sugar sources and oxygen levels to optimally control the expression of its virulence repertoire. This exquisite regulatory control equips EHEC to sense different intestinal compartments to colonize the host. Copyright © 2016 Carlson-Banning and Sperandio.
NASA Technical Reports Server (NTRS)
Cowan, W.
1974-01-01
Outer planetary probe designs consider mission characteristics, structural configuration, delivery mode, scientific payload, environmental extremes, mass properties, and the launch vehicle and spacecraft interface.
Bhavanandan, V P; Gupta, D; Woitach, J; Guo, X; Jiang, W
1999-06-01
Secreted epithelial mucins are large macromolecules which exhibit extreme polydispersity, the molecular basis of which is not fully understood. We have obtained partial sequences of two genes (BSM1 and BSM2) coding for two distinct molecules. This is the first time that such closely-related genes have been identified for any mucin from an animal. We propose that a combination of multiple homologous genes, alternative splicing, differential glycosylation, and additional post-translational processing all contribute to the extreme polydispersity of mucins. The multiple domain structure and non-identical tandem repeats are also very important for the generation of the saccharide diversities of mucins.
Pulmonary function and dysfunction in multiple sclerosis.
Smeltzer, S C; Utell, M J; Rudick, R A; Herndon, R M
1988-11-01
Pulmonary function was studied in 25 patients with clinically definite multiple sclerosis with a range of motor impairment. Forced vital capacity (FVC), maximal voluntary ventilation (MVV), and maximal expiratory pressure (MEP) were normal in the ambulatory patients (mean greater than or equal to 80% predicted) but reduced in bedridden patients (mean, 38.5%, 31.6%, and 36.3% predicted; FCV, MVV, and MEP, respectively) and wheelchair-bound patients with upper extremity involvement (mean, 69.4%, 50.4%, and 62.6% predicted; FVC, MVV, and MEP, respectively). Forced vital capacity, MVV, and MEP correlated with Kurtzke Expanded Disability Status scores (tau = -0.72, -0.70, and -0.65) and expiratory muscle weakness occurred most frequently. These findings demonstrate that marked expiratory weakness develops in severely paraparetic patients with multiple sclerosis and the weakness increases as the upper extremities become increasingly involved.
Li, Siqi; Jiang, Huiyan; Pang, Wenbo
2017-05-01
Accurate cell grading of cancerous tissue pathological image is of great importance in medical diagnosis and treatment. This paper proposes a joint multiple fully connected convolutional neural network with extreme learning machine (MFC-CNN-ELM) architecture for hepatocellular carcinoma (HCC) nuclei grading. First, in preprocessing stage, each grayscale image patch with the fixed size is obtained using center-proliferation segmentation (CPS) method and the corresponding labels are marked under the guidance of three pathologists. Next, a multiple fully connected convolutional neural network (MFC-CNN) is designed to extract the multi-form feature vectors of each input image automatically, which considers multi-scale contextual information of deep layer maps sufficiently. After that, a convolutional neural network extreme learning machine (CNN-ELM) model is proposed to grade HCC nuclei. Finally, a back propagation (BP) algorithm, which contains a new up-sample method, is utilized to train MFC-CNN-ELM architecture. The experiment comparison results demonstrate that our proposed MFC-CNN-ELM has superior performance compared with related works for HCC nuclei grading. Meanwhile, external validation using ICPR 2014 HEp-2 cell dataset shows the good generalization of our MFC-CNN-ELM architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Dodd, Alyson L.; Mansell, Warren; Morrison, Anthony P.; Tai, Sara
2011-01-01
The Hypomanic Attitudes and Positive Predictions Inventory (HAPPI; W. Mansell, 2006) was developed to assess multiple, extreme, self-relevant appraisals of internal states. The present study aimed to validate the HAPPI in a clinical sample. Participants (N = 50) with a diagnosis of bipolar disorder (confirmed by a structured clinical interview)…
NASA Astrophysics Data System (ADS)
Vorosmarty, C. J.; Hinzman, L. D.; Rawlins, M. A.; Serreze, M. C.; Francis, J. A.; Liljedahl, A. K.; McDonald, K. C.; Piasecki, M.; Rich, R. H.; Holland, M. M.
2017-12-01
The Arctic is an integral part of the Earth system where multiple interactions unite its natural and human elements. Recent observations show the Arctic to be experiencing rapid and amplified signatures of global climate change. At the same time, the Arctic system's response to this broader forcing has itself become a central research topic, given its potential role as a critical throttle on future planetary dynamics. Changes are already impacting life systems and economic prosperity and continued change is expected to bear major implications far outside the region. We also have entered an era when environmental management, traditionally local in scope, must confront regional, whole biome, and pan-Arctic biogeophysical challenges. While challenges may appear to operate in isolation, they emerge within the context of an evolving, integrated Arctic system defined by interactions among natural and social sub-systems. Clearly, new efforts aimed at community planning, industrial development, and infrastructure construction must consider this multiplicity of interacting processes. We recently organized an "Arctic System Synthesis Workshop Series" supported by the Arctic Systems Science Program of NSF and devoted to exploring approaches capable of uncovering the systems-level behavior in both the natural and social sciences domains. The series featured two topical meetings. The first identified the sources responsible for extreme climate events in the Arctic. The second focused on multiple "currencies" within the system (i.e., water, energy, carbon, nutrients) and how they interact to produce systems-level behaviors. More than 40 experts participated, drawn from the ranks of Arctic natural and social sciences. We report here on the workshop series consensus report, which identifies a broad array of topics. Principal among these are a consideration of why study the Arctic as a system, as well as an articulation of the major systems-level approaches to support basic as well as policy-relevant research on the Arctic. Two examples of these approaches are given with respect to extremes (exposure, impacts and reverberations within and outside of the Arctic) and currencies (their role in "uniting" the Arctic as an interacting system). We will also review some proposed programmatic elements to support this new science.
Designing Resilient and Productive Grasses with Plasticity to Extreme Weather Events
NASA Astrophysics Data System (ADS)
Loka, D.; Humphreys, M.; Gwyn Jones, D.; Scullion, J.; Doonan, J.; Gasior, D.; Harper, J.; Farrell, M.; Kingston-Smith, A.; Dodd, R.; Chadwick, D.; Hill, P.; Robinson, D.; Jones, D.
2016-12-01
Grasslands occupy more than 70% of the world's agricultural land and are major providers of healthy feed for livestock and for ecosystem services. Global warming is projected to increase the intensity and frequency of extreme weather events such as drought and flooding and will reduce persistency of currently productive but stress sensitive forage grass varieties, thereby challenging global food security and compromising on their existing ecosystem functionality. New perennial grass varieties, tolerant to the onsets of more than one abiotic stresses, are required in order to achieve sustainable grassland production and function over years under adverse environmental conditions. Identifying and selecting reliable morphological and physiological traits associated with increased resistance to multiple stress conditions is a prerequisite to ensure future grasslands resilience. The objectives of our study were to select from diverse and novel Festulolium (ryegrass spp. x fescue spp. hybrids) grass populations capable of providing optimal combinations of good forage production together with resilience to multiple stresses and to monitor morphological and physiological responses under multiple stress conditions. The grasses were: Festulolium variety Prior (L. perenne x F. pratensis), shown to alter soil structure and hydrology to mitigate run-off and flooding; two advanced breeding populations of diploid L. perenne with genes for drought tolerance derived from the Mediterranean fescue species F. arundinacea and F. glaucescens; two tetraploid hybrid populations involving L. perenne in combination with F. glaucescens and F. mairei (from North Africa), respectively. As controls, Festulolium variety AberNiche and L. perenne variety AberWolf varieties, were used. Treatments consisted of: A) Control; plants maintained at optimum conditions, B) Flood; plants were flooded for 6 weeks followed by a 4-week recovery, C) Drought; plants received limited quantity of water for 12 weeks followed by a 4-week recovery, and D) Flood followed by drought for a total of 18 weeks followed by a 4-week recovery. Leaf physiological and root morphological responses were monitored and recorded before stress initiation, at the end of stress and recovery periods and the results were evaluated.
Klemen Novak; Martin de Luis; Miguel A. Saz; Luis A. Longares; Roberto Serrano-Notivoli; Josep Raventos; Katarina Cufar; Jozica Gricar; Alfredo Di Filippo; Gianluca Piovesan; Cyrille B.K. Rathgeber; Andreas Papadopoulos; Kevin T. Smith
2016-01-01
Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 29 2012-07-01 2012-07-01 false The List of Extremely Hazardous Substances and Their Threshold Planning Quantities B Appendix B to Part 355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION Pt....
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 28 2014-07-01 2014-07-01 false The List of Extremely Hazardous Substances and Their Threshold Planning Quantities A Appendix A to Part 355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION Pt....
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 29 2012-07-01 2012-07-01 false The List of Extremely Hazardous Substances and Their Threshold Planning Quantities A Appendix A to Part 355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION Pt....
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 28 2014-07-01 2014-07-01 false The List of Extremely Hazardous Substances and Their Threshold Planning Quantities B Appendix B to Part 355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION Pt....
Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins.
Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G
2014-01-01
In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.
Antarctic Climate Change: Extreme Events Disrupt Plastic Phenotypic Response in Adélie Penguins
Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G.
2014-01-01
In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A ‘natural experiment’ brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The ‘natural experiment’ uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise. PMID:24489657
Jergenson, Abigail M; Miller, David A W; Neuman-Lee, Lorin A; Warner, Daniel A; Janzen, Fredric J
2014-03-01
Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles (Chrysemys picta) that experienced seven years with significantly definable spring floods. We used capture-mark-recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. picta exhibit resiliency to key EEE, which are expected to increase in frequency under climate change.
2000-06-23
conductivity ( NDC ) effects in double barrier resonant tunneling structures (DBRTS) prove the extremely fast frequency response of charge transport (less...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013131 TITLE: Multiple-Barrier Resonant Tunneling Structures for...Institute Multiple-barrier resonant tunneling structures for application in a microwave generator stabilized by microstrip resonator S. V. Evstigneev, A. L
Historical Contingency in a Multigene Family Facilitates Adaptive Evolution of Toxin Resistance.
McGlothlin, Joel W; Kobiela, Megan E; Feldman, Chris R; Castoe, Todd A; Geffeney, Shana L; Hanifin, Charles T; Toledo, Gabriela; Vonk, Freek J; Richardson, Michael K; Brodie, Edmund D; Pfrender, Michael E; Brodie, Edmund D
2016-06-20
Novel adaptations must originate and function within an already established genome [1]. As a result, the ability of a species to adapt to new environmental challenges is predicted to be highly contingent on the evolutionary history of its lineage [2-6]. Despite a growing appreciation of the importance of historical contingency in the adaptive evolution of single proteins [7-11], we know surprisingly little about its role in shaping complex adaptations that require evolutionary change in multiple genes. One such adaptation, extreme resistance to tetrodotoxin (TTX), has arisen in several species of snakes through coevolutionary arms races with toxic amphibian prey, which select for TTX-resistant voltage-gated sodium channels (Nav) [12-16]. Here, we show that the relatively recent origins of extreme toxin resistance, which involve the skeletal muscle channel Nav1.4, were facilitated by ancient evolutionary changes in two other members of the same gene family. A substitution conferring TTX resistance to Nav1.7, a channel found in small peripheral neurons, arose in lizards ∼170 million years ago (mya) and was present in the common ancestor of all snakes. A second channel found in larger myelinated neurons, Nav1.6, subsequently evolved resistance in four different snake lineages beginning ∼38 mya. Extreme TTX resistance has evolved at least five times within the past 12 million years via changes in Nav1.4, but only within lineages that previously evolved resistant Nav1.6 and Nav1.7. Our results show that adaptive protein evolution may be contingent upon enabling substitutions elsewhere in the genome, in this case, in paralogs of the same gene family. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spatiotemporal variability of extreme temperature frequency and amplitude in China
NASA Astrophysics Data System (ADS)
Zhang, Yuanjie; Gao, Zhiqiu; Pan, Zaitao; Li, Dan; Huang, Xinhui
2017-03-01
Temperature extremes in China are examined based on daily maximum and minimum temperatures from station observations and multiple global climate models. The magnitude and frequency of extremes are expressed in terms of return values and periods, respectively, estimated by the fitted Generalized Extreme Value (GEV) distribution of annual extreme temperatures. The observations suggest that changes in temperature extremes considerably exceed changes in the respective climatological means during the past five decades, with greater amplitude of increases in cold extremes than in warm extremes. The frequency of warm (cold) extremes increases (decreases) over most areas, with an increasingly faster rate as the extremity level rises. Changes in warm extremes are more dependent on the varying shape of GEV distribution than the location shift, whereas changes in cold extremes are more closely associated with the location shift. The models simulate the overall pattern of temperature extremes during 1961-1981 reasonably well in China, but they show a smaller asymmetry between changes in warm and cold extremes primarily due to their underestimation of increases in cold extremes especially over southern China. Projections from a high emission scenario show the multi-model median change in warm and cold extremes by 2040 relative to 1971 will be 2.6 °C and 2.8 °C, respectively, with the strongest changes in cold extremes shifting southward. By 2040, warm extremes at the 1971 20-year return values would occur about every three years, while the 1971 cold extremes would occur once in > 500 years.
Playing by the rules? Phenotypic adaptation to temperate environments in an American marsupial
Harrigan, Ryan J.; Wayne, Robert K.
2018-01-01
Phenotypic variation along environmental gradients can provide evidence suggesting local adaptation has shaped observed morphological disparities. These differences, in traits such as body and extremity size, as well as skin and coat pigmentation, may affect the overall fitness of individuals in their environments. The Virginia opossum (Didelphis virginiana) is a marsupial that shows phenotypic variation across its range, one that has recently expanded into temperate environments. It is unknown, however, whether the variation observed in the species fits adaptive ecogeographic patterns, or if phenotypic change is associated with any environmental factors. Using phenotypic measurements of over 300 museum specimens of Virginia opossum, collected throughout its distribution range, we applied regression analysis to determine if phenotypes change along a latitudinal gradient. Then, using predictors from remote-sensing databases and a random forest algorithm, we tested environmental models to find the most important variables driving the phenotypic variation. We found that despite the recent expansion into temperate environments, the phenotypic variation in the Virginia opossum follows a latitudinal gradient fitting three adaptive ecogeographic patterns codified under Bergmann’s, Allen’s and Gloger’s rules. Temperature seasonality was an important predictor of body size variation, with larger opossums occurring at high latitudes with more seasonal environments. Annual mean temperature predicted important variation in extremity size, with smaller extremities found in northern populations. Finally, we found that precipitation and temperature seasonality as well as low temperatures were strong environmental predictors of skin and coat pigmentation variation; darker opossums are distributed at low latitudes in warmer environments with higher precipitation seasonality. These results indicate that the adaptive mechanisms underlying the variation in body size, extremity size and pigmentation are related to the resource seasonality, heat conservation, and pathogen-resistance hypotheses, respectively. Our findings suggest that marsupials may be highly susceptible to environmental changes, and in the case of the Virginia opossum, the drastic phenotypic evolution in northern populations may have arisen rapidly, facilitating the colonization of seasonal and colder habitats of temperate North America. PMID:29607255
Fingerprinting the impacts of global change on tropical forests.
Lewis, Simon L; Malhi, Yadvinder; Phillips, Oliver L
2004-03-29
Recent observations of widespread changes in mature tropical forests such as increasing tree growth, recruitment and mortality rates and increasing above-ground biomass suggest that 'global change' agents may be causing predictable changes in tropical forests. However, consensus over both the robustness of these changes and the environmental drivers that may be causing them is yet to emerge. This paper focuses on the second part of this debate. We review (i) the evidence that the physical, chemical and biological environment that tropical trees grow in has been altered over recent decades across large areas of the tropics, and (ii) the theoretical, experimental and observational evidence regarding the most likely effects of each of these changes on tropical forests. Ten potential widespread drivers of environmental change were identified: temperature, precipitation, solar radiation, climatic extremes (including El Niño-Southern Oscillation events), atmospheric CO2 concentrations, nutrient deposition, O3/acid depositions, hunting, land-use change and increasing liana numbers. We note that each of these environmental changes is expected to leave a unique 'fingerprint' in tropical forests, as drivers directly force different processes, have different distributions in space and time and may affect some forests more than others (e.g. depending on soil fertility). Thus, in the third part of the paper we present testable a priori predictions of forest responses to assist ecologists in attributing particular changes in forests to particular causes across multiple datasets. Finally, we discuss how these drivers may change in the future and the possible consequences for tropical forests.
David, Sophia; Rusniok, Christophe; Mentasti, Massimo; Gomez-Valero, Laura; Harris, Simon R.; Lechat, Pierre; Lees, John; Ginevra, Christophe; Glaser, Philippe; Ma, Laurence; Bouchier, Christiane; Underwood, Anthony; Jarraud, Sophie; Harrison, Timothy G.; Parkhill, Julian; Buchrieser, Carmen
2016-01-01
Legionella pneumophila is an environmental bacterium and the leading cause of Legionnaires’ disease. Just five sequence types (ST), from more than 2000 currently described, cause nearly half of disease cases in northwest Europe. Here, we report the sequence and analyses of 364 L. pneumophila genomes, including 337 from the five disease-associated STs and 27 representative of the species diversity. Phylogenetic analyses revealed that the five STs have independent origins within a highly diverse species. The number of de novo mutations is extremely low with maximum pairwise single-nucleotide polymorphisms (SNPs) ranging from 19 (ST47) to 127 (ST1), which suggests emergences within the last century. Isolates sampled geographically far apart differ by only a few SNPs, demonstrating rapid dissemination. These five STs have been recombining recently, leading to a shared pool of allelic variants potentially contributing to their increased disease propensity. The oldest clone, ST1, has spread globally; between 1940 and 2000, four new clones have emerged in Europe, which show long-distance, rapid dispersal. That a large proportion of clinical cases is caused by recently emerged and internationally dispersed clones, linked by convergent evolution, is surprising for an environmental bacterium traditionally considered to be an opportunistic pathogen. To simultaneously explain recent emergence, rapid spread and increased disease association, we hypothesize that these STs have adapted to new man-made environmental niches, which may be linked by human infection and transmission. PMID:27662900
David, Sophia; Rusniok, Christophe; Mentasti, Massimo; Gomez-Valero, Laura; Harris, Simon R; Lechat, Pierre; Lees, John; Ginevra, Christophe; Glaser, Philippe; Ma, Laurence; Bouchier, Christiane; Underwood, Anthony; Jarraud, Sophie; Harrison, Timothy G; Parkhill, Julian; Buchrieser, Carmen
2016-11-01
Legionella pneumophila is an environmental bacterium and the leading cause of Legionnaires' disease. Just five sequence types (ST), from more than 2000 currently described, cause nearly half of disease cases in northwest Europe. Here, we report the sequence and analyses of 364 L. pneumophila genomes, including 337 from the five disease-associated STs and 27 representative of the species diversity. Phylogenetic analyses revealed that the five STs have independent origins within a highly diverse species. The number of de novo mutations is extremely low with maximum pairwise single-nucleotide polymorphisms (SNPs) ranging from 19 (ST47) to 127 (ST1), which suggests emergences within the last century. Isolates sampled geographically far apart differ by only a few SNPs, demonstrating rapid dissemination. These five STs have been recombining recently, leading to a shared pool of allelic variants potentially contributing to their increased disease propensity. The oldest clone, ST1, has spread globally; between 1940 and 2000, four new clones have emerged in Europe, which show long-distance, rapid dispersal. That a large proportion of clinical cases is caused by recently emerged and internationally dispersed clones, linked by convergent evolution, is surprising for an environmental bacterium traditionally considered to be an opportunistic pathogen. To simultaneously explain recent emergence, rapid spread and increased disease association, we hypothesize that these STs have adapted to new man-made environmental niches, which may be linked by human infection and transmission. © 2016 David et al.; Published by Cold Spring Harbor Laboratory Press.
Winder, Monika; Jassby, Alan D; Mac Nally, Ralph
2011-08-01
Environmental perturbation, climate change and international commerce are important drivers for biological invasions. Climate anomalies can further increase levels of habitat disturbance and act synergistically to elevate invasion risk. Herein, we use a historical data set from the upper San Francisco Estuary to provide the first empirical evidence for facilitation of invasions by climate extremes. Invasive zooplankton species did not become established in this estuary until the 1970s when increasing propagule pressure from Asia coincided with extended drought periods. Hydrological management exacerbated the effects of post-1960 droughts and reduced freshwater inflow even further, increasing drought severity and allowing unusually extreme salinity intrusions. Native zooplankton experienced unprecedented conditions of high salinity and intensified benthic grazing, and life history attributes of invasive zooplankton were advantageous enough during droughts to outcompete native species and colonise the system. Extreme climatic events can therefore act synergistically with environmental perturbation to facilitate the establishment of invasive species. © 2011 Blackwell Publishing Ltd/CNRS.
Toward Reliable and Energy Efficient Wireless Sensing for Space and Extreme Environments
NASA Technical Reports Server (NTRS)
Choi, Baek-Young; Boyd, Darren; Wilkerson, DeLisa
2017-01-01
Reliability is the critical challenge of wireless sensing in space systems operating in extreme environments. Energy efficiency is another concern for battery powered wireless sensors. Considering the physics of wireless communications, we propose an approach called Software-Defined Wireless Communications (SDC) that dynamically decide a reliable channel(s) avoiding unnecessary redundancy of channels, out of multiple distinct electromagnetic frequency bands such as radio and infrared frequencies.We validate the concept with Android and Raspberry Pi sensors and pseudo extreme experiments. SDC can be utilized in many areas beyond space applications.
Response Strength in Extreme Multiple Schedules
ERIC Educational Resources Information Center
McLean, Anthony P.; Grace, Randolph C.; Nevin, John A.
2012-01-01
Four pigeons were trained in a series of two-component multiple schedules. Reinforcers were scheduled with random-interval schedules. The ratio of arranged reinforcer rates in the two components was varied over 4 log units, a much wider range than previously studied. When performance appeared stable, prefeeding tests were conducted to assess…
ERIC Educational Resources Information Center
Lyman, Emily L.; Luthar, Suniya S.
2014-01-01
This study involved two academically-gifted samples of 11th and 12th grade youth at the socioeconomic status (SES) extremes; one from an exclusive private, affluent school, and the other from a magnet school with low-income students. Negative and positive adjustment outcomes were examined in relation to multiple dimensions of perfectionism…
The Impact of Different Environmental Conditions on Cognitive Function: A Focused Review
Taylor, Lee; Watkins, Samuel L.; Marshall, Hannah; Dascombe, Ben J.; Foster, Josh
2016-01-01
Cognitive function defines performance in objective tasks that require conscious mental effort. Extreme environments, namely heat, hypoxia, and cold can all alter human cognitive function due to a variety of psychological and/or biological processes. The aims of this Focused Review were to discuss; (1) the current state of knowledge on the effects of heat, hypoxic and cold stress on cognitive function, (2) the potential mechanisms underpinning these alterations, and (3) plausible interventions that may maintain cognitive function upon exposure to each of these environmental stressors. The available evidence suggests that the effects of heat, hypoxia, and cold stress on cognitive function are both task and severity dependent. Complex tasks are particularly vulnerable to extreme heat stress, whereas both simple and complex task performance appear to be vulnerable at even at moderate altitudes. Cold stress also appears to negatively impact both simple and complex task performance, however, the research in this area is sparse in comparison to heat and hypoxia. In summary, this focused review provides updated knowledge regarding the effects of extreme environmental stressors on cognitive function and their biological underpinnings. Tyrosine supplementation may help individuals maintain cognitive function in very hot, hypoxic, and/or cold conditions. However, more research is needed to clarify these and other postulated interventions. PMID:26779029
Bedreag, Ovidiu Horea; Rogobete, Alexandru Florin; Sarandan, Mirela; Cradigati, Alina Carmen; Papurica, Marius; Dumbuleu, Maria Corina; Chira, Alexandru Mihai; Rosu, Oana Maria; Sandesc, Dorel
2015-01-01
Multiple trauma patients require extremely good management and thus, the trauma team needs to be prepared and to be up to date with the new standards of intensive therapy. Oxidative stress and free radicals represent an extremely aggressive factor to cells, having a direct consequence upon the severity of lung inflammation. Pulmonary tissue is damaged by oxidative stress, leading to biosynthesis of mediators that exacerbate inflammation modulators. The subsequent inflammation spreads throughout the body, leading most of the time to multiple organ dysfunction and death. In this paper, we briefly present an update of biochemical effects of oxidative stress and free radical damage to the pulmonary tissue in patients in critical condition in the intensive care unit. Also, we would like to present a series of active substances that substantially reduce the aggressiveness of free radicals, increasing the chances of survival.
NASA Astrophysics Data System (ADS)
Hetzinger, S.; Pfeiffer, M.; Dullo, W.-Chr.; Zinke, J.; Garbe-Schönberg, D.
2016-09-01
Coral reefs are biologically diverse ecosystems threatened with effective collapse under rapid climate change, in particular by recent increases in ocean temperatures. Coral bleaching has occurred during major El Niño warming events, at times leading to the die-off of entire coral reefs. Here we present records of stable isotopic composition, Sr/Ca ratios and extension rate (1940-2004) in coral aragonite from a northern Venezuelan site, where reefs were strongly impacted by bleaching following the 1997-98 El Niño. We assess the impact of past warming events on coral extension rates and geochemical proxies. A marked decrease in coral (Pseudodiploria strigosa) extension rates coincides with a baseline shift to more negative values in oxygen and carbon isotopic composition after 1997-98, while a neighboring coral (Siderastrea siderea) recovered to pre-bleaching extension rates simultaneously. However, other stressors, besides high temperature, might also have influenced coral physiology and geochemistry. Coastal Venezuelan reefs were exposed to a series of extreme environmental fluctuations since the mid-1990s, i.e. upwelling, extreme rainfall and sediment input from landslides. This work provides important new data on the potential impacts of multiple regional stress events on coral isotopic compositions and raises questions about the long-term influence on coral-based paleoclimate reconstructions.
Hetzinger, S; Pfeiffer, M; Dullo, W-Chr; Zinke, J; Garbe-Schönberg, D
2016-09-13
Coral reefs are biologically diverse ecosystems threatened with effective collapse under rapid climate change, in particular by recent increases in ocean temperatures. Coral bleaching has occurred during major El Niño warming events, at times leading to the die-off of entire coral reefs. Here we present records of stable isotopic composition, Sr/Ca ratios and extension rate (1940-2004) in coral aragonite from a northern Venezuelan site, where reefs were strongly impacted by bleaching following the 1997-98 El Niño. We assess the impact of past warming events on coral extension rates and geochemical proxies. A marked decrease in coral (Pseudodiploria strigosa) extension rates coincides with a baseline shift to more negative values in oxygen and carbon isotopic composition after 1997-98, while a neighboring coral (Siderastrea siderea) recovered to pre-bleaching extension rates simultaneously. However, other stressors, besides high temperature, might also have influenced coral physiology and geochemistry. Coastal Venezuelan reefs were exposed to a series of extreme environmental fluctuations since the mid-1990s, i.e. upwelling, extreme rainfall and sediment input from landslides. This work provides important new data on the potential impacts of multiple regional stress events on coral isotopic compositions and raises questions about the long-term influence on coral-based paleoclimate reconstructions.
An Overview of Occupational Risks From Climate Change.
Applebaum, Katie M; Graham, Jay; Gray, George M; LaPuma, Peter; McCormick, Sabrina A; Northcross, Amanda; Perry, Melissa J
2016-03-01
Changes in atmosphere and temperature are affecting multiple environmental indicators from extreme heat events to global air quality. Workers will be uniquely affected by climate change, and the occupational impacts of major shifts in atmospheric and weather conditions need greater attention. Climate change-related exposures most likely to differentially affect workers in the USA and globally include heat, ozone, polycyclic aromatic hydrocarbons, other chemicals, pathogenic microorganisms, vector-borne diseases, violence, and wildfires. Epidemiologic evidence documents a U-, J-, or V-shaped relationship between temperature and mortality. Whereas heat-related morbidity and mortality risks are most evident in agriculture, many other outdoor occupational sectors are also at risk, including construction, transportation, landscaping, firefighting, and other emergency response operations. The toxicity of chemicals change under hyperthermic conditions, particularly for pesticides and ozone. Combined with climate-related changes in chemical transport and distribution, these interactions represent unique health risks specifically to workers. Links between heat and interpersonal conflict including violence require attention because they pose threats to the safety of emergency medicine, peacekeeping and humanitarian relief, and public safety professionals. Recommendations for anticipating how US workers will be most susceptible to climate change include formal monitoring systems for agricultural workers; modeling scenarios focusing on occupational impacts of extreme climate events including floods, wildfires, and chemical spills; and national research agenda setting focusing on control and mitigation of occupational susceptibility to climate change.
Field Scale Optimization for Long-Term Sustainability of Best Management Practices in Watersheds
NASA Astrophysics Data System (ADS)
Samuels, A.; Babbar-Sebens, M.
2012-12-01
Agricultural and urban land use changes have led to disruption of natural hydrologic processes and impairment of streams and rivers. Multiple previous studies have evaluated Best Management Practices (BMPs) as means for restoring existing hydrologic conditions and reducing impairment of water resources. However, planning of these practices have relied on watershed scale hydrologic models for identifying locations and types of practices at scales much coarser than the actual field scale, where landowners have to plan, design and implement the practices. Field scale hydrologic modeling provides means for identifying relationships between BMP type, spatial location, and the interaction between BMPs at a finer farm/field scale that is usually more relevant to the decision maker (i.e. the landowner). This study focuses on development of a simulation-optimization approach for field-scale planning of BMPs in the School Branch stream system of Eagle Creek Watershed, Indiana, USA. The Agricultural Policy Environmental Extender (APEX) tool is used as the field scale hydrologic model, and a multi-objective optimization algorithm is used to search for optimal alternatives. Multiple climate scenarios downscaled to the watershed-scale are used to test the long term performance of these alternatives and under extreme weather conditions. The effectiveness of these BMPs under multiple weather conditions are included within the simulation-optimization approach as a criteria/goal to assist landowners in identifying sustainable design of practices. The results from these scenarios will further enable efficient BMP planning for current and future usage.
Development of Improved Environmental Resistant Organic-Reinforced Materials Systems
1975-11-01
Advanced composites , graphite and boron reinforced laminates, moisture resistance, environmental resistance, organic matrix composites . 20. ABSTRACT...in November 1975 for publication. Efforts at TOD were conducted within the Advanced Composites Engineering Departmfntrunde; L technical...weight makes^organic matrix advanced composites hardware extremely attractive for today s modern Air Force weapons systems. Accordingly, such
Education, Nature, and Society. Routledge Research in Education
ERIC Educational Resources Information Center
Gough, Stephen
2015-01-01
Environmental issues continue to divide opinion, sometimes in extreme ways. Almost everyone agrees that education has a role to play in ensuring the future of humanity on Earth. Some think we should all learn to leave a minimal environmental footprint; others argue that education should promote economic growth, because only growth can generate the…
Genetic and Environmental Influences on Extreme Personality Dispositions in Adolescent Female Twins
ERIC Educational Resources Information Center
Pergadia, Michele L.; Madden, Pamela A. F.; Lessov, Christina N.; Todorov, Alexandre A.; Bucholz, Kathleen K.; Martin, Nicholas G.; Heath, Andrew C.
2006-01-01
Background: The objective was to determine whether the pattern of environmental and genetic influences on deviant personality scores differs from that observed for the normative range of personality, comparing results in adolescent and adult female twins. Methods: A sample of 2,796 female adolescent twins ascertained from birth records provided…
Boghossian, Nansi S; McDonald, Scott A; Bell, Edward F; Carlo, Waldemar A; Brumbaugh, Jane E; Stoll, Barbara J; Laptook, Abbot R; Shankaran, Seetha; Walsh, Michele C; Das, Abhik; Higgins, Rosemary D
2016-06-01
Little is known about the effects of antenatal corticosteroids (ANS) on extremely preterm multiples. To examine if use of ANS is associated with improvement in major outcomes in extremely preterm multiples. Infants with a gestational age between 22 and 28 weeks born at a National Institute of Child Health and Human Development Neonatal Research Network center were studied between January 1998 and December 2013. Generalized estimating equation models were used to generate adjusted relative risks (aRR) controlling for important maternal and neonatal variables. Antenatal corticosteroids. In-hospital mortality and the composite outcome of neurodevelopmental impairment at 18 to 22 months' corrected age or death before assessment. A total of 6925 multiple-birth infants were studied; 5775 of 6925 (83.4%) were twins, and 4276 (61.7%) were white. Of the total study population, 6094 (88%) were born to women who received ANS. In-hospital mortality was lower among infants with exposure to ANS vs no exposure (aRR = 0.87; 95% CI, 0.78-0.96). Neurodevelopmental impairment or death was not significantly lower among those exposed to ANS vs no exposure (aRR = 0.93; 95% CI, 0.84-1.03). Other adverse outcomes that occurred less frequently among infants of women receiving ANS included severe intraventricular hemorrhage (aRR = 0.68; 95% CI, 0.58-0.78) and the combined outcomes of necrotizing enterocolitis or death and severe intraventricular hemorrhage or death. Subgroup analyses indicated that exposure to ANS was associated with a lower risk of mortality and a lower composite of neurodevelopmental impairment or mortality among nonsmall for gestational age multiples (aRR = 0.82; 95% CI, 0.74-0.92; and aRR = 0.89; 95% CI, 0.80-0.98, respectively) and a higher risk among small for gestational age multiples (aRR = 1.40; 95% CI, 1.02-1.93; and aRR = 1.62; 95% CI, 1.22-2.16, respectively). Antenatal corticosteroids were associated with higher neurodevelopmental impairment or mortality among multiple-birth infants of mothers with diabetes (aRR = 1.55; 95% CI, 1.00-2.38) but not among infants of mothers without diabetes (aRR = 0.91; 95% CI, 0.83-1.01). Compared with no exposure, exposure to ANS was associated with a lower risk of mortality in extremely preterm multiples, with no significant differences in the composite of neurodevelopmental impairment or death. Future research should investigate the increased risks of mortality and the composite of neurodevelopmental impairment or death associated with exposure to corticosteroids among small for gestational age multiples.
Is Hypovitaminosis D One of the Environmental Risk Factors for Multiple Sclerosis?
ERIC Educational Resources Information Center
Pierrot-Deseilligny, Charles; Souberbielle, Jean-Claude
2010-01-01
The role of hypovitaminosis D as a possible risk factor for multiple sclerosis is reviewed. First, it is emphasized that hypovitaminosis D could be only one of the risk factors for multiple sclerosis and that numerous other environmental and genetic risk factors appear to interact and combine to trigger the disease. Secondly, the classical…
Test Area B-70 Final Range Environmental Assessment, Revision 1
2009-06-01
the Sandhills and Open Grassland ecological associations on the Eglin Range, where it excavates a tunnel -like burrow for shelter from climatic extremes...Sciurus niger Gallberry Ilex glabra Least Shrew Cryptotis parva Gopher Apple Licania michauxii Cottontail Rabbit Sylvilagus floridanus Sand Blackberry ...within the Sandhills and Open Grassland ecological associations on Eglin, where it excavates a tunnel - like burrow for shelter from climatic extremes and
Effects of Aging and Environmental Conditions on Ammunition/Explosives Storage Magazines - Paper 2
2010-07-01
characterized as destructive. The destructive category is apparently limited to reactions with impure dolomitic aggregates and are a result of either...extreme pressures that eventually overcome the tensile strength of the structure. These pressures will cause spalling, map cracking, discoloration, or...fill with this gel and expand to create extreme tensile pressures . These pressures cause micro-scale cracking and eventually develop into
Population Isolation in the Philippine War: A Case Study
2015-05-21
concentration camps appear as unnecessary and extremely harsh punishment. In one example of many, extreme charges of hostage taking, rape, and... torture from the Filipinos in Candelaria warranted an Army investigation.13 Secondary sources address environmental effects of population isolation...themselves targeted and potentially killed by the native forces.32 Public displays of these murders and assassinations meant to convince the population to
On the Performance of Carbon Nanotubes in Extreme Conditions and in the Presence of Microwaves
2013-01-01
been considered for use as transparent conductors include: transparent conducting oxides (TCOs), intrinsically conducting polymers (ICPs), graphene ...optical transmission properties, but are extremely sensitive to environmental conditions (such as temperature and humidity). Graphene has recently...during the dicing procedure, silver paint was applied to the sample to serve as improvised contact/probe-landing points. Figure 1 shows the CNT thin
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Which threshold planning quantity do I use for an extremely hazardous substance present at my facility in solid form? 355.15 Section 355.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 29 2012-07-01 2012-07-01 false Which threshold planning quantity do I use for an extremely hazardous substance present at my facility in solid form? 355.15 Section 355.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Which threshold planning quantity do I use for an extremely hazardous substance present at my facility in solid form? 355.15 Section 355.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY...
Wilcox, Taylor M; Mckelvey, Kevin S.; Young, Michael K.; Sepulveda, Adam; Shepard, Bradley B.; Jane, Stephen F; Whiteley, Andrew R.; Lowe, Winsor H.; Schwartz, Michael K.
2016-01-01
Environmental DNA sampling (eDNA) has emerged as a powerful tool for detecting aquatic animals. Previous research suggests that eDNA methods are substantially more sensitive than traditional sampling. However, the factors influencing eDNA detection and the resulting sampling costs are still not well understood. Here we use multiple experiments to derive independent estimates of eDNA production rates and downstream persistence from brook trout (Salvelinus fontinalis) in streams. We use these estimates to parameterize models comparing the false negative detection rates of eDNA sampling and traditional backpack electrofishing. We find that using the protocols in this study eDNA had reasonable detection probabilities at extremely low animal densities (e.g., probability of detection 0.18 at densities of one fish per stream kilometer) and very high detection probabilities at population-level densities (e.g., probability of detection > 0.99 at densities of ≥ 3 fish per 100 m). This is substantially more sensitive than traditional electrofishing for determining the presence of brook trout and may translate into important cost savings when animals are rare. Our findings are consistent with a growing body of literature showing that eDNA sampling is a powerful tool for the detection of aquatic species, particularly those that are rare and difficult to sample using traditional methods.
Genes involved in stress response and alcohol use among high-risk African American youth.
Goyal, Neeru; Aliev, Fazil; Latendresse, Shawn J; Kertes, Darlene A; Bolland, John M; Byck, Gayle R; Mustanski, Brian; Salvatore, Jessica E; Dick, Danielle M
2016-01-01
Genetic and environmental factors influence substance use behaviors in youth. One of the known environmental risk factors is exposure to life stressors. The aim of this project is to study the interaction between NR3C1 and CRHBP, genes thought to be involved in stress pathways, exposure to stressful life events, and adolescent alcohol use/misuse. The sample included 541 African American individuals (ages 13-18) from the Genes, Environment, and Neighborhood Initiative, a subset of the Mobile Youth Survey sample from whom DNA and more extensive phenotypic data were collected. Participants were selected from high-poverty neighborhoods in Mobile, Alabama, with potential exposure to a variety of extreme life stressors. A measure of stressful life events was significantly predictive of alcohol use/misuse. In addition, this association was significantly dependent upon the number of putative risk variants at rs1715749, a single-nucleotide polymorphism (SNP) in CRHBP (P ≤ .006). There was no significant interaction between NR3C1 and stressful life events with respect to alcohol use/misuse, after taking into account multiple testing. These findings suggest that CRHBP variants are potentially relevant for adolescent alcohol use/misuse among African American youth populations being reared within the context of stressful life events and warrant replication.
The Saskatchewan River Basin - a large scale observatory for water security research (Invited)
NASA Astrophysics Data System (ADS)
Wheater, H. S.
2013-12-01
The 336,000 km2 Saskatchewan River Basin (SaskRB) in Western Canada illustrates many of the issues of Water Security faced world-wide. It poses globally-important science challenges due to the diversity in its hydro-climate and ecological zones. With one of the world's more extreme climates, it embodies environments of global significance, including the Rocky Mountains (source of the major rivers in Western Canada), the Boreal Forest (representing 30% of Canada's land area) and the Prairies (home to 80% of Canada's agriculture). Management concerns include: provision of water resources to more than three million inhabitants, including indigenous communities; balancing competing needs for water between different uses, such as urban centres, industry, agriculture, hydropower and environmental flows; issues of water allocation between upstream and downstream users in the three prairie provinces; managing the risks of flood and droughts; and assessing water quality impacts of discharges from major cities and intensive agricultural production. Superimposed on these issues is the need to understand and manage uncertain water futures, including effects of economic growth and environmental change, in a highly fragmented water governance environment. Key science questions focus on understanding and predicting the effects of land and water management and environmental change on water quantity and quality. To address the science challenges, observational data are necessary across multiple scales. This requires focussed research at intensively monitored sites and small watersheds to improve process understanding and fine-scale models. To understand large-scale effects on river flows and quality, land-atmosphere feedbacks, and regional climate, integrated monitoring, modelling and analysis is needed at large basin scale. And to support water management, new tools are needed for operational management and scenario-based planning that can be implemented across multiple scales and multiple jurisdictions. The SaskRB has therefore been developed as a large scale observatory, now a Regional Hydroclimate Project of the World Climate Research Programme's GEWEX project, and is available to contribute to the emerging North American Water Program. State-of-the-art hydro-ecological experimental sites have been developed for the key biomes, and a river and lake biogeochemical research facility, focussed on impacts of nutrients and exotic chemicals. Data are integrated at SaskRB scale to support the development of improved large scale climate and hydrological modelling products, the development of DSS systems for local, provincial and basin-scale management, and the development of related social science research, engaging stakeholders in the research and exploring their values and priorities for water security. The observatory provides multiple scales of observation and modelling required to develop: a) new climate, hydrological and ecological science and modelling tools to address environmental change in key environments, and their integrated effects and feedbacks at large catchment scale, b) new tools needed to support river basin management under uncertainty, including anthropogenic controls on land and water management and c) the place-based focus for the development of new transdisciplinary science.
GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
Hess, Berk; Kutzner, Carsten; van der Spoel, David; Lindahl, Erik
2008-03-01
Molecular simulation is an extremely useful, but computationally very expensive tool for studies of chemical and biomolecular systems. Here, we present a new implementation of our molecular simulation toolkit GROMACS which now both achieves extremely high performance on single processors from algorithmic optimizations and hand-coded routines and simultaneously scales very well on parallel machines. The code encompasses a minimal-communication domain decomposition algorithm, full dynamic load balancing, a state-of-the-art parallel constraint solver, and efficient virtual site algorithms that allow removal of hydrogen atom degrees of freedom to enable integration time steps up to 5 fs for atomistic simulations also in parallel. To improve the scaling properties of the common particle mesh Ewald electrostatics algorithms, we have in addition used a Multiple-Program, Multiple-Data approach, with separate node domains responsible for direct and reciprocal space interactions. Not only does this combination of algorithms enable extremely long simulations of large systems but also it provides that simulation performance on quite modest numbers of standard cluster nodes.
NASA Astrophysics Data System (ADS)
Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.
2016-05-01
Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.
The Reference Genome of the Halophytic Plant Eutrema salsugineum
Yang, Ruolin; Jarvis, David E.; Chen, Hao; Beilstein, Mark A.; Grimwood, Jane; Jenkins, Jerry; Shu, ShengQiang; Prochnik, Simon; Xin, Mingming; Ma, Chuang; Schmutz, Jeremy; Wing, Rod A.; Mitchell-Olds, Thomas; Schumaker, Karen S.; Wang, Xiangfeng
2013-01-01
Halophytes are plants that can naturally tolerate high concentrations of salt in the soil, and their tolerance to salt stress may occur through various evolutionary and molecular mechanisms. Eutrema salsugineum is a halophytic species in the Brassicaceae that can naturally tolerate multiple types of abiotic stresses that typically limit crop productivity, including extreme salinity and cold. It has been widely used as a laboratorial model for stress biology research in plants. Here, we present the reference genome sequence (241 Mb) of E. salsugineum at 8× coverage sequenced using the traditional Sanger sequencing-based approach with comparison to its close relative Arabidopsis thaliana. The E. salsugineum genome contains 26,531 protein-coding genes and 51.4% of its genome is composed of repetitive sequences that mostly reside in pericentromeric regions. Comparative analyses of the genome structures, protein-coding genes, microRNAs, stress-related pathways, and estimated translation efficiency of proteins between E. salsugineum and A. thaliana suggest that halophyte adaptation to environmental stresses may occur via a global network adjustment of multiple regulatory mechanisms. The E. salsugineum genome provides a resource to identify naturally occurring genetic alterations contributing to the adaptation of halophytic plants to salinity and that might be bioengineered in related crop species. PMID:23518688
Accelerating the Conformational Sampling of Intrinsically Disordered Proteins.
Do, Trang Nhu; Choy, Wing-Yiu; Karttunen, Mikko
2014-11-11
Intrinsically disordered proteins (IDPs) are a class of proteins lacking a well-defined secondary structure. Instead, they are able to attain multiple conformations, bind to multiple targets, and respond to changes in their surroundings. Functionally, IDPs have been associated with molecular recognition, cell regulation, and signal transduction. The dynamic conformational ensemble of IDPs is highly environmental and binding partner dependent, rendering the characterization of IDPs extremely challenging. Here, we compare the sampling efficiencies of conventional molecular dynamics (MD), well-tempered metadynamics (WT-META), and bias-exchange metadynamics (BE-META). The total simulation time was over 10 μs, and a 20-mer peptide derived from the Neh2 domain of the Nuclear factor erythroid 2-related factor 2 (Nrf2) protein was simulated. BE-META, with a neutral replica and seven biased replicas employing a set of seven relevant collective variables (CVs), provided the most reliable and efficient sampling. Finally, we propose a free-energy reconstruction method based on the probability distribution of the secondary structure contents. This postprocessing analysis confirms the presence of not only the β-hairpin conformation of the free Neh2 peptide but also its rare bound-state-like conformation, both of that have been experimentally observed. In addition, our simulations also predict other possible conformations to be verified with future experiments.
Shifting paradigms in coastal restoration: Six decades' lessons from China.
Liu, Zezheng; Cui, Baoshan; He, Qiang
2016-10-01
With accelerating degradation of coastal environment worldwide, restoration has been elevated as a global strategy to enhance the functioning and social services of coastal ecosystems. While many developing countries suffer from intense coastal degradation, current understanding of the science and practice of their coastal restorations is extremely limited. Based on analysis of >1000 restoration projects, we provide the first synthesis of China's coastal restorations. We show that China's coastal restoration has recently entered a rapidly developing stage, with an increasing number of restoration projects carried out in multiple types of coastal ecosystems. While long-term, national-level restorations enforced by the government appear promising for some coastal ecosystems, especially mangroves, restorations of many other coastal ecosystems, such as salt marshes, seagrasses and coral reefs, have been much less implemented, likely due to under-appreciation of their ecosystem services values. Furthermore, the planning, techniques, research/assessment, and participation models underlying current restorations remain largely inadequate for restoration to effectively halt rapid coastal degradation. To promote success, we propose a framework where paradigms in current restorations from planning to implementation and assessment are transformed in multiple ways. Our study has broad implications for coastal environmental management policies and practices, and should inform sustainable development of coupled human-ocean systems in many countries. Copyright © 2016 Elsevier B.V. All rights reserved.
2013-01-01
Background Amur ide (Leuciscus waleckii) is an economically and ecologically important cyprinid species in Northern Asia. The Dali Nor population living in the soda lake Dali Nor can adapt the extremely high alkalinity, providing us a valuable material to understand the adaptation mechanism against extreme environmental stress in teleost. Results In this study, we generated high-throughput RNA-Seq data from three tissues gill, liver and kidney of L. waleckii living in the soda lake Dali Nor and the fresh water lake Ganggeng Nor, then performed parallel comparisons of three tissues. Our results showed that out of assembled 64,603 transcript contigs, 28,391 contigs had been assigned with a known function, corresponding to 20,371 unique protein accessions. We found 477, 2,761 and 3,376 differentially expressed genes (DEGs) in the gill, kidney, and liver, respectively, of Dali Nor population compared to Ganggeng Nor population with FDR ≤ 0.01and fold-change ≥ 2. Further analysis revealed that well-known functional categories of genes and signaling pathway, which are associated with stress response and extreme environment adaptation, have been significantly enriched, including the functional categories of “response to stimulus”, “transferase activity”, “transporter activity” and “oxidoreductase activity”, and signaling pathways of “mTOR signaling”, “EIF2 signaling”, “superpathway of cholesterol biosynthesis”. We also identified significantly DEGs encoding important modulators on stress adaptation and tolerance, including carbonic anhydrases, heat shock proteins, superoxide dismutase, glutathione S-transferases, aminopeptidase N, and aminotransferases. Conclusions Overall, this study demonstrated that transcriptome changes in L. waleckii played a role in adaptation to complicated environmental stress in the highly alkalized Dali Nor lake. The results set a foundation for further analyses on alkaline-responsive candidate genes, which help us understand teleost adaptation under extreme environmental stress and ultimately benefit future breeding for alkaline-tolerant fish strains. PMID:24094069
Using Multiple Metrics to Analyze Trends and Sensitivity of Climate Variability in New York City
NASA Astrophysics Data System (ADS)
Huang, J.; Towey, K.; Booth, J. F.; Baez, S. D.
2017-12-01
As the overall temperature of Earth continues to warm, changes in the Earth's climate are being observed through extreme weather events, such as heavy precipitation events and heat waves. This study examines the daily precipitation and temperature record of the greater New York City region during the 1979-2014 period. Daily station observations from three greater New York City airports: John F. Kennedy (JFK), LaGuardia (LGA) and Newark (EWR), are used in this study. Multiple statistical metrics are used in this study to analyze trends and variability in temperature and precipitation in the greater New York City region. The temperature climatology reveals a distinct seasonal cycle, while the precipitation climatology exhibits greater annual variability. Two types of thresholds are used to examine the variability of extreme events: extreme threshold and daily anomaly threshold. The extreme threshold indicates how the strength of the overall maximum is changing whereas the daily anomaly threshold indicates if the strength of the daily maximum is changing over time. We observed an increase in the frequency of anomalous daily precipitation events over the last 36 years, with the greatest frequency occurring in 2011. The most extreme precipitation events occur during the months of late summer through early fall, with approximately four expected extreme events occurring per year during the summer and fall. For temperature, the greatest frequency and variation in temperature anomalies occur during winter and spring. In addition, temperature variance is also analyzed to determine if there is greater day-to-day temperature variability today than in the past.
Upper extremity fractures among hospitalized road traffic accident adults.
Rubin, Guy; Peleg, Kobi; Givon, Adi; Rozen, Nimrod
2015-02-01
Upper extremity fractures (UEFs) associated with road traffic accidents (RTAs) may result in long-term disability. Previous studies have examined UEF profiles with small patient populations. The objective of this study was to examine the injury profiles of UEFs in all mechanisms of injury related to RTAs. Data on 71,231 RTA adult patients between 1997 and 2012 whose records were entered in a centralized country trauma database were reviewed. Data on UEFs related to mechanism of injury (car, motorcycle, bicycle, and pedestrian) including associated injuries, multiple UEFs, and frequency of UEF were analyzed. Of 71,231 adult RTA cases recorded in 1997-2012, 12,754 (17.9%) included UEFs. Motorcycle (27%) and bicycle riders (25%) had the greater risk for UEF (P<.0001). Of 12,754 patients with UEFs, 9701 (76%) had other injuries. Pedestrians (86%) and car occupants (81%) had the greater risk for associated injuries (P<.0001). Most of the injuries were head/face/neck (52%), lower extremities (49%), and chest (46%) injuries (P<.0001). Twenty-two percent of all cases had multiple UEFs. The motorcycle riders (27%) had the greater risk for multiple UEFs (P<.0001). Of 12,754 patients with UEFs we found 16,371 UEFs. Most of the fractures were in the radius (22%), humerus (19%), and clavicle (17%) (P<.0001). This study contributes the largest database on reported adult UEFs related to all mechanisms of injury in RTAs and finds the comparative epidemiology of associated injuries, multiple UEFs, and frequency of UEFs. It is important that the treating surgeon is aware of the complexity of the UEF patient, the strong possibility for associated injury, the possibility for multiple fractures in the upper limbs, and the most common fractures associated with each mechanism of accident. Copyright © 2014 Elsevier Inc. All rights reserved.
Bliem, Rupert; Schauer, Sonja; Plicka, Helga; Obwaller, Adelheid; Sommer, Regina; Steinrigl, Adolf; Alam, Munirul; Reischer, Georg H.; Farnleitner, Andreas H.
2015-01-01
Vibrio cholerae is a severe human pathogen and a frequent member of aquatic ecosystems. Quantification of V. cholerae in environmental water samples is therefore fundamental for ecological studies and health risk assessment. Beside time-consuming cultivation techniques, quantitative PCR (qPCR) has the potential to provide reliable quantitative data and offers the opportunity to quantify multiple targets simultaneously. A novel triplex qPCR strategy was developed in order to simultaneously quantify toxigenic and nontoxigenic V. cholerae in environmental water samples. To obtain quality-controlled PCR results, an internal amplification control was included. The qPCR assay was specific, highly sensitive, and quantitative across the tested 5-log dynamic range down to a method detection limit of 5 copies per reaction. Repeatability and reproducibility were high for all three tested target genes. For environmental application, global DNA recovery (GR) rates were assessed for drinking water, river water, and water from different lakes. GR rates ranged from 1.6% to 76.4% and were dependent on the environmental background. Uncorrected and GR-corrected V. cholerae abundances were determined in two lakes with extremely high turbidity. Uncorrected abundances ranged from 4.6 × 102 to 2.3 × 104 cell equivalents liter−1, whereas GR-corrected abundances ranged from 4.7 × 103 to 1.6 × 106 cell equivalents liter−1. GR-corrected qPCR results were in good agreement with an independent cell-based direct detection method but were up to 1.6 log higher than cultivation-based abundances. We recommend the newly developed triplex qPCR strategy as a powerful tool to simultaneously quantify toxigenic and nontoxigenic V. cholerae in various aquatic environments for ecological studies as well as for risk assessment programs. PMID:25724966
Gomez, Andrew Thomas; Rao, Ashwin
2016-03-01
Adventure and extreme sports often involve unpredictable and inhospitable environments, high velocities, and stunts. These activities vary widely and include sports like BASE jumping, snowboarding, kayaking, and surfing. Increasing interest and participation in adventure and extreme sports warrants understanding by clinicians to facilitate prevention, identification, and treatment of injuries unique to each sport. This article covers alpine skiing and snowboarding, skateboarding, surfing, bungee jumping, BASE jumping, and whitewater sports with emphasis on epidemiology, demographics, general injury mechanisms, specific injuries, chronic injuries, fatality data, and prevention. Overall, most injuries are related to overuse, trauma, and environmental or microbial exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Mucci, Viviana
2018-01-01
Chest ultrasonography (CU) is a noninvasive imaging technique able to provide an immediate diagnosis of the underlying aetiology of acute respiratory failure and traumatic chest injuries. Given the great technologies, it is now possible to perform accurate CU in remote and adverse environments including the combat field, extreme sport settings, and environmental disasters, as well as during space missions. Today, the usage of CU in the extreme emergency setting is more likely to occur, as this technique proved to be a fast diagnostic tool to assist resuscitation manoeuvres and interventional procedures in many cases. A scientific literature review is presented here. This was based on a systematic search of published literature, on the following online databases: PubMed and Scopus. The following words were used: “chest sonography,” “ thoracic ultrasound,” and “lung sonography,” in different combinations with “extreme sport,” “extreme environment,” “wilderness,” “catastrophe,” and “extreme conditions.” This manuscript reports the most relevant usages of CU in the extreme setting as well as technological improvements and current limitations. CU application in the extreme setting is further encouraged here. PMID:29736195
Social response to technological disaster: the accident at Three Mile Island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, B.B.
1984-01-01
Until recently the sociological study of man environment relations under extreme circumstances has been restricted to natural hazards (e.g., floods, hurricanes, tornadoes). Technological disasters are becoming more commonplace (e.g., Times Beach, MO, Love Canal, TMI-2) and are growing as potential sources of impact upon human populations. However, theory regarding the social impact of such disasters has not been developed. While research on natural disasters is in part applicable to technological disasters, theory adapted from environmental sociology and psychology are also utilized to develop a theory of social response to extreme environmental events produced by technology. Hypotheses are developed in themore » form of an empirically testable model based on the literature reviewed.« less
[Climate change - physical and mental consequences].
Bunz, Maxie; Mücke, Hans-Guido
2017-06-01
Climate change has already had a large influence on the human environmental system and directly or indirectly affects physical and mental health. Triggered by extreme meteorological conditions, for example, storms, floods, earth slides and heat periods, the direct consequences range from illnesses to serious accidents with injuries, or in extreme cases fatalities. Indirectly, a changed environment due to climate change affects, amongst other things, the cardiovascular system and respiratory tract, and can also cause allergies and infectious diseases. In addition, increasing confrontation with environmental impacts may cause negative psychological effects such as posttraumatic stress disorders and anxiety, but also aggression, distress and depressive symptoms. The extent and severity of the health consequences depend on individual pre-disposition, resilience, behaviour and adaptation.
Swimming against the tide: resilience of a riverine turtle to recurrent extreme environmental events
Jergenson, Abigail M.; Miller, David A. W.; Neuman-Lee, Lorin A.; Warner, Daniel A.; Janzen, Fredric J.
2014-01-01
Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles (Chrysemys picta) that experienced seven years with significantly definable spring floods. We used capture–mark–recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. picta exhibit resiliency to key EEE, which are expected to increase in frequency under climate change. PMID:24621555
Gorey, Kevin M; Haji-Jama, Sundus; Bartfay, Emma; Luginaah, Isaac N; Wright, Frances C; Kanjeekal, Sindu M
2014-03-22
Despite evidence of chemotherapy's ability to cure or comfort those with colon cancer, nearly half of such Americans do not receive it. African Americans (AA) seem particularly disadvantaged. An ethnicity by poverty by health insurance interaction was hypothesized such that the multiplicative disadvantage of being extremely poor and inadequately insured is worse for AAs than for non-Hispanic white Americans (NHWA). California registry data were analyzed for 459 AAs and 3,001 NHWAs diagnosed with stage II to IV colon cancer between 1996 and 2000 and followed until 2011. Socioeconomic data from the 2000 census categorized neighborhoods: extremely poor (≥ 30% of households poor), middle (5-29% poor) and low poverty (< 5% poor). Participants were randomly selected from these poverty strata. Primary health insurers were Medicaid, Medicare, private or none. Chemotherapy rates were age and stage-adjusted and comparisons used standardized rate ratios (RR). Logistic and Cox regressions, respectively, modeled chemotherapy receipt and long term survival. A significant 3-way ethnicity by poverty by health insurance interaction effect on chemotherapy receipt was observed. Among those who did not live in extremely poor neighborhoods and were adequately insured privately or by Medicare, chemotherapy rates did not differ significantly between AAs (37.7%) and NHWAs (39.5%). Among those who lived in extremely poor neighborhoods and were inadequately insured by Medicaid or uninsured, AAs (14.6%) were nearly 60% less likely to receive chemotherapy than were NHWAs (25.5%, RR = 0.41). When the 3-way interaction effect as well as the main effects of poverty, health insurance and chemotherapy was accounted for, survival rates of AAs and NHWAs were the same. The multiplicative barrier to colon cancer care that results from being extremely poor and inadequately insured is worse for AAs than it is for NHWAs. AAs are more prevalently poor, inadequately insured, and have fewer assets so they are probably less able to absorb the indirect and direct, but uncovered, costs of colon cancer care. Policy makers ought to be cognizant of these factors as they implement the Affordable Care Act and consider future health care reforms.
Assessing Multiple Choice Question (MCQ) Tests--A Mathematical Perspective
ERIC Educational Resources Information Center
Scharf, Eric M.; Baldwin, Lynne P.
2007-01-01
The reasoning behind popular methods for analysing the raw data generated by multiple choice question (MCQ) tests is not always appreciated, occasionally with disastrous results. This article discusses and analyses three options for processing the raw data produced by MCQ tests. The article shows that one extreme option is not to penalize a…
Normalization Ridge Regression in Practice II: The Estimation of Multiple Feedback Linkages.
ERIC Educational Resources Information Center
Bulcock, J. W.
The use of the two-stage least squares (2 SLS) procedure for estimating nonrecursive social science models is often impractical when multiple feedback linkages are required. This is because 2 SLS is extremely sensitive to multicollinearity. The standard statistical solution to the multicollinearity problem is a biased, variance reduced procedure…
Simulations of buoyancy-generated horizontal roll vortices over multiple heating lines
W.E. Heilman
1994-01-01
A two-dimensional nonhydrostatic atmospheric model is used to simulate the boundary-layer circulations that develop from multiple lines of extremely high surface temperatures. Numerical simulations are carried out to investigate the role of buoyancy and ambient crossflow effects in generating horizontal roll vortices in the vicinity of adjacent wildland fire perimeters...
New perspective on single-radiator multiple-port antennas for adaptive beamforming applications.
Byun, Gangil; Choo, Hosung
2017-01-01
One of the most challenging problems in recent antenna engineering fields is to achieve highly reliable beamforming capabilities in an extremely restricted space of small handheld devices. In this paper, we introduce a new perspective on single-radiator multiple-port (SRMP) antenna to alter the traditional approach of multiple-antenna arrays for improving beamforming performances with reduced aperture sizes. The major contribution of this paper is to demonstrate the beamforming capability of the SRMP antenna for use as an extremely miniaturized front-end component in more sophisticated beamforming applications. To examine the beamforming capability, the radiation properties and the array factor of the SRMP antenna are theoretically formulated for electromagnetic characterization and are used as complex weights to form adaptive array patterns. Then, its fundamental performance limits are rigorously explored through enumerative studies by varying the dielectric constant of the substrate, and field tests are conducted using a beamforming hardware to confirm the feasibility. The results demonstrate that the new perspective of the SRMP antenna allows for improved beamforming performances with the ability of maintaining consistently smaller aperture sizes compared to the traditional multiple-antenna arrays.
SYSTEMATIC PROCEDURE FOR DESIGNING PROCESSES WITH MULTIPLE ENVIRONMENTAL OBJECTIVES
Evaluation of multiple objectives is very important in designing environmentally benign processes. It requires a systematic procedure for solving multiobjective decision-making problems, due to the complex nature of the problems, the need for complex assessments, and complicated ...
Multiple environmental contexts and preterm birth risks
Human health is affected by simultaneous exposure to numerous stressors and amenities, but research often focuses on single exposure models. To address this, a United States county-level Multiple Environmental Domain Index (MEDI) was constructed with data representing five envir...
Kerry, Ruth; Goovaerts, Pierre; Smit, Izak P.J.; Ingram, Ben R.
2015-01-01
Kruger National Park (KNP), South Africa, provides protected habitats for the unique animals of the African savannah. For the past 40 years, annual aerial surveys of herbivores have been conducted to aid management decisions based on (1) the spatial distribution of species throughout the park and (2) total species populations in a year. The surveys are extremely time consuming and costly. For many years, the whole park was surveyed, but in 1998 a transect survey approach was adopted. This is cheaper and less time consuming but leaves gaps in the data spatially. Also the distance method currently employed by the park only gives estimates of total species populations but not their spatial distribution. We compare the ability of multiple indicator kriging and area-to-point Poisson kriging to accurately map species distribution in the park. A leave-one-out cross-validation approach indicates that multiple indicator kriging makes poor estimates of the number of animals, particularly the few large counts, as the indicator variograms for such high thresholds are pure nugget. Poisson kriging was applied to the prediction of two types of abundance data: spatial density and proportion of a given species. Both Poisson approaches had standardized mean absolute errors (St. MAEs) of animal counts at least an order of magnitude lower than multiple indicator kriging. The spatial density, Poisson approach (1), gave the lowest St. MAEs for the most abundant species and the proportion, Poisson approach (2), did for the least abundant species. Incorporating environmental data into Poisson approach (2) further reduced St. MAEs. PMID:25729318
Kerry, Ruth; Goovaerts, Pierre; Smit, Izak P J; Ingram, Ben R
Kruger National Park (KNP), South Africa, provides protected habitats for the unique animals of the African savannah. For the past 40 years, annual aerial surveys of herbivores have been conducted to aid management decisions based on (1) the spatial distribution of species throughout the park and (2) total species populations in a year. The surveys are extremely time consuming and costly. For many years, the whole park was surveyed, but in 1998 a transect survey approach was adopted. This is cheaper and less time consuming but leaves gaps in the data spatially. Also the distance method currently employed by the park only gives estimates of total species populations but not their spatial distribution. We compare the ability of multiple indicator kriging and area-to-point Poisson kriging to accurately map species distribution in the park. A leave-one-out cross-validation approach indicates that multiple indicator kriging makes poor estimates of the number of animals, particularly the few large counts, as the indicator variograms for such high thresholds are pure nugget. Poisson kriging was applied to the prediction of two types of abundance data: spatial density and proportion of a given species. Both Poisson approaches had standardized mean absolute errors (St. MAEs) of animal counts at least an order of magnitude lower than multiple indicator kriging. The spatial density, Poisson approach (1), gave the lowest St. MAEs for the most abundant species and the proportion, Poisson approach (2), did for the least abundant species. Incorporating environmental data into Poisson approach (2) further reduced St. MAEs.
NASA Astrophysics Data System (ADS)
Mao, W.; Sun, Z.; Felton, A. J.; Zhao, X.; Zhang, T.; Li, Y.; Smith, M. D.
2017-12-01
We used the method of `niche hypervolume' to study how plant communities accommodate extreme environmental changes. Due to the gradual decreases in precipitation, the desert-steppe ecotone in western of Inner Mongolia, an already arid region, has large shifts in species composition within short geographical ranges. Based on precipitation and species composition, we divided this study area into four categories: desert area (D), partial desert area (pD), partial steppe area (pS) and steppe area(S). We sampled along a climatic gradient of precipitation. We selected four transects, in each transect 100-125 quadrats were randomly selected, with 425 quadrats sampled in total. We assessed species composition of each sampling quadrat, and collected leaves of every species that appeared in every quadrat. We also studied the change of plant community weighted means of leaf traits (CWM) along the precipitation gradient. Leaf traits (phenotypic traits, i.e. SLA, LDMC and stoichiometry traits, i.e. LNC, LCC) were used to calculate the changes in `niche hypervolume'. Our results show that: 1) with decreases in precipitation, species richness and functional group types (PFTs) change. Species richness and functional groups were the highest in the pD area, while the species richness and functional groups in the desert area were the lowest. 2), CWM-SLA in the desert area was relatively small, while CWM-SLA in pD area, the pS area, and the steppe area are more similar. CWM-LNC decreases as precipitation decreases, consistent with CWM-LCC trends. While CWM-LDMC of the desert area was the highest, and CWM-LDMC in desert area was the lowest. The dynamics of CWM traits suggests that species in the desert region have slower growth rates, while species in the transitional zone and steppe area have relatively higher growth rates. Finally, the pD area had the highest niche hypervolume, while the steppe area had the lowest hypervolume, which may be closely related to the high level of PFTs. These results suggest that even in drought-prone ecosystems, plants yield multiple life strategies to adapt to stressful environments. While under extreme drought conditions, environmental filters will remove species with unsuitable traits, like perennial species in this study, leaving shrubs and other drought tolerant species to survive.
NASA Astrophysics Data System (ADS)
Wang, Cailin; Ren, Xuehui; Li, Ying
2017-04-01
We defined the threshold of extreme precipitation using detrended fluctuation analysis based on daily precipitation during 1955-2013 in Kuandian County, Liaoning Province. Three-dimensional copulas were introduced to analyze the characteristics of four extreme precipitation factors: the annual extreme precipitation day, extreme precipitation amount, annual average extreme precipitation intensity, and extreme precipitation rate of contribution. The results show that (1) the threshold is 95.0 mm, extreme precipitation events generally occur 1-2 times a year, the average extreme precipitation intensity is 100-150 mm, and the extreme precipitation amount is 100-270 mm accounting for 10 to 37 % of annual precipitation. (2) The generalized extreme value distribution, extreme value distribution, and generalized Pareto distribution are suitable for fitting the distribution function for each element of extreme precipitation. The Ali-Mikhail-Haq (AMH) copula function reflects the joint characteristics of extreme precipitation factors. (3) The return period of the three types has significant synchronicity, and the joint return period and co-occurrence return period have long delay when the return period of the single factor is long. This reflects the inalienability of extreme precipitation factors. The co-occurrence return period is longer than that of the single factor and joint return period. (4) The single factor fitting only reflects single factor information of extreme precipitation but is unrelated to the relationship between factors. Three-dimensional copulas represent the internal information of extreme precipitation factors and are closer to the actual. The copula function is potentially widely applicable for the multiple factors of extreme precipitation.
Environmental hazards, hot, cold, altitude, and sun.
Dhillon, Sundeep
2012-09-01
There has been an increase in both recreational and adventure travel to extreme environments. Humans can successfully acclimatize to and perform reasonably well in extreme environments, provided that sufficient time is given for acclimatization (where possible) and that they use appropriate behavior. This is aided by a knowledge of the problems likely to be encountered and their prevention, recognition, and treatment. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Survival in extreme environments - on the current knowledge of adaptations in tardigrades.
Møbjerg, N; Halberg, K A; Jørgensen, A; Persson, D; Bjørn, M; Ramløv, H; Kristensen, R M
2011-07-01
Tardigrades are microscopic animals found worldwide in aquatic as well as terrestrial ecosystems. They belong to the invertebrate superclade Ecdysozoa, as do the two major invertebrate model organisms: Caenorhabditis elegans and Drosophila melanogaster. We present a brief description of the tardigrades and highlight species that are currently used as models for physiological and molecular investigations. Tardigrades are uniquely adapted to a range of environmental extremes. Cryptobiosis, currently referred to as a reversible ametabolic state induced by e.g. desiccation, is common especially among limno-terrestrial species. It has been shown that the entry and exit of cryptobiosis may involve synthesis of bioprotectants in the form of selective carbohydrates and proteins as well as high levels of antioxidant enzymes and other free radical scavengers. However, at present a general scheme of mechanisms explaining this phenomenon is lacking. Importantly, recent research has shown that tardigrades even in their active states may be extremely tolerant to environmental stress, handling extreme levels of ionizing radiation, large fluctuation in external salinity and avoiding freezing by supercooling to below -20 °C, presumably relying on efficient DNA repair mechanisms and osmoregulation. This review summarizes the current knowledge on adaptations found among tardigrades, and presents new data on tardigrade cell numbers and osmoregulation. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.
Barshis, D.J.; Stillman, J.H.; Gates, R.D.; Toonen, R.J.; Smith, L.W.; Birkeland, C.
2010-01-01
The degree to which coral reef ecosystems will be impacted by global climate change depends on regional and local differences in corals' susceptibility and resilience to environmental stressors. Here, we present data from a reciprocal transplant experiment using the common reef building coral Porites lobata between a highly fluctuating back reef environment that reaches stressful daily extremes, and a more stable, neighbouring forereef. Protein biomarker analyses assessing physiological contributions to stress resistance showed evidence for both fixed and environmental influence on biomarker response. Fixed influences were strongest for ubiquitin-conjugated proteins with consistently higher levels found in back reef source colonies both pre and post-transplant when compared with their forereef conspecifics. Additionally, genetic comparisons of back reef and forereef populations revealed significant population structure of both the nuclear ribosomal and mitochondrial genomes of the coral host (FST = 0.146 P < 0.0001, FST = 0.335 P < 0.0001 for rDNA and mtDNA, respectively), whereas algal endosymbiont populations were genetically indistinguishable between the two sites. We propose that the genotype of the coral host may drive limitations to the physiological responses of these corals when faced with new environmental conditions. This result is important in understanding genotypic and environmental interactions in the coral algal symbiosis and how corals may respond to future environmental changes. ?? 2010 Blackwell Publishing Ltd.
Marathe, Nachiket P; Regina, Viduthalai R; Walujkar, Sandeep A; Charan, Shakti Singh; Moore, Edward R B; Larsson, D G Joakim; Shouche, Yogesh S
2013-01-01
The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into the mechanisms behind and the extent of multi-drug resistance among bacteria living under an extreme antibiotic selection pressure.
Walujkar, Sandeep A.; Charan, Shakti Singh; Moore, Edward R. B.; Larsson, D. G. Joakim; Shouche, Yogesh S.
2013-01-01
The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into the mechanisms behind and the extent of multi-drug resistance among bacteria living under an extreme antibiotic selection pressure. PMID:24204801
Extremely weak magnetic field exposure may inhibit hippocampal neurogenesis of Sprague Dawley rats
NASA Astrophysics Data System (ADS)
Zhang, B.; Tian, L.; Cai, Y.; Xu, H.; Pan, Y.
2016-12-01
Hippocampal neurogenesis occurs throughout life in mammals brains and can be influenced by animals' age as well as environmental factors. Lines of evidences have shown that the magnetic field is an important physics environmental factor influencing many animals' growth and development, and extremely weak magnetic field exposures have been proved having serious adverse effects on the metabolism and behaviors in some animals, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we experimentally examined the extremely weak magnetic field effects on neurogenesis of the dentate gyrus (DG) of hippocampus of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, an extremely weak magnetic field (≤ 0.5μT) and the geomagnetic fields (strength 31-58μT) as controls. Thirty-two SD rats (3-weeks old) were used in this study. New cell survival in hippocampus was assessed at 0, 14, 28, and 42 days after a 7-day intraperitoneal injections of 5-bromo-2'-deoxyuridine (BrdU). Meanwhile, the amounts of immature neurons and mature neurons which are both related to hippocampal neurogenesis, as documented by labeling with doublecortin (DCX) and neuron (NeuN), respectively, were also analyzed at 0, 14, 28, and 42 days. Compared with geomagnetic field exposure groups, numbers of BrdU-, DCX-positive cells of DG of hippocampus in tested rats reduces monotonously and more rapidly after 14 days, and NeuN-positive cells significantly decreases after 28days when exposed in the extremely weak magnetic field condition. Our data suggest that the exposure to an extremely weak magnetic field may suppress the neurogenesis in DG of SD rats.
The role of transcriptome resilience in resistance of corals to bleaching.
Seneca, Francois O; Palumbi, Stephen R
2015-04-01
Wild populations increasingly experience extreme conditions as climate change amplifies environmental variability. How individuals respond to environmental extremes determines the impact of climate change overall. The variability of response from individual to individual can represent the opportunity for natural selection to occur as a result of extreme conditions. Here, we experimentally replicated the natural exposure to extreme temperatures of the reef lagoon at Ofu Island (American Samoa), where corals can experience severe heat stress during midday low tide. We investigated the bleaching and transcriptome response of 20 Acropora hyacinthus colonies 5 and 20 h after exposure to control (29 °C) or heated (35 °C) conditions. We found a highly dynamic transcriptome response: 27% of the coral transcriptome was significantly regulated 1 h postheat exposure. Yet 15 h later, when heat-induced coral bleaching became apparent, only 12% of the transcriptome was differentially regulated. A large proportion of responsive genes at the first time point returned to control levels, others remained differentially expressed over time, while an entirely different subset of genes was successively regulated at the second time point. However, a noteworthy variability in gene expression was observed among individual coral colonies. Among the genes of which expression lingered over time, fast return to normal levels was associated with low bleaching. Colonies that maintained higher expression levels of these genes bleached severely. Return to normal levels of gene expression after stress has been termed transcriptome resilience, and in the case of some specific genes may signal the physiological health and response ability of individuals to environmental stress. © 2015 John Wiley & Sons Ltd.
Bereciartua, P J
2005-01-01
There is evidence of the increasing economic losses from extreme natural events during the last decades. These facts, thought to be triggered by environmental changes coupled with inefficient management and policies, highlight particularly exposed and vulnerable regions worldwide. Argentina faces several challenges associated with global environmental change and climate variability, especially related to water resources management including extreme floods and droughts. At the same time, the country's production capacity (i.e. natural resource-based commodities) and future development opportunities are closely tied to the sustainable development of its natural resource endowments. Given that vulnerability is registered not only by exposure to hazards (perturbations and stresses), but also resides in the sensitivity and resilience of the system experiencing such hazards, Argentina will need to improve its water management capacities to reduce its vulnerability to climate variability and change. This paper presents the basic components of the vulnerability analysis and suggests how it can be used to define efficient water management options.
Ivankovic, Tomislav; Hrenovic, Jasna; Matonickin-Kepcija, Renata
2013-01-01
Extreme environmental conditions, such as pH fluctuations, high concentrations of toxicants or grazing of protozoa, can potentially be found in wastewater treatment systems. This study was carried out to provide specific evidence on how 'bioparticles' can resist these conditions. The term 'bioparticle' is used to describe a particle comprising natural zeolitized tuff with a developed biofilm of the phosphate-accumulating bacterial species, Acinetobacter junii, on the surface. The bacteria in the biofilm were protected from the negative influence of extremely low pH, high concentrations of benzalkonium-chloride and grazing by Paramecium caudatum and Euplotes affinis, even under conditions that caused complete eradication of planktonic bacteria. During an incubation of 24 h, the biofilms were maintained and bacteria detached from the bioparticles, thus bioaugmenting the wastewater. The bioparticles provided a safe environment for the survival of bacteria in harsh environmental conditions and could be used for successful bioaugmentation in wastewater treatment plants.
Environmental Testing in Thermal Vacuum Chamber
NASA Technical Reports Server (NTRS)
2007-01-01
Inside a thermal vacuum at Lockheed Martin Space Systems, Denver, technicians prepare NASA's Phoenix Mars Lander for environmental testing. The Phoenix lander was encapsulated in its aeroshell -- which included both the back shell and heat shield -- as it was subjected to extreme cold and heat in a vacuum, space-like condition. The spacecraft undergoes extensive environmental testing to confirm Phoenix will perform in the extreme conditions it will experience during its trip from Earth to Mars, during its arrival and landing, and while it works on the surface of Mars. The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.Evangelista, Cláudia Carolina Silva; Guidelli, Giovanna Vieira; Borges, Gustavo; Araujo, Thais Fenz; de Souza, Tiago Alves Jorge; Neves, Ubiraci Pereira da Costa; Tunnacliffe, Alan; Pereira, Tiago Campos
2017-01-01
Abstract The molecular basis of anhydrobiosis, the state of suspended animation entered by some species during extreme desiccation, is still poorly understood despite a number of transcriptome and proteome studies. We therefore conducted functional screening by RNA interference (RNAi) for genes involved in anhydrobiosis in the holo-anhydrobiotic nematode Panagrolaimus superbus. A new method of survival analysis, based on staining, and proof-of-principle RNAi experiments confirmed a role for genes involved in oxidative stress tolerance, while a novel medium-scale RNAi workflow identified a further 40 anhydrobiosis-associated genes, including several involved in proteostasis, DNA repair and signal transduction pathways. This suggests that multiple genes contribute to anhydrobiosis in P. superbus. PMID:29111563
NASA Astrophysics Data System (ADS)
Shaaban, Rana; Faruque, Saleh
2018-01-01
Light emitting diodes - LEDs are modernizing the indoor illumination and replacing current incandescent and fluorescent lamps rapidly. LEDs have multiple advantages such as extremely high energy efficient, longer lifespan, and lower heat generation. Due to the ability to switch to different light intensity at a very fast rate, LED has given rise to a unique communication technology (visible light communication - VLC) used for high speed data transmission. By studying various kinds of commonly used VLC channel analysis: diffuse and line of sight channels, we presented a simply improved indoor and intra-vehicle visible light communication transmission model. Employing optical wireless communications within the vehicle, not only enhance user mobility, but also alleviate radio frequency interference, and increase efficiency by lowering the complexity of copper cabling. Moreover, a solution to eliminate ambient noise caused by environmental conditions is examined by using optical differential receiver. The simulation results show the improved received power distribution and signal to noise ratio - SNR.
A Pareto analysis approach to assess relevant marginal CO{sub 2} footprint for petroleum products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tehrani, Nejad M. Alireza, E-mail: alireza.tehraninejad@gmail.com
2015-07-15
Recently, linear programing (LP) models have been extended to track the marginal CO{sub 2} intensity of automotive fuels at the refinery gate. The obtained CO{sub 2} data are recommended for policy making because they capture the economic and environmental tensions as well as the processing effects related to oil products. However, they are proven to be extremely sensitive to small perturbations and therefore useless in practice. In this paper, we first investigate the theoretical reasons of this drawback. Then, we develop a multiple objective LP framework to assess relevant marginal CO{sub 2} footprints that preserve both defensibility and stability atmore » a satisfactory level of acceptance. A case study illustrates this new methodology. - Highlights: • Refining LP models have limitations to provide useful marginal CO{sub 2} footprints. • A multi objective optimization framework is developed to assess relevant CO{sub 2} data. • Within a European Refinig industry, diesel is more CO{sub 2} intensive than gasoline.« less
Parham, Paul E.; Waldock, Joanna; Christophides, George K.; Hemming, Deborah; Agusto, Folashade; Evans, Katherine J.; Fefferman, Nina; Gaff, Holly; Gumel, Abba; LaDeau, Shannon; Lenhart, Suzanne; Mickens, Ronald E.; Naumova, Elena N.; Ostfeld, Richard S.; Ready, Paul D.; Thomas, Matthew B.; Velasco-Hernandez, Jorge; Michael, Edwin
2015-01-01
Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is owing not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but also, perhaps most crucially, to the multitude of epidemiological, ecological and socio-economic factors that drive VBD transmission, and this complexity has generated considerable debate over the past 10–15 years. In this review, we seek to elucidate current knowledge around this topic, identify key themes and uncertainties, evaluate ongoing challenges and open research questions and, crucially, offer some solutions for the field. Although many of these challenges are ubiquitous across multiple VBDs, more specific issues also arise in different vector–pathogen systems. PMID:25688012
Gilbertson, Robert L; Batuman, Ozgur; Webster, Craig G; Adkins, Scott
2015-11-01
Emergence of insect-transmitted plant viruses over the past 10-20 years has been disproportionately driven by two so-called supervectors: the whitefly, Bemisia tabaci, and the Western flower thrips, Frankliniella occidentalis. High rates of reproduction and dispersal, extreme polyphagy, and development of insecticide resistance, together with human activities, have made these insects global pests. These supervectors transmit a diversity of plant viruses by different mechanisms and mediate virus emergence through local evolution, host shifts, mixed infections, and global spread. Associated virus evolution involves reassortment, recombination, and component capture. Emergence of B. tabaci-transmitted geminiviruses (begomoviruses), ipomoviruses, and torradoviruses has led to global disease outbreaks as well as multiple paradigm shifts. Similarly, F. occidentalis has mediated tospovirus host shifts and global dissemination and the emergence of pollen-transmitted ilarviruses. The plant virus-supervector interaction offers exciting opportunities for basic research and global implementation of generalized disease management strategies to reduce economic and environmental impacts.
Network-Based Approaches in Drug Discovery and Early Development
Harrold, JM; Ramanathan, M; Mager, DE
2015-01-01
Identification of novel targets is a critical first step in the drug discovery and development process. Most diseases such as cancer, metabolic disorders, and neurological disorders are complex, and their pathogenesis involves multiple genetic and environmental factors. Finding a viable drug target–drug combination with high potential for yielding clinical success within the efficacy–toxicity spectrum is extremely challenging. Many examples are now available in which network-based approaches show potential for the identification of novel targets and for the repositioning of established targets. The objective of this article is to highlight network approaches for identifying novel targets with greater chances of gaining approved drugs with maximal efficacy and minimal side effects. Further enhancement of these approaches may emerge from effectively integrating computational systems biology with pharmacodynamic systems analysis. Coupling genomics, proteomics, and metabolomics databases with systems pharmacology modeling may aid in the development of disease-specific networks that can be further used to build confidence in target identification. PMID:24025802
A SYSTEMATIC PROCEDURE FOR DESIGNING PROCESSES WITH MULTIPLE ENVIRONMENTAL OBJECTIVES
Evaluation and analysis of multiple objectives are very important in designing environmentally benign processes. They require a systematic procedure for solving multi-objective decision-making problems due to the complex nature of the problems and the need for complex assessment....
A Weight of Evidence Framework for Environmental Assessments: Inferring Quantities
Environmental assessments require the generation of quantitative parameters such as degradation rates and assessment products may be quantities such as criterion values or magnitudes of effects. When multiple data sets or outputs of multiple models are available, it may be appro...
Autoantigen cross-reactive environmental antigen can trigger multiple sclerosis-like disease.
Reynolds, Catherine J; Sim, Malcolm J W; Quigley, Kathryn J; Altmann, Daniel M; Boyton, Rosemary J
2015-05-13
Multiple sclerosis is generally considered an autoimmune disease resulting from interaction between predisposing genes and environmental factors, together allowing immunological self-tolerance to be compromised. The precise nature of the environmental inputs has been elusive, infectious agents having received considerable attention. A recent study generated an algorithm predicting naturally occurring T cell receptor (TCR) ligands from the proteome database. Taking the example of a multiple sclerosis patient-derived anti-myelin TCR, the study identified a number of stimulatory, cross-reactive peptide sequences from environmental and human antigens. Having previously generated a spontaneous multiple sclerosis (MS) model through expression of this TCR, we asked whether any of these could indeed function in vivo to trigger CNS disease by cross-reactive activation. A number of myelin epitope cross-reactive epitopes could stimulate T cell immunity in this MS anti-myelin TCR transgenic model. Two of the most stimulatory of these 'environmental' epitopes, from Dictyostyelium slime mold and from Emiliania huxleyi, were tested for the ability to induce MS-like disease in the transgenics. We found that immunization with cross-reactive peptide from Dictyostyelium slime mold (but not from E. huxleyi) induces severe disease. These specific environmental epitopes are unlikely to be common triggers of MS, but this study suggests that our search for the cross-reactivity triggers of autoimmune activation leading to MS should encompass epitopes not just from the 'infectome' but also from the full environmental 'exposome.'
Lopez, David H.; Rabbani, Michael R.; Crosbie, Ewan; Raman, Aishwarya; Arellano, Avelino F.; Sorooshian, Armin
2016-01-01
This study uses more than a decade’s worth of data across Arizona to characterize the spatiotemporal distribution, frequency, and source of extreme aerosol events, defined as when the concentration of a species on a particular day exceeds that of the average plus two standard deviations for that given month. Depending on which of eight sites studied, between 5% and 7% of the total days exhibited an extreme aerosol event due to either extreme levels of PM10, PM2.5, and/or fine soil. Grand Canyon exhibited the most extreme event days (120, i.e., 7% of its total days). Fine soil is the pollutant type that most frequently impacted multiple sites at once at an extreme level. PM10, PM2.5, fine soil, non-Asian dust, and Elemental Carbon extreme events occurred most frequently in August. Nearly all Asian dust extreme events occurred between March and June. Extreme Elemental Carbon events have decreased as a function of time with statistical significance, while other pollutant categories did not show any significant change. Extreme events were most frequent for the various pollutant categories on either Wednesday or Thursday, but there was no statistically significant difference in the number of events on any particular day or on weekends versus weekdays. PMID:27088005
Reliability testing across the Environmental Quality Index and national environmental indices.
One challenge in environmental epidemiology is the exploration of cumulative environmental exposure across multiple domains (e.g. air, water, land). The Environmental Quality Index (EQI), created by the U.S. EPA, uses principle component analyses combining environmental domains (...
Comparing regional precipitation and temperature extremes in climate model and reanalysis products
Angélil, Oliver; Perkins-Kirkpatrick, Sarah; Alexander, Lisa V.; ...
2016-07-12
A growing field of research aims to characterise the contribution of anthropogenic emissions to the likelihood of extreme weather and climate events. These analyses can be sensitive to the shapes of the tails of simulated distributions. If tails are found to be unrealistically short or long, the anthropogenic signal emerges more or less clearly, respectively, from the noise of possible weather. Here we compare the chance of daily land-surface precipitation and near-surface temperature extremes generated by three Atmospheric Global Climate Models typically used for event attribution, with distributions from six reanalysis products. The likelihoods of extremes are compared for area-averagesmore » over grid cell and regional sized spatial domains. Results suggest a bias favouring overly strong attribution estimates for hot and cold events over many regions of Africa and Australia, and a bias favouring overly weak attribution estimates over regions of North America and Asia. For rainfall, results are more sensitive to geographic location. Although the three models show similar results over many regions, they do disagree over others. Equally, results highlight the discrepancy amongst reanalyses products. This emphasises the importance of using multiple reanalysis and/or observation products, as well as multiple models in event attribution studies.« less
Pediatric Multiple Sclerosis: Genes, Environment, and a Comprehensive Therapeutic Approach.
Cappa, Ryan; Theroux, Liana; Brenton, J Nicholas
2017-10-01
Pediatric multiple sclerosis is an increasingly recognized and studied disorder that accounts for 3% to 10% of all patients with multiple sclerosis. The risk for pediatric multiple sclerosis is thought to reflect a complex interplay between environmental and genetic risk factors. Environmental exposures, including sunlight (ultraviolet radiation, vitamin D levels), infections (Epstein-Barr virus), passive smoking, and obesity, have been identified as potential risk factors in youth. Genetic predisposition contributes to the risk of multiple sclerosis, and the major histocompatibility complex on chromosome 6 makes the single largest contribution to susceptibility to multiple sclerosis. With the use of large-scale genome-wide association studies, other non-major histocompatibility complex alleles have been identified as independent risk factors for the disease. The bridge between environment and genes likely lies in the study of epigenetic processes, which are environmentally-influenced mechanisms through which gene expression may be modified. This article will review these topics to provide a framework for discussion of a comprehensive approach to counseling and ultimately treating the pediatric patient with multiple sclerosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Text Mining to inform construction of Earth and Environmental Science Ontologies
NASA Astrophysics Data System (ADS)
Schildhauer, M.; Adams, B.; Rebich Hespanha, S.
2013-12-01
There is a clear need for better semantic representation of Earth and environmental concepts, to facilitate more effective discovery and re-use of information resources relevant to scientists doing integrative research. In order to develop general-purpose Earth and environmental science ontologies, however, it is necessary to represent concepts and relationships that span usage across multiple disciplines and scientific specialties. Traditional knowledge modeling through ontologies utilizes expert knowledge but inevitably favors the particular perspectives of the ontology engineers, as well as the domain experts who interacted with them. This often leads to ontologies that lack robust coverage of synonymy, while also missing important relationships among concepts that can be extremely useful for working scientists to be aware of. In this presentation we will discuss methods we have developed that utilize statistical topic modeling on a large corpus of Earth and environmental science articles, to expand coverage and disclose relationships among concepts in the Earth sciences. For our work we collected a corpus of over 121,000 abstracts from many of the top Earth and environmental science journals. We performed latent Dirichlet allocation topic modeling on this corpus to discover a set of latent topics, which consist of terms that commonly co-occur in abstracts. We match terms in the topics to concept labels in existing ontologies to reveal gaps, and we examine which terms are commonly associated in natural language discourse, to identify relationships that are important to formally model in ontologies. Our text mining methodology uncovers significant gaps in the content of some popular existing ontologies, and we show how, through a workflow involving human interpretation of topic models, we can bootstrap ontologies to have much better coverage and richer semantics. Because we base our methods directly on what working scientists are communicating about their research, it gives us an alternative bottom-up approach to populating and enriching ontologies, that complements more traditional knowledge modeling endeavors.
Yang, Jie; Wang, Zhen Long; Zhao, Xin Quan; Wang, De Peng; Qi, De Lin; Xu, Bao Hong; Ren, Yong Hong; Tian, Hui Fang
2008-01-01
Background Environmental stress can accelerate the evolutionary rate of specific stress-response proteins and create new functions specialized for different environments, enhancing an organism's fitness to stressful environments. Pikas (order Lagomorpha), endemic, non-hibernating mammals in the modern Holarctic Region, live in cold regions at either high altitudes or high latitudes and have a maximum distribution of species diversification confined to the Qinghai-Tibet Plateau. Variations in energy metabolism are remarkable for them living in cold environments. Leptin, an adipocyte-derived hormone, plays important roles in energy homeostasis. Methodology/Principal Findings To examine the extent of leptin variations within the Ochotona family, we cloned the entire coding sequence of pika leptin from 6 species in two regions (Qinghai-Tibet Plateau and Inner Mongolia steppe in China) and the leptin sequences of plateau pikas (O. curzonia) from different altitudes on Qinghai-Tibet Plateau. We carried out both DNA and amino acid sequence analyses in molecular evolution and compared modeled spatial structures. Our results show that positive selection (PS) acts on pika leptin, while nine PS sites located within the functionally significant segment 85-119 of leptin and one unique motif appeared only in pika lineages-the ATP synthase α and β subunit signature site. To reveal the environmental factors affecting sequence evolution of pika leptin, relative rate test was performed in pikas from different altitudes. Stepwise multiple regression shows that temperature is significantly and negatively correlated with the rates of non-synonymous substitution (Ka) and amino acid substitution (Aa), whereas altitude does not significantly affect synonymous substitution (Ks), Ka and Aa. Conclusions/Significance Our findings support the viewpoint that adaptive evolution may occur in pika leptin, which may play important roles in pikas' ecological adaptation to extreme environmental stress. We speculate that cold, and probably not hypoxia, may be the primary environmental factor for driving adaptive evolution of pika leptin. PMID:18213380
Benedetti-Cecchi, Lisandro; Canepa, Antonio; Fuentes, Veronica; Tamburello, Laura; Purcell, Jennifer E; Piraino, Stefano; Roberts, Jason; Boero, Ferdinando; Halpin, Patrick
2015-01-01
Jellyfish outbreaks are increasingly viewed as a deterministic response to escalating levels of environmental degradation and climate extremes. However, a comprehensive understanding of the influence of deterministic drivers and stochastic environmental variations favouring population renewal processes has remained elusive. This study quantifies the deterministic and stochastic components of environmental change that lead to outbreaks of the jellyfish Pelagia noctiluca in the Mediterranen Sea. Using data of jellyfish abundance collected at 241 sites along the Catalan coast from 2007 to 2010 we: (1) tested hypotheses about the influence of time-varying and spatial predictors of jellyfish outbreaks; (2) evaluated the relative importance of stochastic vs. deterministic forcing of outbreaks through the environmental bootstrap method; and (3) quantified return times of extreme events. Outbreaks were common in May and June and less likely in other summer months, which resulted in a negative relationship between outbreaks and SST. Cross- and along-shore advection by geostrophic flow were important concentrating forces of jellyfish, but most outbreaks occurred in the proximity of two canyons in the northern part of the study area. This result supported the recent hypothesis that canyons can funnel P. noctiluca blooms towards shore during upwelling. This can be a general, yet unappreciated mechanism leading to outbreaks of holoplanktonic jellyfish species. The environmental bootstrap indicated that stochastic environmental fluctuations have negligible effects on return times of outbreaks. Our analysis emphasized the importance of deterministic processes leading to jellyfish outbreaks compared to the stochastic component of environmental variation. A better understanding of how environmental drivers affect demographic and population processes in jellyfish species will increase the ability to anticipate jellyfish outbreaks in the future.
NASA Astrophysics Data System (ADS)
Zhou, Qianqian; Panduro, Toke Emil; Thorsen, Bo Jellesmark; Arnbjerg-Nielsen, Karsten
2013-03-01
This paper presents a cross-disciplinary framework for assessment of climate change adaptation to increased precipitation extremes considering pluvial flood risk as well as additional environmental services provided by some of the adaptation options. The ability of adaptation alternatives to cope with extreme rainfalls is evaluated using a quantitative flood risk approach based on urban inundation modeling and socio-economic analysis of corresponding costs and benefits. A hedonic valuation model is applied to capture the local economic gains or losses from more water bodies in green areas. The framework was applied to the northern part of the city of Aarhus, Denmark. We investigated four adaptation strategies that encompassed laissez-faire, larger sewer pipes, local infiltration units, and open drainage system in the urban green structure. We found that when taking into account environmental amenity effects, an integration of open drainage basins in urban recreational areas is likely the best adaptation strategy, followed by pipe enlargement and local infiltration strategies. All three were improvements compared to the fourth strategy of no measures taken.
Zhou, Qianqian; Panduro, Toke Emil; Thorsen, Bo Jellesmark; Arnbjerg-Nielsen, Karsten
2013-03-01
This paper presents a cross-disciplinary framework for assessment of climate change adaptation to increased precipitation extremes considering pluvial flood risk as well as additional environmental services provided by some of the adaptation options. The ability of adaptation alternatives to cope with extreme rainfalls is evaluated using a quantitative flood risk approach based on urban inundation modeling and socio-economic analysis of corresponding costs and benefits. A hedonic valuation model is applied to capture the local economic gains or losses from more water bodies in green areas. The framework was applied to the northern part of the city of Aarhus, Denmark. We investigated four adaptation strategies that encompassed laissez-faire, larger sewer pipes, local infiltration units, and open drainage system in the urban green structure. We found that when taking into account environmental amenity effects, an integration of open drainage basins in urban recreational areas is likely the best adaptation strategy, followed by pipe enlargement and local infiltration strategies. All three were improvements compared to the fourth strategy of no measures taken.
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni; Maki, Justin N.; Cucullu, Gordon C.
2008-01-01
Package Qualification and Verification (PQV) of advanced electronic packaging and interconnect technologies and various other types of qualification hardware for the Mars Exploration Rover/Mars Science Laboratory flight projects has been performed to enhance the mission assurance. The qualification of hardware (Engineering Camera and Platinum Resistance Thermometer, PRT) under extreme cold temperatures has been performed with reference to various project requirements. The flight-like packages, sensors, and subassemblies have been selected for the study to survive three times (3x) the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations and mission phases. Qualification has been performed by subjecting above flight-like qual hardware to the environmental temperature extremes and assessing any structural failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Experiments of flight like hardware qualification test results have been described in this paper.
Ji, Eun-Kyu; Lee, Sang-Heon
2016-11-01
[Purpose] The purpose of this study was to investigate the effects of virtual reality training combined with modified constraint-induced movement therapy on upper extremity motor function recovery in acute stage stroke patients. [Subjects and Methods] Four acute stage stroke patients participated in the study. A multiple baseline single subject experimental design was utilized. Modified constraint-induced movement therapy was used according to the EXplaining PLastICITy after stroke protocol during baseline sessions. Virtual reality training with modified constraint-induced movement therapy was applied during treatment sessions. The Manual Function Test and the Box and Block Test were used to measure upper extremity function before every session. [Results] The subjects' upper extremity function improved during the intervention period. [Conclusion] Virtual reality training combined with modified constraint-induced movement is effective for upper extremity function recovery in acute stroke patients.
The Socialization into Criminality: On Becoming a Prisoner and a Guard.
1974-02-15
findings are not unlike those of more contemporary researchers who have found even the most extreme 6 adult behavior like violence and aggression to...tremendous potency of the sit- uation or environmental setting in the control of behavior . It suggests that the causes of even markedly deviant behavior are...impotence, we turn initially to some of the most extreme and regretable forms of behavior which have resulted from institutional socialization outside
A Framework to Understand Extreme Space Weather Event Probability.
Jonas, Seth; Fronczyk, Kassandra; Pratt, Lucas M
2018-03-12
An extreme space weather event has the potential to disrupt or damage infrastructure systems and technologies that many societies rely on for economic and social well-being. Space weather events occur regularly, but extreme events are less frequent, with a small number of historical examples over the last 160 years. During the past decade, published works have (1) examined the physical characteristics of the extreme historical events and (2) discussed the probability or return rate of select extreme geomagnetic disturbances, including the 1859 Carrington event. Here we present initial findings on a unified framework approach to visualize space weather event probability, using a Bayesian model average, in the context of historical extreme events. We present disturbance storm time (Dst) probability (a proxy for geomagnetic disturbance intensity) across multiple return periods and discuss parameters of interest to policymakers and planners in the context of past extreme space weather events. We discuss the current state of these analyses, their utility to policymakers and planners, the current limitations when compared to other hazards, and several gaps that need to be filled to enhance space weather risk assessments. © 2018 Society for Risk Analysis.
Generalist genes and high cognitive abilities.
Haworth, Claire M A; Dale, Philip S; Plomin, Robert
2009-07-01
The concept of generalist genes operating across diverse domains of cognitive abilities is now widely accepted. Much less is known about the etiology of the high extreme of performance. Is there more specialization at the high extreme? Using a representative sample of 4,000 12-year-old twin pairs from the UK Twins Early Development Study, we investigated the genetic and environmental overlap between web-based tests of general cognitive ability, reading, mathematics and language performance for the top 15% of the distribution using DF extremes analysis. Generalist genes are just as evident at the high extremes of performance as they are for the entire distribution of abilities and for cognitive disabilities. However, a smaller proportion of the phenotypic intercorrelations appears to be explained by genetic influences for high abilities.
Generalist genes and high cognitive abilities
Haworth, Claire M.A.; Dale, Philip S.; Plomin, Robert
2014-01-01
The concept of generalist genes operating across diverse domains of cognitive abilities is now widely accepted. Much less is known about the etiology of the high extreme of performance. Is there more specialization at the high extreme? Using a representative sample of 4000 12-year-old twin pairs from the UK Twins Early Development Study, we investigated the genetic and environmental overlap between web-based tests of general cognitive ability, reading, mathematics and language performance for the top 15% of the distribution using DF extremes analysis. Generalist genes are just as evident at the high extremes of performance as they are for the entire distribution of abilities and for cognitive disabilities. However, a smaller proportion of the phenotypic intercorrelations appears to be explained by genetic influences for high abilities. PMID:19377870
Environmental Capability of Liquid Lubricants
NASA Technical Reports Server (NTRS)
Beerbower, A.
1973-01-01
The methods available for predicting the properties of liquid lubricants from their structural formulas are discussed. The methods make it possible to design lubricants by forecasting the results of changing the structure and to determine the limits to which liquid lubricants can cope with environmental extremes. The methods are arranged in order of their thermodynamic properties through empirical physical properties to chemical properties.
Bryan A. Black; Daniel Griffin; Peter van der Sleen; Alan D. Wanamaker; James H. Speer; David C. Frank; David W. Stahle; Neil Pederson; Carolyn A. Copenheaver; Valerie Trouet; Shelly Griffin; Bronwyn M. Gillanders
2016-01-01
High-resolution biogenic and geologic proxies in which one increment or layer is formed per year are crucial to describing natural ranges of environmental variability in Earth's physical and biological systems. However, dating controls are necessary to ensure temporal precision and accuracy; simple counts cannot ensure that all layers are placed correctly in time...
Michael P. Amaranthus
1998-01-01
Ectomycorrhizal fungi (EMF) consist of about 5,000 species and profoundly affect forest ecosystems by mediating nutrient and water uptake, protecting roots from pathogens and environmental extremes, and maintaining soil structure and forest food webs. Diversity of EMF likely aids forest ecosystem resilience in the face of changing environmental factors such as...
Environmental Consequences of Rapid Urbanization in Zhejiang Province, East China
Yang, Xuchao; Yue, Wenze; Xu, Honghui; Wu, Jingsheng; He, Yue
2014-01-01
Since reforms carried out in the late 1970s, China has experienced unprecedented rates of urban growth. Remote sensing data and surface observational data are used to investigate the urbanization process and related environmental consequences, focusing on extreme heat events and air pollution, in Zhejiang Province (ZJP, East China). Examination of satellite-measured nighttime light data indicates rapid urbanization in ZJP during the past decade, initially forming three urban clusters. With rapid urban sprawl, a significant Urban Heat Island (UHI) effect has emerged. During extreme heat events in summer, the UHI effect significantly exacerbates nocturnal heat stress in highly urbanized areas. Taking a long-term view, urbanization also causes additional hot days and hot degree days in urban areas. Urbanization also imposes a heavy burden on local and regional air quality in ZJP. Degraded visibility and an increase in haze days are observed at most meteorological stations, especially in the three urban clusters. The results show that urbanization has led to serious environmental problems in ZJP, not only on the city scale, but also on the regional scale. Maintaining a balance between the continuing process of urbanization and environmental sustainability is a major issue facing the local government. PMID:25019266
Environmental consequences of rapid urbanization in zhejiang province, East china.
Yang, Xuchao; Yue, Wenze; Xu, Honghui; Wu, Jingsheng; He, Yue
2014-07-11
Since reforms carried out in the late 1970s, China has experienced unprecedented rates of urban growth. Remote sensing data and surface observational data are used to investigate the urbanization process and related environmental consequences, focusing on extreme heat events and air pollution, in Zhejiang Province (ZJP, East China). Examination of satellite-measured nighttime light data indicates rapid urbanization in ZJP during the past decade, initially forming three urban clusters. With rapid urban sprawl, a significant Urban Heat Island (UHI) effect has emerged. During extreme heat events in summer, the UHI effect significantly exacerbates nocturnal heat stress in highly urbanized areas. Taking a long-term view, urbanization also causes additional hot days and hot degree days in urban areas. Urbanization also imposes a heavy burden on local and regional air quality in ZJP. Degraded visibility and an increase in haze days are observed at most meteorological stations, especially in the three urban clusters. The results show that urbanization has led to serious environmental problems in ZJP, not only on the city scale, but also on the regional scale. Maintaining a balance between the continuing process of urbanization and environmental sustainability is a major issue facing the local government.
Murphy, Kathleen M; Saunders, Muriel D; Saunders, Richard R; Olswang, Lesley B
2004-01-01
The effects of different types and amounts of environmental stimuli (visual and auditory) on microswitch use and behavioral states of three individuals with profound multiple impairments were examined. The individual's switch use and behavioral states were measured under three setting conditions: natural stimuli (typical visual and auditory stimuli in a recreational situation), reduced visual stimuli, and reduced visual and auditory stimuli. Results demonstrated differential switch use in all participants with the varying environmental setting conditions. No consistent effects were observed in behavioral state related to environmental condition. Predominant behavioral state scores and switch use did not systematically covary with any participant. Results suggest the importance of considering environmental stimuli in relationship to switch use when working with individuals with profound multiple impairments.
Annular lesions of cutaneous sarcoidosis with granulomatous vasculitis.
Mizuno, Kana; Nguyen, Chuyen Thi Hong; Ueda-Hayakawa, Ikuko; Okamoto, Hiroyuki
2017-05-01
Sarcoidosis is known to be involved in diseases with vasculitis as sarcoid vasculitis. However, vasculitis in cutaneous sarcoidal lesions is extremely rare. Here we describe a case of sarcoidosis with multiple annular skin lesions with granulomatous vasculitis. A 62-year-old female was diagnosed with sarcoidosis by chest-abdominal computed tomographic examination and laboratory tests. The skin lesions had appeared on her lower limbs 2 years before. Physical examination showed multiple infiltrated annular eruptions on the lower extremities. A skin biopsy of an area of erythema showed multiple non-caseating epithelioid cell granulomas in the dermis and subcutaneous fat and granulomatous vasculitis with fibrinoid degeneration in the subcutaneous fat. There are two types of vasculitis in sarcoidosis: leukocytoclastic and granulomatous vasculitis. Ulcers and livedo were more common in granulomatous vasculitis than in leukocytoclastic vasculitis. The present case had unique annular skin lesions of sarcoidosis with granulomatous vasculitis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ban, Jie; Huang, Lei; Chen, Chen; Guo, Yuming; He, Mike Z; Li, Tiantian
2017-02-01
The public's risk perception of local extreme heat or cold plays a critical role in community health and prevention under climate change. However, there is limited evidence on such issues in China where extreme weather is occurring more frequently due to climate change. Here, a total of 2500 residents were selected using a three-step sampling method and investigated by a questionnaire in two representative cities. We investigated risk perception of extreme heat in Beijing and extreme cold in Harbin in 2013, aiming to examine their possible correlations with multiple epidemiological factors. We found that exposure, vulnerability, and adaptive ability were significant predictors in shaping public risk perceptions of local extreme temperature. In particular, a 1°C increase in daily temperature resulted in an increased odds of perceiving serious extreme heat in Beijing (OR=1.091; 95% CI: 1.032, 1.153), while a 1°C increase in daily temperature resulted in a decreased odds of perceiving serious extreme cold in Harbin (OR=0.965; 95% CI: 0.939, 0.992). Therefore for both extreme heat and cold, frequent local extreme temperature exposure may amplify a stronger communication. Health interventions for extreme temperature should consider exposure, vulnerability, and adaptive ability factors. This will help improve the public's perception of climatic changes and their willingness to balance adaption and mitigation appropriately. Copyright © 2016 Elsevier B.V. All rights reserved.
Jansen, M; Geerts, A N; Rago, A; Spanier, K I; Denis, C; De Meester, L; Orsini, L
2017-04-01
Changes in temperature have occurred throughout Earth's history. However, current warming trends exacerbated by human activities impose severe and rapid loss of biodiversity. Although understanding the mechanisms orchestrating organismal response to climate change is important, remarkably few studies document their role in nature. This is because only few systems enable the combined analysis of genetic and plastic responses to environmental change over long time spans. Here, we characterize genetic and plastic responses to temperature increase in the aquatic keystone grazer Daphnia magna combining a candidate gene and an outlier analysis approach. We capitalize on the short generation time of our species, facilitating experimental evolution, and the production of dormant eggs enabling the analysis of long-term response to environmental change through a resurrection ecology approach. We quantify plasticity in the expression of 35 candidate genes in D. magna populations resurrected from a lake that experienced changes in average temperature over the past century and from experimental populations differing in thermal tolerance isolated from a selection experiment. By measuring expression in multiple genotypes from each of these populations in control and heat treatments, we assess plastic responses to extreme temperature events. By measuring evolutionary changes in gene expression between warm- and cold-adapted populations, we assess evolutionary response to temperature changes. Evolutionary response to temperature increase is also assessed via an outlier analysis using EST-linked microsatellite loci. This study provides the first insights into the role of plasticity and genetic adaptation in orchestrating adaptive responses to environmental change in D. magna. © 2017 John Wiley & Sons Ltd.
Xie, Yingying; Wang, Xiaojing; Silander, John A
2015-11-03
Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phenology data from 2001 to 2012, this study identified and quantified significant effects of a suite of environmental factors on the timing of fall dormancy of deciduous forest communities in New England, United States. Cold, frost, and wet conditions, and high heat-stress tended to induce earlier dormancy of deciduous forests, whereas moderate heat- and drought-stress delayed dormancy. Deciduous forests in two eco-regions showed contrasting, nonlinear responses to variation in these explanatory factors. Based on future climate projection over two periods (2041-2050 and 2090-2099), later dormancy dates were predicted in northern areas. However, in coastal areas earlier dormancy dates were predicted. Our models suggest that besides warming in climate change, changes in frost and moisture conditions as well as extreme weather events (e.g., drought- and heat-stress, and flooding), should also be considered in future predictions of autumn phenology in temperate deciduous forests. This study improves our understanding of how multiple environmental variables interact to affect autumn phenology in temperate deciduous forest ecosystems, and points the way to building more mechanistic and predictive models.
The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions.
Bragina, Anastasia; Oberauner-Wappis, Lisa; Zachow, Christin; Halwachs, Bettina; Thallinger, Gerhard G; Müller, Henry; Berg, Gabriele
2014-09-01
Sphagnum-dominated bogs represent a unique yet widely distributed type of terrestrial ecosystem and strongly contribute to global biosphere functioning. Sphagnum is colonized by highly diverse microbial communities, but less is known about their function. We identified a high functional diversity within the Sphagnum microbiome applying an Illumina-based metagenomic approach followed by de novo assembly and MG-RAST annotation. An interenvironmental comparison revealed that the Sphagnum microbiome harbours specific genetic features that distinguish it significantly from microbiomes of higher plants and peat soils. The differential traits especially support ecosystem functioning by a symbiotic lifestyle under poikilohydric and ombrotrophic conditions. To realise a plasticity-stability balance, we found abundant subsystems responsible to cope with oxidative and drought stresses, to exchange (mobile) genetic elements, and genes that encode for resistance to detrimental environmental factors, repair and self-controlling mechanisms. Multiple microbe-microbe and plant-microbe interactions were also found to play a crucial role as indicated by diverse genes necessary for biofilm formation, interaction via quorum sensing and nutrient exchange. A high proportion of genes involved in nitrogen cycle and recycling of organic material supported the role of bacteria for nutrient supply. 16S rDNA analysis indicated a higher structural diversity than that which had been previously detected using PCR-dependent techniques. Altogether, the diverse Sphagnum microbiome has the ability to support the life of the host plant and the entire ecosystem under changing environmental conditions. Beyond this, the moss microbiome presents a promising bio-resource for environmental biotechnology - with respect to novel enzymes or stress-protecting bacteria. © 2014 John Wiley & Sons Ltd.
Cooler performance breadth in a viviparous skink relative to its oviparous congener.
Landry Yuan, Félix; Pickett, Evan J; Bonebrake, Timothy C
2016-10-01
Susceptibility of species to climate change varies depending on many biological and environmental traits, such as reproductive mode and climatic exposure. For example, wider thermal tolerance breadths are associated with more climatically variable habitats and viviparity could be associated with greater vulnerability relative to oviparity. However, few examples exist detailing how such physiological and environmental traits together might shape species thermal performance. In this study we compared the thermal tolerance and performance of two sympatric skink congeners in Hong Kong that differ in habitat use and reproductive mode. The viviparous Sphenomorphus indicus lives on the forest floor while the oviparous Sphenomorphus incognitus occupies stream edges. We quantified the thermal environments in each of these habitats to compare climatic exposure and then calculated thermal safety margins, potential daily activity times within each species' thermal optimal range, and possible climate change vulnerability. Although we did not detect any differences in thermal tolerance range or thermal environments across habitats, we found cooler performance in S. indicus relative to S. incognitus. Moreover, while optimal activity time increases for both skinks under a warming scenario, we project that the thermal safety margin of S. indicus would narrow to nearly zero, thus losing its buffering capacity to potential extreme climate events in the future. This research is thus consistent with recent studies emphasizing the vulnerability of viviparous reptiles to a warming climate. The results together furthermore highlight the complexity in how environmental and physiological traits at multiple spatial scales structure climate change vulnerability of ectothermic species. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hesselbo, Stephen; Bjerrum, Christian; Hinnov, Linda; Mac Niocaill, Conall; Miller, Kenneth; Riding, James; van de Schootbrugge, Bas; Wonik, Thomas
2014-05-01
The Early Jurassic Epoch (201.4 - 175 Ma) was a time of extreme environmental change. Through this period there are well-documented examples of rapid transitions from cold, or even glacial climates, through to super-greenhouse events, the latter characterized worldwide by hugely enhanced organic carbon burial, multiple large-magnitude isotopic anomalies, global sea-level changes, and mass extinctions. These events not only reflect changes in the global climate system but are also thought to have had significant influence on the evolution of Jurassic marine and terrestrial biota. Furthermore, the events may serve as analogues for present-day and future environmental transitions. Although our knowledge of specific global change events within the Early Jurassic is rapidly improving, a prime case-in-point being the Toarcian Oceanic Anoxic Event (or T-OAE), we have neither documented all the events, nor do we have a comprehensive understanding of their timing, pacing, or triggers. A key factor contributing to our fragmentary knowledge is the scattered and discontinuous nature of the existing datasets. The major goal for this proposed ICDP project is therefore to produce a new global standard for these key 25 million years of Earth history by re-drilling a 45 year old borehole at Mochras Farm on the edge of Cardigan Bay, Wales, and to develop an integrated stratigraphy for the cored material, as well as high-resolution proxy-records of environmental change. The new datasets will be applied to understand fundamental questions about the long- and short-term evolution of the Earth System.
ENVIRONMENTALLY BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
John J. Kilbane II; William Bogan
2004-01-31
The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter included the fractionation of extracts prepared from several varieties of pepper plants, and using several solvents, by high performance liquid chromatography (HPLC). A preliminary determination of antimicrobial activities ofmore » the new extracts and fractions using a growth inhibition assay, and evaluation of the extracts ability to inhibit biofilm formation was also performed. The analysis of multiple extracts of pepper plants and fractions of extracts of pepper plants obtained by HPLC illustrated that these extracts and fractions are extremely complex mixtures of chemicals. Gas chromatography-mass spectrometry was used to identify the chemical constituents of these extracts and fractions to the greatest degree possible. Analysis of the chemical composition of various extracts of pepper plants has illustrated the complexity of the chemical mixtures present, and while additional work will be performed to further characterize the extracts to identify bioactive compounds the focus of efforts should now shift to an evaluation of the ability of extracts to inhibit corrosion in mixed culture biofilms, and in pure cultures of bacterial types which are known or believed to be important in corrosion.« less
Park, Jung Ho; Kim, Hee-Chun; Lee, Jae Hoon; Kim, Jin Soo; Roh, Si Young; Yi, Cheol Ho; Kang, Yoon Kyoo; Kwon, Bum Sun
2009-05-01
While the lower extremities support the weight and move the body, the upper extremities are essential for the activities of daily living, which require many detailed movements. Therefore, a disability of the upper extremity function should include a limitation of all motions of the joints and sensory loss, which affects the activities. In this study, disabilities of the upper extremities were evaluated according to the following conditions: 1) amputation, 2) joint contracture, 3) diseases of upper extremity, 4) weakness, 5) sensory loss of the finger tips, and 6) vascular and lymphatic diseases. The order of 1) to 6) is the order of major disability and there is no need to evaluate a lower order disability when a higher order one exists in the same joint or a part of the upper extremity. However, some disabilities can be either added or substituted when there are special contributions from multiple disabilities. An upper extremity disability should be evaluated after the completion of treatment and full adaptation when further functional changes are not expected. The dominance of the right or left hand before the disability should not be considered when there is a higher rate of disability.
Five domains of environmental quality and infant mortality
The relationship between environmental conditions and human health varies by environmental media. In order to account for multiple ambient environmental conditions, we constructed an Environmental Quality Index (EQI) for health research. We used U.S. county level data representin...
Environmental quality and infant mortality
The relationship between environmental conditions and human health varies by environmental media. In order to account for multiple ambient environmental conditions, we constructed an Environmental Quality Index (EQI)for use in health research. We used u.s. county level data repre...
Zhu, Ying; Price, Oliver R; Tao, Shu; Jones, Kevin C; Sweetman, Andy J
2014-08-01
We present a new multimedia chemical fate model (SESAMe) which was developed to assess chemical fate and behaviour across China. We apply the model to quantify the influence of environmental parameters on chemical overall persistence (POV) and long-range transport potential (LRTP) in China, which has extreme diversity in environmental conditions. Sobol sensitivity analysis was used to identify the relative importance of input parameters. Physicochemical properties were identified as more influential than environmental parameters on model output. Interactive effects of environmental parameters on POV and LRTP occur mainly in combination with chemical properties. Hypothetical chemicals and emission data were used to model POV and LRTP for neutral and acidic chemicals with different KOW/DOW, vapour pressure and pKa under different precipitation, wind speed, temperature and soil organic carbon contents (fOC). Generally for POV, precipitation was more influential than the other environmental parameters, whilst temperature and wind speed did not contribute significantly to POV variation; for LRTP, wind speed was more influential than the other environmental parameters, whilst the effects of other environmental parameters relied on specific chemical properties. fOC had a slight effect on POV and LRTP, and higher fOC always increased POV and decreased LRTP. Example case studies were performed on real test chemicals using SESAMe to explore the spatial variability of model output and how environmental properties affect POV and LRTP. Dibenzofuran released to multiple media had higher POV in northwest of Xinjiang, part of Gansu, northeast of Inner Mongolia, Heilongjiang and Jilin. Benzo[a]pyrene released to the air had higher LRTP in south Xinjiang and west Inner Mongolia, whilst acenaphthene had higher LRTP in Tibet and west Inner Mongolia. TCS released into water had higher LRTP in Yellow River and Yangtze River catchments. The initial case studies demonstrated that SESAMe performed well on comparing POV and LRTP of chemicals in different regions across China in order to potentially identify the most sensitive regions. This model should not only be used to estimate POV and LRTP for screening and risk assessments of chemicals, but could potentially be used to help design chemical monitoring programmes across China in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.
Informed multi-objective decision-making in environmental management using Pareto optimality
Maureen C. Kennedy; E. David Ford; Peter Singleton; Mark Finney; James K. Agee
2008-01-01
Effective decisionmaking in environmental management requires the consideration of multiple objectives that may conflict. Common optimization methods use weights on the multiple objectives to aggregate them into a single value, neglecting valuable insight into the relationships among the objectives in the management problem.
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
NASA Astrophysics Data System (ADS)
Keiblinger, Katharina Maria; Hämmerle, Ieda; Zechmeister-Boltenstern, Sophie
2010-05-01
Little is known about how the variance in resources in terms of carbon (C), nitrogen (N), phosphorus (P) ratios affects respiration and nutrient dynamics. To elucidate how resource quantity and stoichiometry affect the decomposition process of beech (Fagus sylvatica) litter a terrestrial microcosm experiment was conducted. Our aim was to follow changes of beech litter stoichiometry and biogeochemical processes, and to quantify element losses as affected by temperature and moisture extremes. In addition to gaseous element losses (CO2) we examined the release of nutrients prone to leaching and the importance of environmental controls. We addressed mechanisms and pathways of carbon, nitrogen and phosphorus losses. In our experiment sterilised dried leaves were inoculated with a litter-soil suspension from a beech forest in order to ensure similar starting conditions. Beech litter from different Austrian sites covering C:N ratios from 45 to 66 and C:P ratios from 652 to 1467 were incubated at 15°C for six months. The water content was adjusted to 60% at regular intervals to keep the moisture constant. To monitor transient and persistent influences of environmental stress, the microcosms were subject to extreme changes in temperature (+30°C and -20°C) and moisture (draught) after an incubation time of three months. Litter stoichiometries (C:N, C:P) turned out to be strong predictors for respiration, and nitrogen, and phosphorous losses. (i) Litter with narrow litter C:nutrient ratios decomposed faster than litter with wider litter C:nutrient ratios; and therefore showed higher respiration rates. (ii) Increased nutrient losses as leachates were observed for high quality leaf litter i.e. inorganic nitrogen losses for sites with narrow litter C:N ratios and phosphate was released more quickly in sites with narrow C:P ratios. There was a strong functional response of the microbial community to environmental extremes. Respiration increased upon temperature extremes, especially in the litter with highest C:P ratio. A persistent effect of temperature extremes on NH4 and NO3 concentrations was observed for three months after stress application. However, the effect on PO4 concentrations was only transient. Environmental conditions had a strong affect on nutrient losses but only a minor affect on microbial carbon Cmic and microbial nitrogen Nmic. The impact of environmental stress (heat or freezing) on microbes in terms of Cmic, Nmic and C:Nmic was strongest in sites with narrow litter C:N ratios. Our results indicate a similar stoichiometric demand of microbes, with temporal changes which results in differences in nutrient cycling on substrates with different C:N:P ratios.
NASA Astrophysics Data System (ADS)
Priya, P.; Krishnan, R.; Mujumdar, Milind; Houze, Robert A.
2017-10-01
Historical rainfall records reveal that the frequency and intensity of extreme precipitation events, during the summer monsoon (June-September) season, have significantly risen over the Western Himalayas (WH) and adjoining upper Indus basin since 1950s. Using multiple datasets, the present study investigates the possible coincidences between an increasing trend of precipitation extremes over WH and changes in background flow climatology. The present findings suggest that the combined effects of a weakened southwest monsoon circulation, increased activity of transient upper-air westerly troughs over the WH region, enhanced moisture supply by southerly winds from the Arabian Sea into the Indus basin have likely provided favorable conditions for an increased frequency of certain types of extreme precipitation events over the WH region in recent decades.
Interventional Therapy for Upper Extremity Deep Vein Thrombosis
Carlon, Timothy A.; Sudheendra, Deepak
2017-01-01
Approximately 10% of all deep vein thromboses occur in the upper extremity, and that number is increasing due to the use of peripherally inserted central catheters. Sequelae of upper extremity deep vein thrombosis (UEDVT) are similar to those for lower extremity deep vein thrombosis (LEDVT) and include postthrombotic syndrome and pulmonary embolism. In addition to systemic anticoagulation, there are multiple interventional treatment options for UEDVT with the potential to reduce the incidence of these sequelae. To date, there have been no randomized trials to define the optimal management strategy for patients presenting with UEDVT, so many conclusions are drawn from smaller, single-center studies or from LEDVT research. In this article, the authors describe the evidence for the currently available treatment options and an approach to a patient with acute UEDVT. PMID:28265130
NASA Technical Reports Server (NTRS)
Yang, Tianbao; Poovaiah, B. W.
2002-01-01
We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.
NASA Astrophysics Data System (ADS)
Brown, R. F.; Collins, S. L.
2017-12-01
Climate is becoming increasingly more variable due to global environmental change, which is evidenced by fewer, but more extreme precipitation events, changes in precipitation seasonality, and longer, higher severity droughts. These changes, combined with a rising incidence of wildfire, have the potential to strongly impact net primary production (NPP) and key biogeochemical cycles, particularly in dryland ecosystems where NPP is sequentially limited by water and nutrient availability. Here we utilize a ten-year dataset from an ongoing long-term field experiment established in 2007 in which we experimentally altered monsoon rainfall variability to examine how our manipulations, along with naturally occurring events, affect NPP and associated biogeochemical cycles in a semi-arid grassland in central New Mexico, USA. Using long-term regional averages, we identified extremely wet monsoon years (242.8 mm, 2013), and extremely dry monsoon years (86.0 mm, 2011; 80.0 mm, 2015) and water years (117.0 mm, 2011). We examined how changes in precipitation variability and extreme events affected ecosystem processes and function particularly in the context of ecosystem recovery following a 2009 wildfire. Response variables included above- and below-ground plant biomass (ANPP & BNPP) and abundance, soil nitrogen availability, and soil CO2 efflux. Mean ANPP ranged from 3.6 g m-2 in 2011 to 254.5 g m-2 in 2013, while BNPP ranged from 23.5 g m-2 in 2015 to 194.2 g m-2 in 2013, demonstrating NPP in our semi-arid grassland is directly linked to extremes in both seasonal and annual precipitation. We also show increased nitrogen deposition positively affects NPP in unburned grassland, but has no significant impact on NPP post-fire except during extremely wet monsoon years. While soil respiration rates reflect lower ANPP post-fire, patterns in CO2 efflux have not been shown to change significantly in that efflux is greatest following large precipitation events preceded by longer drying periods. Current land surface models poorly represent dryland ecosystems, which frequently undergo extreme weather events. Our long-term experiment provides key insights into ecosystem processes and function, thereby providing capacity for model improvement particularly in the context of future environmental change.
Acute lower extremity paralysis after lower extremity endovascular intervention.
Öztürk, Semi; Kalyoncuoğlu, Muhsin; Durmuş, Gündüz; Topçu, Adem; Can, Mehmet
2017-04-01
A 61-year-old man underwent successful percutaneous revascularization of both lower limbs with multiple stent implantations. Paralysis of right lower limb was noticed after completion of procedure when transferring the patient from angiography table. Since hematoma compressing lumbosacral neural plexus could be a fatal complication, computed tomography (CT) image was taken. CT showed bulge of distended bladder compressing stent struts. Following placement of Foley catheter, condition improved and he was subsequently discharged uneventfully.
NASA Technical Reports Server (NTRS)
Zhou, Yaping; Lau, William K M.; Liu, Chuntao
2013-01-01
This study adopts a "precipitation object" approach by using 14 years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Feature (PF) and National Centers for Environmental Prediction (NCEP) reanalysis data to study rainfall structure and environmental factors associated with extreme heavy rain events. Characteristics of instantaneous extreme volumetric PFs are examined and compared to those of intermediate and small systems. It is found that instantaneous PFs exhibit a much wider scale range compared to the daily gridded precipitation accumulation range. The top 1% of the rainiest PFs contribute over 55% of total rainfall and have 2 orders of rain volume magnitude greater than those of the median PFs. We find a threshold near the top 10% beyond which the PFs grow exponentially into larger, deeper, and colder rain systems. NCEP reanalyses show that midlevel relative humidity and total precipitable water increase steadily with increasingly larger PFs, along with a rapid increase of 500 hPa upward vertical velocity beyond the top 10%. This provides the necessary moisture convergence to amplify and sustain the extreme events. The rapid increase in vertical motion is associated with the release of convective available potential energy (CAPE) in mature systems, as is evident in the increase in CAPE of PFs up to 10% and the subsequent dropoff. The study illustrates distinct stages in the development of an extreme rainfall event including: (1) a systematic buildup in large-scale temperature and moisture, (2) a rapid change in rain structure, (3) explosive growth of the PF size, and (4) a release of CAPE before the demise of the event.
Quantifying changes and influences on mottled duck density in Texas
Ross, Beth; Haukos, David A.; Walther, Patrick
2018-01-01
Understanding the relative influence of environmental and intrinsic effects on populations is important for managing and conserving harvested species, especially those species inhabiting changing environments. Additionally, climate change can increase the uncertainty associated with management of species in these changing environments, making understanding factors affecting their populations even more important. Coastal ecosystems are particularly threatened by climate change; the combined effects of increasing severe weather events, sea level rise, and drought will likely have non-linear effects on coastal marsh wildlife species and their associated habitats. A species of conservation concern that persists in these coastal areas is the mottled duck (Anas fulvigula). Mottled ducks in the western Gulf Coast are approximately 50% below target abundance numbers established by the Gulf Coast Joint Venture for Texas and Louisiana, USA. Although evidence for declines in mottled duck abundance is apparent, specific causes of the decrease remain unknown. Our goals were to determine where the largest declines in mottled duck population were occurring along the system of Texas Gulf Coast National Wildlife Refuges and quantify the relative contribution of environmental and intrinsic effects on changes to relative population density. We modeled aerial survey data of mottled duck density along the Texas Gulf Coast from 1986–2015 to quantify effects of extreme weather events on an index to mottled duck density using the United States Climate Extremes Index and Palmer Drought Severity Index. Our results indicate that decreases in abundance are best described by an increase in days with extreme 1-day precipitation from June to November (hurricane season) and an increase in drought severity. Better understanding those portions of the life cycle affected by environmental conditions, and how to manage mottled duck habitat in conjunction with these events will likely be key to persistence of the species under future environmental conditions.
Necrotizing Fasciitis of the Upper Extremity, Case Report and Review of the Literature
Nazerani, Shahram; Maghari, Ahmad; Kalantar Motamedi, Mohammad Hosein; Vahedian Ardakani, Jalal; Rashidian, Nikdokht; Nazerani, Tina
2012-01-01
ABSTRACT Necrotizing fasciitis is a rare, life-threatening infection most commonly seen in patients with diabetes mellitus, intravenous drug abuse, and immunocompromised conditions. The extremities are the primary sites of involvement in as many as two thirds of the cases. In a significant proportion of patients, the extremities are involved as a result of trauma, needle puncture or extravasation of drugs. The infection is usually polymicrobial. Treatment involves broad-spectrum antibiotics and multiple surgical debridements or amputation. We present a patient with necrotizing fasciitis of the upper limb and present our experience with this often lethal condition. PMID:24350113
How Unusual Was The Storm Surge Season Of 2013-14 in the UK?
NASA Astrophysics Data System (ADS)
Haigh, I. D.; Wadey, M.; Gallop, S. L.; Nicholls, R. J.; Horsburgh, K.
2014-12-01
When significant coastal flooding occurs along low-lying, highly populated, and/or developed coastlines, the impacts can be devastating and long lasting with wide ranging social, economic, and environmental consequences. The UK has a long history of severe coastal flooding, with major events including those that occurred in 1607, 1703 and 1953. The problems associated with coastal flooding again reached the forefront during the latest winter of 2013-2014 when the UK experienced a series of very severe events. What is noteworthy about this most recent winter period is the: (1) large number of significantly coastal flooding events occurring one after another over a relatively short period of time; and (2) the large areas of coastline affected. Extreme events are rarely assessed in terms of 'clustering', despite the fact this leads to amplified flood damages. The spatial dependence in flood hazard (i.e. simultaneous flooding in multiple locations) is now receiving more attention, motivated by concern from re-insurance, infrastructure reliability and emergency response, but understanding in this area is still limited. In this paper we assess extreme high water events and their temporal clustering and footprint around the UK, using records from the UK national network of 40 tide gauges, the longest of which extends back 100 years. We identify 100 distinct events, during which water levels exceeded the 1 in 5 year return period. We examine these events in detail and assess the coastal flooding that occurred during each event.
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
NATIONAL SURVEYS OF MULTIPLE ENVIRONMENTAL HAZARDS TO YOUNG CHILDREN IN HOMES AND CHILD CARE CENTERS
The Department of Housing and Urban Development (HUD) has teamed with other federal agencies to characterize exposure of multiple environmental hazards to young children in two main indoor environments, homes and daycare centers. Under the co-sponsorship of HUD and the Nationa...
Lee, Meonghun; Yoe, Hyun
2015-01-01
The environment promotes evolution. Evolutionary processes represent environmental adaptations over long time scales; evolution of crop genomes is not inducible within the relatively short time span of a human generation. Extreme environmental conditions can accelerate evolution, but such conditions are often stress inducing and disruptive. Artificial growth systems can be used to induce and select genomic variation by changing external environmental conditions, thus, accelerating evolution. By using cloud computing and big-data analysis, we analyzed environmental stress factors for Pleurotus ostreatus by assessing, evaluating, and predicting information of the growth environment. Through the indexing of environmental stress, the growth environment can be precisely controlled and developed into a technology for improving crop quality and production. PMID:25874206
[Multiple fractures of the lower extremities (a propos of 50 patients)].
Touzard, R C; Kudela, I
1975-04-01
According to a study of 50 multiple fractures of the lower limbs, the frequency of associated lesions justifies the creation of new multiple injury units, well equipped in which may be found specialists of all branches of surgery. Although internal fixation in one stage as an emergency, is ideal in all fractures, one should in fact be circumspect for the danger of infection should lead one to avoid carrying out internal fixation if this is not absolutely necessary.
Stacked Buoyant Payload Launcher
2013-05-14
unit, the signal ejector , or through the escape hatch lockout trunk. Each of these deployment methods has disadvantages. [0005] Torpedo tubes are... ejector tube can accommodate payloads approximately three inches in diameter. Thus, payload size is extremely limited. The escape hatch lockout trunk...signal ejector tube. Additionally, the system 10 can launch multiple payloads during one launch sequence, or can provide multiple launches at
Understanding Evolutionary Impacts of Seasonality: An Introduction to the Symposium.
Williams, Caroline M; Ragland, Gregory J; Betini, Gustavo; Buckley, Lauren B; Cheviron, Zachary A; Donohue, Kathleen; Hereford, Joe; Humphries, Murray M; Lisovski, Simeon; Marshall, Katie E; Schmidt, Paul S; Sheldon, Kimberly S; Varpe, Øystein; Visser, Marcel E
2017-11-01
Seasonality is a critically important aspect of environmental variability, and strongly shapes all aspects of life for organisms living in highly seasonal environments. Seasonality has played a key role in generating biodiversity, and has driven the evolution of extreme physiological adaptations and behaviors such as migration and hibernation. Fluctuating selection pressures on survival and fecundity between summer and winter provide a complex selective landscape, which can be met by a combination of three outcomes of adaptive evolution: genetic polymorphism, phenotypic plasticity, and bet-hedging. Here, we have identified four important research questions with the goal of advancing our understanding of evolutionary impacts of seasonality. First, we ask how characteristics of environments and species will determine which adaptive response occurs. Relevant characteristics include costs and limits of plasticity, predictability, and reliability of cues, and grain of environmental variation relative to generation time. A second important question is how phenological shifts will amplify or ameliorate selection on physiological hardiness. Shifts in phenology can preserve the thermal niche despite shifts in climate, but may fail to completely conserve the niche or may even expose life stages to conditions that cause mortality. Considering distinct environmental sensitivities of life history stages will be key to refining models that forecast susceptibility to climate change. Third, we must identify critical physiological phenotypes that underlie seasonal adaptation and work toward understanding the genetic architectures of these responses. These architectures are key for predicting evolutionary responses. Pleiotropic genes that regulate multiple responses to changing seasons may facilitate coordination among functionally related traits, or conversely may constrain the expression of optimal phenotypes. Finally, we must advance our understanding of how changes in seasonal fluctuations are impacting ecological interaction networks. We should move beyond simple dyadic interactions, such as predator prey dynamics, and understand how these interactions scale up to affect ecological interaction networks. As global climate change alters many aspects of seasonal variability, including extreme events and changes in mean conditions, organisms must respond appropriately or go extinct. The outcome of adaptation to seasonality will determine responses to climate change. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
New perspective on single-radiator multiple-port antennas for adaptive beamforming applications
Choo, Hosung
2017-01-01
One of the most challenging problems in recent antenna engineering fields is to achieve highly reliable beamforming capabilities in an extremely restricted space of small handheld devices. In this paper, we introduce a new perspective on single-radiator multiple-port (SRMP) antenna to alter the traditional approach of multiple-antenna arrays for improving beamforming performances with reduced aperture sizes. The major contribution of this paper is to demonstrate the beamforming capability of the SRMP antenna for use as an extremely miniaturized front-end component in more sophisticated beamforming applications. To examine the beamforming capability, the radiation properties and the array factor of the SRMP antenna are theoretically formulated for electromagnetic characterization and are used as complex weights to form adaptive array patterns. Then, its fundamental performance limits are rigorously explored through enumerative studies by varying the dielectric constant of the substrate, and field tests are conducted using a beamforming hardware to confirm the feasibility. The results demonstrate that the new perspective of the SRMP antenna allows for improved beamforming performances with the ability of maintaining consistently smaller aperture sizes compared to the traditional multiple-antenna arrays. PMID:29023493
Smoldering multiple myeloma requiring treatment: time for a new definition?
Stewart, A. Keith; Chanan-Khan, Asher; Rajkumar, S. Vincent; Kyle, Robert A.; Fonseca, Rafael; Kapoor, Prashant; Bergsagel, P. Leif; McCurdy, Arleigh; Gertz, Morie A.; Lacy, Martha Q.; Lust, John A.; Russell, Stephen J.; Zeldenrust, Steven R.; Reeder, Craig; Roy, Vivek; Buadi, Francis; Dingli, David; Hayman, Suzanne R.; Leung, Nelson; Lin, Yi; Mikhael, Joseph; Kumar, Shaji K.
2013-01-01
Smoldering multiple myeloma (SMM) bridges the gap between monoclonal gammopathy of undetermined significance (a mostly premalignant disorder) and active multiple myeloma (MM). Until recently, no interventional study in patients with SMM showed improved overall survival (OS) with therapy as compared with observation. A report from the PETHEMA-GEM (Programa Español de Tratamientos en Hematologica) group described both fewer myeloma-related events and better OS among patients with high-risk SMM who were treated with lenalidomide and dexamethasone. This unique study prompted us to review current knowledge about SMM and address the following questions: (1) Are there patients currently defined as SMM who should be treated routinely? (2) Should the definitions of SMM and MM be reconsidered? (3) Has the time come when not treating is more dangerous than treating? (4) Could unintended medical harm result from overzealous intervention? Our conclusion is that those patients with the highest-risk SMM (extreme bone marrow plasmacytosis, extremely abnormal serum immunoglobulin free light chain ratio, and multiple bone lesions detected only by modern imaging) should be reclassified as active MM so that they can receive MM-appropriate therapy and the paradigm of careful observation for patients with SMM can be preserved. PMID:24144641
Mammographic and sonographic findings of steatocystoma multiplex presenting as breast lumps.
Wan, John Mun Chin; Wong, Jill Su Lin; Tee, Shang-Ian
2012-12-01
Steatocystoma multiplex (SM) is an uncommon cutaneous disorder characterised by multiple intradermal cysts distributed over the trunk and proximal extremities. This condition affects both genders and is often inherited as an autosomal dominant trait, although sporadic cases have been described. This report describes the mammographic and sonographic features of the cysts, which presented as breast lumps, for evaluation. The cysts appeared as numerous well-circumscribed, radiolucent nodules with thin radiodense rims on mammography. On sonography, the cysts could be hypoechoic, isoechoic or demonstrate mixed echoes containing debris-fluid levels, depending on the amount of clear oily liquid and keratinous material. SM can be diagnosed based on a clinical setting of multiple asymptomatic small intradermal nodules over the trunk and proximal extremities, positive family history and imaging findings.
WEC Design Response Toolbox v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, Ryan; Michelen, Carlos; Eckert-Gallup, Aubrey
2016-03-30
The WEC Design Response Toolbox (WDRT) is a numerical toolbox for design-response analysis of wave energy converters (WECs). The WDRT was developed during a series of efforts to better understand WEC survival design. The WDRT has been designed as a tool for researchers and developers, enabling the straightforward application of statistical and engineering methods. The toolbox includes methods for short-term extreme response, environmental characterization, long-term extreme response and risk analysis, fatigue, and design wave composition.
NASA Astrophysics Data System (ADS)
Horikawa, Daiki D.; Kunieda, Takekazu; Abe, Wataru; Watanabe, Masahiko; Nakahara, Yuichi; Yukuhiro, Fumiko; Sakashita, Tetsuya; Hamada, Nobuyuki; Wada, Seiichi; Funayama, Tomoo; Katagiri, Chihiro; Kobayashi, Yasuhiko; Higashi, Seigo
2008-06-01
Studies on the ability of multicellular organisms to tolerate specific environmental extremes are relatively rare compared to those of unicellular microorganisms in extreme environments. Tardigrades are extremotolerant animals that can enter an ametabolic dry state called anhydrobiosis and have high tolerance to a variety of extreme environmental conditions, particularly while in anhydrobiosis. Although tardigrades have been expected to be a potential model animal for astrobiological studies due to their excellent anhydrobiotic and extremotolerant abilities, few studies of tolerance with cultured tardigrades have been reported, possibly due to the absence of a model species that can be easily maintained under rearing conditions. We report the successful rearing of the herbivorous tardigrade, Ramazzottius varieornatus, by supplying the green alga Chlorella vulgaris as food. The life span was 35 ± 16.4 d, deposited eggs required 5.7 ± 1.1 d to hatch, and animals began to deposit eggs 9 d after hatching. The reared individuals of this species had an anhydrobiotic capacity throughout their life cycle in egg, juvenile, and adult stages. Furthermore, the reared adults in an anhydrobiotic state were tolerant of temperatures of 90°C and -196°C, and exposure to 99.8% acetonitrile or irradiation with 4000 Gy 4He ions. Based on their life history traits and tolerance to extreme stresses, R. varieornatus may be a suitable model for astrobiological studies of multicellular organisms.
Satellite-Enhanced Dynamical Downscaling of Extreme Events
NASA Astrophysics Data System (ADS)
Nunes, A.
2015-12-01
Severe weather events can be the triggers of environmental disasters in regions particularly susceptible to changes in hydrometeorological conditions. In that regard, the reconstruction of past extreme weather events can help in the assessment of vulnerability and risk mitigation actions. Using novel modeling approaches, dynamical downscaling of long-term integrations from global circulation models can be useful for risk analysis, providing more accurate climate information at regional scales. Originally developed at the National Centers for Environmental Prediction (NCEP), the Regional Spectral Model (RSM) is being used in the dynamical downscaling of global reanalysis, within the South American Hydroclimate Reconstruction Project. Here, RSM combines scale-selective bias correction with assimilation of satellite-based precipitation estimates to downscale extreme weather occurrences. Scale-selective bias correction is a method employed in the downscaling, similar to the spectral nudging technique, in which the downscaled solution develops in agreement with its coarse boundaries. Precipitation assimilation acts on modeled deep-convection, drives the land-surface variables, and therefore the hydrological cycle. During the downscaling of extreme events that took place in Brazil in recent years, RSM continuously assimilated NCEP Climate Prediction Center morphing technique precipitation rates. As a result, RSM performed better than its global (reanalysis) forcing, showing more consistent hydrometeorological fields compared with more sophisticated global reanalyses. Ultimately, RSM analyses might provide better-quality initial conditions for high-resolution numerical predictions in metropolitan areas, leading to more reliable short-term forecasting of severe local storms.
A thermodynamic analysis of the environmental indicators of natural gas combustion processes
NASA Astrophysics Data System (ADS)
Elsukov, V. K.
2010-07-01
Environmental indicators of the natural gas combustion process are studied using the model of extreme intermediate states developed at the Melent’ev Institute of Power Engineering Systems. Technological factors responsible for generation of polycyclic aromatic hydrocarbons and hydrogen cyanide are revealed. Measures for reducing the amounts of polycyclic aromatic hydrocarbons, hydrogen cyanide, nitrogen oxide, and other pollutants emitted from boilers are developed.
Research notes : solar powered markers not up to challenge.
DOT National Transportation Integrated Search
2008-06-01
ODOT performed preliminary tests on eight different models of solar powered raised pavement markers. These included environmental tests (extreme temperatures, immersion), optical performance tests, and observation tests. Federal Highway Administratio...
Risk assessment of precipitation extremes in northern Xinjiang, China
NASA Astrophysics Data System (ADS)
Yang, Jun; Pei, Ying; Zhang, Yanwei; Ge, Quansheng
2018-05-01
This study was conducted using daily precipitation records gathered at 37 meteorological stations in northern Xinjiang, China, from 1961 to 2010. We used the extreme value theory model, generalized extreme value (GEV) and generalized Pareto distribution (GPD), statistical distribution function to fit outputs of precipitation extremes with different return periods to estimate risks of precipitation extremes and diagnose aridity-humidity environmental variation and corresponding spatial patterns in northern Xinjiang. Spatiotemporal patterns of daily maximum precipitation showed that aridity-humidity conditions of northern Xinjiang could be well represented by the return periods of the precipitation data. Indices of daily maximum precipitation were effective in the prediction of floods in the study area. By analyzing future projections of daily maximum precipitation (2, 5, 10, 30, 50, and 100 years), we conclude that the flood risk will gradually increase in northern Xinjiang. GEV extreme value modeling yielded the best results, proving to be extremely valuable. Through example analysis for extreme precipitation models, the GEV statistical model was superior in terms of favorable analog extreme precipitation. The GPD model calculation results reflect annual precipitation. For most of the estimated sites' 2 and 5-year T for precipitation levels, GPD results were slightly greater than GEV results. The study found that extreme precipitation reaching a certain limit value level will cause a flood disaster. Therefore, predicting future extreme precipitation may aid warnings of flood disaster. A suitable policy concerning effective water resource management is thus urgently required.
Can Concentration - Discharge Relationships Diagnose Material Source During Extreme Events?
NASA Astrophysics Data System (ADS)
Karwan, D. L.; Godsey, S.; Rose, L.
2017-12-01
Floods can carry >90% of the basin material exported in a given year as well as alter flow pathways and material sources. In turn, sediment and solute fluxes can increase flood damages and negatively impact water quality and integrate physical and chemical weathering of landscapes and channels. Concentration-discharge (C-Q) relationships are used to both describe export patterns as well as compute them. Metrics for describing C-Q patterns and inferring their controls are vulnerable to infrequent sampling that affects how C-Q relationships are interpolated and interpreted. C-Q relationships are typically evaluated from multiple samples, but because hydrological extremes are rare, data are often unavailable for extreme events. Because solute and sediment C-Q relationships likely respond to changes in hydrologic extremes in different ways, there is a pressing need to define their behavior under extreme conditions, including how to properly sample to capture these patterns. In the absence of such knowledge, improving load estimates in extreme floods will likely remain difficult. Here we explore the use of C-Q relationships to determine when an event alters a watershed system such that it enters a new material source/transport regime. We focus on watersheds with sediment and discharge time series include low-frequency and/or extreme events. For example, we compare solute and sediment patterns in White Clay Creek in southeastern Pennsylvania across a range of flows inclusive of multiple hurricanes for which we have ample ancillary hydrochemical data. TSS is consistently mobilized during high flow events, even during extreme floods associated with hurricanes, and sediment fingerprinting indicates different sediment sources, including in-channel remobilization and landscape erosion, are active at different times. In other words, TSS mobilization in C-Q space is not sensitive to the source of material being mobilized. Unlike sediments, weathering solutes in this watershed tend to exhibit a relatively chemostatic C-Q pattern, except during the runoff-dominated Hurricane Irene, when they exhibit a diluting C-Q pattern. Finally, we summarize the vulnerability of these observations to shifts in sampling effort to highlight the utility and limitations of C-Q-derived export patterns.
Designing Writing Exercises to Emphasize Environmental Education
NASA Astrophysics Data System (ADS)
Narayanan, M.
2008-12-01
In this presentation, the author stresses the importance of writing exercises to educate students in certain disciplines. The objective is to make the students become personally involved so that their educational experience is more geared towards a learning paradigm instead of a teaching paradigm. In addition to accumulating a wealth of knowledge the students also refine and expand their writing skills and abilities. One should be pragmatic in one's approach. In other words, the instructor should have a clear understanding of the skills the students need to develop. It is important to define the target and implementation mode while designing writing exercises. Effective learning can thus be combined with enthusiasm in classroom instructional development. It is extremely important that all undergraduate engineering students are provided with an adequate understanding and thorough background of the National Environmental Policy Act (NEPA) of 1969. At present, undergraduate students at Miami University of Ohio do not acquire any knowledge pertaining to this particular topic. The author proposes that a topic based on NEPA be introduced in the Fluid Mechanics Course at a Junior Level. The author believes that there is an absolute and urgent need for introducing the students to the fact that various documents such as EA (Environmental Assessment), EIS (Environmental Impact Statement), FONSI (Finding Of No Significant Impact), are an essential part of present-day workplace environment. In this presentation the author talks about introducing NEPA in the classroom. More than a decade ago Harvard University Professor Dr. Howard Gardner suggested the theory of Multiple Intelligences. Dr. Gardner proposed that eight different Intelligences accounted for the development of human potential (Gardner, 1983, 1993, 2000). Leading scholars in the area of Cognitive Science and Educational Methodologies also agree and have concluded that it is essential that students need to be taught in a learning environment that enables them to acquire real-world problem-solving skills (Saxe, 1988; Senge, 1990; Sims, 1995). Educators should not allow the students to wonder whether they have been learning anything that would actually serve them in the workplace, upon graduation. (Barr and Tagg, 1995). Howard Gardner's list of Eight Intelligences is given below. 1. Linguistic intelligence ("word smart") 2. Logical intelligence ("number smart") 3. Spatial intelligence ("picture smart") 4. Kinesthetic intelligence ("body smart") 5. Musical intelligence ("music smart") 6. Interpersonal intelligence ("people smart") 7. Intrapersonal intelligence ("self smart") 8. Naturalist intelligence ("nature smart") The author has tried to examine students' learning development, behavior and exploration using some of the above eight Intelligences. In this presentation, he provides data he has collected while teaching certain selected courses (Narayanan, 2007). References Gardner, Howard. Frames of Mind: The Theory of Multiple Intelligences. New York: Basic,1983 Gardner, Howard. Multiple Intelligences: The Theory in Practice. New York: Basic, 1993. Gardner, Howard. Intelligence Reframed: Multiple Intelligences for the 21st Century. New York: Basic, 2000. Barr, R. B., and Tagg, J. (1995, November/December). From teaching to learning: A new paradigm for undergraduate education. Change: The Magazine of Higher Education, 13-24. Narayanan, Mysore (2007). Assessment of Perceptual Modality Styles. Proceedings of ASEE 2007 Annual Conference, Honolulu, Hawaii.
Australian climate extremes at 1.5 °C and 2 °C of global warming
NASA Astrophysics Data System (ADS)
King, Andrew D.; Karoly, David J.; Henley, Benjamin J.
2017-06-01
To avoid more severe impacts from climate change, there is international agreement to strive to limit warming to below 1.5 °C. However, there is a lack of literature assessing climate change at 1.5 °C and the potential benefits in terms of reduced frequency of extreme events. Here, we demonstrate that existing model simulations provide a basis for rapid and rigorous analysis of the effects of different levels of warming on large-scale climate extremes, using Australia as a case study. We show that limiting warming to 1.5 °C, relative to 2 °C, would perceptibly reduce the frequency of extreme heat events in Australia. The Australian continent experiences a variety of high-impact climate extremes that result in loss of life, and economic and environmental damage. Events similar to the record-hot summer of 2012-2013 and warm seas associated with bleaching of the Great Barrier Reef in 2016 would be substantially less likely, by about 25% in both cases, if warming is kept to lower levels. The benefits of limiting warming on hydrometeorological extremes are less clear. This study provides a framework for analysing climate extremes at 1.5 °C global warming.
Climatic extremes improve predictions of spatial patterns of tree species
Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.
2009-01-01
Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.
Kim, Seong-Gil
2018-01-01
Background The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. Material/Methods This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. Results In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). Conclusions Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement. PMID:29760375
Kim, Seong-Gil; Kim, Wan-Soo
2018-05-15
BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.
Siña, Mariella; Wood, Rachel C; Saldarriaga, Enrique; Lawler, Joshua; Zunt, Joseph; Garcia, Patricia; Cárcamo, César
2016-01-01
Climate change poses multiple risks to the population of Lima, the largest city and capital of Peru, located on the Pacific coast in a desert ecosystem. These risks include increased water scarcity, increased heat, and the introduction and emergence of vector-borne and other climate sensitive diseases. To respond to these threats, it is necessary for the government, at every level, to adopt more mitigation and adaptation strategies. Here, focus groups were conducted with representatives from five Lima municipalities to determine priorities, perception of climate change, and decision-making processes for implementing projects within each municipality. These factors can affect the ability and desire of a community to implement climate change adaptation and mitigation strategies. The results show that climate change and other environmental factors are of relatively low priority, whereas public safety and water and sanitation services are of highest concern. Perhaps most importantly, climate change is not well understood among the municipalities. Participants had trouble distinguishing climate change from other environmental issues and did not fully understand its causes and effects. Greater understanding of what climate change is and why it is important is necessary for it to become a priority for the municipalities. Different aspects of increased climate change awareness seem to be connected to having experienced extreme weather events, whether related or not to climate change, and to higher socioeconomic status.
Robust Multivariable Optimization and Performance Simulation for ASIC Design
NASA Technical Reports Server (NTRS)
DuMonthier, Jeffrey; Suarez, George
2013-01-01
Application-specific-integrated-circuit (ASIC) design for space applications involves multiple challenges of maximizing performance, minimizing power, and ensuring reliable operation in extreme environments. This is a complex multidimensional optimization problem, which must be solved early in the development cycle of a system due to the time required for testing and qualification severely limiting opportunities to modify and iterate. Manual design techniques, which generally involve simulation at one or a small number of corners with a very limited set of simultaneously variable parameters in order to make the problem tractable, are inefficient and not guaranteed to achieve the best possible results within the performance envelope defined by the process and environmental requirements. What is required is a means to automate design parameter variation, allow the designer to specify operational constraints and performance goals, and to analyze the results in a way that facilitates identifying the tradeoffs defining the performance envelope over the full set of process and environmental corner cases. The system developed by the Mixed Signal ASIC Group (MSAG) at the Goddard Space Flight Center is implemented as a framework of software modules, templates, and function libraries. It integrates CAD tools and a mathematical computing environment, and can be customized for new circuit designs with only a modest amount of effort as most common tasks are already encapsulated. Customization is required for simulation test benches to determine performance metrics and for cost function computation.
Environmental Quality Index - Overview Report
A better estimate of overall environmental quality is needed to improve our understanding of the relationship between environmental conditions and humanhealth. Described in this report is the effort to construct an environmental quality index representing multiple domains of the ...
Extreme weather events and infectious disease outbreaks.
McMichael, Anthony J
2015-01-01
Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.
Multicriteria decision analysis: Overview and implications for environmental decision making
Hermans, Caroline M.; Erickson, Jon D.; Erickson, Jon D.; Messner, Frank; Ring, Irene
2007-01-01
Environmental decision making involving multiple stakeholders can benefit from the use of a formal process to structure stakeholder interactions, leading to more successful outcomes than traditional discursive decision processes. There are many tools available to handle complex decision making. Here we illustrate the use of a multicriteria decision analysis (MCDA) outranking tool (PROMETHEE) to facilitate decision making at the watershed scale, involving multiple stakeholders, multiple criteria, and multiple objectives. We compare various MCDA methods and their theoretical underpinnings, examining methods that most realistically model complex decision problems in ways that are understandable and transparent to stakeholders.
The relationship between environmental conditions and human health varies by environmental domain and urbanicity. To account for multiple ambient environmental conditions, we constructed an Environmental Quality Index (EQI) for health research. We used U.S. county level data rep...
Global climate change and children's health: threats and strategies for prevention.
Sheffield, Perry E; Landrigan, Philip J
2011-03-01
Global climate change will have multiple effects on human health. Vulnerable populations-children, the elderly, and the poor-will be disproportionately affected. We reviewed projected impacts of climate change on children's health, the pathways involved in these effects, and prevention strategies. We assessed primary studies, review articles, and organizational reports. Climate change is increasing the global burden of disease and in the year 2000 was responsible for > 150,000 deaths worldwide. Of this disease burden, 88% fell upon children. Documented health effects include changing ranges of vector-borne diseases such as malaria and dengue; increased diarrheal and respiratory disease; increased morbidity and mortality from extreme weather; changed exposures to toxic chemicals; worsened poverty; food and physical insecurity; and threats to human habitation. Heat-related health effects for which research is emerging include diminished school performance, increased rates of pregnancy complications, and renal effects. Stark variation in these outcomes is evident by geographic region and socioeconomic status, and these impacts will exacerbate health disparities. Prevention strategies to reduce health impacts of climate change include reduction of greenhouse gas emissions and adaptation through multiple public health interventions. Further quantification of the effects of climate change on children's health is needed globally and also at regional and local levels through enhanced monitoring of children's environmental health and by tracking selected indicators. Climate change preparedness strategies need to be incorporated into public health programs.
Multifactorial genetic divergence processes drive the onset of speciation in an Amazonian fish
Torrente-Vilara, Gislene; Quilodran, Claudio; Rodrigues da Costa Doria, Carolina; Montoya-Burgos, Juan I.
2017-01-01
Understanding the processes that drive population genetic divergence in the Amazon is challenging because of the vast scale, the environmental richness and the outstanding biodiversity of the region. We addressed this issue by determining the genetic structure of the widespread Amazonian common sardine fish Triportheus albus (Characidae). We then examined the influence, on this species, of all previously proposed population-structuring factors, including isolation-by-distance, isolation-by-barrier (the Teotônio Falls) and isolation-by-environment using variables that describe floodplain and water characteristics. The population genetics analyses revealed an unusually strong structure with three geographical groups: Negro/Tapajós rivers, Lower Madeira/Central Amazon, and Upper Madeira. Distance-based redundancy analyses showed that the optimal model for explaining the extreme genetic structure contains all proposed structuring factors and accounts for up to 70% of the genetic structure. We further quantified the contribution of each factor via a variance-partitioning analysis. Our results demonstrate that multiple factors, often proposed as individual drivers of population divergence, have acted in conjunction to divide T. albus into three genetic lineages. Because the conjunction of multiple long-standing population-structuring processes may lead to population reproductive isolation, that is, the onset of speciation, we suggest that the multifactorial population-structuring processes highlighted in this study could account for the high speciation rate characterising the Amazon Basin. PMID:29261722
[Symmetry is beauty - or is it? The rise and fall of fluctuating asymmetry].
Debat, Vincent
Fluctuating asymmetry is the stochastic, minor deviation from perfect symmetry in bilaterally symmetrical organisms. It reflects the limit of developmental precision. Such a precision can be influenced by various factors, both internal (genetic mutations, stochastic variation at every levels of development) and external (environmental influences). Fluctuating asymmetry has receive an extreme attention for the past few decades, that culminated in the 90s: it has been used as an estimator of heterozygosity, fitness, environmental stress, and widely applied to human biology, sociobiology and psychology before being more or less discredited in the early 2000s. The reasons for such an extreme popularity and then disgrace are discussed here. Far from suggesting to abandon the study of fluctuating asymmetry, we indicate some of the most promising research avenues. ‡. © 2016 médecine/sciences – Inserm.
NASA Technical Reports Server (NTRS)
Zemcov, Michael; Cardona, Pedro; Parkus, James; Patru, Dorin; Yost, Valerie
2017-01-01
Power generation in extreme environments, such as the outer solar system, the night side of planets, or other low-illumination environments, currently presents a technology gap that challenges NASA's ambitious scientific goals. We are developing a radioisotope power cell (RPC) that utilizes commercially available tritium light sources and standard 1.85 eV InGaP2 photovoltaic cells to convert beta particle energy to electric energy. In the test program described here, we perform environmental tests on commercially available borosilicate glass vials internally coated with a ZnS luminescent phosphor that are designed to contain gaseous tritium in our proposed power source. Such testing is necessary to ensure that the glass containing the radioactive tritium is capable of withstanding the extreme environments of launch and space for extended periods of time.
Categorization of extremely brief auditory stimuli: domain-specific or domain-general processes?
Bigand, Emmanuel; Delbé, Charles; Gérard, Yannick; Tillmann, Barbara
2011-01-01
The present study investigated the minimum amount of auditory stimulation that allows differentiation of spoken voices, instrumental music, and environmental sounds. Three new findings were reported. 1) All stimuli were categorized above chance level with 50 ms-segments. 2) When a peak-level normalization was applied, music and voices started to be accurately categorized with 20 ms-segments. When the root-mean-square (RMS) energy of the stimuli was equalized, voice stimuli were better recognized than music and environmental sounds. 3) Further psychoacoustical analyses suggest that the categorization of extremely brief auditory stimuli depends on the variability of their spectral envelope in the used set. These last two findings challenge the interpretation of the voice superiority effect reported in previously published studies and propose a more parsimonious interpretation in terms of an emerging property of auditory categorization processes.
NASA Astrophysics Data System (ADS)
Guo, Enliang; Zhang, Jiquan; Si, Ha; Dong, Zhenhua; Cao, Tiehua; Lan, Wu
2017-10-01
Environmental changes have brought about significant changes and challenges to water resources and management in the world; these include increasing climate variability, land use change, intensive agriculture, and rapid urbanization and industrial development, especially much more frequency extreme precipitation events. All of which greatly affect water resource and the development of social economy. In this study, we take extreme precipitation events in the Midwest of Jilin Province as an example; daily precipitation data during 1960-2014 are used. The threshold of extreme precipitation events is defined by multifractal detrended fluctuation analysis (MF-DFA) method. Extreme precipitation (EP), extreme precipitation ratio (EPR), and intensity of extreme precipitation (EPI) are selected as the extreme precipitation indicators, and then the Kolmogorov-Smirnov (K-S) test is employed to determine the optimal probability distribution function of extreme precipitation indicators. On this basis, copulas connect nonparametric estimation method and the Akaike Information Criterion (AIC) method is adopted to determine the bivariate copula function. Finally, we analyze the characteristics of single variable extremum and bivariate joint probability distribution of the extreme precipitation events. The results show that the threshold of extreme precipitation events in semi-arid areas is far less than that in subhumid areas. The extreme precipitation frequency shows a significant decline while the extreme precipitation intensity shows a trend of growth; there are significant differences in spatiotemporal of extreme precipitation events. The spatial variation trend of the joint return period gets shorter from the west to the east. The spatial distribution of co-occurrence return period takes on contrary changes and it is longer than the joint return period.
Haworth, Claire M A; Kovas, Yulia; Harlaar, Nicole; Hayiou-Thomas, Marianna E; Petrill, Stephen A; Dale, Philip S; Plomin, Robert
2009-10-01
Our previous investigation found that the same genes influence poor reading and mathematics performance in 10-year-olds. Here we assess whether this finding extends to language and general cognitive disabilities, as well as replicating the earlier finding for reading and mathematics in an older and larger sample. Using a representative sample of 4000 pairs of 12-year-old twins from the UK Twins Early Development Study, we investigated the genetic and environmental overlap between internet-based batteries of language and general cognitive ability tests in addition to tests of reading and mathematics for the bottom 15% of the distribution using DeFries-Fulker extremes analysis. We compared these results to those for the entire distribution. All four traits were highly correlated at the low extreme (average group phenotypic correlation = .58). and in the entire distribution (average phenotypic correlation = .59). Genetic correlations for the low extreme were consistently high (average = .67), and non-shared environmental correlations were modest (average = .23). These results are similar to those seen across the entire distribution (.68 and .23, respectively). The 'Generalist Genes Hypothesis' holds for language and general cognitive disabilities, as well as reading and mathematics disabilities. Genetic correlations were high, indicating a strong degree of overlap in genetic influences on these diverse traits. In contrast, non-shared environmental influences were largely specific to each trait, causing phenotypic differentiation of traits.
[A case of favourable outcome of the treatment of extremely severe acute poisoning with methanol].
Batotsyrenov, B V; Livanov, G A; Vasil'ev, S A; Fedorov, A V; Antrianov, A Iu
2013-01-01
A case of favourable outcome of the treatment of extremely severe acute poisoning after prolonged exposure to lethal doses of methanol is reported. The complex treatment included urgent and effective elimination of the poison (multiple gastric lavage, hemodialysis), antidote therapy (administration of ethanol), correction of decompensated metabolic acidosis (alkali therapy and infusion therapy with reamberin). These measures had beneficial effect on the clinical course of poisoning and ensured its favourable outcome.
2010-04-01
000 the response of damage dependent processes like fatigue crack formation, a framework is needed that accounts for the extreme value life...many different damage processes (e.g. fatigue, creep, fracture). In this work, multiple material volumes for both IN100 and Ti-6Al-4V are simulated via...polycrystalline P/M Ni-base superalloy IN100 Typically, fatigue damage formation in polycrystalline superalloys has been linked to the existence of
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPolla, J.; Foucar, E.; Leshin, B.
1985-11-01
The clinical and pathological features of a case of multifocal lymphangioma circumscriptum of the vulva are reported in a patient with chronic lymphedema of a lower extremity. Ten years previously the patient had been treated for squamous cell carcinoma of the cervix. Although lymphangioma circumscriptum is an extremely rare complication of altered lymphatic drainage, the presence of multiple noninflammatory vesicular appearing lesions in this setting should suggest the correct diagnosis.
Applied extreme-value statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinnison, R.R.
1983-05-01
The statistical theory of extreme values is a well established part of theoretical statistics. Unfortunately, it is seldom part of applied statistics and is infrequently a part of statistical curricula except in advanced studies programs. This has resulted in the impression that it is difficult to understand and not of practical value. In recent environmental and pollution literature, several short articles have appeared with the purpose of documenting all that is necessary for the practical application of extreme value theory to field problems (for example, Roberts, 1979). These articles are so concise that only a statistician can recognise all themore » subtleties and assumptions necessary for the correct use of the material presented. The intent of this text is to expand upon several recent articles, and to provide the necessary statistical background so that the non-statistician scientist can recognize and extreme value problem when it occurs in his work, be confident in handling simple extreme value problems himself, and know when the problem is statistically beyond his capabilities and requires consultation.« less
Climate Change, Extreme Weather Events, and Human Health Implications in the Asia Pacific Region.
Hashim, Jamal Hisham; Hashim, Zailina
2016-03-01
The Asia Pacific region is regarded as the most disaster-prone area of the world. Since 2000, 1.2 billion people have been exposed to hydrometeorological hazards alone through 1215 disaster events. The impacts of climate change on meteorological phenomena and environmental consequences are well documented. However, the impacts on health are more elusive. Nevertheless, climate change is believed to alter weather patterns on the regional scale, giving rise to extreme weather events. The impacts from extreme weather events are definitely more acute and traumatic in nature, leading to deaths and injuries, as well as debilitating and fatal communicable diseases. Extreme weather events include heat waves, cold waves, floods, droughts, hurricanes, tropical cyclones, heavy rain, and snowfalls. Globally, within the 20-year period from 1993 to 2012, more than 530 000 people died as a direct result of almost 15 000 extreme weather events, with losses of more than US$2.5 trillion in purchasing power parity. © 2015 APJPH.
The goal of the US Environmental Protection Agency's National Health and Environmental Research Laboratory's Wildlife Risk Assessment program is to develop scientifically valid methods to assess risks to wildlife and aquatic organisms from multiple stressors. To this end, the Loo...
NASA Astrophysics Data System (ADS)
Plumlee, G. S.; Morman, S. A.; Alpers, C. N.; Hoefen, T. M.; Meeker, G. P.
2010-12-01
Disasters commonly pose immediate threats to human safety, but can also produce hazardous materials (HM) that pose short- and long-term environmental-health threats. The U.S. Geological Survey (USGS) has helped assess potential environmental health characteristics of HM produced by various natural and anthropogenic disasters, such as the 2001 World Trade Center collapse, 2005 hurricanes Katrina and Rita, 2007-2009 southern California wildfires, various volcanic eruptions, and others. Building upon experience gained from these responses, we are now developing methods to anticipate plausible environmental and health implications of the 2008 Great Southern California ShakeOut scenario (which modeled the impacts of a 7.8 magnitude earthquake on the southern San Andreas fault, http://urbanearth.gps.caltech.edu/scenario08/), and the recent ARkStorm scenario (modeling the impacts of a major, weeks-long winter storm hitting nearly all of California, http://urbanearth.gps.caltech.edu/winter-storm/). Environmental-health impacts of various past earthquakes and extreme storms are first used to identify plausible impacts that could be associated with the disaster scenarios. Substantial insights can then be gleaned using a Geographic Information Systems (GIS) approach to link ShakeOut and ARkStorm effects maps with data extracted from diverse database sources containing geologic, hazards, and environmental information. This type of analysis helps constrain where potential geogenic (natural) and anthropogenic sources of HM (and their likely types of contaminants or pathogens) fall within areas of predicted ShakeOut-related shaking, firestorms, and landslides, and predicted ARkStorm-related precipitation, flooding, and winds. Because of uncertainties in the event models and many uncertainties in the databases used (e.g., incorrect location information, lack of detailed information on specific facilities, etc.) this approach should only be considered as the first of multiple steps toward a more quantitative, predictive approach to understanding the potential sources, types, environmental behavior, and health implications of HM predicted to result from these disaster scenarios. Although only a first step, this qualitative approach will help enhance planning for, mitigation of, and resilience to environmental-health consequences of future disasters. This qualitative approach also requires careful communication to stakeholders that does not sensationalize or overstate potential problems, but rather conveys plausible impacts and next steps to improve understanding of potential risks and their mitigation.
Odada, Eric O; Olago, Daniel O; Kulindwa, Kassim; Ntiba, Micheni; Wandiga, Shem
2004-02-01
Lake Victoria is an international waterbody that offers the riparian communities a large number of extremely important environmental services. Over the past three decades or so, the lake has come under increasing and considerable pressure from a variety of interlinked human activities such as overfishing, species introductions, industrial pollution, eutrophication, and sedimentation. In this paper we examine the root causes for overfishing and pollution in Lake Victoria and give possible policy options that can help remediate or mitigate the environmental degradation.
Segal, N L; Feng, R; McGuire, S A; Allison, D B; Miller, S
2009-01-01
Earlier studies have established that a substantial percentage of variance in obesity-related phenotypes is explained by genetic components. However, only one study has used both virtual twins (VTs) and biological twins and was able to simultaneously estimate additive genetic, non-additive genetic, shared environmental and unshared environmental components in body mass index (BMI). Our current goal was to re-estimate four components of variance in BMI, applying a more rigorous model to biological and virtual multiples with additional data. Virtual multiples share the same family environment, offering unique opportunities to estimate common environmental influence on phenotypes that cannot be separated from the non-additive genetic component using only biological multiples. Data included 929 individuals from 164 monozygotic twin pairs, 156 dizygotic twin pairs, five triplet sets, one quadruplet set, 128 VT pairs, two virtual triplet sets and two virtual quadruplet sets. Virtual multiples consist of one biological child (or twins or triplets) plus one same-aged adoptee who are all raised together since infancy. We estimated the additive genetic, non-additive genetic, shared environmental and unshared random components in BMI using a linear mixed model. The analysis was adjusted for age, age(2), age(3), height, height(2), height(3), gender and race. Both non-additive genetic and common environmental contributions were significant in our model (P-values<0.0001). No significant additive genetic contribution was found. In all, 63.6% (95% confidence interval (CI) 51.8-75.3%) of the total variance of BMI was explained by a non-additive genetic component, 25.7% (95% CI 13.8-37.5%) by a common environmental component and the remaining 10.7% by an unshared component. Our results suggest that genetic components play an essential role in BMI and that common environmental factors such as diet or exercise also affect BMI. This conclusion is consistent with our earlier study using a smaller sample and shows the utility of virtual multiples for separating non-additive genetic variance from common environmental variance.
Creating an Overall Environmental Quality Index - Technical Report
A better estimate of overall environmental quality is needed to improve our understanding of the relationship between environmental conditions and humanhealth. Described in this report is the effort to construct an environmental quality index representing multiple domains of the ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priya, P.; Krishnan, R.; Mujumdar, Milind
Historical rainfall records reveal that the frequency and intensity of extreme precipitation events, during the summer monsoon (June to September) season, have significantly risen over the Western Himalayas (WH) and adjoining upper Indus basin since 1950s. Using multiple datasets, the present study investigates the possible coincidences between an increasing trend of precipitation extremes over WH and changes in background flow climatology. The present findings suggest that the combined effects of a weakened southwest monsoon circulation, increased activity of transient upper-air westerly troughs over the WH region, enhanced moisture supply by southerly winds from the Arabian Sea into the Indus basinmore » have likely provided favorable conditions for an increased frequency of certain types of extreme precipitation events over the WH region in recent decades.« less
A single origin of extreme matrotrophy in African mabuyine skinks
Metallinou, Margarita; Karin, Benjamin R.; Conradie, Werner; Wagner, Philipp; Schmitz, Andreas; Jackman, Todd R.; Bauer, Aaron M.
2016-01-01
Most mammals and approximately 20% of squamates (lizards and snakes) are viviparous, whereas all crocodilians, birds and turtles are oviparous. Viviparity evolved greater than 100 times in squamates, including multiple times in Mabuyinae (Reptilia: Scincidae), making this group ideal for studying the evolution of nutritional patterns associated with viviparity. Previous studies suggest that extreme matrotrophy, the support of virtually all of embryonic development by maternal nutrients, evolved as many as three times in Mabuyinae: in Neotropical Mabuyinae (63 species), Eumecia (2 species; Africa) and Trachylepis ivensii (Africa). However, no explicit phylogenetic hypotheses exist for understanding the evolution of extreme matrotrophy. Using multilocus DNA data, we inferred a species tree for Mabuyinae that implies that T. ivensii (here assigned to the resurrected genus Lubuya) is sister to Eumecia, suggesting that extreme matrotrophy evolved only once in African mabuyine skinks. PMID:27555650
Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael
2015-11-26
Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field.
Fernandez, Isabel Diana; Becerra, Adan; Chin, Nancy P
2014-06-01
Worksites provide multiple advantages to prevent and treat obesity and to test environmental interventions to tackle its multiple causal factors. We present a literature review of group-randomized and non-randomized trials that tested worksite environmental, multiple component interventions for obesity prevention and control paying particular attention to the conduct of formative research prior to intervention development. The evidence on environmental interventions on measures of obesity appears to be strong since most of the studies have a low (4/8) and unclear (2/8) risk of bias. Among the studies reviewed whose potential risk of bias was low, the magnitude of the effect was modest and sometimes in the unexpected direction. None of the four studies describing an explicit formative research stage with clear integration of findings into the intervention was able to demonstrate an effect on the main outcome of interest. We present alternative explanation for the findings and recommendations for future research.
Research on numerical method for multiple pollution source discharge and optimal reduction program
NASA Astrophysics Data System (ADS)
Li, Mingchang; Dai, Mingxin; Zhou, Bin; Zou, Bin
2018-03-01
In this paper, the optimal method for reduction program is proposed by the nonlinear optimal algorithms named that genetic algorithm. The four main rivers in Jiangsu province, China are selected for reducing the environmental pollution in nearshore district. Dissolved inorganic nitrogen (DIN) is studied as the only pollutant. The environmental status and standard in the nearshore district is used to reduce the discharge of multiple river pollutant. The research results of reduction program are the basis of marine environmental management.
Kohli, Munish; Kohli, Monica; Sharma, Naresh; Siddiqui, Saif Rauf; Tulsi, S P S
2010-01-01
Gorlin-Goltz syndrome is an inherited autosomal dominant disorder with complete penetrance and extreme variable expressivity. The authors present a case of an 11-year-old girl with typical features of Gorlin-Goltz syndrome with special respect to medical and dental problems which include multiple bony cage deformities like spina bifida with scoliosis having convexity to the left side, presence of an infantile uterus and multiple odonogenic keratocysts in the maxillofacial region.
Tolerance to multiple climate stressors: a case study of Douglas-fir drought and cold hardiness
Sheel Bansal; Connie Harrington; Brad St. Clair
2016-01-01
1. Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations. 2. We assessed the...
Systematic procedure for designing processes with multiple environmental objectives.
Kim, Ki-Joo; Smith, Raymond L
2005-04-01
Evaluation of multiple objectives is very important in designing environmentally benign processes. It requires a systematic procedure for solving multiobjective decision-making problems due to the complex nature of the problems, the need for complex assessments, and the complicated analysis of multidimensional results. In this paper, a novel systematic procedure is presented for designing processes with multiple environmental objectives. This procedure has four steps: initialization, screening, evaluation, and visualization. The first two steps are used for systematic problem formulation based on mass and energy estimation and order of magnitude analysis. In the third step, an efficient parallel multiobjective steady-state genetic algorithm is applied to design environmentally benign and economically viable processes and to provide more accurate and uniform Pareto optimal solutions. In the last step a new visualization technique for illustrating multiple objectives and their design parameters on the same diagram is developed. Through these integrated steps the decision-maker can easily determine design alternatives with respect to his or her preferences. Most importantly, this technique is independent of the number of objectives and design parameters. As a case study, acetic acid recovery from aqueous waste mixtures is investigated by minimizing eight potential environmental impacts and maximizing total profit. After applying the systematic procedure, the most preferred design alternatives and their design parameters are easily identified.
Climate Impacts on Extreme Energy Consumption of Different Types of Buildings
Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming
2015-01-01
Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings. PMID:25923205
Climate impacts on extreme energy consumption of different types of buildings.
Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming
2015-01-01
Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-15
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.
Longevity enhances selection of environmental sex determination.
Bull, J J; Bulmer, M G
1989-12-01
Environmental sex determination (ESD) is a mechanism in which an individual develops as male or female largely in response to some environmental effect experienced early in life. Its forms range from sex determination by egg incubation temperature in reptiles to sex determination of photoperiod in amphipods. Previous theoretical work as suggested that ESD is favored by natural selection if the fitness consequences of the early environmental experience differ for males and females, so that an individual benefits by being male under some conditions and female under others. A drawback of ESD is that it enables climatic changes to influence the population sex ratio, and such fluctuations select against ESD. This study employed numerical analyses to investigate the balance between these two opposing forces. The negative impact of climatic fluctuations appears to depend greatly on species longevity: substantial between-year fluctuations are of little consequence in selecting against ESD in long-lived species because annual sex ratio fluctuations tend to cancel and thus alter the total population sex ratio only slightly. Thus, if a species is sufficiently long-lived, extreme ESD can be maintained despite only a weak advantage. This result offers one explanation for the failure to demonstrate an advantage for the extreme forms of ESD observed in reptiles.
Coelho, André; de Brito, Jorge
2013-01-01
Part I of this study deals with the primary energy consumption and CO(2)eq emissions of a 350 tonnes/h construction and demolition waste (CDW) recycling facility, taking into account incorporated, operation and transportation impacts. It concludes that the generated impacts are mostly concentrated in operation and transportation, and that the impacts prevented through material recycling can be up to one order of magnitude greater than those generated. However, the conditions considered for the plant's operation and related transportation system may, and very likely will, vary in the near future, which will affect its environmental performance. This performance is particularly affected by the plant's installed capacity, transportation fuel and input CDW mass. In spite of the variations in overall primary energy and CO(2)eq balances, the prevented impacts are always higher than the generated impacts, at least by a factor of three and maybe even as high as 16 times in particular conditions. The analysis indicates environmental performance for variations in single parameters, except for the plant's capacity, which was considered to vary simultaneously with all the others. Extreme best and worst scenarios were also generated to fit the results into extreme limits. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Golinski, M. R.
2006-07-01
Ecologists have observed that environmental noise affects population variance in the logistic equation for one-species growth. Interactions between deterministic and stochastic dynamics in a one-dimensional system result in increased variance in species population density over time. Since natural populations do not live in isolation, the present paper simulates a discrete-time two-species competition model with environmental noise to determine the type of colored population noise generated by extreme conditions in the long-term population dynamics of competing populations. Discrete Fourier analysis is applied to the simulation results and the calculated Hurst exponent ( H) is used to determine how the color of population noise for the two species corresponds to extreme conditions in population dynamics. To interpret the biological meaning of the color of noise generated by the two-species model, the paper determines the color of noise generated by three reference models: (1) A two-dimensional discrete-time white noise model (0⩽ H<1/2); (2) A two-dimensional fractional Brownian motion model (H=1/2); and (3) A two-dimensional discrete-time model with noise for unbounded growth of two uncoupled species (1/2< H⩽1).
VOLATILE ORGANIC COMPOUNDS AS EXPOSURE BIOMARKERS
Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the US Environmental Protection Agency's National Exposure Research Laboratory have developed and refined...
Boron-carbon-silicon polymers and the ceramic thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1991-01-01
The present invention relates to a process for the production of an organoborosilicon preceramic polymer. The prepolymer is pyrolyzed to produce a ceramic article useful in high temperature (e.g., aerospace) or extreme environmental applications.
7 CFR 1940.314 - Criteria for determining a significant environmental impact.
Code of Federal Regulations, 2013 CFR
2013-01-01
... wetlands are of critical importance to man, and because these areas are often extremely sensitive to man... or property. Examples of such actions include facilities which produce, use, or store highly volatile...
7 CFR 1940.314 - Criteria for determining a significant environmental impact.
Code of Federal Regulations, 2012 CFR
2012-01-01
... wetlands are of critical importance to man, and because these areas are often extremely sensitive to man... or property. Examples of such actions include facilities which produce, use, or store highly volatile...
7 CFR 1940.314 - Criteria for determining a significant environmental impact.
Code of Federal Regulations, 2011 CFR
2011-01-01
... wetlands are of critical importance to man, and because these areas are often extremely sensitive to man... or property. Examples of such actions include facilities which produce, use, or store highly volatile...
7 CFR 1940.314 - Criteria for determining a significant environmental impact.
Code of Federal Regulations, 2014 CFR
2014-01-01
... wetlands are of critical importance to man, and because these areas are often extremely sensitive to man... or property. Examples of such actions include facilities which produce, use, or store highly volatile...
Improving Heat Health Resilience through Urban Infrastructure Planning and Design
Public health and environmental agencies can reduce the heat island effect, increase resilience to extreme heat events, and help each other further their respective missions. Listen to this webinar to learn how.
Freeze-thaw durability of composite materials.
DOT National Transportation Integrated Search
1996-01-01
Composite materials, produced from polymer resins and high strength fibers, have the potential to be widely used in construction because of their corrosion resistance and high strength-to-weight ratio, However, such environmental factors as extreme t...
Continuing Environmental Health Education for Environmental Health Personnel, Lesson Six.
ERIC Educational Resources Information Center
Journal of Environmental Health, 1981
1981-01-01
Presents the sixth and final lesson on general environmental health, appearing since January, 1977 in this journal. Twenty-five multiple choice questions appear dealing with environmental health topics such as food sanitation, milk sanitation, vector control, public health housing, institutional environmental health, waste disposal, air pollution,…
Integrated approaches to long-term studies of urban ecological systems
Nancy B. Grimm; J. Morgan Grove; Steward T.A. Pickett; Charles L. Redman
2000-01-01
Urban ecological systems present multiple challenges to ecologistsâpervasive human impact and extreme heterogeneity of cities, and the need to integrate social and ecological approaches, concepts, and theory.
Delirium Research: Where Am I?
... facility, he experienced shortness of breath and acute lower-extremity edema that resulted in a series of hospital ... had a serious fall and sustained multiple hip fractures that required emergency hip replacement surgery to repair. ...
Liu, Jun; Hua, Zheng-Shuang; Chen, Lin-Xing; Kuang, Jia-Liang; Li, Sheng-Jin; Shu, Wen-Sheng
2014-01-01
Recent molecular surveys have advanced our understanding of the forces shaping the large-scale ecological distribution of microbes in Earth's extreme habitats, such as hot springs and acid mine drainage. However, few investigations have attempted dense spatial analyses of specific sites to resolve the local diversity of these extraordinary organisms and how communities are shaped by the harsh environmental conditions found there. We have applied a 16S rRNA gene-targeted 454 pyrosequencing approach to explore the phylogenetic differentiation among 90 microbial communities from a massive copper tailing impoundment generating acidic drainage and coupled these variations in community composition with geochemical parameters to reveal ecological interactions in this extreme environment. Our data showed that the overall microbial diversity estimates and relative abundances of most of the dominant lineages were significantly correlated with pH, with the simplest assemblages occurring under extremely acidic conditions and more diverse assemblages associated with neutral pHs. The consistent shifts in community composition along the pH gradient indicated that different taxa were involved in the different acidification stages of the mine tailings. Moreover, the effect of pH in shaping phylogenetic structure within specific lineages was also clearly evident, although the phylogenetic differentiations within the Alphaproteobacteria, Deltaproteobacteria, and Firmicutes were attributed to variations in ferric and ferrous iron concentrations. Application of the microbial assemblage prediction model further supported pH as the major factor driving community structure and demonstrated that several of the major lineages are readily predictable. Together, these results suggest that pH is primarily responsible for structuring whole communities in the extreme and heterogeneous mine tailings, although the diverse microbial taxa may respond differently to various environmental conditions. PMID:24727268
NASA Astrophysics Data System (ADS)
Araújo, M. D. N. M.
2015-12-01
In the past ten years Acre State, located in Brazil´s southwestern Amazonia, has confronted sequential and severe extreme events in the form of droughts and floods. In particular, the droughts and forest fires of 2005 and 2010, the 2012 flood within Acre, the 2014 flood of the Madeira River which isolated Acre for two months from southern Brazil, and the most severe flooding throughout the state in 2015 shook the resilience of Acrean society. The accumulated costs of these events since 2005 have exceeded 300 million dollars. For the last 17 years, successive state administrations have been implementing a socio-environmental model of development that strives to link sustainable economic production with environmental conservation, particularly for small communities. In this context, extreme climate events have interfered significantly with this model, increasing the risks of failure. The impacts caused by these events on development in the state have been exacerbated by: a) limitations in monitoring; b) extreme events outside of Acre territory (Madeira River Flood) affecting transportation systems; c) absence of reliable information for decision-making; and d) bureaucratic and judicial impediments. Our experience in these events have led to the following needs for scientific input to reduce the risk of disasters: 1) better monitoring and forecasting of deforestation, fires, and hydro-meteorological variables; 2) ways to increase risk perception in communities; 3) approaches to involve more effectively local and regional populations in the response to disasters; 4) more accurate measurements of the economic and social damages caused by these disasters. We must improve adaptation to and mitigation of current and future extreme climate events and implement a robust civil defense, adequate to these new challenges.
Biomedical imaging with THz waves
NASA Astrophysics Data System (ADS)
Nguyen, Andrew
2010-03-01
We discuss biomedical imaging using radio waves operating in the terahertz (THz) range between 300 GHz to 3 THz. Particularly, we present the concept for two THz imaging systems. One system employs single antenna, transmitter and receiver operating over multi-THz-frequency simultaneously for sensing and imaging small areas of the human body or biological samples. Another system consists of multiple antennas, a transmitter, and multiple receivers operating over multi-THz-frequency capable of sensing and imaging simultaneously the whole body or large biological samples. Using THz waves for biomedical imaging promises unique and substantial medical benefits including extremely small medical devices, extraordinarily fine spatial resolution, and excellent contrast between images of diseased and healthy tissues. THz imaging is extremely attractive for detection of cancer in the early stages, sensing and imaging of tissues near the skin, and study of disease and its growth versus time.
77 FR 35852 - Safety Zones; Multiple Firework Displays in Captain of the Port, Puget Sound Zone
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-15
... 13045, Protection of Children from Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and does not create an environmental risk to health or risk to safety that may... 1625-AA00 Safety Zones; Multiple Firework Displays in Captain of the Port, Puget Sound Zone AGENCY...
Preliminary Screening Procedures and Criteria for Replacements for Halons 1211 and 1301
1991-07-01
suppressants that meet current environmental and toxicological concerns. However, as the multiple and evolving performance constraints tighten, a new...massive trial-and-error study now may find suppressants that meet current environmental and toxicological concerns. However, as the multiple and...Extinguishment Concentration vs. Ratio of Linear Vapor Velocities, Elevated/hot ..................................................... 59 10. NIST PMMA Burner
Etiology in psychiatry: embracing the reality of poly‐gene‐environmental causation of mental illness
Uher, Rudolf; Zwicker, Alyson
2017-01-01
Intriguing findings on genetic and environmental causation suggest a need to reframe the etiology of mental disorders. Molecular genetics shows that thousands of common and rare genetic variants contribute to mental illness. Epidemiological studies have identified dozens of environmental exposures that are associated with psychopathology. The effect of environment is likely conditional on genetic factors, resulting in gene‐environment interactions. The impact of environmental factors also depends on previous exposures, resulting in environment‐environment interactions. Most known genetic and environmental factors are shared across multiple mental disorders. Schizophrenia, bipolar disorder and major depressive disorder, in particular, are closely causally linked. Synthesis of findings from twin studies, molecular genetics and epidemiological research suggests that joint consideration of multiple genetic and environmental factors has much greater explanatory power than separate studies of genetic or environmental causation. Multi‐factorial gene‐environment interactions are likely to be a generic mechanism involved in the majority of cases of mental illness, which is only partially tapped by existing gene‐environment studies. Future research may cut across psychiatric disorders and address poly‐causation by considering multiple genetic and environmental measures across the life course with a specific focus on the first two decades of life. Integrative analyses of poly‐causation including gene‐environment and environment‐environment interactions can realize the potential for discovering causal types and mechanisms that are likely to generate new preventive and therapeutic tools. PMID:28498595
Novel immunoassay formats for integrated microfluidic circuits: diffusion immunoassays (DIA)
NASA Astrophysics Data System (ADS)
Weigl, Bernhard H.; Hatch, Anson; Kamholz, Andrew E.; Yager, Paul
2000-03-01
Novel designs of integrated fluidic microchips allow separations, chemical reactions, and calibration-free analytical measurements to be performed directly in very small quantities of complex samples such as whole blood and contaminated environmental samples. This technology lends itself to applications such as clinical diagnostics, including tumor marker screening, and environmental sensing in remote locations. Lab-on-a-Chip based systems offer many *advantages over traditional analytical devices: They consume extremely low volumes of both samples and reagents. Each chip is inexpensive and small. The sampling-to-result time is extremely short. They perform all analytical functions, including sampling, sample pretreatment, separation, dilution, and mixing steps, chemical reactions, and detection in an integrated microfluidic circuit. Lab-on-a-Chip systems enable the design of small, portable, rugged, low-cost, easy to use, yet extremely versatile and capable diagnostic instruments. In addition, fluids flowing in microchannels exhibit unique characteristics ('microfluidics'), which allow the design of analytical devices and assay formats that would not function on a macroscale. Existing Lab-on-a-chip technologies work very well for highly predictable and homogeneous samples common in genetic testing and drug discovery processes. One of the biggest challenges for current Labs-on-a-chip, however, is to perform analysis in the presence of the complexity and heterogeneity of actual samples such as whole blood or contaminated environmental samples. Micronics has developed a variety of Lab-on-a-Chip assays that can overcome those shortcomings. We will now present various types of novel Lab- on-a-Chip-based immunoassays, including the so-called Diffusion Immunoassays (DIA) that are based on the competitive laminar diffusion of analyte molecules and tracer molecules into a region of the chip containing antibodies that target the analyte molecules. Advantages of this technique are a reduction in reagents, higher sensitivity, minimal preparation of complex samples such as blood, real-time calibration, and extremely rapid analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wünsche, Martin; Fuchs, Silvio; Aull, Stefan
A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less
Wünsche, Martin; Fuchs, Silvio; Aull, Stefan; ...
2017-03-16
A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less
Solitary necrobiotic xanthogranuloma of an upper extremity in association with multiple myeloma.
Bain, E Eugene; Meehan, Shane A; Hale, Elizabeth K
2014-05-01
Necrobiotic xanthogranuloma (NXG) is an uncommon granulomatous disorder of unknown pathogenesis that often presents with yellowish plaques in a periorbital distribution. While a majority of cases are associated with an underlying paraproteinemia of the IgG kappa type, a much smaller number are found to be associated with an underlying multiple myeloma. We present a case of a 78-year-old male with an isolated lesion of NXG on his right upper extremity. Following his diagnosis of NXG, further investigation for underlying systemic disorders with serum immunofixation revealed a monoclonal IgG kappa immunoglobulin with an M-spike of 1.2 g/dL. A PET-CT demonstrated bone destruction in the left proximal fifth rib, left scapula, the anterior lumbar I (L1) vertebrae, the left lumbar III (L3) vertebrae posterior elements and possibly left sacrum. A bone marrow biopsy revealed 18 % plasma cells. With these findings he was diagnosed with stage I multiple myeloma. Though clinically unimpressive and atypical in location for NXG, early biopsy and diagnosis of this solitary lesion led to the discovery of his hematopoietic disorder.
Surface plasmon resonance spectroscopy sensor and methods for using same
Anderson, Brian Benjamin; Nave, Stanley Eugene
2002-01-01
A surface plasmon resonance ("SPR") probe with a detachable sensor head and system and methods for using the same in various applications is described. The SPR probe couples fiber optic cables directly to an SPR substrate that has a generally planar input surface and a generally curved reflecting surface, such as a substrate formed as a hemisphere. Forming the SPR probe in this manner allows the probe to be miniaturized and operate without the need for high precision, expensive and bulky collimating or focusing optics. Additionally, the curved reflecting surface of the substrate can be coated with one or multiple patches of sensing medium to allow the probe to detect for multiple analytes of interest or to provide multiple readings for comparison and higher precision. Specific applications for the probe are disclosed, including extremely high sensitive relative humidity and dewpoint detection for, e.g., moisture-sensitive environment such as volatile chemical reactions. The SPR probe disclosed operates with a large dynamic range and provides extremely high quality spectra despite being robust enough for field deployment and readily manufacturable.
Setting Environmental Standards
ERIC Educational Resources Information Center
Fishbein, Gershon
1975-01-01
Recent court decisions have pointed out the complexities involved in setting environmental standards. Environmental health is composed of multiple causative agents, most of which work over long periods of time. This makes the cause-and-effect relationship between health statistics and environmental contaminant exposures difficult to prove in…
Oliver, David M; Bird, Clare; Burd, Emmy; Wyman, Michael
2016-09-06
The relationship between culturable counts (CFU) and quantitative PCR (qPCR) cell equivalent counts of Escherichia coli in dairy feces exposed to different environmental conditions and temperature extremes was investigated. Fecal samples were collected in summer and winter from dairy cowpats held under two treatments: field-exposed versus polytunnel-protected. A significant correlation in quantified E. coli was recorded between the qPCR and culture-based methods (r = 0.82). Evaluation of the persistence profiles of E. coli over time revealed no significant difference in the E. coli numbers determined as either CFU or gene copies during the summer for the field-exposed cowpats, whereas significantly higher counts were observed by qPCR for the polytunnel-protected cowpats, which were exposed to higher ambient temperatures. In winter, the qPCR returned significantly higher counts of E. coli for the field-exposed cowpats, thus representing a reversal of the findings from the summer sampling campaign. Results from this study suggest that with increasing time post-defecation and with the onset of challenging environmental conditions, such as extremes in temperature, culture-based counts begin to underestimate the true resilience of viable E. coli populations in livestock feces. This is important not only in the long term as the Earth changes in response to climate-change drivers but also in the short term during spells of extremely cold or hot weather.
Qualification of Engineering Camera for Long-Duration Deep Space Missions
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni; Maki, Justin N.; Pourangi, Ali M.; Lee, Steven W.
2012-01-01
Qualification and verification of advanced electronic packaging and interconnect technologies, and various other types of hardware elements for the Mars Exploration Rover s Spirit and Opportunity (MER)/Mars Science Laboratory (MSL) flight projects, has been performed to enhance the mission assurance. The qualification of hardware (engineering camera) under extreme cold temperatures has been performed with reference to various Mars-related project requirements. The flight-like packages, sensors, and subassemblies have been selected for the study to survive three times the total number of expected diurnal temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware, including all relevant manufacturing, ground operations, and mission phases. Qualification has been performed by subjecting above flight-like hardware to the environmental temperature extremes, and assessing any structural failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Engineering camera packaging designs, charge-coupled devices (CCDs), and temperature sensors were successfully qualified for MER and MSL per JPL design principles. Package failures were observed during qualification processes and the package redesigns were then made to enhance the reliability and subsequent mission assurance. These results show the technology certainly is promising for MSL, and especially for longterm extreme temperature missions to the extreme temperature conditions. The engineering camera has been completely qualified for the MSL project, with the proven ability to survive on Mars for 2010 sols, or 670 sols times three. Finally, the camera continued to be functional, even after 2010 thermal cycles.
Extreme Environment Technologies for Space and Terrestrial Applications
NASA Technical Reports Server (NTRS)
Balint, Tibor S.; Cutts, James A.; Kolawa, Elizabeth A.; Peterson, Craig E.
2008-01-01
Over the next decades, NASA's planned solar system exploration missions are targeting planets, moons and small bodies, where spacecraft would be expected to encounter diverse extreme environmental (EE) conditions throughout their mission phases. These EE conditions are often coupled. For instance, near the surface of Venus and in the deep atmospheres of giant planets, probes would experience high temperatures and pressures. In the Jovian system low temperatures are coupled with high radiation. Other environments include thermal cycling, and corrosion. Mission operations could also introduce extreme conditions, due to atmospheric entry heat flux and deceleration. Some of these EE conditions are not unique to space missions; they can be encountered by terrestrial assets from the fields of defense,oil and gas, aerospace, and automotive industries. In this paper we outline the findings of NASA's Extreme Environments Study Team, including discussions on state of the art and emerging capabilities related to environmental protection, tolerance and operations in EEs. We will also highlight cross cutting EE mitigation technologies, for example, between high g-load tolerant impactors for Europa and instrumented projectiles on Earth; high temperature electronics sensors on Jupiter deep probes and sensors inside jet engines; and pressure vessel technologies for Venus probes and sea bottom monitors. We will argue that synergistic development programs between these fields could be highly beneficial and cost effective for the various agencies and industries. Some of these environments, however, are specific to space and thus the related technology developments should be spear headed by NASA with collaboration from industry and academia.
Macedo, Diego R; Hughes, Robert M; Kaufmann, Philip R; Callisto, Marcos
2018-04-23
Augmented production and transport of fine sediments resulting from increased human activities are major threats to freshwater ecosystems, including reservoirs and their ecosystem services. To support large scale assessment of the likelihood of soil erosion and reservoir sedimentation, we developed and validated an environmental fragility index (EFI) for the Brazilian neotropical savannah. The EFI was derived from measured geoclimatic controls on sediment production (rainfall, variation of elevation and slope, geology) and anthropogenic pressures (natural cover, road density, distance from roads and urban centers) in 111 catchments upstream of four large hydroelectric reservoirs. We evaluated the effectiveness of the EFI by regressing it against a relative bed stability index (LRBS) that assesses the degree to which stream sites draining into the reservoirs are affected by excess fine sediments. We developed the EFI on 111 of these sites and validated our model on the remaining 37 independent sites. We also compared the effectiveness of the EFI in predicting LRBS with that of a multiple linear regression model (via best-subset procedure) using 7 independent variables. The EFI was significantly correlated with the LRBS, with regression R 2 values of 0.32 and 0.40, respectively, in development and validation sites. Although the EFI and multiple regression explained similar amounts of variability (R 2 = 0.32 vs 0.36), the EFI had a higher F-ratio (51.6 vs 8.5) and better AICc value (333 vs 338). Because the sites were randomly selected and well-distributed across geoclimatic controlling factors, we were able to calculate spatially-explicit EFI values for all hydrologic units within the study area (~38,500 km 2 ). This model-based inference showed that over 65% of those units had high or extreme fragility. This methodology has great potential for application in the management, recovery, and preservation of hydroelectric reservoirs and streams in tropical river basins. Copyright © 2018 Elsevier B.V. All rights reserved.
Integrated presentation of ecological risk from multiple stressors
NASA Astrophysics Data System (ADS)
Goussen, Benoit; Price, Oliver R.; Rendal, Cecilie; Ashauer, Roman
2016-10-01
Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic.
Integrated presentation of ecological risk from multiple stressors.
Goussen, Benoit; Price, Oliver R; Rendal, Cecilie; Ashauer, Roman
2016-10-26
Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic.
Quantitative assessment of upper extremities motor function in multiple sclerosis.
Daunoraviciene, Kristina; Ziziene, Jurgita; Griskevicius, Julius; Pauk, Jolanta; Ovcinikova, Agne; Kizlaitiene, Rasa; Kaubrys, Gintaras
2018-05-18
Upper extremity (UE) motor function deficits are commonly noted in multiple sclerosis (MS) patients and assessing it is challenging because of the lack of consensus regarding its definition. Instrumented biomechanical analysis of upper extremity movements can quantify coordination with different spatiotemporal measures and facilitate disability rating in MS patients. To identify objective quantitative parameters for more accurate evaluation of UE disability and relate it to existing clinical scores. Thirty-four MS patients and 24 healthy controls (CG) performed a finger-to-nose test as fast as possible and, in addition, clinical evaluation kinematic parameters of UE were measured by using inertial sensors. Generally, a higher disability score was associated with an increase of several temporal parameters, like slower task performance. The time taken to touch their nose was longer when the task was fulfilled with eyes closed. Time to peak angular velocity significantly changed in MS patients (EDSS > 5.0). The inter-joint coordination significantly decreases in MS patients (EDSS 3.0-5.5). Spatial parameters indicated that maximal ROM changes were in elbow flexion. Our findings have revealed that spatiotemporal parameters are related to the UE motor function and MS disability level. Moreover, they facilitate clinical rating by supporting clinical decisions with quantitative data.
Development of system reliability models for railway bridges.
DOT National Transportation Integrated Search
2012-07-01
Performance of the railway transportation network depends on the reliability of railway bridges, which can be affected by : various forms of deterioration and extreme environmental conditions. More than half of the railway bridges in US were : built ...
Cold Regions Environmental Considerations
2009-02-03
braided streams, variable discharge, seasonal breakup) limited seasonally limited abundant Hydrology (frozen lakes and bogs) not present seasonally...fuel hoses may crack increasing the potential for fuel spills. Extreme care must be used when handling cables at cold temperatures, protecting the
Habitability Imposters: Extreme Terrestrial Climates in the Habitable Zone of M Dwarf Stars
NASA Astrophysics Data System (ADS)
Lincowski, A. P.; Meadows, V. S.; Crisp, D.; Robinson, T. D.; Luger, R.; Arney, G. N.
2017-11-01
We use coupled climate-photochemical modeling of TRAPPIST-1 planets to present a variety of evolved environmental states and their spectral discriminants, for use by upcoming M dwarf planet characterization observations.
Integrated socio-environmental modelling: A test case in coastal Bangladesh
NASA Astrophysics Data System (ADS)
Lazar, Attila
2013-04-01
Delta regions are vulnerable with their populations and ecosystems facing multiple threats in the coming decades through extremes of poverty, environmental and ecological stress and land degradation. External and internal processes initiate these threats/changes and results in for example water quality and health risk issues, declining agricultural productivity and sediment starvation all of which directly affecting the local population. The ESPA funded "Assessing Health, Livelihoods, Ecosystem Services and Poverty Alleviation In Populous Deltas" project (2012-16) aims to provide policy makers with the knowledge and tools to enable them to evaluate the effects of policy decisions on people's livelihoods. It considers coastal Bangladesh in the Ganges-Brahmaputra-Meghna Delta: one of the world's most dynamic and significant deltas. This is being done by a multidisciplinary and multinational team of policy analysts, social and natural scientists and engineers using a participatory, holistic approach to formally evaluate ecosystem services and poverty in the context of the wide range of changes that are occurring. An integrated model with relevant feedbacks is being developed to explore options for management strategies and policy formulation for ecosystem services, livelihoods and health in coastal Bangladesh. This requires the continuous engagement with stakeholders through the following steps: (1) system characterisation, (2) research question definition, (3) data and model identification, (4) model validation and (5) model application. This presentation will focus on the first three steps. Field-based social science and governance related research are on the way. The bio-physical models have been selected and some are already set up for the study area. These allow preliminary conceptualisation of the elements and linkages of the deltaic socio-environmental system and thus the preliminary structure of the integrated model. This presentation describes these steps though the coastal Bangladesh test case.
NASA Astrophysics Data System (ADS)
Weaver, L.
2015-12-01
The world is currently in a stage of extreme growth, characterized by increasing demands for food and increasing greenhouse gas emissions. The population for 2050 is forecasted to grow by 2.3 billion people, resulting in close to a 40% increase in food demand (Alexandratos, Bruinsma 2012). This will severely increase pressure on the earth and on crop harvesting processes to incorporate carbon emissions reduction strategies. Optimal land use analysis and innovation can provide feasible solutions for these problems. A key environmental feature around which land use systems should be carefully planned and maintained is the Mississippi River, the largest watershed system in the United States. Along head of the Lower Mississippi Watershed lie several farming communities including Cairo, Illinois. The primary land use for the area inhabited by these communities consists of soybeans, corn, and pasture. These crops have varying carbon storage capacities, economic and social benefits, and environmental consequences. In order to maximize social, economic, and environmental benefits and sustainability, these crops were analyzed over time, spatial correlation, and crop size area. When considering risks of carbon emissions, economic decline, landscape erosion and harmful runoff, a localized switchgrass buffer remains a feasible solution. Its strengths as a native, reliable plant with high carbon sequestration and biomass harvest potential yield it to be more prevalently implemented at the head of the Lower Mississippi Watershed. However, there are multiple factors that must be considered before implementing broad agricultural policies and practices. Thorough analyses should be performed frequently to assess the effects of major land use change and can be used to identify the optimized applications for farmers and communities.
Alternative stable states and phase shifts in coral reefs under anthropogenic stress.
Fung, Tak; Seymour, Robert M; Johnson, Craig R
2011-04-01
Ecosystems with alternative stable states (ASS) may shift discontinuously from one stable state to another as environmental parameters cross a threshold. Reversal can then be difficult due to hysteresis effects. This contrasts with continuous state changes in response to changing environmental parameters, which are less difficult to reverse. Worldwide degradation of coral reefs, involving "phase shifts" from coral to algal dominance, highlights the pressing need to determine the likelihood of discontinuous phase shifts in coral reefs, in contrast to continuous shifts with no ASS. However, there is little evidence either for or against the existence of ASS for coral reefs. We use dynamic models to investigate the likelihood of continuous and discontinuous phase shifts in coral reefs subject to sustained environmental perturbation by fishing, nutrification, and sedimentation. Our modeling results suggest that coral reefs with or without anthropogenic stress can exhibit ASS, such that discontinuous phase shifts can occur. We also find evidence to support the view that high macroalgal growth rates and low grazing rates on macroalgae favor ASS in coral reefs. Further, our results suggest that the three stressors studied, either alone or in combination, can increase the likelihood of both continuous and discontinuous phase shifts by altering the competitive balance between corals and algae. However, in contrast to continuous phase shifts, we find that discontinuous shifts occur only in model coral reefs with parameter values near the extremes of their empirically determined ranges. This suggests that continuous shifts are more likely than discontinuous shifts in coral reefs. Our results also suggest that, for ecosystems in general, tackling multiple human stressors simultaneously maximizes resilience to phase shifts, ASS, and hysteresis, leading to improvements in ecosystem health and functioning.
ENVIRONMENTAL SCIENCE. Profiling risk and sustainability in coastal deltas of the world.
Tessler, Z D; Vörösmarty, C J; Grossberg, M; Gladkova, I; Aizenman, H; Syvitski, J P M; Foufoula-Georgiou, E
2015-08-07
Deltas are highly sensitive to increasing risks arising from local human activities, land subsidence, regional water management, global sea-level rise, and climate extremes. We quantified changing flood risk due to extreme events using an integrated set of global environmental, geophysical, and social indicators. Although risks are distributed across all levels of economic development, wealthy countries effectively limit their present-day threat by gross domestic product-enabled infrastructure and coastal defense investments. In an energy-constrained future, such protections will probably prove to be unsustainable, raising relative risks by four to eight times in the Mississippi and Rhine deltas and by one-and-a-half to four times in the Chao Phraya and Yangtze deltas. The current emphasis on short-term solutions for the world's deltas will greatly constrain options for designing sustainable solutions in the long term. Copyright © 2015, American Association for the Advancement of Science.
Climate Change and Collective Violence.
Levy, Barry S; Sidel, Victor W; Patz, Jonathan A
2017-03-20
Climate change is causing increases in temperature, changes in precipitation and extreme weather events, sea-level rise, and other environmental impacts. It is also causing or contributing to heat-related disorders, respiratory and allergic disorders, infectious diseases, malnutrition due to food insecurity, and mental health disorders. In addition, increasing evidence indicates that climate change is causally associated with collective violence, generally in combination with other causal factors. Increased temperatures and extremes of precipitation with their associated consequences, including resultant scarcity of cropland and other key environmental resources, are major pathways by which climate change leads to collective violence. Public health professionals can help prevent collective violence due to climate change (a) by supporting mitigation measures to reduce greenhouse gas emissions, (b) by promoting adaptation measures to address the consequences of climate change and to improve community resilience, and (c) by addressing underlying risk factors for collective violence, such as poverty and socioeconomic disparities.
Sorby, Kris L; Green, Mark P; Dempster, Tim D; Jessop, Tim S
2018-05-29
Organisms increasingly encounter higher frequencies of extreme weather events as a consequence of global climate change. Currently, few strategies are available to mitigate climate change effects on animals arising from acute extreme high temperature events. We tested the capacity of physiological engineering to influence the intra- and multi-generational upper thermal tolerance capacity of a model organism Artemia , subjected to extreme high temperatures. Enhancement of specific physiological regulators during development could affect thermal tolerances or life-history attributes affecting subsequent fitness. Using experimental Artemia populations we exposed F0 individuals to one of four treatments; heat hardening (28°C to 36°C, 1°C per 10 minutes), heat hardening plus serotonin (0.056 µg ml -1 ), heat hardening plus methionine (0.79 mg ml -1 ), and a control treatment. Regulator concentrations were based on previous literature. Serotonin may promote thermotolerance, acting upon metabolism and life-history. Methionine acts as a methylation agent across generations. For all groups, measurements were collected for three performance traits of individual thermal tolerance (upper sublethal thermal limit, lethal limit, and dysregulation range) over two generations. Results showed no treatment increased upper thermal limit during acute thermal stress, although serotonin-treated and methionine-treated individuals outperformed controls across multiple thermal performance traits. Additionally, some effects were evident across generations. Together these results suggest phenotypic engineering provides complex outcomes; and if implemented with heat hardening can further influence performance in multiple thermal tolerance traits, within and across generations. Potentially, such techniques could be up-scaled to provide resilience and stability in populations susceptible to extreme temperature events. © 2018. Published by The Company of Biologists Ltd.
Kohli, Munish; Kohli, Monica; Sharma, Naresh; Siddiqui, Saif Rauf; Tulsi, S.P.S.
2010-01-01
Gorlin-Goltz syndrome is an inherited autosomal dominant disorder with complete penetrance and extreme variable expressivity. The authors present a case of an 11-year-old girl with typical features of Gorlin-Goltz syndrome with special respect to medical and dental problems which include multiple bony cage deformities like spina bifida with scoliosis having convexity to the left side, presence of an infantile uterus and multiple odonogenic keratocysts in the maxillofacial region. PMID:22442551
Thrombosis of digital arteries associated with tamoxifen use: case report.
Hutchison, Richard L; Rayan, Ghazi M
2012-02-01
Arterial thrombosis in the upper extremity occurs often at the wrist. We report a unique case of thrombosis that involved multiple digital arteries, without radial or ulnar artery involvement, which developed only after using tamoxifen despite chronic occupational blunt percussive hand use. Revascularization was achieved after thrombectomy. Multiple digital arterial thromboses may complicate the use of tamoxifen. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Yucel, Ahmet Fikret; Pergel, Ahmet; Kocakusak, Ahmet; Aydin, Ibrahim; Bagci, Pelin; Sahin, Dursun Ali
2011-11-01
Congenital anomalies of the appendix are extremely rare. They are usually found incidentally during operations other than appendectomies. Congenital appendix diverticula are even less frequent. Congenital caeco-appendiceal fistulae have not been reported until today. Herein, we present real diverticula of the appendix with multiple caeco-appendiceal fistulae which, to our knowledge, is the first in the literature.
ERIC Educational Resources Information Center
Duthie, Pamela Rae
To determine the effects of water exercise on the movements of multiple sclerosis patients, this study utilized tests to determine changes in the linear range of motion of the shoulder, elbow, and wrist after a 45-minute period of water activities and to determine if the movement became more effective. The test used was an overhead throw with a…
The Effects of Statistical Multiplicity of Infection on Virus Quantification and Infectivity Assays.
Mistry, Bhaven A; D'Orsogna, Maria R; Chou, Tom
2018-06-19
Many biological assays are employed in virology to quantify parameters of interest. Two such classes of assays, virus quantification assays (VQAs) and infectivity assays (IAs), aim to estimate the number of viruses present in a solution and the ability of a viral strain to successfully infect a host cell, respectively. VQAs operate at extremely dilute concentrations, and results can be subject to stochastic variability in virus-cell interactions. At the other extreme, high viral-particle concentrations are used in IAs, resulting in large numbers of viruses infecting each cell, enough for measurable change in total transcription activity. Furthermore, host cells can be infected at any concentration regime by multiple particles, resulting in a statistical multiplicity of infection and yielding potentially significant variability in the assay signal and parameter estimates. We develop probabilistic models for statistical multiplicity of infection at low and high viral-particle-concentration limits and apply them to the plaque (VQA), endpoint dilution (VQA), and luciferase reporter (IA) assays. A web-based tool implementing our models and analysis is also developed and presented. We test our proposed new methods for inferring experimental parameters from data using numerical simulations and show improvement on existing procedures in all limits. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Evaluation of Cardiovascular Risk Scores Applied to NASA's Astronant Corps
NASA Technical Reports Server (NTRS)
Jain, I.; Charvat, J. M.; VanBaalen, M.; Lee, L.; Wear, M. L.
2014-01-01
In an effort to improve cardiovascular disease (CVD) risk prediction, this analysis evaluates and compares the applicability of multiple CVD risk scores to the NASA Astronaut Corps which is extremely healthy at selection.
2013 BNL Site Environmental Report. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratel, K.; Remien, J.; Pohlot, P.
A summary of Brookhaven National Laboratory’s (BNL) Site Environmental Report, meant to inform the public, regulators, employees, and other stakeholders of the Laboratory’s environmental performance in the lab’s surrounding area during the calendar year. The review is comprised of multiple volumes relevant to environmental data/environmental management performance and groundwater status report.
A regional strategy for ecological sustainability: A case study in Southwest China.
Wu, Xue; Liu, Shiliang; Cheng, Fangyan; Hou, Xiaoyun; Zhang, Yueqiu; Dong, Shikui; Liu, Guohua
2018-03-01
Partitioning, a method considering environmental protection and development potential, is an effective way to provide regional management strategies to maintain ecological sustainability. In this study, we provide a large-scale regional division approach and present a strategy for Southwest China, which also has extremely high development potential because of the "Western development" policy. Based on the superposition of 15 factors, including species diversity, pattern restriction, agricultural potential, accessibility, urbanization potential, and topographical limitations, the environmental value and development benefit in the region were quantified spatially by weighting the sum of indicators within environmental and development categories. By comparing the scores with their respective median values, the study area was divided into four different strategy zones: Conserve zones (34.94%), Construction zones (32.95%), Conflict zones (16.96%), and Low-tension zones (15.16%). The Conflict zones in which environmental value and development benefit were both higher than the respective medians were separated further into the following 5 levels: Extreme conflict (36.20%), Serious conflict (28.07%), Moderate conflict (12.28%), Minor conflict (6.55%), and Slight conflict (16.91%). We found that 9.04% of nature reserves were in Conflict zones, and thus should be given more attention. This study provides a simple and feasible method for regional partitioning, as well as comprehensive support that weighs both the environmental value and development benefit for China's current Ecological Red Line and space planning and for regional management in similar situations. Copyright © 2017 Elsevier B.V. All rights reserved.
Plant volatiles in extreme terrestrial and marine environments.
Rinnan, Riikka; Steinke, Michael; McGenity, Terry; Loreto, Francesco
2014-08-01
This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation. © 2014 John Wiley & Sons Ltd.
Extreme values and fat tails of multifractal fluctuations
NASA Astrophysics Data System (ADS)
Muzy, J. F.; Bacry, E.; Kozhemyak, A.
2006-06-01
In this paper we discuss the problem of the estimation of extreme event occurrence probability for data drawn from some multifractal process. We also study the heavy (power-law) tail behavior of probability density function associated with such data. We show that because of strong correlations, the standard extreme value approach is not valid and classical tail exponent estimators should be interpreted cautiously. Extreme statistics associated with multifractal random processes turn out to be characterized by non-self-averaging properties. Our considerations rely upon some analogy between random multiplicative cascades and the physics of disordered systems and also on recent mathematical results about the so-called multifractal formalism. Applied to financial time series, our findings allow us to propose an unified framework that accounts for the observed multiscaling properties of return fluctuations, the volatility clustering phenomenon and the observed “inverse cubic law” of the return pdf tails.
Living Membranes as Environmental Detectors
2016-02-19
followed. Initial studies were conducted for 30 days of storage at room temperature and 4⁰C. Results indicate that the living membrane is stable...4⁰C or room temperature in wet or lyophilized form. Freeze-dried mat Wet pellicle 4oC RT 4oC RT Figure 13: Stability of RFP Living Membrane...physically robust format able to withstand extremes of temperature , humidity, and other environmental variables The living membrane systems under
Coal and Open-pit surface mining impacts on American Lands (COAL)
NASA Astrophysics Data System (ADS)
Brown, T. A.; McGibbney, L. J.
2017-12-01
Mining is known to cause environmental degradation, but software tools to identify its impacts are lacking. However, remote sensing, spectral reflectance, and geographic data are readily available, and high-performance cloud computing resources exist for scientific research. Coal and Open-pit surface mining impacts on American Lands (COAL) provides a suite of algorithms and documentation to leverage these data and resources to identify evidence of mining and correlate it with environmental impacts over time.COAL was originally developed as a 2016 - 2017 senior capstone collaboration between scientists at the NASA Jet Propulsion Laboratory (JPL) and computer science students at Oregon State University (OSU). The COAL team implemented a free and open-source software library called "pycoal" in the Python programming language which facilitated a case study of the effects of coal mining on water resources. Evidence of acid mine drainage associated with an open-pit coal mine in New Mexico was derived by correlating imaging spectrometer data from the JPL Airborne Visible/InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), spectral reflectance data published by the USGS Spectroscopy Laboratory in the USGS Digital Spectral Library 06, and GIS hydrography data published by the USGS National Geospatial Program in The National Map. This case study indicated that the spectral and geospatial algorithms developed by COAL can be used successfully to analyze the environmental impacts of mining activities.Continued development of COAL has been promoted by a Startup allocation award of high-performance computing resources from the Extreme Science and Engineering Discovery Environment (XSEDE). These resources allow the team to undertake further benchmarking, evaluation, and experimentation using multiple XSEDE resources. The opportunity to use computational infrastructure of this caliber will further enable the development of a science gateway to continue foundational COAL research.This work documents the original design and development of COAL and provides insight into continuing research efforts which have potential applications beyond the project to environmental data science and other fields.
NASA Astrophysics Data System (ADS)
Wimberly, M. C.; Merkord, C. L.; Davis, J. K.; Liu, Y.; Henebry, G. M.; Hildreth, M. B.
2016-12-01
Climatic variations have a multitude of effects on human health, ranging from the direct impacts of extreme heat events to indirect effects on the vectors and hosts that transmit infectious diseases. Disease surveillance has traditionally focused on monitoring human cases, and in some instances tracking populations sizes and infection rates of arthropod vectors and zoonotic hosts. For climate-sensitive diseases, there is a potential to strengthen surveillance and obtain early indicators of future outbreaks by monitoring environmental risk factors using broad-scale sensor networks that include earth-observing satellites as well as ground stations. We highlight the opportunities and challenges of this integration by presenting modeling results and discussing lessons learned from two projects focused on surveillance and forecasting of mosquito-borne diseases. The Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessement (EPIDEMIA) project integrates malaria case surveillance with remotely-sensed environmental data for early detection of malaria epidemics in the Amhara region of Ethiopia and has been producing weekly forecast reports since 2015. The South Dakota Mosquito Information System (SDMIS) project similarly combines entomological surveillance with environmental monitoring to generate weekly maps for West Nile virus (WNV) in the north-central United States. We are currently implementing a new disease forecasting and risk reporting framework for the state of South Dakota during the 2016 WNV transmission season. Despite important differences in disease ecology and geographic setting, our experiences with these projects highlight several important lessons learned that can inform future efforts at disease early warning based on climatic predictors. These include the need to engage end users in system design from the outset, the critical role of automated workflows to facilitate the timely integration of multiple data streams, the importance of focused visualizations that synthesize modeling results, and the challenge of linking risk indicators and forecasts to specific public health responses.