EUV efficiency of a 6000-grooves per mm diffraction grating
NASA Technical Reports Server (NTRS)
Hurwitz, Mark; Bowyer, Stuart; Edelstein, Jerry; Harada, Tatsuo; Kita, Toshiaki
1990-01-01
In order to explore whether grooves ruled mechanically at a density of 6000 per mm can perform well at EUV wavelengths, a sample grating is measured with this density in an EUV calibration facility. Measurements are presented of the planar uniform line-space diffraction grating's efficiency and large-angle scattering.
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)
1991-01-01
Topics discussed in this issue include the fabrication of multilayer X-ray/EUV coatings; the design, characterization, and test of multilayer X-ray/EUV coatings; multilayer X-ray/EUV monochromators and imaging microscopes; X-ray/EUV telescopes; the test and calibration performance of X-ray/EUV instruments; XUV/soft X-ray projection lithography; X-ray/EUV space observatories and missions; X-ray/EUV telescopes for solar research; X-ray/EUV polarimetry; X-ray/EUV spectrographs; and X-ray/EUV filters and gratings. Papers are presented on the deposition-controlled uniformity of multilayer mirrors, interfaces in Mo/Si multilayers, the design and analysis of an aspherical multilayer imaging X-ray microscope, recent developments in the production of thin X-ray reflecting foils, and the ultraprecise scanning technology. Consideration is also given to an active sun telescope array, the fabrication and performance at 1.33 nm of a 0.24-micron-period multilayer grating, a cylindrical proportional counter for X-ray polarimetry, and the design and analysis of the reflection grating arrays for the X-Ray Multi-Mirror Mission.
NASA Technical Reports Server (NTRS)
Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Korde, R.
1992-01-01
New developments in transmission grating and photodiode technology now make it possible to realize spectrometers in the extreme ultraviolet (EUV) spectral region (wavelengths less than 1000 A) which are expected to be virtually constant in their diffraction and detector properties. Time dependent effects associated with reflection gratings are eliminated through the use of free standing transmission gratings. These gratings together with recently developed and highly stable EUV photodiodes have been utilized to construct a highly stable normal incidence spectrophotometer to monitor the variability and absolute intensity of the solar 304 A line. Owing to its low weight and compactness, such a spectrometer will be a valuable tool for providing absolute solar irradiance throughout the EUV. This novel instrument will also be useful for cross-calibrating other EUV flight instruments and will be flown on a series of Hitchhiker Shuttle Flights and on SOHO. A preliminary version of this instrument has been fabricated and characterized, and the results are described.
Performance of multilayer coated diffraction gratings in the EUV
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A. M.; Thomas, Roger J.; Gum, Jeffrey S.; Condor, Charles E.
1990-01-01
The effect of multilayer coating application on the performance of a diffraction grating in the EUV spectral region was evaluated by examining the performance of a 3600-line/mm and a 1200-line/mm replica blazed gratings, designed for operation in the 300-A spectral region in first order. A ten-layer IrSi multilayer optimized for 304 A was deposited using electron-beam evaporation. The grating efficiency was measured on the SURF II calibration beamline in a chamber designed for calibrating the solar EUV rocket telescope and spectrograph multilayer coatings. A significant (by a factor of about 7) enhancement in grating efficiency in the 300-A region was demonstrated.
Design requirements for a stand alone EUV interferometer
NASA Astrophysics Data System (ADS)
Michallon, Ph.; Constancias, C.; Lagrange, A.; Dalzotto, B.
2008-03-01
EUV lithography is expected to be inserted for the 32/22 nm nodes with possible extension below. EUV resist availability remains one of the main issues to be resolved. There is an urgent need to provide suitable tools to accelerate resist development and to achieve resolution, LER and sensitivity specifications simultaneously. An interferometer lithography tool offers advantages regarding conventional EUV exposure tool. It allows the evaluation of resists, free from the deficiencies of optics and mask which are limiting the achieved resolution. Traditionally, a dedicated beam line from a synchrotron, with limited access, is used as a light source in EUV interference lithography. This paper identifies the technology locks to develop a stand alone EUV interferometer using a compact EUV source. It will describe the theoretical solutions adopted and especially look at the feasibility according to available technologies. EUV sources available on the market have been evaluated in terms of power level, source size, spatial coherency, dose uniformity, accuracy, stability and reproducibility. According to the EUV source characteristics, several optic designs were studied (simple or double gratings). For each of these solutions, the source and collimation optic specifications have been determined. To reduce the exposure time, a new grating technology will also be presented allowing to significantly increasing the transmission system efficiency. The optical grating designs were studied to allow multi-pitch resolution print on the same exposure without any focus adjustment. Finally micro mechanical system supporting the gratings was studied integrating the issues due to vacuum environment, alignment capability, motion precision, automation and metrology to ensure the needed placement control between gratings and wafer. A similar study was carried out for the collimation-optics mechanical support which depends on the source characteristics.
The evaluation of a deformable diffraction grating for a stigmatic EUV spectroheliometer
NASA Technical Reports Server (NTRS)
Timothy, J. G.
1987-01-01
A high-efficiency, extreme ultraviolet (EUV) imaging spectrometer is constructed and tested. The spectrometer employs a concave toroidal grating illuminated at normal incidence in a Rowland circle mounting and has only one reflecting surface. The toroidal grating has been fabricated by a new technique employing an elastically-deformable sub-master grating replicated in a spherical form and then mechanically distorted to produce the desired aspect ratio of the toroidal surface for stigmatic imaging over the selected wavelength range. The fixed toroidal grating used in the spectrometer is then replicated from this surface. Photographic tests and initial photoelectric tests with a two-dimensional, pulse-counting detector system verify the image quality of the toroidal grating at wavelengths near 600 A. The results of these tests and the basic designs of two instruments which could employ the imaging spectrometer for astrophysical investigations in space are described; i.e., a high-resolution EUV spectroheliometer for studies of the solar chromosphere, transition region, and corona; and an EUV spectroscopic telescope for studies of non-solar objects.
High-efficiency spectral purity filter for EUV lithography
Chapman, Henry N [Livermore, CA
2006-05-23
An asymmetric-cut multilayer diffracts EUV light. A multilayer cut at an angle has the same properties as a blazed grating, and has been demonstrated to have near-perfect performance. Instead of having to nano-fabricate a grating structure with imperfections no greater than several tens of nanometers, a thick multilayer is grown on a substrate and then cut at an inclined angle using coarse and inexpensive methods. Effective grating periods can be produced this way that are 10 to 100 times smaller than those produced today, and the diffraction efficiency of these asymmetric multilayers is higher than conventional gratings. Besides their ease of manufacture, the use of an asymmetric multilayer as a spectral purity filter does not require that the design of an EUV optical system be modified in any way, unlike the proposed use of blazed gratings for such systems.
Rocket flight of a multilayer coated high-density EUV toroidal grating
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A. M.; Thomas, Roger J.; Davila, Joseph M.
1992-01-01
A multilayer coated high density toroidal grating was flown on a sounding rocket experiment in the Solar EUV Rocket Telescope and Spectrograph (SERTS) instrument. To our knowledge this is the first space flight of a multilayer coated grating. Pre-flight performance evaluation showed that the application of a 10-layer Ir/Si multilayer coating to the 3600 l/mm blazed toroidal replica grating produced a factor of 9 enhancement in peak efficiency near the design wavelength around 30 nm in first order over the standard gold coating, with a measured EUV efficiency that peaked at 3.3 percent. In addition, the grating's spectral resolution of better than 5000 was maintained. The region of enhanced grating efficiency due to the multilayer coating is clearly evident in the flight data. Within the bandpass of the multilayer coating, the recorded film densities were roughly equivalent to those obtained with a factor of six longer exposure on the previous flight of the SERTS instrument.
NASA Astrophysics Data System (ADS)
Wang, L.; Kirk, E.; Wäckerlin, C.; Schneider, C. W.; Hojeij, M.; Gobrecht, J.; Ekinci, Y.
2014-06-01
We present fabrication and characterization of high-resolution and nearly amorphous Mo1 - xNx transmission gratings and their use as masks for extreme ultraviolet (EUV) interference lithography. During sputter deposition of Mo, nitrogen is incorporated into the film by addition of N2 to the Ar sputter gas, leading to suppression of Mo grain growth and resulting in smooth and homogeneous thin films with a negligible grain size. The obtained Mo0.8N0.2 thin films, as determined by x-ray photoelectron spectroscopy, are characterized to be nearly amorphous using x-ray diffraction. We demonstrate a greatly reduced Mo0.8N0.2 grating line edge roughness compared with pure Mo grating structures after e-beam lithography and plasma dry etching. The amorphous Mo0.8N0.2 thin films retain, to a large extent, the benefits of Mo as a phase grating material for EUV wavelengths, providing great advantages for fabrication of highly efficient diffraction gratings with extremely low roughness. Using these grating masks, well-resolved dense lines down to 8 nm half-pitch are fabricated with EUV interference lithography.
Wang, L; Kirk, E; Wäckerlin, C; Schneider, C W; Hojeij, M; Gobrecht, J; Ekinci, Y
2014-06-13
We present fabrication and characterization of high-resolution and nearly amorphous Mo1 - xNx transmission gratings and their use as masks for extreme ultraviolet (EUV) interference lithography. During sputter deposition of Mo, nitrogen is incorporated into the film by addition of N2 to the Ar sputter gas, leading to suppression of Mo grain growth and resulting in smooth and homogeneous thin films with a negligible grain size. The obtained Mo0.8N0.2 thin films, as determined by x-ray photoelectron spectroscopy, are characterized to be nearly amorphous using x-ray diffraction. We demonstrate a greatly reduced Mo0.8N0.2 grating line edge roughness compared with pure Mo grating structures after e-beam lithography and plasma dry etching. The amorphous Mo0.8N0.2 thin films retain, to a large extent, the benefits of Mo as a phase grating material for EUV wavelengths, providing great advantages for fabrication of highly efficient diffraction gratings with extremely low roughness. Using these grating masks, well-resolved dense lines down to 8 nm half-pitch are fabricated with EUV interference lithography.
Degradation-Free Spectrometers for Solar EUV Measurements: A Progress Report
NASA Astrophysics Data System (ADS)
Wieman, S. R.; Judge, D. L.; Didkovsky, L. V.
2009-12-01
Solar EUV observations will be made using two new degradation-free EUV spectrometers on a sounding rocket flight scheduled for Summer 2010. The two instruments, a rare gas photoionization-based Optics-Free Spectrometer (OFS) and a Dual Grating Spectrometer (DGS), are filter-free and optics-free. OFS can measure the solar EUV spectrum with a spectral resolution comparable to that of grating-based EUV spectrometers. The DGS is designed to provide solar irradiance at Lyman-alpha and He II to overlap EUV observations from SOHO/SEM and SDO/EVE. Electronic and mechanical designs for the flight prototype instruments and results of tests performed with the instruments in the laboratory are reported. The spectrometers are being developed and demonstrated as part of the Degradation Free Spectrometers (DFS) project under NASA’s Low Cost Access to Space (LCAS) program and are supported by NASA Grant NNX08BA12G.
Mask fabrication and its applications to extreme ultra-violet diffractive optics
NASA Astrophysics Data System (ADS)
Cheng, Yang-Chun
Short-wavelength radiation around 13nm of wavelength (Extreme Ultra-Violet, EUV) is being considered for patterning microcircuits, and other electronic chips with dimensions in the nanometer range. Interferometric Lithography (IL) uses two beams of radiation to form high-resolution interference fringes, as small as half the wavelength of the radiation used. As a preliminary step toward manufacturing technology, IL can be used to study the imaging properties of materials in a wide spectral range and at nanoscale dimensions. A simple implementation of IL uses two transmission diffraction gratings to form the interference pattern. More complex interference patterns can be created by using different types of transmission gratings. In this thesis, I describe the development of a EUV lithography system that uses diffractive optical elements (DOEs), from simple gratings to holographic structures. The exposure system is setup on a EUV undulator beamline at the Synchrotron Radiation Center, in the Center for NanoTechnology clean room. The setup of the EUV exposure system is relatively simple, while the design and fabrication of the DOE "mask" is complex, and relies on advanced nanofabrication techniques. The EUV interferometric lithography provides reliable EUV exposures of line/space patterns and is ideal for the development of EUV resist technology. In this thesis I explore the fabrication of these DOE for the EUV range, and discuss the processes I have developed for the fabrication of ultra-thin membranes. In addition, I discuss EUV holographic lithography and generalized Talbot imaging techniques to extend the capability of our EUV-IL system to pattern arbitrary shapes, using more coherent sources than the undulator. In a series of experiments, we have demonstrated the use of a soft X-ray (EUV) laser as effective source for EUV lithography. EUV-IL, as implemented at CNTech, is being used by several companies and research organizations to characterize photoresist materials.
Kantsyrev, V L; Safronova, A S; Williamson, K M; Wilcox, P; Ouart, N D; Yilmaz, M F; Struve, K W; Voronov, D L; Feshchenko, R M; Artyukov, I A; Vinogradov, A V
2008-10-01
New extreme ultraviolet (EUV) spectroscopic diagnostics of relatively low-temperature plasmas based on the application of an EUV spectrometer and fast EUV diodes combined with glass capillary optics is described. An advanced high resolution dispersive element sliced multilayer grating was used in the compact EUV spectrometer. For monitoring of the time history of radiation, filtered fast EUV diodes were used in the same spectral region (>13 nm) as the EUV spectrometer. The radiation from the plasma was captured by using a single inexpensive glass capillary that was transported onto the spectrometer entrance slit and EUV diode. The use of glass capillary optics allowed placement of the spectrometer and diodes behind the thick radiation shield outside the direction of a possible hard x-ray radiation beam and debris from the plasma source. The results of the testing and application of this diagnostic for a compact laser plasma source are presented. Examples of modeling with parameters of plasmas are discussed.
Fingerprinting the type of line edge roughness
NASA Astrophysics Data System (ADS)
Fernández Herrero, A.; Pflüger, M.; Scholze, F.; Soltwisch, V.
2017-06-01
Lamellar gratings are widely used diffractive optical elements and are prototypes of structural elements in integrated electronic circuits. EUV scatterometry is very sensitive to structure details and imperfections, which makes it suitable for the characterization of nanostructured surfaces. As compared to X-ray methods, EUV scattering allows for steeper angles of incidence, which is highly preferable for the investigation of small measurement fields on semiconductor wafers. For the control of the lithographic manufacturing process, a rapid in-line characterization of nanostructures is indispensable. Numerous studies on the determination of regular geometry parameters of lamellar gratings from optical and Extreme Ultraviolet (EUV) scattering also investigated the impact of roughness on the respective results. The challenge is to appropriately model the influence of structure roughness on the diffraction intensities used for the reconstruction of the surface profile. The impact of roughness was already studied analytically but for gratings with a periodic pseudoroughness, because of practical restrictions of the computational domain. Our investigation aims at a better understanding of the scattering caused by line roughness. We designed a set of nine lamellar Si-gratings to be studied by EUV scatterometry. It includes one reference grating with no artificial roughness added, four gratings with a periodic roughness distribution, two with a prevailing line edge roughness (LER) and another two with line width roughness (LWR), and four gratings with a stochastic roughness distribution (two with LER and two with LWR). We show that the type of line roughness has a strong impact on the diffuse scatter angular distribution. Our experimental results are not described well by the present modelling approach based on small, periodically repeated domains.
NASA Technical Reports Server (NTRS)
Jelinsky, P.; Jelinsky, S. R.; Miller, A.; Vallerga, J.; Malina, R. F.
1988-01-01
The Extreme Ultraviolet Explorer (EUVE) has a spectrometer which utilizes variable line-spaced, plane diffraction gratings in the converging beam of a Wolter-Schwarzschild type II mirror. The gratings, microchannel plate detector, and thin film filters have been calibrated with continuum radiation provided by the NBS SURF II facility. These were calibrated in a continuum beam to find edges or other sharp spectral features in the transmission of the filters, quantum efficiency of the microchannel plate detector, and efficiency of the gratings. The details of the calibration procedure and the results of the calibration are presented.
Overview of Key Results from SDO Extreme ultraviolet Variability Experiment (EVE)
NASA Astrophysics Data System (ADS)
Woods, Tom; Eparvier, Frank; Jones, Andrew; Mason, James; Didkovsky, Leonid; Chamberlin, Phil
2016-10-01
The SDO Extreme ultraviolet Variability Experiment (EVE) includes several channels to observe the solar extreme ultraviolet (EUV) spectral irradiance from 1 to 106 nm. These channels include the Multiple EUV Grating Spectrograph (MEGS) A, B, and P channels from the University of Colorado (CU) and the EUV SpectroPhometer (ESP) channels from the University of Southern California (USC). The solar EUV spectrum is rich in many different emission lines from the corona, transition region, and chromosphere. The EVE full-disk irradiance spectra are important for studying the solar impacts in Earth's ionosphere and thermosphere and are useful for space weather operations. In addition, the EVE observations, with its high spectral resolution of 0.1 nm and in collaboration with AIA solar EUV images, have proven valuable for studying active region evolution and explosive energy release during flares and coronal eruptions. These SDO measurements have revealed interesting results such as understanding the flare variability over all wavelengths, discovering and classifying different flare phases, using coronal dimming measurements to predict CME properties of mass and velocity, and exploring the role of nano-flares in continual heating of active regions.
High efficiency spectrographs for the EUV and soft X-rays
NASA Technical Reports Server (NTRS)
Cash, W.
1983-01-01
The use of grazing incidence optics and reflection grating designs is shown to be a method that improves the performance of spectrographs at wavelengths shorter than 1200 A. Emphasis is laid on spectroscopic designs for X ray and EUV astronomy, with sample designs for an objective reflection grating spectrograph (ORGS) and an echelle spectrograph for wavelengths longer than 100 A. Conical diffraction allows operations at grazing incidence in the echelle spectrograph. In ORGS, the extreme distance of X ray objects aids in collimating the source radiation, which encounters conical diffraction within the instrument, proceeds parallel to the optical axis, and arrives at the detector. A series of gratings is used to achieve the effect. A grazing echelle is employed for EUV observations, and offers a resolution of 20,000 over a 300 A bandpass.
Extreme ultraviolet performance of a multilayer coated high density toroidal grating
NASA Technical Reports Server (NTRS)
Thomas, Roger J.; Keski-Kuha, Ritva A. M.; Neupert, Werner M.; Condor, Charles E.; Gum, Jeffrey S.
1991-01-01
The performance of a multilayer coated diffraction grating has been evaluated at EUV wavelengths both in terms of absolute efficiency and spectral resolution. The application of ten-layer Ir/Si multilayer coating to a 3600-lines/mm blazed toroidal replica grating produced a factor of 9 enhancement in peak efficiency near the design wavelength of about 30 nm in first order, without degrading its excellent quasistigmatic spectral resolution. The measured EUV efficiency peaked at 3.3 percent and was improved over the full spectral range between 25 and 35 nm compared with the premultilayer replica which had a standard gold coating. In addition, the grating's spectral resolution of greater than 5000 was maintained.
Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide
Sistrunk, Emily; Grilj, Jakob; Jeong, Jaewoo; ...
2015-02-11
Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). The study demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO 2 film with EUV diffraction from the optically excited sample. The VO 2 exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separatemore » the two features.« less
NASA Technical Reports Server (NTRS)
Malina, Roger F.; Jelinsky, Patrick; Bowyer, Stuart
1986-01-01
The calibration facilities and techniques for the Extreme Ultraviolet Explorer (EUVE) from 44 to 2500 A are described. Key elements include newly designed radiation sources and a collimated monochromatic EUV beam. Sample results for the calibration of the EUVE filters, detectors, gratings, collimators, and optics are summarized.
Solar Imaging UV/EUV Spectrometers Using TVLS Gratings
NASA Astrophysics Data System (ADS)
Thomas, R. J.
2003-05-01
It is a particular challenge to develop a stigmatic spectrograph for UV/EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar EUV spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.
Optical Design of the MOSES Sounding Rocket Experiment
NASA Technical Reports Server (NTRS)
Thomas, Roger J.; Kankelborg, Charles C.; Fisher, Richard R. (Technical Monitor)
2001-01-01
The Multi-Order Solar EUV Spectrograph (MOSES) is a sounding rocket payload now being developed by Montana State University in collaboration with the Goddard Space Flight Center, Lockheed Martin Advanced Technology Center, and Mullard Space Science Laboratory. The instrument utilizes a unique optical design to provide solar EUV measurements with true 2-pixel resolutions of 1.0 arcsec and 60 mA over a full two-dimensional field of view of 1056 x 528 arcsec, all at a time cadence of 10 s. This unprecedented capability is achieved by means of an objective spherical grating 100 mm in diameter, ruled at 833 gr/mm. The concave grating focuses spectrally dispersed solar radiation onto three separate detectors, simultaneously recording the zero-order as well as the plus and minus first-spectral-order images. Data analysis procedures, similar to those used in X-ray tomography reconstructions, can then disentangle the mixed spatial and spectral information recorded by the multiple detectors. A flat folding mirror permits an imaging focal length of 4.74 m to be packaged within the payload's physical length of 2.82 m. Both the objective grating and folding flat have specialized, closely matched, multilayer coatings that strongly enhance their EUV reflectance while also suppressing off-band radiation that would otherwise complicate data inversion. Although the spectral bandpass is rather narrow, several candidate wavelength intervals are available to carry out truly unique scientific studies of the outer solar atmosphere. Initial flights of MOSES, scheduled to begin in 2004, will observe a 10 Angstrom band that covers very strong emission lines characteristic of both the sun's corona (Si XI 303 Angstroms) and transition-region (He II 304 Angstroms). The MOSES program is supported by a grant from NASA's Office of Space Science.
NASA Technical Reports Server (NTRS)
Hock, R. A.; Woods, T. N.; Crotser, D.; Eparvier, F. G.; Woodraska, D. L.; Chamberlin, P. C.; Woods, E. C.
2010-01-01
The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et al. . In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments.
Exploration of BEOL line-space patterning options at 12 nm half-pitch and below
NASA Astrophysics Data System (ADS)
Decoster, S.; Lazzarino, F.; Petersen Barbosa Lima, L.; Li, W.; Versluijs, J.; Halder, S.; Mallik, A.; Murdoch, G.
2018-03-01
While the semiconductor industry is almost ready for high-volume manufacturing of the 7 nm technology node, research centers are defining and troubleshooting the patterning options for the 5 nm technology node (N5) and below. The target dimension for imec's N5 BEOL applications is 20-24 nm Metal Pitch (MP), which requires Self-Aligned multiple (Double/Quadruple/Octuple) Patterning approaches (SAxP) in combination with EUV or immersion lithography at 193 nm. There are numerous technical challenges to enable gratings at the hard mask level such as good uniformity across wafer, low line edge/width roughness (LER/LWR), large process window, and all of this at low cost. An even greater challenge is to transfer these gratings into the dielectric material at such critical dimensions, where increased line edge roughness, line wiggling and even pattern collapse can be expected for materials with small mechanical stability such as highly porous low-k dielectrics. In this work we first compare three different patterning options for 12 nm half-pitch gratings at the hard mask level: EUV-based SADP and 193i-based SAQP and SAOP. This comparison will be based on process window, line edge/width roughness and cost. Next, the transfer of 12 nm line/space gratings in the dielectric material is discussed and presented. The LER of the dielectric lines is investigated as a function of the dielectric material, the trench depth, and the stress in the sacrificial hard mask. Finally, we elaborate on the different options to enable scaling down from 24 nm MP to 16 nm MP, and demonstrate 8 nm line/space gratings with 193i-based SAOP.
NASA Astrophysics Data System (ADS)
Buitrago, Elizabeth; Fallica, Roberto; Fan, Daniel; Karim, Waiz; Vockenhuber, Michaela; van Bokhoven, Jeroen A.; Ekinci, Yasin
2016-09-01
Extreme ultraviolet interference lithography (EUV-IL, λ = 13.5 nm) has been shown to be a powerful technique not only for academic, but also for industrial research and development of EUV materials due to its relative simplicity yet record high-resolution patterning capabilities. With EUV-IL, it is possible to pattern high-resolution periodic images to create highly ordered nanostructures that are difficult or time consuming to pattern by electron beam lithography (EBL) yet interesting for a wide range of applications such as catalysis, electronic and photonic devices, and fundamental materials analysis, among others. Here, we will show state-of the-art research performed using the EUV-IL tool at the Swiss Light Source (SLS) synchrotron facility in the Paul Scherrer Institute (PSI). For example, using a grating period doubling method, a diffraction mask capable of patterning a world record in photolithography of 6 nm half-pitch (HP), was produced. In addition to the description of the method, we will give a few examples of applications of the technique. Well-ordered arrays of suspended silicon nanowires down to 6.5 nm linewidths have been fabricated and are to be studied as field effect transistors (FETs) or biosensors, for instance. EUV achromatic Talbot lithography (ATL), another interference scheme that utilizes a single grating, was shown to yield well-defined nanoparticles over large-areas with high uniformity presenting great opportunities in the field of nanocatalysis. EUV-IL is in addition, playing a key role in the future introduction of EUV lithography into high volume manufacturing (HVM) of semiconductor devices for the 7 and 5 nm logic node (16 nm and 13 nm HP, respectively) and beyond while the availability of commercial EUV-tools is still very much limited for research.
Solar Imaging UV/EUV Spectrometers Using TVLS Gratings
NASA Technical Reports Server (NTRS)
Thomas, Roger J.
2003-01-01
It is a particular challenge to develop a stigmatic spectrograph for UV, EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both reimaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar extreme ultraviolet (EUV) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets Solar Extreme ultraviolet Research Telescope and Spectrograph (SERTS) and Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS). More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.
Contrast matching of line gratings obtained with NXE3XXX and EUV- interference lithography
NASA Astrophysics Data System (ADS)
Tasdemir, Zuhal; Mochi, Iacopo; Olvera, Karen Garrido; Meeuwissen, Marieke; Yildirim, Oktay; Custers, Rolf; Hoefnagels, Rik; Rispens, Gijsbert; Fallica, Roberto; Vockenhuber, Michaela; Ekinci, Yasin
2017-10-01
Extreme UV lithography (EUVL) has gained considerable attention for several decades as a potential technology for the semiconductor industry and it is now close to being adopted in high-volume manufacturing. At Paul Scherrer Institute (PSI), we have focused our attention on EUV resist performance issues by testing available high-performance EUV resists in the framework of a joint collaboration with ASML. For this purpose, we use the grating-based EUV-IL setup installed at the Swiss Light Source (SLS) at PSI, in which a coherent beam with 13.5 nm wavelength is used to produce a periodic aerial image with virtually 100% contrast and large depth of focus. Interference lithography is a relatively simple technique and it does not require many optical components, therefore the unintended flare is minimized and the aerial image is well-defined sinusoidal pattern. For the collaborative work between PSI and ASML, exposures are being performed on the EUV-IL exposure tool at PSI. For better quantitative comparison to the NXE scanner results, it is targeted to determine the actual NILS of the EUV-IL exposure tool at PSI. Ultimately, any resist-related metrology must be aligned and compared with the performance of EUV scanners. Moreover, EUV-IL is a powerful method for evaluating the resist performance and a resist which performs well with EUV-IL, shows, in general, also good performance with NXE scanners. However, a quantitative prediction of the performance based on EUV-IL measurements has not been possible due to the differences in aerial image formation. In this work, we aim to study the performance of EUV resists with different aerial images. For this purpose, after the real interference pattern exposure, we overlay a flat field exposure to emulate different levels of contrast. Finally, the results are compared with data obtained from EUV scanner. This study will enable not only match the data obtained from EUV- IL at PSI with the performance of NXE scanners, but also a better understanding of resist fundamentals by studying the effects of the aerial image on resist performance by changing the aerial image contrast in a controlled manner using EUV-IL.
TIMED solar EUV experiment: preflight calibration results for the XUV photometer system
NASA Astrophysics Data System (ADS)
Woods, Thomas N.; Rodgers, Erica M.; Bailey, Scott M.; Eparvier, Francis G.; Ucker, Gregory J.
1999-10-01
The Solar EUV Experiment (SEE) on the NASA Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics (TIMED) mission will measure the solar vacuum ultraviolet (VUV) spectral irradiance from 0.1 to 200 nm. To cover this wide spectral range two different types of instruments are used: a grating spectrograph for spectra between 25 and 200 nm with a spectral resolution of 0.4 nm and a set of silicon soft x-ray (XUV) photodiodes with thin film filters as broadband photometers between 0.1 and 35 nm with individual bandpasses of about 5 nm. The grating spectrograph is called the EUV Grating Spectrograph (EGS), and it consists of a normal- incidence, concave diffraction grating used in a Rowland spectrograph configuration with a 64 X 1024 array CODACON detector. The primary calibrations for the EGS are done using the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF-III) in Gaithersburg, Maryland. In addition, detector sensitivity and image quality, the grating scattered light, the grating higher order contributions, and the sun sensor field of view are characterized in the LASP calibration laboratory. The XUV photodiodes are called the XUV Photometer System (XPS), and the XPS includes 12 photodiodes with thin film filters deposited directly on the silicon photodiodes' top surface. The sensitivities of the XUV photodiodes are calibrated at both the NIST SURF-III and the Physikalisch-Technische Bundesanstalt (PTB) electron storage ring called BESSY. The other XPS calibrations, namely the electronics linearity and field of view maps, are performed in the LASP calibration laboratory. The XPS and solar sensor pre-flight calibration results are primarily discussed as the EGS calibrations at SURF-III have not yet been performed.
NASA Technical Reports Server (NTRS)
Woods, T. N.; Eparvier, F. G.; Hock, R.; Jones, A. R.; Woodraska, D.; Judge, D.; Didkovsky, L.; Lean, J.; Mariska, J.; Warren, H.;
2010-01-01
The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth's upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105 nm with unprecedented spectral resolution (0.1 nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazingincidence spectrograph that measures the solar EUV irradiance in the 5 to 37 nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105 nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39 nm, and a MEGS-Photometer measures the Sun s bright hydrogen emission at 121.6 nm. The EVE data products include a near real-time space-weather product (Level 0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15 minutes. The EVE higher-level products are Level 2 with the solar EUV irradiance at higher time cadence (0.25 seconds for photometers and ten seconds for spectrographs) and Level 3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.
NASA Technical Reports Server (NTRS)
Wilkinson, Erik; Green, James C.; Cash, Webster
1993-01-01
The design, calibration, and sounding rocket flight performance of a novel spectrograph suitable for moderate-resolution EUV spectroscopy are presented. The sounding rocket-borne instrument uses a radial groove grating to maintain a high system efficiency while controlling the aberrations induced when doing spectroscopy in a converging beam. The instrument has a resolution of approximately 2 A across the 200-330 A bandpass with an average effective area of 2 sq cm. The instrument, called the Extreme Ultraviolet Spectrograph, acquired the first EUV spectra in this wavelength region of the hot white dwarf G191-B2B and the late-type star Capella.
The development and test of a deformable diffraction grating for a stigmatic EUV spectroheliometer
NASA Technical Reports Server (NTRS)
Timothy, J. Gethyn; Walker, A. B. C., Jr.; Morgan, J. S.; Huber, M. C. E.; Tondello, G.
1992-01-01
The objectives were to address currently unanswered fundamental questions concerning the fine scale structure of the chromosphere, transition region, and corona. The unique characteristics of the spectroheliometer was used in combination with plasma diagnostic techniques to study the temperature, density, and velocity structures of specific features in the solar outer atmosphere. A unified understanding was sought of the interplay between the time dependent geometry of the magnetic field structure and the associated flows of mass and energy, the key to which lies in the smallest spatial scales that are unobservable with current EUV instruments. Toroidal diffraction gratings were fabricated and tested by a new technique using an elastically deformable substrate. The toroidal diffraction gratings was procured and tested to be used for the evaluation of the Multi-Anode Microchannel Array (MAMA) detector systems for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) and UV Coronagraph Spectrometer (UVCS) instruments on the SOHO mission.
Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics
NASA Astrophysics Data System (ADS)
Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred
2017-03-01
Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement of the spectral tailoring multilayer optics, the remaining challenges and opportunities for future researches are discussed.
Enabling laboratory EUV research with a compact exposure tool
NASA Astrophysics Data System (ADS)
Brose, Sascha; Danylyuk, Serhiy; Tempeler, Jenny; Kim, Hyun-su; Loosen, Peter; Juschkin, Larissa
2016-03-01
In this work we present the capabilities of the designed and realized extreme ultraviolet laboratory exposure tool (EUVLET) which has been developed at the RWTH-Aachen, Chair for the Technology of Optical Systems (TOS), in cooperation with the Fraunhofer Institute for Laser Technology (ILT) and Bruker ASC GmbH. Main purpose of this laboratory setup is the direct application in research facilities and companies with small batch production, where the fabrication of high resolution periodic arrays over large areas is required. The setup can also be utilized for resist characterization and evaluation of its pre- and post-exposure processing. The tool utilizes a partially coherent discharge produced plasma (DPP) source and minimizes the number of other critical components to a transmission grating, the photoresist coated wafer and the positioning system for wafer and grating and utilizes the Talbot lithography approach. To identify the limits of this approach first each component is analyzed and optimized separately and relations between these components are identified. The EUV source has been optimized to achieve the best values for spatial and temporal coherence. Phase-shifting and amplitude transmission gratings have been fabricated and exposed. Several commercially available electron beam resists and one EUV resist have been characterized by open frame exposures to determine their contrast under EUV radiation. Cold development procedure has been performed to further increase the resist contrast. By analyzing the exposure results it can be demonstrated that only a 1:1 copy of the mask structure can be fully resolved by the utilization of amplitude masks. The utilized phase-shift masks offer higher 1st order diffraction efficiency and allow a demagnification of the mask structure in the achromatic Talbot plane.
Toroidal varied-line space (TVLS) gratings
NASA Astrophysics Data System (ADS)
Thomas, Roger J.
2003-02-01
It is a particular challenge to develop a stigmatic spectrograph for EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-space rulings (TULS). A number of solar EUV spectrographs have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. These ideas are now combined into a spectrograph concept that considers varied-line space grooves ruled onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrographs based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.
NASA Astrophysics Data System (ADS)
Didkovsky, L. V.; Wieman, S. R.; Judge, D. L.
2014-12-01
Sounding rocket mission NASA 36.289 Didkovsky provided solar EUV irradiance measurements from four instruments built at the USC Space Sciences Center: the Rare Gas Ionization Cell (RGIC), the Solar Extreme ultraviolet Monitor (SEM), the Dual Grating Spectrometer (DGS), and the Optics-Free Spectrometer (OFS), thus meeting the mission comprehensive success criteria. These sounding rocket data allow us to inter-compare the observed absolute EUV irradiance with the data taken at the same time from the SOHO and SDO solar observatories. The sounding rocket data from the two degradation-free instruments (DGS and OFS) can be used to verify the degradation rates of SOHO and SDO EUV channels and serve as a flight-proven prototypes for future improvements of degradation-free instrumentation for solar physics.
EUV spectroscopy of high-redshift x-ray objects
NASA Astrophysics Data System (ADS)
Kowalski, M. P.; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.; Barstow, M. A.
2010-07-01
As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGN for example, will be redshifted into the EUV waveband. Consequently, a wealth of critical spectral diagnostics, provided by, for example, the Fe L-shell complex and the O VII/VIII lines, will be lost to future planned X-ray missions (e.g., IXO, Gen-X) if operated at traditional X-ray energies. This opens up a critical gap in performance located at short EUV wavelengths, where critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nanolaminate replication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on next-generation instrument designs. We conclude with a discussion of a breakthrough technology, nanolaminate replication, which enables such instruments.
NASA Technical Reports Server (NTRS)
Stern, Alan S.
1996-01-01
During the first half of this year (CY 1996), the EUVS project began preparations of the EUVS payload for the upcoming NASA sounding rocket flight 36.148CL, slated for launch on July 26, 1996 to observe and record a high-resolution (approx. 2 A FWHM) EUV spectrum of the planet Venus. These preparations were designed to improve the spectral resolution and sensitivity performance of the EUVS payload as well as prepare the payload for this upcoming mission. The following is a list of the EUVS project activities that have taken place since the beginning of this CY: (1) Applied a fresh, new SiC optical coating to our existing 2400 groove/mm grating to boost its reflectivity; (2) modified the Ranicon science detector to boost its detective quantum efficiency with the addition of a repeller grid; (3) constructed a new entrance slit plane to achieve 2 A FWHM spectral resolution; (4) prepared and held the Payload Initiation Conference (PIC) with the assigned NASA support team from Wallops Island for the upcoming 36.148CL flight (PIC held on March 8, 1996; see Attachment A); (5) began wavelength calibration activities of EUVS in the laboratory; (6) made arrangements for travel to WSMR to begin integration activities in preparation for the July 1996 launch; (7) paper detailing our previous EUVS Venus mission (NASA flight 36.117CL) published in Icarus (see Attachment B); and (8) continued data analysis of the previous EUVS mission 36.137CL (Spica occultation flight).
The Extreme Ultraviolet Explorer Mission
NASA Technical Reports Server (NTRS)
Bowyer, S.; Malina, R. F.
1991-01-01
The Extreme Ultraviolet Explorer (EUVE) mission, currently scheduled from launch in September 1991, is described. The primary purpose of the mission is to survey the celestial sphere for astronomical sources of extreme ultraviolet (EUV) radiation with the use of three EUV telescope, each sensitive to a different segment of the EUV band. A fourth telescope is planned to perform a high-sensitivity search of a limited sample of the sky in the shortest wavelength bands. The all-sky survey is planned to be carried out in the first six months of the mission in four bands, or colors, 70-180 A, 170-250 A, 400-600 A, and 500-700 A. The second phase of the mission is devoted to spectroscopic observations of EUV sources. A high-efficiency grazing-incidence spectrometer using variable line-space gratings is planned to provide spectral data with about 1-A resolution. An end-to-end model of the mission, from a stellar source to the resulting scientific data, is presented. Hypothetical data from astronomical sources were processed through this model and are shown.
Osmium coated diffraction grating in the Space Shuttle environment - Performance
NASA Technical Reports Server (NTRS)
Torr, M. R.
1985-01-01
Samples coated with osmium were flown on the early Shuttle test flights, and on the return of these samples, the osmium coating was found to have disappeared, evidently due to the oxidation of the material in the atomic oxygen atmosphere. An instrument flown on the Spacelab 1 mission comprised an array of five spectrometers covering the extreme ultraviolet (EUV) to near-IR wavelengths. The EUV spectrometer contained an osmium-coated reflective grating located fairly deep within the instruments. Here, results of an assessment of the reflectivity and stability of the osmium surface over the course of the ten-day mission are reported. It is concluded that the osmium reflective coating remained stable relative to the spectrometer coated with MgF2 over the course of the mission. In addition, the ratio of sensitivity of these two spectrometers did not change in any major way from the time of the laboratory calibration until the time of flight two years later. Any changes are within the 50-percent calibration uncertainty.
Ultra-high density diffraction grating
Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.
2012-12-11
A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.
Interferometric at-wavelength flare characterization of EUV optical systems
Naulleau, Patrick P.; Goldberg, Kenneth Alan
2001-01-01
The extreme ultraviolet (EUV) phase-shifting point diffraction interferometer (PS/PDI) provides the high-accuracy wavefront characterization critical to the development of EUV lithography systems. Enhancing the implementation of the PS/PDI can significantly extend its spatial-frequency measurement bandwidth. The enhanced PS/PDI is capable of simultaneously characterizing both wavefront and flare. The enhanced technique employs a hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI. Using the dual-domain technique in combination with a flare-measurement-optimized mask and an iterative calculation process for removing flare contribution caused by higher order grating diffraction terms, the enhanced PS/PDI can be used to simultaneously measure both figure and flare in optical systems.
EUV focus sensor: design and modeling
NASA Astrophysics Data System (ADS)
Goldberg, Kenneth A.; Teyssier, Maureen E.; Liddle, J. Alexander
2005-05-01
We describe performance modeling and design optimization of a prototype EUV focus sensor (FS) designed for use with existing 0.3-NA EUV projection-lithography tools. At 0.3-NA and 13.5-nm wavelength, the depth of focus shrinks to 150 nm increasing the importance of high-sensitivity focal-plane detection tools. The FS is a free-standing Ni grating structure that works in concert with a simple mask pattern of regular lines and spaces at constant pitch. The FS pitch matches that of the image-plane aerial-image intensity: it transmits the light with high efficiency when the grating is aligned with the aerial image laterally and longitudinally. Using a single-element photodetector, to detect the transmitted flux, the FS is scanned laterally and longitudinally so the plane of peak aerial-image contrast can be found. The design under consideration has a fixed image-plane pitch of 80-nm, with aperture widths of 12-40-nm (1-3 wave-lengths), and aspect ratios of 2-8. TEMPEST-3D is used to model the light transmission. Careful attention is paid to the annular, partially coherent, unpolarized illumination and to the annular pupil of the Micro-Exposure Tool (MET) optics for which the FS is designed. The system design balances the opposing needs of high sensitivity and high throughput opti-mizing the signal-to-noise ratio in the measured intensity contrast.
EUV Focus Sensor: Design and Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, Kenneth A.; Teyssier, Maureen E.; Liddle, J. Alexander
We describe performance modeling and design optimization of a prototype EUV focus sensor (FS) designed for use with existing 0.3-NA EUV projection-lithography tools. At 0.3-NA and 13.5-nm wavelength, the depth of focus shrinks to 150 nm increasing the importance of high-sensitivity focal-plane detection tools. The FS is a free-standing Ni grating structure that works in concert with a simple mask pattern of regular lines and spaces at constant pitch. The FS pitch matches that of the image-plane aerial-image intensity: it transmits the light with high efficiency when the grating is aligned with the aerial image laterally and longitudinally. Using amore » single-element photodetector, to detect the transmitted flux, the FS is scanned laterally and longitudinally so the plane of peak aerial-image contrast can be found. The design under consideration has a fixed image-plane pitch of 80-nm, with aperture widths of 12-40-nm (1-3 wavelengths), and aspect ratios of 2-8. TEMPEST-3D is used to model the light transmission. Careful attention is paid to the annular, partially coherent, unpolarized illumination and to the annular pupil of the Micro-Exposure Tool (MET) optics for which the FS is designed. The system design balances the opposing needs of high sensitivity and high throughput optimizing the signal-to-noise ratio in the measured intensity contrast.« less
Co-optimization of lithographic and patterning processes for improved EPE performance
NASA Astrophysics Data System (ADS)
Maslow, Mark J.; Timoshkov, Vadim; Kiers, Ton; Jee, Tae Kwon; de Loijer, Peter; Morikita, Shinya; Demand, Marc; Metz, Andrew W.; Okada, Soichiro; Kumar, Kaushik A.; Biesemans, Serge; Yaegashi, Hidetami; Di Lorenzo, Paolo; Bekaert, Joost P.; Mao, Ming; Beral, Christophe; Larivière, Stephane
2017-03-01
Complimentary lithography is already being used for advanced logic patterns. The tight pitches for 1D Metal layers are expected to be created using spacer based multiple patterning ArF-i exposures and the more complex cut/block patterns are made using EUV exposures. At the same time, control requirements of CDU, pattern shift and pitch-walk are approaching sub-nanometer levels to meet edge placement error (EPE) requirements. Local variability, such as Line Edge Roughness (LER), Local CDU, and Local Placement Error (LPE), are dominant factors in the total Edge Placement error budget. In the lithography process, improving the imaging contrast when printing the core pattern has been shown to improve the local variability. In the etch process, it has been shown that the fusion of atomic level etching and deposition can also improve these local variations. Co-optimization of lithography and etch processing is expected to further improve the performance over individual optimizations alone. To meet the scaling requirements and keep process complexity to a minimum, EUV is increasingly seen as the platform for delivering the exposures for both the grating and the cut/block patterns beyond N7. In this work, we evaluated the overlay and pattern fidelity of an EUV block printed in a negative tone resist on an ArF-i SAQP grating. High-order Overlay modeling and corrections during the exposure can reduce overlay error after development, a significant component of the total EPE. During etch, additional degrees of freedom are available to improve the pattern placement error in single layer processes. Process control of advanced pitch nanoscale-multi-patterning techniques as described above is exceedingly complicated in a high volume manufacturing environment. Incorporating potential patterning optimizations into both design and HVM controls for the lithography process is expected to bring a combined benefit over individual optimizations. In this work we will show the EPE performance improvement for a 32nm pitch SAQP + block patterned Metal 2 layer by cooptimizing the lithography and etch processes. Recommendations for further improvements and alternative processes will be given.
NASA Astrophysics Data System (ADS)
Nikutowski, B.; Brunner, R.; Erhardt, Ch.; Knecht, St.; Schmidtke, G.
2011-09-01
In the field of terrestrial climatology the continuous monitoring of the solar irradiance with highest possible accuracy is an important goal. SolACES as a part of the ESA mission SOLAR on the ISS is measuring the short-wavelength solar EUV irradiance from 16-150 nm. This data will be made available to the scientific community to investigate the impact of the solar irradiance variability on the Earth's climate as well as the thermospheric/ionospheric interactions that are pursued in the TIGER program. Since the successful launch with the shuttle mission STS-122 on February 7th, 2008, SolACES initially recorded the low EUV irradiance during the extended solar activity minimum. Thereafter it has been observing the EUV irradiance during the increasing solar activity with enhanced intensity and changing spectral composition. SolACES consists of three grazing incidence planar grating spectrometers. In addition there are two three-signal ionisation chambers, each with exchangeable band-pass filters to determine the absolute EUV fluxes repeatedly during the mission. One important problem of space-borne instrumentation recording the solar EUV irradiance is the degradation of the spectrometer sensitivity. The two double ionisation chambers of SolACES, which could be re-filled with three different gases for each recording, allow the recalibration of the efficiencies of the three SolACES spectrometers from time to time.
Dual-domain lateral shearing interferometer
Naulleau, Patrick P.; Goldberg, Kenneth Alan
2004-03-16
The phase-shifting point diffraction interferometer (PS/PDI) was developed to address the problem of at-wavelength metrology of extreme ultraviolet (EUV) optical systems. Although extremely accurate, the fact that the PS/PDI is limited to use with coherent EUV sources, such as undulator radiation, is a drawback for its widespread use. An alternative to the PS/PDI, with relaxed coherence requirements, is lateral shearing interferometry (LSI). The use of a cross-grating, carrier-frequency configuration to characterize a large-field 4.times.-reduction EUV lithography optic is demonstrated. The results obtained are directly compared with PS/PDI measurements. A defocused implementation of the lateral shearing interferometer in which an image-plane filter allows both phase-shifting and Fourier wavefront recovery. The two wavefront recovery methods can be combined in a dual-domain technique providing suppression of noise added by self-interference of high-frequency components in the test-optic wavefront.
A double-stream Xe:He jet plasma emission in the vicinity of 6.7 nm
NASA Astrophysics Data System (ADS)
Chkhalo, N. I.; Garakhin, S. A.; Golubev, S. V.; Lopatin, A. Ya.; Nechay, A. N.; Pestov, A. E.; Salashchenko, N. N.; Toropov, M. N.; Tsybin, N. N.; Vodopyanov, A. V.; Yulin, S.
2018-05-01
We present the results of investigations of extreme ultraviolet (EUV) light emission in the range from 5 to 10 nm. The light source was a pulsed "double-stream" Xe:He gas jet target irradiated by a laser beam with a power density of ˜1011 W/cm2. The radiation spectra were measured with a Czerny-Turner monochromator with a plane diffraction grating. The conversion efficiency of the laser energy into EUV radiation caused by Xe+14…+16 ion emission in the range of 6-8 nm was measured using a calibrated power meter. The conversion efficiency of the laser radiation into EUV in the vicinity of 6.7 nm was (2.17 ± 0.13)% in a 1 nm spectral band. In the spectral band of the real optical system (0.7% for La/B multilayer mirrors) emitted into the half-space, it was (0.1 ± 0.006)%. The results of this study provide an impetus for further research on laser plasma sources for maskless EUV lithography at a wavelength of 6.7 nm.
EUV Spectroscopy of High-redshift X-ray Objects
NASA Astrophysics Data System (ADS)
Kowalski, Michael Paul; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.
2010-03-01
As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGNs for example, will have their maxima redshifted into the EUV waveband ( 90-912 Å/0.1-0.01 keV). Consequently, a wealth of spectral diagnostics, provided by, for example, the Fe L-shell complex ( 60-6 Å/0.2-2.0 keV) and the O VII/VIII lines ( 20 Å/0.5 keV), will be lost to X-ray instruments operating at traditional ( 0.5-10 keV) and higher X-ray energies. There are precedents in other wavebands. For example, HST evolutionary studies will become largely the province of JWST. Despite the successes of EUVE, the ROSAT WFC, and the Chandra LETG, the EUV continues to be unappreciated and under-utilized, partly because of a preconception that absorption by neutral galactic Hydrogen in the ISM prevents any useful extragalactic measurements at all EUV wavelengths and, until recently, by a lack of a suitable enabling technology. Thus, if future planned X-ray missions (e.g., IXO, Gen-X) are optimized again for traditional X-ray energies, their performance (effective area, resolving power) will be cut off at ultrasoft X-ray energies or at best be radically reduced in the EUV. This opens up a critical gap in performance located right at short EUV wavelengths, where the critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nano-laminate fabrication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on next-generation instrument designs.
Narrow-band EUV Multilayer Coating for the MOSES Sounding Rocket
NASA Technical Reports Server (NTRS)
Owens, Scott M.; Gum, Jeffery S.; Tarrio, Charles; Dvorak, Joseph; Kjornrattanawanich, Benjawan; Keski-Kuha, Ritva; Thomas, Roger J.; Kankelborg, Charles C.
2005-01-01
The Multi-order Solar EUV Spectrograph (MOSES) is a slitless spectrograph designed to study solar He II emission at 303.8 Angstroms, to be launched on a sounding rocket payload. One difference between MOSES and other slitless spectrographs is that the images are recorded simultaneously at three spectral orders, m = -1,0, +l. Another is the addition of a narrow-band multilayer coating on both the grating and the fold flat, which will reject out-of-band lines that normally contaminate the image of a slitless instrument. The primary metrics f a the mating were high peak reflectivity and suppression of Fe XV and XVI emission lines at 284 Angstroms and 335 Angstroms, respectively. We chose B4C/Mg2Si for our material combination since it provides better values for all three metrics together than the other leading candidates Si/Ir, Si/B4C or Si/SiC. Measurements of witness flats at NIST indicate the peak reflectivity at 303.6 is 38.5% for a 15 bilayer stack, while the suppression at 284 Angstroms, is 4.5x and at 335 Angstroms is 18.3x for each of two reflections in the instrument. We present the results of coating the MOSES flight gratings and fold flat, including the spectral response of the fold flat and grating as measured at NIST's SURF III and Brookhaven's X24C beamline.
Prospects of DUV OoB suppression techniques in EUV lithography
NASA Astrophysics Data System (ADS)
Park, Chang-Min; Kim, Insung; Kim, Sang-Hyun; Kim, Dong-Wan; Hwang, Myung-Soo; Kang, Soon-Nam; Park, Cheolhong; Kim, Hyun-Woo; Yeo, Jeong-Ho; Kim, Seong-Sue
2014-04-01
Though scaling of source power is still the biggest challenge in EUV lithography (EUVL) technology era, CD and overlay controls for transistor's requirement are also precondition of adopting EUVL in mass production. Two kinds of contributors are identified as risks for CDU and Overlay: Infrared (IR) and deep ultraviolet (DUV) out of band (OOB) radiations from laser produced plasma (LPP) EUV source. IR from plasma generating CO2 laser that causes optics heating and wafer overlay error is well suppressed by introducing grating on collector to diffract IR off the optical axis and is the effect has been confirmed by operation of pre-production tool (NXE3100). EUV and DUV OOB which are reflected from mask black boarder (BB) are root causes of EUV-specific CD error at the boundaries of exposed shots which would result in the problem of CDU out of spec unless sufficiently suppressed. Therefore, control of DUV OOB reflection from the mask BB is one of the key technologies that must be developed prior to EUV mass production. In this paper, quantitative assessment on the advantage and the disadvantage of potential OOB solutions will be discussed. EUV and DUV OOB impacts on wafer CDs are measured from NXE3100 & NXE3300 experiments. Significant increase of DUV OOB impact on CD from NXE3300 compared with NXE3100 is observed. There are three ways of technology being developed to suppress DUV OOB: spectral purity filter (SPF) as a scanner solution, multi-layer etching as a solution on mask, and resist top-coating as a process solution. PROs and CONs of on-scanner, on-mask, and on-resist solution for the mass production of EUV lithography will be discussed.
Elliptical varied line-space (EVLS) gratings
NASA Astrophysics Data System (ADS)
Thomas, Roger J.
2004-10-01
Imaging spectroscopy at wavelengths below 2000 Å offers an especially powerful method for studying many extended high-temperature astronomical objects, like the Sun and its outer layers. But the technology to make such measurements is also especially challenging, because of the poor reflectance of all standard materials at these wavelengths, and because the observation must be made from above the absorbing effects of the Earth's atmosphere. To solve these problems, single-reflection stigmatic spectrographs for XUV wavelengths have bee flown on several space missions based on designs with toroidal uniform line-space (TULS) or spherical varied line-space (SVLS) gratings that operate at near normal-incidence. More recently, three solar EUV/UV instruments have been selected that use toroidal varied line-space (TVLS) gratings; these are SUMI and RAISE, both sounding rocket payloads, and NEXUS, a SMEX satellite-mission. The next logical extension to such designs is the use of elliptical surfaces for varied line-space (EVLS) rulings. In fact, EVLS designs are found to provide superior imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. In some cases, such designs may be optimized even further by using a hyperbolic surface for the feeding telescope. The optical characteristics of two solar EUV spectrometers based on these concepts are described: EUS and EUI, both being developed as possible instruments for ESA's Solar Orbiter mission by consortia led by RAL and by MSSL, respectively.
High resolution EUV monochromator/spectrometer
Koike, Masako
1996-01-01
This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution.
High resolution EUV monochromator/spectrometer
Koike, Masako
1996-06-18
This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution. 10 figs.
NASA Astrophysics Data System (ADS)
Da Deppo, Vania; Poletto, Luca; Crescenzio, Giuseppe; Fineschi, Silvano; Antonucci, Ester; Naletto, Giampiero
2017-11-01
METIS, the Multi Element Telescope for Imaging and Spectroscopy, is the solar coronagraph foreseen for the ESA Solar Orbiter mission. METIS is conceived to image the solar corona from a near-Sun orbit in three different spectral bands: in the HeII EUV narrow band at 30.4 nm, in the HI UV narrow band at 121.6 nm, and in the polarized visible light band (590 - 650 nm). It also incorporates the capability of multi-slit spectroscopy of the corona in the UV/EUV range at different heliocentric heights. METIS is an externally occulted coronagraph which adopts an "inverted occulted" configuration. The Inverted external occulter (IEO) is a small circular aperture at the METIS entrance; the Sun-disk light is rejected by a spherical mirror M0 through the same aperture, while the coronal light is collected by two annular mirrors M1-M2 realizing a Gregorian telescope. To allocate the spectroscopic part, one portion of the M2 is covered by a grating (i.e. approximately 1/8 of the solar corona will not be imaged). This paper presents the error budget analysis for this new concept coronagraph configuration, which incorporates 3 different sub-channels: UV and EUV imaging sub-channel, in which the UV and EUV light paths have in common the detector and all of the optical elements but a filter, the polarimetric visible light sub-channel which, after the telescope optics, has a dedicated relay optics and a polarizing unit, and the spectroscopic sub-channel, which shares the filters and the detector with the UV-EUV imaging one, but includes a grating instead of the secondary mirror. The tolerance analysis of such an instrument is quite complex: in fact not only the optical performance for the 3 sub-channels has to be maintained simultaneously, but also the positions of M0 and of the occulters (IEO, internal occulter and Lyot stop), which guarantee the optimal disk light suppression, have to be taken into account as tolerancing parameters. In the aim of assuring the scientific requirements are optimally fulfilled for all the sub-channels, the preliminary results of manufacturing, alignment and stability tolerance analysis for the whole instrument will be described and discussed.
TESIS experiment on EUV imaging spectroscopy of the Sun
NASA Astrophysics Data System (ADS)
Kuzin, S. V.; Bogachev, S. A.; Zhitnik, I. A.; Pertsov, A. A.; Ignatiev, A. P.; Mitrofanov, A. M.; Slemzin, V. A.; Shestov, S. V.; Sukhodrev, N. K.; Bugaenko, O. I.
2009-03-01
TESIS is a set of solar imaging instruments in development by the Lebedev Physical Institute of the Russian Academy of Science, to be launched aboard the Russian spacecraft CORONAS-PHOTON in December 2008. The main goal of TESIS is to provide complex observations of solar active phenomena from the transition region to the inner and outer solar corona with high spatial, spectral and temporal resolution in the EUV and Soft X-ray spectral bands. TESIS includes five unique space instruments: the MgXII Imaging Spectroheliometer (MISH) with spherical bent crystal mirror, for observations of the Sun in the monochromatic MgXII 8.42 Å line; the EUV Spectoheliometer (EUSH) with grazing incidence difraction grating, for the registration of the full solar disc in monochromatic lines of the spectral band 280-330 Å; two Full-disk EUV Telescopes (FET) with multilayer mirrors covering the band 130-136 and 290-320 Å; and the Solar EUV Coronagraph (SEC), based on the Ritchey-Chretien scheme, to observe the inner and outer solar corona from 0.2 to 4 solar radii in spectral band 290-320 Å. TESIS experiment will start at the rising phase of the 24th cycle of solar activity. With the advanced capabilities of its instruments, TESIS will help better understand the physics of solar flares and high-energy phenomena and provide new data on parameters of solar plasma in the temperature range 10-10K. This paper gives a brief description of the experiment, its equipment, and its scientific objectives.
Williamson, K M; Kantsyrev, V L; Safronova, A S; Wilcox, P G; Cline, W; Batie, S; LeGalloudec, B; Nalajala, V; Astanovitsky, A
2011-09-01
This recently developed diagnostic was designed to allow for time-gated spectroscopic study of the EUV radiation (4 nm < λ < 15 nm) present during harsh wire array z-pinch implosions. The spectrometer utilizes a 25 μm slit, an array of 3 spherical blazed gratings at grazing incidence, and a microchannel plate (MCP) detector placed in an off-Rowland position. Each grating is positioned such that its diffracted radiation is cast over two of the six total independently timed frames of the MCP. The off-Rowland configuration allows for a much greater spectral density on the imaging plate but only focuses at one wavelength per grating. The focal wavelengths are chosen for their diagnostic significance. Testing was conducted at the Zebra pulsed-power generator (1 MA, 100 ns risetime) at the University of Nevada, Reno on a series of wire array z-pinch loads. Within this harsh z-pinch environment, radiation yields routinely exceed 20 kJ in the EUV and soft x-ray. There are also strong mechanical shocks, high velocity debris, sudden vacuum changes during operation, energic ion beams, and hard x-ray radiation in excess of 50 keV. The spectra obtained from the precursor plasma of an Al double planar wire array contained lines of Al IX and AlX ions indicating a temperature near 60 eV during precursor formation. Detailed results will be presented showing the fielding specifications and the techniques used to extract important plasma parameters using this spectrometer. © 2011 American Institute of Physics
Expected scientific performance of the three spectrometers on the extreme ultraviolet explorer
NASA Technical Reports Server (NTRS)
Vallerga, J. V.; Jelinsky, P.; Vedder, P. W.; Malina, R. F.
1990-01-01
The expected in-orbit performance of the three spectrometers included on the Extreme Ultraviolet Explorer astronomical satellite is presented. Recent calibrations of the gratings, mirrors and detectors using monochromatic and continuum EUV light sources allow the calculation of the spectral resolution and throughput of the instrument. An effective area range of 0.2 to 2.8 sq cm is achieved over the wavelength range 70-600 A with a peak spectral resolution (FWHM) of 360 assuming a spacecraft pointing knowledge of 10 arc seconds (FWHM). For a 40,000 sec observation, the average 3 sigma sensitivity to a monochromatic line source is 0.003 photons/sq cm s. Simulated observations of known classes of EUV sources, such as hot white dwarfs, and cataclysmic variables are also presented.
High-resolution measurements in the EUV on NSTX
NASA Astrophysics Data System (ADS)
Beiersdorfer, P.; Bitter, M.; Lepson, J. K.; Gu, M.-F.
2005-10-01
The extreme ultraviolet (EUV) wavelength band is rich in lines useful as plasma diagnostics. This fact is being used by the Chandra and XMM-Newton satellites for studying stellar coronae and galactic nuclei. We have installed a new grating spectrometer on the NSTX tokamak that allows us to study emission lines in the EUV with similar spectral resolution. We have observed the K-shell lines of heliumlike and hydrogenlike boron, carbon, and oxygen. Moreover, we have measured the L-shell spectra of neonlike Ar, Fe, and Ni. All elements except argon were intrinsic to NSTX plasmas. Many of these spectra are of great interest to astrophysics. Our measurements provide line lists and calibrate density-sensitive line ratios in a density regime not accessible by other laboratory sources. Moreover, we were able to measure the temperature dependence of several iron lines needed to address puzzling results from stellar flare plasmas. This work was performed under the auspices of the U.S. DOE by UC-LLNL under contract W-7405-Eng-48 and by PPPL under contract DE-AC02-76CHO3073.
NASA Technical Reports Server (NTRS)
Judge, Darrell L.
1994-01-01
A prototype spectrometer has been developed for space applications requiring long term absolute EUV photon flux measurements. The energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.
A rare gas optics-free absolute photon flux and energy analyzer for solar and planetary observations
NASA Technical Reports Server (NTRS)
Judge, Darrell L.
1994-01-01
We have developed a prototype spectrometer for space applications requiring long term absolute EUV photon flux measurements. In this recently developed spectrometer, the energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.
State-of-the-art EUV materials and processes for the 7nm node and beyond
NASA Astrophysics Data System (ADS)
Buitrago, Elizabeth; Meeuwissen, Marieke; Yildirim, Oktay; Custers, Rolf; Hoefnagels, Rik; Rispens, Gijsbert; Vockenhuber, Michaela; Mochi, Iacopo; Fallica, Roberto; Tasdemir, Zuhal; Ekinci, Yasin
2017-03-01
Extreme ultraviolet lithography (EUVL, λ = 13.5 nm) being the most likely candidate to manufacture electronic devices for future technology nodes is to be introduced in high volume manufacturing (HVM) at the 7 nm logic node, at least at critical lithography levels. With this impending introduction, it is clear that excellent resist performance at ultra-high printing resolutions (below 20 nm line/space L/S) is ever more pressing. Nonetheless, EUVL has faced many technical challenges towards this paradigm shift to a new lithography wavelength platform. Since the inception of chemically amplified resists (CARs) they have been the base upon which state-of-the art photoresist technology has been developed from. Resist performance as measured in terms of printing resolution (R), line edge roughness (LER), sensitivity (D or exposure dose) and exposure latitude (EL) needs to be improved but there are well known trade-off relationships (LRS trade-off) among these parameters for CARs that hamper their simultaneous enhancement. Here, we present some of the most promising EUVL materials tested by EUV interference lithography (EUV-IL) with the aim of resolving features down to 11 nm half-pitch (HP), while focusing on resist performance at 16 and 13 nm HP as needed for the 7 and 5 nm node, respectively. EUV-IL has enabled the characterization and development of new resist materials before commercial EUV exposure tools become available and is therefore a powerful research and development tool. With EUV-IL, highresolution periodic images can be printed by the interference of two or more spatially coherent beams through a transmission-diffraction grating mask. For this reason, our experiments have been performed by EUV-IL at Swiss Light Source (SLS) synchrotron facility located at the Paul Scherrer Institute (PSI). Having the opportunity to test hundreds of EUVL materials from vendors and research partners from all over the world, PSI is able to give a global update on some of the most promising materials tested.
NASA Astrophysics Data System (ADS)
Schmidtke, G.; Nikutowski, B.; Jacobi, C.; Brunner, R.; Erhardt, C.; Knecht, S.; Scherle, J.; Schlagenhauf, J.
2014-05-01
SolACES is part of the ESA SOLAR ISS mission that started aboard the shuttle mission STS-122 on 7 February 2008. The instrument has recorded solar extreme ultraviolet (EUV) irradiance from 16 to 150 nm during the extended solar activity minimum and the beginning solar cycle 24 with rising solar activity and increasingly changing spectral composition. The SOLAR mission has been extended from a period of 18 months to > 8 years until the end of 2016. SolACES is operating three grazing incidence planar grating spectrometers and two three-current ionization chambers. The latter ones are considered as primary radiometric detector standards. Re-filling the ionization chambers with three different gases repeatedly and using overlapping band-pass filters, the absolute EUV fluxes are derived in these spectral intervals. This way the serious problem of continuing efficiency changes in space-borne instrumentation is overcome during the mission. Evaluating the three currents of the ionization chambers, the overlapping spectral ranges of the spectrometers and of the filters plus inter-comparing the results from the EUV photon absorption in the gases with different absorption cross sections, there are manifold instrumental possibilities to cross-check the results providing a high degree of reliability to the spectral irradiance derived. During the mission a very strong up-and-down variability of the spectrometric efficiency by orders of magnitude is observed. One of the effects involved is channeltron degradation. However, there are still open questions on other effects contributing to these changes. A survey of the measurements carried out and first results of the solar spectral irradiance (SSI) data are presented. Inter-comparison with EUV data from other space missions shows good agreement such that the international effort has started to elaborate a complete set of EUV-SSI data taking into account all data available from 2008 to 2013.
On the Performance of Multi-Instrument Solar Flare Observations During Solar Cycle 24
NASA Astrophysics Data System (ADS)
Milligan, Ryan O.; Ireland, Jack
2018-02-01
The current fleet of space-based solar observatories offers us a wealth of opportunities to study solar flares over a range of wavelengths. Significant advances in our understanding of flare physics often come from coordinated observations between multiple instruments. Consequently, considerable efforts have been, and continue to be, made to coordinate observations among instruments ( e.g. through the Max Millennium Program of Solar Flare Research). However, there has been no study to date that quantifies how many flares have been observed by combinations of various instruments. Here we describe a technique that retrospectively searches archival databases for flares jointly observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Solar Dynamics Observatory (SDO)/ EUV Variability Experiment (EVE - Multiple EUV Grating Spectrograph (MEGS)-A and -B, Hinode/( EUV Imaging Spectrometer, Solar Optical Telescope, and X-Ray Telescope), and Interface Region Imaging Spectrograph (IRIS). Out of the 6953 flares of GOES magnitude C1 or greater that we consider over the 6.5 years after the launch of SDO, 40 have been observed by 6 or more instruments simultaneously. Using each instrument's individual rate of success in observing flares, we show that the numbers of flares co-observed by 3 or more instruments are higher than the number expected under the assumption that the instruments operated independently of one another. In particular, the number of flares observed by larger numbers of instruments is much higher than expected. Our study illustrates that these missions often acted in cooperation, or at least had aligned goals. We also provide details on an interactive widget ( Solar Flare Finder), now available in SSWIDL, which allows a user to search for flaring events that have been observed by a chosen set of instruments. This provides access to a broader range of events in order to answer specific science questions. The difficulty in scheduling coordinated observations for solar-flare research is discussed with respect to instruments projected to begin operations during Solar Cycle 25, such as the Daniel K. Inouye Solar Telescope, Solar Orbiter, and Parker Solar Probe.
EUV-angle resolved scatter (EUV-ARS): a new tool for the characterization of nanometre structures
NASA Astrophysics Data System (ADS)
Fernández Herrero, Analía.; Mentzel, Heiko; Soltwisch, Victor; Jaroslawzew, Sina; Laubis, Christian; Scholze, Frank
2018-03-01
The advance of the semiconductor industry requires new metrology methods, which can deal with smaller and more complex nanostructures. Particularly for inline metrology a rapid, sensitive and non destructive method is needed. Small angle X-ray scattering under grazing incidence has already been investigated for this application and delivers significant statistical information which tracks the profile parameters as well as their variations, i.e. roughness. However, it suffers from the elongated footprint at the sample. The advantage of EUV radiation, with its longer wavelengths, is that larger incidence angles can be used, resulting in a significant reduction of the beam footprint. Targets with field sizes of 100 μm and smaller are accessible with our experimental set-up. We present a new experimental tool for the measurement of small structures based on the capabilities of soft X-ray and EUV scatterometry at the PTB soft X-ray beamline at the electron storage ring BESSY II. PTB's soft X-ray radiometry beamline uses a plane grating monochromator, which covers the spectral range from 0.7 nm to 25 nm and was especially designed to provide highly collimated radiation. An area detector covers the scattered radiation from a grazing exit angle up to an angle of 30° above the sample horizon and the fluorescence emission can be detected with an energy dispersive X-ray silicon drift detector. In addition, the sample can be rotated and linearly moved in vacuum. This new set-up will be used to explore the capabilities of EUV-scatterometry for the characterization of nanometre-sized structures.
Metal stack optimization for low-power and high-density for N7-N5
NASA Astrophysics Data System (ADS)
Raghavan, P.; Firouzi, F.; Matti, L.; Debacker, P.; Baert, R.; Sherazi, S. M. Y.; Trivkovic, D.; Gerousis, V.; Dusa, M.; Ryckaert, J.; Tokei, Z.; Verkest, D.; McIntyre, G.; Ronse, K.
2016-03-01
One of the key challenges while scaling logic down to N7 and N5 is the requirement of self-aligned multiple patterning for the metal stack. This comes with a large cost of the backend cost and therefore a careful stack optimization is required. Various layers in the stack have different purposes and therefore their choice of pitch and number of layers is critical. Furthermore, when in ultra scaled dimensions of N7 or N5, the number of patterning options are also much larger ranging from multiple LE, EUV to SADP/SAQP. The right choice of these are also needed patterning techniques that use a full grating of wires like SADP/SAQP techniques introduce high level of metal dummies into the design. This implies a large capacitance penalty to the design therefore having large performance and power penalties. This is often mitigated with extra masking strategies. This paper discusses a holistic view of metal stack optimization from standard cell level all the way to routing and the corresponding trade-off that exist for this space.
The EUV spectrophotometer on Atmosphere Explorer.
NASA Technical Reports Server (NTRS)
Hinteregger, H. E.; Bedo, D. E.; Manson, J. E.
1973-01-01
An extreme ultraviolet (EUV) spectrophotometer for measurements of solar radiation at wavelengths ranging from 140 to 1850 A will be included in the payload of each of the three Atmosphere-Explorer (AE) missions, AE-C, -D, and -E. The instrument consists of 24 grating monochromators, 12 of which can be telecommanded either to execute 128-step scans each covering a relatively small section of the total spectrophotometer wavelength range or to maintain fixed (command-selected) wavelength positions. The remaining 12 nonscan monochromators operate at permanently fixed wavelengths and view only a small fraction of the solar disk except for one viewing the whole sun in H Lyman alpha. Ten of the 12 scan-capable monochromators also view the entire solar disk since their primary function is to measure the total fluxes independent of the distribution of sources across the solar disk.
EUV observation from the Earth-orbiting satellite, EXCEED
NASA Astrophysics Data System (ADS)
Yoshioka, K.; Murakami, G.; Yoshikawa, I.; Ueno, M.; Uemizu, K.; Yamazaki, A.
2010-01-01
An Earth-orbiting small satellite “EXtreme ultraviolet spectrosCope for ExosphEric Dynamics” (EXCEED) which will be launched in 2012 is under development. The mission will carry out spectroscopic and imaging observation of EUV (Extreme Ultraviolet: 60-145 nm) emissions from tenuous plasmas around the planets (Venus, Mars, Mercury, and Jupiter). It is essential for EUV observation to put on an observing site outside the Earth’s atmosphere to avoid the absorption. It is also essential that the detection efficiency must be very high in order to catch the faint signals from those targets. In this mission, we employ cesium iodide coated microchannel plate as a 2 dimensional photon counting devise which shows 1.5-50 times higher quantum detection efficiency comparing with the bared one. We coat the surface of the grating and entrance mirror with silicon carbides by the chemical vapor deposition method in order to archive the high diffraction efficiency and reflectivity. The whole spectrometer is shielded by the 2 mm thick stainless steel to prevent the contamination caused by the high energy electrons from the inner radiation belt. In this paper, we will introduce the mission overview, its instrument, and their performance.
Development of an EUV Test Facility at the Marshall Space Flight Center
2011-08-22
Zemax model developed from beam size measurements that locates and determines the size of a copper gasket mounted to our pneumatic gate \\ahe at the...the observed spectra. Therefore, a Zemax model of the source, transmission grating and the Andor camera had to be developed. Two models were developed...see Figures 16, 17 and 18). The Zemax model including the NIST transmission data is in good agreement with the observed spectrum shown in Figure 18
Determination of line profiles on nano-structured surfaces using EUV and x-ray scattering
NASA Astrophysics Data System (ADS)
Soltwisch, Victor; Wernecke, Jan; Haase, Anton; Probst, Jürgen; Schoengen, Max; Krumrey, Michael; Scholze, Frank; Pomplun, Jan; Burger, Sven
2014-09-01
Non-imaging techniques like X-ray scattering are supposed to play an important role in the further development of CD metrology for the semiconductor industry. Grazing Incidence Small Angle X-ray Scattering (GISAXS) provides directly assessable information on structure roughness and long-range periodic perturbations. The disadvantage of the method is the large footprint of the X-ray beam on the sample due to the extremely shallow angle of incidence. This can be overcome by using wavelengths in the extreme ultraviolet (EUV) spectral range, EUV small angle scattering (EUVSAS), which allows for much steeper angles of incidence but preserves the range of momentum transfer that can be observed. Generally, the potentially higher momentum transfer at shorter wavelengths is counterbalanced by decreasing diffraction efficiency. This results in a practical limit of about 10 nm pitch for which it is possible to observe at least the +/- 1st diffraction orders with reasonable efficiency. At the Physikalisch-Technische Bundesanstalt (PTB), the available photon energy range extends from 50 eV up to 10 keV at two adjacent beamlines. PTB commissioned a new versatile Ellipso-Scatterometer which is capable of measuring 6" square substrates in a clean, hydrocarbon-free environment with full flexibility regarding the direction of the incident light polarization. The reconstruction of line profiles using a geometrical model with six free parameters, based on a finite element method (FEM) Maxwell solver and a particle swarm based least-squares optimization yielded consistent results for EUV-SAS and GISAXS. In this contribution we present scatterometry data for line gratings and consistent reconstruction results of the line geometry for EUV-SAS and GISAXS.
NASA Astrophysics Data System (ADS)
Erickson, Nicholas; Green, James C.; France, Kevin; Stocke, John T.; Nell, Nicholas
2018-06-01
We describe the scientific motivation and technical development of the Dual-channel Extreme Ultraviolet Continuum Experiment (DEUCE). DEUCE is a sounding rocket payload designed to obtain the first flux-calibrated spectra of two nearby B stars in the EUV 650-1150Å bandpass. This measurement will help in understanding the ionizing flux output of hot B stars, calibrating stellar models and commenting on the potential contribution of such stars to reionization. DEUCE consists of a grazing incidence Wolter II telescope, a normal incidence holographic grating, and the largest (8” x 8”) microchannel plate detector ever flown in space, covering the 650-1150Å band in medium and low resolution channels. DEUCE will launch on December 1, 2018 as NASA/CU sounding rocket mission 36.331 UG, observing Epsilon Canis Majoris, a B2 II star.
Toroidal Varied-Line Space (TVLS) Gratings
NASA Technical Reports Server (NTRS)
Thomas, Roger J.; Oegerle, William (Technical Monitor)
2002-01-01
It is a particular challenge to develop a stigmatic spectrograph for XUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar EUV (Extreme Ultraviolet) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrometers based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.
Galileo Ultraviolet Spectrometer experiment
NASA Technical Reports Server (NTRS)
Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.
1992-01-01
The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.
NASA Astrophysics Data System (ADS)
Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji
2017-03-01
With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.
On numerical reconstructions of lithographic masks in DUV scatterometry
NASA Astrophysics Data System (ADS)
Henn, M.-A.; Model, R.; Bär, M.; Wurm, M.; Bodermann, B.; Rathsfeld, A.; Gross, H.
2009-06-01
The solution of the inverse problem in scatterometry employing deep ultraviolet light (DUV) is discussed, i.e. we consider the determination of periodic surface structures from light diffraction patterns. With decreasing dimensions of the structures on photo lithography masks and wafers, increasing demands on the required metrology techniques arise. Scatterometry as a non-imaging indirect optical method is applied to periodic line structures in order to determine the sidewall angles, heights, and critical dimensions (CD), i.e., the top and bottom widths. The latter quantities are typically in the range of tens of nanometers. All these angles, heights, and CDs are the fundamental figures in order to evaluate the quality of the manufacturing process. To measure those quantities a DUV scatterometer is used, which typically operates at a wavelength of 193 nm. The diffraction of light by periodic 2D structures can be simulated using the finite element method for the Helmholtz equation. The corresponding inverse problem seeks to reconstruct the grating geometry from measured diffraction patterns. Fixing the class of gratings and the set of measurements, this inverse problem reduces to a finite dimensional nonlinear operator equation. Reformulating the problem as an optimization problem, a vast number of numerical schemes can be applied. Our tool is a sequential quadratic programing (SQP) variant of the Gauss-Newton iteration. In a first step, in which we use a simulated data set, we investigate how accurate the geometrical parameters of an EUV mask can be reconstructed, using light in the DUV range. We then determine the expected uncertainties of geometric parameters by reconstructing from simulated input data perturbed by noise representing the estimated uncertainties of input data. In the last step, we use the measurement data obtained from the new DUV scatterometer at PTB to determine the geometrical parameters of a typical EUV mask with our reconstruction algorithm. The results are compared to the outcome of investigations with two alternative methods namely EUV scatterometry and SEM measurements.
Design and pitch scaling for affordable node transition and EUV insertion scenario
NASA Astrophysics Data System (ADS)
Kim, Ryoung-han; Ryckaert, Julien; Raghavan, Praveen; Sherazi, Yasser; Debacker, Peter; Trivkovic, Darko; Gillijns, Werner; Tan, Ling Ee; Drissi, Youssef; Blanco, Victor; Bekaert, Joost; Mao, Ming; Larivière, Stephane; McIntyre, Greg
2017-04-01
imec's DTCO and EUV achievement toward imec 7nm (iN7) technology node which is industry 5nm node equivalent is reported with a focus on cost and scaling. Patterning-aware design methodology supports both iArF multiple patterning and EUV under one compliant design rule. FinFET device with contacted poly pitch of 42nm and metal pitch of 32nm with 7.5-track, 6.5-track, and 6-track standard cell library are explored. Scaling boosters are used to provide additional scaling and die cost benefit while lessening pitch shrink burden, and it makes EUV insertion more affordable. EUV pattern fidelity is optimized through OPC, SMO, M3D, mask sizing and SRAF. Processed wafers were characterized and edge-placement-error (EPE) variability is validated for EUV insertion. Scale-ability and cost of ownership of EUV patterning in aligned with iN7 standard cell design, integration and patterning specification are discussed.
NASA Technical Reports Server (NTRS)
Krause, L. Habash; Cirtain, Jonathan; McGuirck, Michael; Pavelitz, Steven; Weber, Ed.; Winebarger, Amy
2012-01-01
When studying Solar Extreme Ultraviolet (EUV) emissions, both single-wavelength, two- dimensional (2D) spectroheliograms and multi-wavelength, one-dimensional (1D) line spectra are important, especially for a thorough understanding of the complex processes in the solar magnetized plasma from the base of the chromosphere through the corona. 2D image data are required for a detailed study of spatial structures, whereas radiometric (i.e., spectral) data provide information on relevant atomic excitation/ionization state densities (and thus temperature). Using both imaging and radiometric techniques, several satellite missions presently study solar dynamics in the EUV, including the Solar Dynamics Observatory (SDO), Hinode, and the Solar-Terrestrial Relations Observatory (STEREO). The EUV wavelengths of interest typically span 9 nm to 31 nm, with the shorter wavelengths being associated with the hottest features (e.g., intense flares and bright points) and the longer wavelengths associated with cooler features (e.g., coronal holes and filaments). Because the optical components of satellite instruments degrade over time, it is not uncommon to conduct sounding rocket underflights for calibration purposes. The authors have designed a radiometric sounding rocket payload that could serve as both a calibration underflight for and a complementary scientific mission to the upcoming Solar Ultraviolet Imager (SUVI) mission aboard the GOES-R satellite (scheduled for a 2015 launch). The challenge to provide quality radiometric line spectra over the 9-31 nm range covered by SUVI was driven by the multilayer coatings required to make the optical components, including mirrors and gratings, reflective over the entire range. Typically, these multilayers provide useful EUV reflectances over bandwidths of a few nm. Our solution to this problem was to employ a three-telescope system in which the optical components were coated with multilayers that spanned three wavelength ranges to cover the three pairs of SUVI bands. The complete system was designed to fit within the Black Brandt-IX 22.-diameter payload skin envelope. The basic optical path is that of a simple parabolic telescope in which EUV light is focused onto a slit and shutter assembly and imaged onto a normal-incidence diffraction grating, which then disperses the light onto a 2048 2048 CCD sensor. The CCD thus records 1D spatial information along one axis and spectral information along the other. The slit spans 40 arc-minutes in length, thus covering a solar diameter out to +/- 1.3 solar radii. Our operations concept includes imaging at three distinct positions: the north-south meridian, the northeast-southwest diagonal, and real-time pointing at an active region. Six 10-second images will be obtained at each position. Fine pointing is provided by the SPARCS-VII attitude control system typically employed on Black Brandt solar missions. Both before and after launch, all three telescopes will be calibrated with the EUV line emission source and monochromater system at NASA's Stray Light Facility at Marshall Spaceflight Center. Details of the payload design, operations concept, and data application will be presented.
NASA Technical Reports Server (NTRS)
Huber, M. C. E.; Timothy, J. G.
1977-01-01
The design of a stigmatic spectroheliometer for photometric studies of dynamic phenomena in the solar atmosphere at extreme ultraviolet (EUV) wavelengths is described. The normal-incidence spectrometer requires only one reflective surface, and is equipped with a series of exit slits and associated one-dimensional detector arrays that are mounted at the secondary (vertical) foci of the concave diffraction grating. It is shown that such a spectrometer mounted at the focus of an off-axis paraboloid telescope mirror of the size employed in the EUV spectroheliometer flown on Skylab could record monochromatic images of a 2 x 2 (arcmin) sq field-of-view with a spatial resolution element of 1 x 1 (arcsec) sq in a time of 4 s, 24 s, or 4 min, depending on whether the region studied is flaring, active, or quiet. The resulting spectroheliograms would have an average photometric precision of 10% and a spectral purity of 0.1 A.
Design of a grazing incidence EUV imaging spectrometer for the solar orbiter ESA mission
NASA Astrophysics Data System (ADS)
Da Deppo, Vania; Poletto, Luca
2017-11-01
The paper describes the optical design and performance of an extreme-ultraviolet (EUV) spectrometer for imaging spectroscopy to be part of the scientific payload of the Solar Orbiter (SOLO) mission. The main scientific objectives are to study the solar polar region and observe in detail the evolution of corona structures from a favourable point of view at only 45 solar radii from the Sun (0.2 AU). The instrument concept is based on a grazing incidence telescope, (1200 m focal length, 18 arcmin x 18 arcmin FoV), in Wolter configuration couple to a normalincidence VLS grating spectrometer, which preserve the stigmaticity in an extended spectral region and in the whole field-of-view. The spectral range covered by the instrument is the 116-126 nm region at the first order and the 57-63 nm region at the second order. The spectral resolving element is 65 mÅ (I order), corresponding to a velocity resolution of 16 km/s.
EUV Solar Instrument Development at the Marshall Space Flight Center
NASA Astrophysics Data System (ADS)
Kobayashi, K.; Cirtain, J. W.; Davis, J. M.; West, E.; Golub, L.; Korreck, K. E.; Tsuneta, S.; Bando, T.
2009-12-01
The three sounding rocket instrument programs currently underway at the NASA Marshall Space Flight Center represent major advances in solar observations, made possible by improvements in EUV optics and detector technology. The Solar Ultraviolet Magnetograph Instrument (SUMI) is an EUV spectropolarimeter designed to measure the Zeeman splitting of two chromospheric EUV lines, the 280 nm MgII and 155 nm CIV lines. SUMI directly observes the magnetic field in the low-beta region where most energetic phenomena are though to originate. In conjunction with visible-light magnetographs, this observation allows us to track the evolution of the magnetic field as it evolves from the photosphere to the upper chromosphere. SUMI incorporates a normal incidence Cassegrain telescope, a MgF2 double-Wollaston polarizing beam splitter and two TVLS (toroidal varied line space) gratings, and is capable of observing two orthogonal polarizations in two wavelength bands simultaneously. SUMI has been fully assembled and tested, and currently scheduled for launch in summer of 2010. The High-resolution Coronal Imager is a normal-incidence EUV imaging telescope designed to achieve 0.2 arcsecond resolution, with a pixel size of 0.1 arcsecond. This is a factor of 25 improvement in aerial resolution over the Transition Region And Coronal Explorer (TRACE). Images obtained by TRACE indicate presence of unresolved structures; higher resolution images will reveal the scale and topology of structures that make up the corona. The telescope mirrors are currently being fabricated, and the instrument has been funded for flight. In addition, a Lyman alpha spectropolarimeter is under development in collaboration with the National Astronomical Observatory of Japan. This aims to detect the linear polarization in the chromosphere caused by the Hanle effect. Horizontal magnetic fields in the chromosphere are expected to be detectable as polarization near disk center, and off-limb observations will reveal the magnetic field structure of filaments and prominences. Laboratory tests of candidate optical components are currently underway.
Writing and applications of fiber Bragg grating arrays
NASA Astrophysics Data System (ADS)
LaRochelle, Sophie; Cortes, Pierre-Yves; Fathallah, H.; Rusch, Leslie A.; Jaafar, H. B.
2000-12-01
Multiple Bragg gratings are written in a single fibre strand with accurate positioning to achieve predetermined time delays between optical channels. Applications of fibre Bragg grating arrays include encoders/decoders with series of identical gratings for optical code-division multiple access.
Anomalous temporal behaviour of broadband Lyα observations during solar flares from SDO/EVE
NASA Astrophysics Data System (ADS)
Milligan, Ryan O.; Chamberlin, Phillip C.
2016-03-01
Although it is the most prominent emission line in the solar spectrum, there has been a notable lack of studies devoted to variations in Lyα emission during solar flares in recent years. However, the few examples that do exist have shown Lyα emission to be a substantial radiator of the total energy budget of solar flares (of the order of 10%). It is also a known driver of fluctuations in the Earth's ionosphere. The EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory now provides broadband, photometric Lyα data at 10 s cadence with its Multiple EUV Grating Spectrograph-Photometer (MEGS-P) component, and has observed scores of solar flares in the 5 years since it was launched. However, the MEGS-P time profiles appear to display a rise time of tens of minutes around the time of the flare onset. This is in stark contrast to the rapid, impulsive increase observed in other intrinsically chromospheric features (Hα, Lyβ, LyC, C III, etc.). Furthermore, the emission detected by MEGS-P peaks around the time of the peak of thermal soft X-ray emission and not during the impulsive phase when energy deposition in the chromosphere (often assumed to be in the form of non-thermal electrons) is greatest. The time derivative of Lyα lightcurves also appears to resemble that of the time derivative of soft X-rays, reminiscent of the Neupert effect. Given that spectrally-resolved Lyα observations during flares from SORCE/SOLSTICE peak during the impulsive phase as expected, this suggests that the atypical behaviour of MEGS-P data is a manifestation of the broadband nature of the observations. This could imply that other lines and/or continuum emission that becomes enhanced during flares could be contributing to the passband. Users are hereby urged to exercise caution when interpreting broadband Lyα observations of solar flares. Comparisons have also been made with other broadband Lyα photometers such as PROBA2/LYRA and GOES/EUVS-E.
Kessler, Terrance J; Bunkenburg, Joachim; Huang, Hu; Kozlov, Alexei; Meyerhofer, David D
2004-03-15
Petawatt solid-state lasers require meter-sized gratings to reach multiple-kilojoule energy levels without laser-induced damage. As an alternative to large single gratings, we demonstrate that smaller, coherently added (tiled) gratings can be used for subpicosecond-pulse compression. A Fourier-transform-limited, 650-fs chirped-pulse-amplified laser pulse is maintained by replacing a single compression grating with a tiled-grating assembly. Grating tiling provides a means to scale the energy and irradiance of short-pulse lasers.
NASA Astrophysics Data System (ADS)
Didkovsky, L. V.; Wieman, S. R.; Chao, W.; Woods, T. N.; Jones, A. R.; Thiemann, E.; Mason, J. P.
2016-12-01
We discuss science and technology advantages of the Imaging Grating Spectrometer (I-GRASP) based on a novel transmission diffracting grating (TDG) made possible by technology for fabricating Fresnel zone plates (ZPs) developed at the Lawrence Berkeley National Laboratory (LBNL). Older version TDGs with 200 nm period available in the 1990s became a proven technology for providing 21 years of regular measurements of solar EUV irradiance. I-GRASP incorporates an advanced TDG with a grating period of 50 nm providing four times better diffraction dispersion than the 200 nm period gratings used in the SOHO/CELIAS/SEM, the SDO/EVE/ESP flight spectrophotometers, and the EVE/SAM sounding rocket channel. Such new technology for the TDG combined with a back-illuminated 2000 x 1504 CMOS image sensor with 7 micron pixels, will provide spatially-and-spectrally resolved images and spectra from individual Active Regions (ARs) and solar flares with high (0.15 nm) spectral resolution. Such measurements are not available in the spectral band from about 2 to 6 nm from existing or planned spectrographs and will be significantly important to study ARs and solar flare temperatures and dynamics, to improve existing spectral models, e.g. CHIANTI, and to better understand processes in the Earth's atmosphere processes. To test this novel technology, we have proposed to the NASA LCAS program an I-GRASP version for a sounding rocket flight to increase the TDG TRL to a level appropriate for future CubeSat projects.
Extreme Ultraviolet Spectroscopy of the Thermosphere from the RAIDS Experiment on the ISS
NASA Astrophysics Data System (ADS)
Bishop, R. L.; Stephan, A. W.; Christensen, A. B.; Budzien, S. A.; Straus, P. R.; van Epps, Z.
2009-12-01
The RAIDS experiment is a suite of eight instruments to be flown aboard the Japanese Experiment Module-Exposed Facility on the International Space Station (ISS) in 2009. One of the sensors is the Extreme Ultraviolet Spectrograph (EUVS). The EUVS measures the radiance of the Earth’s airglow with a f/5 Wadsworth spectrograph fronted by a mechanical grid collimator. The 0.1 x 2.3 degree field of view is imaged onto a wedge-and-strip two dimensional detector and collapsed into a one-dimensional spectrum. The vertical profile is assembled from a series of these spectra obtained as the RAIDS platform scans in altitude. Two grating positions provide coverage of the 50.0-85.0 nm region or the 77.0-110.0 nm region at 1.2 nm spectral resolution. We will present a discussion of the scientific targets for the RAIDS EUVS and, if launched on schedule, also the first spectra observed from this sensor. The EUVS is sensitive to a number of emissions in the Earth’s dayglow including atomic and ionized oxygen and argon, ionized nitrogen, and atomic helium. One of the primary RAIDS science objectives is to use the EUVS to obtain simultaneous OII 83.4 nm and 61.7 nm limb profiles to perform an in-depth investigation of the OII excitation and emission processes in the daytime ionosphere. Some of the more dominant spectral features such as the OI (98.9, 102.7 nm), OII (83.4, 61.7 nm), and NII (108.5, 91.6 nm) lines will provide the opportunity to develop new methods to monitor thermospheric O and N2. The OI (102.7 nm) observations may also be used, in conjunction with other RAIDS measurements, to retrieve the spectrally unresolved H Lyman beta and thus a measure of atomic hydrogen. The argon emissions Ar I (104.8, 106.7 nm) and Ar II (91.96, 93.21 nm) will provide information on its relative abundance in the lower thermosphere. . Combinations of measurements, such as the EUVS OI (98.9 nm) and the RAIDS Near Infrared Spectrometer OI (799.0 nm) emission can be used to probe the details of their associated branching ratios and excitation cross sections. Finally, the very quiet solar minimum period provides a unique opportunity to observe the He I 58.4 nm emission at these altitudes. The initial RAIDS EUVS spectra will highlight this potential wealth of future ionospheric and thermospheric studies that can be accomplished using such a unique dataset.
Electrical comparison of iN7 EUV hybrid and EUV single patterning BEOL metal layers
NASA Astrophysics Data System (ADS)
Larivière, Stéphane; Wilson, Christopher J.; Kutrzeba Kotowska, Bogumila; Versluijs, Janko; Decoster, Stefan; Mao, Ming; van der Veen, Marleen H.; Jourdan, Nicolas; El-Mekki, Zaid; Heylen, Nancy; Kesters, Els; Verdonck, Patrick; Béral, Christophe; Van den Heuvel, Dieter; De Bisschop, Peter; Bekaert, Joost; Blanco, Victor; Ciofi, Ivan; Wan, Danny; Briggs, Basoene; Mallik, Arindam; Hendrickx, Eric; Kim, Ryoung-han; McIntyre, Greg; Ronse, Kurt; Bömmels, Jürgen; Tőkei, Zsolt; Mocuta, Dan
2018-03-01
The semiconductor scaling roadmap shows the continuous node to node scaling to push Moore's law down to the next generations. In that context, the foundry N5 node requires 32nm metal pitch interconnects for the advanced logic Back- End of Line (BEoL). 193immersion usage now requires self-aligned and/or multiple patterning technique combinations to enable such critical dimension. On the other hand, EUV insertion investigation shows that 32nm metal pitch is still a challenge but, related to process flow complexity, presents some clear motivations. Imec has already evaluated on test chip vehicles with different patterning approaches: 193i SAQP (Self-Aligned Quadruple Patterning), LE3 (triple patterning Litho Etch), tone inversion, EUV SE (Single Exposure) with SMO (Source-mask optimization). Following the run path in the technology development for EUV insertion, imec N7 platform (iN7, corresponding node to the foundry N5) is developed for those BEoL layers. In this paper, following technical motivation and development learning, a comparison between the iArF SAQP/EUV block hybrid integration scheme and a single patterning EUV flow is proposed. These two integration patterning options will be finally compared from current morphological and electrical criteria.
Multilayer diffraction grating
Barbee, T.W. Jr.
1990-04-10
This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages. 2 figs.
Multilayer diffraction grating
Barbee, Jr., Troy W.
1990-01-01
This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages.
NASA Astrophysics Data System (ADS)
Didkovsky, Leonid; Wieman, Seth; Woods, Thomas
2016-10-01
The Extreme ultraviolet Spectrophotometer (ESP), one of the channels of SDO's Extreme ultraviolet Variability Experiment (EVE), measures solar irradiance in several EUV and soft x-ray (SXR) bands isolated using thin-film filters and a transmission diffraction grating, and includes a quad-diode detector positioned at the grating zeroth-order to observe in a wavelength band from about 0.1 to 7.0 nm. The quad diode signal also includes some contribution from shorter wavelength in the grating's first-order and the ratio of zeroth-order to first-order signal depends on both source geometry, and spectral distribution. For example, radiometric calibration of the ESP zeroth-order at the NIST SURF BL-2 with a near-parallel beam provides a different zeroth-to-first-order ratio than modeled for solar observations. The relative influence of "uncalibrated" first-order irradiance during solar observations is a function of the solar spectral irradiance and the locations of large Active Regions or solar flares. We discuss how the "uncalibrated" first-order "solar" component and the use of variable solar reference spectra affect determination of absolute SXR irradiance which currently may be significantly overestimated during high solar activity.
EUV and Magnetic Activities Associated with Type-I Solar Radio Bursts
NASA Astrophysics Data System (ADS)
Li, C. Y.; Chen, Y.; Wang, B.; Ruan, G. P.; Feng, S. W.; Du, G. H.; Kong, X. L.
2017-06-01
Type-I bursts ( i.e. noise storms) are the earliest-known type of solar radio emission at the meter wavelength. They are believed to be excited by non-thermal energetic electrons accelerated in the corona. The underlying dynamic process and exact emission mechanism still remain unresolved. Here, with a combined analysis of extreme ultraviolet (EUV), radio and photospheric magnetic field data of unprecedented quality recorded during a type-I storm on 30 July 2011, we identify a good correlation between the radio bursts and the co-spatial EUV and magnetic activities. The EUV activities manifest themselves as three major brightening stripes above a region adjacent to a compact sunspot, while the magnetic field there presents multiple moving magnetic features (MMFs) with persistent coalescence or cancelation and a morphologically similar three-part distribution. We find that the type-I intensities are correlated with those of the EUV emissions at various wavelengths with a correlation coefficient of 0.7 - 0.8. In addition, in the region between the brightening EUV stripes and the radio sources there appear consistent dynamic motions with a series of bi-directional flows, suggesting ongoing small-scale reconnection there. Mainly based on the induced connection between the magnetic motion at the photosphere and the EUV and radio activities in the corona, we suggest that the observed type-I noise storms and the EUV brightening activities are the consequence of small-scale magnetic reconnection driven by MMFs. This is in support of the original proposal made by Bentley et al. ( Solar Phys. 193, 227, 2000).
Method of fabricating reflection-mode EUV diffusers
Anderson, Erik; Naulleau, Patrick P.
2005-03-01
Techniques for fabricating well-controlled, random relief, engineered surfaces that serve as substrates for EUV optical devices are accomplished with grayscale exposure. The method of fabricating a multilevel EUV optical element includes: (a) providing a substrate; (b) depositing a layer of curable material on a surface of the substrate; (c) creating a relief profile in a layer of cured material from the layer of curable material wherein the relief profile comprises multiple levels of cured material that has a defined contour; and (d) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. The curable material can comprise photoresist or a low dielectric constant material.
Excitation of multiple surface-plasmon-polariton waves using a compound surface-relief grating
NASA Astrophysics Data System (ADS)
Faryad, Muhammad; Lakhtakia, Akhlesh
2012-01-01
The excitation of multiple surface-plasmon-polariton waves, all of the same frequency but different polarization states, phase speeds, spatial profiles and degrees of localization, by a compound surface-relief grating formed by a metal and a rugate filter, both of finite thickness, was studied using the rigorous coupled-wave approach. Each period of the compound surface-relief grating was chosen to have an integral number of periods of two different simple surface-relief gratings. The excitation of different SPP waves was inferred from the absorptance peaks that were independent of the thickness of the rugate filter. The excitation of each SPP wave could be attributed to either a simple surface-relief grating present in the compound surface-relief grating or to the compound surface-relief grating itself. However, the excitation of SPP waves was found to be less efficient with the compound surface-relief grating than with a simple surface-relief grating.
Anomalous Temporal Behaviour of Broadband Ly Alpha Observations During Solar Flares from SDO/EVE
NASA Technical Reports Server (NTRS)
Milligan, Ryan O.; Chamberlin, Phillip C.
2016-01-01
Although it is the most prominent emission line in the solar spectrum, there has been a notable lack of studies devoted to variations in Lyman-alpha (Ly-alpha) emission during solar flares in recent years. However, the few examples that do exist have shown Ly-alpha emission to be a substantial radiator of the total energy budget of solar flares (of the order of 10 percent). It is also a known driver of fluctuations in the Earth's ionosphere. The EUV (Extreme Ultra-Violet) Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) now provides broadband, photometric Ly-alpha data at 10-second cadence with its Multiple EUV Grating Spectrograph-Photometer (MEGS-P) component, and has observed scores of solar flares in the 5 years since it was launched. However, the MEGS-P time profiles appear to display a rise time of tens of minutes around the time of the flare onset. This is in stark contrast to the rapid, impulsive increase observed in other intrinsically chromospheric features (H-alpha, Ly-beta, LyC, C III, etc.). Furthermore, the emission detected by MEGS-P peaks around the time of the peak of thermal soft X-ray emission and not during the impulsive phase when energy deposition in the chromosphere (often assumed to be in the form of non-thermal electrons) is greatest. The time derivative of Ly-alpha lightcurves also appears to resemble that of the time derivative of soft X-rays, reminiscent of the Neupert effect. Given that spectrally-resolved Ly-alpha observations during flares from SORCE / SOLSTICE (Solar Radiation and Climate Experiment / Solar Stellar Irradiance Comparison Experiment) peak during the impulsive phase as expected, this suggests that the atypical behaviour of MEGS-P data is a manifestation of the broadband nature of the observations. This could imply that other lines andor continuum emission that becomes enhanced during flares could be contributing to the passband. Users are hereby urged to exercise caution when interpreting broadband Ly-alpha observations of solar flares. Comparisons have also been made with other broadband Ly-alpha photometers such as PROBA2 (Project for On-Board Autonomy-2) / LYRA (Lyman Alpha Radiometer) and GOES (Geostationary Operational Environmental Satellite) / EUVE (Extreme Ultraviolet Explorer).
NASA Astrophysics Data System (ADS)
Kuo, Ju-Nan; Chen, Kuan-Yu
2010-11-01
In this paper, we present a single-beam optical tweezer integrated with a planar curved diffraction grating for microbead manipulation. Various curvatures of the surface micromachined planar curved grating are systematically investigated. The planar curved grating was fabricated using multiuser micro-electro-mechanical-system (MEMS) processes (MUMPs). The angular separation and the number of diffracted orders were determined. Experimental results indicate that the diffraction patterns and curvature of the planar curved grating are closely related. As the curvature of the planar curved grating increases, the vertical diffraction angle increases, resulting in the strip patterns of the planar curved grating. A single-beam optical tweezer integrated with a planar curved diffraction grating was developed. We demonstrate a technique for creating multiple optical traps from a single laser beam using the developed planar curved grating. The strip patterns of the planar curved grating that resulted from diffraction were used to trap one row of polystyrene beads.
An extreme ultraviolet spectrometer experiment for the Shuttle Get Away Special Program
NASA Technical Reports Server (NTRS)
Conway, R. R.; Mccoy, R. P.; Meier, R. R.; Mount, G. H.; Prinz, D. K.; Young, J. M.; Carruthers, G. R.
1984-01-01
An extreme ultraviolet (EUV) spectrometer experiment operated successfully during the STS-7 mission in an experiment to measure the global and diurnal variation of the EUV airglow. The spectrometer is an F 3.5 Wadsworth mount with mechanical collimator, a 75 x 75 mm grating, and a bare microchannel plate detector providing a spectral resolution of 7 X FWHM. Read-out of the signal is through discrete channels or resistive anode techniques. The experiment includes a microcomputer, 20 Mbit tape recorder, and a 28V, 40 Ahr silver-zinc battery. It is the first GAS payload to use an opening door. The spectrometer's 0.1 x 4.2 deg field of view is pointed vertically out of the shuttle bay. During the STS-7 flight data were acquired continuously for a period of 5 hours and 37 minutes, providing spectra of the 570 A to 850 A wavelength region of the airglow. Five diurnal cycles of the 584 A emission of neutral helium and the 834 A emission of ionized atomic oxygen were recorded. The experiment also recorded ion events and pressure pulses associated with thruster firings. The experiment is to fly again on Mission 41-F.
High-resolution absolute position detection using a multiple grating
NASA Astrophysics Data System (ADS)
Schilling, Ulrich; Drabarek, Pawel; Kuehnle, Goetz; Tiziani, Hans J.
1996-08-01
To control electro-mechanical engines, high-resolution linear and rotary encoders are needed. Interferometric methods (grating interferometers) promise a resolution of a few nanometers, but have an ambiguity range of some microns. Incremental encoders increase the absolute measurement range by counting the signal periods starting from a defined initial point. In many applications, however, it is not possible to move to this initial point, so that absolute encoders have to be used. Absolute encoders generally have a scale with two or more tracks placed next to each other. Therefore, they use a two-dimensional grating structure to measure a one-dimensional position. We present a new method, which uses a one-dimensional structure to determine the position in one dimension. It is based on a grating with a large grating period up to some millimeters, having the same diffraction efficiency in several predefined diffraction orders (multiple grating). By combining the phase signals of the different diffraction orders, it is possible to establish the position in an absolute range of the grating period with a resolution like incremental grating interferometers. The principal functionality was demonstrated by applying the multiple grating in a heterodyne grating interferometer. The heterodyne frequency was generated by a frequency modulated laser in an unbalanced interferometer. In experimental measurements an absolute range of 8 mm was obtained while achieving a resolution of 10 nm.
Research and design on orthogonal diffraction grating-based 3D nanometer displacement sensor
NASA Astrophysics Data System (ADS)
Liu, Baoshuai; Yuan, Yibao; Yin, Zhehao
2017-10-01
This study concerns an orthogonal diffraction grating-based nanometer displacement sensor. In this study, we performed calculation of displacements in the XYZ directions. In the optical measured path part, we used a two-dimensional orthogonal motion grating and a two-dimensional orthogonal reference grating with the pitch of 0.5um to measure the displacement of XYZ in three directions by detecting ±1st diffraction fringes. The self-collimated structure of the grating greatly extended the Z-axis range. We also simulated the optical path of the sensor with ZEMAX software and verified the feasibility of the scheme. For signal subdivision and processing, we combined large number counting (completed grating line) with small number counting (digital subdivision), realizing high multiples of subdivision of grating interference signals. We used PC to process the interference fringes and greatly improved the processing speed. In the scheme, the theoretical multiples of subdivision could reach 1024 with 10-bit AD conversion, but the actual multiples of subdivision was limited by the quality of the grating interference signals. So we introduced an orthogonal compensation circuit and a filter circuit to improve the signal quality.
Speed Discrimination: Multiple Stimuli Appear Better Than One
NASA Technical Reports Server (NTRS)
Verghese, Preeti; Stone, Leland S.; Null, Cynthia H. (Technical Monitor)
1995-01-01
We reported that for a 21FC task with multiple moving grating patches (Gabors) in each interval, thresholds for speed discrimination decreased with the number of patches, while increasing the area of a single grating produced no such effect. Furthermore, this decrease occurred regardless of the spacing of the patches about a circle of eccentricity 4 degrees, i.e., whether they were maximally separated or almost touching. These results suggest that it is the multiple, discrete grating patches that cause thresholds to decrease, rather than the spatial arrangement. To test this hypothesis, we measured the effect of dividing a large grating into four quadrants, by superimposing a mean-luminance cross on it. The mean speed discrimination thresholds (Weber Fractions) for four observers were 19, 15, and 11 plus or minus 2%, for the single large grating, the grating with cross, and the 4 maximally-separated, small gratings, respectively. Thus, breaking up a single large grating into multiple parts caused thresholds to improve, despite the fact that less of the original patch was visible. To investigate the possible contribution of total bounding contour length, we measured the effect of coalescing three small grating patches into a single banana-shaped patch, while keeping the total contour length constant. These two conditions were compared to a single, circular Gabor patch of equivalent area that had (necessarily) a smaller contour length. Preliminary data from 3 of 4 observers were similar for the small-grating and banana configurations, but increased for the single, large grating, suggesting that contour length might play a role. We are also investigating the role of low-level factors pertinent to the large grating, such as the pooling of signals from motion units at different eccentricities, and the stimulation of extended inhibitory motion surrounds, as well as the possible contribution of topdown influences that segment the stimulus into distinct objects.
Progress in coherent lithography using table-top extreme ultraviolet lasers
NASA Astrophysics Data System (ADS)
Li, Wei
Nanotechnology has drawn a wide variety of attention as interesting phenomena occurs when the dimension of the structures is in the nanometer scale. The particular characteristics of nanoscale structures had enabled new applications in different fields in science and technology. Our capability to fabricate these nanostructures routinely for sure will impact the advancement of nanoscience. Apart from the high volume manufacturing in semiconductor industry, a small-scale but reliable nanofabrication tool can dramatically help the research in the field of nanotechnology. This dissertation describes alternative extreme ultraviolet (EUV) lithography techniques which combine table-top EUV laser and various cost-effective imaging strategies. For each technique, numerical simulations, system design, experiment result and its analysis will be presented. In chapter II, a brief review of the main characteristics of table-top EUV lasers will be addressed concentrating on its high power and large coherence radius that enable the lithography application described herein. The development of a Talbot EUV lithography system which is capable of printing 50nm half pitch nanopatterns will be illustrated in chapter III. A detailed discussion of its resolution limit will be presented followed by the development of X-Y-Z positioning stage, the fabrication protocol for diffractive EUV mask, and the pattern transfer using self- developed ion beam etching, and the dose control unit. In addition, this dissertation demonstrated the capability to fabricate functional periodic nanostructures using Talbot EUV lithography. After that, resolution enhancement techniques like multiple exposure, displacement Talbot EUV lithography, fractional Talbot EUV lithography, and Talbot lithography using 18.9nm amplified spontaneous emission laser will be demonstrated. Chapter IV will describe a hybrid EUV lithography which combines the Talbot imaging and interference lithography rendering a high resolution interference pattern whose lattice is modified by a custom designed Talbot mask. In other words, this method enables filling the arbitrary Talbot cell with ultra-fine interference nanofeatures. Detailed optics modeling, system design and experiment results using He-Ne laser and table top EUV laser are included. The last part of chapter IV will analyze its exclusive advantages over traditional Talbot or interference lithography.
UVSTAR: An imaging spectrograph with telescope for the Shuttle Hitchhiker-M platform
NASA Technical Reports Server (NTRS)
Stalio, Roberto; Sandel, Bill R.; Broadfoot, A. Lyle
1993-01-01
UVSTAR is an EUV spectral imager intended as a facility instrument devoted to solar system and astronomy studies. It covers the wavelength range of 500 to 1250 A, with sufficient spectral resolution to separate emission lines and to form spectrally resolved images of extended plasma sources. Targets include the Io plasma torus at Jupiter, hot stars, planetary nebulae and bright galaxies. UVSTAR consists of a pair of telescopes and concave grating spectrographs that cover the overlapping spectral ranges of 500-900 and 850-1250 A. The telescopes use two 30 cm diameter off-axis paraboloids having focal length of 1.5 m. An image of the target is formed at the entrance slits of the two concave grating spectrographs. The gratings provide dispersion and re-image the slits at the detectors, intensified CCD's. The readout format of the detectors can be chosen by computer, and three slit widths are selectable to adapt the instrument to specific tasks. UVSTAR has internal gimbals which allow rotation of plus or minus 3 deg about each of two axes. Dedicated finding and tracking telescopes will acquire and track the target after rough pointing is achieved by orienting the Orbiter. Responsibilities for implementation and utilization of UVSTAR are shared by groups in Italy and the U.S. UVSTAR is scheduled for flight in early 1995, timed for an opportunity to observe the Jovian system.
Amorphous silicon carbide coatings for extreme ultraviolet optics
NASA Technical Reports Server (NTRS)
Kortright, J. B.; Windt, David L.
1988-01-01
Amorphous silicon carbide films formed by sputtering techniques are shown to have high reflectance in the extreme ultraviolet spectral region. X-ray scattering verifies that the atomic arrangements in these films are amorphous, while Auger electron spectroscopy and Rutherford backscattering spectroscopy show that the films have composition close to stoichiometric SiC, although slightly C-rich, with low impurity levels. Reflectance vs incidence angle measurements from 24 to 1216 A were used to derive optical constants of this material, which are presented here. Additionally, the measured extreme ultraviolet efficiency of a diffraction grating overcoated with sputtered amorphous silicon carbide is presented, demonstrating the feasibility of using these films as coatings for EUV optics.
[Activities of Bay Area Research Corporation
NASA Technical Reports Server (NTRS)
2003-01-01
During the final year of this effort the HALFSHEL code was converted to work on a fast single processor workstation from it s parallel configuration. This was done because NASA Ames NAS facility stopped supporting space science and we no longer had access to parallel computer time. The single processor version of HALFSHEL was upgraded to address low density cells by using a a 3-D SOR solver to solve the equation Delta central dot E = 0. We then upgraded the ionospheric load packages to provide a multiple species load of the ionosphere out to 1.4 Rm. With these new tools we began to perform a series of simulations to address the major topic of this research effort; determining the loss rate of O(sup +) and O2(sup +) from Mars. The simulations used the nominal Parker spiral field and in one case used a field perpendicular to the solar wind flow. The simulations were performed for three different solar EUV fluxes consistent with the different solar evolutionary states believed to exist before today. The 1 EUV case is the nominal flux of today. The 3 EUV flux is called Epoch 2 and has three times the flux of todays. The 6 EUV case is Epoch 3 and has 6 times the EUV flux of today.
A Three-Year Program of Micro- and Nano-System Technology Development for X-Ray Astronomy
NASA Technical Reports Server (NTRS)
Canizares, Claude R.
1997-01-01
For many years the work at MIT aimed at the development of new concepts and technologies for space experiments in high-energy astrophysics, but not explicitly supported by flight programs, has been supported. This work has yielded new devices and techniques for X-ray astronomy, primarily low-noise, deep-depletion charge-coupled devices (CCDS) for spectrally-resolved X-ray imaging, and high-performance transmission gratings for high-resolution X-ray spectroscopy. Among the most significant recent achievements have been the development by G. Ricker and associates of the X-ray CCD camera flying on ASCA, and currently in development for AXAF and Astro-E, and the development by C. Canizares and associates of thick, 200 nm-period transmission gratings employing the phenomenon of phase shifting for high-resolution X-ray spectroscopy up to energies of 8- 1 0 keV that is essential for the operation of the AXAF High Energy Transmission Grating Spectrometer (HETGS). Through the current SR&T grant, the latter technology is now being extended successfully to the fabrication of 100 nm-period transmission gratings, which have twice the dispersion of the AXAF gratings. We note that, among other outcomes, the modest investments of past SR&T Grants at MIT resulted in the development of the key technologies for fully one-half of the scientific instrumentation on AXAF. In addition, NASA flight programs that have benefited from previous SR&T support at MIT include the SAS 3 X-ray Observatory, which carried the first rotation modulation collimator, the Focal Plane Crystal Spectrometer (FPCS) on the Einstein Observatory, the CCD cameras on ASCA and planned for Astro-E, the High Energy Transient Experiment (HETE), the Solar EUV Monitor on the Solar and Heliospheric Observatory (SOHO), the Medium Energy Neutral Atom imager (MENA) on the Image for Magnetopause-to-aurora Global Exploration (IMAGE) mission, and the recently-approved Two Wide-Angle Imaging Neutral-atom Spectrometers (TWINS) Mission of Opportunity.
Mars Thermospheric Temperature Sensitivity to Solar EUV Forcing from the MAVEN EUV Monitor
NASA Astrophysics Data System (ADS)
Thiemann, Ed; Eparvier, Francis; Andersson, Laila; Pilinski, Marcin; Chamberlin, Phillip; Fowler, Christopher; MAVEN Extreme Ultraviolet Monitor Team, MAVEN Langmuir Probe and Waves Team
2017-10-01
Solar extreme ultraviolet (EUV) radiation is the primary heat source for the Mars thermosphere, and the primary source of long-term temperature variability. The Mars obliquity, dust cycle, tides and waves also drive thermospheric temperature variability; and it is important to quantify the role of each in order to understand processes in the upper atmosphere today and, ultimately, the evolution of Mars climate over time. Although EUV radiation is the dominant heating mechanism, accurately measuring the thermospheric temperature sensitivity to EUV forcing has remained elusive, in part, because Mars thermospheric temperature varies dramatically with latitude and local time (LT), ranging from 150K on the nightside to 300K on the dayside. It follows that studies of thermospheric variability must control for location.Instruments onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter have begun to characterize thermospheric temperature sensitivity to EUV forcing. Bougher et al. [2017] used measurements from the Imaging Ultraviolet Spectrograph (IUVS) and the Neutral Gas and Ion Mass Spectrometer (NGIMS) to characterize solar activity trends in the thermosphere with some success. However, aside from restricting measurements to solar zenith angles (SZAs) below 75 degrees, they were unable to control for latitude and LT because repeat-track observations from either instrument were limited or unavailable.The MAVEN EUV Monitor (EUVM) has recently demonstrated the capability to measure thermospheric density from 100 to 200 km with solar occultations of its 17-22 nm channel. These new density measurements are ideal for tracking the long-term thermospheric temperature variability because they are inherently constrained to either 06:00 or 18:00 LT, and the orbit has precessed to include a range of ecliptic latitudes, a number of which have been revisited multiple times over 2.5 years. In this study we present, for the first-time, measurements of thermospheric temperature sensitivity to EUV forcing derived from the EUVM measurements. These results include sensitives measured at the poles and near the equator for both terminators; therefore, we will also discuss the role of latitude on EUV temperature sensitivity.
Transition Region Explosive Events in He II 304Å: Observation and Analysis
NASA Astrophysics Data System (ADS)
Rust, Thomas; Kankelborg, Charles C.
2016-05-01
We present examples of transition region explosive events observed in the He II 304Å spectral line with the Multi Order Solar EUV Spectrograph (MOSES). With small (<5000 km) spatial scale and large non-thermal (100-150 km/s) velocities these events satisfy the observational signatures of transition region explosive events. Derived line profiles show distinct blue and red velocity components with very little broadening of either component. We observe little to no emission from low velocity plasma, making the plasmoid instability reconnection model unlikely as the plasma acceleration mechanism for these events. Rather, the single speed, bi-directional jet characteristics suggested by these data are consistent with acceleration via Petschek reconnection.Observations were made during the first sounding rocket flight of MOSES in 2006. MOSES forms images in 3 orders of a concave diffraction grating. Multilayer coatings largely restrict the passband to the He II 303.8Å and Si XI 303.3Å spectral lines. The angular field of view is about 8.5'x17', or about 20% of the solar disk. These images constitute projections of the volume I(x,y,λ), the intensity as a function of sky plane position and wavelength. Spectral line profiles are recovered via tomographic inversion of these projections. Inversion is carried out using a multiplicative algebraic reconstruction technique.
NASA Astrophysics Data System (ADS)
Xia, Li; Li, Xuhui; Chen, Xiangfei; Xie, Shizhong
2003-11-01
A novel fiber grating structure is proposed for the purpose of dispersion compensation. This kind of grating can be produced with a large chirp parameter and period sampled distribution along the grating length. There are multiple channels in the wide bandwidth and each channel has totally different dispersion and bandwidth. The dispersion compensation effect of this special designed grating is verified through system simulation.
Optical Technologies for UV Remote Sensing Instruments
NASA Technical Reports Server (NTRS)
Keski-Kuha, R. A. M.; Osantowski, J. F.; Leviton, D. B.; Saha, T. T.; Content, D. A.; Boucarut, R. A.; Gum, J. S.; Wright, G. A.; Fleetwood, C. M.; Madison, T. J.
1993-01-01
Over the last decade significant advances in technology have made possible development of instruments with substantially improved efficiency in the UV spectral region. In the area of optical coatings and materials, the importance of recent developments in chemical vapor deposited (CVD) silicon carbide (SiC) mirrors, SiC films, and multilayer coatings in the context of ultraviolet instrumentation design are discussed. For example, the development of chemically vapor deposited (CVD) silicon carbide (SiC) mirrors, with high ultraviolet (UV) reflectance and low scatter surfaces, provides the opportunity to extend higher spectral/spatial resolution capability into the 50-nm region. Optical coatings for normal incidence diffraction gratings are particularly important for the evolution of efficient extreme ultraviolet (EUV) spectrographs. SiC films are important for optimizing the spectrograph performance in the 90 nm spectral region. The performance evaluation of the flight optical components for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument, a spectroscopic instrument to fly aboard the Solar and Heliospheric Observatory (SOHO) mission, designed to study dynamic processes, temperatures, and densities in the plasma of the upper atmosphere of the Sun in the wavelength range from 50 nm to 160 nm, is discussed. The optical components were evaluated for imaging and scatter in the UV. The performance evaluation of SOHO/CDS (Coronal Diagnostic Spectrometer) flight gratings tested for spectral resolution and scatter in the DGEF is reviewed and preliminary results on resolution and scatter testing of Space Telescope Imaging Spectrograph (STIS) technology development diffraction gratings are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández-Perea, Mónica; Soufli, Regina; Robinson, Jeff C.
2012-01-01
We have developed new, corrosion-resistant Mg/SiC multilayer coatings which can be used to efficiently and simultaneously reflect extreme ultraviolet (EUV) radiation in single or multiple narrow bands centered at wavelengths in the spectral region from 25 to 80 nm. Corrosion mitigation is achieved through the use of partially amorphous Al-Mg thin layers. Three different multilayer design concepts were developed and deposited by magnetron sputtering and the reflectance was measured at near-normal incidence in a broad spectral range. Unprotected Mg/SiC multilayers were also deposited and measured for comparison. They were shown to efficiently reflect radiation at a wavelength of 76.9 nmmore » with a peak reflectance of 40.6% at near-normal incidence, the highest experimental reflectance reported at this wavelength for a narrowband coating. The demonstration of multilayer coatings with corrosion resistance and multiplewavelength EUV performance is of great interest in the development of mirrors for space-borne solar physics telescopes and other applications requiring long-lasting coatings with narrowband response in multiple emission lines across the EUV range.« less
NASA Technical Reports Server (NTRS)
Liu, Tsuen-Hsi (Inventor); Psaltis, Demetri (Inventor); Mok, Fai H. (Inventor); Zhou, Gan (Inventor)
2005-01-01
An optical memory for storing and/or reading data on an optical disk. The optical disk incorporates a material in which holographic gratings can be created, and subsequently detected, at plural locations within the disk by an electro-optical head. Creation and detection of holographic gratings with variable diffraction efficiency is possible with the electro-optical head. Multiple holographic gratings can also be created at each one of the plural locations via a beam of light which has a different wavelength or point of focus. These data elements can be read by the electro-optical head using a beam of light sequentially varied in wavelength or point of focus to correspond to the multiple holographic gratings to be recorded.
75 FR 43144 - Certain Steel Grating from the People's Republic of China: Countervailing Duty Order
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... been slit and expanded, and does not involve welding or joining of multiple pieces of steel. The scope... formed, and does not involve welding or joining of multiple pieces of steel. Certain steel grating that...
Well-defined EUV wave associated with a CME-driven shock
NASA Astrophysics Data System (ADS)
Cunha-Silva, R. D.; Selhorst, C. L.; Fernandes, F. C. R.; Oliveira e Silva, A. J.
2018-05-01
Aims: We report on a well-defined EUV wave observed by the Extreme Ultraviolet Imager (EUVI) on board the Solar Terrestrial Relations Observatory (STEREO) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The event was accompanied by a shock wave driven by a halo CME observed by the Large Angle and Spectrometric Coronagraph (LASCO-C2/C3) on board the Solar and Heliospheric Observatory (SOHO), as evidenced by the occurrence of type II bursts in the metric and dekameter-hectometric wavelength ranges. We investigated the kinematics of the EUV wave front and the radio source with the purpose of verifying the association between the EUV wave and the shock wave. Methods: The EUV wave fronts were determined from the SDO/AIA images by means of two appropriate directions (slices). The heights (radial propagation) of the EUV wave observed by STEREO/EUVI and of the radio source associated with the shock wave were compared considering the whole bandwidth of the harmonic lane of the radio emission, whereas the speed of the shock was estimated using the lowest frequencies of the harmonic lane associated with the undisturbed corona, using an appropriate multiple of the Newkirk (1961, ApJ, 133, 983) density model and taking into account the H/F frequency ratio fH/fF = 2. The speed of the radio source associated with the interplanetary shock was determined using the Mann et al. (1999, A&A, 348, 614) density model. Results: The EUV wave fronts determined from the SDO/AIA images revealed the coexistence of two types of EUV waves, a fast one with a speed of 560 km s-1, and a slower one with a speed of 250 km s-1, which corresponds approximately to one-third of the average speed of the radio source ( 680 km s-1). The radio signature of the interplanetary shock revealed an almost constant speed of 930 km s-1, consistent with the linear speed of the halo CME (950 km s-1) and with the values found for the accelerating coronal shock ( 535-823 km s-1), taking into account the gap between the radio emissions.
NASA Astrophysics Data System (ADS)
Allain, J. P.; Nieto, M.; Hendricks, M.; Harilal, S. S.; Hassanein, A.
2007-05-01
Exposure of collector mirrors facing the hot, dense pinch plasma in plasma-based EUV light sources to debris (fast ions, neutrals, off-band radiation, droplets) remains one of the highest critical issues of source component lifetime and commercial feasibility of nanolithography at 13.5-nm. Typical radiators used at 13.5-nm include Xe and Sn. Fast particles emerging from the pinch region of the lamp are known to induce serious damage to nearby collector mirrors. Candidate collector configurations include either multi-layer mirrors (MLM) or single-layer mirrors (SLM) used at grazing incidence. Studies at Argonne have focused on understanding the underlying mechanisms that hinder collector mirror performance at 13.5-nm under fast Sn or Xe exposure. This is possible by a new state-of-the-art in-situ EUV reflectometry system that measures real time relative EUV reflectivity (15-degree incidence and 13.5-nm) variation during fast particle exposure. Intense EUV light and off-band radiation is also known to contribute to mirror damage. For example offband radiation can couple to the mirror and induce heating affecting the mirror's surface properties. In addition, intense EUV light can partially photo-ionize background gas (e.g., Ar or He) used for mitigation in the source device. This can lead to local weakly ionized plasma creating a sheath and accelerating charged gas particles to the mirror surface and inducing sputtering. In this paper we study several aspects of debris and radiation-induced damage to candidate EUVL source collector optics materials. The first study concerns the use of IMD simulations to study the effect of surface roughness on EUV reflectivity. The second studies the effect of fast particles on MLM reflectivity at 13.5-nm. And lastly the third studies the effect of multiple energetic sources with thermal Sn on 13.5-nm reflectivity. These studies focus on conditions that simulate the EUVL source environment in a controlled way.
Error Measurements in an Acousto-Optic Tunable Filter Fiber Bragg Grating Sensor System
1994-05-01
for an ideal AOTF, at 833 and 838 nm using a TeO2 crystal ............................ 33 Figure 3.12. Frequency characteristics of Equation (3.43...multiple channels in an AOTF requires the presence of multiple RF frequencies to establish the complex grating. Since the crystal used in the AOTF ( TeO2 ) is...in germano- silicate glass . This index modulation, Bragg grating, acts as an optical band rejection filter for those wavelengths that meet the Bragg
NASA Astrophysics Data System (ADS)
Pollentier, I.; Tirumala Venkata, A.; Gronheid, R.
2014-04-01
EUV photoresists are considered as a potential source of optics contamination, since they introduce irradiation-induced outgassing in the EUV vacuum environment. Therefore, before these resists can be used on e.g. ASML NXE:3100 or NXE:3300, they need to be tested in dedicated equipment according to a well-defined procedure, which is based on exposing a witness sample (WS) in the vicinity of a simultaneously exposed resist as it outgasses. Different system infrastructures are used at multiple sites (e.g. NIST, CNSE, Sematech, EIDEC, and imec) and were calibrated to each other by a detailed test plan. Despite this detailed tool qualifications, a first round robin comparison of identical materials showed inconsistent outgas test results, and required further investigation by a second round robin. Since the resist exposure mode is different at the various locations (some sites are using EUV photons while others use E-gun electrons), this difference has always a point of concern for variability of test results. In this work we compare the outgas test results from EUV photon and electron exposure using the resist materials of the second round robin. Since the imec outgas tester allows both exposure methods on the resist, a within-system comparison is possible and showed limited variation between photon and electron exposure mode. Therefore the system-to-system variability amongst the different outgas test sites is expected to be related to other parameters than the electron/photon exposure mode. Initial work showed that the variability might be related to temperature, E-gun emission excursion, and/or residual outgassing scaled by different wafer areas at the different sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Ding, M. D.; Chen, P. F., E-mail: guoyang@nju.edu.cn
2015-08-15
Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUVmore » propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.« less
Challenges of anamorphic high-NA lithography and mask making
NASA Astrophysics Data System (ADS)
Hsu, Stephen D.; Liu, Jingjing
2017-06-01
Chip makers are actively working on the adoption of 0.33 numerical aperture (NA) EUV scanners for the 7-nm and 5-nm nodes (B. Turko, S. L. Carson, A. Lio, T. Liang, M. Phillips, et al., in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 977602 (2016) doi: 10.1117/12.2225014; A. Lio, in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97760V (2016) doi: 10.1117/12.2225017). In the meantime, leading foundries and integrated device manufacturers are starting to investigate patterning options beyond the 5-nm node (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022). To minimize the cost and process complexity of multiple patterning beyond the 5-nm node, EUV high-NA single-exposure patterning is a preferred method over EUV double patterning (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022; J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., `Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97761I (2016) doi: 10.1117/12.2220150). The EUV high-NA scanner equipped with a projection lens of 0.55 NA is designed to support resolutions below 10 nm. The high-NA system is beneficial for enhancing resolution, minimizing mask proximity correction bias, improving normalized image log slope (NILS), and controlling CD uniformity (CDU). However, increasing NA from 0.33 to 0.55 reduces the depth of focus (DOF) significantly. Therefore, the source mask optimization (SMO) with sub-resolution assist features (SRAFs) are needed to increase DOF to meet the demanding full chip process control requirements (S. Hsu, R. Howell, J. Jia, H.-Y. Liu, K. Gronlund, et al., EUV `Proc. SPIE9048, Extreme Ultraviolet (EUV) Lithography VI', (2015) doi: 10.1117/12.2086074). To ensure no assist feature printing, the assist feature sizes need to be scaled with λ/NA. The extremely small SRAF width (below 25 nm on the reticle) is difficult to fabricate across the full reticle. In this paper, we introduce an innovative `attenuated SRAF' to improve SRAF manufacturability and still maintain the process window benefit. A new mask fabrication process is proposed to use existing mask-making capability to manufacture the attenuated SRAFs. The high-NA EUV system utilizes anamorphic reduction; 4× in the horizontal (slit) direction and 8× in the vertical (scanning) direction (J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., `Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97761I (2016) doi: 10.1117/12.2220150; B. Kneer, S. Migura, W. Kaiser, J. T. Neumann, J. van Schoot, in `Proc. SPIE9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94221G (2015) doi: 10.1117/12.2175488). For an anamorphic system, the magnification has an angular dependency, and thus, familiar mask specifications such as mask error factor (MEF) need to be redefined. Similarly, mask-manufacturing rule check (MRC) needs to consider feature orientation.
Chen, Juan; Yu, Qing; Zhu, Ziyun; Peng, Yujia; Fang, Fang
2016-01-01
In natural scenes, multiple objects are usually presented simultaneously. How do specific areas of the brain respond to multiple objects based on their responses to each individual object? Previous functional magnetic resonance imaging (fMRI) studies have shown that the activity induced by a multiobject stimulus in the primary visual cortex (V1) can be predicted by the linear or nonlinear sum of the activities induced by its component objects. However, there has been little evidence from electroencephelogram (EEG) studies so far. Here we explored how V1 responded to multiple objects by comparing the EEG signals evoked by a three-grating stimulus with those evoked by its two components (the central grating and 2 flanking gratings). We focused on the earliest visual component C1 (onset latency of ∼50 ms) because it has been shown to reflect the feedforward responses of neurons in V1. We found that when the stimulus was unattended, the amplitude of the C1 evoked by the three-grating stimulus roughly equaled the sum of the amplitudes of the C1s evoked by its two components, regardless of the distances between these gratings. When the stimulus was attended, this linear spatial summation existed only when the three gratings were far apart from each other. When the three gratings were close to each other, the spatial summation became compressed. These results suggest that the earliest visual responses in V1 follow a linear summation rule when attention is not involved and that attention can affect the earliest interactions between multiple objects. Copyright © 2016 the American Physiological Society.
Earth-orbiting extreme ultraviolet spectroscopic mission: SPRINT-A/EXCEED
NASA Astrophysics Data System (ADS)
Yoshikawa, I.; Tsuchiya, F.; Yamazaki, A.; Yoshioka, K.; Uemizu, K.; Murakami, G.; Kimura, T.; Kagitani, M.; Terada, N.; Kasaba, Y.; Sakanoi, T.; Ishii, H.; Uji, K.
2012-09-01
The EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) mission is an Earth-orbiting extreme ultraviolet (EUV) spectroscopic mission and the first in the SPRINT series being developed by ISAS/JAXA. It will be launched in the summer of 2013. EUV spectroscopy is suitable for observing tenuous gases and plasmas around planets in the solar system (e.g., Mercury, Venus, Mars, Jupiter, and Saturn). Advantage of remote sensing observation is to take a direct picture of the plasma dynamics and distinguish between spatial and temporal variability explicitly. One of the primary observation targets is an inner magnetosphere of Jupiter, whose plasma dynamics is dominated by planetary rotation. Previous observations have shown a few percents of the hot electron population in the inner magnetosphere whose temperature is 100 times higher than the background thermal electrons. Though the hot electrons have a significant impact on the energy balance in the inner magnetosphere, their generation process has not yet been elucidated. In the EUV range, a number of emission lines originate from plasmas distributed in Jupiter's inner magnetosphere. The EXCEED spectrograph is designed to have a wavelength range of 55-145 nm with minimum spectral resolution of 0.4 nm, enabling the electron temperature and ion composition in the inner magnetosphere to be determined. Another primary objective is to investigate an unresolved problem concerning the escape of the atmosphere to space. Although there have been some in-situ observations by orbiters, our knowledge is still limited. The EXCEED mission plans to make imaging observations of plasmas around Venus and Mars to determine the amounts of escaping atmosphere. The instrument's field of view (FOV) is so wide that we can get an image from the interaction region between the solar wind and planetary plasmas down to the tail region at one time. This will provide us with information about outward-flowing plasmas, e.g., their composition, rate, and dependence on solar activity. EXCEED has two mission instruments: the EUV spectrograph and a target guide camera that is sensitive to visible light. The EUV spectrograph is designed to have a wavelength range of 55-145 nm with a spectral resolution of 0.4-1.0 nm. The spectrograph slits have a FOV of 400 x 140 arcseconds (maximum). The optics of the instrument consists of a primary mirror with a diameter of 20cm, a laminar type grating, and a 5-stage micro-channel plate assembly with a resistive anode encoder. To achieve high efficiencies, the surfaces of the primary mirror and the grating are coated with CVD-SiC. Because of the large primary mirror and high efficiencies, good temporal resolution and complete spatial coverage for Io plasma torus observation is expected. Based on a feasibility study using the spectral diagnosis method, it is shown that EXCEED can determine the Io plasma torus parameters, such as the electron density, temperatures, hot electron fraction and so on, using an exposure time of 50 minutes. The target guide camera will be used to capture the target and guide the observation area of interest to the slit. Emissions from outside the slit's FOV will be reflected by the front of the slit and guided to the target guide camera. The guide camera's FOV is 240" x 240". The camera will take an image every 3 seconds and the image is sent to a mission data processor (MDP), which calculates the centroid of the image. During an observation, the bus system controls the attitude to keep the centroid position of the target in the guide camera with an accuracy of ±5 arc-seconds. With the help of the target guide camera, we will take spectral images with a long exposure time of 50 minutes and good spatial resolution of 20 arc-seconds.
Polymer waveguide grating sensor integrated with a thin-film photodetector
Song, Fuchuan; Xiao, Jing; Xie, Antonio Jou; Seo, Sang-Woo
2014-01-01
This paper presents a planar waveguide grating sensor integrated with a photodetector (PD) for on-chip optical sensing systems which are suitable for diagnostics in the field and in-situ measurements. III–V semiconductor-based thin-film PD is integrated with a polymer based waveguide grating device on a silicon platform. The fabricated optical sensor successfully discriminates optical spectral characteristics of the polymer waveguide grating from the on-chip PD. In addition, its potential use as a refractive index sensor is demonstrated. Based on a planar waveguide structure, the demonstrated sensor chip may incorporate multiple grating waveguide sensing regions with their own optical detection PDs. In addition, the demonstrated processing is based on a post-integration process which is compatible with silicon complementary metal-oxide semiconductor (CMOS) electronics. Potentially, this leads a compact, chip-scale optical sensing system which can monitor multiple physical parameters simultaneously without need for external signal processing. PMID:24466407
Yaqoob, Zahid; Arain, Muzammil A; Riza, Nabeel A
2003-09-10
A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.
Exploring EUV and SAQP pattering schemes at 5nm technology node
NASA Astrophysics Data System (ADS)
Hamed Fatehy, Ahmed; Kotb, Rehab; Lafferty, Neal; Jiang, Fan; Word, James
2018-03-01
For years, Moore's law keeps driving the semiconductors industry towards smaller dimensions and higher density chips with more devices. Earlier, the correlation between exposure source's wave length and the smallest resolvable dimension, mandated the usage of Deep Ultra-Violent (DUV) optical lithography system which has been used for decades to sustain Moore's law, especially when immersion lithography was introduced with 193nm ArF laser sources. As dimensions of devices get smaller beyond Deep Ultra-Violent (DUV) optical resolution limits, the need for Extremely Ultra-Violent (EUV) optical lithography systems was a must. However, EUV systems were still under development at that time for the mass-production in semiconductors industry. Theretofore, Multi-Patterning (MP) technologies was introduced to swirl about DUV optical lithography limitations in advanced nodes beyond minimum dimension (CD) of 20nm. MP can be classified into two main categories; the first one is to split the target itself across multiple masks that give the original target patterns when they are printed. This category includes Double, Triple and Quadruple patterning (DP, TP, and QP). The second category is the Self-Aligned Patterning (SAP) where the target is divided into Mandrel patterns and non-Mandrel patterns. The Mandrel patterns get printed first, then a self-aligned sidewalls are grown around these printed patterns drawing the other non-Mandrel targets, afterword, a cut mask(s) is used to define target's line-ends. This approach contains Self-Aligned-Double Pattering (SADP) and Self-Aligned- Quadruple-Pattering (SAQP). DUV and MP along together paved the way for the industry down to 7nm. However, with the start of development at the 5nm node and the readiness of EUV, the differentiation question is aroused again, which pattering approach should be selected, direct printing using EUV or DUV with MP, or a hybrid flow that contains both DUV-MP and EUV. In this work we are comparing two potential pattering techniques for Back End Of Line (BEOL) metal layers in the 5nm technology node, the first technique is Single Exposure EUV (SE-EUV) with a Direct Patterning EUV lithography process, and the second one is Self-Aligned Quadruple Patterning (SAQP) with a hybrid lithography processes, where the drawn metal target layer is decomposed into a Mandrel mask and Blocks/Cut mask, Mandrel mask is printed using DUV 193i lithography process, while Block/Cut Mask is printed using SE-EUV lithography process. The pros and cons of each technique are quantified based on Edge-Placement-Error (EPE) and Process Variation Band (PVBand) measured at 1D and 2D edges. The layout used in this comparison is a candidate layout for Foundries 5nm process node.
Prospects for the design of an ultraviolet imaging Fourier transform spectrometer
NASA Astrophysics Data System (ADS)
Lemaire, Philippe
2017-11-01
Recent results from solar observations in the far and extremeultraviolet (FUV/EUV) obtained from SOHO (SOlar and Heliospheric Observatory) and TRACE (Transition Region Camera) show the extreme variability of the solar atmosphere. Within the limited resolution of the instruments (1-2 arcseconds) horizontal and vertical velocities up-to 100 to 400 km s-1 have been measured. With an horizontal velocity of 100 km s-1 an one arsecond structure crosses the one arcsecond slit width of a classical slit spectrometer in less than 10 seconds. In the future, with higher angular resolution (e.g. 0.1 arcsecond), the capability to study small structures will be greatly reduced by a classical slit spectrometer. To be able to characterize the small scale solar atmospheric structures formed in the 104 K to 106 K temperature range (which emit in the 30 to 180 nm wavelength range) a spectrometer without slit (or with wide slit) is required. At the same time to obtain an accurate measurement of the doppler velocity an high spectral resolution is needed. The two requirements, high spectral resolution and large slit, are difficult to be simultaneously fulfilled with a classical slit spectrometer within the limited volume of a space instrumentation. Also, we propose to use an Imaging Fourier Transform Spectrometer (IFTS) to provide simultaneously a bidimensionnal field and an accurate determination of line profiles and positions. The development of Fourier Transform Spectrometers (FTS), although popular in the infrared, has been very limited in the UV/FUV by the lack of very high quality beam splitter. Since 10 years, the use of diffraction gratings as beam splitters has been suggested and few intruments have been built ([Chak 94]; [Clea 92]; [File 00]). These instruments illustrate some applications in the new wavelength domain opened by using a beam splitter grating, but do not yet provide the full capabilities of an FTS. In this paper we present several optical schemes which can provide the full capabilities of a complete IFTS in the FUV/EUV spectral range.
Hammond, T J; Mills, Arthur K; Jones, David J
2011-12-05
We investigate the photon flux and far-field spatial profiles for near-threshold harmonics produced with a 66 MHz femtosecond enhancement cavity-based EUV source operating in the tight-focus regime. The effects of multiple quantum pathways in the far-field spatial profile and harmonic yield show a strong dependence on gas jet dynamics, particularly nozzle diameter and position. This simple system, consisting of only a 700 mW Ti:Sapphire oscillator and an enhancement cavity produces harmonics up to 20 eV with an estimated 30-100 μW of power (intracavity) and > 1μW (measured) of power spectrally-resolved and out-coupled from the cavity. While this power is already suitable for applications, a quantum mechanical model of the system indicates substantial improvements should be possible with technical upgrades.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
...: (202) 482-3936. SUPPLEMENTARY INFORMATION: Case History The period of investigation (``POI'') is... slit and expanded, and does not involve welding or joining of multiple pieces of steel. The scope of... cold formed, and does not involve welding or joining of multiple pieces of steel. Certain steel grating...
NASA Technical Reports Server (NTRS)
Grant, J.; Kaul, R.; Taylor, S.; Myer, G.; Jackson, K.; Osei, A.; Sharma, A.
2003-01-01
Multiple Fiber Bragg-gratings are embedded in carbon-epoxy laminates as well as in composite wound pressure vessel. Structural properties of such composites are investigated. The measurements include stress-strain relation in laminates and Poisson's ratio in several specimens with varying orientation of the optical fiber Bragg-sensor with respect to the carbon fiber in an epoxy matrix. Additionally, fiber Bragg gratings are bonded on the surface of these laminates and cylinders fabricated out of carbon-epoxy composites and multiple points are monitored and compared for strain measurements at several locations.
SWAP OBSERVATIONS OF THE LONG-TERM, LARGE-SCALE EVOLUTION OF THE EXTREME-ULTRAVIOLET SOLAR CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaton, Daniel B.; De Groof, Anik; Berghmans, David
The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since 2010 February. With a field of view of 54 × 54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images, it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was tomore » remove instrumental stray light from the images by determining and deconvolving SWAP's point-spread function from the observations. In this paper, we use the resulting images to conduct the first-ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic fields that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.« less
Overcoming etch challenges related to EUV based patterning (Conference Presentation)
NASA Astrophysics Data System (ADS)
Metz, Andrew W.; Cottle, Hongyun; Honda, Masanobu; Morikita, Shinya; Kumar, Kaushik A.; Biolsi, Peter
2017-04-01
Research and development activities related to Extreme Ultra Violet [EUV] defined patterning continue to grow for < 40 nm pitch applications. The confluence of high cost and extreme process control challenges of Self-Aligned Quad Patterning [SAQP] with continued momentum for EUV ecosystem readiness could provide cost advantages in addition to improved intra-level overlay performance relative to multiple patterning approaches. However, Line Edge Roughness [LER] and Line Width Roughness [LWR] performance of EUV defined resist images are still far from meeting technology needs or ITRS spec performance. Furthermore, extreme resist height scaling to mitigate flop over exacerbates the plasma etch trade-offs related to traditional approaches of PR smoothing, descum implementation and maintaining 2D aspect ratios of short lines or elliptical contacts concurrent with ultra-high photo resist [PR] selectivity. In this paper we will discuss sources of LER/LWR, impact of material choice, integration, and innovative plasma process techniques and describe how TELTM VigusTM CCP Etchers can enhance PR selectivity, reduce LER/LWR, and maintain 2D aspect ratio of incoming patterns. Beyond traditional process approaches this paper will show the utility of: [1] DC Superposition in enhancing EUV resist hardening and selectivity, increasing resistance to stress induced PR line wiggle caused by CFx passivation, and mitigating organic planarizer wiggle; [2] Quasi Atomic Layer Etch [Q-ALE] for ARC open eliminating the tradeoffs between selectivity, CD, and shrink ratio control; and [3] ALD+Etch FUSION technology for feature independent CD shrink and LER reduction. Applicability of these concepts back transferred to 193i based lithography is also confirmed.
The Joint Astrophysical Plasmadynamic Experiment (J-PEX): a high-resolution rocket spectrometer
NASA Astrophysics Data System (ADS)
Barstow, Martin A.; Bannister, Nigel P.; Cruddace, Raymond G.; Kowalski, Michael P.; Wood, Kent S.; Yentis, Daryl J.; Gursky, Herbert; Barbee, Troy W., Jr.; Goldstein, William H.; Kordas, Joseph F.; Fritz, Gilbert G.; Culhane, J. Leonard; Lapington, Jonathan S.
2003-02-01
We report on the successful sounding rocket flight of the high resolution (R=3000-4000) J-PEX EUV spectrometer. J-PEX is a novel normal incidence instrument, which combines the focusing and dispersive elements of the spectrometer into a single optical element, a multilayer-coated grating. The high spectral resolution achieved has had to be matched by unprecedented high spatial resolution in the imaging microchannel plate detector used to record the data. We illustrate the performance of the complete instrument through an analysis of the 220-245Å spectrum of the white dwarf G191-B2B obtained with a 300 second exposure. The high resolution allows us to detect a low-density ionized helium component along the line of sight to the star and individual absorption lines from heavier elements in the photosphere.
Prospective EUV observations of hot DA white dwarfs with the EUV Explorer
NASA Technical Reports Server (NTRS)
Finley, David S.; Malina, Roger F.; Bowyer, Stuart
1987-01-01
The Extreme Ultraviolet Explorer (EUVE) will perform a high sensitivity EUV all-sky survey. A major category of sources which will be detected with the EUVE instruments consists of hot white dwarfs. Detailed preliminary studies of synthetic EUV observations of white dwarfs have been carried out using the predicted EUVE instrumental response functions. Using available information regarding space densities of white dwarfs and the distribution of neutral hydrogen in the interstellar medium, the numbers of DA white dwarfs which will be detectable in the different EUV bandpasses have been estimated.
Effect of SPM-based cleaning POR on EUV mask performance
NASA Astrophysics Data System (ADS)
Choi, Jaehyuck; Lee, Han-shin; Yoon, Jinsang; Shimomura, Takeya; Friz, Alex; Montgomery, Cecilia; Ma, Andy; Goodwin, Frank; Kang, Daehyuk; Chung, Paul; Shin, Inkyun; Cho, H.
2011-11-01
EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. The fact that a pellicle is not used to protect the mask surface in EUV lithography suggests that EUV masks may have to undergo more cleaning cycles during their lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality and patterning performance during 30 cycles of Samsung's EUV mask SPM-based cleaning and 20 cycles of SEMATECH ADT exposure. We have observed that the quality and patterning performance of EUV masks does not significantly change during these processes except mask pattern CD change. To resolve this issue, we have developed an acid-free cleaning POR and substantially improved EUV mask film loss compared to the SPM-based cleaning POR.
NASA Astrophysics Data System (ADS)
Choi, Jaehyuck; Kim, Jinsu; Lowe, Jeff; Dattilo, Davide; Koh, Soowan; Choi, Jun Yeol; Dietze, Uwe; Shoki, Tsutomu; Kim, Byung Gook; Jeon, Chan-Uk
2015-10-01
EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. SPM (Sulfuric acid peroxide mixture) which has been extensively used for acid cleaning of photomask and wafer has serious drawback for EUV mask cleaning. It shows severe film loss of tantalum-based absorber layers and limited removal efficiency of EUV-generated carbon contaminants on EUV mask surface. Here, we introduce such novel cleaning chemicals developed for EUV mask as almost film loss free for various layers of the mask and superior carbon removal performance. Combinatorial chemical screening methods allowed us to screen several hundred combinations of various chemistries and additives under several different process conditions of temperature and time, eventually leading to development of the best chemistry selections for EUV mask cleaning. Recently, there have been many activities for the development of EUV pellicle, driven by ASML and core EUV scanner customer companies. It is still important to obtain film-loss free cleaning chemicals because cleaning cycle of EUV mask should be much faster than that of optic mask mainly due to EUV pellicle lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality changes and film losses during 50 cleaning cycles using new chemicals as well as particle and carbon contaminant removal characteristics. We have observed that the performance of new chemicals developed is superior to current SPM or relevant cleaning chemicals for EUV mask cleaning and EUV mask lifetime elongation.
Considerations for fine hole patterning for the 7nm node
NASA Astrophysics Data System (ADS)
Yaegashi, Hidetami; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Koike, Kyohei
2016-03-01
One of the practical candidates to produce 7nm node logic devices is to use the multiple patterning with 193-immersion exposure. For the multiple patterning, it is important to evaluate the relation between the number of mask layer and the minimum pitch systematically to judge the device manufacturability. Although the number of the time of patterning, namely LE(Litho-Etch) ^ x-time, and overlay steps have to be reduced, there are some challenges in miniaturization of hole size below 20nm. Various process fluctuations on contact hole have a direct impact on device performance. According to the technical trend, 12nm diameter hole on 30nm-pitch hole will be needed on 7nm node. Extreme ultraviolet lithography (EUV) and Directed self-assembly (DSA) are attracting considerable attention to obtain small feature size pattern, however, 193-immersion still has the potential to extend optical lithography cost-effectively for sub-7nm node. The objective of this work is to study the process variation challenges and resolution in post-processing for the CD-bias control to meet sub-20nm diameter contact hole. Another pattern modulation is also demonstrated during post-processing step for hole shrink. With the realization that pattern fidelity and pattern placement management will limit scaling long before devices and interconnects fail to perform intrinsically, the talk will also outline how circle edge roughness (CER) and Local-CD uniformity can correct efficiency. On the other hand, 1D Gridded-Design-Rules layout (1D layout) has simple rectangular shapes. Also, we have demonstrated CD-bias modification on short trench pattern to cut grating line for its fabrication.
Diffraction encoded position measuring apparatus
Tansey, Richard J.
1991-01-01
When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection.
Diffraction encoded position measuring apparatus
Tansey, R.J.
1991-09-24
When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection. 3 figures.
EUV lithography: NXE platform performance overview
NASA Astrophysics Data System (ADS)
Peeters, Rudy; Lok, Sjoerd; Mallman, Joerg; van Noordenburg, Martijn; Harned, Noreen; Kuerz, Peter; Lowisch, Martin; van Setten, Eelco; Schiffelers, Guido; Pirati, Alberto; Stoeldraijer, Judon; Brandt, David; Farrar, Nigel; Fomenkov, Igor; Boom, Herman; Meiling, Hans; Kool, Ron
2014-04-01
The first NXE3300B systems have been qualified and shipped to customers. The NXE:3300B is ASML's third generation EUV system and has an NA of 0.33. It succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. Good overlay and imaging performance has been shown on the NXE:3300B system in line with 22nm device requirements. Full wafer CDU performance of <1.5nm for 22nm dense and iso lines at a dose of ~16mJ/cm2 has been achieved. Matched machine overlay (NXE to immersion) of around 3.5nm has been demonstrated on multiple systems. Dense lines have been exposed down to 13nm half pitch, and contact holes down to 17nm half pitch. 10nm node Metal-1 layers have been exposed with a DOF of 120nm, and using single spacer assisted double patterning flow a resolution of 9nm has been achieved. Source power is the major challenge to overcome in order to achieve cost-effectiveness in EUV and enable introduction into High Volume Manufacturing. With the development of the MOPA+prepulse operation of the source, steps in power have been made, and with automated control the sources have been prepared to be used in a preproduction fab environment. Flexible pupil formation is under development for the NXE:3300B which will extend the usage of the system in HVM, and the resolution for the full system performance can be extended to 16nm. Further improvements in defectivity performance have been made, while in parallel full-scale pellicles are being developed. In this paper we will discuss the current NXE:3300B performance, its future enhancements and the recent progress in EUV source performance.
Imaging performance and challenges of 10nm and 7nm logic nodes with 0.33 NA EUV
NASA Astrophysics Data System (ADS)
van Setten, Eelco; Schiffelers, Guido; Psara, Eleni; Oorschot, Dorothe; Davydova, Natalia; Finders, Jo; Depre, Laurent; Farys, Vincent
2014-10-01
The NXE:3300B is ASML's third generation EUV system and has an NA of 0.33 and is positioned at a resolution of 22nm, which can be extended down to 18nm and below with off-axis illumination at full transmission. Multiple systems have been qualified and installed at customers. The NXE:3300B succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. It is expected that EUV will be adopted first for critical Logic layers at 10nm and 7nm nodes, such as Metal-1, to avoid the complexity of triple patterning schemes using ArF immersion. In this paper we will evaluate the imaging performance of (sub-)10nm node Logic M1 on the NXE:3300B EUV scanner. We will show the line-end performance of tip-to-tip and tip-to-space test features for various pitches and illumination settings and the performance enhancement obtained by means of a 1st round of OPC. We will also show the magnitude of local variations. The Logic M1 cell is evaluated at various critical features to identify hot spots. A 2nd round OPC model was calibrated of which we will show the model accuracy and ability to predict hot spots in the Logic M1 cell. The calibrated OPC model is used to predict the expected performance at 7nm node Logic using off-axis illumination at 16nm minimum half pitch. Initial results of L/S exposed on the NXE:3300B at 7nm node resolutions will be shown. An outlook is given to future 0.33 NA systems on the ASML roadmap with enhanced illuminator capabilities to further improve performance and process window.
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Brown, Alexander; Linsky, Jeffrey L.; Kellett, Barry J.; Bromage, Gordon E.; Hodgkin, Simon T.; Pye, John P.
1994-01-01
We report the results of a volume-limited ROSAT Wide Field Camera (WFC) survey of all nondegenerate stars within 10 pc. Of the 220 known star systems within 10 pc, we find that 41 are positive detections in at least one of the two WFC filter bandpasses (S1 and S2), while we consider another 14 to be marginal detections. We compute X-ray luminosities for the WFC detections using Einstein Imaging Proportional Counter (IPC) data, and these IPC luminosities are discussed along with the WFC luminosities throughout the paper for purposes of comparison. Extreme ultraviolet (EUV) luminosity functions are computed for single stars of different spectral types using both S1 and S2 luminosities, and these luminosity functions are compared with X-ray luminosity functions derived by previous authors using IPC data. We also analyze the S1 and S2 luminosity functions of the binary stars within 10 pc. We find that most stars in binary systems do not emit EUV radiation at levels different from those of single stars, but there may be a few EUV-luminous multiple-star systems which emit excess EUV radiation due to some effect of binarity. In general, the ratio of X-ray luminosity to EUV luminosity increases with increasing coronal emission, suggesting that coronally active stars have higher coronal temperatures. We find that our S1, S2, and IPC luminosities are well correlated with rotational velocity, and we compare activity-rotation relations determined using these different luminosities. Late M stars are found to be significantly less luminous in the EUV than other late-type stars. The most natural explanation for this results is the concept of coronal saturation -- the idea that late-type stars can emit only a limited fraction of their total luminosity in X-ray and EUV radiation, which means stars with very low bolometric luminosities must have relatively low X-ray and EUV luminosities as well. The maximum level of coronal emission from stars with earlier spectral types is studied also. To understand the saturation levels for these stars, we have compiled a large number of IPC luminosities for stars with a wide variety of spectral types and luminosity classes. We show quantitatively that if the Sun were completely covered with X-ray-emitting coronal loops, it would be near the saturation limit implied by this compilation, supporting the idea that stars near upper limits in coronal activity are completely covered with active regions.
Responses of Solar Irradiance and the Ionosphere to an Intense Activity Region
NASA Astrophysics Data System (ADS)
Chen, Yiding; Liu, Libo; Le, Huijun; Wan, Weixing
2018-03-01
Solar rotation (SR) variation dominates solar extremely ultraviolet (EUV) changes on the timescale of days. The F10.7 index is usually used as an indicator for solar EUV. The SR variation of F10.7 significantly enhanced during the 2008th-2009th Carrington rotations (CRs) owing to an intense active region; F10.7 increased about 180 units during that SR period. That was the most prominent SR variation of F10.7 during solar cycle 23. In this paper, global electron content (GEC) is used to investigate ionospheric response to that strong variation of solar irradiance indicated by F10.7. The variation of GEC with F10.7 was anomalous (GEC-F10.7 slope significantly decreased) during the 2008th-2009th CRs; however, GEC versus EUV variation during that period was consistent with that during adjacent time intervals when using Solar Heliospheric Observatory/Solar EUV Monitor 26-34 nm EUV measurements. The reason is that F10.7 response to that intense active region was much stronger than EUV response; thus, the EUV-F10.7 slope decreased. We confirmed decreased EUV-F10.7 slope during the 2008th-2009th CRs for different wavelengths within 27-120 nm using Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Solar EUV Experiment high spectral resolution EUV measurements. And on the basis of Solar Heliospheric Observatory/Solar EUV Monitor EUV measurements during solar cycle 23, we further presented that EUV-F10.7 slope statistically tends to decrease when the SR variation of F10.7 significantly enhances. Moreover, we found that ionospheric time lag effect to EUV is exaggerated when using F10.7, owing to the time lag effect of EUV to F10.7.
Bragg gratings: Optical microchip sensors
NASA Astrophysics Data System (ADS)
Watts, Sam
2010-07-01
A direct UV writing technique that can create multiple Bragg gratings and waveguides in a planar silica-on-silicon chip is enabling sensing applications ranging from individual disposable sensors for biotechnology through to multiplexed sensor networks in pharmaceutical manufacturing.
NASA Astrophysics Data System (ADS)
Mamezaki, Daiki; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo
2017-07-01
In extreme ultraviolet (EUV) lithography, development of review tools for EUV mask pattern and phase defect at working wavelength of 13.5 nm is required. The EUV mask is composed of an absorber pattern (50 - 70 nm thick) and Mo/Si multilayer (280 nm thick) on a glass substrate. This mask pattern seems three-dimensional (3D) structure. This 3D structure would modulate EUV reflection phase, which would cause focus and pattern shifts. Thus, EUV phase imaging is important to evaluate this phase modulation. We have developed coherent EUV scatterometry microscope (CSM), which is a simple microscope without objective optics. EUV phase and intensity image are reconstructed with diffraction images by ptychography with coherent EUV illumination. The high-harmonic-generation (HHG) EUV source was employed for standalone CSM system. In this study, we updated HHG system of pump-laser reduction and gas-pressure control. Two types of EUV mask absorber patterns were observed. An 88-nm lines-and-spaces and a cross-line patterns were clearly reconstructed by ptychography. In addition, a natural defect with 2-μm diameter on the cross-line was well reconstructed. This demonstrated the high capability of the standalone CSM, which system will be used in the factories, such as mask shops and semiconductor fabrication plants.
NASA Technical Reports Server (NTRS)
Mcdonald, K.; Craig, N.; Sirk, M. M.; Drake, J. J.; Fruscione, A.; Vallerga, J. V.; Malina, R. F.
1994-01-01
We report the detection of 114 extreme ultraviolet (EUV; 58 - 740 A) sources, of which 99 are new serendipitous sources, based on observations made with the imaging telescopes on board the Extreme Ultraviolet Explorer (EUVE) during the Right Angle Program (RAP). These data were obtained using the survey scanners and the Deep Survey instrument during the first year of the spectroscopic guest observer phase of the mission, from January 1993 to January 1994. The data set consists of 162 discrete pointings whose exposure times are typically two orders of magnitude longer than the average exposure times during the EUVE all-sky survey. Based on these results, we can expect that EUVE will serendipitously detect approximately 100 new EUV sources per year, or about one new EUV source per 10 sq deg, during the guest observer phase of the EUVE mission. New EUVE sources of note include one B star and three extragalactic objects. The B star (HR 2875, EUVE J0729 - 38.7) is detected in both the Lexan/B (approximately 100 A) and Al/Ti/C (approximately 200 A) bandpasses, and the detection is shown not to be a result of UV leaks. We suggest that we are detecting EUV and/or soft x rays from a companion to the B star. Three sources, EUVE J2132+10.1, EUVE J2343-14.9, and EUVE J2359-30.6 are identified as the active galactic nuclei MKN 1513, MS2340.9-1511, and 1H2354-315, respectively.
Wide-band/angle Blazed Surfaces using Multiple Coupled Blazing Resonances
Memarian, Mohammad; Li, Xiaoqiang; Morimoto, Yasuo; Itoh, Tatsuo
2017-01-01
Blazed gratings can reflect an oblique incident wave back in the path of incidence, unlike mirrors and metal plates that only reflect specular waves. Perfect blazing (and zero specular scattering) is a type of Wood’s anomaly that has been observed when a resonance condition occurs in the unit-cell of the blazed grating. Such elusive anomalies have been studied thus far as individual perfect blazing points. In this work, we present reflective blazed surfaces that, by design, have multiple coupled blazing resonances per cell. This enables an unprecedented way of tailoring the blazing operation, for widening and/or controlling of blazing bandwidth and incident angle range of operation. The surface can thus achieve blazing at multiple wavelengths, each corresponding to different incident wavenumbers. The multiple blazing resonances are combined similar to the case of coupled resonator filters, forming a blazing passband between the incident wave and the first grating order. Blazed gratings with single and multi-pole blazing passbands are fabricated and measured showing increase in the bandwidth of blazing/specular-reflection-rejection, demonstrated here at X-band for convenience. If translated to appropriate frequencies, such technique can impact various applications such as Littrow cavities and lasers, spectroscopy, radar, and frequency scanned antenna reflectors. PMID:28211506
LONG DURATION FLARE EMISSION: IMPULSIVE HEATING OR GRADUAL HEATING?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Jiong; Longcope, Dana W.
Flare emissions in X-ray and EUV wavelengths have previously been modeled as the plasma response to impulsive heating from magnetic reconnection. Some flares exhibit gradually evolving X-ray and EUV light curves, which are believed to result from superposition of an extended sequence of impulsive heating events occurring in different adjacent loops or even unresolved threads within each loop. In this paper, we apply this approach to a long duration two-ribbon flare SOL2011-09-13T22 observed by the Atmosphere Imaging Assembly (AIA). We find that to reconcile with observed signatures of flare emission in multiple EUV wavelengths, each thread should be heated inmore » two phases, an intense impulsive heating followed by a gradual, low-rate heating tail that is attenuated over 20–30 minutes. Each AIA resolved single loop may be composed of several such threads. The two-phase heating scenario is supported by modeling with both a zero-dimensional and a 1D hydrodynamic code. We discuss viable physical mechanisms for the two-phase heating in a post-reconnection thread.« less
NASA Astrophysics Data System (ADS)
Mao, Ming; Lazzarino, Frederic; De Schepper, Peter; De Simone, Danilo; Piumi, Daniele; Luong, Vinh; Yamashita, Fumiko; Kocsis, Michael; Kumar, Kaushik
2017-03-01
Inpria metal-oxide photoresist (PR) serves as a thin spin-on patternable hard mask for EUV lithography. Compared to traditional organic photoresists, the ultrathin metal-oxide photoresist ( 12nm after development) effectively mitigates pattern collapse. Because of the high etch resistance of the metal-oxide resist, this may open up significant scope for more aggressive etches, new chemistries, and novel integration schemes. We have previously shown that metal-oxide PR can be successfully used to pattern the block layer for the imec 7-nm technology node[1] and advantageously replace a multiple patterning approach, which significantly reduces the process complexity and effectively decreases the cost. We also demonstrated the formation of 16nm half pitch 1:1 line/space with EUV single print[2], which corresponds to a metal 2 layer for the imec 7-nm technology node. In this paper, we investigate the feasibility of using Inpria's metal-oxide PR for 16nm line/space patterning. In meanwhile, we also explore the different etch process for LWR smoothing, resist trimming and resist stripping.
A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing.
Zhang, Weifeng; Yao, Jianping
2018-04-11
Since the discovery of the Bragg's law in 1913, Bragg gratings have become important optical devices and have been extensively used in various systems. In particular, the successful inscription of a Bragg grating in a fiber core has significantly boosted its engineering applications. However, a conventional grating device is usually designed for a particular use, which limits general-purpose applications since its index modulation profile is fixed after fabrication. In this article, we propose to implement a fully reconfigurable grating, which is fast and electrically reconfigurable by field programming. The concept is verified by fabricating an integrated grating on a silicon-on-insulator platform, which is employed as a programmable signal processor to perform multiple signal processing functions including temporal differentiation, microwave time delay, and frequency identification. The availability of ultrafast and reconfigurable gratings opens new avenues for programmable optical signal processing at the speed of light.
Multiple infrared bands absorber based on multilayer gratings
NASA Astrophysics Data System (ADS)
Liu, Xiaoyi; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Guo, Chengli
2018-03-01
The present study offers an Ag/Si multilayer-grating microstructure based on an Si substrate. The microstructure exhibits designable narrowband absorption in multiple infrared wavebands, especially in mid- and long-wave infrared atmospheric windows. We investigate its resonance mode mechanism, and calculate the resonance wavelengths by the Fabry-Perot and metal-insulator-metal theories for comparison with the simulation results. Furthermore, we summarize the controlling rules of the absorption peak wavelength of the microstructure to provide a new method for generating a Si-based device with multiple working bands in infrared.
Adaptable Diffraction Gratings With Wavefront Transformation
NASA Technical Reports Server (NTRS)
Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.
2010-01-01
Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength. Traditional diffraction gratings have static planar, concave, or convex surfaces. However, if they could be made so that they can change the surface curvature at will, then they would be able to focus on particular segments, self-calibrate, or perform fine adjustments. This innovation creates a diffraction grating on a deformable surface. This surface could be bent at will, resulting in a dynamic wavefront transformation. This allows for self-calibration, compensation for aberrations, enhancing image resolution in a particular area, or performing multiple scans using different wavelengths. A dynamic grating gives scientists a new ability to explore wavefronts from a variety of viewpoints.
A zonal wavefront sensor with multiple detector planes
NASA Astrophysics Data System (ADS)
Pathak, Biswajit; Boruah, Bosanta R.
2018-03-01
A conventional zonal wavefront sensor estimates the wavefront from the data captured in a single detector plane using a single camera. In this paper, we introduce a zonal wavefront sensor which comprises multiple detector planes instead of a single detector plane. The proposed sensor is based on an array of custom designed plane diffraction gratings followed by a single focusing lens. The laser beam whose wavefront is to be estimated is incident on the grating array and one of the diffracted orders from each grating is focused on the detector plane. The setup, by employing a beam splitter arrangement, facilitates focusing of the diffracted beams on multiple detector planes where multiple cameras can be placed. The use of multiple cameras in the sensor can offer several advantages in the wavefront estimation. For instance, the proposed sensor can provide superior inherent centroid detection accuracy that can not be achieved by the conventional system. It can also provide enhanced dynamic range and reduced crosstalk performance. We present here the results from a proof of principle experimental arrangement that demonstrate the advantages of the proposed wavefront sensing scheme.
Using Systems Thinking to Frame the Evaluation of a Complex Educational Intervention
NASA Astrophysics Data System (ADS)
Kastens, K. A.; Baldassari, C.; DeLisi, J.; Manduca, C. A.
2014-12-01
InTeGrate (serc.carleton.edu/integrate/) is the geoscience component of NSF's STEM Talent Expansion Center program. As such, it is a $10M, 5 year effort, with dual goals of improving undergraduate STEM education and addressing an important national challenge, which in InTeGrate's case is environmental sustainability. InTeGrate is very complicated, involving five PI's, dozens of curriculum developers, scores of workshops and webinars, hundreds of faculty, and thousands of students. To get a handle on this complexity, the leadership team and evaluators are viewing project activities and outcomes through a system thinking lens, analogous to how geoscientists view the Earth system. For each major component of the project, we have a flowchart logic model that traces the flows of information, materials, influence, and people that are thought to result from project activities. As is to be expected in a complex system, individual activities are often influenced by multiple inputs and contribute to multiple outputs. The systems approach allows us to spot critical points in the system where evaluative probes are needed; for example, are workshops actually resulting in a flux of new people into roles of increased responsibility within InTeGrate as intended? InTeGrate is permeated with opportunities for participants to engage in assessment, reflection and peer-review. From a systems perspective, this evaluative culture can be seen as an effort to create reinforcing feedback loops for processes that advance InTeGrate's values. For example, assessment team members review draft instructional materials against a materials development rubric and coach developers through an iterative development cycle towards materials that embody InTeGrate's priorities. Of particular interest are flows of information or influence that may carry InTeGrate's impact outward in space and time beyond activities that are directly funded by the project. For example, positive experiences during materials development may influence developers' teaching practice such that they embed InTeGrate's methods into their teaching of non-InTeGrate materials and advocate for InTeGrate methods on their campuses. Only if such influence pathways exist will InTeGrate be able to achieve national and enduring impact.
Quality control of EUVE databases
NASA Technical Reports Server (NTRS)
John, L. M.; Drake, J.
1992-01-01
The publicly accessible databases for the Extreme Ultraviolet Explorer include: the EUVE Archive mailserver; the CEA ftp site; the EUVE Guest Observer Mailserver; and the Astronomical Data System node. The EUVE Performance Assurance team is responsible for verifying that these public EUVE databases are working properly, and that the public availability of EUVE data contained therein does not infringe any data rights which may have been assigned. In this poster, we describe the Quality Assurance (QA) procedures we have developed from the approach of QA as a service organization, thus reflecting the overall EUVE philosophy of Quality Assurance integrated into normal operating procedures, rather than imposed as an external, post facto, control mechanism.
Optical multiple-image hiding based on interference and grating modulation
NASA Astrophysics Data System (ADS)
He, Wenqi; Peng, Xiang; Meng, Xiangfeng
2012-07-01
We present a method for multiple-image hiding on the basis of interference-based encryption architecture and grating modulation. By using a modified phase retrieval algorithm, we can separately hide a number of secret images into one arbitrarily preselected host image associated with a set of phase-only masks (POMs), which are regarded as secret keys. Thereafter, a grating modulation operation is introduced to multiplex and store the different POMs into a single key mask, which is then assigned to the authorized users in privacy. For recovery, after an appropriate demultiplexing process, one can reconstruct the distributions of all the secret keys and then recover the corresponding hidden images with suppressed crosstalk. Computer simulation results are presented to validate the feasibility of our approach.
NASA Astrophysics Data System (ADS)
Covey, John; Chen, Ray T.
2014-03-01
Grating couplers are ideal for coupling into the tightly confined propagation modes of semiconductor waveguides. In addition, nonlinear optics has benefited from the sub-diffraction limit confinement of horizontal slot waveguides. By combining these two advancements, slot-based nonlinear optics with mode areas less than 0.02 μm2 can become as routine as twisting fiber connectors together. Surface normal fiber alignment to a chip is also highly desirable from time, cost, and manufacturing considerations. To meet these considerable design challenges, a custom genetic algorithm is created which, starting from purely random designs, creates a unique four stage grating coupler for two novel horizontal slot waveguide platforms. For horizontal multiple-slot waveguides filled with silicon nanocrystal, a theoretical fiber-towaveguide coupling efficiency of 68% is obtained. For thin silicon waveguides clad with optically active silicon nanocrystal, known as cover-slot waveguides, a theoretical fiber-to-waveguide coupling efficiency of 47% is obtained, and 1 dB and 3 dB theoretical bandwidths of 70 nm and 150 nm are obtained, respectively. Both waveguide platforms are fabricated from scratch, and their respective on-chip grating couplers are experimentally measured from a standard single mode fiber array that is mounted surface normally. The horizontal multiple-slot grating coupler achieved an experimental 60% coupling efficiency, and the horizontal cover-slot grating coupler achieved an experimental 38.7% coupling efficiency, with an extrapolated 1 dB bandwidth of 66 nm. This report demonstrates the promise of genetic algorithm-based design by reducing to practice the first large bandwidth vertical grating coupler to a novel silicon nanocrystal horizontal cover-slot waveguide.
Talbot effect of quasi-periodic grating.
Zhang, Chong; Zhang, Wei; Li, Furui; Wang, Junhong; Teng, Shuyun
2013-07-20
Theoretic and experimental studies of the Talbot effect of quasi-periodic gratings are performed in this paper. The diffractions of periodic and quasi-periodic square aperture arrays in Fresnel fields are analyzed according to the scalar diffraction theory. The expressions of the diffraction intensities of two types of quasi-periodic gratings are deduced. Talbot images of the quasi-periodic gratings are predicted to appear at multiple certain distances. The quasi-periodic square aperture arrays are produced with the aid of a liquid crystal light modulator, and the self-images of the quasi-periodic gratings are measured successfully in the experiment. This study indicates that even a structure in short-range disorder may take on the self-imaging effect in a Fresnel field.
A Search for EUV Emission from the O4f Star Zeta Puppis
NASA Technical Reports Server (NTRS)
Waldron, Wayne L.; Vallerga, John
1996-01-01
We obtained a 140 ks EUVE observation of the O4f star, zeta Puppis. Because of its low ISM column density and highly ionized stellar wind, a unique EUV window is accessible for viewing between 128 to 140 A, suggesting that this star may he the only O star observable with the EUVE. Although no SW spectrometer wavelength bin had a signal to noise greater than 3, a bin at 136 A had a signal to noise of 2.4. This bin is where models predict the brightest line due to OV emission should occur. We present several EUV line emission models. These models were constrained by fitting the ROSAT PSPC X-ray data and our EUVE data. If the OV emission is real, the best fits to the data suggest that there are discrepancies in our current understanding of EUV/X-ray production mechanisms. In particular, the emission measure of the EUV source is found to be much greater than the total wind emission measure, suggesting that the EUV shock must produce a very large density enhancement. In addition, the location of the EUV and X-ray shocks are found to be separated by approx. 0.3 stellar radii, but the EUV emission region is found to be approx. 400 times larger than the X-ray emission region. We also discuss the implications of a null detection and present relevant upper limits.
Spatial Factors in the Integration of Speed Information
NASA Technical Reports Server (NTRS)
Verghese, P.; Stone, L. S.; Hargens, Alan R. (Technical Monitor)
1995-01-01
We reported that, for a 21FC task with multiple Gabor patches in each interval, thresholds for speed discrimination decreased with the number of patches, while simply increasing the area of a single patch produced no such effect. This result could be explained by multiple patches reducing spatial uncertainty. However, the fact that thresholds decrease with number even when the patches are in fixed positions argues against this explanation. We therefore performed additional experiments to explore the lack of an area effect. Three observers did a 21FC speed discrimination task with 6 Gabor patches in each interval, and were asked to pick the interval in which the gratings moved faster. The 50% contrast patches were placed on a circle at 4 deg. eccentricity, either equally spaced and maximally separated (hexagonal array), or closely-spaced, in consecutive positions (string of pearls). For the string-of-pearls condition, the grating phases were either random, or consistent with a full-field grating viewed through multiple Gaussian windows. When grating phases were random, the thresholds for the hexagonal and string-of-pearls layouts were indistinguishable. For the string-of-pearls layout, thresholds in the consistent-phase condition were higher by 15 +/- 6% than in the random-phase condition. (Thresholds increased by 57 +/- 7% in going from 6 patches to a single patch of equivalent area.). For random-phase patches, the lower thresholds for 6 patches does not depend on a specific spacing or spatial layout. Multiple, closely-spaced, consistent-phase patches that can be interpreted as a single grating, result in thresholds closer to that produced by a single patch. Together, our results suggest that object segmentation may play a role in the integration of speed information.
PECULIAR STATIONARY EUV WAVE FRONTS IN THE ERUPTION ON 2011 MAY 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, R.; Fulara, A.; Chen, P. F.
We present and interpret the observations of extreme ultraviolet (EUV) waves associated with a filament eruption on 2011 May 11. The filament eruption also produces a small B-class two ribbon flare and a coronal mass ejection. The event is observed by the Solar Dynamic Observatory with high spatio-temporal resolution data recorded by the Atmospheric Imaging Assembly. As the filament erupts, we observe two types of EUV waves (slow and fast) propagating outwards. The faster EUV wave has a propagation velocity of ∼500 km s{sup −1} and the slower EUV wave has an initial velocity of ∼120 km s{sup −1}. Wemore » report, for the first time, that not only does the slower EUV wave stop at a magnetic separatrix to form bright stationary fronts, but also the faster EUV wave transits a magnetic separatrix, leaving another stationary EUV front behind.« less
NASA Astrophysics Data System (ADS)
Steer, D. N.; Iverson, E. A.; Manduca, C. A.
2013-12-01
This research seeks to develop valid and reliable questions that faculty can use to assess geoscience literacy across the curriculum. We are particularly interested on effects of curricula developed to teach Earth, Climate, Atmospheric, and Ocean Science concepts in the context of societal issues across the disciplines. This effort is part of the InTeGrate project designed to create a population of college graduates who are poised to use geoscience knowledge in developing solutions to current and future environmental and resource challenges. Details concerning the project are found at http://serc.carleton.edu/integrate/index.html. The Geoscience Literacy Exam (GLE) under development presently includes 90 questions. Each big idea from each literacy document can be probed using one or more of three independent questions: 1) a single answer, multiple choice question aimed at basic understanding or application of key concepts, 2) a multiple correct answer, multiple choice question targeting the analyzing to analysis levels and 3) a short essay question that tests analysis or evaluation cognitive levels. We anticipate multiple-choice scores and the detail and sophistication of essay responses will increase as students engage with the curriculum. As part of the field testing of InTeGrate curricula, faculty collected student responses from classes that involved over 700 students. These responses included eight pre- and post-test multiple-choice questions that covered various concepts across the four literacies. Discrimination indices calculated from the data suggest that the eight tested questions provide a valid measure of literacy within the scope of the concepts covered. Student normalized gains across an academic term with limited InTeGrate exposure (typically two or fewer weeks of InTeGrate curriculum out of 14 weeks) were found to average 16% gain. A small set of control data (250 students in classes from one institution where no InTeGrate curricula were used) was also collected from a larger bank of test questions. Discrimination indices across the full bank showed variation and additional work is underway to refine and field test in other settings these questions in the absence of InTeGrate curricula. When complete, faculty will be able to assemble sets of questions to track progress toward meeting literacy goals. In addition to covering geoscience content knowledge and understanding, a complementary attitudinal pre/post survey was also developed with the intent to probe InTeGrate students' ability and motivation to use their geoscience expertise to address problems of environmental sustainability. The final instruments will be made available to the geoscience education community as an assessment to be used in conjunction with InTeGrate teaching materials or as a stand-alone tool for departments to measure student learning and attitudinal gains across the major.
Extreme Ultraviolet Explorer. Long look at the next window
NASA Technical Reports Server (NTRS)
Maran, Stephen P.
1991-01-01
The Extreme Ultraviolet Explorer (EUVE) will map the entire sky to determine the existence, direction, brightness, and temperature of thousands of objects that are sources of so-called extreme ultraviolet (EUV) radiation. The EUV spectral region is located between the x-ray and ultraviolet regions of the electromagnetic spectrum. From the sky survey by EUVE, astronomers will determine the nature of sources of EUV light in our galaxy, and infer the distribution of interstellar gas for hundreds of light years around the solar system. It is from this gas and the accompanying dust in space that new stars and solar systems are born and to which evolving and dying stars return much of their material in an endless cosmic cycle of birth, death, and rebirth. Besides surveying the sky, astronomers will make detailed studies of selected objects with EUVE to determine their physical properties and chemical compositions. Also, they will learn about the conditions that prevail and the processes at work in stars, planets, and other sources of EUV radiation, maybe even quasars. The EUVE mission and instruments are described. The objects that EUVE will likely find are described.
Controlling total spot power from holographic laser by superimposing a binary phase grating.
Liu, Xiang; Zhang, Jian; Gan, Yu; Wu, Liying
2011-04-25
By superimposing a tunable binary phase grating with a conventional computer-generated hologram, the total power of multiple holographic 3D spots can be easily controlled by changing the phase depth of grating with high accuracy to a random power value for real-time optical manipulation without extra power loss. Simulation and experiment results indicate that a resolution of 0.002 can be achieved at a lower time cost for normalized total spot power.
Morgan, Kaye S; Paganin, David M; Siu, Karen K W
2011-01-01
The ability to quantitatively retrieve transverse phase maps during imaging by using coherent x rays often requires a precise grating or analyzer-crystal-based setup. Imaging of live animals presents further challenges when these methods require multiple exposures for image reconstruction. We present a simple method of single-exposure, single-grating quantitative phase contrast for a regime in which the grating period is much greater than the effective pixel size. A grating is used to create a high-visibility reference pattern incident on the sample, which is distorted according to the complex refractive index and thickness of the sample. The resolution, along a line parallel to the grating, is not restricted by the grating spacing, and the detector resolution becomes the primary determinant of the spatial resolution. We present a method of analysis that maps the displacement of interrogation windows in order to retrieve a quantitative phase map. Application of this analysis to the imaging of known phantoms shows excellent correspondence.
Monolithic pattern-sensitive detector
Berger, Kurt W.
2000-01-01
Extreme ultraviolet light (EUV) is detected using a precisely defined reference pattern formed over a shallow junction photodiode. The reference pattern is formed in an EUV absorber preferably comprising nickel or other material having EUV- and other spectral region attenuating characteristics. An EUV-transmissive energy filter is disposed between a passivation oxide layer of the photodiode and the EUV transmissive energy filter. The device is monolithically formed to provide robustness and compactness.
Selected highlights from the Extreme Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Bowyer, S.; Malina, R. F.
1995-01-01
We present a few scientific highlights from the Extreme Ultraviolet Explorer (EUVE) all-sky and deep surveys, from the EUVE Righ Angle Program, and from the EUVE Guest Observer Program. The First EUVE Source Catalog includes 410 extreme ultraviolet (EUV) sources detected in the initial processing of the EUVE all-sky data. A program of optical identification indicates that counterparts include cool star coronae, flare stars, hot white dwarfs, central stars of planetary nebulae, B star photospheres and winds, an X-ray binary, extragalactic objects (active galactic nuclei, BL Lacertae), solar system objects (Moon, Mars, Io,), supernova remnants, and two novae.
Analytical techniques for mechanistic characterization of EUV photoresists
NASA Astrophysics Data System (ADS)
Grzeskowiak, Steven; Narasimhan, Amrit; Murphy, Michael; Ackerman, Christian; Kaminsky, Jake; Brainard, Robert L.; Denbeaux, Greg
2017-03-01
Extreme ultraviolet (EUV, 13.5 nm) lithography is the prospective technology for high volume manufacturing by the microelectronics industry. Significant strides towards achieving adequate EUV source power and availability have been made recently, but a limited rate of improvement in photoresist performance still delays the implementation of EUV. Many fundamental questions remain to be answered about the exposure mechanisms of even the relatively well understood chemically amplified EUV photoresists. Moreover, several groups around the world are developing revolutionary metal-based resists whose EUV exposure mechanisms are even less understood. Here, we describe several evaluation techniques to help elucidate mechanistic details of EUV exposure mechanisms of chemically amplified and metal-based resists. EUV absorption coefficients are determined experimentally by measuring the transmission through a resist coated on a silicon nitride membrane. Photochemistry can be evaluated by monitoring small outgassing reaction products to provide insight into photoacid generator or metal-based resist reactivity. Spectroscopic techniques such as thin-film Fourier transform infrared (FTIR) spectroscopy can measure the chemical state of a photoresist system pre- and post-EUV exposure. Additionally, electrolysis can be used to study the interaction between photoresist components and low energy electrons. Collectively, these techniques improve our current understanding of photomechanisms for several EUV photoresist systems, which is needed to develop new, better performing materials needed for high volume manufacturing.
Optimal coupling to high-Q whispering gallery modes with a sub-wavelength metallic grating coupler
NASA Astrophysics Data System (ADS)
Zhou, Y.; Gu, B.; Yu, X.; Luan, F.
2015-03-01
Gold grating patterned on the end facet of an optical fiber is able to excite whispering gallery mode (WGM) in a silica microsphere. With a direct pathway of the metal reflection, the coupled WGM is able to superimpose and create an asymmetric Fano resonance. Since multiple resonances are present - the WGM, grating reflection, and a weak Fabry-Perot resonance along the diameter of the sphere - it is difficult to evaluate the power efficiency directly from the measured spectrum. Using temporal coupled-mode theory, a general model is constructed for the end-fire coupling from a grating to a WGM resonator.
Neurons in cat V1 show significant clustering by degree of tuning
Ziskind, Avi J.; Emondi, Al A.; Kurgansky, Andrei V.; Rebrik, Sergei P.
2015-01-01
Neighboring neurons in cat primary visual cortex (V1) have similar preferred orientation, direction, and spatial frequency. How diverse is their degree of tuning for these properties? To address this, we used single-tetrode recordings to simultaneously isolate multiple cells at single recording sites and record their responses to flashed and drifting gratings of multiple orientations, spatial frequencies, and, for drifting gratings, directions. Orientation tuning width, spatial frequency tuning width, and direction selectivity index (DSI) all showed significant clustering: pairs of neurons recorded at a single site were significantly more similar in each of these properties than pairs of neurons from different recording sites. The strength of the clustering was generally modest. The percent decrease in the median difference between pairs from the same site, relative to pairs from different sites, was as follows: for different measures of orientation tuning width, 29–35% (drifting gratings) or 15–25% (flashed gratings); for DSI, 24%; and for spatial frequency tuning width measured in octaves, 8% (drifting gratings). The clusterings of all of these measures were much weaker than for preferred orientation (68% decrease) but comparable to that seen for preferred spatial frequency in response to drifting gratings (26%). For the above properties, little difference in clustering was seen between simple and complex cells. In studies of spatial frequency tuning to flashed gratings, strong clustering was seen among simple-cell pairs for tuning width (70% decrease) and preferred frequency (71% decrease), whereas no clustering was seen for simple-complex or complex-complex cell pairs. PMID:25652921
Dynamics of the spatial electron density distribution of EUV-induced plasmas
NASA Astrophysics Data System (ADS)
van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Banine, V. Y.
2015-11-01
We studied the temporal evolution of the electron density distribution in a low pressure pulsed plasma induced by high energy extreme ultraviolet (EUV) photons using microwave cavity resonance spectroscopy (MCRS). In principle, MCRS only provides space averaged information about the electron density. However, we demonstrate here the possibility to obtain spatial information by combining multiple resonant modes. It is shown that EUV-induced plasmas, albeit being a rather exotic plasma, can be explained by known plasma physical laws and processes. Two stages of plasma behaviour are observed: first the electron density distribution contracts, after which it expands. It is shown that the contraction is due to cooling of the electrons. The moment when the density distribution starts to expand is related to the inertia of the ions. After tens of microseconds, the electrons reached the wall of the cavity. The speed of this expansion is dependent on the gas pressure and can be divided into two regimes. It is shown that the acoustic dominated regime the expansion speed is independent of the gas pressure and that in the diffusion dominated regime the expansion depends reciprocal on the gas pressure.
Using Coronal Hole Maps to Constrain MHD Models
NASA Astrophysics Data System (ADS)
Caplan, Ronald M.; Downs, Cooper; Linker, Jon A.; Mikic, Zoran
2017-08-01
In this presentation, we explore the use of coronal hole maps (CHMs) as a constraint for thermodynamic MHD models of the solar corona. Using our EUV2CHM software suite (predsci.com/chd), we construct CHMs from SDO/AIA 193Å and STEREO-A/EUVI 195Å images for multiple Carrington rotations leading up to the August 21st, 2017 total solar eclipse. We then contruct synoptic CHMs from synthetic EUV images generated from global thermodynamic MHD simulations of the corona for each rotation. Comparisons of apparent coronal hole boundaries and estimates of the net open flux are used to benchmark and constrain our MHD model leading up to the eclipse. Specifically, the comparisons are used to find optimal parameterizations of our wave turbulence dissipation (WTD) coronal heating model.
Surface Inhomogeneities of the White Dwarf in the Binary EUVE J2013+400
NASA Astrophysics Data System (ADS)
Vennes, Stephane
We propose to study the white dwarf in the binary EUVE J2013+400. The object is paired with a dMe star and new extreme ultraviolet (EUV) observations will offer critical insights into the properties of the white dwarf. The binary behaves, in every other aspects, like its siblings EUVE J0720-317 and EUVE J1016-053 and new EUV observations will help establish their class properties; in particular, EUV photometric variations in 0720-317 and 1016-053 over a period of 11 hours and 57 minutes, respectively, are indicative of surface abundance inhomogeneities coupled with the white dwarfs rotation period. These variations and their large photospheric helium abundance are best explained by a diffusion-accretion model in which time-variable accretion and possible coupling to magnetic poles contribute to abundance variations across the surface and possibly as a function of depth. EUV spectroscopy will also enable a study of the helium abundance as a function of depth and a detailed comparison with theoretical diffusion profile.
Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H
2012-01-01
We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175
Stitching-error reduction in gratings by shot-shifted electron-beam lithography
NASA Technical Reports Server (NTRS)
Dougherty, D. J.; Muller, R. E.; Maker, P. D.; Forouhar, S.
2001-01-01
Calculations of the grating spatial-frequency spectrum and the filtering properties of multiple-pass electron-beam writing demonstrate a tradeoff between stitching-error suppression and minimum pitch separation. High-resolution measurements of optical-diffraction patterns show a 25-dB reduction in stitching-error side modes.
Hagelstein, P.L.
1984-06-25
A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.
A new mask exposure and analysis facility
NASA Astrophysics Data System (ADS)
te Sligte, Edwin; Koster, Norbert; Deutz, Alex; Staring, Wilbert
2014-10-01
The introduction of ever higher source powers in EUV systems causes increased risks for contamination and degradation of EUV masks and pellicles. Appropriate testing can help to inventory and mitigate these risks. To this end, we propose EBL2: a laboratory EUV exposure system capable of operating at high EUV powers and intensities, and capable of exposing and analyzing EUV masks. The proposed system architecture is similar to the EBL system which has been operated jointly by TNO and Carl Zeiss SMT since 2005. EBL2 contains an EUV Beam Line, in which samples can be exposed to EUV irradiation in a controlled environment. Attached to this Beam Line is an XPS system, which can be reached from the Beam Line via an in-vacuum transfer system. This enables surface analysis of exposed masks without breaking vacuum. Automated handling with dual pods is foreseen so that exposed EUV masks will still be usable in EUV lithography tools to assess the imaging impact of the exposure. Compared to the existing system, large improvements in EUV power, intensity, reliability, and flexibility are proposed. Also, in-situ measurements by e.g. ellipsometry is foreseen for real time monitoring of the sample condition. The system shall be equipped with additional ports for EUVR or other analysis tools. This unique facility will be open for external customers and other research groups.
Features of Talbot effect on phase diffraction grating
NASA Astrophysics Data System (ADS)
Brazhnikov, Denis G.; Danko, Volodymyr P.; Kotov, Myhaylo M.; Kovalenko, Andriy V.
2018-01-01
The features of the Talbot effect using the phase diffraction gratings have been considered. A phase grating, unlike an amplitude grating, gives a constant light intensity in the observation plane at a distance multiple to half of the Talbot length ZT. In this case, the subject of interest consists in so-called fractional Talbot effect with the periodic intensity distribution observed in planes shifted from the position nZT/2 (the so-called Fresnel images). Binary phase diffraction gratings with varying phase steps have been investigated. Gratings were made photographically on holographic plates PFG-01. The phase shift was obtained by modulating the emulsion refraction index of the plates. Two types of gratings were used: a square grating with a fill factor of 0.5 and a checkerwise grating (square areas with a bigger and lower refractive index alternate in a checkerboard pattern). By the example of these gratings, the possibility of obtaining in the observation plane an image of a set of equidistant spots with a size smaller than the size of the phase-shifting elements of the grating (the so-called Talbot focusing) has been shown. Clear images of spots with a sufficient signal-to-noise ratio have been obtained for a square grating. Their period was equal to the period of the grating. For a grating with a checkerwise distribution of the refractive index, the spots have been located in positions corresponding to the centres of cells. In addition, the quality of the resulting pattern strongly depended on the magnitude of a grating phase step. As a result of the work, the possibility to obtain Talbot focusing has been shown and the use of this effect to wavefront investigation with a gradient sensor has been demonstrated.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-05-01
On 28 November 2013, comet C/2012 S1 better known as comet ISON should have passed within two solar radii of the Suns surface as it reached perihelion in its orbit. But instead of shining in extreme ultraviolet (EUV) wavelengths as it grazed the solar surface, the comet was never detected by EUV instruments. What happened to comet ISON?Missing EmissionWhen a sungrazing comet passes through the solar corona, it leaves behind a trail of molecules evaporated from its surface. Some of these molecules emit EUV light, which can be detected by instruments on telescopes like the space-based Solar Dynamics Observatory (SDO).Comet ISON, a comet that arrived from deep space and was predicted to graze the Suns corona in November 2013, was expected to cause EUV emission during its close passage. But analysis of the data from multiple telescopes that tracked ISON in EUV including SDO reveals no sign of it at perihelion.In a recent study, Paul Bryans and DeanPesnell, scientists from NCARs High Altitude Observatory and NASA Goddard Space Flight Center, try to determine why ISON didnt display this expected emission.Comparing ISON and LovejoyIn December 2011, another comet dipped into the Suns corona: comet Lovejoy. This image, showingthe orbit Lovejoy took around the Sun, is a composite of SDO images of the pre- and post-perihelion phases of the orbit. Click for a closer look! The dashed part of the curve represents where Lovejoy passed out of view behind the Sun. [Bryans Pesnell 2016]This is not the first time weve watched a sungrazing comet with EUV-detecting telescopes: Comet Lovejoy passed similarly close to the Sun in December 2011. But when Lovejoy grazed the solar corona, it emitted brightly in EUV. So why didnt ISON? Bryans and Pesnell argue that there are two possibilities:the coronal conditions experienced by the two comets were not similar, orthe two comets themselves were not similar.To establish which factor is the most relevant, the authors first demonstrate that both comets experienced very similar radiation fields as they passed perihelion. They also show that the properties of the Suns corona experienced by each comet like its density and magnetic field topology were roughly the same.Bryans and Pesnell argue that, as both comets appear to have encountered similar solar conditions, the most likely explanation for ISONs lack of detectable EUV emission is that it didnt deposit as much material in its orbit as Lovejoy did. They show that this would happen if ISONs nucleus were four times smaller in radius than Lovejoys, spanning a mere 5070 meters in comparison to Lovejoys 200300 meters.This conclusion is consistent with white-light observations of ISON that suggest that, though it might have started out significantly larger than Lovejoy, ISON underwent dramatic mass loss as it approached the Sun. By the time it arrived at perihelion, it was likely no longer large enough to create a strong EUV signal resulting in the non-detection of this elusive comet with SDO and other telescopes.CitationPaul Bryans and W. Dean Pesnell 2016 ApJ 822 77. doi:10.3847/0004-637X/822/2/77
Novel EUV photoresist for sub-7nm node (Conference Presentation)
NASA Astrophysics Data System (ADS)
Furukawa, Tsuyoshi; Naruoka, Takehiko; Nakagawa, Hisashi; Miyata, Hiromu; Shiratani, Motohiro; Hori, Masafumi; Dei, Satoshi; Ayothi, Ramakrishnan; Hishiro, Yoshi; Nagai, Tomoki
2017-04-01
Extreme ultraviolet (EUV) lithography has been recognized as a promising candidate for the manufacturing of semiconductor devices as LS and CH pattern for 7nm node and beyond. EUV lithography is ready for high volume manufacturing stage. For the high volume manufacturing of semiconductor devices, significant improvement of sensitivity and line edge roughness (LWR) and Local CD Uniformity (LCDU) is required for EUV resist. It is well-known that the key challenge for EUV resist is the simultaneous requirement of ultrahigh resolution (R), low line edge roughness (L) and high sensitivity (S). Especially high sensitivity and good roughness is important for EUV lithography high volume manufacturing. We are trying to improve sensitivity and LWR/LCDU from many directions. From material side, we found that both sensitivity and LWR/LCDU are simultaneously improved by controlling acid diffusion length and efficiency of acid generation using novel resin and PAG. And optimizing EUV integration is one of the good solution to improve sensitivity and LWR/LCDU. We are challenging to develop new multi-layer materials to improve sensitivity and LWR/LCDU. Our new multi-layer materials are designed for best performance in EUV lithography system. From process side, we found that sensitivity was substantially improved maintaining LWR applying novel type of chemical amplified resist (CAR) and process. EUV lithography evaluation results obtained for new CAR EUV interference lithography. And also metal containing resist is one possibility to break through sensitivity and LWR trade off. In this paper, we will report the recent progress of sensitivity and LWR/LCDU improvement of JSR novel EUV resist and process.
EUVE and IR observations of the Polars HU Aqr and AR UMa
NASA Astrophysics Data System (ADS)
Howell, S.; Ciardi, D.
1999-12-01
Simultaneous EUVE and ground-based near-infrared J and K observations of the magnetic CV HU Aqr were performed. The observations occurred during a super-high state never before observed in HU Aqr. The average EUVE count-rate was 30-60 times higher than had been measured previously, allowing us to present the first ever EUV spectra of HU Aqr. The near-infrared observations show a corresponding flux increase of 2-3 times over previous J and K observations. However, the near-infrared eclipse minimum during this super-high state are the same as seen in previous observations, indicating that the eclipse in the near-infrared is total. We present a detailed comparison of the EUV and near-infrared emission of HU Aqr as a function of orbital phase and discuss the geometry and physical properties of the high energy and infrared emitting regions. AR UMa is the brightest EUV source yet observed with the EUVE satellite and is also the polar with the largest magnetic field, 250 MG. EUVE observations of the polar AR UMa have allowed, for the first time, EUV time-resolved spectral analysis and radial velocity measurements. We present EUV phase-resolved photometry and spectroscopy and show that the He 304 emission line is not produced on the heated face of the secondary star, but emanates from the inner illuminated regions of the coupling region and accretion stream. We comment on the overall structure of the accretion geometry as well. The authors acknowledge partial support of the research by NASA cooperative agreement NCC5-138 via an EUVE guest Observer mini-grant.
Universal EUV in-band intensity detector
Berger, Kurt W.
2004-08-24
Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.
The extreme ultraviolet explorer mission
NASA Technical Reports Server (NTRS)
Malina, R. F.; Bowyer, S.
1988-01-01
The science design goals and engineering implementation for the Extreme Ultraviolet Explorer (EUVE) science payload are discussed. The primary scientific goal of the EUVE payload is to carry out an all-sky survey in the 100- to 900-A band of the spectrum. Another goal of the mission is to demonstrate the use of a scientific platform in near-earth orbit. EUVE data will be used to study the distribution of EUV stars in the neighborhood of the sun and the emission physics responsible for the EUV mission.
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Cho, Kyung-Suk
2013-09-01
We present a multiwavelength study of the X-class flare, which occurred in active region (AR) NOAA 11339 on 3 November 2011. The extreme ultraviolet (EUV) images recorded by SDO/AIA show the activation of a remote filament (located north of the AR) with footpoint brightenings about 50 min prior to the flare's occurrence. The kinked filament rises up slowly, and after reaching a projected height of ~49 Mm, it bends and falls freely near the AR, where the X-class flare was triggered. Dynamic radio spectrum from the Green Bank Solar Radio Burst Spectrometer (GBSRBS) shows simultaneous detection of both positive and negative drifting pulsating structures (DPSs) in the decimetric radio frequencies (500-1200 MHz) during the impulsive phase of the flare. The global negative DPSs in solar flares are generally interpreted as a signature of electron acceleration related to the upward-moving plasmoids in the solar corona. The EUV images from AIA 94 Å reveal the ejection of multiple plasmoids, which move simultaneously upward and downward in the corona during the magnetic reconnection. The estimated speeds of the upward- and downward-moving plasmoids are ~152-362 and ~83-254 km s-1, respectively. These observations strongly support the recent numerical simulations of the formation and interaction of multiple plasmoids due to tearing of the current-sheet structure. On the basis of our analysis, we suggest that the simultaneous detection of both the negative and positive DPSs is most likely generated by the interaction or coalescence of the multiple plasmoids moving upward and downward along the current-sheet structure during the magnetic reconnection process. Moreover, the differential emission measure (DEM) analysis of the active region reveals a hot flux-rope structure (visible in AIA 131 and 94 Å) prior to the flare initiation and ejection of the multitemperature plasmoids during the flare impulsive phase. Movie is available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Lauinger, Norbert
1999-08-01
Diffractive 3D phase gratings of spherical scatterers dense in hexagonal packing geometry represent adaptively tunable 4D-spatiotemporal filters with trichromatic resonance in visible spectrum. They are described in the (lambda) - chromatic and the reciprocal (nu) -aspects by reciprocal geometric translations of the lightlike Pythagoras theorem, and by the direction cosine for double cones. The most elementary resonance condition in the lightlike Pythagoras theorem is given by the transformation of the grating constants gx, gy, gz of the hexagonal 3D grating to (lambda) h1h2h3 equals (lambda) 111 with cos (alpha) equals 0.5. Through normalization of the chromaticity in the von Laue-interferences to (lambda) 111, the (nu) (lambda) equals (lambda) h1h2h3/(lambda) 111-factor of phase velocity becomes the crucial resonance factor, the 'regulating device' of the spatiotemporal interaction between 3D grating and light, space and time. In the reciprocal space equal/unequal weights and times in spectral metrics result at positions of interference maxima defined by hyperbolas and circles. A database becomes built up by optical interference for trichromatic image preprocessing, motion detection in vector space, multiple range data analysis, patchwide multiple correlations in the spatial frequency spectrum, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Tyler; Kuznetsov, Ilya; Willingham, David
The purpose of this research was to characterize Extreme Ultraviolet Time-of-Flight (EUV TOF) Laser Ablation Mass Spectrometry for high spatial resolution elemental and isotopic analysis. We compare EUV TOF results with Secondary Ionization Mass Spectrometry (SIMS) to orient the EUV TOF method within the overall field of analytical mass spectrometry. Using the well-characterized NIST 61x glasses, we show that the EUV ionization approach produces relatively few molecular ion interferences in comparison to TOF SIMS. We demonstrate that the ratio of element ion to element oxide ion is adjustable with EUV laser pulse energy and that the EUV TOF instrument hasmore » a sample utilization efficiency of 0.014%. The EUV TOF system also achieves a lateral resolution of 80 nm and we demonstrate this lateral resolution with isotopic imaging of closely spaced particles or uranium isotopic standard materials.« less
EUV Cross-Calibration Strategies for the GOES-R SUVI
NASA Astrophysics Data System (ADS)
Darnel, Jonathan; Seaton, Daniel
2016-10-01
The challenges of maintaining calibration for solar EUV instrumentation is well-known. The lack of standard calibration sources and the fact that most solar EUV telescopes are incapable of utilizing bright astronomical EUV sources for calibration make knowledge of instrument performance quite difficult. In the recent past, calibration rocket underflights have helped establish a calibration baseline. The EVE instrument on SDO for a time provided well-calibrated, high spectral resolution solar spectra for a broad range of the EUV, but has suffered a loss of coverage at the shorter wavelengths. NOAA's Solar UltraViolet Imager (SUVI), a solar EUV imager with similarities to SDO/AIA, will provide solar imagery over nearly an entire solar cycle. In order to maintain the scientific value of the SUVI's dataset, novel approaches to calibration are necessary. Here we demonstrate a suite of methods to cross-calibrate SUVI against other solar EUV instruments through the use of proxy solar spectra.
Particle protection capability of SEMI-compliant EUV-pod carriers
NASA Astrophysics Data System (ADS)
Huang, George; He, Long; Lystad, John; Kielbaso, Tom; Montgomery, Cecilia; Goodwin, Frank
2010-04-01
With the projected rollout of pre-production extreme ultraviolet lithography (EUVL) scanners in 2010, EUVL pilot line production will become a reality in wafer fabrication companies. Among EUVL infrastructure items that must be ready, EUV mask carriers remain critical. To keep non-pellicle EUV masks free from particle contamination, an EUV pod concept has been extensively studied. Early prototypes demonstrated nearly particle-free results at a 53 nm PSL equivalent inspection sensitivity during EUVL mask robotic handling, shipment, vacuum pump-purge, and storage. After the passage of SEMI E152, which specifies the EUV pod mechanical interfaces, standards-compliant EUV pod prototypes, including a production version inner pod and prototype outer pod, were built and tested. Their particle protection capability results are reported in this paper. A state-of-the-art blank defect inspection tool was used to quantify their defect protection capability during mask robotic handling, shipment, and storage tests. To ensure the availability of an EUV pod for 2010 pilot production, the progress and preliminary test results of pre-production EUV outer pods are reported as well.
Objective for EUV microscopy, EUV lithography, and x-ray imaging
Bitter, Manfred; Hill, Kenneth W.; Efthimion, Philip
2016-05-03
Disclosed is an imaging apparatus for EUV spectroscopy, EUV microscopy, EUV lithography, and x-ray imaging. This new imaging apparatus could, in particular, make significant contributions to EUV lithography at wavelengths in the range from 10 to 15 nm, which is presently being developed for the manufacturing of the next-generation integrated circuits. The disclosure provides a novel adjustable imaging apparatus that allows for the production of stigmatic images in x-ray imaging, EUV imaging, and EUVL. The imaging apparatus of the present invention incorporates additional properties compared to previously described objectives. The use of a pair of spherical reflectors containing a concave and convex arrangement has been applied to a EUV imaging system to allow for the image and optics to all be placed on the same side of a vacuum chamber. Additionally, the two spherical reflector segments previously described have been replaced by two full spheres or, more precisely, two spherical annuli, so that the total photon throughput is largely increased. Finally, the range of permissible Bragg angles and possible magnifications of the objective has been largely increased.
Initial results from the extreme ultraviolet explorer
NASA Technical Reports Server (NTRS)
Bowyer, S.; Malina, R. F.
1993-01-01
Data obtained during the first five months of calibration and science operation of the Extreme Ultraviolet Explorer (EUVE) are presented. Spectra of an extragalactic object were obtained; the object is detectable to wavelenghts longer than 100 A, demonstrating that extragalactic EUV astronomy is possible. Spectra of a hot white dwarf, and a late-type star in quiescence and flaring are shown as examples of the type of spectrographic data obtainable with EUVE. Other objects for which broad band photometric mode data have been obtained and analyzed include an RS CVn star and several late-type stars. The backgrounds in the EUVE detectors are quite low and the character of the diffuse astronomical EUV background has been investigated using these very low rates. Evidence is presented showing that, contrary to previously published reports, EUVE is about three times more sensitive than the English Wide Field Camera in the short wavelength bandpass covered by both instruments. Only limited information has been extracted from the longer bandpasses coered only by EUVE. Nonetheless, the brightest EUV source in the sky, a B star, has been discovered and is detected only in these longer bandpasses.
Surface roughness control by extreme ultraviolet (EUV) radiation
NASA Astrophysics Data System (ADS)
Ahad, Inam Ul; Obeidi, Muhannad Ahmed; Budner, Bogusław; Bartnik, Andrzej; Fiedorowicz, Henryk; Brabazon, Dermot
2017-10-01
Surface roughness control of polymeric materials is often desirable in various biomedical engineering applications related to biocompatibility control, separation science and surface wettability control. In this study, Polyethylene terephthalate (PET) polymer films were irradiated with Extreme ultraviolet (EUV) photons in nitrogen environment and investigations were performed on surface roughness modification via EUV exposure. The samples were irradiated at 3 mm and 4 mm distance from the focal spot to investigate the effect of EUV fluence on topography. The topography of the EUV treated PET samples were studied by AFM. The detailed scanning was also performed on the sample irradiated at 3 mm. It was observed that the average surface roughness of PET samples was increased from 9 nm (pristine sample) to 280 nm and 253 nm for EUV irradiated samples. Detailed AFM studies confirmed the presence of 1.8 mm wide period U-shaped channels in EUV exposed PET samples. The walls of the channels were having FWHM of about 0.4 mm. The channels were created due to translatory movements of the sample in horizontal and transverse directions during the EUV exposure. The increased surface roughness is useful for many applications. The nanoscale channels fabricated by EUV exposure could be interesting for microfluidic applications based on lab-on-a-chip (LOC) devices.
EUV mask pilot line at Intel Corporation
NASA Astrophysics Data System (ADS)
Stivers, Alan R.; Yan, Pei-Yang; Zhang, Guojing; Liang, Ted; Shu, Emily Y.; Tejnil, Edita; Lieberman, Barry; Nagpal, Rajesh; Hsia, Kangmin; Penn, Michael; Lo, Fu-Chang
2004-12-01
The introduction of extreme ultraviolet (EUV) lithography into high volume manufacturing requires the development of a new mask technology. In support of this, Intel Corporation has established a pilot line devoted to encountering and eliminating barriers to manufacturability of EUV masks. It concentrates on EUV-specific process modules and makes use of the captive standard photomask fabrication capability of Intel Corporation. The goal of the pilot line is to accelerate EUV mask development to intersect the 32nm technology node. This requires EUV mask technology to be comparable to standard photomask technology by the beginning of the silicon wafer process development phase for that technology node. The pilot line embodies Intel's strategy to lead EUV mask development in the areas of the mask patterning process, mask fabrication tools, the starting material (blanks) and the understanding of process interdependencies. The patterning process includes all steps from blank defect inspection through final pattern inspection and repair. We have specified and ordered the EUV-specific tools and most will be installed in 2004. We have worked with International Sematech and others to provide for the next generation of EUV-specific mask tools. Our process of record is run repeatedly to ensure its robustness. This primes the supply chain and collects information needed for blank improvement.
Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings.
Ashrafi, Reza; Azaña, José
2012-07-01
A novel, all-optical design for implementing terahertz (THz) bandwidth real-time Hilbert transformers is proposed and numerically demonstrated. An all-optical Hilbert transformer can be implemented using a uniform-period long-period grating (LPG) with a properly designed amplitude-only grating apodization profile, incorporating a single π-phase shift in the middle of the grating length. The designed LPG-based Hilbert transformers can be practically implemented using either fiber-optic or integrated-waveguide technologies. As a generalization, photonic fractional Hilbert transformers are also designed based on the same optical platform. In this general case, the resulting LPGs have multiple π-phase shifts along the grating length. Our numerical simulations confirm that all-optical Hilbert transformers capable of processing arbitrary optical signals with bandwidths well in the THz range can be implemented using feasible fiber/waveguide LPG designs.
High speed demodulation systems for fiber optic grating sensors
NASA Technical Reports Server (NTRS)
Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)
2002-01-01
Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.
EUVE GO Survey: High Levels of User Satisfaction
NASA Astrophysics Data System (ADS)
Stroozas, B. A.
2000-12-01
This paper describes the results of a detailed customer survey of Guest Observers (GOs) for NASA's Extreme Ultraviolet Explorer (EUVE) astronomy satellite observatory. The purpose of the research survey was to (1) measure the levels of GO customer satisfaction with respect to EUVE observing services, and (2) compare the observing experiences of EUVE GOs with their experiences using other satellite observatories. This survey was conducted as a business research project -- part of the author's graduate work as an MBA candidate. A total sample of 38 respondents, from a working population of 101 "active" EUVE GOs, participated in this survey. The results, which provided a profile of the "typical" EUVE GO, showed in a statistically significant fashion that these GOs were more than satisfied with the available EUVE observing services. In fact, the sample GOs generally rated their EUVE observing experiences to be better than average as compared to their experiences as GOs on other missions. These relatively high satisfaction results are particularly pleasing to the EUVE Project which, given its significantly reduced staffing environment at U.C. Berkeley, has continued to do more with less. This paper outlines the overall survey process: the relevant background and previous research, the survey design and methodology, and the final results and their interpretation. The paper also points out some general limitations and weaknesses of the study, along with some recommended actions for the EUVE Project and for NASA in general. This work was funded by NASA/UCB Cooperative Agreement NCC5-138.
Temporal variations of solar EUV, UV, and 10,830-A radiations
NASA Technical Reports Server (NTRS)
Donnelly, R. F.; Hinteregger, H. E.; Heath, D. F.
1986-01-01
The temporal characteristics of the full-disk chromospheric EUV fluxes agree well with those of the ground-based measurements of the chromospheric He I absorption line at 10,830 A and differ systematically from those of the coronal EUV and 10.7-cm flux. The ratio of the flux increase during the rise of solar cycle 21 to that during solar rotation variations is uniformly high for the chromospheric EUV and corroborating 10,830-A fluxes, highest for the transition region and 'cool' coronal EUV fluxes (T less than 2 x 10 to the 6th K), and lowest for the 'hot' coronal EUV and 10.7-cm flux. The rise and decay rates of episodes of major activity progress from those for the hot coronal EUV lines and the 10.7-cm flux to slower values for the chromospheric H Lyman alpha line, 10,830-A line, and photospheric 2050-A UV flux. It is suggested that active region remnants contribute significantly to the solar cycle increase and during the decay of episodes of major activity. The ratio of power in 13-day periodicity to that for 27 days in high (1/3) for the photospheric UV flux, medium (1/6) for the chromospheric EUV and 10,830-A fluxes, and small to negligible for the hot coronal EUV fluxes. These ratios are used to estimate the dependence of active region emission on the solar central meridian distance for chromospheric and coronal EUV flux.
Fundamentals of EUV resist-inorganic hardmask interactions
NASA Astrophysics Data System (ADS)
Goldfarb, Dario L.; Glodde, Martin; De Silva, Anuja; Sheshadri, Indira; Felix, Nelson M.; Lionti, Krystelle; Magbitang, Teddie
2017-03-01
High resolution Extreme Ultraviolet (EUV) patterning is currently limited by EUV resist thickness and pattern collapse, thus impacting the faithful image transfer into the underlying stack. Such limitation requires the investigation of improved hardmasks (HMs) as etch transfer layers for EUV patterning. Ultrathin (<5nm) inorganic HMs can provide higher etch selectivity, lower post-etch LWR, decreased defectivity and wet strippability compared to spin-on hybrid HMs (e.g., SiARC), however such novel layers can induce resist adhesion failure and resist residue. Therefore, a fundamental understanding of EUV resist-inorganic HM interactions is needed in order to optimize the EUV resist interfacial behavior. In this paper, novel materials and processing techniques are introduced to characterize and improve the EUV resist-inorganic HM interface. HM surface interactions with specific EUV resist components are evaluated for open-source experimental resist formulations dissected into its individual additives using EUV contrast curves as an effective characterization method to determine post-development residue formation. Separately, an alternative adhesion promoter platform specifically tailored for a selected ultrathin inorganic HM based on amorphous silicon (aSi) is presented and the mitigation of resist delamination is exemplified for the cases of positive-tone and negative-tone development (PTD, NTD). Additionally, original wafer priming hardware for the deposition of such novel adhesion promoters is unveiled. The lessons learned in this work can be directly applied to the engineering of EUV resist materials and processes specifically designed to work on such novel HMs.
Multi-parameter fiber optic sensors based on fiber random grating
NASA Astrophysics Data System (ADS)
Xu, Yanping; Zhang, Mingjiang; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi
2017-04-01
Two novel configurations of multi-parameter fiber-optic sensing systems based on the fiber random grating are reported. The fiber random grating is fabricated through femtosecond laser induced refractive index modification over a 10cm standard telecom single mode fiber. In one configuration, the reflective spectrum of the fiber random grating is directly detected and a wavelength-division spectral cross-correlation algorithm is adopted to extract the spectral shifts for simultaneous measurement of temperature, axial strain, and surrounding refractive index. In the other configuration, a random fiber ring laser is constructed by incorporating the random feedback from the random grating. Numerous polarization-dependent spectral filters are formed along the random grating and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which enables a high-fidelity multi-parameter sensing scheme by monitoring the spectral shifts of the lasing lines. Without the need of phase mask for fabrication and with the high physical strength, the random grating based sensors are much simpler and more compact, which could be potentially an excellent alternative for liquid medical sample sensing in biomedical and biochemical applications.
Post-inscription tuning of multicore fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Lindley, Emma Y.; Min, Seong-sik; Leon-Saval, Sergio G.; Bland-Hawthorn, Joss
2016-07-01
Fiber Bragg gratings are used in astronomy for their ability to suppress narrow atmospheric emission lines of temporally varying brightness before the light is dispersed. These gratings can only operate in a single-mode fiber as the suppressed wavelength depends on mode velocity in the core. Recent experiments with fibers containing multiple single-moded cores have demonstrated the potential for inscribing identical gratings across all cores in a single pass. We have already improved the uniformity of gratings in 7-core fibers via modifications to the writing process; further progress can be achieved by tuning the gratings of the outer and inner cores relative to one another. Our eventual goal is to make the entire fiber suppress one wavelength to a depth of 30 dB or greater. By coating the fiber in a heat-conductive material with a high expansion coefficient, we can examine the effects of temperature and strain on the spectral response of each core. In this paper we present methods and results from experiments concerning the post-write tuning of gratings in multicore fibers.
Han, Sunwoo; Lee, Bong Jae
2016-01-25
In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum.
NASA Astrophysics Data System (ADS)
Schmidtke, G.; Jacobi, Ch.; Nikutowski, B.; Erhardt, Ch.
2014-11-01
After a historical survey of space related EUV measurements in Germany and the role of Karl Rawer in pursuing this work, we describe present developments in EUV spectroscopy and provide a brief outlook on future activities. The group of Karl Rawer has performed the first scientific space project in Western Europe on 19th October 1954. Then it was decided to include the field of solar EUV spectroscopy in ionospheric investigations. Starting in 1957 an intensified development of instrumentation was going on to explore solar EUV radiation, atmospheric airglow and auroral emissions until the institute had to stop space activities in the early nineteen-eighties. EUV spectroscopy was continued outside of the institute during eight years. This area of work was supported again by the institute developing the Auto-Calibrating Spectrometers (SolACES) for a mission on the International Space Station (ISS). After more than six years in space the instrument is still in operation. Meanwhile the work on the primary task also to validate EUV data available from other space missions has made good progress. The first results of validating those data and combine them into one set of EUV solar spectral irradiance are very promising. It will be recommended for using it by the science and application community. Moreover, a new low-cost type of an EUV spectrometer is presented for monitoring the solar EUV radiation. It shall be further developed for providing EUV-TEC data to be applied in ionospheric models replacing the Covington index F10.7. Applying these data for example in the GNSS signal evaluation a more accurate determination of GNSS receiver positions is expected for correcting the propagation delays of navigation signals traveling through the ionosphere from space to earth. - Latest results in the field of solar EUV spectroscopy are discussed, too.
NASA Astrophysics Data System (ADS)
Lee, Hana; Kim, Jhoon; Kim, Woogyung; Lee, Yun Gon; Cho, Hi Ku
2015-04-01
In recent years, there have been substantial attempts to model the radiative transfer for climatological and biological purposes. However, the incorporation of clouds, aerosols and ozone into the modeling process is one of the difficult tasks due to their variable transmission in both temporal and space domains. In this study we quantify the atmospheric transmissions by clouds, aerosol optical depth (AOD at 320 nm) and total ozone (Ozone) together with all skies in three solar radiation components of the global solar (GS 305-2800nm), total ultraviolet (TUV 290-363nm) and the erythemal weighted ultraviolet (EUV 290-325nm) irradiances with statistical methods using the data at Seoul. The purpose of this study also is to clarify the different characteristics between cloud, AOD and Ozone in the wavelength-dependent solar radiation components. The ozone, EUV and TUV used in this study (March 2003 - February 2014) have been measured with Dobson Spectrophotometer (Beck #124) and Brewer Spectrophotometer (SCI-TEC#148) at Yonsei University, respectively. GS, Cloud Cover (CC) are available from the Korean Meteorological Agency. The measured total (effect of cloud, aerosol, and ozone) transmissions on annual average showed 74%, 76% and 80% of GS, TUV and EUV irradiance, respectively. For the comparison of the measured values with modeled, we have also constructed a multiple linear regression model for the total transmission. The average ratio of measured to modeled total transmission were 0.94, 0.96 and 0.96 with higher measured than modeled value in the three components, respectively, The individual transmission by clouds under the constant AOD and Ozone atmosphere on average showed 68%, 71% and 76% and further the overcast clouds reduced the transmissions to the 45%, 54% and 59% of the clear sky irradiance in the GS, TUV and EUV, respectively. The annual transmissions by AOD showed on average 67%, 70% and 74% and further the high loadings 2.5-4.0 AOD reduced the transmission to 50%, 52% and 55% of clear sky irradiance under the contact cloud and ozone atmosphere in the GS, TUV and EUV, respectively. And annual average EUV transmission by Ozone was 75 % of the clear-sky value under the constant CC and AOD. In future study, we are compare OMI data with ground-based instruments in order to use measured data for scientific studies.
Development of a EUV Test Facility at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy
2011-01-01
This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.
Design and progress in the fabrication of an EUV micro exposure tool optics for PREUVE
NASA Astrophysics Data System (ADS)
Geyl, Roland; Tanne, Jean-Francois
2001-12-01
SAGEM, through its REOSC product line, is participating since November 1999 to PREUVE, the French EUV initiative, and work within this program especially in the field of EUV illumination and projection optics. After a short description of the PREUVE main lines of activity, we will detail our contributions to this program and work progress. This is mainly focused on basic EUV optics fabrication technology in order to ensure the fabrication of the entire optics assembly of an EUV micro exposure tool.
Park, In-Yong; Ahn, Sanghoon; Kim, Youngduk; Bae, Han-Sung; Kang, Hee-Shin; Yoo, Jason; Noh, Jiwhan
2017-06-26
Here, we investigate a method to distinguish the counterfeits by patterning multiple reflective type grating directly on the surface of the original product and analyze the serial number from its rotation angles of diffracted fringes. The micro-sized gratings were fabricated on the surface of the material at high speeds by illuminating the interference fringe generated by passing a high-energy pulse laser through the Fresnel biprism. In addition, analysis of the grating's diffraction fringes was performed using a continuous wave laser.
Status of EUVL mask development in Europe (Invited Paper)
NASA Astrophysics Data System (ADS)
Peters, Jan H.
2005-06-01
EUV lithography is the prime candidate for the next generation lithography technology after 193 nm immersion lithography. The commercial onset for this technology is expected for the 45 nm half-pitch technology or below. Several European and national projects and quite a large number of companies and research institutions in Europe work on various aspects of the technological challenges to make EUV a commercially viable technology in the not so far future. Here the development of EUV sources, the development of an EUV exposure tools, metrology tools dedicated for characterization of mask, the production of EUV mask blanks and the mask structuring itself are the key areas in which major activities can be found. In this talk we will primarily focus on those activities, which are related to establish an EUV mask supply chain with all its ingredients from substrate production, polishing, deposition of EUV layers, blank characterization, mask patterning process and the consecutive metrology and defect inspection as well as shipping and handling from blank supply to usage in the wafer fab. The EUV mask related projects on the national level are primarily supported by the French Ministry of Economics and Finance (MinEFi) and the German Ministry of Education and Research (BMBF).
EUV laser produced and induced plasmas for nanolithography
NASA Astrophysics Data System (ADS)
Sizyuk, Tatyana; Hassanein, Ahmed
2017-10-01
EUV produced plasma sources are being extensively studied for the development of new technology for computer chips production. Challenging tasks include optimization of EUV source efficiency, producing powerful source in 2 percentage bandwidth around 13.5 nm for high volume manufacture (HVM), and increasing the lifetime of collecting optics. Mass-limited targets, such as small droplet, allow to reduce contamination of chamber environment and mirror surface damage. However, reducing droplet size limits EUV power output. Our analysis showed the requirement for the target parameters and chamber conditions to achieve 500 W EUV output for HVM. The HEIGHTS package was used for the simulations of laser produced plasma evolution starting from laser interaction with solid target, development and expansion of vapor/plasma plume with accurate optical data calculation, especially in narrow EUV region. Detailed 3D modeling of mix environment including evolution and interplay of plasma produced by lasers from Sn target and plasma produced by in-band and out-of-band EUV radiation in ambient gas, used for the collecting optics protection and cleaning, allowed predicting conditions in entire LPP system. Effect of these conditions on EUV photon absorption and collection was analyzed. This work is supported by the National Science Foundation, PIRE project.
Mechanisms of EUV exposure: electrons and holes
NASA Astrophysics Data System (ADS)
Narasimhan, Amrit; Grzeskowiak, Steven; Ackerman, Christian; Flynn, Tracy; Denbeaux, Greg; Brainard, Robert L.
2017-03-01
In extreme ultraviolet (EUV) lithography, 92 eV photons are used to expose photoresists. Current EUV photoresists are composed of photoacid generators (PAGs) in polymer matrices. Secondary electrons (2 - 80 eV) created in resists during EUV exposure play large role in acid-production. There are several proposed mechanisms for electron-resist interactions: internal excitation, electron trapping, and hole-initiated chemistry. Here, we will address two central questions in EUV resist research: (1) How many electrons are generated per EUV photon absorption? (2) By which mechanisms do these electrons interact and react with molecules in the resist? We will use this framework to evaluate the contributions of electron trapping and hole initiated chemistry to acid production in chemically amplified photoresists, with specific emphasis on the interdependence of these mechanisms. We will show measurements of acid yield from direct bulk electrolysis of PAGs and EUV exposures of PAGs in phenolic and nonphenolic polymers to narrow down the mechanistic possibilities in chemically amplified resists.
Solar EUV irradiance for space weather applications
NASA Astrophysics Data System (ADS)
Viereck, R. A.
2015-12-01
Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.
First environmental data from the EUV engineering test stand
NASA Astrophysics Data System (ADS)
Klebanoff, Leonard E.; Malinowski, Michael E.; Grunow, Philip A.; Clift, W. Miles; Steinhaus, Chip; Leung, Alvin H.; Haney, Steven J.
2001-08-01
The first environmental data from the Engineering Test Stand (ETS) has been collected. Excellent control of high-mass hydrocarbons has been observed. This control is a result of extensive outgas testing of components and materials, vacuum compatible design of the ETS, careful cleaning of parts and pre-baking of cables and sub assemblies where possible, and clean assembly procedures. As a result of the hydrocarbon control, the residual ETS vacuum environment is rich in water vapor. Analysis of witness plate data indicates that the ETS environment does not pose a contamination risk to the optics in the absence of EUV irradiation. However, with EUV exposure, the water rich environment can lead to EUV- induced water oxidation of the Si-terminated Mo/Si optics. Added ethanol can prevent optic oxidation, allowing carbon growth via EUV cracking of low-level residual hydrocarbons to occur. The EUV environmental issues are understood, mitigation approaches have been validated, and EUV optic contamination appears to be manageable.
Divertor extreme ultraviolet (EUV) survey spectroscopy in DIII-D
NASA Astrophysics Data System (ADS)
McLean, Adam; Allen, Steve; Ellis, Ron; Jarvinen, Aaro; Soukhanovskii, Vlad; Boivin, Rejean; Gonzales, Eduardo; Holmes, Ian; Kulchar, James; Leonard, Anthony; Williams, Bob; Taussig, Doug; Thomas, Dan; Marcy, Grant
2017-10-01
An extreme ultraviolet spectrograph measuring resonant emissions of D and C in the lower divertor has been added to DIII-D to help resolve an 2X discrepancy between bolometrically measured radiated power and that predicted by boundary codes for DIII-D, JET and ASDEX-U. With 290 and 450 gr/mm gratings, the DivSPRED spectrometer, an 0.3 m flat-field McPherson model 251, measures ground state transitions for D (the Lyman series) and C (e.g., C IV, 155 nm) which account for >75% of radiated power in the divertor. Combined with Thomson scattering and imaging in the DIII-D divertor, measurements of position, temperature and fractional power emission from plasma components are made and compared to UEDGE/SOLPS-ITER. Mechanical, optical, electrical, vacuum, and shielding aspects of DivSPRED are presented. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698 and DE-AC52-07NA27344, and by the LLNL Laboratory Directed R&D Program, project #17-ERD-020.
Temporal and Spatial Variability of the Martian Hot Oxygen Corona
NASA Astrophysics Data System (ADS)
Deighan, J.; Jain, S.; Chaffin, M.; Chaufray, J. Y.; Schneider, N. M.; Clarke, J. T.; Mayyasi, M.; Lillis, R. J.; Eparvier, F. G.; Thiemann, E.; Chamberlin, P. C.
2017-12-01
The dominant loss mechanism of oxygen from Mars to space in the current epoch is thought to be photochemical escape of hot oxygen produced by dissociative recombination of O2+. This ion is ultimately sourced from CO2+, which is the primary product of photoionization. The escaping hot oxygen population is accompanied by a gravitationally bound hot oxygen corona produced by the same mechanism. The MAVEN spacecraft has been at Mars since November 2014, with multiple seasons suitable for the IUVS instrument to observe the dayside hot oxygen corona via fluorescence of the O I 130.4 nm triplet. This provides the opportunity to examine temporal variations associated with changes in the photoionizing solar EUV radiation which produces CO2+ and O2+ ions. We present results based on two seasons: LS = 270 in Mars Year 32 during the maximum of Solar Cycle 24 and LS = 210 in Mars Year 33 late in the declining phase of the same Solar Cycle. The data in both seasons contain multiple solar rotations. We compare the oxygen corona density to the EUV solar flux measured by MAVEN/EUVM and ionization frequencies calculated therefrom. The peak brightness of ionospheric CO2+ UVD emission from IUVS limb scans is also used as a direct indicator of the photoionization frequency. As expected, the result is a strong correlation between solar EUV input, observed ionization frequency, and the density of the hot oxygen corona. In addition, a new observation strategy was employed during the MY 33 season to view the Martian corona near the sub-solar point with anti-parallel lines of sight from opposing hemispheres. These observations reveal a significant hemispherical asymmetry in brightness, providing a constraint on the large scale spatial variability of the dayside oxygen corona.
Multi-trigger resist patterning with ASML NXE3300 EUV scanner
NASA Astrophysics Data System (ADS)
Vesters, Yannick; McClelland, Alexandra; De Simone, Danilo; Popescu, Carmen; Dawson, Guy; Roth, John; Theis, Wolfgang; Vandenberghe, Geert; Robinson, Alex P. G.
2018-03-01
Irresistible Materials (IM) is developing novel resist systems based on the multi-trigger concept, which incorporates a dose dependent quenching-like behaviour. The Multi Trigger Resist (MTR) is a negative tone crosslinking resist that does not need a post exposure bake (PEB), and during the past years, has been mainly tested using interference lithography at PSI. In this study, we present the results that have been obtained using MTR resists, performing EUV exposures on ASML NXE3300B EUV scanner at IMEC. We present the lithography performance of the MTR1 resist series in two formulations - a high-speed baseline, and a formulation designed to enhance the multi-trigger behaviour. Additionally, we present results for the MTR2 resist series, which has been designed for lower line edge roughness. The high-speed baseline resist (MTR1), showed 18 nm resolution at 20mJ/cm2. The MTR2 resist shows 16nm half pitch lines patterned with a dose of 38mJ/cm2, giving a LER of 3.7 nm. Performance across multiple process conditions are discussed. We performed etch rate measurement and the multi-trigger resist showed etch resistance equivalent or better than standard chemically amplified resist. This could compensate for the lower film thickness required to avoid pattern collapse at pitch 32nm.
“Dandelion” Filament Eruption and Coronal Waves Associated with a Solar Flare on 2011 February 16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabezas, Denis P.; Ishitsuka, Mutsumi; Ishitsuka, José K.
Coronal disturbances associated with solar flares, such as H α Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves, are discussed herein in relation to magnetohydrodynamic fast-mode waves or shocks in the corona. To understand the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a “dandelion,” associated with the M1.6 flare that occurred on 2011 February 16 in H α images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field ofmore » the erupting filament. We also identify winking filaments that are located far from the flare site in the H α images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the EUV images data taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and by the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory-Ahead , we confirm that the winking filaments were activated by the EUV coronal wave.« less
Robust characterization of small grating boxes using rotating stage Mueller matrix polarimeter
NASA Astrophysics Data System (ADS)
Foldyna, M.; De Martino, A.; Licitra, C.; Foucher, J.
2010-03-01
In this paper we demonstrate the robustness of the Mueller matrix polarimetry used in multiple-azimuth configuration. We first demonstrate the efficiency of the method for the characterization of small pitch gratings filling 250 μm wide square boxes. We used a Mueller matrix polarimeter directly installed in the clean room has motorized rotating stage allowing the access to arbitrary conical grating configurations. The projected beam spot size could be reduced to 60x25 μm, but for the measurements reported here this size was 100x100 μm. The optimal values of parameters of a trapezoidal profile model, acquired for each azimuthal angle separately using a non-linear least-square minimization algorithm, are shown for a typical grating. Further statistical analysis of the azimuth-dependent dimensional parameters provided realistic estimates of the confidence interval giving direct information about the accuracy of the results. The mean values and the standard deviations were calculated for 21 different grating boxes featuring in total 399 measured spectra and fits. The results for all boxes are summarized in a table which compares the optical method to the 3D-AFM. The essential conclusion of our work is that the 3D-AFM values always fall into the confidence intervals provided by the optical method, which means that we have successfully estimated the accuracy of our results without using direct comparison with another, non-optical, method. Moreover, this approach may provide a way to improve the accuracy of grating profile modeling by minimizing the standard deviations evaluated from multiple-azimuths results.
CXRO - Mi-Young Im, Staff Scientist
X-Ray Database Zone Plate Education Nanomagnetism X-Ray Microscopy LDJIM EUV Lithography EUV Mask Publications Contact The Center for X-Ray Optics is a multi-disciplined research group within Lawrence Berkeley -Ray Optics X-Ray Database Nanomagnetism X-Ray Microscopy EUV Lithography EUV Mask Imaging
NASA Astrophysics Data System (ADS)
Thorstensen, J. R.; Vennes, S.
1993-12-01
The binary system EUVE J2013+40.0 (= RE 2013+400) was discovered in the EUV-selected sample of white dwarfs identified in the course of the ROSAT Wide Field Camera (WFC) all-sky survey (Pounds et al. 1993, MNRAS, 260, 77). The intense extreme ultraviolet (EUV) emission from the hot white dwarf (DAO type) was also detected in the course of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (Bowyer et al. 1993, ApJ, submitted), and the subsequent optical identification campaign suggested the association of EUVE J2013+40.0 with the Feige 24 class of binary systems (see Vennes & Thorstensen, these proceedings). Such systems consist of a hot H-rich white dwarf (DA/DAO) and a red dwarf companion (dM) and are characterized by strong, narrow, variable Balmer emission. We obtained spectroscopy with 4 Angstroms resolution at the Michigan-Dartmouth-MIT Hiltner 2.4 m, covering the Hα and Hβ range. The Hα emission line velocity and equivalent widths varied with a period of 0.708 +/- 0.003 d; the velocity semiamplitude is 89 +/- 3 km s(-1) . The emission equivalent width reaches maximum strength 0.251 +/- 0.007 cycle after maximum emission-line velocity, that is, when the emission source reaches superior conjunction. This is just as expected if the emission arises from reprocessing of the EUV radiation incident upon the face of the dM star facing the white dwarf, as proposed for Feige 24 by Thorstensen et al. (1978, ApJ, 223, 260). EUVE J2013+40.0 is one of a handful of WD+dM binary systems in which the illumination effect is observed with unambiguous clarity. By comparing Feige 24 and EUVE J2013+40.0, and modelling the white dwarf EUV emission and red dwarf Balmer emission, we constrain the orbital inclinations. Additional spectroscopy of EUVE J2013+40.0 is being scheduled to determine the component masses. These are important input data for the study of the close binary systems which arise from common envelope evolution. This work is supported by a forthcoming NASA Guest Observer grant.
Multiple-channel guided mode resonance Brewster filter with controllable spectral separation.
Ma, Jianyong; Cao, Hongchao; Zhou, Changhe
2014-05-01
In this work, a single-layer, multiple-channel guided mode resonance (GMR) Brewster filter with controllable spectral separation is proposed using the plane waveguide method and rigorous coupled-wave analysis. Based on the normalized eigenvalue equation, the controllability of the spectral separation is analyzed when the fill ratio of the grating layer is changed while its effective index is identical to that of the substrate. The location and the separation between resonances can be specifically controlled by modifying the fill ratio of the grating layer. In contrast to the ordinary GMR filter, where the location of the resonances is material dependent, it is demonstrated that the spectral separation for the first and second resonances can be linearly controlled by altering the fill ratio of the grating layer. In addition, the maximal shift of the second resonance is up to 5% of the first resonant wavelength using the single-layer Brewster filter.
EUV mask manufacturing readiness in the merchant mask industry
NASA Astrophysics Data System (ADS)
Green, Michael; Choi, Yohan; Ham, Young; Kamberian, Henry; Progler, Chris; Tseng, Shih-En; Chiou, Tsann-Bim; Miyazaki, Junji; Lammers, Ad; Chen, Alek
2017-10-01
As nodes progress into the 7nm and below regime, extreme ultraviolet lithography (EUVL) becomes critical for all industry participants interested in remaining at the leading edge. One key cost driver for EUV in the supply chain is the reflective EUV mask. As of today, the relatively few end users of EUV consist primarily of integrated device manufactures (IDMs) and foundries that have internal (captive) mask manufacturing capability. At the same time, strong and early participation in EUV by the merchant mask industry should bring value to these chip makers, aiding the wide-scale adoption of EUV in the future. For this, merchants need access to high quality, representative test vehicles to develop and validate their own processes. This business circumstance provides the motivation for merchants to form Joint Development Partnerships (JDPs) with IDMs, foundries, Original Equipment Manufacturers (OEMs) and other members of the EUV supplier ecosystem that leverage complementary strengths. In this paper, we will show how, through a collaborative supplier JDP model between a merchant and OEM, a novel, test chip driven strategy is applied to guide and validate mask level process development. We demonstrate how an EUV test vehicle (TV) is generated for mask process characterization in advance of receiving chip maker-specific designs. We utilize the TV to carry out mask process "stress testing" to define process boundary conditions which can be used to create Mask Rule Check (MRC) rules as well as serve as baseline conditions for future process improvement. We utilize Advanced Mask Characterization (AMC) techniques to understand process capability on designs of varying complexity that include EUV OPC models with and without sub-resolution assist features (SRAFs). Through these collaborations, we demonstrate ways to develop EUV processes and reduce implementation risks for eventual mass production. By reducing these risks, we hope to expand access to EUV mask capability for the broadest community possible as the technology is implemented first within and then beyond the initial early adopters.
Monolithic integrated optic fiber Bragg grating sensor interrogator
NASA Astrophysics Data System (ADS)
Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian
2010-04-01
Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.
NASA Astrophysics Data System (ADS)
Lario, D.; Kwon, R.-Y.; Riley, P.; Raouafi, N. E.
2017-10-01
Under the paradigm that the main agents in the acceleration of solar energetic particles (SEPs) are shocks initially driven by coronal mass ejections, we analyze whether the properties of the shocks in the corona inferred from combining extreme-ultraviolet (EUV) and white-light (WL) observations from multiple vantage points together with magnetohydrodynamic (MHD) simulations of the corona can be used to determine the release of SEPs into different regions of the heliosphere and hence determine the longitudinal extent of the SEP events. We analyze the SEP events observed on 2011 November 3, 2013 April 11, and 2014 February 25 over a wide range of heliolongitudes. MHD simulations provide the characteristics of the background medium where shocks propagate, in particular the Alfvén and sound speed profiles that allow us to determine both the extent of the EUV waves in the low corona and the fast magnetosonic Mach number (M FM) of the shocks. The extent of the EUV waves in the low corona is controlled by this background medium and does not coincide with the extent of the SEP events in the heliosphere. Within the uncertainties of (I) the extent and speed of the shock inferred from EUV and WL images and (II) the assumptions made in the MHD models, we follow the evolution of M FM at the region of the shock magnetically connected to each spacecraft. The estimated release times of the first SEPs measured by each spacecraft does not coincide with the time when the M FM at this region exceeds a given threshold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lario, D.; Kwon, R.-Y.; Raouafi, N. E.
Under the paradigm that the main agents in the acceleration of solar energetic particles (SEPs) are shocks initially driven by coronal mass ejections, we analyze whether the properties of the shocks in the corona inferred from combining extreme-ultraviolet (EUV) and white-light (WL) observations from multiple vantage points together with magnetohydrodynamic (MHD) simulations of the corona can be used to determine the release of SEPs into different regions of the heliosphere and hence determine the longitudinal extent of the SEP events. We analyze the SEP events observed on 2011 November 3, 2013 April 11, and 2014 February 25 over a widemore » range of heliolongitudes. MHD simulations provide the characteristics of the background medium where shocks propagate, in particular the Alfvén and sound speed profiles that allow us to determine both the extent of the EUV waves in the low corona and the fast magnetosonic Mach number ( M {sub FM}) of the shocks. The extent of the EUV waves in the low corona is controlled by this background medium and does not coincide with the extent of the SEP events in the heliosphere. Within the uncertainties of (i) the extent and speed of the shock inferred from EUV and WL images and (ii) the assumptions made in the MHD models, we follow the evolution of M {sub FM} at the region of the shock magnetically connected to each spacecraft. The estimated release times of the first SEPs measured by each spacecraft does not coincide with the time when the M {sub FM} at this region exceeds a given threshold.« less
NASA Astrophysics Data System (ADS)
Wang, Ya; Su, Yingna; Shen, Jinhua; Yang, Xu; Cao, Wenda; Ji, Haisheng
2018-06-01
In this paper, we report our second-part result for the M1.8 class flare on 2012 July 5, with an emphasis on the initiation process for the flare-associated filament eruption. The data set consists of high-resolution narrowband images in He I 10830 Å and broadband images in TiO 7057 Å taken at Big Bear Solar Observatory with the 1.6 m aperture Goode Solar Telescope. EUV images in different passbands observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory are used to distinguish hot plasma from cool plasma structures during the flare process. High-resolution 10830 Å images clearly show that, below the horizontal fibrils, which correspond to the filament’s spine in full-disk Hα images, a sheared arch filament system (AFS) lies across the penumbra and surrounding satellite sunspots, between which continuous shearing motion is observed. Before the eruption, three microflares occurred successively and were followed by the appearance of three EUV hot channels. Two hot channels erupted, producing two flaring sites and two major peaks in GOES soft X-ray light curves; however, one hot channel’s eruption failed. The 10830 Å imaging enables us to trace the first two hot channels to their very early stage, which is signified by the rising of the AFS after the first two precursors. Continuous flux emergence and localized flare-associated cancellation are observed under the AFS. In addition, EUV ejections were observed during the formation of the EUV hot channels. These observations support the fact that the hot channels are the result of magnetic reconnections during precursors.
ANALYSIS AND MODELING OF TWO FLARE LOOPS OBSERVED BY AIA AND EIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Ding, M. D.; Qiu, J.
2012-10-10
We analyze and model an M1.0 flare observed by SDO/AIA and Hinode/EIS to investigate how flare loops are heated and evolve subsequently. The flare is composed of two distinctive loop systems observed in extreme ultraviolet (EUV) images. The UV 1600 A emission at the feet of these loops exhibits a rapid rise, followed by enhanced emission in different EUV channels observed by the Atmospheric Imaging Assembly (AIA) and the EUV Imaging Spectrometer (EIS). Such behavior is indicative of impulsive energy deposit and the subsequent response in overlying coronal loops that evolve through different temperatures. Using the method we recently developed,more » we infer empirical heating functions from the rapid rise of the UV light curves for the two loop systems, respectively, treating them as two big loops with cross-sectional area of 5'' by 5'', and compute the plasma evolution in the loops using the EBTEL model. We compute the synthetic EUV light curves, which, with the limitation of the model, reasonably agree with observed light curves obtained in multiple AIA channels and EIS lines: they show the same evolution trend and their magnitudes are comparable by within a factor of two. Furthermore, we also compare the computed mean enthalpy flow velocity with the Doppler shift measurements by EIS during the decay phase of the two loops. Our results suggest that the two different loops with different heating functions as inferred from their footpoint UV emission, combined with their different lengths as measured from imaging observations, give rise to different coronal plasma evolution patterns captured both in the model and in observations.« less
Intracore and extracore examination of fiber gratings with coherent detection
NASA Astrophysics Data System (ADS)
Froggatt, Mark Earl
2001-06-01
This thesis introduces several new methods of measurement to aid in the production and evaluation of Bragg gratings in optical fiber. Five measurements are described: UV fringe visualization for grating production, weak grating measurement for distributed sensing, strong grating measurement for telecommunication applications, second harmonic grating measurement for grating chirp assessment, and grating visualization using radiation diffraction from strong Bragg gratings. The weak grating measurement for distributed strain sensing is a summary of work published prior to beginning the thesis research, and is provided for background purposes. The UV fringe visualization is accomplished by using a phase mask very close to the plane of the fiber to diffract the incoming beams used to write the Bragg grating into nearly parallel alignment, leading to macroscopic fringes indicative of the phase, frequency, amplitude, and contrast of the microscopic fringes incident on the fiber. The weak grating measurement uses Optical Frequency Domain Reflectometry (OFDR) to measure the spatial distribution of the coupling strength of weak gratings. Included in the description of the OFDR technique are recent advances in the precision monitoring of the emission wavelength of tunable lasers. The precise monitoring of wavelength is critical to the functioning of OFDR. The strong grating measurement is based on a modified form of OFDR and an analysis of the problem in the time and frequency domains to produce accurate measurements of both the reflection and transmission Transfer Functions for Bragg gratings. This measurement technique is also applicable to a wide variety of optical fiber devices, and is shown to be scalable to multiple port devices. The second-harmonic measurement for grating chirp analysis is similar to the weak grating measurement, but it was done at a wavelength resonant with the second- harmonic grating in the fiber-780 nm for 1550 nm reflection gratings. The second-harmonic grating results from nonlinearities in the grating growth process and, due to the great sensitivity of OFDR, is detectable for almost all fiber gratings. The grating visualization also uses half-wavelength (780 nm) illumination of the grating through the core. This technique uses the diffraction of light into the radiation modes to make the grating in the fiber externally visible. By operating near the perpendicular radiation condition, and introducing coherent counter- propagating light, the spatial frequency and the amplitude of the grating as functions of distance along the fiber can be measured. To better understand the radiation from Bragg gratings, a technique known as the Volume Current Method (VCM) was used to derive an expression for the radiation from a Bragg grating for all of the LP fiber modes.
NASA Astrophysics Data System (ADS)
Kyser, David F.; Eib, Nicholas K.; Ritchie, Nicholas W. M.
2016-07-01
The absorbed energy density (eV/cm3) deposited by extreme ultraviolet (EUV) photons and electron beam (EB) high-keV electrons is proposed as a metric for characterizing the sensitivity of EUV resist films. Simulations of energy deposition are used to calculate the energy density as a function of the incident aerial flux (EUV: mJ/cm2, EB: μC/cm2). Monte Carlo calculations for electron exposure are utilized, and a Lambert-Beer model for EUV absorption. The ratio of electron flux to photon flux which results in equivalent energy density is calculated for a typical organic chemically amplified resist film and a typical inorganic metal-oxide film. This ratio can be used to screen EUV resist materials with EB measurements and accelerate advances in EUV resist systems.
SAQP and EUV block patterning of BEOL metal layers on IMEC's iN7 platform
NASA Astrophysics Data System (ADS)
Bekaert, Joost; Di Lorenzo, Paolo; Mao, Ming; Decoster, Stefan; Larivière, Stéphane; Franke, Joern-Holger; Blanco Carballo, Victor M.; Kutrzeba Kotowska, Bogumila; Lazzarino, Frederic; Gallagher, Emily; Hendrickx, Eric; Leray, Philippe; Kim, R. Ryoung-han; McIntyre, Greg; Colsters, Paul; Wittebrood, Friso; van Dijk, Joep; Maslow, Mark; Timoshkov, Vadim; Kiers, Ton
2017-03-01
The imec N7 (iN7) platform has been developed to evaluate EUV patterning of advanced logic BEOL layers. Its design is based on a 42 nm first-level metal (M1) pitch, and a 32 nm pitch for the subsequent M2 layer. With these pitches, the iN7 node is an `aggressive' full-scaled N7, corresponding to IDM N7, or foundry N5. Even in a 1D design style, single exposure of the 16 nm half-pitch M2 layer is very challenging for EUV lithography, because of its tight tip-to-tip configurations. Therefore, the industry is considering the hybrid use of ArFi-based SAQP combined with EUV Block as an alternative to EUV single exposure. As a consequence, the EUV Block layer may be one of the first layers to adopt EUV lithography in HVM. In this paper, we report on the imec iN7 SAQP + Block litho performance and process integration, targeting the M2 patterning for a 7.5 track logic design. The Block layer is exposed on an ASML NXE:3300 EUV-scanner at imec, using optimized illumination conditions and state-of-the-art metal-containing negative tone resist (Inpria). Subsequently, the SAQP and block structures are characterized in a morphological study, assessing pattern fidelity and CD/EPE variability. The work is an experimental feasibility study of EUV insertion, for SAQP + Block M2 patterning on an industry-relevant N5 use-case.
Deng, Xuegong; Braun, Gary B; Liu, Sheng; Sciortino, Paul F; Koefer, Bob; Tombler, Thomas; Moskovits, Martin
2010-05-12
The surface-enhanced Raman spectroscopy (SERS) activity and the optical reflectance of a subwavelength gold nanograting fabricated entirely using top down technologies on silicon wafers are presented. The grating consists of 120 nm gold cladding on top of parallel silica nanowires constituting the grating's lines, with gaps between nanowires <10 nm wide at their narrowest point. The grating produces inordinately intense SERS and shows very strong polarization dependence. Reflectance measurements for the optimized grating indicate that (when p-polarization is used and at least one of the incident electric field components lies across the grating lines) the reflectance drops to <1% at resonance, indicating that essentially all of the radiant energy falling on the surface is coupled into the grating. The SERS intensity and the reflectance at resonance anticorrelate predicatively, suggesting that reflectance measurements can provide a nondestructive, wafer-level test of SERS efficacy. The SERS performance of the gratings is very uniform and reproducible. Extensive measurements on samples cut from both the same wafer and from different wafers, produce a SERS intensity distribution function that is similar to that obtained for ordinary Raman measurements carried out at multiple locations on a polished (100) silicon wafer.
NASA Astrophysics Data System (ADS)
Kalli, Kyriacos; Lacraz, Amedee; Theodosiou, Andreas; Kofinas, Marios
2016-05-01
There is great interest in the development of flexible wavelength filters and optical fibre sensors, such as Bragg and superstructure gratings, grating arrays and chirped gratings in glass and polymer optical fibres. A major hurdle is the development of an inscription method that should offer flexibility and reliability and be generally applicable to all optical fibre types. With this in mind we have developed a novel femtosecond laser inscription method; plane-by-plane inscription, whereby a 3D-index change of controlled length across the fibre core, width along the fibre axis and depth is written into the optical fibre. We apply this method for the inscription of various grating types in coated silica and low- loss CYTOP polymer optical fibres. The plane-by-plane method allows for multiple and overlapping gratings in the fibre core. Moreover, we demonstrate that this novel fibre Bragg grating inscription technique can be used to modify and add versatility to an existing, encapsulated optical fibre pressure sensor. The femtosecond laser is operated in the green or the near infra-red, based on the material properties under laser modification.
Extreme Ultraviolet Explorer Bright Source List
NASA Technical Reports Server (NTRS)
Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick
1994-01-01
Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.
How active was solar cycle 22?
NASA Technical Reports Server (NTRS)
Hoegy, W. R.; Pesnell, W. D.; Woods, T. N.; Rottman, G. J.
1993-01-01
Solar EUV observations from the Langmuir probe on Pioneer Venus Orbiter suggest that at EUV wavelengths solar cycle 22 was more active than solar cycle 21. The Langmuir probe, acting as a photodiode, measured the integrated solar EUV flux over a 13 1/2 year period from January 1979 to June 1992, the longest continuous solar EUV measurement. The Ipe EUV flux correlated very well with the SME measurement of L-alpha during the lifetime of SME and with the UARS SOLSTICE L-alpha from October 1991 to June 1992 when the Ipe measurement ceased. Starting with the peak of solar cycle 21, there was good general agreement of Ipe EUV with the 10.7 cm, Ca K, and He 10830 solar indices, until the onset of solar cycle 22. From 1989 to the start of 1992, the 10.7 cm flux exhibited a broad maximum consisting of two peaks of nearly equal magnitude, whereas Ipe EUV exhibited a strong increase during this time period making the second peak significantly higher than the first. The only solar index that exhibits the same increase in solar activity as Ipe EUV and L-alpha during the cycle 22 peak is the total magnetic flux. The case for high activity during this peak is also supported by the presence of very high solar flare intensity.
Low temperature plasmas induced in SF6 by extreme ultraviolet (EUV) pulses
NASA Astrophysics Data System (ADS)
Bartnik, A.; Skrzeczanowski, W.; Czwartos, J.; Kostecki, J.; Fiedorowicz, H.; Wachulak, P.; Fok, T.
2018-06-01
In this work, a comparative study of extreme ultraviolet (EUV) induced low temperature SF6-based plasmas, created using two different irradiation systems, was performed. Both systems utilized laser-produced plasma (LPP) EUV sources. The essential difference between the systems concerned the formation of the driving EUV beam. The first one contained an efficient ellipsoidal EUV collector allowing for focusing of the EUV radiation at a large distance from the LPP source. The spectrum of focused radiation was limited to the long-wavelength part of the total LPP emission, λ > 8 nm, due to the reflective properties of the collector. The second system did not contain any EUV collector. The gas to be ionized was injected in the vicinity of the LPP, at a distance of the order of 10 mm. In both systems, energies of the driving photons were high enough for dissociative ionization of the SF6 molecules and ionization of atoms or even singly charged ions. Plasmas, created due to these processes, were investigated by spectral measurements in the EUV, ultraviolet (UV), and visible (VIS) spectral ranges. These low temperature plasmas were employed for preliminary experiments concerning surface treatment. The formation of pronounced nanostructures on the silicon surface after plasma treatment was demonstrated.
NASA Astrophysics Data System (ADS)
Lee, Yun Gon; Koo, Ja-Ho; Kim, Jhoon
2015-10-01
This study investigated how cloud fraction and snow cover affect the variation of surface ultraviolet (UV) radiation by using surface Erythemal UV (EUV) and Near UV (NUV) observed at the King Sejong Station, Antarctica. First the Radiative Amplification Factor (RAF), the relative change of surface EUV according to the total-column ozone amount, is compared for different cloud fractions and solar zenith angles (SZAs). Generally, all cloudy conditions show that the increase of RAF as SZA becomes larger, showing the larger effects of vertical columnar ozone. For given SZA cases, the EUV transmission through mean cloud layer gradually decreases as cloud fraction increases, but sometimes the maximum of surface EUV appears under partly cloudy conditions. The high surface EUV transmittance under broken cloud conditions seems due to the re-radiation of scattered EUV by cloud particles. NUV transmission through mean cloud layer also decreases as cloud amount increases but the sensitivity to the cloud fraction is larger than EUV. Both EUV and NUV radiations at the surface are also enhanced by the snow cover, and their enhancement becomes higher as SZA increases implying the diurnal variation of surface albedo. This effect of snow cover seems large under the overcast sky because of the stronger interaction between snow surface and cloudy sky.
NASA Astrophysics Data System (ADS)
Mamezaki, Daiki; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo
2017-06-01
In extreme-ultraviolet (EUV) lithography, the development of a review apparatus for the EUV mask pattern at an exposure wavelength of 13.5 nm is required. The EUV mask is composed of an absorber pattern and a Mo/Si multilayer on a glass substrate. This mask pattern has a three-dimensional (3D) structure. The 3D structure would modulate the EUV reflection phase, which would cause focus and pattern shifts. Thus, the review of the EUV phase image is also important. We have developed a coherent EUV scatterometry microscope (CSM), which is a simple microscope without objective optics. The EUV phase and intensity images were reconstructed with diffraction images by ptychography. For a standalone mask review, the high-harmonic-generation (HHG) EUV source was employed. In this study, we updated the sample stage, pump-laser reduction system, and gas-pressure control system to reconstruct the image. As a result, an 88 nm line-and-space pattern and a cross-line pattern were reconstructed. In addition, a particle defect of 2 µm diameter was well reconstructed. This demonstrated the high capability of the standalone CSM, which can hence be used in factories, such as mask shops and semiconductor fabrication plants.
NASA Technical Reports Server (NTRS)
Fruscione, Antonella; Drake, Jeremy J.; Mcdonald, Kelley; Malina, Roger F.
1995-01-01
We present the results of a complete survey, at extreme-ultraviolet (EUV) wavelengths (58-234 A), of the high Galactic latitude (absolute value of b greater than or = to 20 deg) planetary nebulae (PNs) with at least one determination of the distance within 1 kpc of the Sun. The sample comprises 27 objects observed during the Extreme Ultraviolet Explorer (EUVE) all-sky survey and represents the majority of PN likely to be accessible at EUV wavelengths. Six PNs (NGC 246, NGC 1360, K1-16, LoTr 5, NGC 4361, and NGC 3587) were detected in the shortest EUV band (58-174 A). A seventh PN (NGC 6853), not included in the sample, was also detected during the survey. The emission is consistent in all cases with that of a point source and therefore most probably originates from the PN central star. Accurate EUV count rates or upper limits in the two shorter EUVE bands (centered at approximately 100 and 200 A) are given for all the sources in the sample. NGC 4361 and NGC 3587 are reported here for the first time as sources of EUV radiation. As might be expected, attenuation by the interstellar medium dominates the PN distribution in the EUV sky.
Gaballah, A E H; Nicolosi, P; Ahmed, Nadeem; Jimenez, K; Pettinari, G; Gerardino, A; Zuppella, P
2018-01-01
The knowledge and the manipulation of light polarization state in the vacuum ultraviolet and extreme ultraviolet (EUV) spectral regions play a crucial role from materials science analysis to optical component improvements. In this paper, we present an EUV spectroscopic ellipsometer facility for polarimetry in the 90-160 nm spectral range. A single layer aluminum mirror to be used as a quarter wave retarder has been fully characterized by deriving the optical and structural properties from the amplitude component and phase difference δ measurements. The system can be suitable to investigate the properties of thin films and optical coatings and optics in the EUV region.
Chandra Grating Spectroscopy of Three Hot White Dwarfs
NASA Technical Reports Server (NTRS)
Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.
2013-01-01
High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB1919) and the other is a non-DA of spectral type PG1159 (PG1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD246). Aims. The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. Methods. The Chandra spectra are analyzed with chemically homogeneous as well as stratified NLTE model atmospheres that assume equilibrium between gravitational settling and radiative acceleration of chemical elements. Archival EUV and UV spectra obtained with EUVE, FUSE, and HST are utilized to support the analysis. Results. No metals could be identified in LB1919. All observations are compatible with a pure hydrogen atmosphere. This is in stark contrast to the vast majority of hot DA white dwarfs that exhibit light and heavy metals and to the stratified models that predict significant metal abundances in the atmosphere. For GD246 we find that neither stratified nor homogeneous models can fit the Chandra spectrum. The Chandra spectrum of PG1520+525 constrains the effective temperature to T(sub eff) = 150 000 +/- 10 000 K. Therefore, this nonpulsating star together with the pulsating prototype of the GWVir class (PG1159-035) defines the location of the blue edge of the GWVir instability region. The result is in accordance with predictions from nonadiabatic stellar pulsation models. Such models are therefore reliable tools to investigate the interior structure of GW Vir variables. Conclusions. Our soft X-ray study reveals that the understanding of metal abundances in hot DA white dwarf atmospheres is still incomplete. On the other hand, model atmospheres of hydrogen-deficient PG1159-type stars are reliable and reproduce well the observed spectra from soft X-ray to optical wavelengths.
``Big Bang" for NASA's Buck: Nearly Three Years of EUVE Mission Operations at UCB
NASA Astrophysics Data System (ADS)
Stroozas, B. A.; Nevitt, R.; McDonald, K. E.; Cullison, J.; Malina, R. F.
1999-12-01
After over seven years in orbit, NASA's Extreme Ultraviolet Explorer (EUVE) satellite continues to perform flawlessly and with no significant loss of science capabilities. EUVE continues to produce important and exciting science results and, with reentry not expected until 2003-2004, many more such discoveries await. In the nearly three years since the outsourcing of EUVE from NASA's Goddard Space Flight Center, the small EUVE operations team at the University of California at Berkeley (UCB) has successfully conducted all aspects of the EUVE mission -- from satellite operations, science and mission planning, and data processing, delivery, and archival, to software support, systems administration, science management, and overall mission direction. This paper discusses UCB's continued focus on automation and streamlining, in all aspects of the Project, as the means to maximize EUVE's overall scientific productivity while minimizing costs. Multitasking, non-traditional work roles, and risk management have led to expanded observing capabilities while achieving significant cost reductions and maintaining the mission's historical 99 return. This work was funded under NASA Cooperative Agreement NCC5-138.
NASA Astrophysics Data System (ADS)
Goldberg, Kenneth A.; Naulleau, Patrick P.; Bokor, Jeffrey; Chapman, Henry N.
2002-07-01
As the quality of optical systems for extreme ultraviolet lithography improves, high-accuracy wavefront metrology for alignment and qualification becomes ever more important. To enable the development of diffraction-limited EUV projection optics, visible-light and EUV interferometries must work in close collaboration. We present a detailed comparison of EUV and visible-light wavefront measurements performed across the field of view of a lithographic-quality EUV projection optical system designed for use in the Engineering Test Stand developed by the Virtual National Laboratory and the EUV Limited Liability Company. The comparisons reveal that the present level of RMS agreement lies in the 0.3-0.4-nm range. Astigmatism is the most significant aberration component for the alignment of this optical system; it is also the dominant term in the discrepancy, and the aberration with the highest measurement uncertainty. With EUV optical systems requiring total wavefront quality in the (lambda) EUV/50 range, and even higher surface-figure quality for the individual mirror elements, improved accuracy through future comparisons, and additional studies, are required.
NASA Astrophysics Data System (ADS)
Chu, Hsu-hsin; Wang, Jyhpyng
2018-05-01
Nonlinear optics in the extreme-ultraviolet (EUV) has been limited by lack of transparent media and small conversion efficiency. To overcome this problem we explore the advantage of using multiply charged ion plasmas as the interacting media between EUV and intense near-infrared (NIR) pulses. Such media are transparent to EUV and can withstand intense NIR driving pulses without damage. We calculate the third-order nonlinear polarizabilities of Ar2 + and Ar3 + ions for EUV and NIR four-wave mixing by using the well-proven Cowan code and find that the EUV-to-EUV conversion efficiency as high as 26% can be expected for practical experimental configurations using multi-terawatt NIR lasers. Such a high efficiency is possible because the driving pulse intensity can be scaled up to several orders of magnitude higher than in conventional nonlinear media, and the group-velocity and phase mismatch are insignificant at the experimental plasma densities. This effective scheme of wave mixing can be utilized for ultrafast EUV waveform measurement and control as well as wavelength conversion.
Coronal Polarization of Pseudostreamers and the Solar Polar Field Reversal
NASA Technical Reports Server (NTRS)
Rachmeler, L. A.; Guennou, C.; Seaton, D. B.; Gibson, S. E.; Auchere, F.
2016-01-01
The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP polarization data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere, the last vestiges of the previous polar field polarity remained until March 2015. We present here the evolution of the structure and describe its identification in the Fe XII 1074nm coronal emission line, sensitive to the Hanle effect in the corona.
Yuan, Liang Leon; Herman, Peter R
2015-12-21
A multi-level nanophotonic structure is a major goal in providing advanced optical functionalities as found in photonic crystals and metamaterials. A three-level nano-grating phase mask has been fabricated in an electron-beam resist (ma-N) to meet the requirement of holographic generation of a diamond-like 3D nanostructure in photoresist by a single exposure step. A 2D mask with 600 nm periodicity is presented for generating first order diffracted beams with a preferred π/2 phase shift on the X- and Y-axes and with sufficient 1(st) order diffraction efficiency of 3.5% at 800 nm wavelength for creating a 3D periodic nanostructure in SU-8 photoresist. The resulting 3D structure is anticipated to provide an 8% complete photonic band gap (PBG) upon silicon inversion. A thin SiO2 layer was used to isolate the grating layers and multiple spin-coating steps served to planarize the final resist layer. A reversible soft coating (aquaSAVE) was introduced to enable SEM inspection and verification of each insulating grating layer. This e-beam lithographic method is extensible to assembling multiple layers of a nanophotonic structure.
Multiple adaptable mechanisms early in the primate visual pathway
Dhruv, Neel T.; Tailby, Chris; Sokol, Sach H.; Lennie, Peter
2011-01-01
We describe experiments that isolate and characterize multiple adaptable mechanisms that influence responses of orientation-selective neurons in primary visual cortex (V1) of anesthetized macaque (Macaca fascicularis). The results suggest that three adaptable stages of machinery shape neural responses in V1: a broadly-tuned early stage and a spatio-temporally tuned later stage, both of which provide excitatory input, and a normalization pool that is also broadly tuned. The early stage and the normalization pool are revealed by adapting gratings that themselves fail to evoke a response from the neuron: either low temporal frequency gratings at the null orientation or gratings of any orientation drifting at high temporal frequencies. When effective, adapting stimuli that altered the sensitivity of these two mechanisms caused reductions of contrast gain and often brought about a paradoxical increase in response gain due to a relatively greater desensitization of the normalization pool. The tuned mechanism is desensitized only by stimuli well-matched to a neuron’s receptive field. We could thus infer desensitization of the tuned mechanism by comparing effects obtained with adapting gratings of preferred and null orientation modulated at low temporal frequencies. PMID:22016535
EUV lithography for 22nm half pitch and beyond: exploring resolution, LWR, and sensitivity tradeoffs
NASA Astrophysics Data System (ADS)
Putna, E. Steve; Younkin, Todd R.; Leeson, Michael; Caudillo, Roman; Bacuita, Terence; Shah, Uday; Chandhok, Manish
2011-04-01
The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 22nm half pitch node and beyond. According to recent assessments made at the 2010 EUVL Symposium, the readiness of EUV materials remains one of the top risk items for EUV adoption. The main development issue regarding EUV resists has been how to simultaneously achieve high resolution, high sensitivity, and low line width roughness (LWR). This paper describes our strategy, the current status of EUV materials, and the integrated post-development LWR reduction efforts made at Intel Corporation. Data collected utilizing Intel's Micro- Exposure Tool (MET) is presented in order to examine the feasibility of establishing a resist process that simultaneously exhibits <=22nm half-pitch (HP) L/S resolution at <=11.3mJ/cm2 with <=3nm LWR.
Mask technology for EUV lithography
NASA Astrophysics Data System (ADS)
Bujak, M.; Burkhart, Scott C.; Cerjan, Charles J.; Kearney, Patrick A.; Moore, Craig E.; Prisbrey, Shon T.; Sweeney, Donald W.; Tong, William M.; Vernon, Stephen P.; Walton, Christopher C.; Warrick, Abbie L.; Weber, Frank J.; Wedowski, Marco; Wilhelmsen, Karl C.; Bokor, Jeffrey; Jeong, Sungho; Cardinale, Gregory F.; Ray-Chaudhuri, Avijit K.; Stivers, Alan R.; Tejnil, Edita; Yan, Pei-yang; Hector, Scott D.; Nguyen, Khanh B.
1999-04-01
Extreme UV Lithography (EUVL) is one of the leading candidates for the next generation lithography, which will decrease critical feature size to below 100 nm within 5 years. EUVL uses 10-14 nm light as envisioned by the EUV Limited Liability Company, a consortium formed by Intel and supported by Motorola and AMD to perform R and D work at three national laboratories. Much work has already taken place, with the first prototypical cameras operational at 13.4 nm using low energy laser plasma EUV light sources to investigate issues including the source, camera, electro- mechanical and system issues, photoresists, and of course the masks. EUV lithograph masks are fundamentally different than conventional photolithographic masks as they are reflective instead of transmissive. EUV light at 13.4 nm is rapidly absorbed by most materials, thus all light transmission within the EUVL system from source to silicon wafer, including EUV reflected from the mask, is performed by multilayer mirrors in vacuum.
Single-expose patterning development for EUV lithography
NASA Astrophysics Data System (ADS)
De Silva, Anuja; Petrillo, Karen; Meli, Luciana; Shearer, Jeffrey C.; Beique, Genevieve; Sun, Lei; Seshadri, Indira; Oh, Taehwan; Han, Seulgi; Saulnier, Nicole; Lee, Joe; Arnold, John C.; Hamieh, Bassem; Felix, Nelson M.; Furukawa, Tsuyoshi; Singh, Lovejeet; Ayothi, Ramakrishnan
2017-03-01
Initial readiness of EUV (extreme ultraviolet) patterning was demonstrated in 2016 with IBM Alliance's 7nm device technology. The focus has now shifted to driving the 'effective' k1 factor and enabling the second generation of EUV patterning. With the substantial cost of EUV exposure there is significant interest in extending the capability to do single exposure patterning with EUV. To enable this, emphasis must be placed on the aspect ratios, adhesion, defectivity reduction, etch selectivity, and imaging control of the whole patterning process. Innovations in resist materials and processes must be included to realize the full entitlement of EUV lithography at 0.33NA. In addition, enhancements in the patterning process to enable good defectivity, lithographic process window, and post etch pattern fidelity are also required. Through this work, the fundamental material challenges in driving down the effective k1 factor will be highlighted.
Plans for the extreme ultraviolet explorer data base
NASA Technical Reports Server (NTRS)
Marshall, Herman L.; Dobson, Carl A.; Malina, Roger F.; Bowyer, Stuart
1988-01-01
The paper presents an approach for storage and fast access to data that will be obtained by the Extreme Ultraviolet Explorer (EUVE), a satellite payload scheduled for launch in 1991. The EUVE telescopes will be operated remotely from the EUVE Science Operation Center (SOC) located at the University of California, Berkeley. The EUVE science payload consists of three scanning telescope carrying out an all-sky survey in the 80-800 A spectral region and a Deep Survey/Spectrometer telescope performing a deep survey in the 80-250 A spectral region. Guest Observers will remotely access the EUVE spectrometer database at the SOC. The EUVE database will consist of about 2 X 10 to the 10th bytes of information in a very compact form, very similar to the raw telemetry data. A history file will be built concurrently giving telescope parameters, command history, attitude summaries, engineering summaries, anomalous events, and ephemeris summaries.
Fiber Optic Thermal Health Monitoring of Composites
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.
2010-01-01
A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.
An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure
NASA Astrophysics Data System (ADS)
Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang
2018-05-01
Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.
Extreme ultraviolet spectral irradiance measurements since 1946
NASA Astrophysics Data System (ADS)
Schmidtke, G.
2015-03-01
In the physics of the upper atmosphere the solar extreme ultraviolet (EUV) radiation plays a dominant role controlling most of the thermospheric/ionospheric (T/I) processes. Since this part of the solar spectrum is absorbed in the thermosphere, platforms to measure the EUV fluxes became only available with the development of rockets reaching altitude levels exceeding 80 km. With the availability of V2 rockets used in space research, recording of EUV spectra started in 1946 using photographic films. The development of pointing devices to accurately orient the spectrographs toward the sun initiated intense activities in solar-terrestrial research. The application of photoelectric recording technology enabled the scientists placing EUV spectrometers aboard satellites observing qualitatively strong variability of the solar EUV irradiance on short-, medium-, and long-term scales. However, as more measurements were performed more radiometric EUV data diverged due to the inherent degradation of the EUV instruments with time. Also, continuous recording of the EUV energy input to the T/I system was not achieved. It is only at the end of the last century that there was progress made in solving the serious problem of degradation enabling to monitore solar EUV fluxes with sufficient radiometric accuracy. The data sets available allow composing the data available to the first set of EUV data covering a period of 11 years for the first time. Based on the sophisticated instrumentation verified in space, future EUV measurements of the solar spectral irradiance (SSI) are promising accuracy levels of about 5% and less. With added low-cost equipment, real-time measurements will allow providing data needed in ionospheric modeling, e.g., for correcting propagation delays of navigation signals from space to earth. Adding EUV airglow and auroral emission monitoring by airglow cameras, the impact of space weather on the terrestrial T/I system can be studied with a spectral terrestrial irradiance camera (STI-Cam) and also be used investigating real-time space weather effects and deriving more detailed correction procedures for the evaluation of Global Navigation Satellite System (GNSS) signals. Progress in physics goes with achieving higher accuracy in measurements. This review historically guides the reader on the ways of exploring the impact of the variable solar radiation in the extreme ultraviolet spectral region on our upper atmosphere in the altitude regime from 80 to 1000 km.
NASA Astrophysics Data System (ADS)
Čížková, Klára; Láska, Kamil; Metelka, Ladislav; Staněk, Martin
2018-02-01
This paper evaluates the variability of erythemal ultraviolet (EUV) radiation from Hradec Králové (Czech Republic) in the period 1964-2013. The EUV radiation time series was reconstructed using a radiative transfer model and additional empirical relationships, with the final root mean square error of 9.9 %. The reconstructed time series documented the increase in EUV radiation doses in the 1980s and the 1990s (up to 15 % per decade), which was linked to the steep decline in total ozone (10 % per decade). The changes in cloud cover were the major factor affecting the EUV radiation doses especially in the 1960s, 1970s, and at the beginning of the new millennium. The mean annual EUV radiation doses in the decade 2004-2013 declined by 5 %. The factors affecting the EUV radiation doses differed also according to the chosen integration period (daily, monthly, and annually): solar zenith angle was the most important for daily doses, cloud cover, and surface UV albedo for their monthly means, and the annual means of EUV radiation doses were most influenced by total ozone column. The number of days with very high EUV radiation doses increased by 22 % per decade, the increase was statistically significant in all seasons except autumn. The occurrence of the days with very high EUV doses was influenced mostly by low total ozone column (82 % of days), clear-sky or partly cloudy conditions (74 % of days) and by increased surface albedo (19 % of days). The principal component analysis documented that the occurrence of days with very high EUV radiation doses was much affected by the positive phase of North Atlantic Oscillation with an Azores High promontory reaching over central Europe. In the stratosphere, a strong Arctic circumpolar vortex and the meridional inflow of ozone-poor air from the southwest were favorable for the occurrence of days with very high EUV radiation doses. This is the first analysis of the relationship between the high EUV radiation doses and macroscale circulation patterns, and therefore more attention should be given also to other dynamical variables that may affect the solar UV radiation on the Earth surface.
NASA Astrophysics Data System (ADS)
Fomenkov, Igor; Brandt, David; Ershov, Alex; Schafgans, Alexander; Tao, Yezheng; Vaschenko, Georgiy; Rokitski, Slava; Kats, Michael; Vargas, Michael; Purvis, Michael; Rafac, Rob; La Fontaine, Bruno; De Dea, Silvia; LaForge, Andrew; Stewart, Jayson; Chang, Steven; Graham, Matthew; Riggs, Daniel; Taylor, Ted; Abraham, Mathew; Brown, Daniel
2017-06-01
Extreme ultraviolet (EUV) lithography is expected to succeed in 193-nm immersion multi-patterning technology for sub-10-nm critical layer patterning. In order to be successful, EUV lithography has to demonstrate that it can satisfy the industry requirements in the following critical areas: power, dose stability, etendue, spectral content, and lifetime. Currently, development of second-generation laser-produced plasma (LPP) light sources for the ASML's NXE:3300B EUV scanner is complete, and first units are installed and operational at chipmaker customers. We describe different aspects and performance characteristics of the sources, dose stability results, power scaling, and availability data for EUV sources and also report new development results.
Near-Field Diffraction Imaging from Multiple Detection Planes
NASA Astrophysics Data System (ADS)
Loetgering, L.; Golembusch, M.; Hammoud, R.; Wilhein, T.
2017-06-01
We present diffraction imaging results obtained from multiple near-field diffraction constraints. An iterative phase retrieval algorithm was implemented that uses data redundancy achieved by measuring near-field diffraction intensities at various sample-detector distances. The procedure allows for reconstructing the exit surface wave of a sample within a multiple constraint satisfaction framework neither making use of a priori knowledge as enforced in coherent diffraction imaging (CDI) nor exact scanning grid knowledge as required in ptychography. We also investigate the potential of the presented technique to deal with polychromatic radiation as important for potential application in diffraction imaging by means of tabletop EUV and X-ray sources.
Coordinated XTE/EUVE Observations of Algol
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1997-01-01
EUVE, ASCA, and XTE observed the eclipsing binary Algol (Beta Per) from 1-7 Feb. 96. The coordinated observation covered approximately 2 binary orbits of the system, with a net exposure of approximately 160 ksec for EUVE, 40 ksec for ASCA (in 4 pointing), and 90 ksec for XTE (in 45 pointings). We discuss results of modeling the combined EUVE, ASCA, and XTE data using continuous differential emission measure distributions, and provide constraints on the Fe abundance in the Algol system.
Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations
NASA Astrophysics Data System (ADS)
Dong, Y.; Fang, X.; Brain, D. A.; McFadden, J. P.; Halekas, J. S.; Connerney, J. E. P.; Eparvier, F.; Andersson, L.; Mitchell, D.; Jakosky, B. M.
2017-04-01
We study the Mars Atmosphere and Volatile Evolution spacecraft observations of Martian planetary ion escape during two time periods: 11 November 2014 to 19 March 2015 and 4 June 2015 to 24 October 2015, with the focus on understanding the seasonal variability of Martian ion escape in response to the solar extreme ultraviolet (EUV) flux. We organize the >6 eV O+ ion data by the upstream electric field direction to estimate the escape rates through the plume and tail. To investigate the ion escape dependence on the solar EUV flux, we constrain the solar wind dynamic pressure and interplanetary magnetic filed strength and compare the ion escape rates through the plume and tail in different energy ranges under high and low EUV conditions. We found that the total >6 eV O+ escape rate increases from 2 to 3 × 1024 s-1 as the EUV irradiance increases by almost the same factor, mostly on the <1 keV tailward escape. The plume escape rate does not vary significantly with EUV. The relative contribution from the plume to the total escape varies between 30% and 20% from low to high EUV. Our results suggest that the Martian ion escape is sensitive to the seasonal EUV variation, and the contribution from plume escape becomes more important under low EUV conditions.
Update on EUV radiometry at PTB
NASA Astrophysics Data System (ADS)
Laubis, Christian; Barboutis, Annett; Buchholz, Christian; Fischer, Andreas; Haase, Anton; Knorr, Florian; Mentzel, Heiko; Puls, Jana; Schönstedt, Anja; Sintschuk, Michael; Soltwisch, Victor; Stadelhoff, Christian; Scholze, Frank
2016-03-01
The development of technology infrastructure for EUV Lithography (EUVL) still requires higher levels of technology readiness in many fields. A large number of new materials will need to be introduced. For example, development of EUV compatible pellicles to adopt an approved method from optical lithography for EUVL needs completely new thin membranes which have not been available before. To support these developments, PTB with its decades of experience [1] in EUV metrology [2] provides a wide range of actinic and non actinic measurements at in-band EUV wavelengths as well as out of band. Two dedicated, complimentary EUV beamlines [3] are available for radiometric [4,5] characterizations benefiting from small divergence or from adjustable spot size respectively. The wavelength range covered reaches from below 1 nm to 45 nm [6] for the EUV beamlines [7] to longer wavelengths if in addition the VUV beamline is employed. The standard spot size is 1 mm by 1 mm with an option to go as low as 0.1 mm to 0.1 mm. A separate beamline offers an exposure setup. Exposure power levels of 20 W/cm2 have been employed in the past, lower fluencies are available by attenuation or out of focus exposure. Owing to a differential pumping stage, the sample can be held under defined gas conditions during exposure. We present an updated overview on our instrumentation and analysis capabilities for EUV metrology and provide data for illustration.
Classification and printability of EUV mask defects from SEM images
NASA Astrophysics Data System (ADS)
Cho, Wonil; Price, Daniel; Morgan, Paul A.; Rost, Daniel; Satake, Masaki; Tolani, Vikram L.
2017-10-01
Classification and Printability of EUV Mask Defects from SEM images EUV lithography is starting to show more promise for patterning some critical layers at 5nm technology node and beyond. However, there still are many key technical obstacles to overcome before bringing EUV Lithography into high volume manufacturing (HVM). One of the greatest obstacles is manufacturing defect-free masks. For pattern defect inspections in the mask-shop, cutting-edge 193nm optical inspection tools have been used so far due to lacking any e-beam mask inspection (EBMI) or EUV actinic pattern inspection (API) tools. The main issue with current 193nm inspection tools is the limited resolution for mask dimensions targeted for EUV patterning. The theoretical resolution limit for 193nm mask inspection tools is about 60nm HP on masks, which means that main feature sizes on EUV masks will be well beyond the practical resolution of 193nm inspection tools. Nevertheless, 193nm inspection tools with various illumination conditions that maximize defect sensitivity and/or main-pattern modulation are being explored for initial EUV defect detection. Due to the generally low signal-to-noise in the 193nm inspection imaging at EUV patterning dimensions, these inspections often result in hundreds and thousands of defects which then need to be accurately reviewed and dispositioned. Manually reviewing each defect is difficult due to poor resolution. In addition, the lack of a reliable aerial dispositioning system makes it very challenging to disposition for printability. In this paper, we present the use of SEM images of EUV masks for higher resolution review and disposition of defects. In this approach, most of the defects detected by the 193nm inspection tools are first imaged on a mask SEM tool. These images together with the corresponding post-OPC design clips are provided to KLA-Tencor's Reticle Decision Center (RDC) platform which provides ADC (Automated Defect Classification) and S2A (SEM-to-Aerial printability) analysis of every defect. First, a defect-free or reference mask SEM is rendered from the post-OPC design, and the defective signature is detected from the defect-reference difference image. These signatures help assess the true nature of the defect as evident in e-beam imaging; for example, excess or missing absorber, line-edge roughness, contamination, etc. Next, defect and reference contours are extracted from the grayscale SEM images and fed into the simulation engine with an EUV scanner model to generate corresponding EUV defect and reference aerial images. These are then analyzed for printability and dispositioned using an Aerial Image Analyzer (AIA) application to automatically measure and determine the amount of CD errors. Thus by integrating EUV ADC and S2A applications together, every defect detection is characterized for its type and printability which is essential for not only determining which defects to repair, but also in monitoring the performance of EUV mask process tools. The accuracy of the S2A print modeling has been verified with other commercially-available simulators, and will also be verified with actual wafer print results. With EUV lithography progressing towards volume manufacturing at 5nm technology, and the likelihood of EBMI inspectors approaching the horizon, the EUV ADC-S2A system will continue serving an essential role of dispositioning defects off e-beam imaging.
EUV Waves Driven by the Sudden Expansion of Transequatorial Loops Caused by Coronal Jets
NASA Astrophysics Data System (ADS)
Shen, Yuandeng; Tang, Zehao; Miao, Yuhu; Su, Jiangtao; Liu, Yu
2018-06-01
We present two events to study the driving mechanism of extreme-ultraviolet (EUV) waves that are not associated with coronal mass ejections (CMEs), by using high-resolution observations taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Observational results indicate that the observed EUV waves were accompanied by flares and coronal jets, but not the CMEs that were regarded as drivers of most EUV waves in previous studies. In the first case, it is observed that a coronal jet is ejected along a transequatorial loop system at a plane-of-the-sky (POS) speed of 335 ± 22 km s{}-1; in the meantime, an arc-shaped EUV wave appeared on the eastern side of the loop system. In addition, the EUV wave further interacted with another interconnecting loop system and launched a fast propagating (QFP) magnetosonic wave along the loop system, which had a period of 200 s and a speed of 388 ± 65 km s{}-1, respectively. In the second case, we observed a coronal jet that ejected at a POS speed of 282 ± 44 km s{}-1 along a transequatorial loop system as well as the generation of bright EUV waves on the eastern side of the loop system. Based on the observational results, we propose that the observed EUV waves on the eastern side of the transequatorial loop systems are fast-mode magnetosonic waves and that they are driven by the sudden lateral expansion of the transequatorial loop systems due to the direct impingement of the associated coronal jets, while the QFP wave in the fist case formed due to the dispersive evolution of the disturbance caused by the interaction between the EUV wave and the interconnecting coronal loops. It is noted that EUV waves driven by sudden loop expansions have shorter lifetimes than those driven by CMEs.
Maskless EUV lithography: an already difficult technology made even more complicated?
NASA Astrophysics Data System (ADS)
Chen, Yijian
2012-03-01
In this paper, we present the research progress made in maskless EUV lithography and discuss the emerging opportunities for this disruptive technology. It will be shown nanomirrors based maskless approach is one path to costeffective and defect-free EUV lithography, rather than making it even more complicated. The focus of our work is to optimize the existing vertical comb process and scale down the mirror size from several microns to sub-micron regime. The nanomirror device scaling, system configuration, and design issues will be addressed. We also report our theoretical and simulation study of reflective EUV nanomirror based imaging behavior. Dense line/space patterns are formed with an EUV nanomirror array by assigning a phase shift of π to neighboring nanomirrors. Our simulation results show that phase/intensity imbalance is an inherent characteristic of maskless EUV lithography while it only poses a manageable challenge to CD control and process window. The wafer scan and EUV laser jitter induced image blur phenomenon is discussed and a blurred imaging theory is constructed. This blur effect is found to degrade the image contrast at a level that mainly depends on the wafer scan speed.
NASA Astrophysics Data System (ADS)
Wolf, Alexey; Dostovalov, Alexandr; Skvortsov, Mikhail; Raspopin, Kirill; Parygin, Alexandr; Babin, Sergey
2018-05-01
In this work, long high-quality fiber Bragg gratings with phase shifts in the structure are inscribed directly in the optical fiber by point-by-point technique using femtosecond laser pulses. Phase shifts are introduced during the inscription process with a piezoelectric actuator, which rapidly shifts the fiber along the direction of its movement in a chosen point of the grating with a chosen shift value. As examples, single and double π phase shifts are introduced in fiber Bragg gratings with a length up to 34 mm in passive fibers, which provide corresponding transmission peaks with bandwidth less than 1 pm. It is shown that 37 mm π -phase-shifted grating inscribed in an active Er-doped fiber forms high-quality DFB laser cavity generating single-frequency radiation at 1550 nm with bandwidth of 20 kHz and signal-to-noise ratio of >70 dB. The inscription technique has a high degree of performance and flexibility and can be easily implemented in fibers of various types.
Transverse strain measurements using fiber optic grating based sensors
NASA Technical Reports Server (NTRS)
Udd, Eric (Inventor)
1998-01-01
A system and method to sense the application of transverse stress to an optical fiber which includes a light source that producing a relatively wide spectrum light beam. The light beam is reflected or transmitted off of an optical grating in the core of an optical fiber that is transversely stressed either directly or by the exposure to pressure when the fiber is bifringent so that the optical fiber responds to the pressure to transversely stress its core. When transversely stressed, the optical grating produces a reflection or transmission from the light beam that has two peaks or minimums in its frequency spectrum whose spacing and/or spread are indicative of the forces applied to the fiber. One or more detectors sense the reflection or transmissions from the optical grating to produce an output representative of the applied force. Multiple optical gratings and detectors may be employed to simultaneously measure temperature or the forces at different locations along the fiber.
High reflectance coatings for space applications in the EUV
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A. M.; Gum, Jeffrey S.; Osantowski, John F.; Fleetwood, Charles M.
1993-01-01
Advances in optical coating and materials technology have made possible the development of instruments with substantially improved efficiency and made possible to consider more complex optical designs in the EUV. The importance of recent developments in chemical vapor deposited silicon carbide (CVD-SiC), SiC films and multilayer coatings is discussed in the context of EUV instrumentation design. The EUV performance of these coatings as well as some strengths and problem areas for their use in space will be addressed.
Modeling 13.3nm Fe XXIII Flare Emissions Using the GOES-R EXIS Instrument
NASA Astrophysics Data System (ADS)
Rook, H.; Thiemann, E.
2017-12-01
The solar EUV spectrum is dominated by atomic transitions in ionized atoms in the solar atmosphere. As solar flares evolve, plasma temperatures and densities change, influencing abundances of various ions, changing intensities of different EUV wavelengths observed from the sun. Quantifying solar flare spectral irradiance is important for constraining models of Earth's atmosphere, improving communications quality, and controlling satellite navigation. However, high time cadence measurements of flare irradiance across the entire EUV spectrum were not available prior to the launch of SDO. The EVE MEGS-A instrument aboard SDO collected 0.1nm EUV spectrum data from 2010 until 2014, when the instrument failed. No current or future instrument is capable of similar high resolution and time cadence EUV observation. This necessitates a full EUV spectrum model to study EUV phenomena at Earth. It has been recently demonstrated that one hot flare EUV line, such as the 13.3nm Fe XXIII line, can be used to model cooler flare EUV line emissions, filling the role of MEGS-A. Since unblended measurements of Fe XXIII are typically unavailable, a proxy for the Fe XXIII line must be found. In this study, we construct two models of this line, first using the GOES 0.1-0.8nm soft x-ray (SXR) channel as the Fe XXIII proxy, and second using a physics-based model dependent on GOES emission measure and temperature data. We determine that the more sophisticated physics-based model shows better agreement with Fe XXIII measurements, although the simple proxy model also performs well. We also conclude that the high correlation between Fe XXIII emissions and the GOES 0.1-0.8nm band is because both emissions tend to peak near the GOES emission measure peak despite large differences in their contribution functions.
ILT optimization of EUV masks for sub-7nm lithography
NASA Astrophysics Data System (ADS)
Hooker, Kevin; Kuechler, Bernd; Kazarian, Aram; Xiao, Guangming; Lucas, Kevin
2017-06-01
The 5nm and 7nm technology nodes will continue recent scaling trends and will deliver significantly smaller minimum features, standard cell areas and SRAM cell areas vs. the 10nm node. There are tremendous economic pressures to shrink each subsequent technology, though in a cost-effective and performance enhancing manner. IC manufacturers are eagerly awaiting EUV so that they can more aggressively shrink their technology than they could by using complicated MPT. The current 0.33NA EUV tools and processes also have their patterning limitations. EUV scanner lenses, scanner sources, masks and resists are all relatively immature compared to the current lithography manufacturing baseline of 193i. For example, lens aberrations are currently several times larger (as a function of wavelength) in EUV scanners than for 193i scanners. Robustly patterning 16nm L/S fully random logic metal patterns and 40nm pitch random logic rectangular contacts with 0.33NA EUV are tough challenges that will benefit from advanced OPC/RET. For example, if an IC manufacturer can push single exposure device layer resolution 10% tighter using improved ILT to avoid using DPT, there will be a significant cost and process complexity benefit to doing so. ILT is well known to have considerable benefits in finding flexible 193i mask pattern solutions to improve process window, improve 2D CD control, improve resolution in low K1 lithography regime and help to delay the introduction of DPT. However, ILT has not previously been applied to EUV lithography. In this paper, we report on new developments which extend ILT method to EUV lithography and we characterize the benefits seen vs. traditional EUV OPC/RET methods.
Actinic defect counting statistics over 1-cm2 area of EUVL mask blank
NASA Astrophysics Data System (ADS)
Jeong, Seongtae; Lai, Chih-wei; Rekawa, Senajith; Walton, Christopher C.; Bokor, Jeffrey
2000-07-01
As a continuation of comparison experiments between EUV inspection and visible inspection of defects on EUVL mask blanks, we report on the result of an experiment where the EUV defect inspection tool is used to perform at-wavelength defect counting over 1 cm2 of EUVL mask blank. Initial EUV inspection found five defects over the scanned area and the subsequent optical scattering inspection was able to detect all of the five defects. Therefore, if there are any defects that are only detectable by EUV inspection, the density is lower than the order of unity per cm2. An upgrade path to substantially increase the overall throughput of the EUV inspection system is also identified in the manuscript.
The Extreme Ultraviolet Flux of Very Low Mass Stars
NASA Astrophysics Data System (ADS)
Drake, Jeremy
2017-09-01
The X-ray and EUV emission of stars is vital for understanding the atmospheres and evolution of their planets. The coronae of dwarf stars later than M6 behave differently to those of earlier spectral types and are more X-ray dim and radio bright. Too faint to have been observed by EUVE, their EUV behavior is currently highly uncertain. We propose to observe a small sample of late M dwarfs using the off-axis HRC-S thin Al" filter that is sensitive to EUV emission in the 50-200 A range. The measured fluxes will be used to understand the amount of cooler coronal plasma present, and extend X-ray-EUV flux relations to the latest stellar types.
Study on photochemical analysis system (VLES) for EUV lithography
NASA Astrophysics Data System (ADS)
Sekiguchi, A.; Kono, Y.; Kadoi, M.; Minami, Y.; Kozawa, T.; Tagawa, S.; Gustafson, D.; Blackborow, P.
2007-03-01
A system for photo-chemical analysis of EUV lithography processes has been developed. This system has consists of 3 units: (1) an exposure that uses the Z-Pinch (Energetiq Tech.) EUV Light source (DPP) to carry out a flood exposure, (2) a measurement system RDA (Litho Tech Japan) for the development rate of photo-resists, and (3) a simulation unit that utilizes PROLITH (KLA-Tencor) to calculate the resist profiles and process latitude using the measured development rate data. With this system, preliminary evaluation of the performance of EUV lithography can be performed without any lithography tool (Stepper and Scanner system) that is capable of imaging and alignment. Profiles for 32 nm line and space pattern are simulated for the EUV resist (Posi-2 resist by TOK) by using VLES that hat has sensitivity at the 13.5nm wavelength. The simulation successfully predicts the resist behavior. Thus it is confirmed that the system enables efficient evaluation of the performance of EUV lithography processes.
Estimation of resist sensitivity for extreme ultraviolet lithography using an electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyama, Tomoko Gowa, E-mail: ohyama.tomoko@qst.go.jp; Oshima, Akihiro; Tagawa, Seiichi, E-mail: tagawa@sanken.osaka-u.ac.jp
2016-08-15
It is a challenge to obtain sufficient extreme ultraviolet (EUV) exposure time for fundamental research on developing a new class of high sensitivity resists for extreme ultraviolet lithography (EUVL) because there are few EUV exposure tools that are very expensive. In this paper, we introduce an easy method for predicting EUV resist sensitivity by using conventional electron beam (EB) sources. If the chemical reactions induced by two ionizing sources (EB and EUV) are the same, the required absorbed energies corresponding to each required exposure dose (sensitivity) for the EB and EUV would be almost equivalent. Based on this theory, wemore » calculated the resist sensitivities for the EUV/soft X-ray region. The estimated sensitivities were found to be comparable to the experimentally obtained sensitivities. It was concluded that EB is a very useful exposure tool that accelerates the development of new resists and sensitivity enhancement processes for 13.5 nm EUVL and 6.x nm beyond-EUVL (BEUVL).« less
AWARE - The Automated EUV Wave Analysis and REduction algorithm
NASA Astrophysics Data System (ADS)
Ireland, J.; Inglis; A. R.; Shih, A. Y.; Christe, S.; Mumford, S.; Hayes, L. A.; Thompson, B. J.
2016-10-01
Extreme ultraviolet (EUV) waves are large-scale propagating disturbances observed in the solar corona, frequently associated with coronal mass ejections and flares. Since their discovery over two hundred papers discussing their properties, causes and physics have been published. However, their fundamental nature and the physics of their interactions with other solar phenomena are still not understood. To further the understanding of EUV waves, and their relation to other solar phenomena, we have constructed the Automated Wave Analysis and REduction (AWARE) algorithm for the detection of EUV waves over the full Sun. The AWARE algorithm is based on a novel image processing approach to isolating the bright wavefront of the EUV as it propagates across the corona. AWARE detects the presence of a wavefront, and measures the distance, velocity and acceleration of that wavefront across the Sun. Results from AWARE are compared to results from other algorithms for some well known EUV wave events. Suggestions are also give for further refinements to the basic algorithm presented here.
NASA Technical Reports Server (NTRS)
Tai, Hsiang
2006-01-01
In a typical optic fiber Bragg grating (FBG) strain measurement, unless in an ideal static laboratory environment, the presence of vibration or often disturbance always exists, which often creates spurious multiple peaks in the reflected spectrum, resulting in a non-unique determination of strain value. In this report we attempt to investigate the origin of this phenomenon by physical arguments and simple numerical simulation. We postulate that the fiber gratings execute small amplitude transverse vibrations changing the optical path in which the reflected light traverses slightly and non-uniformly. Ultimately, this causes the multi-peak reflected spectrum.
Ionospheric Change and Solar EUV Irradiance
NASA Astrophysics Data System (ADS)
Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.
2011-12-01
The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.
NASA Technical Reports Server (NTRS)
Moore, Jason P. (Inventor)
2009-01-01
A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.
NASA Astrophysics Data System (ADS)
Maciel, R. S.; Frazão, O.; Morais, J. J. L.; Fernandes, J. R. A.
2013-11-01
In this work it is presented a study of the reflection spectra yielded by a Fiber Bragg Grating sensor embedded into an epoxy glue line between two wood arms, in a double cantilever beam (DCB) Mode I delamination test. The reflection spectra were obtained using a Spectral Analyzer Fibersensing Bragmeter FS2200SA in regular time intervals, as the stress applied to the laminates is continuously increased until fracture occurs. They initially show a typical Bragg grating reflection spectrum, which gradually changes into more complicated, multiple-peak spectra, resulting from a non-homogenous strain distribution along the board line. Based on these results, a model was derived for the variation of the grating effective index which fits the observed spectra when the irregular strain distribution is observed. This model consists of usual cosine description of Bragg grating effective index with linear phase variation, plus a logarithmic phase change along the fiber length, resulting in the increment of the grating wavelength with increasing distance from the load application point. Moreover, from this model the strain distribution along the grating is found, yielding the expected result.
The potential of diffraction grating for spatial applications
NASA Astrophysics Data System (ADS)
Jourlin, Y.; Parriaux, O.; Pigeon, F.; Tischenko, A. V.
2017-11-01
Diffraction gratings are know, and have been fabricated for more than one century. They are now making a come back for two reasons: first, because they are now better understood which leads to the efficient exploitation of what was then called their "anomalies"; secondly, because they are now fabricable by means of the modern manufacturing potential of planar technologies. Novel grating can now perform better than conventional gratings, and address new application fields which were not expected to be theirs. This is the case of spatial applications where they can offer multiple optical functions, low size, low weight and mechanical robustness. The proposed contribution will briefly discuss the use of gratings for spatial applications. One of the most important applications is in the measurement of displacement. Usual translation and rotation sensors are bulky devices, which impose a system breakdown leading to cumbersome and heavy assemblies. We are proposing a miniaturized version of the traditional moving grating technique using submicron gratings and a specific OptoASIC which enables the measurement function to be non-obtrusively inserted into light and compact electro-mechanical systems. Nanometer resolution is possible with no compromise on the length of the measurement range. Another family of spatial application is in the field of spectrometers where new grating types allow a more flexible processing of the optical spectrum. Another family of applications addresses the question of inter-satellite communications: the introduction of gratings in laser cavities or in the laser mirrors enables the stabilization of the emitted polarization, the stabilization of the frequency as well as wide range frequency sweeping without mobile parts.
One-dimensional photonic crystals for code-division multiple access
NASA Astrophysics Data System (ADS)
Wang, Shamino Yuanliang
One-dimensional photonic crystals exhibit reduced group velocity and huge dispersion at their rejection band edge frequencies. Therefore they are natural candidates as optical delay lines, dispersion compensators, and pulse reshapers. Using wavelength tunable pulses spectrally sliced from a mode-locked fiber laser, the transmission mode measurement was performed in the time domain with single picosecond resolution. Group delays and dispersion were measured with an autocorrelator as an ultrafast optical detector and cross-correlator. Our experimental results agree qualitatively with the theoretical and simulation predictions. A maximum group delay of 10 ps for a commercial 3 mm long uniform fiber Bragg grating and that of 22.6 ps for a research laboratory fabricated 1 cm grating were measured, corresponding to a group velocity 66% of the speed of light in bare fiber. We have also demonstrated in the overlap transmission region of a grating pair both gratings contribute to the group delay while the group velocity dispersion was canceled, resulting in additive delay in transmission with minimal pulse reshaping. This compound grating configuration was further expanded as specially designed grating sequence encoders and decoders in matched filter CDMA. The transmitter grating sequence temporally stretched the input pulse into a long time scale low peak intensity pseudorandom noise, while the conjugate grating sequence in the receiver performed pulse reconstruction and data recovery. A temporal FWHM contrast ratio of 2.5 and a peak intensity contrast ratio of 10 between the correctly and incorrectly decoded signals were achieved. Armed with more sophisticated grating designs we believe this would be a powerful solution to CDMA orthogonal code requirements.
Smart architecture for stable multipoint fiber Bragg grating sensor system
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Liu, Wen-Fung
2017-12-01
In this work, we propose and investigate an intelligent fiber Bragg grating (FBG)-based sensor system in which the proposed stabilized and wavelength-tunable single-longitudinal-mode erbium-doped fiber laser can improve the sensing accuracy of wavelength-division-multiplexing multiple FBG sensors in a longer fiber transmission distance. Moreover, we also demonstrate the proposed sensor architecture to enhance the FBG capacity for sensing strain and temperature, simultaneously.
Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K
2008-09-15
A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.
Selecting multiple features delays perception, but only when targets are horizontally arranged.
Lo, Shih-Yu
2017-01-01
Based on the finding that perception is lagged by attention split on multiple features (Lo et al., 2012), this study investigated how the feature-based lag effect interacts with the target spatial arrangement. Participants were presented with gratings the spatial frequencies of which constantly changed. The task was to monitor two gratings of the same or different colors and report their spatial frequencies right before the stimulus offset. The results showed a perceptual lag wherein the reported value was closer to the physical value some time prior to the stimulus offset. This lag effect was larger when the two gratings were of different colors than when they were the same color. Furthermore, the feature-based lag effect was statistically significant when the two gratings were horizontally arranged but not when they were vertically or diagonally arranged. A model is proposed to explain the effect of target arrangement: When targets are horizontally arranged, selecting an additional feature delays perception. When targets are vertically or diagonally arranged, target selection for the lower field is prioritized. This prioritization on the lower target might prompt observers to only select the lower target and ignore the upper one, and this causes more perceptual errors without delaying perception. © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Gladstone, G. R.; Mcdonald, J. S.; Boyd, W. T.
1993-01-01
During its all-sky survey, the Extreme Ultraviolet Explorer (EUVE) satellite observed the Moon several times at first and last quarters, and once near the Dec. 10, 1992 lunar eclipse. We present a preliminary reduction and analysis of this data, in the form of EUV images of the Moon and derived albedos.
Coordinated ASCA/EUVE/XTE Observations of Algol
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1997-01-01
EUVE, Advanced Satellite for Cosmology and Astrophysics (ASCA), and X-ray Timing Explorer (XTE) observed the eclipsing binary Algol (Beta Per) from 1-7 Feb 1996. The coordinated observation covered approx. 2 binary orbits of the system, with a net exposure of approx. 160 ksec for EUVE, 40 ksec for ASCA (in 4 pointings), and 90 ksec for XTE (in 45 pointings). We discuss results of modeling the combined EUVE, ASCA, and XTE data using continuous differential emission measure distributions, and provide constraints on the abundance in the Algol system.
The Extreme Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Malina, R. F.; Bowyer, S.; Lampton, M.; Finley, D.; Paresce, F.; Penegor, G.; Heetderks, H.
1982-01-01
The Extreme Ultraviolet Explorer Mission is described. The purpose of this mission is to search the celestial sphere for astronomical sources of extreme ultraviolet (EUV) radiation (100 to 1000 A). The search will be accomplished with the use of three EUV telescopes, each sensitive to different bands within the EUV band. A fourth telescope will perform a higher sensitivity search of a limited sample of the sky in a single EUV band. In six months, the entire sky will be scanned at a sensitivity level comparable to existing surveys in other more traditional astronomical bandpasses.
EUV lithography for 30nm half pitch and beyond: exploring resolution, sensitivity, and LWR tradeoffs
NASA Astrophysics Data System (ADS)
Putna, E. Steve; Younkin, Todd R.; Chandhok, Manish; Frasure, Kent
2009-03-01
The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 32nm half-pitch node and beyond. Readiness of EUV materials is currently one high risk area according to assessments made at the 2008 EUVL Symposium. The main development issue regarding EUV resist has been how to simultaneously achieve high sensitivity, high resolution, and low line width roughness (LWR). This paper describes the strategy and current status of EUV resist development at Intel Corporation. Data is presented utilizing Intel's Micro-Exposure Tool (MET) examining the feasibility of establishing a resist process that simultaneously exhibits <=30nm half-pitch (HP) L/S resolution at <=10mJ/cm2 with <=4nm LWR.
EUV lithography for 22nm half pitch and beyond: exploring resolution, LWR, and sensitivity tradeoffs
NASA Astrophysics Data System (ADS)
Putna, E. Steve; Younkin, Todd R.; Caudillo, Roman; Chandhok, Manish
2010-04-01
The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 22nm half pitch node and beyond. Readiness of EUV materials is currently one high risk area according to recent assessments made at the 2009 EUVL Symposium. The main development issue regarding EUV resist has been how to simultaneously achieve high sensitivity, high resolution, and low line width roughness (LWR). This paper describes the strategy and current status of EUV resist development at Intel Corporation. Data collected utilizing Intel's Micro-Exposure Tool (MET) is presented in order to examine the feasibility of establishing a resist process that simultaneously exhibits <=22nm half-pitch (HP) L/S resolution at <= 12.5mJ/cm2 with <= 4nm LWR.
NASA Technical Reports Server (NTRS)
1997-01-01
This report summarizes work done under Cooperative Agreement (CA) on the following testbed projects: TERRIERS - The development of the ground systems to support the TERRIERS satellite mission at Boston University (BU). HSTS - The application of ARC's Heuristic Scheduling Testbed System (HSTS) to the EUVE satellite mission. SELMON - The application of NASA's Jet Propulsion Laboratory's (JPL) Selective Monitoring (SELMON) system to the EUVE satellite mission. EVE - The development of the EUVE Virtual Environment (EVE), a prototype three-dimensional (3-D) visualization environment for the EUVE satellite and its sensors, instruments, and communications antennae. FIDO - The development of the Fault-Induced Document Officer (FIDO) system, a prototype application to respond to anomalous conditions by automatically searching for, retrieving, and displaying relevant documentation for an operators use.
Continued Analysis of EUVE Solar System Observations
NASA Technical Reports Server (NTRS)
Gladstone, G. Randall
2001-01-01
This is the final report for this project. We proposed to continue our work on extracting important results from the EUVE (Extreme UltraViolet Explorer) archive of lunar and jovian system observations. In particular, we planned to: (1) produce several monochromatic images of the Moon at the wavelengths of the brightest solar EUV emission lines; (2) search for evidence of soft X-ray emissions from the Moon and/or X-ray fluorescence at specific EUV wavelengths; (3) search for localized EUV and soft X-ray emissions associated with each of the Galilean satellites; (4) search for correlations between localized Io Plasma Torus (IPT) brightness and volcanic activity on Io; (5) search for soft X-ray emissions from Jupiter; and (6) determine the long term variability of He 58.4 nm emissions from Jupiter, and relate these to solar variability. However, the ADP review panel suggested that the work concentrate on the Jupiter/IPT observations, and provided half the requested funding. Thus we have performed no work on the first two tasks, and instead concentrated on the last three. In addition we used funds from this project to support reduction and analysis of EUVE observations of Venus. While this was not part of the original statement of work, it is entirely in keeping with extracting important results from EUVE solar system observations.
Protection efficiency of a standard compliant EUV reticle handling solution
NASA Astrophysics Data System (ADS)
He, Long; Lystad, John; Wurm, Stefan; Orvek, Kevin; Sohn, Jaewoong; Ma, Andy; Kearney, Patrick; Kolbow, Steve; Halbmaier, David
2009-03-01
For successful implementation of extreme ultraviolet lithography (EUVL) technology for late cycle insertion at 32 nm half-pitch (hp) and full introduction for 22 nm hp high volume production, the mask development infrastructure must be in place by 2010. The central element of the mask infrastructure is contamination-free reticle handling and protection. Today, the industry has already developed and balloted an EUV pod standard for shipping, transporting, transferring, and storing EUV masks. We have previously demonstrated that the EUV pod reticle handling method represents the best approach in meeting EUVL high volume production requirements, based on then state-of-the-art inspection capability at ~53nm polystyrene latex (PSL) equivalent sensitivity. In this paper, we will present our latest data to show defect-free reticle handling is achievable down to 40 nm particle sizes, using the same EUV pod carriers as in the previous study and the recently established world's most advanced defect inspection capability of ~40 nm SiO2 equivalent sensitivity. The EUV pod is a worthy solution to meet EUVL pilot line and pre-production exposure tool development requirements. We will also discuss the technical challenges facing the industry in refining the EUV pod solution to meet 22 nm hp EUVL production requirements and beyond.
Clean induced feature CD shift of EUV mask
NASA Astrophysics Data System (ADS)
Nesládek, Pavel; Schedel, Thorsten; Bender, Markus
2016-05-01
EUV developed in the last decade to the most promising <7nm technology candidate. Defects are considered to be one of the most critical issues of the EUV mask. There are several contributors which make the EUV mask so different from the optical one. First one is the significantly more complicated mask stack consisting currently of 40 Mo/Si double layers, covered by Ru capping layer and TaN/TaO absorber/anti-reflective coating on top of the front face of the mask. Backside is in contrary to optical mask covered as well by conductive layer consisting of Cr or CrN. Second contributor is the fact that EUV mask is currently in contrary to optical mask not yet equipped with sealed pellicle, leading to much higher risk of mask contamination. Third reason is use of EUV mask in vacuum, possibly leading to deposition of vacuum contaminants on the EUV mask surface. Latter reason in combination with tight requirements on backside cleanliness lead to the request of frequent recleaning of the EUV mask, in order to sustain mask lifetime similar to that of optical mask. Mask cleaning process alters slightly the surface of any mask - binary COG mask, as well as phase shift mask of any type and naturally also of the EUV mask as well. In case of optical masks the changes are almost negligible, as the mask is exposed to max. 10-20 re-cleans within its life time. These modifications can be expressed in terms of different specified parameters, e.g. CD shift, phase/trans shift, change of the surface roughness etc. The CD shift, expressed as thinning (or exceptionally thickening) of the dark features on the mask is typically in order of magnitude 0.1nm per process run, which is completely acceptable for optical mask. Projected on the lifetime of EUV mask, assuming 100 clean process cycles, this will lead to CD change of about 10nm. For this reason the requirements for EUV mask cleaning are significantly tighter, << 0.1 nm per process run. This task will look even more challenging, when considering, that the tools for CD measurement at the EUV mask are identical as for optical mask. There is one aspect influencing the CD shift, which demands attention. The mask composition of the EUV mask is significantly different from the optical mask. More precisely there are 2 materials influencing the estimated CD in case of EUV mask, whereas there is one material only in case of optical masks, in first approximation. For optical masks, the CD changes can be attributed to modification of the absorber/ARC layer, as the quartz substrate can be hardly modified by the wet process. For EUV Masks chemical modification of the Ru capping layer - thinning, oxidization etc. are rather more probable and we need to take into account, how this effects can influence the CD measurement process. CD changes measured can be interpreted as either change in the feature size, or modification of the chemical nature of both absorber/ARC layer stack and the Ru capping layer. In our work we try to separate the effect of absorber and Ru/capping layer on the CD shift observed and propose independent way of estimation both parameters.
NASA Astrophysics Data System (ADS)
Dai, Yu; Ding, Mingde
2018-04-01
Recent observations in extreme-ultraviolet (EUV) wavelengths reveal an EUV late phase in some solar flares that is characterized by a second peak in warm coronal emissions (∼3 MK) several tens of minutes to a few hours after the soft X-ray (SXR) peak. Using the model enthalpy-based thermal evolution of loops (EBTEL), we numerically probe the production of EUV late-phase solar flares. Starting from two main mechanisms of producing the EUV late phase, i.e., long-lasting cooling and secondary heating, we carry out two groups of numerical experiments to study the effects of these two processes on the emission characteristics in late-phase loops. In either of the two processes an EUV late-phase solar flare that conforms to the observational criteria can be numerically synthesized. However, the underlying hydrodynamic and thermodynamic evolutions in late-phase loops are different between the two synthetic flare cases. The late-phase peak due to a long-lasting cooling process always occurs during the radiative cooling phase, while that powered by a secondary heating is more likely to take place in the conductive cooling phase. We then propose a new method for diagnosing the two mechanisms based on the shape of EUV late-phase light curves. Moreover, from the partition of energy input, we discuss why most solar flares are not EUV late flares. Finally, by addressing some other factors that may potentially affect the loop emissions, we also discuss why the EUV late phase is mainly observed in warm coronal emissions.
Multiple wavelengths filtering of light through inner resonances.
Felbacq, Didier; Larciprete, Maria Cristina; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael
2005-12-01
We show that by using the internal resonances of a grating, it is possible to design a filter working for multiple wavelengths. We study the characteristics of the device with respect to the constituting parameters and we propose a realization process.
A study of EUV emission from the O4f star Zeta Puppis
NASA Technical Reports Server (NTRS)
Waldron, Wayne L.; Vallerga, John
1995-01-01
Our 20 ks observation did not allow us to carry out our primary objective, i.e., to test the limitations of deeply embedded EUV and X-ray sources. However, it did provide a very useful constraint in our analysis of a newly acquired high S/N ROSAT PSPC X-ray spectrum of Zeta Pup. In addition, modifications to our stellar wind opacity code have been preformed to investigate the sensitivity of the EUV opacity energy range to different photospheric model flux inputs and different wind structures. These analyses provided the justification for a 140 ks follow up EUVE Cycle III observation of this star. We have recently been informed that our requested observation has been accepted as a Type 1 target for Cycle III. The remainder of this report focuses on the following: (1) a brief background on the status of X-ray emission from OB stars; (2) a discussion on the importance of EUV observations; (3) a discussion of our scientific objectives; and (4) a summary of our technical approach for our Cycle III observation (including the predicted EUV counts for various lines.)
NASA Astrophysics Data System (ADS)
Kandel, Yudhishthir; Chandonait, Jonathan; Melvin, Lawrence S.; Marokkey, Sajan; Yan, Qiliang; Grzeskowiak, Steven; Painter, Benjamin; Denbeaux, Gregory
2017-03-01
Extreme ultraviolet (EUV) lithography at 13.5 nm stands at the crossroads of next generation patterning technology for high volume manufacturing of integrated circuits. Photo resist models that form the part of overall pattern transform model for lithography play a vital role in supporting this effort. The physics and chemistry of these resists must be understood to enable the construction of accurate models for EUV Optical Proximity Correction (OPC). In this study, we explore the possibility of improving EUV photo-resist models by directly correlating the parameters obtained from experimentally measured atomic scale physical properties; namely, the effect of interaction of EUV photons with photo acid generators in standard chemically amplified EUV photoresist, and associated electron energy loss events. Atomic scale physical properties will be inferred from the measurements carried out in Electron Resist Interaction Chamber (ERIC). This study will use measured physical parameters to establish a relationship with lithographically important properties, such as line edge roughness and CD variation. The data gathered from these measurements is used to construct OPC models of the resist.
Availability of underlayer application to EUV process
NASA Astrophysics Data System (ADS)
Kosugi, Hitoshi; Fonseca, Carlos; Iwao, Fumiko; Marumoto, Hiroshi; Kim, Hyun-Woo; Cho, Kyoungyong; Park, Cheol-Hong; Park, Chang-Min; Na, Hai-Sub; Koh, Cha-Won; Cho, Hanku
2011-04-01
EUV lithography is one of the most promising technologies for the fabrication of beyond 30nm HP generation devices. However, it is well-known that EUV lithography still has significant challenges. A great concern is the change of resist material for EUV resist process. EUV resist material formulations will likely change from conventional-type materials. As a result, substrate dependency needs to be understood. TEL has reported that the simulation combined with experiments is a good way to confirm the substrate dependency. In this work the application of HMDS treatment and SiON introduction, as an underlayer, are studied to cause a footing of resist profile. Then, we applied this simulation technique to Samsung EUV process. We will report the benefit of this simulation work and effect of underlayer application. Regarding the etching process, underlayer film introduction could have significant issues because the film that should be etched off increases. For that purpose, thinner films are better for etching. In general, thinner films may have some coating defects. We will report the coating coverage performance and defectivity of ultra thin film coating.
Phase-shifting point diffraction interferometer mask designs
Goldberg, Kenneth Alan
2001-01-01
In a phase-shifting point diffraction interferometer, different image-plane mask designs can improve the operation of the interferometer. By keeping the test beam window of the mask small compared to the separation distance between the beams, the problem of energy from the reference beam leaking through the test beam window is reduced. By rotating the grating and mask 45.degree., only a single one-dimensional translation stage is required for phase-shifting. By keeping two reference pinholes in the same orientation about the test beam window, only a single grating orientation, and thus a single one-dimensional translation stage, is required. The use of a two-dimensional grating allows for a multiplicity of pinholes to be used about the pattern of diffracted orders of the grating at the mask. Orientation marks on the mask can be used to orient the device and indicate the position of the reference pinholes.
Fiber Optic Thermal Detection of Composite Delaminations
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.
2011-01-01
A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.
Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.
2009-01-01
A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.
NASA Astrophysics Data System (ADS)
Christian, C. A.; Olson, E. C.
1993-01-01
The proposal database and scheduling system for the Extreme Ultraviolet Explorer is described. The proposal database has been implemented to take input for approved observations selected by the EUVE Peer Review Panel and output target information suitable for the scheduling system to digest. The scheduling system is a hybrid of the SPIKE program and EUVE software which checks spacecraft constraints, produces a proposed schedule and selects spacecraft orientations with optimal configurations for acquiring star trackers, etc. This system is used to schedule the In Orbit Calibration activities that took place this summer, following the EUVE launch in early June 1992. The strategy we have implemented has implications for the selection of approved targets, which have impacted the Peer Review process. In addition, we will discuss how the proposal database, founded on Sybase, controls the processing of EUVE Guest Observer data.
Spectroscopy and Photometry of EUVE J1429-38.0:An Eclipsing Magnetic Cataclysmic Variable
NASA Astrophysics Data System (ADS)
Howell, Steve B.; Craig, Nahide; Roberts, Bryce; McGee, Paddy; Sirk, Martin
1997-06-01
EUVE J1429-38.0 was originally discovered as a variable source by the Extreme Ultraviolet Explorer (EUVE) satellite. We present new optical observations which unambiguously confirm this star to be an eclipsing magnetic system with an orbital period of 4() h 46() m. The photometric data are strongly modulated by ellipsoidal variations during low states which allow a system inclination of near 80 degrees to be determined. Our time-resolved optical spectra, which cover only about one-third of the orbital cycle, indicate the clear presence of a gas stream. During high states, EUVE J1429-38.0 shows ~ 1 mag deep eclipses and the apparent formation of a partial accretion disk. EUVE J1429-38.0 presents the observer with properties of both the AM Herculis and the DQ Herculis types of magnetic cataclysmic variable.
Long-period fiber phase grating devices
NASA Astrophysics Data System (ADS)
Stegall, David Brian
In recent years, the explosive growth of the internet has virtually surpassed the limits of the global communications infrastructure. As a result, the fiber- optic communications industry is spearheading research and development to transmit information at ever increasing rates and over longer distances. The industry faces several obstacles to improving the performance of these systems. One problem is dispersion, which manifests at faster transmission rates when pulse spreading and distortion scramble the signal. Furthermore, high transmission powers needed for longer distances introduce deleterious optical nonlinearity phenomenon. Several waveguide and bulk devices have been implemented to address these issues, but each have shortcomings. Many of these problems and challenges have also impacted other fiber-optic industries, such as sensor systems. Long- period optical fiber gratings pose simple solutions to these problems and offer novel applications previously impractical through any other means. In this dissertation, research is presented in which modeling and fabrication of long-period gratings is improved over existing techniques by incorporating the effects of waveguide dispersion. An arbitrary dispersion also can be introduced into a long-period grating intentionally and a theoretical examination is made relating the chirp of a long-period grating and the resulting dispersion. In addition, several device applications such as a biological sensor and the concept of an actively controlled transmission spectrum of a long-period grating are explored. Finally, multiple in-series Bragg and long- period gratings are investigated for novel device configurations.
Time-domain Brillouin scattering assisted by diffraction gratings
NASA Astrophysics Data System (ADS)
Matsuda, Osamu; Pezeril, Thomas; Chaban, Ievgeniia; Fujita, Kentaro; Gusev, Vitalyi
2018-02-01
Absorption of ultrashort laser pulses in a metallic grating deposited on a transparent sample launches coherent compression/dilatation acoustic pulses in directions of different orders of acoustic diffraction. Their propagation is detected by delayed laser pulses, which are also diffracted by the metallic grating, through the measurement of the transient intensity change of the first-order diffracted light. The obtained data contain multiple frequency components, which are interpreted by considering all possible angles for the Brillouin scattering of light achieved through multiplexing of the propagation directions of light and coherent sound by the metallic grating. The emitted acoustic field can be equivalently presented as a superposition of plane inhomogeneous acoustic waves, which constitute an acoustic diffraction grating for the probe light. Thus the obtained results can also be interpreted as a consequence of probe light diffraction by both metallic and acoustic gratings. The realized scheme of time-domain Brillouin scattering with metallic gratings operating in reflection mode provides access to wide range of acoustic frequencies from minimal to maximal possible values in a single experimental optical configuration for the directions of probe light incidence and scattered light detection. This is achieved by monitoring the backward and forward Brillouin scattering processes in parallel. Potential applications include measurements of the acoustic dispersion, simultaneous determination of sound velocity and optical refractive index, and evaluation of samples with a single direction of possible optical access.
Chen, Wen; Chen, Xudong; Sheppard, Colin J R
2011-10-10
In this paper, we propose a method using structured-illumination-based diffractive imaging with a laterally-translated phase grating for optical double-image cryptography. An optical cryptosystem is designed, and multiple random phase-only masks are placed in the optical path. When a phase grating is laterally translated just before the plaintexts, several diffraction intensity patterns (i.e., ciphertexts) can be correspondingly obtained. During image decryption, an iterative retrieval algorithm is developed to extract plaintexts from the ciphertexts. In addition, security and advantages of the proposed method are analyzed. Feasibility and effectiveness of the proposed method are demonstrated by numerical simulation results. © 2011 Optical Society of America
Quadratic grating apodized photon sieves for simultaneous multiplane microscopy
NASA Astrophysics Data System (ADS)
Cheng, Yiguang; Zhu, Jiangping; He, Yu; Tang, Yan; Hu, Song; Zhao, Lixin
2017-10-01
We present a new type of imaging device, named quadratic grating apodized photon sieve (QGPS), used as the objective for simultaneous multiplane imaging in X-rays. The proposed QGPS is structured based on the combination of two concepts: photon sieves and quadratic gratings. Its design principles are also expounded in detail. Analysis of imaging properties of QGPS in terms of point-spread function shows that QGPS can image multiple layers within an object field onto a single image plane. Simulated and experimental results in visible light both demonstrate the feasibility of QGPS for simultaneous multiplane imaging, which is extremely promising to detect dynamic specimens by X-ray microscopy in the physical and life sciences.
Wavelength stabilized DBR high power diode laser using EBL optical confining grating technology
NASA Astrophysics Data System (ADS)
Paoletti, R.; Codato, S.; Coriasso, C.; Gotta, P.; Meneghini, G.; Morello, G.; De Melchiorre, P.; Riva, E.; Rosso, M.; Stano, A.; Gattiglio, M.
2018-02-01
This paper reports a DBR High Power Diode Laser (DBR-HPDL) realization, emitting up to 10W in the 920 nm range. High spectral purity (90% power in about 0.5 nm), and wavelength stability versus injected current (about 5 times more than standard FP laser) candidates DBR-HPDL as a suitable device for wavelength stabilized pump source, and high brightness applications exploiting Wavelength Division Multiplexing. Key design aspect is a multiple-orders Electron Beam Lithography (EBL) optical confining grating, stabilizing on same wafer multiple wavelengths by a manufacturable and reliable technology. Present paper shows preliminary demonstration of wafer with 3 pitches, generating DBRHPDLs 2.5 nm spaced.
LPP-EUV light source for HVM lithography
NASA Astrophysics Data System (ADS)
Saito, T.; Ueno, Y.; Yabu, T.; Kurosawa, A.; Nagai, S.; Yanagida, T.; Hori, T.; Kawasuji, Y.; Abe, T.; Kodama, T.; Nakarai, H.; Yamazaki, T.; Mizoguchi, H.
2017-01-01
We have been developing a laser produced plasma extremely ultra violet (LPP-EUV) light source for a high volume manufacturing (HVM) semiconductor lithography. It has several unique technologies such as the high power short pulse carbon dioxide (CO2) laser, the short wavelength solid-state pre-pulse laser and the debris mitigation technology with the magnetic field. This paper presents the key technologies for a high power LPP-EUV light source. We also show the latest performance data which is 188W EUV power at intermediate focus (IF) point with 3.7% conversion efficiency (CE) at 100 kHz.
EUV Irradiance Inputs to Thermospheric Density Models: Open Issues and Path Forward
NASA Astrophysics Data System (ADS)
Vourlidas, A.; Bruinsma, S.
2018-01-01
One of the objectives of the NASA Living With a Star Institute on "Nowcasting of Atmospheric Drag for low Earth orbit (LEO) Spacecraft" was to investigate whether and how to increase the accuracy of atmospheric drag models by improving the quality of the solar forcing inputs, namely, extreme ultraviolet (EUV) irradiance information. In this focused review, we examine the status of and issues with EUV measurements and proxies, discuss recent promising developments, and suggest a number of ways to improve the reliability, availability, and forecast accuracy of EUV measurements in the next solar cycle.
Carbon contamination topography analysis of EUV masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Y.-J.; Yankulin, L.; Thomas, P.
2010-03-12
The impact of carbon contamination on extreme ultraviolet (EUV) masks is significant due to throughput loss and potential effects on imaging performance. Current carbon contamination research primarily focuses on the lifetime of the multilayer surfaces, determined by reflectivity loss and reduced throughput in EUV exposure tools. However, contamination on patterned EUV masks can cause additional effects on absorbing features and the printed images, as well as impacting the efficiency of cleaning process. In this work, several different techniques were used to determine possible contamination topography. Lithographic simulations were also performed and the results compared with the experimental data.
The patterning center of excellence (CoE): an evolving lithographic enablement model
NASA Astrophysics Data System (ADS)
Montgomery, Warren; Chun, Jun Sung; Liehr, Michael; Tittnich, Michael
2015-03-01
As EUV lithography moves toward high-volume manufacturing (HVM), a key need for the lithography materials makers is access to EUV photons and imaging. The SEMATECH Resist Materials Development Center (RMDC) provided a solution path by enabling the Resist and Materials companies to work together (using SUNY Polytechnic Institute's Colleges of Nanoscale Science and Engineering (SUNY Poly CNSE) -based exposure systems), in a consortium fashion, in order to address the need for EUV photons. Thousands of wafers have been processed by the RMDC (leveraging the SUNY Poly CNSE/SEMATECH MET, SUNY Poly CNSE Alpha Demo Tool (ADT) and the SEMATECH Lawrence Berkeley MET) allowing many of the questions associated with EUV materials development to be answered. In this regard the activities associated with the RMDC are continuing. As the major Integrated Device Manufacturers (IDMs) have continued to purchase EUV scanners, Materials companies must now provide scanner based test data that characterizes the lithography materials they are producing. SUNY Poly CNSE and SEMATECH have partnered to evolve the RMDC into "The Patterning Center of Excellence (CoE)". The new CoE leverages the capability of the SUNY Poly CNSE-based full field ASML 3300 EUV scanner and combines that capability with EUV Microexposure (MET) systems resident in the SEMATECH RMDC to create an integrated lithography model which will allow materials companies to advance materials development in ways not previously possible.
SDO/AIA AND HINODE/EIS OBSERVATIONS OF INTERACTION BETWEEN AN EUV WAVE AND ACTIVE REGION LOOPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Liheng; Zhang, Jun; Li, Ting
2013-09-20
We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430-910 km s{sup –1}. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wavemore » transit, the original redshift increased by about 3 km s{sup –1}, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.« less
Kr photoionized plasma induced by intense extreme ultraviolet pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartnik, A., E-mail: andrzej.bartnik@wat.edu.pl; Wachulak, P.; Fiedorowicz, H.
Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Krmore » plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.« less
Nanoplasmonic generation of ultrashort EUV pulses
NASA Astrophysics Data System (ADS)
Choi, Joonhee; Lee, Dong-Hyub; Han, Seunghwoi; Park, In-Yong; Kim, Seungchul; Kim, Seung-Woo
2012-10-01
Ultrashort extreme-ultraviolet (EUV) light pulses are an important tool for time-resolved pump-probe spectroscopy to investigate the ultrafast dynamics of electrons in atoms and molecules. Among several methods available to generate ultrashort EUV light pulses, the nonlinear frequency upconversion process of high-harmonic generation (HHG) draws attention as it is capable of producing coherent EUV pulses with precise control of burst timing with respect to the driving near-infrared (NIR) femtosecond laser. In this report, we present and discuss our recent experimental data obtained by the plasmon-driven HHG method that generate EUV radiation by means of plasmonic nano-focusing of NIR femtosecond pulses. For experiment, metallic waveguides having a tapered hole of funnel shape inside were fabricated by adopting the focused-ion-beam process on a micro-cantilever substrate. The plasmonic field formed within the funnelwaveguides being coupled with the incident femtosecond pulse permitted intensity enhancement by a factor of ~350, which creates a hot spot of sub-wavelength size with intensities strong enough for HHG. Experimental results showed that with injection of noble gases into the funnel-waveguides, EUV radiation is generated up to wavelengths of 32 nm and 29.6 nm from Ar and Ne gas atoms, respectively. Further, it was observed that lower-order EUV harmonics are cut off in the HHG spectra by the tiny exit aperture of the funnel-waveguide.
Kr photoionized plasma induced by intense extreme ultraviolet pulses
NASA Astrophysics Data System (ADS)
Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.
2016-04-01
Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Kr plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.
Solar Demon: near real-time Flare, Dimming and EUV wave monitoring
NASA Astrophysics Data System (ADS)
Kraaikamp, Emil; Verbeeck, Cis
Dimmings and EUV waves have been observed routinely in EUV images since 1996. They are closely associated with coronal mass ejections (CMEs), and therefore provide useful information for early space weather alerts. On the one hand, automatic detection and characterization of dimmings and EUV waves can be used to gain better understanding of the underlying physical mechanisms. On the other hand, every dimming and EUV wave provides extra information on the associated front side CME, and can improve estimates of the geo-effectiveness and arrival time of the CME. Solar Demon has been designed to detect and characterize dimmings, EUV waves, as well as solar flares in near real-time on Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data. The detection modules are running continuously at the Royal Observatory of Belgium on both quick-look data, as well as synoptic science data. The output of Solar Demon can be accessed in near real-time on the Solar Demon website, and includes images, movies, light curves, and the numerical evolution of several parameters. Solar Demon is the result of collaboration between the FP7 projects AFFECTS and COMESEP. Flare detections of Solar Demon are integrated into the COMESEP alert system. Here we present the Solar Demon detection algorithms and their output. We will show several interesting flare, dimming and EUV wave events, and present general statistics of the detections made so far during solar cycle 24.
A study of phase defect measurement on EUV mask by multiple detectors CD-SEM
NASA Astrophysics Data System (ADS)
Yonekura, Isao; Hakii, Hidemitsu; Morisaki, Shinya; Murakawa, Tsutomu; Shida, Soichi; Kuribara, Masayuki; Iwai, Toshimichi; Matsumoto, Jun; Nakamura, Takayuki
2013-06-01
We have studied MVM (Multi Vision Metrology) -SEM® E3630 to measure 3D shape of defects. The four detectors (Detector A, B, C and D) are independently set up in symmetry for the primary electron beam axis. Signal processing of four direction images enables not only 2D (width) measurement but also 3D (height) measurement. At last PMJ, we have investigated the relation between the E3630's signal of programmed defect on MoSi-HT and defect height measured by AFM (Atomic Force Microscope). It was confirmed that height of integral profile by this tool is correlated with AFM. It was tested that E3630 has capability of observing multilayer defect on EUV. We have investigated correlation with AFM of width and depth or height of multilayer defect. As the result of observing programmed defects, it was confirmed that measurement result by E3630 is well correlated with AFM. And the function of 3D view image enables to show nm order defect.
EUV mirror based absolute incident flux detector
Berger, Kurt W.
2004-03-23
A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.
Exploring EUV Spicules Using 304 Angstrom He II Data from SDO AIA
NASA Technical Reports Server (NTRS)
Snyder, Ian R.; Sterling, Alphonse C.; Falconer, David A.; Moore, Ron L.
2014-01-01
We present results from a statistical study of He II 304 Angstrom Extreme Ultraviolet (EUV) spicules at the limb of the Sun. We also measured properties of one macrospicule; macrospicules are longer than most spicules, and much broader in width than spicules. We use high-cadence (12 second) and high-resolution (0.6 arcseconds pixels) resolution data from the Atmospheric Imaging Array (AIA) instrument on the Solar Dynamic Observatory (SDO). All of the observed events occurred near the solar north pole, where quiet Sun or coronal hole environments ensued. We examined the maximum lengths, maximum rise velocities, and lifetimes of 33 Extreme Ultraviolet (EUV) spicules and the macrospicule. For the bulk of the Extreme Ultraviolet (EUV) spicules these quantities are, respectively, approximately 10,000-40,000 kilometers, 20-100 kilometers per second, and approximately 100- approximately 1000 seconds. For the macrospicule the corresponding quantities were respectively approximately 60,000 kilometers, approximately 130 kilometers per second, approximately 1800 seconds, which is typical of macrospicules measured by other workers. Therefore macrospicules are taller, longer-lived, and faster than most Extreme Ultraviolet (EUV) spicules. The rise profiles of both the spicules and the macrospicules match well a second-order ("parabolic" ) trajectory, although the acceleration was often weaker than that of solar gravity in the profiles fitted to the trajectories. Our macrospicule also had an obvious brightening at its base at birth, while such brightening was not apparent for the Extreme Ultraviolet (EUV) spicules. Most of the Extreme Ultraviolet (EUV) spicules remained visible during their descent back to the solar surface, although a small percentage of the spicules and the macrospicule faded out before falling back to the surface. Our sample of macrospicules is not yet large enough to determine whether their initiation mechanism is identical to that of Extreme Ultraviolet (EUV) spicules.
Novel EUV mask black border and its impact on wafer imaging
NASA Astrophysics Data System (ADS)
Kodera, Yutaka; Fukugami, Norihito; Komizo, Toru; Watanabe, Genta; Ito, Shin; Yoshida, Itaru; Maruyama, Shingo; Kotani, Jun; Konishi, Toshio; Haraguchi, Takashi
2016-03-01
EUV lithography is the most promising technology for semiconductor device manufacturing of the 10nm node and beyond. The EUV mask is a key element in the lithographic scanner optical path. The image border is a pattern free dark area around the die on the photomask serving as transition area between the parts of the mask that is shielded from the exposure light by the Reticle Masking (REMA) blades and the die. When printing a die at dense spacing on an EUV scanner, the EUV light reflection from the image border overlaps edges of neighboring dies, affecting CD and contrast in this area. To reduce this effect an etched multilayer type black border was developed, and it was demonstrated that CD impact at the edge of a die is strongly reduced with this type of the black border (BB). However, wafer printing result still showed some CD change influenced by the black border reflection. It was proven that the CD shift was caused by DUV Out of Band (OOB) light which is emitted from EUV light source. New types of a multilayer etched BB were evaluated and showed a good potential for DUV light suppression. In this study, a novel black border called Hybrid Black Border has been developed which allows to eliminate EUV and DUV OOB light reflection. Direct measurements of OOB light from HBB and Normal BB are performed on NXE:3300B ASML EUV scanner; it is shown that HBB OOB reflection is 3x lower than that of Normal BB. Finally, we state that HBB is a promising technology allowing for CD control at die edges.
Controlling contamination in Mo/Si multilayer mirrors by Si surface capping modifications
NASA Astrophysics Data System (ADS)
Malinowski, Michael E.; Steinhaus, Chip; Clift, W. Miles; Klebanoff, Leonard E.; Mrowka, Stanley; Soufli, Regina
2002-07-01
The performance of Mo/Si multilayer mirrors (MLMs) used to reflect UV (EUV) radiation in an EUV + hydrocarbon (NC) vapor environment can be improved by optimizing the silicon capping layer thickness on the MLM in order to minimize the initial buildup of carbon on MLMs. Carbon buildup is undesirable since it can absorb EUV radiation and reduce MLM reflectivity. A set of Mo/Si MLMs deposited on Si wafers was fabricated such that each MLM had a different Si capping layer thickness ranging form 2 nm to 7 nm. Samples from each MLM wafer were exposed to a combination of EUV light + (HC) vapors at the Advanced Light Source (ALS) synchrotron in order to determine if the Si capping layer thickness affected the carbon buildup on the MLMs. It was found that the capping layer thickness had a major influence on this 'carbonizing' tendency, with the 3 nm layer thickness providing the best initial resistance to carbonizing and accompanying EUV reflectivity loss in the MLM. The Si capping layer thickness deposited on a typical EUV optic is 4.3 nm. Measurements of the absolute reflectivities performed on the Calibration and Standards beamline at the ALS indicated the EUV reflectivity of the 3 nm-capped MLM was actually slightly higher than that of the normal, 4 nm Si-capped sample. These results show that he use of a 3 nm capping layer represents an improvement over the 4 nm layer since the 3 nm has both a higher absolute reflectivity and better initial resistance to carbon buildup. The results also support the general concept of minimizing the electric field intensity at the MLM surface to minimize photoelectron production and, correspondingly, carbon buildup in a EUV + HC vapor environment.
Free-electron laser emission architecture impact on extreme ultraviolet lithography
NASA Astrophysics Data System (ADS)
Hosler, Erik R.; Wood, Obert R.; Barletta, William A.
2017-10-01
Laser-produced plasma (LPP) EUV sources have demonstrated ˜125 W at customer sites, establishing confidence in EUV lithography (EUVL) as a viable manufacturing technology. However, for extension to the 3-nm technology node and beyond, existing scanner/source technology must enable higher-NA imaging systems (requiring increased resist dose and providing half-field exposures) and/or EUV multipatterning (requiring increased wafer throughput proportional to the number of exposure passes). Both development paths will require a substantial increase in EUV source power to maintain the economic viability of the technology, creating an opportunity for free-electron laser (FEL) EUV sources. FEL-based EUV sources offer an economic, high-power/single-source alternative to LPP EUV sources. Should FELs become the preferred next-generation EUV source, the choice of FEL emission architecture will greatly affect its operational stability and overall capability. A near-term industrialized FEL is expected to utilize one of the following three existing emission architectures: (1) self-amplified spontaneous emission, (2) regenerative amplifier, or (3) self-seeding. Model accelerator parameters are put forward to evaluate the impact of emission architecture on FEL output. Then, variations in the parameter space are applied to assess the potential impact to lithography operations, thereby establishing component sensitivity. The operating range of various accelerator components is discussed based on current accelerator performance demonstrated at various scientific user facilities. Finally, comparison of the performance between the model accelerator parameters and the variation in parameter space provides a means to evaluate the potential emission architectures. A scorecard is presented to facilitate this evaluation and provides a framework for future FEL design and enablement for EUVL applications.
Evidence for a New Class of Extreme Ultraviolet Sources
NASA Technical Reports Server (NTRS)
Maoz, Dan; Ofek, Eran O.; Shemi, Amotz
1997-01-01
Most of the sources detected in the extreme ultraviolet (EUV; 100-600 A) by the ROSAT/WFC and EUVE all-sky surveys have been identified with active late-type stars and hot white dwarfs that are near enough to the Earth to escape absorption by interstellar gas. However, about 15 per cent of EUV sources are as yet unidentified with any optical counterparts. We examine whether the unidentified EUV sources may consist of the same population of late-type stars and white dwarfs. We present B and R photometry of stars in the fields of seven of the unidentified EUV sources. We detect in the optical the entire main-sequence and white dwarf population out to the greatest distances where they could still avoid absorption. We use color-magnitude diagrams to demonstrate that, in most of the fields, none of the observed stars has the colours and magnitudes of late-type dwarfs at distances less than 100 pc. Similarly, none of the observed stars is a white dwarf within 500 pc that is hot enough to be a EUV emitter. The unidentified EUV sources we study are not detected in X-rays, while cataclysmic variables, X-ray binaries, and active galactic nuclei generally are. We conclude that some of the EUV sources may be a new class of nearby objects, which are either very faint at optical bands or which mimic the colours and magnitudes of distant late-type stars or cool white dwarfs. One candidate for optically faint objects is isolated old neutron stars, slowly accreting interstellar matter. Such neutron stars are expected to be abundant in the Galaxy, and have not been unambiguously detected.
Method of fabricating reflection-mode EUV diffraction elements
Naulleau, Patrick P.
2002-01-01
Techniques for fabricating a well-controlled, quantized-level, engineered surface that serves as substrates for EUV reflection multilayer overcomes problems associated with the fabrication of reflective EUV diffraction elements. The technique when employed to fabricate an EUV diffraction element that includes the steps of: (a) forming an etch stack comprising alternating layers of first and second materials on a substrate surface where the two material can provide relative etch selectivity; (b) creating a relief profile in the etch stack wherein the relief profile has a defined contour; and (c) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. For a typical EUV multilayer, if the features on the substrate are larger than 50 nm, the multilayer will be conformal to the substrate. Thus, the phase imparted to the reflected wavefront will closely match that geometrically set by the surface height profile.
EUV spectroscopy of highly charged high Z ions in the Large Helical Device plasmas
NASA Astrophysics Data System (ADS)
Suzuki, C.; Koike, F.; Murakami, I.; Tamura, N.; Sudo, S.; Sakaue, H. A.; Nakamura, N.; Morita, S.; Goto, M.; Kato, D.; Nakano, T.; Higashiguchi, T.; Harte, C. S.; OʼSullivan, G.
2014-11-01
We present recent results on the extreme ultraviolet (EUV) spectroscopy of highly charged high Z ions in plasmas produced in the Large Helical Device (LHD) at the National Institute for Fusion Science. Tungsten, bismuth and lanthanide elements have recently been studied in the LHD in terms of their importance in fusion research and EUV light source development. In relatively low temperature plasmas, quasicontinuum emissions from open 4d or 4f subshell ions are predominant in the EUV region, while the spectra tend to be dominated by discrete lines from open 4s or 4p subshell ions in higher temperature plasmas. Comparative analyses using theoretical calculations and charge-separated spectra observed in an electron beam ion trap have been performed to achieve better agreement with the spectra measured in the LHD. As a result, databases on Z dependence of EUV spectra in plasmas have been widely extended.
Actinic imaging and evaluation of phase structures on EUV lithography masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochi, Iacopo; Goldberg, Kenneth; Huh, Sungmin
2010-09-28
The authors describe the implementation of a phase-retrieval algorithm to reconstruct phase and complex amplitude of structures on EUV lithography masks. Many native defects commonly found on EUV reticles are difficult to detect and review accurately because they have a strong phase component. Understanding the complex amplitude of mask features is essential for predictive modeling of defect printability and defect repair. Besides printing in a stepper, the most accurate way to characterize such defects is with actinic inspection, performed at the design, EUV wavelength. Phase defect and phase structures show a distinct through-focus behavior that enables qualitative evaluation of themore » object phase from two or more high-resolution intensity measurements. For the first time, phase of structures and defects on EUV masks were quantitatively reconstructed based on aerial image measurements, using a modified version of a phase-retrieval algorithm developed to test optical phase shifting reticles.« less
The Nature of the Flaring EUVE Companion to HD 43162
NASA Technical Reports Server (NTRS)
Kulkarni, Shrinivas R.
2005-01-01
The purpose of our program was to observe and characterize the companion to HD 43162, EUVE J0614-2354, which (serendipitously) experienced an enormous flare event during our EUVE observation of HD 43162, one of the nearby solar analogs that we observed during our survey of this population. Our observation was carried out and the data have been received and reduced. We are able to identify EUVE J0614-2354 in both the X-ray (EPIC MOS + PN) and the UV (OM) data, which provides a sub-arcsecond position for this source. Our findings are consistent with the analysis of Christian et al. (2003a,b), who identify EUVE J0614-2354 with a coronally-active M-dwarf star at distance d = 15 plus or minus 5pc. The X-ray spectrum from the EPIC data are also consistent with this identification.
Hemispherical Nature of EUV Shocks Revealed by SOHO, STEREO, and SDO Observations
NASA Technical Reports Server (NTRS)
Gopalswamy, Natchimuthuk; Nitta, N.; Akiyama, S.; Makela, P.; Yashiro, S.
2011-01-01
EUV wave transients associated with type II radio bursts are manifestation of CME-driven shocks in the solar corona. We use recent EUV wave observations from SOHO, STEREO, and SDO for a set of CMEs to show that the EUV transients have a spherical shape in the inner corona. We demonstrate this by showing that the radius of the EUV transient on the disk observed by one instrument is approximately equal to the height of the wave above the solar surface in an orthogonal view provided by another instrument. The study also shows that the CME-driven shocks often form very low in the corona at a heliocentric distance of 1.2 Rs, even smaller than the previous estimates from STEREO/CORl data (Gopalswamy et aI., 2009, Solar Phys. 259, 227). These results have important implications for the acceleration of solar energetic particles by CMEs
Variable magnification variable dispersion glancing incidence imaging x-ray spectroscopic telescope
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Inventor)
1991-01-01
A variable magnification variable dispersion glancing incidence x-ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x-ray and extreme ultraviolet radiation sources includes a pirmary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carries each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a mutlilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x-ray sensitive photogrpahic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.
Variable magnification variable dispersion glancing incidence imaging x ray spectroscopic telescope
NASA Technical Reports Server (NTRS)
Hoover, Richard (Inventor)
1990-01-01
A variable magnification variable dispersion glancing incidence x ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carriers each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a multilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x ray sensitive photographic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.
EUV wavefront metrology system in EUVA
NASA Astrophysics Data System (ADS)
Hasegawa, Takayuki; Ouchi, Chidane; Hasegawa, Masanobu; Kato, Seima; Suzuki, Akiyoshi; Sugisaki, Katsumi; Murakami, Katsuhiko; Saito, Jun; Niibe, Masahito
2004-05-01
An Experimental extreme ultraviolet (EUV) interferometer (EEI) using an undulator as a light source was installed in New SUBARU synchrotron facility at Himeji Institute of Technology (HIT). The EEI can evaluate the five metrology methods reported before. (1) A purpose of the EEI is to determine the most suitable method for measuring the projection optics of EUV lithography systems for mass production tools.
The extreme ultraviolet explorer archive
NASA Astrophysics Data System (ADS)
Polomski, E.; Drake, J. J.; Dobson, C.; Christian, C.
1993-09-01
The Extreme Ultrviolet Explorer (EUVE) public archive was created to handle the storage, maintenance, and distribution of EUVE data and ancillary documentation, information, and software. Access to the archive became available to the public on July 17, 1992, only 40 days after the launch of the EUVE satellite. A brief overview of the archive's contents and the various methods of access will be described.
EUV Coronal Waves: Atmospheric and Heliospheric Connections and Energetics
NASA Astrophysics Data System (ADS)
Patsourakos, S.
2015-12-01
Since their discovery in late 90's by EIT on SOHO, the study EUV coronal waves has been a fascinating andfrequently strongly debated research area. While it seems as ifan overall consensus has been reached about the nurture and nature of this phenomenon,there are still several important questions regarding EUV waves. By focusing on the most recentobservations, we will hereby present our current understanding about the nurture and nature of EUV waves,discuss their connections with other atmospheric and heliospheric phenomena (e.g.,flares and CMEs, Moreton waves, coronal shocks, coronal oscillations, SEP events) and finallyassess their possible energetic contribution to the overall budget of relatederuptive phenomena.
NASA Astrophysics Data System (ADS)
Sitterly, Jacob; Murphy, Michael; Grzeskowiak, Steven; Denbeaux, Greg; Brainard, Robert L.
2018-03-01
This paper describes the photoreactivity of six organometallic complexes of the type PhnMX2 containing bismuth, antimony and tellurium, where n = 3 for bismuth and antimony and n = 2 for tellurium, and where X = acetate (O2CCH3) or pivalate (O2CC(CH3)3). These compounds were exposed to EUV light to monitor photodecomposition via in situ mass spectral analysis of the primary outgassing products of CO2, benzene and phenol. This paper explores the effect of metal center and carboxylate ligand on the EUV reactivity of these EUV photoresists.
Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Kil-Byoung; Bellan, Paul M.
2013-12-15
An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.
Registration performance on EUV masks using high-resolution registration metrology
NASA Astrophysics Data System (ADS)
Steinert, Steffen; Solowan, Hans-Michael; Park, Jinback; Han, Hakseung; Beyer, Dirk; Scherübl, Thomas
2016-10-01
Next-generation lithography based on EUV continues to move forward to high-volume manufacturing. Given the technical challenges and the throughput concerns a hybrid approach with 193 nm immersion lithography is expected, at least in the initial state. Due to the increasing complexity at smaller nodes a multitude of different masks, both DUV (193 nm) and EUV (13.5 nm) reticles, will then be required in the lithography process-flow. The individual registration of each mask and the resulting overlay error are of crucial importance in order to ensure proper functionality of the chips. While registration and overlay metrology on DUV masks has been the standard for decades, this has yet to be demonstrated on EUV masks. Past generations of mask registration tools were not necessarily limited in their tool stability, but in their resolution capabilities. The scope of this work is an image placement investigation of high-end EUV masks together with a registration and resolution performance qualification. For this we employ a new generation registration metrology system embedded in a production environment for full-spec EUV masks. This paper presents excellent registration performance not only on standard overlay markers but also on more sophisticated e-beam calibration patterns.
EUV tools: hydrogen gas purification and recovery strategies
NASA Astrophysics Data System (ADS)
Landoni, Cristian; Succi, Marco; Applegarth, Chuck; Riddle Vogt, Sarah
2015-03-01
The technological challenges that have been overcome to make extreme ultraviolet lithography (EUV) a reality have been enormous1. This vacuum driven technology poses significant purity challenges for the gases employed for purging and cleaning the scanner EUV chamber and source. Hydrogen, nitrogen, argon and ultra-high purity compressed dry air (UHPCDA) are the most common gases utilized at the scanner and source level. Purity requirements are tighter than for previous technology node tools. In addition, specifically for hydrogen, EUV tool users are facing not only gas purity challenges but also the need for safe disposal of the hydrogen at the tool outlet. Recovery, reuse or recycling strategies could mitigate the disposal process and reduce the overall tool cost of operation. This paper will review the types of purification technologies that are currently available to generate high purity hydrogen suitable for EUV applications. Advantages and disadvantages of each purification technology will be presented. Guidelines on how to select the most appropriate technology for each application and experimental conditions will be presented. A discussion of the most common approaches utilized at the facility level to operate EUV tools along with possible hydrogen recovery strategies will also be reported.
On the Absence of EUV Emission from Comet C/2012 S1 (ISON)
NASA Technical Reports Server (NTRS)
Bryans, Paul; Pesnell, W. Dean
2016-01-01
When the sungrazing comet C2012 S1 (ISON) made its perihelion passage within two solar radii of the Sun's surface, it was expected to be a bright emitter at extreme ultraviolet (EUV) wavelengths. However, despite solar EUV telescopes repointing to track the orbit of the comet, no emission was detected. This null result is interesting in its own right, offering the possibility of placing limits on the size and composition of the nucleus. We explain the lack of detection by considering the properties of the comet and the solar atmosphere that determine the intensity of EUV emission from sungrazing comets. By comparing these properties with those of sungrazing comet C2011 W3 (Lovejoy), which did emit in the EUV, we conclude that the primary factor resulting in non-detectable EUV emission from C2012 S1 (ISON) was an insufficiently large nucleus. We conclude that the radius of C2012 S1 (ISON) was at least a factor of four less than that of C2011 W3 (Lovejoy). This is consistent with white-light observations in the days before perihelion that suggested the comet was dramatically reducing in size on approach.
Optical element for full spectral purity from IR-generated EUV light sources
NASA Astrophysics Data System (ADS)
van den Boogaard, A. J. R.; Louis, E.; van Goor, F. A.; Bijkerk, F.
2009-03-01
Laser produced plasma (LLP) sources are generally considered attractive for high power EUV production in next generation lithography equipment. Such plasmas are most efficiently excited by the relatively long, infrared wavelengths of CO2-lasers, but a significant part of the rotational-vibrational excitation lines of the CO2 radiation will be backscattered by the plasma's critical density surface and consequently will be present as parasitic radiation in the spectrum of such sources. Since most optical elements in the EUV collecting and imaging train have a high reflection coefficient for IR radiation, undesirable heating phenomena at the resist level are likely to occur. In this study a completely new principle is employed to obtain full separation of EUV and IR radiation from the source by a single optical component. While the application of a transmission filter would come at the expense of EUV throughput, this technique potentially enables wavelength separation without loosing reflectance compared to a conventional Mo/Si multilayer coated element. As a result this method provides full spectral purity from the source without loss in EUV throughput. Detailed calculations on the principal of functioning are presented.
The EUV Helium Spectrum in the Quiet Sun: A By-Product of Coronal Emission?
NASA Technical Reports Server (NTRS)
Andretta, Vincenzo; DelZanna, Giulio; Jordan, Stuart D.; Oegerle, William (Technical Monitor)
2002-01-01
In this paper we test one of the mechanisms proposed to explain the intensities and other observed properties of the solar helium spectrum, and in particular of its Extreme-Ultraviolet (EUV) resonance lines. The so-called Photoionisation-Recombination (P-R) mechanism involves photoionisation of helium atoms and ions by EUV coronal radiation, followed by recombination cascades. We present calibrated measurements of EUV flux obtained with the two CDS spectrometers on board SOHO, in quiescent solar regions. We were able to obtain an essentially complete estimate of the total photoionizing flux in the wavelength range below 504 A (the photoionisation threshold for He(I)), as well as simultaneous measurements with the same instruments of the intensities of the strongest EUV helium lines: He(II) lambda304, He(I) lambda584, and He(I) lambda537. We find that there are not enough EUV photons to account for the observed helium line intensities. More specifically, we conclude that He(II) intensities cannot be explained by the P-R mechanism. Our results, however, leave open the possibility that the He(I) spectrum could be formed by the P-R mechanism, with the He(II) lambda304 line as a significant photoionizating source.
NASA Astrophysics Data System (ADS)
Seely, J. F.; McMullin, D. R.; Bremer, J.; Chang, C.; Sakdinawat, A.; Jones, A. R.; Vest, R.
2014-12-01
Two solar instrument designs are presented that utilize newly developed miniature free-standing zone plates having interconnected Au opaque bars and no support membrane resulting in excellent long-term stability in space. Both instruments are based on a zone plate having 4 mm outer diameter and 1 to 2 degree field of view. The zone plate collects EUV radiation and focuses a narrow bandpass through a pinhole aperture and onto a silicon photodiode detector. As a miniature radiometer, EUV irradiance is accurately determined from the zone plate efficiency and the photodiode responsivity that are calibrated at the NIST SURF synchrotron facility. The EUV radiometer is pointed to the Sun and measures the absolute solar EUV irradiance in high time cadence suitable for solar physics and space weather applications. As a limb-scanning instrument in low earth orbit, a miniature zone-plate monochromator measures the extinction of solar EUV radiation by scattering through the upper atmosphere which is a measure of the variability of the ionosphere. Both instruments are compact and light-weight and are attractive for CubeSats and other missions where resources are extremely limited.
ON THE ABSENCE OF EUV EMISSION FROM COMET C/2012 S1 (ISON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryans, Paul; Pesnell, W. Dean
2016-05-10
When the sungrazing comet C/2012 S1 (ISON) made its perihelion passage within two solar radii of the Sun’s surface, it was expected to be a bright emitter at extreme ultraviolet (EUV) wavelengths. However, despite solar EUV telescopes repointing to track the orbit of the comet, no emission was detected. This “null result” is interesting in its own right, offering the possibility of placing limits on the size and composition of the nucleus. We explain the lack of detection by considering the properties of the comet and the solar atmosphere that determine the intensity of EUV emission from sungrazing comets. Bymore » comparing these properties with those of sungrazing comet C/2011 W3 (Lovejoy), which did emit in the EUV, we conclude that the primary factor resulting in non-detectable EUV emission from C/2012 S1 (ISON) was an insufficiently large nucleus. We conclude that the radius of C/2012 S1 (ISON) was at least a factor of four less than that of C/2011 W3 (Lovejoy). This is consistent with white-light observations in the days before perihelion that suggested the comet was dramatically reducing in size on approach.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-06
... that has been slit and expanded, and does not involve welding or joining of multiple pieces of steel... pierced and cold formed, and does not involve welding or joining of multiple pieces of steel. Certain...
Combining Speed Information Across Space
NASA Technical Reports Server (NTRS)
Verghese, Preeti; Stone, Leland S.
1995-01-01
We used speed discrimination tasks to measure the ability of observers to combine speed information from multiple stimuli distributed across space. We compared speed discrimination thresholds in a classical discrimination paradigm to those in an uncertainty/search paradigm. Thresholds were measured using a temporal two-interval forced-choice design. In the discrimination paradigm, the n gratings in each interval all moved at the same speed and observers were asked to choose the interval with the faster gratings. Discrimination thresholds for this paradigm decreased as the number of gratings increased. This decrease was not due to increasing the effective stimulus area as a control experiment that increased the area of a single grating did not show a similar improvement in thresholds. Adding independent speed noise to each of the n gratings caused thresholds to decrease at a rate similar to the original no-noise case, consistent with observers combining an independent sample of speed from each grating in both the added- and no-noise cases. In the search paradigm, observers were asked to choose the interval in which one of the n gratings moved faster. Thresholds in this case increased with the number of gratings, behavior traditionally attributed to an input bottleneck. However, results from the discrimination paradigm showed that the increase was not due to observers' inability to process these gratings. We have also shown that the opposite trends of the data in the two paradigms can be predicted by a decision theory model that combines independent samples of speed information across space. This demonstrates that models typically used in classical detection and discrimination paradigms are also applicable to search paradigms. As our model does not distinguish between samples in space and time, it predicts that discrimination performance should be the same regardless of whether the gratings are presented in two spatial intervals or two temporal intervals. Our last experiment largely confirmed this prediction.
Improvements in resist performance towards EUV HVM
NASA Astrophysics Data System (ADS)
Yildirim, Oktay; Buitrago, Elizabeth; Hoefnagels, Rik; Meeuwissen, Marieke; Wuister, Sander; Rispens, Gijsbert; van Oosten, Anton; Derks, Paul; Finders, Jo; Vockenhuber, Michaela; Ekinci, Yasin
2017-03-01
Extreme ultraviolet (EUV) lithography with 13.5 nm wavelength is the main option for sub-10nm patterning in the semiconductor industry. We report improvements in resist performance towards EUV high volume manufacturing. A local CD uniformity (LCDU) model is introduced and validated with experimental contact hole (CH) data. Resist performance is analyzed in terms of ultimate printing resolution (R), line width roughness (LWR), sensitivity (S), exposure latitude (EL) and depth of focus (DOF). Resist performance of dense lines at 13 nm half-pitch and beyond is shown by chemical amplified resist (CAR) and non-CAR (Inpria YA Series) on NXE scanner. Resolution down to 10nm half pitch (hp) is shown by Inpria YA Series resist exposed on interference lithography at the Paul Sherrer Institute. Contact holes contrast and consequent LCDU improvement is achieved on a NXE:3400 scanner by decreasing the pupil fill ratio. State-of-the-art imaging meets 5nm node requirements for CHs. A dynamic gas lock (DGL) membrane is introduced between projection optics box (POB) and wafer stage. The DGL membrane will suppress the negative impact of resist outgassing on the projection optics by 100%, enabling a wider range of resist materials to be used. The validated LCDU model indicates that the imaging requirements of the 3nm node can be met with single exposure using a high-NA EUV scanner. The current status, trends, and potential roadblocks for EUV resists are discussed. Our results mark the progress and the improvement points in EUV resist materials to support EUV ecosystem.
Ethical concerns related to grateful patient philanthropy: the physician's perspective.
Wright, Scott M; Wolfe, Leah; Stewart, Rosalyn; Flynn, John A; Paisner, Richard; Rum, Steve; Parson, Gregory; Carrese, Joseph
2013-05-01
Philanthropic contributions to academic medical centers from grateful patients support research, patient care, education, and capital projects. The goal of this study was to identify the ethical concerns associated with philanthropic gifts from grateful patients. A qualitative study design was selected. Investigators conducted in-depth semi-structured interviews with 20 Department of Medicine physicians at Johns Hopkins who were identified by Development Office staff as experienced and successful in this realm-those having relationships with multiple patients who have made philanthropic contributions. Interview transcripts were independently coded by two investigators. Content analysis identified several themes related to ethical concerns. Eighteen informants (90 %) were Associate Professors or Professors; two (10 %) were females. Four thematic domains emerged related to ethical concerns associated with philanthropy from grateful patients: (i) impact of gift on the doctor-patient relationship; (ii) gift acquisition considered beyond the physician's professional role; (iii) justice and fairness; and (iv) vulnerability of patients. Despite acknowledging at least one of the aforementioned concerns, eleven physician informants (55 %) expressed the view that there were no ethical issues involved with grateful patient philanthropy. In this paper, we report that physicians involved in grateful patient philanthropy are aware of, and in some cases troubled by, the ethical concerns related to this activity. Further studies could examine how best to prepare faculty for the challenges that may accompany these gifts so as to help them maintain expected professional and ethical standards when accepting grateful patient philanthropy.
Thin film solar cell design based on photonic crystal and diffractive grating structures.
Mutitu, James G; Shi, Shouyuan; Chen, Caihua; Creazzo, Timothy; Barnett, Allen; Honsberg, Christiana; Prather, Dennis W
2008-09-15
In this paper we present novel light trapping designs applied to multiple junction thin film solar cells. The new designs incorporate one dimensional photonic crystals as band pass filters that reflect short light wavelengths (400 - 867 nm) and transmit longer wavelengths(867 -1800 nm) at the interface between two adjacent cells. In addition, nano structured diffractive gratings that cut into the photonic crystal layers are incorporated to redirect incoming waves and hence increase the optical path length of light within the solar cells. Two designs based on the nano structured gratings that have been realized using the scattering matrix and particle swarm optimization methods are presented. We also show preliminary fabrication results of the proposed devices.
NASA Astrophysics Data System (ADS)
Zhao, Huajun; Yuan, Dairong; Ming, Hai
2011-04-01
The optical design of a beam splitter that has a 50/50 splitting ratio regardless of the polarization is presented. The non-polarizing beam splitter (NPBS) is based on the fused-silica rectangular transmission gratings with high intensity tolerance. The modal method has been used to estimate the effective index of the modes excited in the grating region for TE and TM polarizations. If a phase difference equals an odd multiples of π/2 for the first two modes (i.e. modes 0 and 1), the incident light will be diffracted into the 0 and -1 orders with about 50% and 50% diffraction efficiency for TM and TE polarizations, respectively.
E-beam generated holographic masks for optical vector-matrix multiplication
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Case, S. K.
1981-01-01
An optical vector matrix multiplication scheme that encodes the matrix elements as a holographic mask consisting of linear diffraction gratings is proposed. The binary, chrome on glass masks are fabricated by e-beam lithography. This approach results in a fairly simple optical system that promises both large numerical range and high accuracy. A partitioned computer generated hologram mask was fabricated and tested. This hologram was diagonally separated outputs, compact facets and symmetry about the axis. The resultant diffraction pattern at the output plane is shown. Since the grating fringes are written at 45 deg relative to the facet boundaries, the many on-axis sidelobes from each output are seen to be diagonally separated from the adjacent output signals.
NASA Astrophysics Data System (ADS)
Lin, Wen-Piao; Wu, He-Long
2005-08-01
We propose a fiber-Bragg-grating (FBG)-based optical code-division multiple access passive optical network (OCDMA-PON) using a dual-baseband modulation scheme. A mathematical model is developed to study the performance of this scheme. According to the analyzed results, this scheme can allow a tolerance of the spectral power distortion (SPD) ratio of 25% with a bit error rate (BER) of 10-9 when the modified pseudorandom noise (PN) code length is 16. Moreover, we set up a simulated system to evaluate the baseband and radio frequency (RF) band transmission characteristics. The simulation results demonstrate that our proposed OCDMA-PON can provide a cost-effective and scalable fiber-to-the-home solution.
Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors
NASA Technical Reports Server (NTRS)
Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B.; Allen, Maxwell J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C., Jr.
1991-01-01
The Multispectral Solar Telescope Array is a rocket-borne observatory which encompasses seven compact soft X-ray/EUV, multilayer-coated, and two compact far-UV, interference film-coated, Cassegrain and Ritchey-Chretien telescopes. Extensive measurements are presented on the efficiency and spectral bandpass of the X-ray/EUV telescopes. Attention is given to systematic errors and measurement errors.
EUV spectroscopy in astrophysics: The role of compact objects
NASA Astrophysics Data System (ADS)
Wood, K. S.; Kowalski, M. P.; Cruddace, R. G.; Barstow, M. A.
2006-01-01
The bulk of radiation from million-degree plasmas is emitted at EUV wavelengths. Such plasmas are ubiquitous in astrophysics, and examples include the atmospheres of white dwarfs, accretion phenomena in cataclysmic variables (CVs) and some active galactic nuclei (AGN), the coronae of active stars, and the interstellar medium (ISM) of our own galaxy as well as of others. Internally, white dwarfs are formally analogous to neutron stars, being stellar configurations where the thermal contribution to support is secondary. Both stellar types have various intrinsic and environmental parameters. Comparison of such analogous systems using scaled parameters can be fruitful. Source class characterization is mature enough that such analogies can be used to compare theoretical ideas across a wide dynamic range in parameters, one example being theories of quasiperiodic oscillations. However, the white dwarf side of this program is limited by the available photometry and spectroscopy at EUV wavelengths, where there exist critical spectral features that contain diagnostic information often not available at other wavelengths. Moreover, interstellar absorption makes EUV observations challenging. Results from an observation of the hot white dwarf G191-B2B are presented to demonstrate the promise of high-resolution EUV spectroscopy. Two types of CVs, exemplified by AM Her and EX Hya, are used to illustrate blending of spectroscopy and timing measurements. Dynamical timescales and envisioned performance parameters of next-generation EUV satellites (effective area >20 cm 2, spectral resolution >10,000) make possible a new level of source modeling. The importance of the EUV cannot be overlooked given that observations are continually being pushed to cosmological distances, where the spectral energy distributions of X-ray bright AGNs, for example, will have their maxima redshifted into the EUV. Sometimes wrongly dismissed for limitations of small bandwidth or local view from optical depth limitations, the EUV is instead a gold mine of information bearing upon key issues in compact objects, but it is information that must be won through the triple combination of high-spectral resolution, large area, and application of advanced theory.
Time-Resolved Spectroscopy of Active Binary Stars
NASA Technical Reports Server (NTRS)
Brown, Alexander
2000-01-01
This NASA grant covered EUVE observing and data analysis programs during EUVE Cycle 5 GO observing. The research involved a single Guest Observer project 97-EUVE-061 "Time-Resolved Spectroscopy of Active Binary Stars". The grant provided funding that covered 1.25 months of the PI's salary. The activities undertaken included observation planning and data analysis (both temporal and spectral). This project was awarded 910 ksec of observing time to study seven active binary stars, all but one of which were actually observed. Lambda-And was observed on 1997 Jul 30 - Aug 3 and Aug 7-14 for a total of 297 ksec; these observations showed two large complex flares that were analyzed by Osten & Brown (1999). AR Psc, observed for 350 ksec on 1997 Aug 27 - Sep 13, showed only relatively small flares that were also discussed by Osten & Brown (1999). EUVE observations of El Eri were obtained on 1994 August 24-28, simultaneous with ASCA X-ray spectra. Four flares were detected by EUVE with one of these also observed simultaneously, by ASCA. The other three EUVE observations were of the stars BY Dra (1997 Sep 22-28), V478 Lyr (1998 May 18-27), and sigma Gem (1998 Dec 10-22). The first two stars showed a few small flares. The sigma Gem data shows a beautiful complete flare with a factor of ten peak brightness compared to quiescence. The flare rise and almost all the decay phase are observed. Unfortunately no observations in other spectral regions were obtained for these stars. Analysis of the lambda-And and AR Psc observations is complete and the results were published in Osten & Brown (1999). Analysis of the BY Dra, V478 Lyr and sigma Gem EUVE data is complete and will be published in Osten (2000, in prep.). The El Eri EUV analysis is also completed and the simultaneous EUV/X-ray study will be published in Osten et al. (2000, in prep.). Both these latter papers will be submitted in summer 2000. All these results will form part of Rachel Osten's PhD thesis.
Exploring dynamic events in the solar corona
NASA Astrophysics Data System (ADS)
Downs, Cooper James
With the advent of modern computational technology it is now becoming the norm to employ detailed 3D computer models as empirical tools that directly account for the inhomogeneous nature of the Sun-Heliosphere environment. The key advantage of this approach lies in the ability to compare model results directly to observational data and to use a successful comparison (or lack thereof) to glean information on the underlying physical processes. Using extreme ultraviolet waves (EUV waves) as the overarching scientific driver, we apply this observation modeling approach to study the complex dynamics of the magnetic and thermodynamic structures that are observed in the low solar corona. Representing a highly non-trivial effort, this work includes three main scientific thrusts: an initial modeling effort and two EUV wave case-studies. First we document the development of the new Low Corona (LC) model, a 3D time-dependent thermodynamic magnetohydrodynamic (MHD) model implemented within the Space Weather Modeling Framework (SWMF). Observation synthesis methods are integrated within the LC model, which provides the ability to compare model results directly to EUV imaging observations taken by spacecraft. The new model is then used to explore the dynamic interplay between magnetic structures and thermodynamic energy balance in the corona that is caused by coronal heating mechanisms. With the model development complete, we investigate the nature of EUV waves in detail through two case-studies. Starting with the 2008 March 25 event, we conduct a series of numerical simulations that independently vary fundamental parameters thought to govern the physical mechanisms behind EUV waves. Through the subsequent analysis of the 3D data and comparison to observations we find evidence for both wave and non-wave mechanisms contributing to the EUV wave signal. We conclude with a comprehensive observation and modeling analysis of the 2010 June 13 EUV wave event, which was observed by the recently launched Solar Dynamics Observatory. We use a high resolution simulation of the transient to unambiguously characterize the globally propagating front of EUV wave as a fast-mode magnetosonic wave, and use the rich set of observations to place the many other facets of the EUV transient within a unified scenario involving wave and non-wave components.
Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) Slit-Jaw Imaging System
NASA Astrophysics Data System (ADS)
Wilkerson, P.; Champey, P. R.; Winebarger, A. R.; Kobayashi, K.; Savage, S. L.
2017-12-01
The Marshall Grazing Incidence X-ray Spectrometer is a NASA sounding rocket payload providing a 0.6 - 2.5 nm spectrum with unprecedented spatial and spectral resolution. The instrument is comprised of a novel optical design, featuring a Wolter1 grazing incidence telescope, which produces a focused solar image on a slit plate, an identical pair of stigmatic optics, a planar diffraction grating and a low-noise detector. When MaGIXS flies on a suborbital launch in 2019, a slit-jaw camera system will reimage the focal plane of the telescope providing a reference for pointing the telescope on the solar disk and aligning the data to supporting observations from satellites and other rockets. The telescope focuses the X-ray and EUV image of the sun onto a plate covered with a phosphor coating that absorbs EUV photons, which then fluoresces in visible light. This 10-week REU project was aimed at optimizing an off-axis mounted camera with 600-line resolution NTSC video for extremely low light imaging of the slit plate. Radiometric calculations indicate an intensity of less than 1 lux at the slit jaw plane, which set the requirement for camera sensitivity. We selected a Watec 910DB EIA charge-coupled device (CCD) monochrome camera, which has a manufacturer quoted sensitivity of 0.0001 lux at F1.2. A high magnification and low distortion lens was then identified to image the slit jaw plane from a distance of approximately 10 cm. With the selected CCD camera, tests show that at extreme low-light levels, we achieve a higher resolution than expected, with only a moderate drop in frame rate. Based on sounding rocket flight heritage, the launch vehicle attitude control system is known to stabilize the instrument pointing such that jitter does not degrade video quality for context imaging. Future steps towards implementation of the imaging system will include ruggedizing the flight camera housing and mounting the selected camera and lens combination to the instrument structure.
Increasing EUV source efficiency via recycling of radiation power
NASA Astrophysics Data System (ADS)
Hassanein, Ahmed; Sizyuk, Valeryi; Sizyuk, Tatyana; Johnson, Kenneth C.
2018-03-01
EUV source power is critical for advanced lithography, for achieving economical throughput performance and also for minimizing stochastic patterning effects. Power conversion efficiency can be increased by recycling plasma-scattered laser radiation and other out-of-band radiation back to the plasma via retroreflective optics. Radiation both within and outside of the collector light path can potentially be recycled. For recycling within the collector path, the system uses a diffractive collection mirror that concomitantly filters all laser and out-of-band radiation out of the EUV output. In this paper we review the optical design concept for power recycling and present preliminary plasma-physics simulation results showing a potential gain of 60% in EUV conversion efficiency.
NASA Astrophysics Data System (ADS)
Kirikera, G. R.; Balogun, O.; Krishnaswamy, S.
2008-02-01
A network of Fiber-Bragg Grating (FBG) sensors is developed as part of a Structural Health Monitoring system to identify impact damage. The sensor signals are adaptively demodulated using two-wave mixing (TWM) technology. The signals from multiple FBG sensors are multiplexed into a single TWM demodulator. The FBG sensor network is mounted on a plate, and the structure is subjected to impacts generated by dropping small ball bearings. Impact locations are identified based on time frequency analysis.
Multiple frequency interference in photorefractive media
NASA Technical Reports Server (NTRS)
Cox, David E.; Welch, Sharon S.
1992-01-01
The paper describes the use of a numerical simulation to predict the dynamic behavior of a photorefractive crystal exposed to interfering light waves at two different frequencies. Unlike static recording media, photorefractive materials allow for the simultaneous diffraction from and generation of refractive index gratings. The grating properties are evaluated in terms of their effect on the performance of a dynamic distributed sensor which uses the crystal as a holographic recording medium. Experimental results are presented which support the behavior predicted by simulation.
NASA Astrophysics Data System (ADS)
Fiedorowicz, H.; Bartnik, A.; Wachulak, P. W.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Ahad, I. U.; Fok, T.; Szczurek, A.; Wȩgrzyński, Ł.
In the paper we present new applications of laser plasma sources of soft X-rays and extreme ultraviolet (EUV) in various areas of plasma physics, nanotechnology and biomedical engineering. The sources are based on a gas puff target irradiated with nanosecond laser pulses from commercial Nd: YAG lasers, generating pulses with time duration from 1 to 10 ns and energies from 0.5 to 10 J at a 10 Hz repetition rate. The targets are produced with the use of a double valve system equipped with a special nozzle to form a double-stream gas puff target which allows for high conversion efficiency of laser energy into soft X-rays and EUV without degradation of the nozzle. The sources are equipped with various optical systems to collect soft X-ray and EUV radiation and form the radiation beam. New applications of these sources in imaging, including EUV tomography and soft X-ray microscopy, processing of materials and photoionization studies are presented.
Nanoimaging using soft X-ray and EUV laser-plasma sources
NASA Astrophysics Data System (ADS)
Wachulak, Przemyslaw; Torrisi, Alfio; Ayele, Mesfin; Bartnik, Andrzej; Czwartos, Joanna; Węgrzyński, Łukasz; Fok, Tomasz; Fiedorowicz, Henryk
2018-01-01
In this work we present three experimental, compact desk-top imaging systems: SXR and EUV full field microscopes and the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources based on a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths are capable of imaging nanostructures with a sub-50 nm spatial resolution and short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range and produces an imprint of the internal structure of the imaged sample in a thin layer of SXR sensitive photoresist. Applications of such desk-top EUV and SXR microscopes, mostly for biological samples (CT26 fibroblast cells and Keratinocytes) are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.
Development of EUV mask handling technology at MIRAI-Selete
NASA Astrophysics Data System (ADS)
Ota, Kazuya; Amemiya, Mitsuaki; Taguchi, Takao; Kamono, Takashi; Kubo, Hiroyoshi; Takikawa, Tadahiko; Usui, Yoichi; Suga, Osamu
2007-03-01
We, MIRAI-Selete, started a new EUV mask program in April, 2006. Development of EUV mask handling technology is one of the key areas of the program. We plan to develop mask handling technology and to evaluate EUV mask carriers using Lasertec M3350, a particle inspection tool with the defect sensitivity less than 50nm PSL, and Mask Protection Engineering Tool (named "MPE Tool"). M3350 is a newly developed tool based on a conventional M1350 for EUV blanks inspection. Since our M3350 has a blank flipping mechanism in it, we can inspect the front and the back surface of the blank automatically. We plan to use the M3350 for evaluating particle adders during mask shipping, storage and handling. MPE Tool is a special tool exclusively developed for demonstration of pellicleless mask handling. It can handle a mask within a protective enclosure, which Canon and Nikon have been jointly proposing1, and also, can be modified to handle other type of carrier as the need arises.
EB and EUV lithography using inedible cellulose-based biomass resist material
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi
2016-03-01
The validity of our approach of inedible cellulose-based resist material derived from woody biomass has been confirmed experimentally for the use of pure water in organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques of eco-conscious electron beam (EB) and extreme-ultraviolet (EUV) lithography. The water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB and EUV lithography was developed for environmental affair, safety, easiness of handling, and health of the working people. The inedible cellulose-based biomass resist material was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB and EUV sensitive groups. The 50-100 nm line and space width, and little footing profiles of cellulose-based biomass resist material on hardmask and layer were resolved at the doses of 10-30 μC/cm2. The eco-conscious lithography techniques was referred to as green EB and EUV lithography using inedible cellulose-based biomass resist material.
High performance EUV multilayer structures insensitive to capping layer optical parameters.
Pelizzo, Maria Guglielmina; Suman, Michele; Monaco, Gianni; Nicolosi, Piergiorgio; Windt, David L
2008-09-15
We have designed and tested a-periodic multilayer structures containing protective capping layers in order to obtain improved stability with respect to any possible changes of the capping layer optical properties (due to oxidation and contamination, for example)-while simultaneously maximizing the EUV reflection efficiency for specific applications, and in particular for EUV lithography. Such coatings may be particularly useful in EUV lithographic apparatus, because they provide both high integrated photon flux and higher stability to the harsh operating environment, which can affect seriously the performance of the multilayer-coated projector system optics. In this work, an evolutive algorithm has been developed in order to design these a-periodic structures, which have been proven to have also the property of stable performance with respect to random layer thickness errors that might occur during coating deposition. Prototypes have been fabricated, and tested with EUV and X-ray reflectometry, and secondary electron spectroscopy. The experimental results clearly show improved performance of our new a-periodic coatings design compared with standard periodic multilayer structures.
Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Mrak, Sebastijan; Semeter, Joshua; Drob, Douglas; Huba, J. D.
2018-05-01
The great American total solar eclipse of 21 August 2017 offered a fortuitous opportunity to study the response of the atmosphere and ionosphere using a myriad of ground instruments. We have used the network of U.S. Global Positioning System receivers to examine perturbations in maps of ionospheric total electron content (TEC). Coherent large-scale variations in TEC have been interpreted by others as gravity wave-induced traveling ionospheric disturbances. However, the solar disk had two active regions at that time, one near the center of the disk and one at the edge, which resulted in an irregular illumination pattern in the extreme ultraviolet (EUV)/X-ray bands. Using detailed EUV occultation maps calculated from the National Aeronautics and Space Administration Solar Dynamics Observatory Atmospheric Imaging Assembly images, we show excellent agreement between TEC perturbations and computed gradients in EUV illumination. The results strongly suggest that prominent large-scale TEC disturbances were consequences of direct EUV modulation, rather than gravity wave-induced traveling ionospheric disturbances.
Pattern Inspection of EUV Masks Using DUV Light
NASA Astrophysics Data System (ADS)
Liang, Ted; Tejnil, Edita; Stivers, Alan R.
2002-12-01
Inspection of extreme ultraviolet (EUV) lithography masks requires reflected light and this poses special challenges for inspection tool suppliers as well as for mask makers. Inspection must detect all the printable defects in the absorber pattern as well as printable process-related defects. Progress has been made under the NIST ATP project on "Intelligent Mask Inspection Systems for Next Generation Lithography" in assessing the factors that impact the inspection tool sensitivity. We report in this paper the inspection of EUV masks with programmed absorber defects using 257nm light. All the materials of interests for masks are highly absorptive to EUV light as compared to deep ultraviolet (DUV) light. Residues and contamination from mask fabrication process and handling are prone to be printable. Therefore, it is critical to understand their EUV printability and optical inspectability. Process related defects may include residual buffer layer such as oxide, organic contaminants and possible over-etch to the multilayer surface. Both simulation and experimental results will be presented in this paper.
Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirkarimi, Paul B.; Bajt, Sasa; Wall, Mark A.
2000-04-01
Multilayer-coated Zerodur optics are expected to play a pivotal role in an extreme-ultraviolet (EUV) lithography tool. Zerodur is a multiphase, multicomponent material that is a much more complicated substrate than commonly used single-crystal Si or fused-silica substrates. We investigate the effect of Zerodur substrates on the performance of high-EUV reflectance Mo/Si and Mo/Be multilayer thin films. For Mo/Si the EUV reflectance had a nearly linear dependence on substrate roughness for roughness values of 0.06-0.36 nm rms, and the FWHM of the reflectance curves (spectral bandwidth) was essentially constant over this range. For Mo/Be the EUV reflectance was observed to decreasemore » more steeply than Mo/Si for roughness values greater than approximately 0.2-0.3 nm. Little difference was observed in the EUV reflectivity of multilayer thin films deposited on different substrates as long as the substrate roughness values were similar. (c) 2000 Optical Society of America.« less
Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography.
Mirkarimi, P B; Bajt, S; Wall, M A
2000-04-01
Multilayer-coated Zerodur optics are expected to play a pivotal role in an extreme-ultraviolet (EUV) lithography tool. Zerodur is a multiphase, multicomponent material that is a much more complicated substrate than commonly used single-crystal Si or fused-silica substrates. We investigate the effect of Zerodur substrates on the performance of high-EUV reflectance Mo/Si and Mo/Be multilayer thin films. For Mo/Si the EUV reflectance had a nearly linear dependence on substrate roughness for roughness values of 0.06-0.36 nm rms, and the FWHM of the reflectance curves (spectral bandwidth) was essentially constant over this range. For Mo/Be the EUV reflectance was observed to decrease more steeply than Mo/Si for roughness values greater than approximately 0.2-0.3 nm. Little difference was observed in the EUV reflectivity of multilayer thin films deposited on different substrates as long as the substrate roughness values were similar.
The extreme ultraviolet explorer
NASA Technical Reports Server (NTRS)
Bowyer, Stuart; Malina, Roger F.
1990-01-01
The Extreme Ultraviolet Explorer (EUVE) mission, currently scheduled for launch in September 1991, is described. The primary purpose of the mission is to survey the celestial sphere for astronomical sources of Extreme Ultraviolet (EUV) radiation. The survey will be accomplished with the use of three EUV telescopes, each sensitive to a different segment of the EUV band. A fourth telescope will perform a high sensitivity search of a limited sample of the sky in the shortest wavelength bands. The all sky survey will be carried out in the first six months of the mission and will be made in four bands, or colors. The second phase of the mission, conducted entirely by guest observers selected by NASA, will be devoted to spectroscopic observations of EUV sources. The performance of the instrument components is described. An end to end model of the mission, from a stellar source to the resulting scientific data, was constructed. Hypothetical data from astronomical sources processed through this model are shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tada, Takuji; Murakoshi, Dai; Ishii, Hiroyasu
2012-07-31
In order to improve the image quality of X-ray refraction images using a Talbot-Lau interferometer, we have been attempting to fabricate gratings with high aspect ratio. In our attempt, deep grooves of grating structure were channeled on a Si substrate bonded by Au diffusion bonding method, and the grooves were filled with Au where the Au layer used for the bonding Si substrate was acting as a seed layer of Au electroplating. From the results of a visibility measurement and a cross sectional SEM image, it was confirmed that the grooves with a pitch of 5.8 {mu}m and a depthmore » of 100 {mu}m could be successfully filled with Au over a large area of 72 Multiplication-Sign 80 mm{sup 2}. Using this grating, the X-ray refraction images for the cartilage of a knee joint of a livestock pig could be obtained where SPS method was employed for the single-shot image acquisition.« less
NASA Astrophysics Data System (ADS)
Wang, H. H.; Shi, Y. P.; Li, X. H.; Ni, K.; Zhou, Q.; Wang, X. H.
2018-03-01
In this paper, a scheme to measure the position of precision stages, with a high precision, is presented. The encoder is composed of a scale grating and a compact two-probe reading head, to read the zero position pulse signal and continuous incremental displacement signal. The scale grating contains different codes, multiple reference codes with different spacing superimposed onto the incremental grooves with an equal spacing structure. The codes of reference mask in the reading head is the same with the reference codes on the scale grating, and generate pulse signal to locate the reference position primarily when the reading head moves along the scale grating. After locating the reference position in a section by means of the pulse signal, the reference position can be located precisely with the amplitude of the incremental displacement signal. A kind of reference codes and scale grating were designed, and experimental results show that the primary precision of the design achieved is 1 μ m. The period of the incremental signal is 1μ m, and 1000/N nm precision can be achieved by subdivide the incremental signal in N times.
Optical inspection of NGL masks
NASA Astrophysics Data System (ADS)
Pettibone, Donald W.; Stokowski, Stanley E.
2004-12-01
For the last five years KLA-Tencor and our joint venture partners have pursued a research program studying the ability of optical inspection tools to meet the inspection needs of possible NGL lithographies. The NGL technologies that we have studied include SCALPEL, PREVAIL, EUV lithography, and Step and Flash Imprint Lithography. We will discuss the sensitivity of the inspection tools and mask design factors that affect tool sensitivity. Most of the work has been directed towards EUV mask inspection and how to optimize the mask to facilitate inspection. Our partners have succeeded in making high contrast EUV masks ranging in contrast from 70% to 98%. Die to die and die to database inspection of EUV masks have been achieved with a sensitivity that is comparable to what can be achieved with conventional photomasks, approximately 80nm defect sensitivity. We have inspected SCALPEL masks successfully. We have found a limitation of optical inspection when applied to PREVAIL stencil masks. We have run inspections on SFIL masks in die to die, reflected light, in an effort to provide feedback to improve the masks. We have used a UV inspection system to inspect both unpatterned EUV substrates (no coatings) and blanks (with EUV multilayer coatings). These inspection results have proven useful in driving down the substrate and blank defect levels.
NASA Technical Reports Server (NTRS)
Richon, K.; Hashmall, J.; Lambertson, M.; Phillips, T.
1988-01-01
The Explorer Platform (EP) program currently comprises two missions, the Extreme Ultraviolet Explorer (EUVE) and the X-ray Timing Explorer (XTE), each of which consists of a scientific payload mounted to the EP. The EP has no orbit maintenance capability. The EP with the EUVE payload will be launched first. At the end of the EUVE mission, the spacecraft will be serviced by the Space Transportation System (STS), and the EUVE instrument will be exchanged for the XTE. The XTE mission will continue until reentry or reservicing by the STS. Because the missions will be using the EP sequentially, the orbit requirements are unusually constrained by orbit decay rates. The initial altitude must be selected so that, by the end of the EUVE mission (2.5 years), the spacecraft will have decayed to an altitude within the STS capabilities. In addition, the payload exchange must occur at an altitude that ensures meeting the minimum XTE mission lifetime (3 years) because no STS reboost will be available. Studies were performed using the Goddard Mission Analysis System to estimate the effects of mass, cross-sectional area, and solar flux on the fulfillment of mission requirements. In addition to results from these studies, conclusions are presented as to the accuracy of the Marshall Space Flight Center solar flux predictions.
Reconstruction of Solar EUV Flux 1740-2015
NASA Astrophysics Data System (ADS)
Svalgaard, L.
2015-12-01
Solar Extreme Ultraviolet (EUV) radiation creates the conducting E-layer of the ionosphere, mainly by photo ionization of molecular Oxygen. Solar heating of the ionosphere creates thermal winds which by dynamo action induce an electric field driving an electric current having a magnetic effect observable on the ground, as was discovered by G. Graham in 1722. The current rises and sets with the Sun and thus causes a readily observable diurnal variation of the geomagnetic field, allowing us the deduce the conductivity and thus the EUV flux as far back as reliable magnetic data reach. High-quality data go back to the 'Magnetic Crusade' of the 1830s and less reliable, but still usable, data are available for portions of the hundred years before that. J.R. Wolf and, independently, J.-A. Gautier discovered the dependence of the diurnal variation on solar activity, and today we understand and can invert that relationship to construct a reliable record of the EUV flux from the geomagnetic record. We compare that to the F10.7 flux and the sunspot number, and find that the reconstructed EUV flux reproduces the F10.7 flux with great accuracy. On the other hand, it appears that the Relative Sunspot Number as currently defined is beginning to no longer be a faithful representation of solar magnetic activity, at least as measured by the EUV and related indices. The reconstruction suggests that the EUV flux reaches the same low (but non-zero) value at every sunspot minimum (possibly including Grand Minima), representing an invariant 'solar magnetic ground state'.
Modeling of radiative properties of Sn plasmas for extreme-ultraviolet source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, Akira; Sunahara, Atsushi; Furukawa, Hiroyuki
Atomic processes in Sn plasmas are investigated for application to extreme-ultraviolet (EUV) light sources used in microlithography. We develop a full collisional radiative (CR) model of Sn plasmas based on calculated atomic data using Hebrew University Lawrence Livermore Atomic Code (HULLAC). Resonance and satellite lines from singly and multiply excited states of Sn ions, which contribute significantly to the EUV emission, are identified and included in the model through a systematic investigation of their effect on the emission spectra. The wavelengths of the 4d-4f+4p-4d transitions of Sn{sup 5+} to Sn{sup 13+} are investigated, because of their importance for determining themore » conversion efficiency of the EUV source, in conjunction with the effect of configuration interaction in the calculation of atomic structure. Calculated emission spectra are compared with those of charge exchange spectroscopy and of laser produced plasma EUV sources. The comparison is also carried out for the opacity of a radiatively heated Sn sample. A reasonable agreement is obtained between calculated and experimental EUV emission spectra observed under the typical condition of EUV sources with the ion density and ionization temperature of the plasma around 10{sup 18} cm{sup -3} and 20 eV, respectively, by applying a wavelength correction to the resonance and satellite lines. Finally, the spectral emissivity and opacity of Sn plasmas are calculated as a function of electron temperature and ion density. The results are useful for radiation hydrodynamics simulations for the optimization of EUV sources.« less
The extreme ultraviolet spectra of low-redshift radio-loud quasars
NASA Astrophysics Data System (ADS)
Punsly, Brian; Reynolds, Cormac; Marziani, Paola; O'Dea, Christopher P.
2016-07-01
This paper reports on the extreme ultraviolet (EUV) spectrum of three low-redshift (z ˜ 0.6) radio-loud quasars, 3C 95, 3C 57 and PKS 0405-123. The spectra were obtained with the Cosmic Origins Spectrograph of the Hubble Space Telescope. The bolometric thermal emission, Lbol, associated with the accretion flow is a large fraction of the Eddington limit for all of these sources. We estimate the long-term time-averaged jet power, overline{Q}, for the three sources. overline{Q}/L_{bol}, is shown to lie along the correlation of overline{Q}/L_{bol}, and αEUV found in previous studies of the EUV continuum of intermediate and high-redshift quasars, where the EUV continuum flux density between 1100 and 700 Å is defined by F_{ν } ˜ ν ^{-α _{EUV}}. The high Eddington ratios of the three quasars extend the analysis into a wider parameter space. Selecting quasars with high Eddington ratios has accentuated the statistical significance of the partial correlation analysis of the data. Namely, the correlation of overline{Q}/L_{bol} and αEUV is fundamental, and the correlation of overline{Q} and αEUV is spurious at a very high statistical significance level (99.8 per cent). This supports the regulating role of ram pressure of the accretion flow in magnetically arrested accretion models of jet production. In the process of this study, we use multifrequency and multiresolution Very Large Array radio observations to determine that one of the bipolar jets in 3C 57 is likely frustrated by galactic gas that keeps the jet from propagating outside the host galaxy.
SEMATECH EUVL mask program status
NASA Astrophysics Data System (ADS)
Yun, Henry; Goodwin, Frank; Huh, Sungmin; Orvek, Kevin; Cha, Brian; Rastegar, Abbas; Kearney, Patrick
2009-04-01
As we approach the 22nm half-pitch (hp) technology node, the industry is rapidly running out of patterning options. Of the several lithography techniques highlighted in the International Technology Roadmap for Semiconductors (ITRS), the leading contender for the 22nm hp insertion is extreme ultraviolet lithography (EUVL). Despite recent advances with EUV resist and improvements in source power, achieving defect free EUV mask blank and enabling the EUV mask infrastructure still remain critical issues. To meet the desired EUV high volume manufacturing (HVM) insertion target date of 2013, these obstacles must be resolved on a timely bases. Many of the EUV mask related challenges remain in the pre-competitive stage and a collaborative industry based consortia, such as SEMATECH can play an important role to enable the EUVL landscape. SEMATECH based in Albany, NY is an international consortium representing several of the largest manufacturers in the semiconductor market. Full members include Intel, Samsung, AMD, IBM, Panasonic, HP, TI, UMC, CNSE (College of Nanoscience and Engineering), and Fuller Road Management. Within the SEMATECH lithography division a major thrust is centered on enabling the EUVL ecosystem from mask development, EUV resist development and addressing EUV manufacturability concerns. An important area of focus for the SEMATECH mask program has been the Mask Blank Development Center (MBDC). At the MBDC key issues in EUV blank development such as defect reduction and inspection capabilities are actively pursued together with research partners, key suppliers and member companies. In addition the mask program continues a successful track record of working with the mask community to manage and fund critical mask tools programs. This paper will highlight recent status of mask projects and longer term strategic direction at the MBDC. It is important that mask technology be ready to support pilot line development HVM by 2013. In several areas progress has been made but a continued collaborative effort will be needed along with timely infrastructure investments to meet these challenging goals.
NASA Astrophysics Data System (ADS)
Brux, O.; van der Walle, P.; van der Donck, J. C. J.; Dress, P.
2011-11-01
Extreme Ultraviolet Lithography (EUVL) is the most promising solution for technology nodes 16nm (hp) and below. However, several unique EUV mask challenges must be resolved for a successful launch of the technology into the market. Uncontrolled introduction of particles and/or contamination into the EUV scanner significantly increases the risk for device yield loss and potentially scanner down-time. With the absence of a pellicle to protect the surface of the EUV mask, a zero particle adder regime between final clean and the point-of-exposure is critical for the active areas of the mask. A Dual Pod concept for handling EUV masks had been proposed by the industry as means to minimize the risk of mask contamination during transport and storage. SuSS-HamaTech introduces MaskTrackPro InSync as a fully automated solution for the handling of EUV masks in and out of this Dual Pod System and therefore constitutes an interface between various tools inside the Fab. The intrinsic cleanliness of each individual handling and storage step of the inner shell (EIP) of this Dual Pod and the EUV mask inside the InSync Tool has been investigated to confirm the capability for minimizing the risk of cross-contamination. An Entegris Dual Pod EUV-1000A-A110 has been used for the qualification. The particle detection for the qualification procedure was executed with the TNO's RapidNano Particle Scanner, qualified for particle sizes down to 50nm (PSL equivalent). It has been shown that the target specification of < 2 particles @ 60nm per 25 cycles has been achieved. In case where added particles were measured, the EIP has been identified as a potential root cause for Ni particle generation. Any direct Ni-Al contact has to be avoided to mitigate the risk of material abrasion.
It's Time For A New EUV Mission
NASA Astrophysics Data System (ADS)
Kowalski, Michael Paul; Wood, K. S.; Barstow, M. A.; Cruddace, R. G.
2010-01-01
The J-PEX high-resolution EUV spectrometer has made a breakthrough in capability with an effective area of 7 cm2 (220-245 Å) and resolving power of 4000, which exceed EUVE by factors of 7 and 20 respectively, and cover a range beyond the 170-Å cutoff of the Chandra LETG. The EUV includes critical spectral features containing diagnostic information often not available at other wavelengths (e.g., He II Ly series), and the bulk of radiation from million degree plasmas is emitted in the EUV. Such plasmas are ubiquitous, and examples include the atmospheres of white dwarfs; accretion phenomena in young stars, CVs and AGN; stellar coronae; and the ISM of our own galaxy and of others. However, sensitive EUV spectroscopy of high resolving power is required to resolve source spectral lines and edges unambiguously, to identify features produced by the intervening ISM, and to measure line profiles and Doppler shifts. This allows exploitation of the full range of plasma diagnostic techniques developed in laboratory and solar physics. J-PEX has flown twice on NASA sounding rockets. In 2001 we observed the isolated white dwarf G191-B2B and detected both ISM and photospheric lines. In 2008 we successfully observed the binary white dwarf Feige 24, but observation time is severely limited with sounding rockets. NASA has approved no new EUV mission, but it is time for one. Here we describe the scientific case for high-resolution EUV spectroscopy, summarize the technology that makes such measurements practical, and present a concept for a 3-month orbital mission, in which J-PEX is modified for a low-cost orbital mission to acquire sensitive high-resolution spectra for 30 white dwarfs, making an important contribution to the study of white dwarf evolution and hence the chemical balance of the Galaxy, and to the understanding of structure in the LISM.
[Design of flat field holographic concave grating for near-infrared spectrophotometer].
Xiang, Xian-Yi; Wen, Zhi-Yu
2008-07-01
Near-infrared spectrum analysis can be used to determine the nature or test quantitatively some chemical compositions by detecting molecular double frequency and multiple frequency absorption. It has been used in agriculture, biology, petrifaction, foodstuff, medicament, spinning and other fields. Near-infrared spectrophotometer is the main apparatus for near-infrared spectrum analysis, and the grating is the most important part of the apparatus. Based on holographic concave grating theory and optic design software CODE V, a flat field holographic concave grating for near-infrared spectrophotometer was designed from primary structure, which relied on global optimization of the software. The contradiction between wide spectrum bound and limited spectrum extension was resolved, aberrations were reduced successfully, spectrum information was utilized fully, and the optic structure of spectrometer was highly efficient. Using CODE V software, complex high-order aberration equations need not be solved, the result can be evaluated quickly, flat field and resolving power can be kept in balance, and the work efficiency is also enhanced. A paradigm of flat field holographic concave grating is given, it works between 900 nm to 1 700 nm, the diameter of the concave grating is 25 mm, and F/ # is 1. 5. The design result was analyzed and evaluated. It was showed that if the slit source, whose width is 50 microm, is used to reconstruction, the theoretic resolution capacity is better than 6.3 nm.
EUV and X-ray spectroheliograph study
NASA Technical Reports Server (NTRS)
Knox, E. D.; Pastor, R. A.; Salamon, A. L.; Sterk, A. A.
1975-01-01
The results of a program directed toward the definition of an EUV and X-ray spectroheliograph which has significant performance and operational improvements over the OSO-7 instrument are documented. The program investigated methods of implementing selected changes and incorporated the results of the study into a set of drawings which defines the new instrument. The EUV detector performance degradation observed during the OSO-7 mission was investigated and the most probable cause of the degradation identified.
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1993-01-01
The region of the UV between 500 and 1200 A is a rich one for the study of planetary and astrophysical targets. EUV atmospheric spectroscopy opens up an important window on ion and neutral nitrogen, oxygen, and noble gas emissions. In this document we describe the specific scientific background and motivations for this Venus EUV rocket observation along with experiment design and mission parameters.
A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution
Zastrau, U.; Rodel, C.; Nakatsutsumi, M.; ...
2018-02-05
We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Here, imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense mattermore » studies of micrometer-sized samples in laser-plasma experiments.« less
A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zastrau, U.; Rodel, C.; Nakatsutsumi, M.
We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Here, imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense mattermore » studies of micrometer-sized samples in laser-plasma experiments.« less
NASA Astrophysics Data System (ADS)
Kamikubo, Takashi; Ohnishi, Takayuki; Hara, Shigehiro; Anze, Hirohito; Hattori, Yoshiaki; Tamamushi, Shuichi; Bai, Shufeng; Wang, Jen-Shiang; Howell, Rafael; Chen, George; Li, Jiangwei; Tao, Jun; Wiley, Jim; Kurosawa, Terunobu; Saito, Yasuko; Takigawa, Tadahiro
2010-09-01
In electron beam writing on EUV mask, it has been reported that CD linearity does not show simple signatures as observed with conventional COG (Cr on Glass) masks because they are caused by scattered electrons form EUV mask itself which comprises stacked heavy metals and thick multi-layers. To resolve this issue, Mask Process Correction (MPC) will be ideally applicable. Every pattern is reshaped in MPC. Therefore, the number of shots would not increase and writing time will be kept within reasonable range. In this paper, MPC is extended to modeling for correction of CD linearity errors on EUV mask. And its effectiveness is verified with simulations and experiments through actual writing test.
Coater/developer based techniques to improve high-resolution EUV patterning defectivity
NASA Astrophysics Data System (ADS)
Hontake, Koichi; Huli, Lior; Lemley, Corey; Hetzer, Dave; Liu, Eric; Ko, Akiteru; Kawakami, Shinichiro; Shimoaoki, Takeshi; Hashimoto, Yusaku; Tanaka, Koichiro; Petrillo, Karen; Meli, Luciana; De Silva, Anuja; Xu, Yongan; Felix, Nelson; Johnson, Richard; Murray, Cody; Hubbard, Alex
2017-10-01
Extreme ultraviolet lithography (EUVL) technology is one of the leading candidates under consideration for enabling the next generation of devices, for 7nm node and beyond. As the focus shifts to driving down the 'effective' k1 factor and enabling the full scaling entitlement of EUV patterning, new techniques and methods must be developed to reduce the overall defectivity, mitigate pattern collapse, and eliminate film-related defects. In addition, CD uniformity and LWR/LER must be improved in terms of patterning performance. Tokyo Electron Limited (TEL™) and IBM Corporation are continuously developing manufacturing quality processes for EUV. In this paper, we review the ongoing progress in coater/developer based processes (coating, developing, baking) that are required to enable EUV patterning.
Ultra-low roughness magneto-rheological finishing for EUV mask substrates
NASA Astrophysics Data System (ADS)
Dumas, Paul; Jenkins, Richard; McFee, Chuck; Kadaksham, Arun J.; Balachandran, Dave K.; Teki, Ranganath
2013-09-01
EUV mask substrates, made of titania-doped fused silica, ideally require sub-Angstrom surface roughness, sub-30 nm flatness, and no bumps/pits larger than 1 nm in height/depth. To achieve the above specifications, substrates must undergo iterative global and local polishing processes. Magnetorheological finishing (MRF) is a local polishing technique which can accurately and deterministically correct substrate figure, but typically results in a higher surface roughness than the current requirements for EUV substrates. We describe a new super-fine MRF® polishing fluid whichis able to meet both flatness and roughness specifications for EUV mask blanks. This eases the burden on the subsequent global polishing process by decreasing the polishing time, and hence the defectivity and extent of figure distortion.
Thin film filter lifetesting results in the extreme ultraviolet
NASA Technical Reports Server (NTRS)
Vedder, P. W.; Vallerga, J. V.; Gibson, J. L.; Stock, J.; Siegmund, O. H. W.
1993-01-01
We present the results of the thin film filter lifetesting program conducted as part of the NASA Extreme Ultraviolet Explorer (EUVE) satellite mission. This lifetesting program is designed to monitor changes in the transmission and mechanical properties of the EUVE filters over the lifetime of the mission (fabrication, assembly, launch and operation). Witness test filters were fabricated from thin film foils identical to those used in the flight filters. The witness filters have been examined and calibrated periodically over the past seven years. The filters have been examined for evidence of pinholing, mechanical degradation, and oxidation. Absolute transmissions of the flight and witness filters have been measured in the extreme ultraviolet (EUV) over six orders of magnitude at numerous wavelengths using the Berkeley EUV Calibration Facility.
Solar EUV irradiance from the San Marco ASSI - A reference spectrum
NASA Technical Reports Server (NTRS)
Schmidtke, Gerhard; Woods, Thomas N.; Worden, John; Rottman, Gary J.; Doll, Harry; Wita, Claus; Solomon, Stanley C.
1992-01-01
The only satellite measurement of the solar EUV irradiance during solar cycle 22 has been obtained with the Airglow Solar Spectrometer Instrument (ASSI) aboard the San Marco 5 satellite flown in 1988. The ASSI in-flight calibration parameters are established by using the internal capabilities of ASSI and by comparing ASSI results to the results from other space-based experiments on the ASSI calibration rocket and the Solar Mesospheric Explorer (SME). A solar EUV irradiance spectrum derived from ASSI observations on November 10, 1988 is presented as a reference spectrum for moderate solar activity for the aeronomy community. This ASSI spectrum should be considered as a refinement and extension of the solar EUV spectrum published for the same day by Woods and Rottman (1990).
Ultimate patterning limits for EUV at 5nm node and beyond
NASA Astrophysics Data System (ADS)
Ali, Rehab Kotb; Hamed Fatehy, Ahmed; Lafferty, Neal; Word, James
2018-03-01
The 5nm technology node introduces more aggressive geometries than previous nodes. In this paper, we are introducing a comprehensive study to examine the pattering limits of EUV at 0.33NA. The study is divided into two main approaches: (A) Exploring pattering limits of Single Exposure EUV Cut/Block mask in Self-Aligned-Multi-Patterning (SAMP) process, and (B) Exploring the pattering limits of a Single Exposure EUV printing of metal Layers. The printability of the resulted OPC masks is checked through a model based manufacturing flow for the two pattering approaches. The final manufactured patterns are quantified by Edge Placement Error (EPE), Process Variation Band (PVBand), soft/hard bridging and pinching, Image Log Slope (ILS) and Common Depth of Focus (CDOF)
Mask-induced aberration in EUV lithography
NASA Astrophysics Data System (ADS)
Nakajima, Yumi; Sato, Takashi; Inanami, Ryoichi; Nakasugi, Tetsuro; Higashiki, Tatsuhiko
2009-04-01
We estimated aberrations using Zernike sensitivity analysis. We found the difference of the tolerated aberration with line direction for illumination. The tolerated aberration of perpendicular line for illumination is much smaller than that of parallel line. We consider this difference to be attributable to the mask 3D effect. We call it mask-induced aberration. In the case of the perpendicular line for illumination, there was a difference in CD between right line and left line without aberration. In this report, we discuss the possibility of pattern formation in NA 0.25 generation EUV lithography tool. In perpendicular pattern for EUV light, the dominant part of aberration is mask-induced aberration. In EUV lithography, pattern correction based on the mask topography effect will be more important.
NASA Astrophysics Data System (ADS)
Meyer, Elliot; Chen, Shaojie; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Simard, Luc; Marie, Jerome; Mieda, Etsuko; Gordon, Jacob
2014-07-01
We present the efficiency of near-infrared reflective ruled diffraction gratings designed for the InfraRed Imaging Spectrograph (IRIS). IRIS is a first light, integral field spectrograph and imager for the Thirty Meter Telescope (TMT) and narrow field infrared adaptive optics system (NFIRAOS). IRIS will operate across the near-infrared encompassing the ZYJHK bands (~0.84 - 2.4μm) with multiple spectral resolutions. We present our experimental setup and analysis of the efficiency of selected reflective diffraction gratings. These measurements are used as a comparison sample against selected candidate Volume Phase Holographic (VPH) gratings (see Chen et al., this conference). We investigate the efficiencies of five ruled gratings designed for IRIS from two separate vendors. Three of the gratings accept a bandpass of 1.19-1.37μm (J band) with ideal spectral resolutions of R=4000 and R=8000, groove densities of 249 and 516 lines/mm, and blaze angles of 9.86° and 20.54° respectively. The other two gratings accept a bandpass of 1.51-1.82μm (H Band) with an ideal spectral resolution of R=4000, groove density of 141 lines/mm, and blaze angle of 9.86°. The fraction of flux in each diffraction mode was compared to both a pure reflection mirror as well as the sum of the flux measured in all observable modes. We measure the efficiencies off blaze angle for all gratings and the efficiencies between the polarization transverse magnetic (TM) and transverse electric (TE) states. The peak reflective efficiencies are 98.90 +/- 3.36% (TM) and 84.99 +/- 2.74% (TM) for the H-band R=4000 and J-band R=4000 respectively. The peak reflective efficiency for the J-band R=8000 grating is 78.78 +/- 2.54% (TE). We find that these ruled gratings do not exhibit a wide dependency on incident angle within +/-3°. Our best-manufactured gratings were found to exhibit a dependency on the polarization state of the incident beam with a ~10-20% deviation, consistent with the theoretical efficiency predictions. This work will significantly contribute to the selection of the final grating type and vendor for the IRIS optical system, and are also pertinent to current and future near-infrared astronomical spectrographs.
Reannealed Fiber Bragg Gratings Demonstrated High Repeatability in Temperature Measurements
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Juergens, Jeffrey R.
2004-01-01
Fiber Bragg gratings (FBGs) are formed by periodic variations of the refractive index of an optical fiber. These periodic variations allow an FBG to act as an embedded optical filter, passing the majority of light propagating through a fiber while reflecting back a narrow band of the incident light. The peak reflected wavelength of the FBG is known as the Bragg wavelength. Since the period and width of the refractive index variation in the fiber determines the wavelengths that are transmitted and reflected by the grating, any force acting on the fiber that alters the physical structure of the grating will change the wavelengths that are transmitted and reflected by it. Both thermal and mechanical forces acting on the grating will alter its physical characteristics, allowing the FBG sensor to detect both the temperature variations and the physical stresses and strains placed upon it. This ability to sense multiple physical forces makes the FBG a versatile sensor. To assess the feasibility of using Bragg gratings as temperature sensors for propulsion applications, researchers at the NASA Glenn Research Center evaluated the performance of Bragg gratings at elevated temperatures for up to 300 C. For these purposes, commercially available polyimide-coated high-temperature gratings were used that were annealed by the manufacturer to 300 C. To assure the most thermally stable gratings at the operating temperatures, we reannealed the gratings to 400 C at a very slow rate for 12 to 24 hr until their reflected optical powers were stabilized. The reannealed gratings were then subjected to periodic thermal cycling from room temperature to 300 C, and their peak reflected wavelengths were monitored. The setup shown is used for reannealing and thermal cycling the FBGs. Signals from the photodetectors and the spectrum analyzer were fed into a computer equipped with LabVIEW software. The software synchronously monitored the oven/furnace temperature and the optical spectrum analyzer as well as processed the data. Experimental results presented in the following graph show typical wavelength versus temperature dependence of a reannealed FBG through six thermal cycles (80 hr). The average standard deviation of the temperature-to-wavelength relationship ranged from 1.86 to 2.92 C over the six thermal cycles each grating was subjected to. This is an error of less than 1.0 percent of full scale throughout the entire evaluation temperature range from ambient to 300 C.
Aberration-free, all-reflective laser pulse stretcher
Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.; Fochs, Scott N.
1999-09-28
An all-reflective pulse stretcher for laser systems employing chirped-pulse amplification enables on-axis use of the focusing mirror which results in ease of use, significantly decreased sensitivity to alignment and near aberration-free performance. By using a new type of diffraction grating which contains a mirror incorporated into the grating, the stretcher contains only three elements: 1) the grating, 2) a spherical or parabolic focusing mirror, and 3) a flat mirror. Addition of a fourth component, a retro-reflector, enables multiple passes of the same stretcher resulting in stretching ratios beyond the current state of the art in a simple and compact design. The pulse stretcher has been used to stretch pulses from 20 fsec to over 600 psec (a stretching ratio in excess of 30,000).
NASA Astrophysics Data System (ADS)
Stenborg, G.; Marsch, E.; Vourlidas, A.; Howard, R.; Baldwin, K.
2011-02-01
Context. In the past years, evidence for the existence of outward-moving (Doppler blue-shifted) plasma and slow-mode magneto-acoustic propagating waves in various magnetic field structures (loops in particular) in the solar corona has been found in ultraviolet images and spectra. Yet their origin and possible connection to and importance for the mass and energy supply to the corona and solar wind is still unclear. There has been increasing interest in this problem thanks to the high-resolution observations available from the extreme ultraviolet (EUV) imagers on the Solar TErrestrial RElationships Observatory (STEREO) and the EUV spectrometer on the Hinode mission. Aims: Flows and waves exist in the corona, and their signatures appear in EUV imaging observations but are extremely difficult to analyse quantitatively because of their weak intensity. Hence, such information is currently available mostly from spectroscopic observations that are restricted in their spatial and temporal coverage. To understand the nature and origin of these fluctuations, imaging observations are essential. Here, we present measurements of the speed of intensity fluctuations observed along apparently open field lines with the Extreme UltraViolet Imagers (EUVI) onboard the STEREO mission. One aim of our paper is to demonstrate that we can make reliable kinematic measurements from these EUV images, thereby complementing and extending the spectroscopic measurements and opening up the full corona for such an analysis. Another aim is to examine the assumptions that lead to flow versus wave interpretation for these fluctuations. Methods: We have developed a novel image-processing method by fusing well established techniques for the kinematic analysis of coronal mass ejections (CME) with standard wavelet analysis. The power of our method lies with its ability to recover weak intensity fluctuations along individual magnetic structures at any orientation , anywhere within the full solar disk , and using standard synoptic observing sequences (cadence <3 min) without the need for special observation plans. Results: Using information from both EUVI imagers, we obtained wave phase speeds with values on the order of 60-90 km s-1, compatible with those obtained by other previous measurements. Moreover, we studied the periodicity of the observed fluctuations and established a predominance of a 16-min period, and other periods that seem to be multiples of an underlying 8-min period. Conclusions: The validation of our analysis technique opens up new possibilities for the study of coronal flows and waves, by extending it to the full disk and to a larger number of coronal structures than has been possible previously. It opens up a new scientific capability for the EUV observations from the recently launched Solar Dynamics Observatory. Here we clearly establish the ubiquitous existence of sound waves which continuously propagate along apparently open magnetic field lines. Movies 1 and 2 (Figs. 12 and 13) are only available in electronic form at http://www.aanda.org
Multiple acousto-optic q-switch
Deason, Vance A.
1993-01-01
An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.
Multiple acousto-optic q-switch
Deason, Vance A.
1993-12-07
An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.
The Production of Titan's Ultraviolet Nitrogen Airglow
NASA Astrophysics Data System (ADS)
Stevens, Michael H.; Gustin, J.; Ajello, J. M.; Evans, J. S.; Meier, R. R.; Stewart, A. I. F.; Esposito, L. W.; McClintock, W. E.; Stephan, A. W.
2010-10-01
The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan's dayside limb on 22 June, 2009, obtaining high quality extreme ultraviolet (EUV) and far ultraviolet (FUV) spectra from a distance of only 60,000 km (23 Titan radii). The observations reveal the same EUV and FUV emissions arising from photoelectron excitation and photofragmentation of molecular nitrogen (N2) on Earth but with the altitude of peak emission much higher on Titan near 1000 km altitude. In the EUV, emission bands from the photoelectron excited N2 Carroll-Yoshino c4'-X system and N I and N II multiplets arising from photofragmentation of N2 dominate, with no detectable c4'(0,0) emission near 958 Å, contrary to many interpretations of the lower resolution Voyager 1 Ultraviolet Spectrometer data. The FUV is dominated by emission bands from the N2 Lyman-Birge-Hopfield a-X system and additional N I multiplets. We also identify several N2 Vegard-Kaplan A-X bands between 1500-1900 Å, two of which are located near 1561 and 1657 Å where C I multiplets were previously identified from a separate UVIS disk observation. We compare these limb emissions to predictions from a terrestrial airglow model adapted to Titan that uses a solar spectrum appropriate for these June, 2009 observations. Volume production rates and limb radiances are calculated, including extinction by methane and allowance for multiple scattering within the readily excited c4'(0,v') system, and compared to UVIS observations. We find that for these airglow data only emissions arising from processes involving N2 are present.
Etch bias inversion during EUV mask ARC etch
NASA Astrophysics Data System (ADS)
Lajn, Alexander; Rolff, Haiko; Wistrom, Richard
2017-07-01
The introduction of EUV lithography to high volume manufacturing is now within reach for 7nm technology node and beyond (1), at least for some steps. The scheduling is in transition from long to mid-term. Thus, all contributors need to focus their efforts on the production requirements. For the photo mask industry, these requirements include the control of defectivity, CD performance and lifetime of their masks. The mask CD performance including CD uniformity, CD targeting, and CD linearity/ resolution, is predominantly determined by the photo resist performance and by the litho and etch processes. State-of-the-art chemically amplified resists exhibit an asymmetric resolution for directly and indirectly written features, which usually results in a similarly asymmetric resolution performance on the mask. This resolution gap may reach as high as multiple tens of nanometers on the mask level in dependence of the chosen processes. Depending on the printing requirements of the wafer process, a reduction or even an increase of this gap may be required. A potential way of tuning via the etch process, is to control the lateral CD contribution during etch. Aside from process tuning knobs like pressure, RF powers and gases, which usually also affect CD linearity and CD uniformity, the simplest knob is the etch time itself. An increased over etch time results in an increased CD contribution in the normal case. , We found that the etch CD contribution of ARC layer etch on EUV photo masks is reduced by longer over etch times. Moreover, this effect can be demonstrated to be present for different etch chambers and photo resists.
Considerations for pattern placement error correction toward 5nm node
NASA Astrophysics Data System (ADS)
Yaegashi, Hidetami; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Koike, Kyohei; Maslow, Mark John; Timoshkov, Vadim; Kiers, Ton; Di Lorenzo, Paolo; Fonseca, Carlos
2017-03-01
Multi-patterning has been adopted widely in high volume manufacturing as 193 immersion extension, and it becomes realistic solution of nano-order scaling. In fact, it must be key technology on single directional (1D) layout design [1] for logic devise and it becomes a major option for further scaling technique in SAQP. The requirement for patterning fidelity control is getting savior more and more, stochastic fluctuation as well as LER (Line edge roughness) has to be micro-scopic observation aria. In our previous work, such atomic order controllability was viable in complemented technique with etching and deposition [2]. Overlay issue form major potion in yield management, therefore, entire solution is needed keenly including alignment accuracy on scanner and detectability on overlay measurement instruments. As EPE (Edge placement error) was defined as the gap between design pattern and contouring of actual pattern edge, pattern registration in single process level must be considerable. The complementary patterning to fabricate 1D layout actually mitigates any process restrictions, however, multiple process step, symbolized as LELE with 193-i, is burden to yield management and affordability. Recent progress of EUV technology is remarkable, and it is major potential solution for such complicated technical issues. EUV has robust resolution limit and it must be definitely strong scaling driver for process simplification. On the other hand, its stochastic variation such like shot noise due to light source power must be resolved with any additional complemented technique. In this work, we examined the nano-order CD and profile control on EUV resist pattern and would introduce excellent accomplishments.
Klebanoff, Leonard E.; Torczynski, John R.; Geller, Anthony S.; ...
2015-03-27
An analysis is presented of a method to protect the reticle (mask) in an extreme ultraviolet (EUV) mask inspection tool using a showerhead plenum to provide a continuous flow of clean gas over the surface of a reticle. The reticle is suspended in an inverted fashion (face down) within a stage/holder that moves back and forth over the showerhead plenum as the reticle is inspected. It is essential that no particles of 10-nm diameter or larger be deposited on the reticle during inspection. Particles can originate from multiple sources in the system, and mask protection from each source is explicitlymore » analyzed. The showerhead plate has an internal plenum with a solid conical wall isolating the aperture. The upper and lower surfaces of the plate are thin flat sheets of porous-metal material. These porous sheets form the top and bottom showerheads that supply the region between the showerhead plate and the reticle and the region between the conical aperture and the Optics Zone box with continuous flows of clean gas. The model studies show that the top showerhead provides robust reticle protection from particles of 10-nm diameter or larger originating from the Reticle Zone and from plenum surfaces contaminated by exposure to the Reticle Zone. Protection is achieved with negligible effect on EUV transmission. Furthermore, the bottom showerhead efficiently protects the reticle from nanoscale particles originating from the Optics Zone.« less
Integrated approach to improving local CD uniformity in EUV patterning
NASA Astrophysics Data System (ADS)
Liang, Andrew; Hermans, Jan; Tran, Timothy; Viatkina, Katja; Liang, Chen-Wei; Ward, Brandon; Chuang, Steven; Yu, Jengyi; Harm, Greg; Vandereyken, Jelle; Rio, David; Kubis, Michael; Tan, Samantha; Dusa, Mircea; Singhal, Akhil; van Schravendijk, Bart; Dixit, Girish; Shamma, Nader
2017-03-01
Extreme ultraviolet (EUV) lithography is crucial to enabling technology scaling in pitch and critical dimension (CD). Currently, one of the key challenges of introducing EUV lithography to high volume manufacturing (HVM) is throughput, which requires high source power and high sensitivity chemically amplified photoresists. Important limiters of high sensitivity chemically amplified resists (CAR) are the effects of photon shot noise and resist blur on the number of photons received and of photoacids generated per feature, especially at the pitches required for 7 nm and 5 nm advanced technology nodes. These stochastic effects are reflected in via structures as hole-to-hole CD variation or local CD uniformity (LCDU). Here, we demonstrate a synergy of film stack deposition, EUV lithography, and plasma etch techniques to improve LCDU, which allows the use of high sensitivity resists required for the introduction of EUV HVM. Thus, to improve LCDU to a level required by 5 nm node and beyond, film stack deposition, EUV lithography, and plasma etch processes were combined and co-optimized to enhance LCDU reduction from synergies. Test wafers were created by depositing a pattern transfer stack on a substrate representative of a 5 nm node target layer. The pattern transfer stack consisted of an atomically smooth adhesion layer and two hardmasks and was deposited using the Lam VECTOR PECVD product family. These layers were designed to mitigate hole roughness, absorb out-of-band radiation, and provide additional outlets for etch to improve LCDU and control hole CD. These wafers were then exposed through an ASML NXE3350B EUV scanner using a variety of advanced positive tone EUV CAR. They were finally etched to the target substrate using Lam Flex dielectric etch and Kiyo conductor etch systems. Metrology methodologies to assess dimensional metrics as well as chip performance and defectivity were investigated to enable repeatable patterning process development. Illumination conditions in EUV lithography were optimized to improve normalized image log slope (NILS), which is expected to reduce shot noise related effects. It can be seen that the EUV imaging contrast improvement can further reduce post-develop LCDU from 4.1 nm to 3.9 nm and from 2.8 nm to 2.6 nm. In parallel, etch processes were developed to further reduce LCDU, to control CD, and to transfer these improvements into the final target substrate. We also demonstrate that increasing post-develop CD through dose adjustment can enhance the LCDU reduction from etch. Similar trends were also observed in different pitches down to 40 nm. The solutions demonstrated here are critical to the introduction of EUV lithography in high volume manufacturing. It can be seen that through a synergistic deposition, lithography, and etch optimization, LCDU at a 40 nm pitch can be improved to 1.6 nm (3-sigma) in a target oxide layer and to 1.4 nm (3-sigma) at the photoresist layer.
Quasi-distributed fiber sensor using active mode locking laser cavity with multiple FBG reflections
NASA Astrophysics Data System (ADS)
Park, Chang Hyun; Kim, Gyeong Hun; Kim, Chang-Seok; Lee, Hwi Don; Chung, Youngjoo
2017-04-01
We have demonstrated a quasi-distributed sensor using an active mode-locking (AML) laser with multiple fiber Bragg grating (FBG) reflections of the same center wavelength. We found that variations in the multiple cavity segment lengths between FBGs can be measured by simply sweeping the modulation frequency, because the modulation frequency of the AML laser is proportionally affected by cavity length.
Novel EUV mask black border suppressing EUV and DUV OoB light reflection
NASA Astrophysics Data System (ADS)
Ito, Shin; Kodera, Yutaka; Fukugami, Norihito; Komizo, Toru; Maruyama, Shingo; Watanabe, Genta; Yoshida, Itaru; Kotani, Jun; Konishi, Toshio; Haraguchi, Takashi
2016-05-01
EUV lithography is the most promising technology for semiconductor device manufacturing of the 10nm node and beyond. The image border is a pattern free dark area around the die on the photomask serving as transition area between the parts of the mask that is shielded from the exposure light by the Reticle Masking (REMA) blades and the die. When printing a die at dense spacing on an EUV scanner, the reflection from the image border overlaps edges of neighboring dies, affecting CD and contrast in this area. This is related to the fact that EUV absorber stack reflects 1-3% of actinic EUV light. To reduce this effect several types of image border with reduced EUV reflectance (<0.05%) have been proposed; such an image border is referred to as a black border. In particular, an etched multilayer type black border was developed; it was demonstrated that CD impact at the edge of a die is strongly reduced with this type of the black border (BB). However, wafer printing result still showed some CD change in the die influenced by the black border reflection. It was proven that the CD shift was caused by DUV Out of Band (OOB) light from the EUV light source. New types of a multilayer etched BB were evaluated and showed a good potential for DUV light suppression. In this study, a novel BB called `Hybrid Black Border' (HBB) has been developed to eliminate EUV and DUV OOB light reflection by applying optical design technique and special micro-fabrication technique. A new test mask with HBB is fabricated without any degradation of mask quality according to the result of CD performance in the main pattern, defectivity and cleaning durability. The imaging performance for N10 imaging structures is demonstrated on NXE:3300B in collaboration with ASML. This result is compared to the imaging results obtained for a mask with the earlier developed BB, and HBB has achieved ~3x improvement; less than 0.2 nm CD changes are observed in the corners of the die. A CD uniformity budget including impact of OOB light in the die edge area is evaluated which shows that the OOB impact from HBB becomes comparable with other CDU contributors in this area. Finally, we state that HBB is a promising technology allowing for CD control at die edges.
Extreme ultraviolet interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, Kenneth A.
EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for themore » measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources of systematic measurement errors. To overcome a variety of experimental difficulties, several new methods in interferogram analysis and phase-retrieval were developed: the Fourier-Transform Method of Phase-Shift Determination, which uses Fourier-domain analysis to improve the accuracy of phase-shifting interferometry; the Fourier-Transform Guided Unwrap Method, which was developed to overcome difficulties associated with a high density of mid-spatial-frequency blemishes and which uses a low-spatial-frequency approximation to the measured wavefront to guide the phase unwrapping in the presence of noise; and, finally, an expedient method of Gram-Schmidt orthogonalization which facilitates polynomial basis transformations in wave-front surface fitting procedures.« less
Characterization and control of EUV scanner dose uniformity and stability
NASA Astrophysics Data System (ADS)
Robinson, Chris; Corliss, Dan; Meli, Luciana; Johnson, Rick
2018-03-01
The EUV source is an impressive feat of engineering that provides 13.5 nm radiation by vaporizing tin droplets with a high power CO2 laser and focusing the photons produced in the resultant plasma into the scanner illumination system. Great strides have been made in addressing the many potential stability challenges, but there are still residual spatial and temporal dose non-uniformity signatures. Since even small dose errors can impact the yieldable process window for the advanced lithography products that are exposed on EUV scanners it is crucial to monitor and control the dose variability. Using on-board metrology, the EUV scanner outputs valuable metrics that provide real time insight into the dose performance. We have supplemented scanner data collection with a wafer based methodology that provides high throughput, high sensitivity, quantitative characterization of the EUV scanner dose delivery. The technique uses open frame EUV exposures, so it is exclusive of lithographic pattern imaging, exclusive of lithographic mask pattern and not limited by placement of metrology features. Processed wafers are inspected rapidly, providing 20,000 pixels of detail per exposure field in approximately one minute. Exposing the wafer on the scanner with a bit less than the resist E0 (open frame clearing dose) results in good sensitivity to small variations in the EUV dose delivered. The nominal exposure dose can be modulated by field to calibrate the inspection results and provide quantitative assessment of variations with < 1% sensitivity. This technique has been used for dose uniformity assessments. It is also being used for long term dose stability monitoring and has proven valuable for short term dose stability follow up investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, J. H.; Ben-Jaffel, Lotfi, E-mail: guojh@ynao.ac.cn, E-mail: bjaffel@iap.fr
2016-02-20
By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets withmore » a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400–900 Å), which pushes the transition of H/H{sup +} to low altitudes. In contrast, the transition of H/H{sup +} moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50–400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.« less
NASA Astrophysics Data System (ADS)
Kouloumvakos, A.; Patsourakos, S.; Hillaris, A.; Vourlidas, A.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.
2014-06-01
On 13 June 2010, an eruptive event occurred near the solar limb. It included a small filament eruption and the onset of a relatively narrow coronal mass ejection (CME) surrounded by an extreme ultraviolet (EUV) wave front recorded by the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) at high cadence. The ejection was accompanied by a GOES M1.0 soft X-ray flare and a Type-II radio burst; high-resolution dynamic spectra of the latter were obtained by the Appareil de Routine pour le Traitement et l'Enregistrement Magnetique de l'Information Spectral (ARTEMIS IV) radio spectrograph. The combined observations enabled a study of the evolution of the ejecta and the EUV wave front and its relationship with the coronal shock manifesting itself as metric Type-II burst. By introducing a novel technique, which deduces a proxy of the EUV compression ratio from AIA imaging data and compares it with the compression ratio deduced from the band-split of the Type-II metric radio burst, we are able to infer the potential source locations of the radio emission of the shock on that AIA images. Our results indicate that the expansion of the CME ejecta is the source for both EUV and radio shock emissions. Early in the CME expansion phase, the Type-II burst seems to originate in the sheath region between the EUV bubble and the EUV shock front in both radial and lateral directions. This suggests that both the nose and the flanks of the expanding bubble could have driven the shock.
Enhancement of EUV emission from a liquid microjet target by use of dual laser pulses
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Rajyaguru, Chirag; Koga, Masato; Kawasaki, Keita; Sasaki, Wataru; Kubodera, Shoichi; Kikuchi, Takashi; Yugami, Noboru; Kawata, Shigeo; Andreev, Alexander A.
2005-03-01
Extreme ultraviolet (EUV) radiation at the wavelength of around 13nm waws observed from a laser-produced plasma using continuous water-jet. Strong dependence of the conversion efficiency (CE) on the laser focal spot size and jet diameter was observed. The EUV CE at a given laser spot size and jet diameter was further enhanced using double laser pulses, where a pre-pulse was used for initial heating of the plasma.
Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges
NASA Astrophysics Data System (ADS)
Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos
2016-09-01
Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).
Recent solar extreme ultraviolet irradiance observations and modeling: A review
NASA Technical Reports Server (NTRS)
Tobiska, W. Kent
1993-01-01
For more than 90 years, solar extreme ultraviolet (EUV) irradiance modeling has progressed from empirical blackbody radiation formulations, through fudge factors, to typically measured irradiances and reference spectra was well as time-dependent empirical models representing continua and line emissions. A summary of recent EUV measurements by five rockets and three satellites during the 1980s is presented along with the major modeling efforts. The most significant reference spectra are reviewed and threee independently derived empirical models are described. These include Hinteregger's 1981 SERF1, Nusinov's 1984 two-component, and Tobiska's 1990/1991/SERF2/EUV91 flux models. They each provide daily full-disk broad spectrum flux values from 2 to 105 nm at 1 AU. All the models depend to one degree or another on the long time series of the Atmosphere Explorer E (AE-E) EUV database. Each model uses ground- and/or space-based proxies to create emissions from solar atmospheric regions. Future challenges in EUV modeling are summarized including the basic requirements of models, the task of incorporating new observations and theory into the models, the task of comparing models with solar-terrestrial data sets, and long-term goals and modeling objectives. By the late 1990s, empirical models will potentially be improved through the use of proposed solar EUV irradiance measurements and images at selected wavelengths that will greatly enhance modeling and predictive capabilities.
Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography
NASA Astrophysics Data System (ADS)
Madey, Theodore E.; Faradzhev, Nadir S.; Yakshinskiy, Boris V.; Edwards, N. V.
2006-12-01
One of the most promising methods for next generation device manufacturing is extreme ultraviolet (EUV) lithography, which uses 13.5 nm wavelength radiation generated from freestanding plasma-based sources. The short wavelength of the incident illumination allows for a considerable decrease in printed feature size, but also creates a range of technological challenges not present for traditional optical lithography. Contamination and oxidation form on multilayer reflecting optics surfaces that not only reduce system throughput because of the associated reduction in EUV reflectivity, but also introduce wavefront aberrations that compromise the ability to print uniform features. Capping layers of ruthenium, films ∼2 nm thick, are found to extend the lifetime of Mo/Si multilayer mirrors used in EUV lithography applications. However, reflectivities of even the Ru-coated mirrors degrade in time during exposure to EUV radiation. Ruthenium surfaces are chemically reactive and are very effective as heterogeneous catalysts. In the present paper we summarize the thermal and radiation-induced surface chemistry of bare Ru exposed to gases; the emphasis is on H2O vapor, a dominant background gas in vacuum processing chambers. Our goal is to provide insights into the fundamental physical processes that affect the reflectivity of Ru-coated Mo/Si multilayer mirrors exposed to EUV radiation. Our ultimate goal is to identify and recommend practices or antidotes that may extend mirror lifetimes.
NASA Astrophysics Data System (ADS)
Buntoung, Sumaman; Pattarapanitchai, Somjet; Wattan, Rungrat; Masiri, Itsara; Promsen, Worrapass; Tohsing, Korntip; Janjai, Serm
2013-05-01
Islands on the southern coasts of Thailand are famous attractions for local and foreign tourists. Tourists usually expose their skins to solar radiation for tanning. Thus information on solar ultraviolet radiation (UV) is of importance for tourists to protect themselves from adverse effects of UV. In this work, solar erythemal ultraviolet radiation (EUV) at two touristic sites namely Samui island (9.451°N, 100.033°E) and Phuket island (8.104°N, 98.304°E) was investigated. In investigating EUV, broadband UV radiometers (Kipp & Zonen, model UVS-B-C) were installed at existing meteorological stations in Samui and Phuket islands. A one-year period of EUV data from these two sites was analyzed. The level of UV index at these sites was studied. The values of UV index higher than 12 at noon time of clear days are usually found in the summer at both sites. Seasonal variation of EUV at both sites was investigated. It was found that the tropical monsoons have strong influence on this variation. Finally, global broadband radiation measured at the sites was also used to establish a correlation between EUV and global broadband radiation. Higher correlation was found for the case of clear sky, as compared to the case of cloudy sky. The correlation obtained from this analysis can be used to estimate EUV from global broadband radiation at these two sites.
NASA Astrophysics Data System (ADS)
Brunner, Raimund; Schmidtke, Gerhard; Konz, Werner; Pfeffer, Wilfried
A low-cost monitor to measure the EUV and plasma environment in space is presented. The device consists of three (or more) isolated spheres, a metallic sphere, one or more highly trans-parent Inner Grids and Outer Grids. Each one is being connected to a sensitive floating elec-trometer. By setting different potentials to the grids as well as to the sphere and varying one or more of their voltages, measurements of spectral solar EUV irradiance (15-200 nm), of local plasma parameters such as electron and ion densities, electron energies and temperatures as well as ion compositions and debris events can be derived from the current recordings. This detector does not require any (solar) pointing device. The primary goal is to study the impact of solar activity events (e.g. CMEs) as well as subsequent reactions of the ionospheric/thermospheric systems (including space weather occurences). The capability of SEPS for measuring EUV pho-ton fluxes as well as plasma parameters in the energy range from 0 to +/-70 eV is demonstrated by laboratory measurements as performed in the IPM laboratory, at BESSY-PTB electron syn-chrotron in Berlin and at ESA/ESTEC plasma chamber. Based on the laboratory recording of plasma recombination EUV emission the sensor is suitable to detect also auroral and airglow radiations. -The state of the art in the development of this device is reported.
NASA Astrophysics Data System (ADS)
Bartnik, A.
2015-06-01
In this work a review of investigations concerning interaction of intense extreme ultraviolet (EUV) and soft X-ray (SXR) pulses with matter is presented. The investigations were performed using laser-produced plasma (LPP) EUV/SXR sources based on a double stream gas puff target. The sources are equipped with dedicated collectors allowing for efficient focusing of the EUV/SXR radiation pulses. Intense radiation in a wide spectral range, as well as a quasi-monochromatic radiation can be produced. In the paper different kinds of LPP EUV/SXR sources developed in the Institute of Optoelectronics, Military University of Technology are described. Radiation intensities delivered by the sources are sufficient for different kinds of interaction experiments including EUV/SXR induced ablation, surface treatment, EUV fluorescence or photoionized plasma creation. A brief review of the main results concerning this kind of experiments performed by author of the paper are presented. However, since the LPP sources cannot compete with large scale X-ray sources like synchrotrons, free electron lasers or high energy density plasma sources, it was indicated that some investigations not requiring extreme irradiation parameters can be performed using the small scale installations. Some results, especially concerning low temperature photoionized plasmas are very unique and could be hardly obtained using the large facilities.
Solar coronal temperature diagnostics using emission line from multiple stages of ionization of iron
NASA Technical Reports Server (NTRS)
Brosius, Jeffrey W.; Davila, Joseph M.; Thomas, Roger J.; Thompson, William T.
1994-01-01
We obtained spatially resolved extreme-ultraviolet (EUV) spectra of AR 6615 on 1991 May 7 with NASA/ Goddard Space Flight Center's Solar EUV Rocket Telescope and Spectrograph (SERTS). Included are emission lines from four different stages of ionization of iron: Fe(+15) lambda 335 A, Fe(+14) lambda 327 A, Fe(+13) lambda 334 A, and Fe(+12) lambda 348 A. Using intensity ratios from among these lines, we have calculated the active region coronal temperature along the Solar Extreme Ultraviolet Telescope and Spectrograph (SERTS) slit. Temperatures derived from line ratios which incorporate adjacent stages of ionization are most sensitive to measurement uncertainties and yield the largest scatter. Temperatures derived from line ratios which incorporate nonadjacent stages of ionization are less sensitive to measurement uncertainties and yield little scatter. The active region temperature derived from these latter ratios has an average value of 2.54 x 10(exp 6) K, with a standard deviation approximately 0.12 x 10(exp 6) K, and shows no significant variation with position along the slit.
X-ray and EUV Observations of CME Eruption Onset
NASA Technical Reports Server (NTRS)
Sterling, A. C.
2004-01-01
Why Coronal Mass Ejections (CMEs) erupt is a major outstanding puzzle of solar physics. Signatures observable at the earliest stages of eruption onset may hold precious clues about the onset mechanism. We present observations from SOHO/EIT and from TRACE in EUV, and from Yohkoh/SXT in soft X-rays of the pre-eruption and eruption phases of CME expulsion, along with the eruption's magnetic setting found from SOHO/MDI magnetograms. Most of our events involve clearly-observable filament eruptions and multiple neutral lines, and we use the magnetic settings and motions of the filaments to help infer the geometry and behavior of the associated erupting magnetic fields. Pre-eruption and early-eruption signatures include a relatively slow filament rise prior to eruption, and intensity "dimmings" and brightenings, both in the immediate neighborhood of the "core" (location of greatest magnetic shear) of the erupting fields and at locations remote from the core. These signatures and their relative timings place observational constraints on eruption mechanisms; our recent work has focused on implications for the so-called "tether cutting" and "breakout" models, but the same observational constraints are applicable to any model.
The First Multiple Layer Doppler Imaging of an Active Binary
NASA Technical Reports Server (NTRS)
Dempsey, Robert C.
1997-01-01
Preliminary results were presented at the Cool Stars, Stellar Systems, and the Sun in Cambridge, MA in July 1997. A copy of the two published papers (in press) is attached. The project has met or exceeded our expectations. The rapid readout data have given us an excellent data set to model in detail the flare behavior. The large number of spectral features observed between the EUVE and HST data have allowed us to compute a mean model atmosphere and compare the results to another well studied system (HR 1099 - Cycle 3 HST observation previously published). I developed a model (anisotropic macroturbulence) that fits the CIV and MgII better than previously achieved. These results have been constrained by the EUVE data. In early studies, 2 gaussians were applied to the profile. The interpretation of these features was unclear. The anisotropic macroturbulence model fits the data better than previously possible and gives a physically reasonable interpretation: there appears to be an asymmetrical distribution between the radial and tangential velocity fields. This is similar to case of the Sun.
NASA Astrophysics Data System (ADS)
Porter, Christina L.; Tanksalvala, Michael; Gerrity, Michael; Miley, Galen P.; Esashi, Yuka; Horiguchi, Naoto; Zhang, Xiaoshi; Bevis, Charles S.; Karl, Robert; Johnsen, Peter; Adams, Daniel E.; Kapteyn, Henry C.; Murnane, Margaret M.
2018-03-01
With increasingly 3D devices becoming the norm, there is a growing need in the semiconductor industry and in materials science for high spatial resolution, non-destructive metrology techniques capable of determining depth-dependent composition information on devices. We present a solution to this problem using ptychographic coherent diffractive imaging (CDI) implemented using a commercially available, tabletop 13 nm source. We present the design, simulations, and preliminary results from our new complex EUV imaging reflectometer, which uses coherent 13 nm light produced by tabletop high harmonic generation. This tool is capable of determining spatially-resolved composition vs. depth profiles for samples by recording ptychographic images at multiple incidence angles. By harnessing phase measurements, we can locally and nondestructively determine quantities such as device and thin film layer thicknesses, surface roughness, interface quality, and dopant concentration profiles. Using this advanced imaging reflectometer, we can quantitatively characterize materials-sciencerelevant and industry-relevant nanostructures for a wide variety of applications, spanning from defect and overlay metrology to the development and optimization of nano-enhanced thermoelectric or spintronic devices.
Linear and nonlinear transparencies in binocular vision.
Langley, K; Fleet, D J; Hibbard, P B
1998-01-01
When the product of a vertical square-wave grating (contrast envelope) and a horizontal sinusoidal grating (carrier) are viewed binocularly with different disparity cues they can be perceived transparently at different depths. We found, however, that the transparency was asymmetric; it only occurred when the envelope was perceived to be the overlaying surface. When the same two signals were added, the percept of transparency was symmetrical; either signal could be seen in front of or behind the other at different depths. Differences between these multiplicative and additive signal combinations were examined in two experiments. In one, we measured disparity thresholds for transparency as a function of the spatial frequency of the envelope. In the other, we measured disparity discrimination thresholds. In both experiments the thresholds for the multiplicative condition, unlike the additive condition, showed distinct minima at low envelope frequencies. The different sensitivity curves found for multiplicative and additive signal combinations suggest that different processes mediated the disparity signal. The data are consistent with a two-channel model of binocular matching, with multiple depth cues represented at single retinal locations. PMID:9802240
The Origin of the EUV Emission in Her X-1
NASA Technical Reports Server (NTRS)
Leahy, D. A.; Marshall, H.
1999-01-01
Her X-1 exhibits a strong orbital modulation of its EUV flux with a large decrease around time of eclipse of the neutron star, and a significant dip which appears at different orbital phases at different 35-day phases. We consider observations of Her X-1 in the EUVE by the Extreme Ultraviolet Explorer (EUVE), which includes data from 1995 near the end of the Short High state, and date from 1997 at the start of the Short High state. The observed EUV lightcurve has bright and faint phases. The bright phase can be explained as the low energy tail of the soft x-ray pulse. The faint phase emission has been modeled to understand its origin. We find: the x-ray heated surface of HZ Her is too cool to produce enough emission; the accretion disk does not explain the orbital modulation; however, reflection of x-rays off of HZ Her can produce the observed lightcurve with orbital eclipses. The dip can be explained by shadowing of the companion by the accretion disk. We discuss the constraints on the accretion disk geometry derived from the observed shadowing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartnik, A.; Wachulak, P.; Fiedorowicz, H.
2013-11-15
In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUVmore » radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.« less
Relationship between hard X-ray and EUV sources in solar flares
NASA Technical Reports Server (NTRS)
Kane, S. R.; Frost, K. J.; Donnelly, R. F.
1979-01-01
The high time resolution hard X-ray (not less than 15 keV) observations of medium and large impulsive solar flares made with the OSO 5 satellite are compared with the simultaneous ground-based observations of 10-1030 A EUV flux made via sudden frequency deviations (SFD) at Boulder. For most flares the agreement between the times of maxima of the impulsive hard X-ray and EUV emissions is found to be consistent with earlier studies (not less than 1 s). The rise and decay times of the EUV emission are larger than the corresponding times for X-rays not less than 30 keV. When OSO 5 hard X-ray measurements are combined with those made by OGO1, OGO 3, OGO 5, and TD 1A satellites, it is found that there is a nearly linear relationship between the energy fluxes of impulsive EUV emission and X-rays not less than 10 keV over a wide range of flare magnitudes. A model involving only a 'partial precipitation' of energetic electrons and consisting of both thick and thin target hard X-ray sources is examined.
Makhotkin, Igor A.; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W. E.; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han-Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut
2018-01-01
The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface. PMID:29271755
Makhotkin, Igor A; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W E; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Nittler, Laurent; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Vozda, Vojtěch; Burian, Tomáš; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Schreiber, Siegfried; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut
2018-01-01
The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface.
Studies on cryogenic Xe capillary jet target for laser-produced plasma EUV-light source
NASA Astrophysics Data System (ADS)
Inoue, T.; Nica, P. E.; Kaku, K.; Shimoura, A.; Amano, S.; Miyamoto, S.; Mochizuki, T.
2006-03-01
In this paper, characterizations of a cryogenic Xe capillary jet target for a laser-produced plasma extreme ultraviolet (EUV) light source are reported. The capillary jet target is a candidate of fast-supplying targets for mitigating debris generation and target consumption in a vacuum chamber without reducing the EUV conversion efficiency. Xe capillary jets (jet velocity ~ 0.4 m/s) were generated in vacuum by using annular nozzles chilled to ~ 170 K at a Xe backing pressure of ~ 0.7 MPa. Forming mechanisms of the capillary jet targets were studied by using numerical calculations. Furthermore, laser-produced plasma EUV generation was performed by irradiating a Nd:YAG laser (1064 nm, ~ 0.5 J, 10 ns, 120 μmφ, ~ 4×10 11 W/cm2) on a Xe capillary jet target (outer / inner diameter = 100 / 70 μmφ). The angular distribution of EUV generation was approximately uniform around the Xe capillary jet target, and the peak kinetic energy of the fast-ions was evaluated to be ~ 2 keV.
Understanding and reduction of defects on finished EUV masks
NASA Astrophysics Data System (ADS)
Liang, Ted; Sanchez, Peter; Zhang, Guojing; Shu, Emily; Nagpal, Rajesh; Stivers, Alan
2005-05-01
To reduce the risk of EUV lithography adaptation for the 32nm technology node in 2009, Intel has operated a EUV mask Pilot Line since early 2004. The Pilot Line integrates all the necessary process modules including common tool sets shared with current photomask production as well as EUV specific tools. This integrated endeavor ensures a comprehensive understanding of any issues, and development of solutions for the eventual fabrication of defect-free EUV masks. Two enabling modules for "defect-free" masks are pattern inspection and repair, which have been integrated into the Pilot Line. This is the first time we are able to look at real defects originated from multilayer blanks and patterning process on finished masks over entire mask area. In this paper, we describe our efforts in the qualification of DUV pattern inspection and electron beam mask repair tools for Pilot Line operation, including inspection tool sensitivity, defect classification and characterization, and defect repair. We will discuss the origins of each of the five classes of defects as seen by DUV pattern inspection tool on finished masks, and present solutions of eliminating and mitigating them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufli, R; Windt, D L; Robinson, J C
2006-02-09
Multilayer coatings for the 7 EUV channels of the AIA have been developed and completed successfully on all AIA flight mirrors. Mo/Si coatings (131, 171, 193.5, 211 {angstrom}) were deposited at Lawrence Livermore National Laboratory (LLNL). Mg/SiC (304, 335 {angstrom}) and Mo/Y (94 {angstrom}) coatings were deposited at Columbia University. EUV reflectance of the 131/335 {angstrom}, 171 {angstrom}, 193.5/211 {angstrom} primary and secondary flight mirrors and the 94/304 {angstrom} secondary flight mirror was measured at beamline 6.3.2. of the Advanced Light Source (ALS) at LBNL. EUV reflectance of the 94/304 {angstrom} primary and secondary flight mirrors was measured at beamlinemore » X24C of the National Synchrotron Light Source (NSLS) at Brookhaven National Lab. Preliminary EUV reflectance measurements of the 94, 304 and 335 {angstrom} coatings were performed with a laser plasma source reflectometer located at Columbia University. Prior to multilayer coating, Atomic Force Microscopy (AFM) characterization and cleaning of all flight substrates was performed at LLNL.« less
A stand-alone compact EUV microscope based on gas-puff target source.
Torrisi, Alfio; Wachulak, Przemyslaw; Węgrzyński, Łukasz; Fok, Tomasz; Bartnik, Andrzej; Parkman, Tomáš; Vondrová, Šárka; Turňová, Jana; Jankiewicz, Bartłomiej J; Bartosewicz, Bartosz; Fiedorowicz, Henryk
2017-02-01
We report on a very compact desk-top transmission extreme ultraviolet (EUV) microscope based on a laser-plasma source with a double stream gas-puff target, capable of acquiring magnified images of objects with a spatial (half-pitch) resolution of sub-50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi-monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Fiber Optic Thermographic Detection of Flaws in Composites
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.
2009-01-01
Optical fibers with multiple Bragg gratings bonded to surfaces of structures were used for thermographic detection of subsurface defects in structures. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The obtained data were analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with the simulation results.
NASA Astrophysics Data System (ADS)
Wang, Wei; Hu, Zhengliang; Ma, Mingxiang; Lin, Huizu; Hu, Yongming
2014-03-01
A fiber Bragg grating based (FBG-based) Fabry-Perot (FP) sensor system utilizing multiple reflections between two strong FBGs with different reflectiveties to enhance the sensitivity is proposed. The different interference signals are obtained by using different multiple-path-matched Michelson interferometers (MIs). The system is lighted by the ultra-narrow line width erbium-doped fiber ring laser and the signal is demodulated by phase-generated carrier (PGC) scheme. The method to choose the optimal parameters of the FBG-based asymmetric FP sensor and the different matching MIs is analyzed. The experimental results show that each matching MI can steadily enhance the sensitivity of the demodulated signal in the bandwidth of 80-8000 Hz. The sensitivity of the system can be enhanced about 19.1 dB when the light reflects nine times between the two FBGs. Further more, this system can be used to extend the dynamic range and the effective working bandwidth and so on.
Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM.
Martínez, José Luis; Moreno, Ignacio; del Mar Sánchez-López, María; Vargas, Asticio; García-Martínez, Pascuala
2014-10-20
Multiple internal reflection effects on the optical modulation of a commercial reflective parallel-aligned liquid-crystal on silicon (PAL-LCoS) spatial light modulator (SLM) are analyzed. The display is illuminated with different wavelengths and different angles of incidence. Non-negligible Fabry-Perot (FP) effect is observed due to the sandwiched LC layer structure. A simplified physical model that quantitatively accounts for the observed phenomena is proposed. It is shown how the expected pure phase modulation response is substantially modified in the following aspects: 1) a coupled amplitude modulation, 2) a non-linear behavior of the phase modulation, 3) some amount of unmodulated light, and 4) a reduction of the effective phase modulation as the angle of incidence increases. Finally, it is shown that multiple reflections can be useful since the effect of a displayed diffraction grating is doubled on a beam that is reflected twice through the LC layer, thus rendering gratings with doubled phase modulation depth.
An EUV Study of the Eclipsing M-Dwarf Binary System YY GEM
NASA Technical Reports Server (NTRS)
Drake, Jeremy
2000-01-01
EUVE, SW, MW and LW spectra have been reduced and line fluxes measured. The Deep Survey data has been analyzed and light curves have been derived. The spectra around the HE II 304 region show some evidence of emission from the bright A companion star, Castor. Preliminary results for the metallicity of the corona of YY Gem were derived from the EUVE spectra and photometry and were presented at the AAS HEAD meeting; results are being finalized for publication in a referred journal.
Cleaning process for EUV optical substrates
Weber, Frank J.; Spiller, Eberhard A.
1999-01-01
A cleaning process for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.
NASA Technical Reports Server (NTRS)
Chapman, R. D.; Neupert, W. M.
1974-01-01
A study of the correlations between solar EUV line fluxes and solar radio fluxes has been carried out. A calibration for the Goddard Space Flight Center EUV spectrum is suggested. The results are used to obtain an equation for the absolute EUV flux for several lines in the 150- to 400-A region and the total flux of 81 intense lines in the region, the 2800-MHz radio flux being used as independent variable.
Monitoring of solar far ultraviolet radiation from the OSO-5 satellite
NASA Technical Reports Server (NTRS)
Rense, W. A.; Parker, R.
1972-01-01
A spectrophotometer for monitoring the solar EUV in three broad wavelength bands is described. The kind of data obtained, along with sources of error, are presented. The content of the tape library which contains the data is outlined. The scientific results are discussed. These include the following: solar flares in the EUV, solar eclipse observations in the EUV, SFD's and relationship to solar flares, and the application of satellite sunrise and sunset data for the study of model upper atmospheres for the earth.
The creation of radiation dominated plasmas using laboratory extreme ultra-violet lasers
NASA Astrophysics Data System (ADS)
Tallents, G. J.; Wilson, S.; West, A.; Aslanyan, V.; Lolley, J.; Rossall, A. K.
2017-06-01
Ionization in experiments where solid targets are irradiated by high irradiance extreme ultra-violet (EUV) lasers is examined. Free electron degeneracy effects on ionization in the presence of a high EUV flux of radiation is shown to be important. Overlap of the physics of such plasmas with plasma material under compression in indirect inertial fusion is explored. The design of the focusing optics needed to achieve high irradiance (up to 1014 Wcm-2) using an EUV capillary laser is presented.
Using local correlation tracking to recover solar spectral information from a slitless spectrograph
NASA Astrophysics Data System (ADS)
Courrier, Hans T.; Kankelborg, Charles C.
2018-01-01
The Multi-Order Solar EUV Spectrograph (MOSES) is a sounding rocket instrument that utilizes a concave spherical diffraction grating to form simultaneous images in the diffraction orders m=0, +1, and -1. MOSES is designed to capture high-resolution cotemporal spectral and spatial information of solar features over a large two-dimensional field of view. Our goal is to estimate the Doppler shift as a function of position for every MOSES exposure. Since the instrument is designed to operate without an entrance slit, this requires disentangling overlapping spectral and spatial information in the m=±1 images. Dispersion in these images leads to a field-dependent displacement that is proportional to Doppler shift. We identify these Doppler shift-induced displacements for the single bright emission line in the instrument passband by comparing images from each spectral order. We demonstrate the use of local correlation tracking as a means to quantify these differences between a pair of cotemporal image orders. The resulting vector displacement field is interpreted as a measurement of the Doppler shift. Since three image orders are available, we generate three Doppler maps from each exposure. These may be compared to produce an error estimate.
Stability and imaging of the ASML EUV alpha demo tool
NASA Astrophysics Data System (ADS)
Hermans, Jan V.; Baudemprez, Bart; Lorusso, Gian; Hendrickx, Eric; van Dijk, Andre; Jonckheere, Rik; Goethals, Anne-Marie
2009-03-01
Extreme Ultra-Violet (EUV) lithography is the leading candidate for semiconductor manufacturing of the 22nm technology node and beyond, due to the very short wavelength of 13.5nm. However, reducing the wavelength adds complexity to the lithographic process. The impact of the EUV specific conditions on lithographic performance needs to be understood, before bringing EUV lithography into pre-production. To provide early learning on EUV, an EUV fullfield scanner, the Alpha Demo Tool (ADT) from ASML was installed at IMEC, using a Numerical Aperture (NA) of 0.25. In this paper we report on different aspects of the ADT: the imaging and overlay performance and both short and long-term stability. For 40nm dense Lines-Spaces (LS), the ADT shows an across field overlapping process window of 270nm Depth Of Focus (DOF) at 10% Exposure Latitude (EL) and a wafer CD Uniformity (CDU) of 3nm 3σ, without any corrections for process or reticle. The wafer CDU is correlated to different factors that are known to influence the CD fingerprint from traditional lithography: slit intensity uniformity, focus plane deviation and reticle CD error. Taking these contributions into account, the CD through slit fingerprint for 40nm LS is simulated with excellent agreement to experimental data. The ADT shows good CD stability over 9 months of operation, both intrafield and across wafer. The projection optics reflectivity has not degraded over 9 months. Measured overlay performance with respect to a dry tool shows |Mean|+3σ below 20nm with more correction potential by applying field-by-field corrections (|Mean|+3σ <=10nm). For 22nm SRAM application, both contact hole and metal layer were printed in EUV with 10% CD and 15nm overlay control. Below 40nm, the ADT shows good wafer CDU for 30nm dense and isolated lines (on the same wafer) and 38nm dense Contact Holes (CH). First 28nm dense line CDU data are achieved. The results indicate that the ADT can be used effectively for EUV process development before installation of the pre-production tool, the ASML NXE Gen. 1 at IMEC.
Fiber Bragg grating sensor interrogators on chip: challenges and opportunities
NASA Astrophysics Data System (ADS)
Marin, Yisbel; Nannipieri, Tiziano; Oton, Claudio J.; Di Pasquale, Fabrizio
2017-04-01
In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.
System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy
Greenwood, Margaret S.
2005-04-12
A system for determining a property of a fluid based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum including a diffraction order equal to zero exhibits a peak whose location is used to determine speed of sound in the fluid. A separate measurement of the acoustic impedance is combined with the determined speed of sound to yield a measure of fluid density. A system for determining acoustic impedance includes an ultrasonic transducer on a first surface of a solid member, and an opposed second surface of the member is in contact with a fluid to be monitored. A longitudinal ultrasonic pulse is delivered through the solid member, and a multiplicity of pulse echoes caused by reflections of the ultrasonic pulse between the solid-fluid interface and the transducer-solid interface are detected. The decay rate of the detected echo amplitude as a function of echo number is used to determine acoustic impedance.
Diffraction-based BioCD biosensor for point-of-care diagnostics
NASA Astrophysics Data System (ADS)
Choi, H.; Chang, C.; Savran, C.; Nolte, D.
2018-02-01
The BioCD platform technology uses spinning-disk interferometry to detect molecular binding to target molecular probes in biological samples. Interferometric configurations have included differential phase contrast and in-line quadrature detection. For the detection of extremely low analyte concentrations, nano- or microparticles can enhance the signal through background-free diffraction detection. Diffraction signal measurements on BioCD biosensors are achieved by forming gratings on a disc surface. The grating pattern was printed with biotinylated bovine serum albumin (BSA) and streptavidin coated beads were deployed. The diameter of the beads was 1 micron and strong protein bonding occurs between BSA and streptavidin-coated beads at the printed location. The wavelength for the protein binding detection was 635 nm. The periodic pattern on the disc amplified scattered light into the first-order diffraction position. The diffracted signal contains Mie scattering and a randomly-distributed-bead noise contributions. Variation of the grating pattern periodicity modulates the diffraction efficiency. To test multiple spatial frequencies within a single scan, we designed a fan-shaped grating to perform frequency filter multiplexing on a diffraction-based BioCD.
Multimodal Spectral Imaging of Cells Using a Transmission Diffraction Grating on a Light Microscope
Isailovic, Dragan; Xu, Yang; Copus, Tyler; Saraswat, Suraj; Nauli, Surya M.
2011-01-01
A multimodal methodology for spectral imaging of cells is presented. The spectral imaging setup uses a transmission diffraction grating on a light microscope to concurrently record spectral images of cells and cellular organelles by fluorescence, darkfield, brightfield, and differential interference contrast (DIC) spectral microscopy. Initially, the setup was applied for fluorescence spectral imaging of yeast and mammalian cells labeled with multiple fluorophores. Fluorescence signals originating from fluorescently labeled biomolecules in cells were collected through triple or single filter cubes, separated by the grating, and imaged using a charge-coupled device (CCD) camera. Cellular components such as nuclei, cytoskeleton, and mitochondria were spatially separated by the fluorescence spectra of the fluorophores present in them, providing detailed multi-colored spectral images of cells. Additionally, the grating-based spectral microscope enabled measurement of scattering and absorption spectra of unlabeled cells and stained tissue sections using darkfield and brightfield or DIC spectral microscopy, respectively. The presented spectral imaging methodology provides a readily affordable approach for multimodal spectral characterization of biological cells and other specimens. PMID:21639978
NASA Astrophysics Data System (ADS)
Rademacher, L. K.
2017-12-01
The Interdisciplinary Teaching about Earth for a Sustainable Future (InTeGrate) community has developed extensive courses and modules designed for broad adoption into geoscience classrooms in diverse environments. I participated in a three-semester research project designed to test the efficacy of incorporating "high doses" (minimum 3 modules or 18 class periods) of InTeGrate materials into a course, in my case, an introductory environmental science class. InTeGrate materials were developed by groups of instructors from a range of institutions across the US. These materials include an emphasis on systems thinking, interdisciplinary approaches, and sustainability, and those themes are woven throughout the modules. The three semesters included a control in which no InTeGrate materials were used, a pilot in which InTeGrate materials were tested, and a treatment semesters in which tested materials were modified as needed and fully implemented into the course. Data were collected each semester on student attitudes using the InTeGrate Attitudinal Instrument (pre and post), a subset of Geoscience Literacy Exam questions (pre and post), and a series of assessments and essay exam questions (post only). Although results suggest that learning gains were mixed, changes in attitudes pre- and post-instruction were substantial. Changes in attitudes regarding the importance of sustainable employers, the frequency of self-reported individual sustainable actions, and motivation level for creating a sustainable society were observed in the control and treatment semesters, with the treatment semester showing the greatest gains. Importantly, one of the biggest differences between the control and treatment semesters is the reported impact that the course had on influencing students' sustainable behaviors. The treatment semester course impacted students' sustainable behaviors far more than the control semester.
High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing
Hu, Chenyuan; Bai, Wei
2018-01-01
A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing. PMID:29495263
High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing.
Hu, Chenyuan; Bai, Wei
2018-02-24
A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing.
Development of a 1m-normal-incidence-EUV-Telescope
NASA Technical Reports Server (NTRS)
Grewing, M.; Kraemer, G.; Schulz-Luepertz, E.; Wulf-Mathies, C.; Bowyer, S.; Jacobsen, P.; Jelinsky, P.; Kimble, R.
1982-01-01
A brief description is given of the 1m-EUV-Telescope and its focal plane instrumentation, namely an EUV spectrometer and six EUV/FUV photometers. The telescope is scheduled for launch on an Aries rocket on June 17, 1982. The principal goals are the white dwarf HZ43 and a photometric scan across the sky in an area of the sky where 21 cm line observations reveal a steep density gradient. The optical bench of the telescope is a cylinder made of a graphite epoxy compound. Despite its low specific weight, the bench shows an excellent mechanical performance, with an elasticity modulus of approximately 70,000 N/cu mm. It is pointed out that by carefully combining layers with different winding angles of the carbon fiber, the thermal expansion along the cylinder axis is almost negligible, even under severe thermal loads
The novel top-coat material for RLS trade-off reduction in EUVL
NASA Astrophysics Data System (ADS)
Onishi, Ryuji; Sakamoto, Rikimaru; Fujitani, Noriaki; Endo, Takafumi; Ho, Bang-ching
2012-03-01
For the next generation lithography (NGL), several technologies have been proposed to achieve the 22nm-node devices and beyond. Extreme ultraviolet (EUV) lithography is one of the candidates for the next generation lithography. In EUV light source development, low power is one of the critical issue because of the low throughput, and another issue is Out of Band (OoB) light existing in EUV light. OoB is concerned to be the cause of deterioration for the lithography performance. In order to avoid this critical issue, we focused on development of the resist top coat material with OoB absorption property as Out of Band Protection Layer (OBPL). We designed this material having high absorbance around 240nm wavelength and high transmittance for EUV light. And this material aimed to improve sensitivity, resolution and LWR performance.
Design of the Extreme Ultraviolet Explorer long-wavelength grazing incidence telescope optics
NASA Technical Reports Server (NTRS)
Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.
1988-01-01
Designing optics for photometry in the long-wavelength portion of the EUV spectrum (400-900) A) poses different problems from those arising for optics, operating shortward of 400 A. The available filter materials which transmit radiation longward of 400 A are also highly transparent at wavelengths shortward of 100 A. Conventional EUV optics, with grazing engles of less than about 10 deg, have very high throughput in the EUV, which persists to wavelengths shortward of 100 A. Use of such optics with the longer-wavelength EUV filters thus results in an unacceptably large soft X-ray leak. This problem is overcome by developing a mirror design with larger graze angles of not less than 20 deg, which has high throughput at wavelengths longer than 400 A but at the same time very little throughput shortward of 100 A.
A New Relationship Between Soft X-Rays and EUV Flare Light Curves
NASA Astrophysics Data System (ADS)
Thiemann, Edward
2016-05-01
Solar flares are the result of magnetic reconnection in the solar corona which converts magnetic energy into kinetic energy resulting in the rapid heating of solar plasma. As this plasma cools, it emits radiation at different EUV wavelengths when the dropping temperature passes a line’s temperature of formation. This results in a delay in the emissions from cooler EUV lines relative to hotter EUV lines. Therefore, characterizing how this hot plasma cools is important for understanding how the corresponding geo-effective extreme ultraviolet (EUV) irradiance evolves in time. I present a simple new framework in which to study flare cooling by using a Lumped Element Thermal Model (LETM). LETM is frequently used in science and engineering to simplify a complex multi-dimensional thermal system by reducing it to a 0-D thermal circuit. For example, a structure that conducts heat out of a system is simplified with a resistive element and a structure that allows a system to store heat is simplified with a capacitive element. A major advantage of LETM is that the specific geometry of a system can be ignored, allowing for an intuitive analysis of the major thermal processes. I show that LETM is able to accurately reproduce the temporal evolution of cooler flare emission lines based on hotter emission line evolution. In particular, it can be used to predict the evolution of EUV flare light curves using the NOAA X-Ray Sensor (XRS).
NASA Astrophysics Data System (ADS)
Kim, Sujin; Park, Jong-Yeop; Kim, Yeon-Han
2017-08-01
We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) 193 Å and 171 Å on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of tet{gopal99} that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.
Active galaxies observed during the Extreme Ultraviolet Explorer all-sky survey
NASA Technical Reports Server (NTRS)
Marshall, H. L.; Fruscione, A.; Carone, T. E.
1995-01-01
We present observations of active galactic nuclei (AGNs) obtained with the Extreme Ultraviolet Explorer (EUVE) during the all-sky survey. A total of 13 sources were detected at a significance of 2.5 sigma or better: seven Seyfert galaxies, five BL Lac objects, and one quasar. The fraction of BL Lac objects is higher in our sample than in hard X-ray surveys but is consistent with the soft X-ray Einstein Slew Survey, indicating that the main reason for the large number of BL Lac objects in the extreme ulktraviolet (EUV) and soft X-ray bands is their steeper X-ray spectra. We show that the number of AGNs observed in both the EUVE and ROSAT Wide Field Camera surveys can readily be explained by modelling the EUV spectra with a simple power law in the case of BL Lac objects and with an additional EUV excess in the case of Seyferts and quasars. Allowing for cold matter absorption in Seyfert galaxy hosts drive up the inferred average continuum slope to 2.0 +/- 0.5 (at 90% confidence), compared to a slope of 1.0 usually found from soft X-ray data. If Seyfert galaxies without EUV excesses form a significant fraction of the population, then the average spectrum of those with bumps should be even steeper. We place a conservative limit on neutral gas in BL Lac objects: N(sub H) less than 10(exp 20)/sq cm.
Performance Evaluation of Fiber Bragg Gratings at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Juergens, Jeffrey; Adamovsky, Grigory; Floyd, Bertram
2004-01-01
The development of integrated fiber optic sensors for smart propulsion systems demands that the sensors be able to perform in extreme environments. In order to use fiber optic sensors effectively in an extreme environment one must have a thorough understanding of the sensor s limits and how it responds under various environmental conditions. The sensor evaluation currently involves examining the performance of fiber Bragg gratings at elevated temperatures. Fiber Bragg gratings (FBG) are periodic variations of the refractive index of an optical fiber. These periodic variations allow the FBG to act as an embedded optical filter passing the majority of light propagating through a fiber while reflecting back a narrow band of the incident light. The peak reflected wavelength of the FBG is known as the Bragg wavelength. Since the period and width of the refractive index variation in the fiber determines the wavelengths that are transmitted and reflected by the grating, any force acting on the fiber that alters the physical structure of the grating will change what wavelengths are transmitted and what wavelengths are reflected by the grating. Both thermal and mechanical forces acting on the grating will alter its physical characteristics allowing the FBG sensor to detect both temperature variations and physical stresses, strain, placed upon it. This ability to sense multiple physical forces makes the FBG a versatile sensor. This paper reports on test results of the performance of FBGs at elevated temperatures. The gratings looked at thus far have been either embedded in polymer matrix materials or freestanding with the primary focus of this paper being on the freestanding FBGs. Throughout the evaluation process, various parameters of the FBGs performance were monitored and recorded. These parameters include the peak Bragg wavelength, the power of the Bragg wavelength, and total power returned by the FBG. Several test samples were subjected to identical test conditions to allow for statistical analysis of the data. Test procedures, calibrations, and referencing techniques are presented in the paper along with directions for future research.
NASA Astrophysics Data System (ADS)
Rana, Narender; Zhang, Yunlin; Wall, Donald; Dirahoui, Bachir; Bailey, Todd C.
2015-03-01
Integrate circuit (IC) technology is going through multiple changes in terms of patterning techniques (multiple patterning, EUV and DSA), device architectures (FinFET, nanowire, graphene) and patterning scale (few nanometers). These changes require tight controls on processes and measurements to achieve the required device performance, and challenge the metrology and process control in terms of capability and quality. Multivariate data with complex nonlinear trends and correlations generally cannot be described well by mathematical or parametric models but can be relatively easily learned by computing machines and used to predict or extrapolate. This paper introduces the predictive metrology approach which has been applied to three different applications. Machine learning and predictive analytics have been leveraged to accurately predict dimensions of EUV resist patterns down to 18 nm half pitch leveraging resist shrinkage patterns. These patterns could not be directly and accurately measured due to metrology tool limitations. Machine learning has also been applied to predict the electrical performance early in the process pipeline for deep trench capacitance and metal line resistance. As the wafer goes through various processes its associated cost multiplies. It may take days to weeks to get the electrical performance readout. Predicting the electrical performance early on can be very valuable in enabling timely actionable decision such as rework, scrap, feedforward, feedback predicted information or information derived from prediction to improve or monitor processes. This paper provides a general overview of machine learning and advanced analytics application in the advanced semiconductor development and manufacturing.
NASA Astrophysics Data System (ADS)
Zakharov, S. V.; Zakharov, V. S.; Choi, P.; Krukovskiy, A. Y.; Novikov, V. G.; Solomyannaya, A. D.; Berezin, A. V.; Vorontsov, A. S.; Markov, M. B.; Parot'kin, S. V.
2011-04-01
In the specifications for EUV sources, high EUV power at IF for lithography HVM and very high brightness for actinic mask and in-situ inspections are required. In practice, the non-equilibrium plasma dynamics and self-absorption of radiation limit the in-band radiance of the plasma and the usable radiation power of a conventional single unit EUV source. A new generation of the computational code Z* is currently developed under international collaboration in the frames of FP7 IAPP project FIRE for modelling of multi-physics phenomena in radiation plasma sources, particularly for EUVL. The radiation plasma dynamics, the spectral effects of self-absorption in LPP and DPP and resulting Conversion Efficiencies are considered. The generation of fast electrons, ions and neutrals is discussed. Conditions for the enhanced radiance of highly ionized plasma in the presence of fast electrons are evaluated. The modelling results are guiding a new generation of EUV sources being developed at Nano-UV, based on spatial/temporal multiplexing of individual high brightness units, to deliver the requisite brightness and power for both lithography HVM and actinic metrology applications.
NASA Astrophysics Data System (ADS)
Chu, Wei-Chun; Lin, C. D.
2013-01-01
An extreme ultraviolet (EUV) single attosecond pulse passing through a laser-dressed dense gas is studied theoretically. The weak EUV pulse pumps the helium gas from the ground state to the 2s2p(1P) autoionizing state, which is coupled to the 2s2(1S) autoionizing state by a femtosecond infrared laser with the intensity in the order of 1012 W/cm2. The simulation shows how the transient absorption and emission of the EUV are modified by the coupling laser. A simple analytical expression for the atomic response derived for δ-function pulses reveals the strong modification of the Fano lineshape in the spectra, where these features are quite universal and remain valid for realistic pulse conditions. We further account for the propagation of pulses in the medium and show that the EUV signal at the atomic resonance can be enhanced in the gaseous medium by more than 50% for specifically adjusted laser parameters, and that this enhancement persists as the EUV propagates in the gaseous medium. Our result demonstrates the high-level control of nonlinear optical effects that are achievable with attosecond pulses.
Design decisions from the history of the EUVE science payload
NASA Technical Reports Server (NTRS)
Marchant, W.
1993-01-01
Some of the design issues that arose during the development of the EUVE science payload and solutions to the problems involved are examined. In particular, attention is given to the use of parallel and serial busses, the selection of the the ROM approach for software storage and execution, implementation of memory error detection and correction, and the selection of command structures. The early design decisions paid off in the timely delivery of the scientific payload and in the successful completion of the survey phase of the EUVE science mission.
Design decisions from the history of the EUVE science payload
NASA Astrophysics Data System (ADS)
Marchant, W.
1993-09-01
Some of the design issues that arose during the development of the EUVE science payload and solutions to the problems involved are examined. In particular, attention is given to the use of parallel and serial busses, the selection of the the ROM approach for software storage and execution, implementation of memory error detection and correction, and the selection of command structures. The early design decisions paid off in the timely delivery of the scientific payload and in the successful completion of the survey phase of the EUVE science mission.
Multipulsed dynamic moire interferometer
Deason, Vance A.
1991-01-01
An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.
Effective EUVL mask cleaning technology solutions for mask manufacturing and in-fab mask maintenance
NASA Astrophysics Data System (ADS)
Dietze, Uwe; Dress, Peter; Waehler, Tobias; Singh, Sherjang; Jonckheere, Rik; Baudemprez, Bart
2011-03-01
Extreme Ultraviolet Lithography (EUVL) is considered the leading lithography technology choice for semiconductor devices at 16nm HP node and beyond. However, before EUV Lithography can enter into High Volume Manufacturing (HVM) of advanced semiconductor devices, the ability to guarantee mask integrity at point-of-exposure must be established. Highly efficient, damage free mask cleaning plays a critical role during the mask manufacturing cycle and throughout the life of the mask, where the absence of a pellicle to protect the EUV mask increases the risk of contamination during storage, handling and use. In this paper, we will present effective EUVL mask cleaning technology solutions for mask manufacturing and in-fab mask maintenance, which employs an intelligent, holistic approach to maximize Mean Time Between Cleans (MBTC) and extend the useful life span of the reticle. The data presented will demonstrate the protection of the capping and absorber layers, preservation of pattern integrity as well as optical and mechanical properties to avoid unpredictable CD-linewidth and overlay shifts. Experiments were performed on EUV blanks and pattern masks using various process conditions. Conditions showing high particle removal efficiency (PRE) and minimum surface layer impact were then selected for durability studies. Surface layer impact was evaluated over multiple cleaning cycles by means of UV reflectivity metrology XPS analysis and wafer prints. Experimental results were compared to computational models. Mask life time predictions where made using the same computational models. The paper will provide a generic overview of the cleaning sequence which yielded best results, but will also provide recommendations for an efficient in-fab mask maintenance scheme, addressing handling, storage, cleaning and inspection.
NASA Astrophysics Data System (ADS)
Kita, Hajime; Misawa, H.; Tsuchiya, F.; Tao, C.; Morioka, A.
2012-10-01
Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent observations reveal short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed that the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. If such a process occurs at Jupiter, it is also expected that diurnal wind system produces dawn-dusk asymmetry of the JSR brightness distribution. Preceding studies confirmed that the short term variations in total flux density correspond to the solar UV/EUV. However, the effect of solar UV/EUV heating on the brightness distribution has not been confirmed. Hence, the purpose of this study is to confirm the solar UV/EUV heating effect on total flux density and brightness distribution. We made radio imaging analysis using the National Radio Astronomy Observatory (NRAO) archived data of the Very Large Array (VLA) obtained in 2000, and following results were shown. 1, Total flux density varied corresponding to the solar UV/EUV. 2, Dawn side emission was brighter than dusk side emission almost every day. 3, Variations of the dawn-dusk asymmetry did not correspond to the solar UV/EUV. In order to explain the second result, we estimate the diurnal wind velocity from the observed dawn-dusk ratio by using the model brightness distribution of JSR. Estimated neutral wind velocity is 46+/-11 m/s, which reasonably corresponds to the numerical simulation of Jupiter's upper atmosphere. In order to explain the third result, we examined the effect of the global convection electric field driven by tailward outflow of plasma in Jupiter's magnetosphere. As the result, it is suggested that typical fluctuation of the convection electric field strength was enough to cause the observed variations of the dawn-dusk asymmetry.
Recent status of resist outgas testing for metal containing resists at EIDEC
NASA Astrophysics Data System (ADS)
Shiobara, Eishi; Mikami, Shinji; Yamada, Kenji
2018-03-01
The metal containing resist is one of the strong candidates for high lithographic performance Extreme Ultraviolet (EUV) resists. EIDEC has prepared the infrastructure for outgas testing in hydrogen environment for metal containing resists at High Power EUV irradiation tool (HPEUV). We have experimentally obtained the preliminary results of the non-cleanable metal contamination on witness sample using model material by HPEUV [1]. The metal contamination was observed at only the condition of hydrogen environment. It suggested the generation of volatile metal hydrides by hydrogen radicals. Additionally, the metal contamination on a witness sample covered with Ru was not removed by hydrogen radical cleaning. The strong interaction between the metal hydride and Ru was confirmed by the absorption simulation [2]. Recently, ASML announced a resist outgassing barrier technology using Dynamic Gas Lock (DGL) membrane located between projection optics and wafer stage [3, 4]. DGL membrane blocks the diffusion of all kinds of resist outgassing to the projection optics and prevents the reflectivity loss of EUV mirrors. The investigation of DGL membrane for high volume manufacturing is just going on. It extends the limitation of material design for EUV resists. However, the DGL membrane has an impact for the productivity of EUV scanners due to the transmission loss of EUV light and the necessity of periodic maintenance. The well understanding and control of the outgassing characteristics of metal containing resists may help to improve the productivity of EUV scanner. We consider the outgas evaluation for the resists still useful. For the improvement of resist outgas testing in hydrogen, there are some issues such as the contamination limited regime, the optimization of exposure dose to obtain the measurable contamination film thickness and the detection of minimum amount of metal related outgas species generated. We are considering a new platform of outgas testing for metal containing resists based on the electron-beam irradiation system as one of the solutions for these issues. The concept is presented in this paper.
Simultaneous ASCA and EUVE Observations of Capella
NASA Astrophysics Data System (ADS)
Brickhouse, N. S.; Dupree, A. K.; Edgar, R. J.; Drake, S. A.; White, N. E.; Liedahl, D. A.; Singh, K. P.
1997-05-01
We present simultaneous observations taken in Mar 1996 of the bright stellar coronal source Capella (HD 34029) with the ASCA and EUVE satellites. Previous EUVE observations of Fe emission lines (Fe VIII --- XXIV, excluding XVII) revealed a narrow emission measure feature at 6 x 10(6) K, which has proven to be remarkably stable over several years (flux from Fe XVIII and XIX has not varied by more than 30%), while lines formed at higher temperatures have shown intensity variations up to factors of 4. Furthermore, extremely high signal-to-noise spectra obtained by summing all EUVE measurements show that the Fe/H abundance ratio is consistent with solar photospheric. (See Dupree et al. 1993, ApJ, 418, L41; Brickhouse, Raymond, & Smith 1995, ApJSupp, 97, 551; Brickhouse 1996, IAU Coll. 152, Astrophysics in the Extreme Ultraviolet, Bowyer & Malina, eds (Kluwer), 141.) Meanwhile, the ASCA data of Capella have proven notoriously difficult to analyze. The performance verification (PV) phase data suggested a somewhat subsolar Fe abundance, but models were in poor agreement with the data (chi (2red) ~ 6). (See Drake 1996, Conf. on Cosmic Abundances, U. Maryland). Since the emission lines observed by EUVE are formed at the same emitting temperatures as the X-ray spectrum (Capella is ``soft'' such that very little flux is observed above 2 keV), the emission measure distribution derived from EUVE lines should provide a direct prediction of the X-ray spectrum, with only the relative abundances of species other than Fe as free parameters. Like the PV data, the new ASCA spectrum is not well fit by any of the standard models. Applying the constraints imposed by EUVE does not make a major improvement in the fit --- multi-thermal, variable abundance models such as Raymond-Smith and MEKAL do not provide any acceptable fit (chi (2red) > 5). We discuss our efforts to understand the X-ray spectrum, including studies of the uncertainties in the atomic data and of the underlying assumptions of the source models.
Designing a Small-Sized Engineering Model of Solar EUV Telescopr for a Korean Satellite
NASA Astrophysics Data System (ADS)
Han, Jung-Hoon; Jang, Min-Hwan; Kim, Sang-Joon
2001-11-01
For the research of solar EUV (extreme ultraviolet) radiation, we have designed a small-sized engineering model of solar EUV telescope, which is suitable for a Korean satellite. The EUV solar telescope was designed to observe the sun at 584.3Å (He¥°) and 629.7Å (O¥´). The optical system is an f/8 Ritchey-Chrètien, and the effective diameter and focal length are 80§® and 640§®, respectively. The He¥°and O¥´ filters are loaded in a filter wheel. In the detection part, the MCP (MicroChannel Plate) type is Z-stack, and the channel-to-diameter ratio is 40:1. MCP and CCD are connected by fiber optic taper. A commercial optical design software is used for the analysis of the optical system design.
NASA Astrophysics Data System (ADS)
Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.
2009-10-01
The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.
Uyttendaele, M; Neyts, K; Vanderswalmen, H; Notebaert, E; Debevere, J
2004-02-01
Aeromonas is an opportunistic pathogen, which, although in low numbers, may be present on minimally processed vegetables. Although the intrinsic and extrinsic factors of minimally processed prepacked vegetable mixes are not inhibitory to the growth of Aeromonas species, multiplication to high numbers during processing and storage of naturally contaminated grated carrots, mixed lettuce, and chopped bell peppers was not observed. Aeromonas was shown to be resistant towards chlorination of water, but was susceptible to 1% and 2% lactic acid and 0.5% and 1.0% thyme essential oil treatment, although the latter provoked adverse sensory properties when applied for decontamination of chopped bell peppers. Integration of a decontamination step with 2% lactic acid in the processing line of grated carrots was shown to have the potential to control the overall microbial quality of the grated carrots and was particularly effective towards Aeromonas.
NASA Astrophysics Data System (ADS)
Chen, I.-Ju; Chi, Chang-Chia; Tarn, Chen-Wen
2016-01-01
A new architecture of a pentaplexer transceiver module which can be used in GPON/GEPON and RFoG triple play optical networks with supporting of the multiple optical wavelengths of 1310 nm, 1490 nm, 1550 nm, 1610 nm, and 1650 nm, is proposed. By using diffractive grating elements combing with market readily available GRIN (Gradient-Index) lens, grating, mirrors, beamsplitter, LDs (Laser Diodes), and PDs (Photodetectors), the proposed design have the advantages of low cost, high efficiency/performance, easy design and manufacturing, over the contemporary triplex transceivers which are made of multilayer filters or waveguides that increase the complexity of manufacturing and reduce the performance efficiency. With the proposed design, a pentaplexer system can accommodate GPON/GEPON, RFoG, and monitoring integration services, total five optical wavelength channels into a hybrid-integrated TO-CAN package platform with sufficient efficiency.
Optical authentication based on moiré effect of nonlinear gratings in phase space
NASA Astrophysics Data System (ADS)
Liao, Meihua; He, Wenqi; Wu, Jiachen; Lu, Dajiang; Liu, Xiaoli; Peng, Xiang
2015-12-01
An optical authentication scheme based on the moiré effect of nonlinear gratings in phase space is proposed. According to the phase function relationship of the moiré effect in phase space, an arbitrary authentication image can be encoded into two nonlinear gratings which serve as the authentication lock (AL) and the authentication key (AK). The AL is stored in the authentication system while the AK is assigned to the authorized user. The authentication procedure can be performed using an optoelectronic approach, while the design process is accomplished by a digital approach. Furthermore, this optical authentication scheme can be extended for multiple users with different security levels. The proposed scheme can not only verify the legality of a user identity, but can also discriminate and control the security levels of legal users. Theoretical analysis and simulation experiments are provided to verify the feasibility and effectiveness of the proposed scheme.
High accuracy wavelength calibration for a scanning visible spectrometer.
Scotti, Filippo; Bell, Ronald E
2010-10-01
Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤0.2 Å. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of ∼0.25 Å has been demonstrated. With the addition of a high resolution (0.075 arc sec) optical encoder on the grating stage, greater precision (∼0.005 Å) is possible, allowing absolute velocity measurements within ∼0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.
NASA Astrophysics Data System (ADS)
Mathews, Sunish; Semenova, Yuliya; Rajan, Ginu; Farrell, Gerald
2009-05-01
A discretely tunable Surface-Stabilized Ferroelectric Liquid Crystal based Lyot Filter, with tuning speeds in the order of microseconds, is demonstrated experimentally as a channel dropper for the demodulation of multiple Fibre Bragg Grating sensors. The 3-stage Lyot Filter designed and experimentally verified can be used together with the high-speed ratiometric wavelength measurement system employing a fibre bend loss edge filter. Such systems can be used for the demodulation of distributed Fibre Bragg Grating sensors employed in applications such as structural monitoring, industrial sensing and haptic telerobotic surgical systems.
Reconstruction of Solar Extreme Ultraviolet Flux 1740 - 2015
NASA Astrophysics Data System (ADS)
Svalgaard, Leif
2016-11-01
Solar extreme ultraviolet (EUV) radiation creates the conducting E-layer of the ionosphere, mainly by photo-ionization of molecular oxygen. Solar heating of the ionosphere creates thermal winds, which by dynamo action induce an electric field driving an electric current having a magnetic effect observable on the ground, as was discovered by G. Graham in 1722. The current rises and falls with the Sun, and thus causes a readily observable diurnal variation of the geomagnetic field, allowing us to deduce the conductivity and thus the EUV flux as far back as reliable magnetic data reach. High-quality data go back to the "Magnetic Crusade" of the 1830s and less reliable, but still usable, data are available for portions of the 100 years before that. J.R. Wolf and, independently, J.-A. Gautier discovered the dependence of the diurnal variation on solar activity, and today we understand and can invert that relationship to construct a reliable record of the EUV flux from the geomagnetic record. We compare that to the F_{10.7} flux and the sunspot number, and we find that the reconstructed EUV flux reproduces the F_{10.7} flux with great accuracy. On the other hand, it appears that the Relative Sunspot Number as currently defined is beginning to no longer be a faithful representation of solar magnetic activity, at least as measured by the EUV and related indices. The reconstruction suggests that the EUV flux reaches the same low (but non-zero) value at every sunspot minimum (possibly including Grand Minima), representing an invariant "solar magnetic ground state".
Overlying extreme-ultraviolet arcades preventing eruption of a filament observed by AIA/SDO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Huadong; Ma, Suli; Zhang, Jun, E-mail: hdchen@upc.edu.cn
2013-11-20
Using the multi-wavelength data from the Atmospheric Imaging Assembly/Solar Dynamic Observatory (AIA/SDO) and the Sun Earth Connection Coronal and Heliospheric Investigation/Solar Terrestrial Relations Observatory (SECCHI/STEREO), we report a failed filament eruption in NOAA AR 11339 on 2011 November 3. The eruption was associated with an X1.9 flare, but without any coronal mass ejection (CME), coronal dimming, or extreme ultraviolet (EUV) waves. Some magnetic arcades above the filament were observed distinctly in EUV channels, especially in the AIA 94 Å and 131 Å wavebands, before and during the filament eruption process. Our results show that the overlying arcades expanded along withmore » the ascent of the filament at first until they reached a projected height of about 49 Mm above the Sun's surface, where they stopped. The following filament material was observed to be confined by the stopped EUV arcades and not to escape from the Sun. After the flare, a new filament formed at the low corona where part of the former filament remained before its eruption. These results support that the overlying arcades play an important role in preventing the filament from successfully erupting outward. We also discuss in this paper the EUV emission of the overlying arcades during the flare. It is rare for a failed filament eruption to be associated with an X1.9 class flare, but not with a CME or EUV waves. Therefore, this study also provides valuable insight into the triggering mechanism of the initiation of CMEs and EUV waves.« less
NASA Technical Reports Server (NTRS)
Liu, Wei; Ofman, Leon; Nitta, Nariaki; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.
2012-01-01
We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances greater than approximately solar radius/2 along the solar surface, with initial velocities up to 1400 kilometers per second decelerating to approximately 650 kilometers per second. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by approximately 50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.
Hot interstellar gas and ionization of embedded clouds
NASA Technical Reports Server (NTRS)
Cheng, K.-P.; Bruhweiler, F.
1990-01-01
Researchers present detailed photoionization calculations for the instellar cloud in which the Sun is embedded. They consider the EUV radiation field with contribution from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10 to the 6th power k coronal substrate. They establish lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.29 respectively. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10 to the 6th k plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N (CIII)/N (CII) and N (NII)/N (NI) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. Spacecraft such as Lyman which is designed to obtain high resolution spectral data down to the Lyman limit at 912 A could sample interstellar lines of these ions.
NASA Astrophysics Data System (ADS)
Makimura, Tetsuya; Urai, Hikari; Niino, Hiroyuki
2017-03-01
Polydimethylsiloxane (PDMS) is a material used for cell culture substrates / bio-chips and micro total analysis systems / lab-on-chips due to its flexibility, chemical / thermo-dynamic stability, bio-compatibility, transparency and moldability. For further development, it is inevitable to develop a technique to fabricate precise three dimensional structures on micrometer-scale at high aspect ratio. In the previous works, we reported a technique for high-quality micromachining of PDMS without chemical modification, by means of photo direct machining using laser plasma EUV sources. In the present work, we have investigated fabrication of through holes. The EUV radiations around 10 nm were generated by irradiation of Ta targets with Nd:YAG laser light (10 ns, 500 mJ/pulse). The generated EUV radiations were focused using an ellipsoidal mirror. It has a narrower incident angle than those in the previous works in order to form a EUV beam with higher directivity, so that higher aspect structures can be fabricated. The focused EUV beam was incident on PDMS sheets with a thickness of 15 micrometers, through holes in a contact mask placed on top of them. Using a contact mask with holes with a diameter of three micrometers, complete through holes with a diameter of two micrometers are fabricated in the PDMS sheet. Using a contact mask with two micrometer holes, however, ablation holes almost reaches to the back side of the PDMS sheet. The fabricated structures can be explained in terms of geometrical optics. Thus, we have developed a technique for micromachining of PDMS sheets at high aspect ratios.
Toward compact and ultra-intense laser driven soft x-ray lasers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sebban, Stéphane
2017-05-01
We report here recent work on an optical-field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton obtained by optical field ionization focusing a 1 J, 30 fs, circularly- polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d94p (J=0) --> 3d94p (J=1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons. The polarization of the HH-seeded EUV laser beam was studied using an analyzer composed of three grazing incidence EUV multilayer mirrors able to spin under vacuum. For linear polarization, the Malus law has been recovered while in the case of a circularly-polarized seed, the EUV signal is insensitive to the rotation of the analyzer, bearing testimony to circularly polarized. The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs FWHM as the amplification peak rose from 150 to 1,200 with an increase of the plasma density from 3 × 1018 cm-3 up to 1.2 × 1020 cm-3. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 μJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 3 cm), yielding EUV outputs up to 14 μJ.
Advanced EUV mask and imaging modeling
NASA Astrophysics Data System (ADS)
Evanschitzky, Peter; Erdmann, Andreas
2017-10-01
The exploration and optimization of image formation in partially coherent EUV projection systems with complex source shapes requires flexible, accurate, and efficient simulation models. This paper reviews advanced mask diffraction and imaging models for the highly accurate and fast simulation of EUV lithography systems, addressing important aspects of the current technical developments. The simulation of light diffraction from the mask employs an extended rigorous coupled wave analysis (RCWA) approach, which is optimized for EUV applications. In order to be able to deal with current EUV simulation requirements, several additional models are included in the extended RCWA approach: a field decomposition and a field stitching technique enable the simulation of larger complex structured mask areas. An EUV multilayer defect model including a database approach makes the fast and fully rigorous defect simulation and defect repair simulation possible. A hybrid mask simulation approach combining real and ideal mask parts allows the detailed investigation of the origin of different mask 3-D effects. The image computation is done with a fully vectorial Abbe-based approach. Arbitrary illumination and polarization schemes and adapted rigorous mask simulations guarantee a high accuracy. A fully vectorial sampling-free description of the pupil with Zernikes and Jones pupils and an optimized representation of the diffraction spectrum enable the computation of high-resolution images with high accuracy and short simulation times. A new pellicle model supports the simulation of arbitrary membrane stacks, pellicle distortions, and particles/defects on top of the pellicle. Finally, an extension for highly accurate anamorphic imaging simulations is included. The application of the models is demonstrated by typical use cases.
NASA Astrophysics Data System (ADS)
Buitrago, Elizabeth; Nagahara, Seiji; Yildirim, Oktay; Nakagawa, Hisashi; Tagawa, Seiichi; Meeuwissen, Marieke; Nagai, Tomoki; Naruoka, Takehiko; Verspaget, Coen; Hoefnagels, Rik; Rispens, Gijsbert; Shiraishi, Gosuke; Terashita, Yuichi; Minekawa, Yukie; Yoshihara, Kosuke; Oshima, Akihiro; Vockenhuber, Michaela; Ekinci, Yasin
2016-03-01
Extreme ultraviolet lithography (EUVL, λ = 13.5 nm) is the most promising candidate to manufacture electronic devices for future technology nodes in the semiconductor industry. Nonetheless, EUVL still faces many technological challenges as it moves toward high-volume manufacturing (HVM). A key bottleneck from the tool design and performance point of view has been the development of an efficient, high power EUV light source for high throughput production. Consequently, there has been extensive research on different methodologies to enhance EUV resist sensitivity. Resist performance is measured in terms of its ultimate printing resolution, line width roughness (LWR), sensitivity (S or best energy BE) and exposure latitude (EL). However, there are well-known fundamental trade-off relationships (LRS trade-off) among these parameters for chemically amplified resists (CARs). Here we present early proof-of-principle results for a multi-exposure lithography process that has the potential for high sensitivity enhancement without compromising other important performance characteristics by the use of a Photosensitized Chemically Amplified Resist (PSCAR). With this method, we seek to increase the sensitivity by combining a first EUV pattern exposure with a second UV flood exposure (λ = 365 nm) and the use of a PSCAR. In addition, we have evaluated over 50 different state-of-the-art EUV CARs. Among these, we have identified several promising candidates that simultaneously meet sensitivity, LWR and EL high performance requirements with the aim of resolving line space (L/S) features for the 7 and 5 nm logic node (16 nm and 13 nm half-pitch HP, respectively) for HVM. Several CARs were additionally found to be well resolved down to 12 nm and 11 nm HP with minimal pattern collapse and bridging, a remarkable feat for CARs. Finally, the performance of two negative tone state-of-the-art alternative resist platforms previously investigated was compared to the CAR performance at and below 16 nm HP resolution, demonstrating the need for alternative resist solutions at 13 nm resolution and below. EUV interference lithography (IL) has provided and continues to provide a simple yet powerful platform for academic and industrial research enabling the characterization and development of new resist materials before commercial EUV exposure tools become available. Our experiments have been performed at the EUV-IL set-up in the Swiss Light Source (SLS) synchrotron facility located at the Paul Scherrer Institute (PSI).
75 FR 8746 - Certain Steel Grating From China
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-25
... sheet or thin plate steel that has been slit and expanded, and does not involve welding or joining of..., that has been pierced and cold formed, and does not involve welding or joining of multiple pieces of...
The solar physics Shuttle/Spacelab program and its relationship to studies of the flare build-up
NASA Technical Reports Server (NTRS)
Neupert, W. M.
1976-01-01
The main phase of solar physics (including flare-buildup) research on Shuttle/Spacelab during the 1980s centers around the use of facility instruments for multiple-user, multiple flight operations. Three main facilities are being considered: a meter-class optical telescope for visible and near-UV wavelengths, an EUV/XUV/soft X-ray facility, and a hard X-ray imaging facility (including a full-sun 5-600 keV spectrometer, a nuclear gamma ray spectrometer, and an X-ray polarimeter for the 5-100 keV range). Smaller instruments designed for specific observations and other classes of instruments such as solar monitors that are not on the facility level are also being considered.
EUV/soft x-ray spectra for low B neutron stars
NASA Technical Reports Server (NTRS)
Romani, Roger W.; Rajagopal, Mohan; Rogers, Forrest J.; Iglesias, Carlos A.
1995-01-01
Recent ROSAT and EUVE detections of spin-powered neutron stars suggest that many emit 'thermal' radiation, peaking in the EUV/soft X-ray band. These data constrain the neutron stars' thermal history, but interpretation requires comparison with model atmosphere computations, since emergent spectra depend strongly on the surface composition and magnetic field. As recent opacity computations show substantial change to absorption cross sections at neutron star photospheric conditions, we report here on new model atmosphere computations employing such data. The results are compared with magnetic atmosphere models and applied to PSR J0437-4715, a low field neutron star.
Method and apparatus for inspecting an EUV mask blank
Goldberg, Kenneth A.
2005-11-08
An apparatus and method for at-wavelength EUV mask-blank characterization for inspection of moderate and low spatial frequency coating uniformity using a synchrotron or other source of EUV light. The apparatus provides for rapid, non-destruction, non-contact, at-wavelength qualification of large mask areas, and can be self-calibrating or be calibrated to well-characterized reference samples. It can further check for spatial variation of mask reflectivity or for global differences among masks. The apparatus and method is particularly suited for inspection of coating uniformity and quality and can detect defects in the order of 50 .mu.m and above.
Nanoparticle photoresist studies for EUV lithography
NASA Astrophysics Data System (ADS)
Kasahara, Kazuki; Xu, Hong; Kosma, Vasiliki; Odent, Jeremy; Giannelis, Emmanuel P.; Ober, Christopher K.
2017-03-01
EUV (extreme ultraviolet) lithography is one of the most promising candidates for next generation lithography. The main challenge for EUV resists is to simultaneously satisfy resolution, LWR (line-width roughness) and sensitivity requirements according to the ITRS roadmap. Though polymer type CAR (chemically amplified resist) is the currently standard photoresist, entirely new resist platforms are required due to the performance targets of smaller process nodes. In this paper, recent progress in nanoparticle photoresists which Cornell University has intensely studied is discussed. Lithography performance, especially scum elimination, improvement studies with the dissolution rate acceleration concept and new metal core applications are described.
Research on vacuum utraviolet calibration technology
NASA Astrophysics Data System (ADS)
Wang, Jiapeng; Gao, Shumin; Sun, Hongsheng; Chen, Yinghang; Wei, Jianqiang
2014-11-01
Importance of extreme ultraviolet (EUV) and far ultraviolet (FUV) calibration is growing fast as vacuum ultraviolet payloads are wildly used in national space plan. A calibration device is established especially for the requirement of EUV and FUV metrology and measurement. Spectral radiation and detector relative spectral response at EUV and FUV wavelengths can be calibrated with accuracy of 26% and 20%, respectively. The setup of the device, theoretical model and value retroactive method are introduced and measurement of detector relative spectral response from 30 nm to 200 nm is presented in this paper. The calibration device plays an important role in national space research.
SoFAST: Automated Flare Detection with the PROBA2/SWAP EUV Imager
NASA Astrophysics Data System (ADS)
Bonte, K.; Berghmans, D.; De Groof, A.; Steed, K.; Poedts, S.
2013-08-01
The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV imager onboard PROBA2 provides a non-stop stream of coronal extreme-ultraviolet (EUV) images at a cadence of typically 130 seconds. These images show the solar drivers of space-weather, such as flares and erupting filaments. We have developed a software tool that automatically processes the images and localises and identifies flares. On one hand, the output of this software tool is intended as a service to the Space Weather Segment of ESA's Space Situational Awareness (SSA) program. On the other hand, we consider the PROBA2/SWAP images as a model for the data from the Extreme Ultraviolet Imager (EUI) instrument prepared for the future Solar Orbiter mission, where onboard intelligence is required for prioritising data within the challenging telemetry quota. In this article we present the concept of the software, the first statistics on its effectiveness and the online display in real time of its results. Our results indicate that it is not only possible to detect EUV flares automatically in an acquired dataset, but that quantifying a range of EUV dynamics is also possible. The method is based on thresholding of macropixelled image sequences. The robustness and simplicity of the algorithm is a clear advantage for future onboard use.
A 1kW EUV source for lithography based on FEL emission in a compact storage ring
NASA Astrophysics Data System (ADS)
Feser, Michael; Ruth, Ron; Loewen, Rod
2017-10-01
EUV has long been hailed as the next generation lithography technology. Its adoption into high volume manufacturing (HVM), however, has been delayed several technology nodes due to technical issues, many of which can be attributed to the EUV source performance. Today's EUV lithography scanners are powered by laser produce plasma (LPP) sources. They have issues with power scaling beyond 300 W, reliability and contamination. Free Electron Lasers (FELs) have been considered as an alternative EUV source. Advantages of accelerator based sources are the maturity of the accelerator technology, lack of debris/contamination, and ability to provide high power. Industry turned away from this technology because of the requirement to feed up to 10 scanners from one linear FEL to make it economically feasible, the large footprint, and generation of radioactive byproducts. All of these issues are overcome in the presented concept using a compact storage ring with steady-state FEL lasing action. At 1 kW output power, comparable cost and footprint to an LPP source, this source is ideally suited for use on a single scanner and promises reliable, contamination free operation. FEL action in the storage ring is sustained by operating the FEL well below the saturation regime and preserving the equilibrium low emittance and energy distribution of the ring.
Response of inorganic materials to laser - plasma EUV radiation focused with a lobster eye collector
NASA Astrophysics Data System (ADS)
Bartnik, Andrzej; Fiedorowicz, Henryk; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Miroslaw; Havlikova, Radka; Pína, Ladislav; Švéda, Libor; Inneman, Adolf
2007-05-01
A single photon of EUV radiation carries enough energy to break any chemical bond or excite electrons from inner atomic shells. It means that the radiation regardless of its intensity can modify chemical structure of molecules. It is the reason that the radiation even with low intensity can cause fragmentation of long chains of organic materials and desorption of small parts from their surface. In this work interaction of EUV radiation with inorganic materials was investigated. Different inorganic samples were irradiated with a 10 Hz laser - plasma EUV source based on a gas puff target. The radiation was focused on a sample surface using a lobster eye collector. Radiation fluence at the surface reached 30 mJ/cm2 within a wavelength range 7 - 20 nm. In most cases there was no surface damage even after several minutes of irradiation. In some cases there could be noticed discolouration of an irradiated surface or evidences of thermal effects. In most cases however luminescent and scattered radiation was observed. The luminescent radiation was emitted in different wavelength ranges. It was recorded in a visible range of radiation and also in a wide wavelength range including UV, VUV and EUV. The radiation was especially intense in a case of non-metallic chemical compounds.
Magnetron sputtering for the production of EUV mask blanks
NASA Astrophysics Data System (ADS)
Kearney, Patrick; Ngai, Tat; Karumuri, Anil; Yum, Jung; Lee, Hojune; Gilmer, David; Vo, Tuan; Goodwin, Frank
2015-03-01
Ion Beam Deposition (IBD) has been the primary technique used to deposit EUV mask blanks since 1995 when it was discovered it could produce multilayers with few defects. Since that time the IBD technique has been extensively studied and improved and is finally approaching usable defectivities. But in the intervening years, the defectivity of magnetron sputtering has been greatly improved. This paper evaluates the suitability of a modern magnetron tool to produce EUV mask blanks and the ability to support HVM production. In particular we show that the reflectivity and uniformity of these tools are superior to current generation IBD tools, and that the magnetron tools can produce EUV films with defect densities comparable to recent best IBD tool performance. Magnetron tools also offer many advantages in manufacturability and tool throughput; however, challenges remain, including transitioning the magnetron tools from the wafer to mask formats. While work continues on quantifying the capability of magnetron sputtering to meet the mask blank demands of the industry, for the most part the remaining challenges do not require any fundamental improvements to existing technology. Based on the recent results and the data presented in this paper there is a clear indication that magnetron deposition should be considered for the future of EUV mask blank production.
Diagnosis of energy transport in iron buried layer targets using an extreme ultraviolet laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahzad, M.; Culfa, O.; Rossall, A. K.
2015-02-15
We demonstrate the use of extreme ultra-violet (EUV) laboratory lasers in probing energy transport in laser irradiated solid targets. EUV transmission through targets containing a thin layer of iron (50 nm) encased in plastic (CH) after irradiation by a short pulse (35 fs) laser focussed to irradiances 3 × 10{sup 16} Wcm{sup −2} is measured. Heating of the iron layer gives rise to a rapid decrease in EUV opacity and an increase in the transmission of the 13.9 nm laser radiation as the iron ionizes to Fe{sup 5+} and above where the ion ionisation energy is greater than the EUV probe photon energy (89 eV).more » A one dimensional hydrodynamic fluid code HYADES has been used to simulate the temporal variation in EUV transmission (wavelength 13.9 nm) using IMP opacity values for the iron layer and the simulated transmissions are compared to measured transmission values. When a deliberate pre-pulse is used to preform an expanding plastic plasma, it is found that radiation is important in the heating of the iron layer while for pre-pulse free irradiation, radiation transport is not significant.« less
Study on the lifetime of Mo/Si multilayer optics with pulsed EUV-source at the ETS
NASA Astrophysics Data System (ADS)
Schürmann, Mark; Yulin, Sergiy; Nesterenko, Viatcheslav; Feigl, Torsten; Kaiser, Norbert; Tkachenko, Boris; Schürmann, Max C.
2011-06-01
As EUV lithography is on its way into production stage, studies of optics contamination and cleaning under realistic conditions become more and more important. Due to this fact an Exposure Test Stand (ETS) has been constructed at XTREME technologies GmbH in collaboration with Fraunhofer IOF and with financial support of Intel Corporation. This test stand is equipped with a pulsed DPP source and allows for the simultaneous exposure of several samples. In the standard set-up four samples with an exposed area larger than 35 mm2 per sample can be exposed at a homogeneous intensity of 0.25 mW/mm2. A recent update of the ETS allows for simultaneous exposures of two samples with intensities up to 1.0 mW/mm2. The first application of this alternative set-up was a comparative study of carbon contamination rates induced by EUV radiation from the pulsed source with contamination rates induced by quasicontinuous synchrotron radiation. A modified gas-inlet system allows for the introduction of a second gas to the exposure chamber. This possibility was applied to investigate the efficiency of EUV-induced cleaning with different gas mixtures. In particular the enhancement of EUV-induced cleaning by addition of a second gas to the cleaning gas was studied.
NASA Astrophysics Data System (ADS)
Yamamoto, Hiroki; Kozawa, Takahiro; Tagawa, Seiichi
2013-03-01
The requirements for the next generation resist materials are so challenging that it is indispensable for feasibility of EUV lithography to grasp basic chemistry of resist matrices in all stage of resist processes. Under such circumstances, it is very important to know dissolution characteristics of the resist film into alkaline developer though the dissolution of exposed area of resist films in alkaline developer to form a pattern is a complex reactive process. In this study, the influence of EUV and KrF exposure on the dissolution behavior of polymer bound PAG and polymer blended PAG was studied in detail using quartz crystal microbalance (QCM) methods. The difference in swelling formation between KrF and EUV exposure was observed. It is likely that difference of reaction mechanism induces the difference of these swelling. Also, it is observed that the swelling of polymer-bound PAG is less than that of polymer blended PAG in both KrF and EUV exposure. This result indicates that polymer-bound PAG suppresses swelling very well and showed an excellent performance. Actually, the developed polymer bound-PAG resist showed an excellent performance (half pitch 50 nm line and space pattern). Thus, polymer bound PAG is one of the promising candidate for 16 nm EUV resist.
Performance of 100-W HVM LPP-EUV source
NASA Astrophysics Data System (ADS)
Mizoguchi, Hakaru; Nakarai, Hiroaki; Abe, Tamotsu; Nowak, Krzysztof M.; Kawasuji, Yasufumi; Tanaka, Hiroshi; Watanabe, Yukio; Hori, Tsukasa; Kodama, Takeshi; Shiraishi, Yutaka; Yanagida, Tatsuya; Soumagne, Georg; Yamada, Tsuyoshi; Yamazaki, Taku; Okazaki, Shinji; Saitou, Takashi
2015-08-01
At Gigaphoton Inc., we have developed unique and original technologies for a carbon dioxide laser-produced tin plasma extreme ultraviolet (CO2-Sn-LPP EUV) light source, which is the most promising solution for high-power high-volume manufacturing (HVM) EUV lithography at 13.5 nm. Our unique technologies include the combination of a pulsed CO2 laser with Sn droplets, the application of dual-wavelength laser pulses for Sn droplet conditioning, and subsequent EUV generation and magnetic field mitigation. Theoretical and experimental data have clearly shown the advantage of our proposed strategy. Currently, we are developing the first HVM light source, `GL200E'. This HVM light source will provide 250-W EUV power based on a 20-kW level pulsed CO2 laser. The preparation of a high average-power CO2 laser (more than 20 kW output power) has been completed in cooperation with Mitsubishi Electric Corporation. Recently, we achieved 140 W at 50 kHz and 50% duty cycle operation as well as 2 h of operation at 100 W of power level. Further improvements are ongoing. We will report the latest status and the challenge to reach stable system operation of more than 100 W at about 4% conversion efficiency with 20-μm droplets and magnetic mitigation.
Ptychographic imaging with partially coherent plasma EUV sources
NASA Astrophysics Data System (ADS)
Bußmann, Jan; Odstrčil, Michal; Teramoto, Yusuke; Juschkin, Larissa
2017-12-01
We report on high-resolution lens-less imaging experiments based on ptychographic scanning coherent diffractive imaging (CDI) method employing compact plasma sources developed for extreme ultraviolet (EUV) lithography applications. Two kinds of discharge sources were used in our experiments: a hollow-cathode-triggered pinch plasma source operated with oxygen and for the first time a laser-assisted discharge EUV source with a liquid tin target. Ptychographic reconstructions of different samples were achieved by applying constraint relaxation to the algorithm. Our ptychography algorithms can handle low spatial coherence and broadband illumination as well as compensate for the residual background due to plasma radiation in the visible spectral range. Image resolution down to 100 nm is demonstrated even for sparse objects, and it is limited presently by the sample structure contrast and the available coherent photon flux. We could extract material properties by the reconstruction of the complex exit-wave field, gaining additional information compared to electron microscopy or CDI with longer-wavelength high harmonic laser sources. Our results show that compact plasma-based EUV light sources of only partial spatial and temporal coherence can be effectively used for lens-less imaging applications. The reported methods may be applied in combination with reflectometry and scatterometry for high-resolution EUV metrology.
A multimission three-axis stabilized spacecraft flight dynamics ground support system
NASA Technical Reports Server (NTRS)
Langston, J.; Krack, K.; Reupke, W.
1993-01-01
The Multimission Three-Axis Stabilized Spacecraft (MTASS) Flight Dynamics Support System (FDSS) has been developed in an effort to minimize the costs of ground support systems. Unlike single-purpose ground support systems, which attempt to reduce costs by reusing software specifically developed for previous missions, the multimission support system is an intermediate step in the progression to a fully generalized mission support system in which numerous missions may be served by one general system. The benefits of multimission attitude ground support systems extend not only to the software design and coding process, but to the entire system environment, from specification through testing, simulation, operations, and maintenance. This paper reports the application of an MTASS FDSS to multiple scientific satellite missions. The satellites are the Upper Atmosphere Research Satellite (UARS), the Extreme Ultraviolet Explorer (EUVE), and the Solar Anomalous Magnetospheric Particle Explorer (SAMPEX). Both UARS and EUVE use the multimission modular spacecraft (MMS) concept. SAMPEX is part of the Small Explorer (SMEX) series and uses a much simpler set of attitude sensors. This paper centers on algorithm and design concepts for a multimission system and discusses flight experience from UARS.
Fiber sensor network with multipoint sensing using double-pass hybrid LPFG-FBG sensor configuration
NASA Astrophysics Data System (ADS)
Yong, Yun-Thung; Lee, Sheng-Chyan; Rahman, Faidz Abd
2017-03-01
This is a study on double-pass intensity-based hybrid Long Period Fiber Grating (LPFG)and Fiber Bragg Grating (FBG) sensor configuration where a fiber sensor network was constructed with multiple sensing capability. The sensing principle is based on interrogation of intensity changes of the reflected signal from an FBG caused by the LPFG spectral response to the surrounding perturbations. The sensor network developed was tested in monitoring diesel adulteration of up to a distance of 8 km. Kerosene concentration from 0% to 50% was added as adulterant into diesel. The sensitivity of the double-pass hybrid LPFG-FBG sensor over multiple points was>0.21 dB/% (for adulteration range of 0-30%) and >0.45 dB/% from 30% to 50% adulteration. It is found that the sensitivity can drop up to 35% when the fiber length increased from 0 km to 8 km (for the case of adulteration of 0-30%). With the multiple sensing capabilities, normalized FBG's reflected power can be demodulated at the same time for comparison of sensitivity performance across various fiber sensors.
MSE spectrograph optical design: a novel pupil slicing technique
NASA Astrophysics Data System (ADS)
Spanò, P.
2014-07-01
The Maunakea Spectroscopic Explorer shall be mainly devoted to perform deep, wide-field, spectroscopic surveys at spectral resolutions from ~2000 to ~20000, at visible and near-infrared wavelengths. Simultaneous spectral coverage at low resolution is required, while at high resolution only selected windows can be covered. Moreover, very high multiplexing (3200 objects) must be obtained at low resolution. At higher resolutions a decreased number of objects (~800) can be observed. To meet such high demanding requirements, a fiber-fed multi-object spectrograph concept has been designed by pupil-slicing the collimated beam, followed by multiple dispersive and camera optics. Different resolution modes are obtained by introducing anamorphic lenslets in front of the fiber arrays. The spectrograph is able to switch between three resolution modes (2000, 6500, 20000) by removing the anamorphic lenses and exchanging gratings. Camera lenses are fixed in place to increase stability. To enhance throughput, VPH first-order gratings has been preferred over echelle gratings. Moreover, throughput is kept high over all wavelength ranges by splitting light into more arms by dichroic beamsplitters and optimizing efficiency for each channel by proper selection of glass materials, coatings, and grating parameters.
NASA Technical Reports Server (NTRS)
Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.
2013-01-01
Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.
NASA Astrophysics Data System (ADS)
Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.
2013-11-01
extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.
Ionization in the local interstellar and intergalactic media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, K.
1990-01-01
Detailed photoionization calculations for the local interstellar medium (LISM) and the intergalactic medium (IGM) are presented. Constraints in the LISM are imposed by H I column density derived from IUE and Copernicus data toward nearby B stars and hot white dwarfs. The EUV radiation field is modeled including contributions from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10(exp 6) K coronal substrate. Lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.30 respectively are established. The derived limits have important implications for the interpretation of the H I andmore » He I backscattering results. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10(exp 6) K plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N(C III)/N(C II) and N(N II)/N(N I) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. The same photoionization model is applied to the intergalactic medium.« less
NASA Astrophysics Data System (ADS)
Laska, K.; Prosek, P.; Budik, L.; Budikova, M.
2009-04-01
The results of global solar and erythemally effective ultraviolet (EUV) radiation measurements are presented. The radiation data were collected within the period of 2006-2007 at the Czech Antarctic station J. G. Mendel, James Ross Island (63°48'S, 57°53'W). Global solar radiation was measured by a Kipp&Zonen CM11 pyranometer. EUV radiation was measured according to the McKinley and Diffey Erythemal Action Spectrum with a Solar Light broadband UV-Biometer Model 501A. The effects of stratospheric ozone concentration and cloudiness (estimated as cloud impact factor from global solar radiation) on the intensity of incident EUV radiation were calculated by a non-linear regression model. The total ozone content (TOC) and cloud/surface reflectivity derived from satellite-based measurements were applied into the model for elimination of the uncertainties in measured ozone values. There were two input data of TOC used in the model. The first were taken from the Dobson spectrophotometer measurements (Argentinean Antarctic station Marambio), the second was acquired for geographical coordinates of the Mendel Station from the EOS Aura Ozone Monitoring Instrument and V8.5 algorithm. Analysis of measured EUV data showed that variable cloudiness affected rather short-term fluctuations of the radiation fluxes, while ozone declines caused long-term UV radiation increase in the second half of the year. The model predicted about 98 % variability of the measured EUV radiation. The residuals between measured and modeled EUV radiation intensities were evaluated separately for the above-specified two TOC datasets, parts of seasons and cloud impact factor (cloudiness). The mean average prediction error was used for model validation according to the cloud impact factor and satellite-based reflectivity data.
A chain of winking (oscillating) filaments triggered by an invisible extreme-ultraviolet wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yuandeng; Tian, Zhanjun; Zhao, Ruijuan
2014-05-10
Winking (oscillating) filaments have been observed for many years. However, observations of successive winking filaments in one event have not yet been reported. In this paper, we present the observations of a chain of winking filaments and a subsequent jet that are observed right after the X2.1 flare in AR11283. The event also produced an extreme-ultraviolet (EUV) wave that has two components: an upward dome-like wave (850 km s{sup –1}) and a lateral surface wave (554 km s{sup –1}) that was very weak (or invisible) in imaging observations. By analyzing the temporal and spatial relationships between the oscillating filaments andmore » the EUV waves, we propose that all the winking filaments and the jet were triggered by the weak (or invisible) lateral surface EUV wave. The oscillation of the filaments last for two or three cycles, and their periods, Doppler velocity amplitudes, and damping times are 11-22 minutes, 6-14 km s{sup –1}, and 25-60 minutes, respectively. We further estimate the radial component magnetic field and the maximum kinetic energy of the filaments, and they are 5-10 G and ∼10{sup 19} J, respectively. The estimated maximum kinetic energy is comparable to the minimum energy of ordinary EUV waves, suggesting that EUV waves can efficiently launch filament oscillations on their path. Based on our analysis results, we conclude that the EUV wave is a good agent for triggering and connecting successive but separated solar activities in the solar atmosphere, and it is also important for producing solar sympathetic eruptions.« less
Model based high NA anamorphic EUV RET
NASA Astrophysics Data System (ADS)
Jiang, Fan; Wiaux, Vincent; Fenger, Germain; Clifford, Chris; Liubich, Vlad; Hendrickx, Eric
2018-03-01
With the announcement of the extension of the Extreme Ultraviolet (EUV) roadmap to a high NA lithography tool that utilizes anamorphic optics design, an investigation of design tradeoffs unique to the imaging of anamorphic lithography tool is shown. An anamorphic optical proximity correction (OPC) solution has been developed that models fully the EUV near field electromagnetic effects and the anamorphic imaging using the Domain Decomposition Method (DDM). Clips of imec representative for the N3 logic node were used to demonstrate the OPC solutions on critical layers that will benefit from the increased contrast at high NA using anamorphic imaging. However, unlike isomorphic case, from wafer perspective, OPC needs to treat x and y differently. In the paper, we show a design trade-off seen unique to Anamorphic EUV, namely that using a mask rule of 48nm (mask scale), approaching current state of the art, limitations are observed in the available correction that can be applied to the mask. The metal pattern has a pitch of 24nm and CD of 12nm. During OPC, the correction of the metal lines oriented vertically are being limited by the mask rule of 12nm 1X. The horizontally oriented lines do not suffer from this mask rule limitation as the correction is allowed to go to 6nm 1X. For this example, the masks rules will need to be more aggressive to allow complete correction, or design rules and wafer processes (wafer rotation) would need to be created that utilize the orientation that can image more aggressive features. When considering VIA or block level correction, aggressive polygon corner to corner designs can be handled with various solutions, including applying a 45 degree chop. Multiple solutions are discussed with the metrics of edge placement error (EPE) and Process Variation Bands (PVBands), together with all the mask constrains. Noted in anamorphic OPC, the 45 degree chop is maintained at the mask level to meet mask manufacturing constraints, but results in skewed angle edge in wafer level correction. In this paper, we used both contact (Via/block) patterns and metal patterns for OPC practice. By comparing the EPE of horizontal and vertical patterns with a fixed mask rule check (MRC), and the PVBand, we focus on the challenges and the solutions of OPC with anamorphic High-NA lens.
Extreme ultraviolet patterning of tin-oxo cages
NASA Astrophysics Data System (ADS)
Haitjema, Jarich; Zhang, Yu; Vockenhuber, Michaela; Kazazis, Dimitrios; Ekinci, Yasin; Brouwer, Albert M.
2017-07-01
We report on the extreme ultraviolet (EUV) patterning performance of tin-oxo cages. These cage molecules were already known to function as a negative tone photoresist for EUV radiation, but in this work, we significantly optimized their performance. Our results show that sensitivity and resolution are only meaningful photoresist parameters if the process conditions are optimized. We focus on contrast curves of the materials using large area EUV exposures and patterning of the cages using EUV interference lithography. It is shown that baking steps, such as postexposure baking, can significantly affect both the sensitivity and contrast in the open-frame experiments as well as the patterning experiments. A layer thickness increase reduced the necessary dose to induce a solubility change but decreased the patterning quality. The patterning experiments were affected by minor changes in processing conditions such as an increased rinsing time. In addition, we show that the anions of the cage can influence the sensitivity and quality of the patterning, probably through their effect on physical properties of the materials.
EUV process improvement with novel litho track hardware
NASA Astrophysics Data System (ADS)
Stokes, Harold; Harumoto, Masahiko; Tanaka, Yuji; Kaneyama, Koji; Pieczulewski, Charles; Asai, Masaya
2017-03-01
Currently, there are many developments in the field of EUV lithography that are helping to move it towards increased HVM feasibility. Targeted improvements in hardware design for advanced lithography are of interest to our group specifically for metrics such as CD uniformity, LWR, and defect density. Of course, our work is focused on EUV process steps that are specifically affected by litho track performance, and consequently, can be improved by litho track design improvement and optimization. In this study we are building on our experience to provide continual improvement for LWR, CDU, and Defects as applied to a standard EUV process by employing novel hardware solutions on our SOKUDO DUO coat develop track system. Although it is preferable to achieve such improvements post-etch process we feel, as many do, that improvements after patterning are a precursor to improvements after etching. We hereby present our work utilizing the SOKUDO DUO coat develop track system with an ASML NXE:3300 in the IMEC (Leuven, Belgium) cleanroom environment to improve aggressive dense L/S patterns.
NASA Technical Reports Server (NTRS)
Halpern, Jules P.
1996-01-01
Extreme Ultraviolet Explorer (EUVE) satellite observations of the Pulsar PSR J0437-4715, the Seyfert Galaxy RX J0437.4-4711, and the Geminga Pulsar are reported on. The main purpose of the PSR J0437-4715 investigation was to examine its soft X-ray flux. The 20 day EUVE observation of RX J0437.4-4711 constitutes a uniformly sampled soft X-ray light curve of a highly variable Seyfert galaxy whose power spectrum can be examined on timescales from 3 hrs. to several days. A unique aspect of the EUVE observation of RX J0437.4-4711 is its long light curve which we have used to measure the power spectrum of soft X-ray variability at low frequencies. Approximately 2100 counts were detected for the Geminga pulsar in a period of 251,000 s by the EUVE Deep Survey instrument. Geminga presents an unusually difficult problem because its multicomponent X-ray spectrum and pulse profile are indicative of a complex distribution of surface emission, and possibly a contribution from nonthermal emission as well.
NASA Astrophysics Data System (ADS)
Garg, M.; Kim, H. Y.; Goulielmakis, E.
2018-05-01
Optical waveforms of light reproducible with subcycle precision underlie applications of lasers in ultrafast spectroscopies, quantum control of matter and light-based signal processing. Nonlinear upconversion of optical pulses via high-harmonic generation in gas media extends these capabilities to the extreme ultraviolet (EUV). However, the waveform reproducibility of the generated EUV pulses in gases is inherently sensitive to intensity and phase fluctuations of the driving field. We used photoelectron interferometry to study the effects of intensity and carrier-envelope phase of an intense single-cycle optical pulse on the field waveform of EUV pulses generated in quartz nanofilms, and contrasted the results with those obtained in gas argon. The EUV waveforms generated in quartz were found to be virtually immune to the intensity and phase of the driving field, implying a non-recollisional character of the underlying emission mechanism. Waveform-sensitive photonic applications and precision measurements of fundamental processes in optics will benefit from these findings.
The Solar Flux Dependence of Ionospheric 150 km Radar Echoes and Implications
NASA Astrophysics Data System (ADS)
Patra, A. K.; Pavan Chaitanya, P.; St.-Maurice, J.-P.; Otsuka, Y.; Yokoyama, T.; Yamamoto, M.
2017-11-01
Radar echoes from the daytime equatorial ionospheric F1 region, popularly known as "150 km echoes," have challenged ionospheric plasma physicists for several decades. Recent theoretical simulations showed that enhanced photoelectron fluxes can amplify the amplitude of plasma waves, generating spectra similar to those of the radar echoes, implying that larger solar fluxes should produce more frequent and stronger 150 km echoes. Inspired by this proposal, we studied the occurrence and intensity dependence of the echoes on the EUV flux observed by SOHO over several years. The occurrence and intensity of the echoes were found to have an inverse relationship with this EUV flux measurement. The multiyear trend is independent of the variability often observed over successive days with nearly identical EUV fluxes. These results imply that the relationship between the echoes and EUV flux is more complex. We propose that gravity waves modulate the amplitude of 150 km echoes through changes in the variations in plasma density and photoelectron fluxes associated with the gravity wave-induced neutral density modulations.
NASA Astrophysics Data System (ADS)
Keens, Simon; Rossa, Bernhard; Frei, Marcel
2016-03-01
As the semiconductor industry proceeds to develop ever better sources of extreme ultraviolet (EUV) light for photolithography applications, two distinct technologies have come to prominence: Tin-plasma and free electron laser (FEL) sources. Tin plasma sources have been in development within the industry for many years, and have been widely reported. Meanwhile, FELs represent the most promising alternative to create high power EUV frequencies and, while tin-plasma source development has been ongoing, such lasers have been continuously developed by academic institutions for use in fundamental research programmes in conjunction with universities and national scientific institutions. This paper follows developments in the field of academic FELs, and presents information regarding novel technologies, specifically in the area of RF design strategy, that may be incorporated into future industrial FEL systems for EUV lithography in order to minimize the necessary investment and operational costs. It goes on to try to assess the cost-benefit of an alternate RF design strategy, based upon previous studies.
The future of EUV lithography: enabling Moore's Law in the next decade
NASA Astrophysics Data System (ADS)
Pirati, Alberto; van Schoot, Jan; Troost, Kars; van Ballegoij, Rob; Krabbendam, Peter; Stoeldraijer, Judon; Loopstra, Erik; Benschop, Jos; Finders, Jo; Meiling, Hans; van Setten, Eelco; Mika, Niclas; Dredonx, Jeannot; Stamm, Uwe; Kneer, Bernhard; Thuering, Bernd; Kaiser, Winfried; Heil, Tilmann; Migura, Sascha
2017-03-01
While EUV systems equipped with a 0.33 Numerical Aperture lenses are readying to start volume manufacturing, ASML and Zeiss are ramping up their development activities on a EUV exposure tool with Numerical Aperture greater than 0.5. The purpose of this scanner, targeting a resolution of 8nm, is to extend Moore's law throughout the next decade. A novel, anamorphic lens design, has been developed to provide the required Numerical Aperture; this lens will be paired with new, faster stages and more accurate sensors enabling Moore's law economical requirements, as well as the tight focus and overlay control needed for future process nodes. The tighter focus and overlay control budgets, as well as the anamorphic optics, will drive innovations in the imaging and OPC modelling, and possibly in the metrology concepts. Furthermore, advances in resist and mask technology will be required to image lithography features with less than 10nm resolution. This paper presents an overview of the key technology innovations and infrastructure requirements for the next generation EUV systems.
NASA Technical Reports Server (NTRS)
Vennes, Stephane
1992-01-01
An analysis is presented of the atmospheric properties of hot, H-rich, DA white dwarfs that is based on optical, UV, and X-ray observations aimed at predicting detailed spectral properties of these stars in the range 80-800 A. The divergences between observations from a sample of 15 hot DA white dwarfs emitting in the EUV/soft X-ray range and pure H synthetic spectra calculated from a grid of model atmospheres characterized by Teff and g are examined. Seven out of 15 DA stars are found to consistently exhibit pure hydrogen atmospheres, the remaining seven stars showing inconsistency between FUV and EUV/soft X-ray data that can be explained by the presence of trace EUV/soft X-ray absorbers. Synthetic data are computed assuming two other possible chemical structures: photospheric traces of radiatively levitated heavy elements and a stratified hydrogen/helium distribution. Predictions about forthcoming medium-resolution observations of the EUV spectrum of selected hot H-rich white dwarfs are made.
Ellis, Jennifer L; Hickstein, Daniel D; Xiong, Wei; Dollar, Franklin; Palm, Brett B; Keister, K Ellen; Dorney, Kevin M; Ding, Chengyuan; Fan, Tingting; Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M
2016-02-18
We present ultrafast photoemission measurements of isolated nanoparticles in vacuum using extreme ultraviolet (EUV) light produced through high harmonic generation. Surface-selective static EUV photoemission measurements were performed on nanoparticles with a wide array of compositions, ranging from ionic crystals to nanodroplets of organic material. We find that the total photoelectron yield varies greatly with nanoparticle composition and provides insight into material properties such as the electron mean free path and effective mass. Additionally, we conduct time-resolved photoelectron yield measurements of isolated oleylamine nanodroplets, observing that EUV photons can create solvated electrons in liquid nanodroplets. Using photoemission from a time-delayed 790 nm pulse, we observe that a solvated electron is produced in an excited state and subsequently relaxes to its ground state with a lifetime of 151 ± 31 fs. This work demonstrates that femotosecond EUV photoemission is a versatile surface-sensitive probe of the properties and ultrafast dynamics of isolated nanoparticles.
EQ-10 electrodeless Z-pinch EUV source for metrology applications
NASA Astrophysics Data System (ADS)
Gustafson, Deborah; Horne, Stephen F.; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.
2011-11-01
With EUV Lithography systems shipping, the requirements for highly reliable EUV sources for mask inspection and resist outgassing are becoming better defined, and more urgent. The sources needed for metrology applications are very different than that needed for lithography; brightness (not power) is the key requirement. Suppliers for HVM EUV sources have all resources working on high power and have not entered the smaller market for metrology. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 19951. The source is currently being used for metrology, mask inspection, and resist development2-4. These applications require especially stable performance in both output power and plasma size and position. Over the last 6 years Energetiq has made many source modifications which have included better thermal management to increase the brightness and power of the source. We now have introduced a new source that will meet requirements of some of the mask metrology first generation tools; this source will be reviewed.