ERIC Educational Resources Information Center
Wei, Liew Tze; Sazilah, Salam
2012-01-01
This study investigated the effects of visual cues in multiple external representations (MER) environment on the learning performance of novices' program comprehension. Program codes and flowchart diagrams were used as dual representations in multimedia environment to deliver lessons on C-Programming. 17 field independent participants and 16 field…
Successful Learning with Multiple Graphical Representations and Self-Explanation Prompts
ERIC Educational Resources Information Center
Rau, Martina A.; Aleven, Vincent; Rummel, Nikol
2015-01-01
Research shows that multiple external representations can significantly enhance students' learning. Most of this research has focused on learning with text and 1 additional graphical representation. However, real instructional materials often employ multiple "graphical" representations (MGRs) in addition to text. An important open…
ERIC Educational Resources Information Center
Hsu, Yu-Chang
2009-01-01
Students in the Science, Technology, Engineering, and Mathematics (STEM) fields are confronted with multiple external representations (MERs) in their learning materials. The ability to learn from and communicate with these MERs requires not only that students comprehend each representation individually but also that students recognize how the…
Cognitive Dissonance as an Instructional Tool for Understanding Chemical Representations
ERIC Educational Resources Information Center
Corradi, David; Clarebout, Geraldine; Elen, Jan
2015-01-01
Previous research on multiple external representations (MER) indicates that sequencing representations (compared with presenting them as a whole) can, in some cases, increase conceptual understanding if there is interference between internal and external representations. We tested this mechanism by sequencing different combinations of scientific…
Genetics Reasoning with Multiple External Representations.
ERIC Educational Resources Information Center
Tsui, Chi-Yan; Treagust, David F.
2003-01-01
Explores a case study of a class of 10th grade students whose learning of genetics involved activities using BioLogica, a computer program that features multiple external representations (MERs). Findings indicate that the MERs in BioLogica contributed to students' development of genetics reasoning by engendering their motivation and interest but…
Students' Construction of External Representations in Design-Based Learning Situations
ERIC Educational Resources Information Center
de Vries, Erica
2006-01-01
This article develops a theoretical framework for the study of students' construction of mixed multiple external representations in design-based learning situations involving an adaptation of professional tasks and tools to a classroom setting. The framework draws on research on professional design processes and on learning with multiple external…
Pedagogical Affordances of Multiple External Representations in Scientific Processes
ERIC Educational Resources Information Center
Wu, Hsin-Kai; Puntambekar, Sadhana
2012-01-01
Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs…
ERIC Educational Resources Information Center
Leite, Maici Duarte; Marczal, Diego; Pimentel, Andrey Ricardo; Direne, Alexandre Ibrahim
2014-01-01
This paper presents the application of some concepts of Intelligent Tutoring Systems (ITS) to elaborate a conceptual framework that uses the remediation of errors with Multiple External Representations (MERs) in Learning Objects (LO). To this is demonstrated a development of LO for teaching the Pythagorean Theorem through this framework. This…
Translation of P = kT into a Pictorial External Representation by High School Seniors
ERIC Educational Resources Information Center
Matijaševic, Igor; Korolija, Jasminka N.; Mandic, Ljuba M.
2016-01-01
This paper describes the results achieved by high school seniors on an item which involves translation of the equation P = kT into a corresponding pictorial external representation. The majority of students (the classes of 2011, 2012 and 2013) did not give the correct answer to the multiple choice part of the translation item. They chose pictorial…
Elementary students' multiple representations of their ideas about air
NASA Astrophysics Data System (ADS)
Gravel, Brian Edward
This dissertation explores how students generate multiple external representations of their ideas about air, an "invisible" substance. External representations can serve a powerful role in placing students' ideas into the external world for reflection and abstraction. When provided the opportunity to represent their understandings of science in different ways, students generate increasingly coherent explanations of what they observe, including developing ideas about mechanisms that describe cause and effect. In this qualitative study, extended clinical interviews were conducted with twelve fifth-grade students from an urban public charter school. In study was designed to investigate students' ideas about air in the context of a linked-syringe device with the support of multiple representations. Students were given the opportunity to produce representations and to offer verbal explanations of the behavior of the syringes in a sequence of three interviews. In the first session, students were introduced to the linked-syringes, and they generated drawings to explain their thinking about air. In the second session, students created stop-motion animations of their explanations for air in the syringes. And in the final session, students built physical devices to demonstrate their ideas about air. Careful analysis of each individual student's trajectory through the microgenetic design and a cross-student analysis reveal that the process of generating multiple representations facilitates how students think and reason about air. Drawings served to organize elements of the linked-syringe problem, providing students with focal points on which to direct their reasoning as they generated more precise explanations. Stop-motion animation supported students' efforts to make sense of processes that change over time, such as compressing the air inside the syringes. And, the construction of physical artifacts prompted students to think about air as a substance, as the activity allowed them to generate analogous physical models of the linked syringes. Furthermore, the students' productions provided the researcher with enhanced access to the substance of students' ideas as captured in their representations. The results of this study are presented in case-study form to highlight how representations serve as embodiments of the resources that students possess for making sense of science. This dissertation contributes to the resources perspective of the importance of external representations in students' development of coherent explanations of what they observe.
Cognitive Dissonance as an Instructional Tool for Understanding Chemical Representations
NASA Astrophysics Data System (ADS)
Corradi, David; Clarebout, Geraldine; Elen, Jan
2015-10-01
Previous research on multiple external representations (MER) indicates that sequencing representations (compared with presenting them as a whole) can, in some cases, increase conceptual understanding if there is interference between internal and external representations. We tested this mechanism by sequencing different combinations of scientific and abstract chemical representations and presenting them to 133 learners with low prior knowledge of the represented domain. The results provide insight into three separate mechanisms of learning with MER. (1) A memory (number of ideas reproduced) and (2) an accuracy (correctness of these ideas) effects occur when two representations are presented in a sequence. An accuracy and a (3) redundancy (number of redundant ideas remembered) effects occur when three representations are presented in a sequence. A necessary precondition for these effects is that descriptive formats are placed before depictive formats. The identified effects are analyzed in terms of the concept of cognitive dissonance.
ERIC Educational Resources Information Center
Einsiedler, Wolfgang
1996-01-01
Asks whether theories of knowledge representation provide a basis for the development of theories of knowledge structuring in instruction. Discusses codes of knowledge, surface versus deep structures, semantic networks, and multiple memory systems. Reviews research on teaching, external representation of cognitive structures, hierarchical…
Representational Competence: Towards a Distributed and Embodied Cognition Account
ERIC Educational Resources Information Center
Pande, Prajakt; Chandrasekharan, Sanjay
2017-01-01
Multiple external representations (MERs) are central to the practice and learning of science, mathematics and engineering, as the phenomena and entities investigated and controlled in these domains are often not available for perception and action. MERs therefore play a twofold constitutive role in reasoning in these domains. Firstly, MERs stand…
ERIC Educational Resources Information Center
Corradi, David M. J.; Elen, Jan; Schraepen, Beno; Clarebout, Geraldine
2014-01-01
When learning with abstract and scientific multiple external representations (MERs), low prior knowledge learners are said to have difficulties in using these MERs to achieve conceptual understanding. Yet little is known about what these limitations precisely entail. In order to understand this, we presented 101 learners with low prior knowledge…
Selection of a Man-Modelling CAD (Computer-Aided Design),
1985-09-01
OPTIONS link-length input options internal dimensions - V V external dimensions V V V percentile values V V V absolute values (mm) V V/ V somatotypes V...specific data .035 A3 somatotype representation .020 A4 a-typical postures possible .035 * A5 flesh contour representation .040 A6 multiple number of
Medendorp, W. P.
2015-01-01
It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms. PMID:26490289
Pedagogical Affordances of Multiple External Representations in Scientific Processes
NASA Astrophysics Data System (ADS)
Wu, Hsin-Kai; Puntambekar, Sadhana
2012-12-01
Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs could be introduced and used to support students' engagement in scientific processes and develop competent scientific practices (e.g., asking questions, planning investigations, and analyzing data). Additionally, little is understood about complex interactions among scientific processes and affordances of MERs. Therefore, this article focuses on pedagogical affordances of MERs in learning environments that engage students in various scientific processes. By reviewing literature in science education and cognitive psychology and integrating multiple perspectives, this article aims at exploring (1) how MERs can be integrated with science processes due to their different affordances, and (2) how student learning with MERs can be scaffolded, especially in a classroom situation. We argue that pairing representations and scientific processes in a principled way based on the affordances of the representations and the goals of the activities is a powerful way to use MERs in science education. Finally, we outline types of scaffolding that could help effective use of MERs including dynamic linking, model progression, support in instructional materials, teacher support, and active engagement.
NASA Astrophysics Data System (ADS)
Price, Gwyneth A.
In this study, multiple external representations and Generative Learning Theory were used to design instruction that would facilitate physics learning. Specifically, the study looks at the learning differences that may occur when students are engaged in generating a graphical representation as compared to being presented with a computer-generated graph. It is hypothesized that by generating the graphical representation students will be able to overcome obstacles to integration and determine the relationships involved within a representation. In doing so, students will build a more complete mental model of the situation and be able to more readily use this information in transfer situations, thus improving their problem solving ability. Though the results of this study do not lend strong support for the hypothesis, the results are still informative and encouraging. Though several of the obstacles associated with learning from multiple representations such as cognitive load were cause for concern, those students with appropriate prior knowledge and familiarity with graphical representations were able to benefit from the generative activity. This finding indicates that if the issues are directly addressed within instruction, it may be that all students may be able to benefit from being actively engaged in generating representations.
Crowley, Rebecca S.; Legowski, Elizabeth; Medvedeva, Olga; Tseytlin, Eugene; Roh, Ellen; Jukic, Drazen
2007-01-01
Objective Determine effects of computer-based tutoring on diagnostic performance gains, meta-cognition, and acceptance using two different problem representations. Describe impact of tutoring on spectrum of diagnostic skills required for task performance. Identify key features of student-tutor interaction contributing to learning gains. Design Prospective, between-subjects study, controlled for participant level of training. Resident physicians in two academic pathology programs spent four hours using one of two interfaces which differed mainly in external problem representation. The case-focused representation provided an open-learning environment in which students were free to explore evidence-hypothesis relationships within a case, but could not visualize the entire diagnostic space. The knowledge-focused representation provided an interactive representation of the entire diagnostic space, which more tightly constrained student actions. Measurements Metrics included results of pretest, post-test and retention-test for multiple choice and case diagnosis tests, ratios of performance to student reported certainty, results of participant survey, learning curves, and interaction behaviors during tutoring. Results Students had highly significant learning gains after one tutoring session. Learning was retained at one week. There were no differences between the two interfaces in learning gains on post-test or retention test. Only students in the knowledge-focused interface exhibited significant metacognitive gains from pretest to post-test and pretest to retention test. Students rated the knowledge-focused interface significantly higher than the case-focused interface. Conclusions Cognitive tutoring is associated with improved diagnostic performance in a complex medical domain. The effect is retained at one-week post-training. Knowledge-focused external problem representation shows an advantage over case-focused representation for metacognitive effects and user acceptance. PMID:17213494
Crowley, Rebecca S; Legowski, Elizabeth; Medvedeva, Olga; Tseytlin, Eugene; Roh, Ellen; Jukic, Drazen
2007-01-01
Determine effects of computer-based tutoring on diagnostic performance gains, meta-cognition, and acceptance using two different problem representations. Describe impact of tutoring on spectrum of diagnostic skills required for task performance. Identify key features of student-tutor interaction contributing to learning gains. Prospective, between-subjects study, controlled for participant level of training. Resident physicians in two academic pathology programs spent four hours using one of two interfaces which differed mainly in external problem representation. The case-focused representation provided an open-learning environment in which students were free to explore evidence-hypothesis relationships within a case, but could not visualize the entire diagnostic space. The knowledge-focused representation provided an interactive representation of the entire diagnostic space, which more tightly constrained student actions. Metrics included results of pretest, post-test and retention-test for multiple choice and case diagnosis tests, ratios of performance to student reported certainty, results of participant survey, learning curves, and interaction behaviors during tutoring. Students had highly significant learning gains after one tutoring session. Learning was retained at one week. There were no differences between the two interfaces in learning gains on post-test or retention test. Only students in the knowledge-focused interface exhibited significant metacognitive gains from pretest to post-test and pretest to retention test. Students rated the knowledge-focused interface significantly higher than the case-focused interface. Cognitive tutoring is associated with improved diagnostic performance in a complex medical domain. The effect is retained at one-week post-training. Knowledge-focused external problem representation shows an advantage over case-focused representation for metacognitive effects and user acceptance.
ERIC Educational Resources Information Center
Harle, Marissa; Towns, Marcy H.
2012-01-01
Research on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This project focuses on students' understanding of three external representations of the potassium ion channel protein. This is part I of a two-part study, which focuses on the affordances and…
NASA Astrophysics Data System (ADS)
Sumarno; Ibrahim, M.; Supardi, Z. A. I.
2018-03-01
The application of a systems approach to assessing biological systems provides hope for a coherent understanding of cell dynamics patterns and their relationship to plant life. This action required the reasoning about complex systems. In other sides, there were a lot of researchers who provided the proof about the instructional successions. They involved the multiple external representations which improved the biological learning. The researcher conducted an investigation using one shoot case study design which involved 30 students in proving that the MERs worksheets could affect the student's achievement of reasoning about complex system. The data had been collected based on test of reasoning about complex system and student's identification result who worked through MERs. The result showed that only partially students could achieve reasoning about system complex, but their MERs skill could support their reasoning ability of complex system. This study could bring a new hope to develop the MERs worksheet as a tool to facilitate the reasoning about complex system.
ERIC Educational Resources Information Center
Harle, Marissa; Towns, Marcy H.
2012-01-01
Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This study focuses on students' understanding of three external representations (ribbon diagram, wireframe, and hydrophobic/hydrophilic) of the potassium ion channel protein. Analysis…
ERIC Educational Resources Information Center
Virk, Satyugjit; Clark, Douglas; Sengupta, Pratim
2015-01-01
Environments in which learning involves coordinating multiple external representations (MERs) can productively support learners in making sense of complex models and relationships. Educational digital games provide an increasing popular medium for engaging students in manipulating and exploring such models and relationships. This article applies…
External Representations for Data Distributions: In Search of Cognitive Fit
ERIC Educational Resources Information Center
Lem, Stephanie; Onghana, Patrick; Verschaffel, Lieven; Van Dooren, Wim
2013-01-01
Data distributions can be represented using different external representations, such as histograms and boxplots. Although the role of external representations has been extensively studied in mathematics, this is less the case in statistics. This study helps to fill this gap by systematically varying the representation that accompanies a task…
ERIC Educational Resources Information Center
Johnson, A. M.; Ozogul, G.; Reisslein, M.
2015-01-01
An experiment examined the effects of visual signalling to relevant information in multiple external representations and the visual presence of an animated pedagogical agent (APA). Students learned electric circuit analysis using a computer-based learning environment that included Cartesian graphs, equations and electric circuit diagrams. The…
"Family Stories" and Their Implications for Preschoolers' Memories of Personal Events
ERIC Educational Resources Information Center
Larkina, Marina; Bauer, Patricia J.
2012-01-01
Most adults experience childhood amnesia: They have very few memories of events prior to 3 to 4 years of age. Nevertheless, some early memories are retained. Multiple factors likely are responsible for the survival of early childhood memories, including external representations such as videos, photographs, and conversations about past experiences,…
Multiple External Representations: Bridges or Barriers to Climate Literacy?
NASA Astrophysics Data System (ADS)
Holzer, M. A.
2012-12-01
The continuous barrage of science related headlines and other media sources warn us of the need to heed the imperative for a science literate society. Climate change, genetics, evolution are a few of the charged and complex scientific topics requiring public understanding of the science to fully grasp the enormous reach of these topics in our daily lives. For instance, our global climate is changing as evidenced by the analysis of Earth observing satellite data, in-situ data, and proxy data records. How we as a global society decide to address the needs associated with a changing climate are contingent upon having a population that understands how the climate system functions, and can therefore make informed decisions on how to mitigate the effects of climate change. Communication in science relies heavily on the use of multiple representations to support the claims presented. However, these multiple representations require spatial and temporal skills to interpret information portrayed in them, and how a person engages with complex text and the multiple representations varies with the level of expertise one has with the content area. For example, a climatologist will likely identify anomalous data more quickly than a novice when presented with a graph of temperature change over time. These representations are used throughout textbooks as well as popular reading materials such as newspapers and magazines without much consideration for how a reader engages with complex text, diagrams, images, and graphs. If the ability to read and interact with scientific text found in popular literature is perceived as a worthy goal of scientific literacy, then it is imperative that readers understand the relationship between multiple representations and the text while interacting with the science literature they are reading. For example, in climate related articles multiple representations not only support the content, but they are part of the content not to be overlooked by a reader. Climatologists recognize the wealth of data and content found in these representations and therefore find themselves in a position where they can effectively interact with the author and their claims. This expert ability to seamlessly integrate text with the associated representations is at one end of the continuum of scientific text comprehension, but what abilities define a novice and those in between expert and novice in this continuum of scientific text comprehension? This talk will describe an ongoing research project with the overarching goal to establish the balance of this continuum in order to identify scaffolds that will assist non expert readers negotiate meaning from complex scientific text inclusive of multiple representations found in popular literature in climatology. It will inform those creating data representations on how best to create the representations so that claims and causal relationships may be derived from the literature or media source.
ERIC Educational Resources Information Center
Lem, Stephanie; Kempen, Goya; Ceulemans, Eva; Onghena, Patrick; Verschaffel, Lieven; Van Dooren, Wim
2015-01-01
Box plots are frequently misinterpreted and educational attempts to correct these misinterpretations have not been successful. In this study, we used two instructional techniques that seemed powerful to change the misinterpretation of the area of the box in box plots, both separately and in combination, leading to three experimental conditions,…
ERIC Educational Resources Information Center
Baaki, John; Tracey, Monica W.; Hutchinson, Alisa
2017-01-01
Designers give themselves something to "react to" and they make it "rich." During design, what they react to can take many forms: a homepage wireframe, an Excel spreadsheet, building drawings, and a Tweet prototype. Using a phenomenological research design using an interactive methodology and multiple data collection methods,…
Prefrontal Cortex Networks Shift from External to Internal Modes during Learning.
Brincat, Scott L; Miller, Earl K
2016-09-14
As we learn about items in our environment, their neural representations become increasingly enriched with our acquired knowledge. But there is little understanding of how network dynamics and neural processing related to external information changes as it becomes laden with "internal" memories. We sampled spiking and local field potential activity simultaneously from multiple sites in the lateral prefrontal cortex (PFC) and the hippocampus (HPC)-regions critical for sensory associations-of monkeys performing an object paired-associate learning task. We found that in the PFC, evoked potentials to, and neural information about, external sensory stimulation decreased while induced beta-band (∼11-27 Hz) oscillatory power and synchrony associated with "top-down" or internal processing increased. By contrast, the HPC showed little evidence of learning-related changes in either spiking activity or network dynamics. The results suggest that during associative learning, PFC networks shift their resources from external to internal processing. As we learn about items in our environment, their representations in our brain become increasingly enriched with our acquired "top-down" knowledge. We found that in the prefrontal cortex, but not the hippocampus, processing of external sensory inputs decreased while internal network dynamics related to top-down processing increased. The results suggest that during learning, prefrontal cortex networks shift their resources from external (sensory) to internal (memory) processing. Copyright © 2016 the authors 0270-6474/16/369739-16$15.00/0.
Prefrontal Cortex Networks Shift from External to Internal Modes during Learning
Brincat, Scott L.
2016-01-01
As we learn about items in our environment, their neural representations become increasingly enriched with our acquired knowledge. But there is little understanding of how network dynamics and neural processing related to external information changes as it becomes laden with “internal” memories. We sampled spiking and local field potential activity simultaneously from multiple sites in the lateral prefrontal cortex (PFC) and the hippocampus (HPC)—regions critical for sensory associations—of monkeys performing an object paired-associate learning task. We found that in the PFC, evoked potentials to, and neural information about, external sensory stimulation decreased while induced beta-band (∼11–27 Hz) oscillatory power and synchrony associated with “top-down” or internal processing increased. By contrast, the HPC showed little evidence of learning-related changes in either spiking activity or network dynamics. The results suggest that during associative learning, PFC networks shift their resources from external to internal processing. SIGNIFICANCE STATEMENT As we learn about items in our environment, their representations in our brain become increasingly enriched with our acquired “top-down” knowledge. We found that in the prefrontal cortex, but not the hippocampus, processing of external sensory inputs decreased while internal network dynamics related to top-down processing increased. The results suggest that during learning, prefrontal cortex networks shift their resources from external (sensory) to internal (memory) processing. PMID:27629722
Axelrod, Vadim; Yovel, Galit
2010-08-15
Most studies of face identity have excluded external facial features by either removing them or covering them with a hat. However, external facial features may modify the representation of internal facial features. Here we assessed whether the representation of face identity in the fusiform face area (FFA), which has been primarily studied for internal facial features, is modified by differences in external facial features. We presented faces in which external and internal facial features were manipulated independently. Our findings show that the FFA was sensitive to differences in external facial features, but this effect was significantly larger when the external and internal features were aligned than misaligned. We conclude that the FFA generates a holistic representation in which the internal and the external facial features are integrated. These results indicate that to better understand real-life face recognition both external and internal features should be included. Copyright (c) 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gebre, Engida H.; Polman, Joseph L.
2016-12-01
This study presents descriptive analysis of young adults' use of multiple representations in the context of science news reporting. Across one semester, 71 high school students, in a socioeconomically diverse suburban secondary school in Midwestern United States, participated in activities of researching science topics of their choice and producing infographic-based science news for possible online publication. An external editor reviewed their draft infographics and provided comments for subsequent revision. Students also provided peer feedback to the draft version of infographics using an online commentary tool. We analysed the nature of representations students used as well as the comments from peer and the editor feedback. Results showed both students' capabilities and challenges in learning with representations in this context. Students frequently rely on using certain kinds of representations that are depictive in nature, and supporting their progress towards using more abstract representations requires special attention and identifying learning gaps. Results also showed that students were able to determine representational adequacy in the context of providing peer feedback. The study has implication for research and instruction using infographics as expressive tools to support learning.
ERIC Educational Resources Information Center
Lem, Stephanie; Baert, Kathy; Ceulemans, Eva; Onghena, Patrick; Verschaffel, Lieven; Van Dooren, Wim
2017-01-01
The ability to interpret graphs is highly important in modern society, but has proven to be a challenge for many people. In this paper, two teaching methods were used to remediate one specific misinterpretation: the area misinterpretation of box plots. First, we used refutational text to explicitly state and invalidate the area misinterpretation…
NASA Astrophysics Data System (ADS)
Bussey, Thomas J.
Biochemistry education relies heavily on students' ability to visualize abstract cellular and molecular processes, mechanisms, and components. As such, biochemistry educators often turn to external representations to provide tangible, working models from which students' internal representations (mental models) can be constructed, evaluated, and revised. However, prior research has shown that, while potentially beneficial, external representations can also lead to alternative student conceptions. Considering the breadth of biochemical phenomena, protein translation has been identified as an essential biochemical process and can subsequently be considered a fundamental concept for biochemistry students to learn. External representations of translation range from static diagrams to dynamic animations, from simplistic, stylized illustrations to more complex, realistic presentations. In order to explore the potential for student learning about protein translation from some common external representations of translation, I used variation theory. Variation theory offers a theoretical framework from which to explore what is intended for students to learn, what is possible for students to learn, and what students actually learn about an object of learning, e.g., protein translation. The goals of this project were threefold. First, I wanted to identify instructors' intentions for student learning about protein translation. From a phenomenographic analysis of instructor interviews, I was able to determine the critical features instructors felt their students should be learning. Second, I wanted to determine which features of protein translation were possible for students to learn from some common external representations of the process. From a variation analysis of the three representations shown to students, I was able to describe the possible combinations of features enacted by the sequential viewing of pairs of representations. Third, I wanted to identify what students actually learned about protein translation by viewing these external representations. From a phenomenographic analysis of student interviews, I was able to describe changes between students prior lived object of learning and their post lived object of learning. Based on the findings from this project, I can conclude that variation can be used to cue students to notice particular features of an external representation. Additionally, students' prior knowledge and, potentially, the intended objects of learning from previous instructors can also affect what students can learn from a representation. Finally, further study is needed to identify the extent to which mode and level of abstraction of an external representation affect student learning outcomes.
ERIC Educational Resources Information Center
Mešic, Vanes; Mahmutovic, Sabaheta; Hasovic, Elvedin; Erceg, Nataša
2016-01-01
Earlier research has found that it is useful to distinguish situations in which students construct external representations on their own from situations in which they are expected to interpret already provided external representations. One type of representations that is particularly important for teaching mechanics is the free-body diagram. In…
Role of Dentate Gyrus in Aligning Internal Spatial Map to External Landmark
ERIC Educational Resources Information Center
Lee, Jong Won; Kim, Woon Ryoung; Sun, Woong; Jung, Min Whan
2009-01-01
Humans and animals form internal representations of external space based on their own body movement (dead reckoning) as well as external landmarks. It is poorly understood, however, how different types of information are integrated to form a unified representation of external space. To examine the role of dentate gyrus (DG) in this process, we…
The Process of Probability Problem Solving: Use of External Visual Representations
ERIC Educational Resources Information Center
Zahner, Doris; Corter, James E.
2010-01-01
We investigate the role of external inscriptions, particularly those of a spatial or visual nature, in the solution of probability word problems. We define a taxonomy of external visual representations used in probability problem solving that includes "pictures," "spatial reorganization of the given information," "outcome listings," "contingency…
NASA Astrophysics Data System (ADS)
López, Víctor; Pintó, Roser
2017-07-01
Computer simulations are often considered effective educational tools, since their visual and communicative power enable students to better understand physical systems and phenomena. However, previous studies have found that when students read visual representations some reading difficulties can arise, especially when these are complex or dynamic representations. We have analyzed how secondary-school students read the visual representations displayed in two PhET simulations (one addressing the friction-heating at microscopic level, and the other addressing the electromagnetic induction), and different typologies of reading difficulties have been identified: when reading the compositional structure of the representation, when giving appropriate relevance and semantic meaning to each visual element, and also when dealing with multiple representations and dynamic information. All students experienced at least one of these difficulties, and very similar difficulties appeared in the two groups of students, despite the different scientific content of the simulations. In conclusion, visualisation does not imply a full comprehension of the content of scientific simulations per se, and an effective reading process requires a set of reading skills, previous knowledge, attention, and external supports. Science teachers should bear in mind these issues in order to help students read images to take benefit of their educational potential.
ERIC Educational Resources Information Center
Bussey, Thomas J.
2013-01-01
Biochemistry education relies heavily on students' ability to visualize abstract cellular and molecular processes, mechanisms, and components. As such, biochemistry educators often turn to external representations to provide tangible, working models from which students' internal representations (mental models) can be constructed, evaluated, and…
ERIC Educational Resources Information Center
Belenky, Daniel M.; Schalk, Lennart
2014-01-01
Research in both cognitive and educational psychology has explored the effect of different types of external knowledge representations (e.g., manipulatives, graphical/pictorial representations, texts) on a variety of important outcome measures. We place this large and multifaceted research literature into an organizing framework, classifying three…
Representation Elements of Spatial Thinking
NASA Astrophysics Data System (ADS)
Fiantika, F. R.
2017-04-01
This paper aims to add a reference in revealing spatial thinking. There several definitions of spatial thinking but it is not easy to defining it. We can start to discuss the concept, its basic a forming representation. Initially, the five sense catch the natural phenomenon and forward it to memory for processing. Abstraction plays a role in processing information into a concept. There are two types of representation, namely internal representation and external representation. The internal representation is also known as mental representation; this representation is in the human mind. The external representation may include images, auditory and kinesthetic which can be used to describe, explain and communicate the structure, operation, the function of the object as well as relationships. There are two main elements, representations properties and object relationships. These elements play a role in forming a representation.
Complex Visual Data Analysis, Uncertainty, and Representation
2007-01-01
McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago, IL, USA: University of Chicago Press. Neisser , U . (1976). Cognition and...and Uncertainty 5 representations than on other external representations, and cognitive science talks about this interaction as affordances ( Neisser ...the human body fit into the structure of the external environment to explain human cognition and performance (Gibson, 1979; Neisser
Davies, Patrick T; Coe, Jesse L; Hentges, Rochelle F; Sturge-Apple, Melissa L; van der Kloet, Erika
2018-03-01
This study examined the transactional interplay among children's negative family representations, visual processing of negative emotions, and externalizing symptoms in a sample of 243 preschool children (M age = 4.60 years). Children participated in three annual measurement occasions. Cross-lagged autoregressive models were conducted with multimethod, multi-informant data to identify mediational pathways. Consistent with schema-based top-down models, negative family representations were associated with attention to negative faces in an eye-tracking task and their externalizing symptoms. Children's negative representations of family relationships specifically predicted decreases in their attention to negative emotions, which, in turn, was associated with subsequent increases in their externalizing symptoms. Follow-up analyses indicated that the mediational role of diminished attention to negative emotions was particularly pronounced for angry faces. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
Robust and efficient anomaly detection using heterogeneous representations
NASA Astrophysics Data System (ADS)
Hu, Xing; Hu, Shiqiang; Xie, Jinhua; Zheng, Shiyou
2015-05-01
Various approaches have been proposed for video anomaly detection. Yet these approaches typically suffer from one or more limitations: they often characterize the pattern using its internal information, but ignore its external relationship which is important for local anomaly detection. Moreover, the high-dimensionality and the lack of robustness of pattern representation may lead to problems, including overfitting, increased computational cost and memory requirements, and high false alarm rate. We propose a video anomaly detection framework which relies on a heterogeneous representation to account for both the pattern's internal information and external relationship. The internal information is characterized by slow features learned by slow feature analysis from low-level representations, and the external relationship is characterized by the spatial contextual distances. The heterogeneous representation is compact, robust, efficient, and discriminative for anomaly detection. Moreover, both the pattern's internal information and external relationship can be taken into account in the proposed framework. Extensive experiments demonstrate the robustness and efficiency of our approach by comparison with the state-of-the-art approaches on the widely used benchmark datasets.
Towards explaining spatial touch perception: Weighted integration of multiple location codes
Badde, Stephanie; Heed, Tobias
2016-01-01
ABSTRACT Touch is bound to the skin – that is, to the boundaries of the body. Yet, the activity of neurons in primary somatosensory cortex just mirrors the spatial distribution of the sensors across the skin. To determine the location of a tactile stimulus on the body, the body's spatial layout must be considered. Moreover, to relate touch to the external world, body posture has to be evaluated. In this review, we argue that posture is incorporated, by default, for any tactile stimulus. However, the relevance of the external location and, thus, its expression in behaviour, depends on various sensory and cognitive factors. Together, these factors imply that an external representation of touch dominates over the skin-based, anatomical when our focus is on the world rather than on our own body. We conclude that touch localization is a reconstructive process that is adjusted to the context while maintaining all available spatial information. PMID:27327353
Birationality and Landau-Ginzburg Models
NASA Astrophysics Data System (ADS)
Clarke, Patrick
2017-08-01
We introduce a new technique for approaching birationality questions that arise in the mirror symmetry of complete intersections in toric varieties. As an application we answer affirmatively and conclusively the question of Batyrev-Nill (Integer points in polyhedra—geometry, number theory, representation theory, algebra, optimization, statistics, volume 452 of Contemporary mathematics. American Mathematical Society, Providence, pp 35-66,
Neural dynamics underlying attentional orienting to auditory representations in short-term memory.
Backer, Kristina C; Binns, Malcolm A; Alain, Claude
2015-01-21
Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.
Piano Students' Conceptions of Musical Scores as External Representations: A Cross-Sectional Study
ERIC Educational Resources Information Center
Bautista, Alfredo; Perez Echeverria, Ma del Puy; Pozo, J. Ignacio; Brizuela, Barbara M.
2009-01-01
Musical scores are some of the most important learning tools for musicians' acquisition of musical knowledge. However, despite their educational relevance, very little is known about how music students "conceive" of these cultural external representations. Given that these conceptions might act as mediators of students' learning…
Student Learning about Biomolecular Self-Assembly Using Two Different External Representations
ERIC Educational Resources Information Center
Host, Gunnar E.; Larsson, Caroline; Olson, Arthur; Tibell, Lena A. E.
2013-01-01
Self-assembly is the fundamental but counterintuitive principle that explains how ordered biomolecular complexes form spontaneously in the cell. This study investigated the impact of using two external representations of virus self-assembly, an interactive tangible three-dimensional model and a static two-dimensional image, on student learning…
ERIC Educational Resources Information Center
Towns, Marcy H.; Raker, Jeffrey R.; Becker, Nicole; Harle, Marissa; Sutcliffe, Jonathan
2012-01-01
Visual literacy, the ability to interpret and create external representations (ERs), is essential to success in biochemistry. Studies have been conducted that describe students' abilities to use and interpret specific types of ERs. However, a framework for describing ERs derived through a naturalistic inquiry of biochemistry classrooms has not…
On the Roles of External Knowledge Representations in Assessment Design
ERIC Educational Resources Information Center
Mislevy, Robert J.; Behrens, John T.; Bennett, Randy E.; Demark, Sarah F.; Frezzo, Dennis C.; Levy, Roy; Robinson, Daniel H.; Rutstein, Daisy Wise; Shute, Valerie J.; Stanley, Ken; Winters, Fielding I.
2010-01-01
People use external knowledge representations (KRs) to identify, depict, transform, store, share, and archive information. Learning how to work with KRs is central to be-coming proficient in virtually every discipline. As such, KRs play central roles in curriculum, instruction, and assessment. We describe five key roles of KRs in assessment: (1)…
On the Roles of External Knowledge Representations in Assessment Design. CSE Report 722
ERIC Educational Resources Information Center
Mislevy, Robert J.; Behrens, John T.; Bennett, Randy E.; Demark, Sarah F.; Frezzo, Dennis C.; Levy, Roy; Robinson, Daniel H.; Rutstein, Daisy Wise; Shute, Valerie J.; Stanley, Ken; Winters, Fielding I.
2007-01-01
People use external knowledge representations (EKRs) to identify, depict, transform, store, share, and archive information. Learning how to work with EKRs is central to becoming proficient in virtually every discipline. As such, EKRs play central roles in curriculum, instruction, and assessment. Five key roles of EKRs in educational assessment are…
External Visual Representations in Science Learning: The Case of Relations among System Components
ERIC Educational Resources Information Center
Eilam, Billie; Poyas, Yael
2010-01-01
How do external visual representations (e.g., graph, diagram) promote or constrain students' ability to identify system components and their interrelations, to reinforce a systemic view through the application of the STS approach? University students (N = 150) received information cards describing cellphones' communication system and its subsystem…
ERIC Educational Resources Information Center
Bussey, Thomas J.; Orgill, MaryKay
2015-01-01
Biochemistry instructors often use external representations--ranging from static diagrams to dynamic animations and from simplistic, stylized illustrations to more complex, realistic presentations--to help their students visualize abstract cellular and molecular processes, mechanisms, and components. However, relatively little is known about how…
Auditory pathways: anatomy and physiology.
Pickles, James O
2015-01-01
This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described. © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Rau, Martina A.
2013-01-01
Most learning environments in the STEM disciplines use multiple graphical representations along with textual descriptions and symbolic representations. Multiple graphical representations are powerful learning tools because they can emphasize complementary aspects of complex learning contents. However, to benefit from multiple graphical…
Poehlmann, Julie; Burnson, Cynthia; Weymouth, Lindsay A.
2015-01-01
Through assessment of 173 preterm infants and their mothers at hospital discharge and at 9, 16, 24, 36, and 72 months, the study examined early parenting, attachment security, effortful control, and children’s representations of family relationships in relation to subsequent externalizing behavior problems. Less intrusive early parenting predicted more secure attachment, better effortful control skills, and fewer early behavior problems, although it did not directly relate to the structural or content characteristics of children’s represented family relationships. Children with higher effortful control scores at 24 months had more coherent family representations at 36 months. Moreover, children who exhibited less avoidance in their family representations at 36 months had fewer mother-reported externalizing behavior problems at 72 months. The study suggests that early parenting quality and avoidance in children’s represented relationships are important for the development of externalizing behavior problems in children born preterm. PMID:24580068
Poehlmann, Julie; Burnson, Cynthia; Weymouth, Lindsay A
2014-01-01
Through assessment of 173 preterm infants and their mothers at hospital discharge and at 9, 16, 24, 36, and 72 months, the study examined early parenting, attachment security, effortful control, and children's representations of family relationships in relation to subsequent externalizing behavior problems. Less intrusive early parenting predicted more secure attachment, better effortful control skills, and fewer early behavior problems, although it did not directly relate to the structural or content characteristics of children's represented family relationships. Children with higher effortful control scores at 24 months had more coherent family representations at 36 months. Moreover, children who exhibited less avoidance in their family representations at 36 months had fewer mother-reported externalizing behavior problems at 72 months. The study suggests that early parenting quality and avoidance in children's represented relationships are important for the development of externalizing behavior problems in children born preterm.
The Initial Development of Object Knowledge by a Learning Robot
Modayil, Joseph; Kuipers, Benjamin
2008-01-01
We describe how a robot can develop knowledge of the objects in its environment directly from unsupervised sensorimotor experience. The object knowledge consists of multiple integrated representations: trackers that form spatio-temporal clusters of sensory experience, percepts that represent properties for the tracked objects, classes that support efficient generalization from past experience, and actions that reliably change object percepts. We evaluate how well this intrinsically acquired object knowledge can be used to solve externally specified tasks including object recognition and achieving goals that require both planning and continuous control. PMID:19953188
ERIC Educational Resources Information Center
Schonborn, Konrad J.; Anderson, Trevor R.
2009-01-01
The aim of this research was to develop a model of factors affecting students' ability to interpret external representations (ERs) in biochemistry. The study was qualitative in design and was guided by the modelling framework of Justi and Gilbert. Application of the process outlined by the framework, and consultation with relevant literature, led…
Teaching with External Representations: The Case of a Common Energy-Level Diagram in Chemistry
ERIC Educational Resources Information Center
Orgill, MaryKay; Crippen, Kent
2010-01-01
Diagrams and figures play a central role in science and science education. Research has indicated that, when presented and used properly in a classroom setting, these external representations can contribute to students' understanding of scientific concepts; however, it is apparent that students do not always use, understand, interpret, or value…
ERIC Educational Resources Information Center
Harle, Marissa; Towns, Marcy H.
2013-01-01
The interdisciplinary nature of biochemistry courses requires students to use both chemistry and biology knowledge to understand biochemical concepts. Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations in addition to a fragmented…
Environmental boundaries as a mechanism for correcting and anchoring spatial maps
2016-01-01
Abstract Ubiquitous throughout the animal kingdom, path integration‐based navigation allows an animal to take a circuitous route out from a home base and using only self‐motion cues, calculate a direct vector back. Despite variation in an animal's running speed and direction, medial entorhinal grid cells fire in repeating place‐specific locations, pointing to the medial entorhinal circuit as a potential neural substrate for path integration‐based spatial navigation. Supporting this idea, grid cells appear to provide an environment‐independent metric representation of the animal's location in space and preserve their periodic firing structure even in complete darkness. However, a series of recent experiments indicate that spatially responsive medial entorhinal neurons depend on environmental cues in a more complex manner than previously proposed. While multiple types of landmarks may influence entorhinal spatial codes, environmental boundaries have emerged as salient landmarks that both correct error in entorhinal grid cells and bind internal spatial representations to the geometry of the external spatial world. The influence of boundaries on error correction and grid symmetry points to medial entorhinal border cells, which fire at a high rate only near environmental boundaries, as a potential neural substrate for landmark‐driven control of spatial codes. The influence of border cells on other entorhinal cell populations, such as grid cells, could depend on plasticity, raising the possibility that experience plays a critical role in determining how external cues influence internal spatial representations. PMID:26563618
During running in place, grid cells integrate elapsed time and distance run
Kraus, Benjamin J.; Brandon, Mark P.; Robinson, Robert J.; Connerney, Michael A.; Hasselmo, Michael E.; Eichenbaum, Howard
2015-01-01
Summary The spatial scale of grid cells may be provided by self-generated motion information or by external sensory information from environmental cues. To determine whether grid cell activity reflects distance traveled or elapsed time independent of external information, we recorded grid cells as animals ran in place on a treadmill. Grid cell activity was only weakly influenced by location but most grid cells and other neurons recorded from the same electrodes strongly signaled a combination of distance and time, with some signaling only distance or time. Grid cells were more sharply tuned to time and distance than non-grid cells. Many grid cells exhibited multiple firing fields during treadmill running, parallel to the periodic firing fields observed in open fields, suggesting a common mode of information processing. These observations indicate that, in the absence of external dynamic cues, grid cells integrate self-generated distance and time information to encode a representation of experience. PMID:26539893
NASA Astrophysics Data System (ADS)
Kallunki, Veera
2013-04-01
Pupils' qualitative understanding of DC-circuit phenomena is reported to be weak. In numerous research reports lists of problems in understanding the functioning of simple DC-circuits have been presented. So-called mental model surveys have uncovered difficulties in different age groups, and in different phases of instruction. In this study, the concept of qualitative understanding, and the content or position of reported mental models of DC-circuit phenomena are discussed. On the grounds of this review, new tools for investigating qualitative understanding and analysing external representations of DC-circuit phenomena are presented. According to this approach, the external representations of DC-circuit phenomena that describe pupils' expressed conceptions of the topic should include both empirical-based models and theoretical explanations. In the empirical part of this study , third-graders (9-year-olds) learning DC-circuit phenomena in a comprehensive school in a small group were scrutinised. The focus of the study is the external representations manifested in the talk of the small group. The study challenges earlier studies, which claim that children exhibit a wide range of qualitative difficulties when learning DC-circuit phenomena. In this study it will be shown that even in the case of abstract subject matter like DC-circuit phenomena, small groups that highlight empirical-based modelling and activate talk can be a fruitful learning environment, where pupils' qualitative understanding really develops. Thus, the study proposes taking a closer look at pupils' external representations concerning DC-circuit phenomena.
ERIC Educational Resources Information Center
De Bock, Dirk; Neyens, Deborah; Van Dooren, Wim
2017-01-01
Recent research on the phenomenon of improper proportional reasoning focused on students' understanding of elementary functions and their external representations. So far, the role of basic function properties in students' concept images of functions remained unclear. We add to this research line by investigating how accurate students are in…
ERIC Educational Resources Information Center
Goff, Eric E.; Reindl, Katie M.; Johnson, Christina; McClean, Phillip; Offerdahl, Erika G.; Schroeder, Noah L.; White, Alan R.
2017-01-01
The use of external representations (ERs) to introduce concepts in undergraduate biology has become increasingly common. Two of the most prevalent are static images and dynamic animations. While previous studies comparing static images and dynamic animations have resulted in somewhat conflicting findings in regards to learning outcomes, the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L.; Prescott, Steven; Coleman, Justin
This report describes the current progress and status related to the Industry Application #2 focusing on External Hazards. For this industry application within the Light Water Reactor Sustainability (LWRS) Program Risk-Informed Safety Margin Characterization (RISMC) R&D Pathway, we will create the Risk-Informed Margin Management (RIMM) approach to represent meaningful (i.e., realistic facility representation) event scenarios and consequences by using an advanced 3D facility representation that will evaluate external hazards such as flooding and earthquakes in order to identify, model and analyze the appropriate physics that needs to be included to determine plant vulnerabilities related to external events; manage the communicationmore » and interactions between different physics modeling and analysis technologies; and develop the computational infrastructure through tools related to plant representation, scenario depiction, and physics prediction. One of the unique aspects of the RISMC approach is how it couples probabilistic approaches (the scenario) with mechanistic phenomena representation (the physics) through simulation. This simulation-based modeling allows decision makers to focus on a variety of safety, performance, or economic metrics. In this report, we describe the evaluation of various physics toolkits related to flooding representation. Ultimately, we will be coupling the flooding representation with other events such as earthquakes in order to provide coupled physics analysis for scenarios where interactions exist.« less
Real Objects Can Impede Conditional Reasoning but Augmented Objects Do Not.
Sato, Yuri; Sugimoto, Yutaro; Ueda, Kazuhiro
2018-03-01
In this study, Knauff and Johnson-Laird's (2002) visual impedance hypothesis (i.e., mental representations with irrelevant visual detail can impede reasoning) is applied to the domain of external representations and diagrammatic reasoning. We show that the use of real objects and augmented real (AR) objects can control human interpretation and reasoning about conditionals. As participants made inferences (e.g., an invalid one from "if P then Q" to "P"), they also moved objects corresponding to premises. Participants who moved real objects made more invalid inferences than those who moved AR objects and those who did not manipulate objects (there was no significant difference between the last two groups). Our results showed that real objects impeded conditional reasoning, but AR objects did not. These findings are explained by the fact that real objects may over-specify a single state that exists, while AR objects suggest multiple possibilities. Copyright © 2017 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Leikin, Roza; Leikin, Mark; Waisman, Ilana; Shaul, Shelley
2013-01-01
This study explores the effects of the "presence of external representations of a mathematical object" (ERs) on problem solving performance associated with short double-choice problems. The problems were borrowed from secondary school algebra and geometry, and the ERs were either formulas, graphs of functions, or drawings of geometric…
Draht, Fabian; Zhang, Sijie; Rayan, Abdelrahman; Schönfeld, Fabian; Wiskott, Laurenz; Manahan-Vaughan, Denise
2017-01-01
Spatial encoding in the hippocampus is based on a range of different input sources. To generate spatial representations, reliable sensory cues from the external environment are integrated with idiothetic cues, derived from self-movement, that enable path integration and directional perception. In this study, we examined to what extent idiothetic cues significantly contribute to spatial representations and navigation: we recorded place cells while rodents navigated towards two visually identical chambers in 180° orientation via two different paths in darkness and in the absence of reliable auditory or olfactory cues. Our goal was to generate a conflict between local visual and direction-specific information, and then to assess which strategy was prioritized in different learning phases. We observed that, in the absence of distal cues, place fields are initially controlled by local visual cues that override idiothetic cues, but that with multiple exposures to the paradigm, spaced at intervals of days, idiothetic cues become increasingly implemented in generating an accurate spatial representation. Taken together, these data support that, in the absence of distal cues, local visual cues are prioritized in the generation of context-specific spatial representations through place cells, whereby idiothetic cues are deemed unreliable. With cumulative exposures to the environments, the animal learns to attend to subtle idiothetic cues to resolve the conflict between visual and direction-specific information.
Draht, Fabian; Zhang, Sijie; Rayan, Abdelrahman; Schönfeld, Fabian; Wiskott, Laurenz; Manahan-Vaughan, Denise
2017-01-01
Spatial encoding in the hippocampus is based on a range of different input sources. To generate spatial representations, reliable sensory cues from the external environment are integrated with idiothetic cues, derived from self-movement, that enable path integration and directional perception. In this study, we examined to what extent idiothetic cues significantly contribute to spatial representations and navigation: we recorded place cells while rodents navigated towards two visually identical chambers in 180° orientation via two different paths in darkness and in the absence of reliable auditory or olfactory cues. Our goal was to generate a conflict between local visual and direction-specific information, and then to assess which strategy was prioritized in different learning phases. We observed that, in the absence of distal cues, place fields are initially controlled by local visual cues that override idiothetic cues, but that with multiple exposures to the paradigm, spaced at intervals of days, idiothetic cues become increasingly implemented in generating an accurate spatial representation. Taken together, these data support that, in the absence of distal cues, local visual cues are prioritized in the generation of context-specific spatial representations through place cells, whereby idiothetic cues are deemed unreliable. With cumulative exposures to the environments, the animal learns to attend to subtle idiothetic cues to resolve the conflict between visual and direction-specific information. PMID:28634444
Predictive Multiple Model Switching Control with the Self-Organizing Map
NASA Technical Reports Server (NTRS)
Motter, Mark A.
2000-01-01
A predictive, multiple model control strategy is developed by extension of self-organizing map (SOM) local dynamic modeling of nonlinear autonomous systems to a control framework. Multiple SOMs collectively model the global response of a nonautonomous system to a finite set of representative prototype controls. Each SOM provides a codebook representation of the dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the global minimization of a similarity metric. The SOM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme that selects the best available model for the applied control. SOM based linear models are used to predict the response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal.
NASA Technical Reports Server (NTRS)
Kohn, W.
1983-01-01
It is shown that if n(r) is the discrete density on a lattice (enclosed in a finite box) associated with a nondegenerate ground state in an external potential v(r) (i.e., is 'v-representable'), then the density n(r) + mu(r), with m(r) arbitrary (apart from trivial constraints) and mu small enough, is also associated with a nondegenerate ground state in an external potential v'(r) near v(r); i.e., n(r) + m(r) is also v-representable. Implications for the Hohenberg-Kohn variational principle and the Kohn-Sham equations are discussed.
Schermerhorn, Alice C; Cummings, E Mark; Davies, Patrick T
2008-02-01
The authors examine mutual family influence processes at the level of children's representations of multiple family relationships, as well as the structure of those representations. From a community sample with 3 waves, each spaced 1 year apart, kindergarten-age children (105 boys and 127 girls) completed a story-stem completion task, tapping representations of multiple family relationships. Structural equation modeling with autoregressive controls indicated that representational processes involving different family relationships were interrelated over time, including links between children's representations of marital conflict and reactions to conflict, between representations of security about marital conflict and parent-child relationships, and between representations of security in father-child and mother-child relationships. Mixed support was found for notions of increasing stability in representations during this developmental period. Results are discussed in terms of notions of transactional family dynamics, including family-wide perspectives on mutual influence processes attributable to multiple family relationships.
Basaruddin, T.
2016-01-01
One essential task in information extraction from the medical corpus is drug name recognition. Compared with text sources come from other domains, the medical text mining poses more challenges, for example, more unstructured text, the fast growing of new terms addition, a wide range of name variation for the same drug, the lack of labeled dataset sources and external knowledge, and the multiple token representations for a single drug name. Although many approaches have been proposed to overwhelm the task, some problems remained with poor F-score performance (less than 0.75). This paper presents a new treatment in data representation techniques to overcome some of those challenges. We propose three data representation techniques based on the characteristics of word distribution and word similarities as a result of word embedding training. The first technique is evaluated with the standard NN model, that is, MLP. The second technique involves two deep network classifiers, that is, DBN and SAE. The third technique represents the sentence as a sequence that is evaluated with a recurrent NN model, that is, LSTM. In extracting the drug name entities, the third technique gives the best F-score performance compared to the state of the art, with its average F-score being 0.8645. PMID:27843447
Twenty Years On: Reflections on "Supporting the Use of External Representations in Problem Solving"…
ERIC Educational Resources Information Center
Cox, Richard; Brna, Paul
2016-01-01
We reflect upon a paper we wrote that was published in 1995 (20 years ago). We outline the motivation for the work and situate it in the state of the art at that time. We suggest that a key contribution was to highlight the need to provide support for learners who reason with external representations. The support must be flexible enough to…
Electrophysiological evidence for parts and wholes in visual face memory.
Towler, John; Eimer, Martin
2016-10-01
It is often assumed that upright faces are represented in a holistic fashion, while representations of inverted faces are essentially part-based. To assess this hypothesis, we recorded event-related potentials (ERPs) during a sequential face identity matching task where successively presented pairs of upright or inverted faces were either identical or differed with respect to their internal features, their external features, or both. Participants' task was to report on each trial whether the face pair was identical or different. To track the activation of visual face memory representations, we measured N250r components that emerge over posterior face-selective regions during the activation of visual face memory representations by a successful identity match. N250r components to full identity repetitions were smaller and emerged later for inverted as compared to upright faces, demonstrating that image inversion impairs face identity matching processes. For upright faces, N250r components were also elicited by partial repetitions of external or internal features, which suggest that the underlying identity matching processes are not exclusively based on non-decomposable holistic representations. However, the N250r to full identity repetitions was super-additive (i.e., larger than the sum of the two N250r components to partial repetitions of external or internal features) for upright faces, demonstrating that holistic representations were involved in identity matching processes. For inverted faces, N250r components to full and partial identity repetitions were strictly additive, indicating that the identity matching of external and internal features operated in an entirely part-based fashion. These results provide new electrophysiological evidence for qualitative differences between representations of upright and inverted faces in the occipital-temporal face processing system. Copyright © 2016 Elsevier Ltd. All rights reserved.
De Visscher, Alice; Noël, Marie-Pascale; De Smedt, Bert
2016-12-01
Arithmetic facts, in particular multiplication tables, are thought to be stored in long-term memory and to be interference prone. At least two representations underpinning these arithmetic facts have been suggested: a physical representation of the digits and a numerical magnitude representation. We hypothesized that both representations are possible sources of interference that could explain individual differences in multiplication fact performance and/or in strategy use. We investigated the specificity of these interferences on arithmetic fact retrieval and explored the relation between interference and performance on the different arithmetic operations and on general mathematics achievement. Participants were 79 fourth-grade children (M age =9.6 years) who completed a products comparison and a multiplication production task with verbal strategy reports. Performances on a speeded calculation test including the four operations and on a general mathematics achievement test were also collected. Only the interference coming from physical representations was a significant predictor of the performance across multiplications. However, both the magnitude and physical representations were unique predictors of individual differences in multiplication. The frequency of the retrieval strategy across multiplication problems and across individuals was determined only by the physical representation, which therefore is suggested as being responsible for memory storage issues. Interestingly, this impact of physical representation was not observed when predicting performance on subtraction or on general mathematical achievement. In contrast, the impact of the numerical magnitude representation was more general in that it was observed across all arithmetic operations and in general mathematics achievement. Copyright © 2016 Elsevier Inc. All rights reserved.
Sher-Censor, Efrat; Shulman, Cory; Cohen, Esther
2018-02-01
This study examined the array of associations among the emotional valence and the coherence of mothers' representations of their relationship with their toddlers, mothers' reported parenting stress, and toddlers' internalizing and externalizing behaviors. To evaluate maternal representations, 55 mothers were interviewed using the Five Minute Speech Sample procedure (FMSS; Magaña et al., 1986), which was coded for criticism and positive comments (Magaňa-Amato, 1993), as well as coherence (Sher-Censor & Yates, 2015). Mothers also completed the Parenting Stress Index - Short Form (PSI; Abidin, 1997) to evaluate their parenting stress and the Child Behavior Checklist (CBCL/1.5-5; Achenbach & Rescorla, 2000) to assess their toddlers' internalizing and externalizing behaviors. Results indicated that parenting stress was associated with maternal criticism and fewer positive comments in the FMSS, but not with the coherence of mothers' FMSS. Parenting stress, criticism, and lower coherence in the FMSS were associated with maternal reports of externalizing behaviors. Only parenting stress and lower coherence in the FMSS were related to mothers' reports of internalizing behaviors of the child. Thus, the emotional valence and the coherence of mothers' representations of their relationship with their child and parenting stress may each constitute a distinct aspect of parenting and contribute to the understanding of individual differences in toddlers' internalizing and externalizing behaviors. Implications for research and practice with families of toddlers are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Madden, Sean Patrick
This study examined the role of multiple representations of chemical phenomena, specifically, the temperature-pressure relationship of ideal gases, in the problem solving strategies of college chemistry students. Volunteers included students enrolled in a first semester general chemistry course at a western university. Two additional volunteers from the same university were asked to participate and serve as models of greater sophistication. One was a senior chemistry major; another was a junior science writing major. Volunteers completed an initial screening task involving multiple representations of concentration and dilution concepts. Based on the results of this screening instrument a smaller set of subjects were asked to complete a think aloud session involving multiple representations of the temperature-pressure relationship. Data consisted of the written work of the volunteers and transcripts from videotaped think aloud sessions. The data were evaluated by the researcher and two other graduate students in chemical education using a coding scheme (Kozma, Schank, Coppola, Michalchik, and Allen. 2000). This coding scheme was designed to identify essential features of representational competence and differences in uses of multiple representations. The results indicate that students tend to have a strong preference for one type of representation. Students scoring low on representational competence, as measured by the rubric, ignored important features of some representations or acknowledged them only superficially. Students scoring higher on representational competence made meaningful connections among representations. The more advanced students, those who rated highly on representational competence, tended to use their preferred representation in a heuristic manner to establish meaning for other representations. The more advanced students also reflected upon the problem at greater length before beginning work. Molecular level sketches seemed to be the most difficult type of representation for students to interpret. Most subjects scored higher on representational competence when engaged in creating graphs and sketches than when evaluating provided representations. This study suggests that students may benefit from an instruction that emphasizes heuristic use of multiple representations in chemistry problem solving. An instructional strategy that makes use of a variety of representations and requires students to create their own representations may have measurable benefits to chemistry students.
NASA Astrophysics Data System (ADS)
Helsy, I.; Maryamah; Farida, I.; Ramdhani, M. A.
2017-09-01
This study aimed to describe the application of teaching materials, analyze the increase in the ability of students to connect the three levels of representation and student responses after application of multiple representations based teaching materials chemistry. The method used quasi one-group pretest-posttest design to 71 students. The results showed the application of teaching materials carried 88% with very good category. A significant increase ability to connect the three levels of representation of students after the application of multiple representations based teaching materials chemistry with t-value > t-crit (11.402 > 1.991). Recapitulation N-gain pretest and posttest showed relatively similar for all groups is 0.6 criterion being achievement. Students gave a positive response to the application of multiple representations based teaching materials chemistry. Students agree teaching materials used in teaching chemistry (88%), and agrees teaching materials to provide convenience in connecting the three levels of representation (95%).
Conceptions and Representations: The Circle as an Example.
ERIC Educational Resources Information Center
Janvier, Claude
This paper, which addresses the issue of representation as an internal construct corresponding to an external abstract configuration, attempts to extend A. A. DiSessa's phenomenological primitives to mathematics (particularly to the notion of circle). Various acceptations of the word representation are examined, using the notion of a circle as an…
ERIC Educational Resources Information Center
Sedig, Kamran; Liang, Hai-Ning
2006-01-01
Computer-based mathematical cognitive tools (MCTs) are a category of external aids intended to support and enhance learning and cognitive processes of learners. MCTs often contain interactive visual mathematical representations (VMRs), where VMRs are graphical representations that encode properties and relationships of mathematical concepts. In…
Kiyonaga, Anastasia; Egner, Tobias
2013-04-01
Working memory (WM) and attention have been studied as separate cognitive constructs, although it has long been acknowledged that attention plays an important role in controlling the activation, maintenance, and manipulation of representations in WM. WM has, conversely, been thought of as a means of maintaining representations to voluntarily guide perceptual selective attention. It has more recently been observed, however, that the contents of WM can capture visual attention, even when such internally maintained representations are irrelevant, and often disruptive, to the immediate external task. Thus, the precise relationship between WM and attention remains unclear, but it appears that they may bidirectionally impact one another, whether or not internal representations are consistent with the external perceptual goals. This reciprocal relationship seems, further, to be constrained by limited cognitive resources to handle demands in either maintenance or selection. We propose here that the close relationship between WM and attention may be best described as a give-and-take interdependence between attention directed toward either actively maintained internal representations (traditionally considered WM) or external perceptual stimuli (traditionally considered selective attention), underpinned by their shared reliance on a common cognitive resource. Put simply, we argue that WM and attention should no longer be considered as separate systems or concepts, but as competing and influencing one another because they rely on the same limited resource. This framework can offer an explanation for the capture of visual attention by irrelevant WM contents, as well as a straightforward account of the underspecified relationship between WM and attention.
Kiyonaga, Anastasia; Egner, Tobias
2012-01-01
Working memory (WM) and attention have been studied as separate cognitive constructs, although it has long been acknowledged that attention plays an important role in controlling the activation, maintenance, and manipulation of representations in WM. WM has, conversely, been thought of as a means of maintaining representations to voluntarily guide perceptual selective attention. It has more recently been observed, however, that the contents of WM can capture visual attention, even when such internally maintained representations are irrelevant, and often disruptive, to the immediate external task. Thus the precise relationship between WM and attention remains unclear, but it appears that they may bi-directionally impact one another, whether or not internal representations are consistent with external perceptual goals. This reciprocal relationship seems, further, to be constrained by limited cognitive resources to handle demands in either maintenance or selection. We propose here that the close relationship between WM and attention may be best described as a give-and-take interdependence between attention directed toward actively maintained internal representations (traditionally considered WM) versus external perceptual stimuli (traditionally considered selective attention), underpinned by their shared reliance on a common cognitive resource. Put simply, we argue that WM and attention should no longer be considered as separate systems or concepts, but as competing and impacting one another because they rely on the same limited resource. This framework can offer an explanation for the capture of visual attention by irrelevant WM contents, as well as a straightforward account of the underspecified relationship between WM and attention. PMID:23233157
An adaptation study of internal and external features in facial representations.
Hills, Charlotte; Romano, Kali; Davies-Thompson, Jodie; Barton, Jason J S
2014-07-01
Prior work suggests that internal features contribute more than external features to face processing. Whether this asymmetry is also true of the mental representations of faces is not known. We used face adaptation to determine whether the internal and external features of faces contribute differently to the representation of facial identity, whether this was affected by familiarity, and whether the results differed if the features were presented in isolation or as part of a whole face. In a first experiment, subjects performed a study of identity adaptation for famous and novel faces, in which the adapting stimuli were whole faces, the internal features alone, or the external features alone. In a second experiment, the same faces were used, but the adapting internal and external features were superimposed on whole faces that were ambiguous to identity. The first experiment showed larger aftereffects for unfamiliar faces, and greater aftereffects from internal than from external features, and the latter was true for both familiar and unfamiliar faces. When internal and external features were presented in a whole-face context in the second experiment, aftereffects from either internal or external features was less than that from the whole face, and did not differ from each other. While we reproduce the greater importance of internal features when presented in isolation, we find this is equally true for familiar and unfamiliar faces. The dominant influence of internal features is reduced when integrated into a whole-face context, suggesting another facet of expert face processing. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Namdar, Bahadir; Shen, Ji
2018-01-01
Computer-supported collaborative learning (CSCL) environments provide learners with multiple representational tools for storing, sharing, and constructing knowledge. However, little is known about how learners organize knowledge through multiple representations about complex socioscientific issues. Therefore, the purpose of this study was to…
ERIC Educational Resources Information Center
Braswell, Gregory S.
2015-01-01
This exploratory study examined children's experiences with producing and comprehending external representations in a preschool classroom. Data collection and analyses focused on how artifacts, spaces, adult-guided routines, and social conventions shape young children's representational development. Participants included 4- and…
ERIC Educational Resources Information Center
Rau, Martina A.
2015-01-01
Multiple representations are ubiquitous in chemistry education. To benefit from multiple representations, students have to make connections between them. However, connection making is a difficult task for students. Prior research shows that supporting connection making enhances students' learning in math and science domains. Most prior research…
Generating Cognitive Dissonance in Student Interviews through Multiple Representations
ERIC Educational Resources Information Center
Linenberger, Kimberly J.; Bretz, Stacey Lowery
2012-01-01
This study explores what students understand about enzyme-substrate interactions, using multiple representations of the phenomenon. In this paper we describe our use of the 3 Phase-Single Interview Technique with multiple representations to generate cognitive dissonance within students in order to uncover misconceptions of enzyme-substrate…
Students' Difficulties With Multiple Representations in Introductory Mechanics
ERIC Educational Resources Information Center
Nguyen, Dong-Hai; Rebello, N. Sanjay
2011-01-01
Research in physics education indicates that the use of multiple representations in teaching and learning helps students become better problem-solvers. We report on a study to investigate students' difficulties in solving mechanics problems presented in multiple representations. We conducted teaching/learning interviews with 20 students in a…
Interleaved Practice in Multi-Dimensional Learning Tasks: Which Dimension Should We Interleave?
ERIC Educational Resources Information Center
Rau, Martina A.; Aleven, Vincent; Rummel, Nikol
2013-01-01
Research shows that multiple representations can enhance student learning. Many curricula use multiple representations across multiple task types. The temporal sequence of representations and task types is likely to impact student learning. Research on contextual interference shows that interleaving learning tasks leads to better learning results…
Role of Multiple Representations in Physics Problem Solving
ERIC Educational Resources Information Center
Maries, Alexandru
2013-01-01
This thesis explores the role of multiple representations in introductory physics students' problem solving performance through several investigations. Representations can help students focus on the conceptual aspects of physics and play a major role in effective problem solving. Diagrammatic representations can play a particularly important role…
Augmenting cognitive architectures to support diagrammatic imagination.
Chandrasekaran, Balakrishnan; Banerjee, Bonny; Kurup, Unmesh; Lele, Omkar
2011-10-01
Diagrams are a form of spatial representation that supports reasoning and problem solving. Even when diagrams are external, not to mention when there are no external representations, problem solving often calls for internal representations, that is, representations in cognition, of diagrammatic elements and internal perceptions on them. General cognitive architectures--Soar and ACT-R, to name the most prominent--do not have representations and operations to support diagrammatic reasoning. In this article, we examine some requirements for such internal representations and processes in cognitive architectures. We discuss the degree to which DRS, our earlier proposal for such an internal representation for diagrams, meets these requirements. In DRS, the diagrams are not raw images, but a composition of objects that can be individuated and thus symbolized, while, unlike traditional symbols, the referent of the symbol is an object that retains its perceptual essence, namely, its spatiality. This duality provides a way to resolve what anti-imagists thought was a contradiction in mental imagery: the compositionality of mental images that seemed to be unique to symbol systems, and their support of a perceptual experience of images and some types of perception on them. We briefly review the use of DRS to augment Soar and ACT-R with a diagrammatic representation component. We identify issues for further research. Copyright © 2011 Cognitive Science Society, Inc.
The Array Representation and Primary Children's Understanding and Reasoning in Multiplication
ERIC Educational Resources Information Center
Barmby, Patrick; Harries, Tony; Higgins, Steve; Suggate, Jennifer
2009-01-01
We examine whether the array representation can support children's understanding and reasoning in multiplication. To begin, we define what we mean by understanding and reasoning. We adopt a "representational-reasoning" model of understanding, where understanding is seen as connections being made between mental representations of concepts, with…
ERIC Educational Resources Information Center
Dreher, Anika; Kuntze, Sebastian; Lerman, Stephen
2016-01-01
Dealing with multiple representations and their connections plays a key role for learners to build up conceptual knowledge in the mathematics classroom. Hence, professional knowledge and views of mathematics teachers regarding the use of multiple representations certainly merit attention. In particular, investigating such views of preservice…
ERIC Educational Resources Information Center
Rau, M. A.; Aleven, V.; Rummel, N.; Pardos, Z.
2014-01-01
Providing learners with multiple representations of learning content has been shown to enhance learning outcomes. When multiple representations are presented across consecutive problems, we have to decide in what sequence to present them. Prior research has demonstrated that interleaving "tasks types" (as opposed to blocking them) can…
Karylowski, Jerzy J.; Mrozinski, Blazej
2017-01-01
Previous research suggests that, with the passage of time, representations of self in episodic memory become less dependent on their initial (internal) vantage point and shift toward an external perspective that is normally characteristic of how other people are represented. The present experiment examined this phenomenon in both episodic and semantic autobiographical memory using latency of self-judgments as a measure of accessibility of the internal vs. the external perspective. Results confirmed that in the case of representations of the self retrieved from recent autobiographical memories, trait-judgments regarding unobservable self-aspects (internal perspective) were faster than trait judgments regarding observable self-aspects (external perspective). Yet, in the case of self-representations retrieved from memories of a more distant past, judgments regarding observable self-aspects were faster. Those results occurred for both self-representations retrieved from episodic memory and for representations retrieved from the semantic memory. In addition, regardless of the effect of time, greater accessibility of unobservable (vs. observable) self-aspects was associated with the episodic rather than semantic autobiographical memory. Those results were modified by neither declared trait’s self-descriptiveness (yes vs. no responses) nor by its desirability (highly desirable vs. moderately desirable traits). Implications for compatibility between how self and others are represented and for the role of self in social perception are discussed. PMID:28473793
Karylowski, Jerzy J; Mrozinski, Blazej
2017-01-01
Previous research suggests that, with the passage of time, representations of self in episodic memory become less dependent on their initial (internal) vantage point and shift toward an external perspective that is normally characteristic of how other people are represented. The present experiment examined this phenomenon in both episodic and semantic autobiographical memory using latency of self-judgments as a measure of accessibility of the internal vs. the external perspective. Results confirmed that in the case of representations of the self retrieved from recent autobiographical memories, trait-judgments regarding unobservable self-aspects (internal perspective) were faster than trait judgments regarding observable self-aspects (external perspective). Yet, in the case of self-representations retrieved from memories of a more distant past, judgments regarding observable self-aspects were faster. Those results occurred for both self-representations retrieved from episodic memory and for representations retrieved from the semantic memory. In addition, regardless of the effect of time, greater accessibility of unobservable (vs. observable) self-aspects was associated with the episodic rather than semantic autobiographical memory. Those results were modified by neither declared trait's self-descriptiveness ( yes vs. no responses) nor by its desirability (highly desirable vs. moderately desirable traits). Implications for compatibility between how self and others are represented and for the role of self in social perception are discussed.
ERIC Educational Resources Information Center
Beitzel, Brian D.; Staley, Richard K.; DuBois, Nelson F.
2011-01-01
Previous research has cast doubt on the efficacy of utilizing external representations as an aid to solving word problems. The present study replicates previous findings that concrete representations hinder college students' ability to solve probability word problems, and extends those findings to apply to a multimedia instructional context. Our…
ERIC Educational Resources Information Center
Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou
2018-01-01
This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…
An event map of memory space in the hippocampus
Deuker, Lorena; Bellmund, Jacob LS; Navarro Schröder, Tobias; Doeller, Christian F
2016-01-01
The hippocampus has long been implicated in both episodic and spatial memory, however these mnemonic functions have been traditionally investigated in separate research strands. Theoretical accounts and rodent data suggest a common mechanism for spatial and episodic memory in the hippocampus by providing an abstract and flexible representation of the external world. Here, we monitor the de novo formation of such a representation of space and time in humans using fMRI. After learning spatio-temporal trajectories in a large-scale virtual city, subject-specific neural similarity in the hippocampus scaled with the remembered proximity of events in space and time. Crucially, the structure of the entire spatio-temporal network was reflected in neural patterns. Our results provide evidence for a common coding mechanism underlying spatial and temporal aspects of episodic memory in the hippocampus and shed new light on its role in interleaving multiple episodes in a neural event map of memory space. DOI: http://dx.doi.org/10.7554/eLife.16534.001 PMID:27710766
Villena-González, Mario; López, Vladimir; Rodríguez, Eugenio
2016-05-15
When attention is oriented toward inner thoughts, as spontaneously occurs during mind wandering, the processing of external information is attenuated. However, the potential effects of thought's content regarding sensory attenuation are still unknown. The present study aims to assess if the representational format of thoughts, such as visual imagery or inner speech, might differentially affect the sensory processing of external stimuli. We recorded the brain activity of 20 participants (12 women) while they were exposed to a probe visual stimulus in three different conditions: executing a task on the visual probe (externally oriented attention), and two conditions involving inward-turned attention i.e. generating inner speech and performing visual imagery. Event-related potentials results showed that the P1 amplitude, related with sensory response, was significantly attenuated during both task involving inward attention compared with external task. When both representational formats were compared, the visual imagery condition showed stronger attenuation in sensory processing than inner speech condition. Alpha power in visual areas was measured as an index of cortical inhibition. Larger alpha amplitude was found when participants engaged in an internal thought contrasted with the external task, with visual imagery showing even more alpha power than inner speech condition. Our results show, for the first time to our knowledge, that visual attentional processing to external stimuli during self-generated thoughts is differentially affected by the representational format of the ongoing train of thoughts. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Nieminen, Pasi; Savinainen, Antti; Viiri, Jouni
2010-01-01
This study investigates students' ability to interpret multiple representations consistently (i.e., representational consistency) in the context of the force concept. For this purpose we developed the Representational Variant of the Force Concept Inventory (R-FCI), which makes use of nine items from the 1995 version of the Force Concept Inventory…
ERIC Educational Resources Information Center
Tang, Kok-Sing; Delgado, Cesar; Moje, Elizabeth Birr
2014-01-01
This paper presents an integrative framework for analyzing science meaning-making with representations. It integrates the research on multiple representations and multimodal representations by identifying and leveraging the differences in their units of analysis in two dimensions: timescale and compositional grain size. Timescale considers the…
NASA Astrophysics Data System (ADS)
Namdar, Bahadir; Shen, Ji
2016-05-01
Using multiple representations and argumentation are two fundamental processes in science. With the advancements of information communication technologies, these two processes are blended more so than ever before. However, little is known about how these two processes interact with each other in student learning. Hence, we conducted a design-based study in order to distill the relationship between these two processes. Specifically, we designed a learning unit on nuclear energy and implemented it with a group of preservice middle school teachers. The participants used a web-based knowledge organization platform that incorporated three representational modes: textual, concept map, and pictorial. The participants organized their knowledge on nuclear energy by searching, sorting, clustering information through the use of these representational modes and argued about the nuclear energy issue. We found that the use of multiple representations and argumentation interacted with each other in a complex way. Based on our findings, we argue that the complexity can be unfolded in two aspects: (a) the use of multiple representations mediates argumentation in different forms and for different purposes; (b) the type of argumentation that leads to refinement of the use of multiple representations is often non-mediated and drawn from personal experience.
ERIC Educational Resources Information Center
Luxford, Cynthia J.; Bretz, Stacey Lowery
2014-01-01
Teachers use multiple representations to communicate the concepts of bonding, including Lewis structures, formulas, space-filling models, and 3D manipulatives. As students learn to interpret these multiple representations, they may develop misconceptions that can create problems in further learning of chemistry. Interviews were conducted with 28…
ERIC Educational Resources Information Center
Chen, Qi; Mirman, Daniel
2012-01-01
One of the core principles of how the mind works is the graded, parallel activation of multiple related or similar representations. Parallel activation of multiple representations has been particularly important in the development of theories and models of language processing, where coactivated representations ("neighbors") have been shown to…
Building Cognition: The Construction of Computational Representations for Scientific Discovery.
Chandrasekharan, Sanjay; Nersessian, Nancy J
2015-11-01
Novel computational representations, such as simulation models of complex systems and video games for scientific discovery (Foldit, EteRNA etc.), are dramatically changing the way discoveries emerge in science and engineering. The cognitive roles played by such computational representations in discovery are not well understood. We present a theoretical analysis of the cognitive roles such representations play, based on an ethnographic study of the building of computational models in a systems biology laboratory. Specifically, we focus on a case of model-building by an engineer that led to a remarkable discovery in basic bioscience. Accounting for such discoveries requires a distributed cognition (DC) analysis, as DC focuses on the roles played by external representations in cognitive processes. However, DC analyses by and large have not examined scientific discovery, and they mostly focus on memory offloading, particularly how the use of existing external representations changes the nature of cognitive tasks. In contrast, we study discovery processes and argue that discoveries emerge from the processes of building the computational representation. The building process integrates manipulations in imagination and in the representation, creating a coupled cognitive system of model and modeler, where the model is incorporated into the modeler's imagination. This account extends DC significantly, and we present some of the theoretical and application implications of this extended account. Copyright © 2014 Cognitive Science Society, Inc.
Woodbury, M A; Woodbury, M F
1998-01-01
Our 3-D Body Representation constructed during development by our Central Nervous System under the direction of our DNA, consists of a holographic representation arising from sensory input in the cerebellum and projected extraneurally in the brain ventricular fluid which has the chemical structure of liquid crystal. The structure of 3-D holographic Body Representation is then extrapolated by such cognitive instruments as boundarization, geometrization and gestalt organization upon the external environment which is perceived consequently as three dimensional. When the Body Representation collapses as in psychotic panic states. patients become terrified as they suddenly lose the perception of themselves and the world around them as three dimensional, solid in a reliably solid environment but feel suddenly that they are no longer a person but a disorganized blob. In our clinical practice we found serendipitously that the structure of three dimensionality can be restored even without medication by techniques involving stimulation of the body sensory system in the presence of a benevolent psychotherapist. Implications for Virtual Reality will be discussed.
Multiple Representations and Connections with the Sierpinski Triangle
ERIC Educational Resources Information Center
Kirwan, J. Vince; Tobias, Jennifer M.
2014-01-01
To understand multiple representations in algebra, students must be able to describe relationships through a variety of formats, such as graphs, tables, pictures, and equations. NCTM indicates that varied representations are "essential elements in supporting students' understanding of mathematical concepts and relationships" (NCTM…
The Golden Ratio: A Golden Opportunity to Investigate Multiple Representations of a Problem.
ERIC Educational Resources Information Center
Dickey, Edwin M.
1993-01-01
This article explores the multiple representations (verbal, algebraic, graphical, and numerical) that can be used to study the golden ratio. Emphasis is placed on using technology (both calculators and computers) to investigate the algebraic, graphical, and numerical representations. (JAF)
Learning, memory, and the role of neural network architecture.
Hermundstad, Ann M; Brown, Kevin S; Bassett, Danielle S; Carlson, Jean M
2011-06-01
The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.
ERIC Educational Resources Information Center
Kordaki, Maria
2015-01-01
This study focuses on the role of multiple solution tasks (MST) incorporating multiple learning tools and representation systems (MTRS) in encouraging each student to develop multiple perspectives on the learning concepts under study and creativity of thought. Specifically, two types of MST were used, namely tasks that allowed and demanded…
NASA Astrophysics Data System (ADS)
Bakri, F.; Muliyati, D.
2018-05-01
This research aims to design e-learning resources with multiple representations based on a contextual approach for the Basic Physics Course. The research uses the research and development methods accordance Dick & Carey strategy. The development carried out in the digital laboratory of Physics Education Department, Mathematics and Science Faculty, Universitas Negeri Jakarta. The result of the process of product development with Dick & Carey strategy, have produced e-learning design of the Basic Physics Course is presented in multiple representations in contextual learning syntax. The appropriate of representation used in the design of learning basic physics include: concept map, video, figures, data tables of experiment results, charts of data tables, the verbal explanations, mathematical equations, problem and solutions example, and exercise. Multiple representations are presented in the form of contextual learning by stages: relating, experiencing, applying, transferring, and cooperating.
Learning with Multiple Representations: Extending Multimedia Learning beyond the Lab
ERIC Educational Resources Information Center
Eilam, Billie; Poyas, Yael
2008-01-01
The present study extended multimedia learning principles beyond the lab to an ecologically valid setting (homework). Eighteen information cards were used to perform three homework tasks. The control group students learned from single representation (SR) cards that presented all information as printed text. The multiple representation (MR) group…
Interleaved Practice with Multiple Representations: Analyses with Knowledge Tracing Based Techniques
ERIC Educational Resources Information Center
Rau, Martina A.; Pardos, Zachary A.
2012-01-01
The goal of this paper is to use Knowledge Tracing to augment the results obtained from an experiment that investigated the effects of practice schedules using an intelligent tutoring system for fractions. Specifically, this experiment compared different practice schedules of multiple representations of fractions: representations were presented to…
Barriers to Occupational Achievement.
ERIC Educational Resources Information Center
Gurman, Ernest B.
The under-representation of women in prestigious occupations and the lower average pay women earn has been of concern for many years. This study investigated two alternative explanations for this under-representation of females in prestigious and higher paying occupations. The first explanation was external barriers such as discrimination, and the…
Supplantation of Mental Operations on Graphs
ERIC Educational Resources Information Center
Vogel, Markus; Girwidz, Raimund; Engel, Joachim
2007-01-01
Research findings show the difficulties younger students have in working with graphs. Higher mental operations are necessary for a skilled interpretation of abstract representations. We suggest connecting a concrete representation of the modeled problem with the related graph. The idea is to illustrate essential mental operations externally. This…
ERIC Educational Resources Information Center
Adadan, Emine
2013-01-01
This study explored two groups of Grade 11 (age 16-17) students' conceptual understandings about aspects of particle theory before, immediately after, and 3 months after instruction with multiple representations (IMR) and instruction with verbal representations (IVR). Data sources included open-ended questionnaires, interviews, and student…
On the v-representability of ensemble densities of electron systems
NASA Astrophysics Data System (ADS)
Gonis, A.; Däne, M.
2018-05-01
Analogously to the case at zero temperature, where the density of the ground state of an interacting many-particle system determines uniquely (within an arbitrary additive constant) the external potential acting on the system, the thermal average of the density over an ensemble defined by the Boltzmann distribution at the minimum of the thermodynamic potential, or the free energy, determines the external potential uniquely (and not just modulo a constant) acting on a system described by this thermodynamic potential or free energy. The paper describes a formal procedure that generates the domain of a constrained search over general ensembles (at zero or elevated temperatures) that lead to a given density, including as a special case a density thermally averaged at a given temperature, and in the case of a v-representable density determines the external potential leading to the ensemble density. As an immediate consequence of the general formalism, the concept of v-representability is extended beyond the hitherto discussed case of ground state densities to encompass excited states as well. Specific application to thermally averaged densities solves the v-representability problem in connection with the Mermin functional in a manner analogous to that in which this problem was recently settled with respect to the Hohenberg and Kohn functional. The main formalism is illustrated with numerical results for ensembles of one-dimensional, non-interacting systems of particles under a harmonic potential.
On the v-representability of ensemble densities of electron systems
Gonis, A.; Dane, M.
2017-12-30
Analogously to the case at zero temperature, where the density of the ground state of an interacting many-particle system determines uniquely (within an arbitrary additive constant) the external potential acting on the system, the thermal average of the density over an ensemble defined by the Boltzmann distribution at the minimum of the thermodynamic potential, or the free energy, determines the external potential uniquely (and not just modulo a constant) acting on a system described by this thermodynamic potential or free energy. The study describes a formal procedure that generates the domain of a constrained search over general ensembles (at zeromore » or elevated temperatures) that lead to a given density, including as a special case a density thermally averaged at a given temperature, and in the case of a v-representable density determines the external potential leading to the ensemble density. As an immediate consequence of the general formalism, the concept of v-representability is extended beyond the hitherto discussed case of ground state densities to encompass excited states as well. Specific application to thermally averaged densities solves the v-representability problem in connection with the Mermin functional in a manner analogous to that in which this problem was recently settled with respect to the Hohenberg and Kohn functional. Finally, the main formalism is illustrated with numerical results for ensembles of one-dimensional, non-interacting systems of particles under a harmonic potential.« less
Visual Representation of Rational Belief Revision: Another Look at the Sleeping Beauty Problem
2014-10-29
Retamero and Cokely , 2013). Visual representation is thought to facilitate performance by externalizing the set-subset relations among observa- tional... Cokely , E. T. (2013). Communicating health risks with visual aids. Curr. Dir. Psychol. Sci. 22, 392–399. doi: 10.1177/0963721413491570 Horgan, T. (2004
An Exploration of Secondary Students' Mental States When Learning about Acids and Bases
ERIC Educational Resources Information Center
Liu, Chia-Ju; Hou, I-Lin; Chiu, Houn-Lin; Treagust, David F.
2014-01-01
This study explored factors of students' mental states, including emotion, intention, internal mental representation, and external mental representation, which can affect their learning performance. In evaluating students' mental states during the science learning process and the relationship between mental states and learning…
Handling or being the concept: An fMRI study on metonymy representations in coverbal gestures.
Joue, Gina; Boven, Linda; Willmes, Klaus; Evola, Vito; Demenescu, Liliana R; Hassemer, Julius; Mittelberg, Irene; Mathiak, Klaus; Schneider, Frank; Habel, Ute
2018-01-31
In "Two heads are better than one," "head" stands for people and focuses the message on the intelligence of people. This is an example of figurative language through metonymy, where substituting a whole entity by one of its parts focuses attention on a specific aspect of the entity. Whereas metaphors, another figurative language device, are substitutions based on similarity, metonymy involves substitutions based on associations. Both are figures of speech but are also expressed in coverbal gestures during multimodal communication. The closest neuropsychological studies of metonymy in gestures have been nonlinguistic tool-use, illustrated by the classic apraxic problem of body-part-as-object (BPO, equivalent to an internal metonymy representation of the tool) vs. pantomimed action (external metonymy representation of the absent object/tool). Combining these research domains with concepts in cognitive linguistic research on gestures, we conducted an fMRI study to investigate metonymy resolution in coverbal gestures. Given the greater difficulty in developmental and apraxia studies, perhaps explained by the more complex semantic inferencing involved for external metonymy than for internal metonymy representations, we hypothesized that external metonymy resolution requires greater processing demands and that the neural resources supporting metonymy resolution would modulate regions involved in semantic processing. We found that there are indeed greater activations for external than for internal metonymy resolution in the temporoparietal junction (TPJ). This area is posterior to the lateral temporal regions recruited by metaphor processing. Effective connectivity analysis confirmed our hypothesis that metonymy resolution modulates areas implicated in semantic processing. We interpret our results in an interdisciplinary view of what metonymy in action can reveal about abstract cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.
The current practice of using multiple representations in year 4 science classrooms
NASA Astrophysics Data System (ADS)
Chuenmanee, Chanoknat; Thathong, Kongsak
2018-01-01
Multiple representations have been widely used as a reasoning tool for understanding complex scientific concepts. Thus this study attempted to investigate the current practice of using multiple representations on Year 4 science classrooms in terms of modes and levels which appear in curriculum documents, teaching plans, tasks and assessments, teaching practices, and students' behaviors. Indeed, documentary analysis, classroom observation, and interview were used as the data collection methods. First of all, Year 4 science documents were analyzed. Then classroom observation was used as a collecting method to seek what actually happen in the classroom. Finally, in-depth interviews were used to gather more information and obtain meaningful data. The finding reveals that many modes of verbal, visual, and tactile representations within three levels of representations are posed in Year 4 documents. Moreover, according to classroom observations and interviews, there are three main points of applying multiple representations into classrooms. First of all, various modes of representations were used, however, a huge number of them did not come together with the levels. The levels of representations, secondly, macroscopic and cellular levels were introduced into all classrooms while symbolic level was provided only in some classrooms. Finally, the connection of modes and levels pointed out that modes of representations were used without the considerations on the levels of them. So, it seems to be that teaching practice did not meet the aims of curriculum. Therefore, these issues were being considered in order to organize and design the further science lessons.
ERIC Educational Resources Information Center
Gebre, Engida
2018-01-01
This paper presents a descriptive case study where infographics--visual representation of data and ideas--have been used as cognitive tools to facilitate learning with multiple representations in the context of secondary school students' science news reporting. Despite the complementary nature of the two research foci, studies on cognitive tools…
Perception as Abduction: Turning Sensor Data into Meaningful Representation
ERIC Educational Resources Information Center
Shanahan, Murray
2005-01-01
This article presents a formal theory of robot perception as a form of abduction. The theory pins down the process whereby low-level sensor data is transformed into a symbolic representation of the external world, drawing together aspects such as incompleteness, top-down information flow, active perception, attention, and sensor fusion in a…
Key Characteristics of Successful Science Learning: The Promise of Learning by Modelling
ERIC Educational Resources Information Center
Mulder, Yvonne G.; Lazonder, Ard W.; de Jong, Ton
2015-01-01
The basic premise underlying this research is that scientific phenomena are best learned by creating an external representation that complies with the complex and dynamic nature of such phenomena. Effective representations are assumed to incorporate three key characteristics: they are graphical, dynamic, and provide a pre-specified outline of the…
Harle, Marissa; Towns, Marcy H
2013-01-01
The interdisciplinary nature of biochemistry courses requires students to use both chemistry and biology knowledge to understand biochemical concepts. Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations in addition to a fragmented understanding of fundamental biochemistry concepts. This project focuses on students' understanding of primary and secondary protein structure and drawings (representations) of hydrogen-bonding in alpha helices and beta sheets. Analysis demonstrated that students can recognize and identify primary protein structure concepts when given a polypeptide. However, when asked to draw alpha helices and beta sheets and explain the role of hydrogen bonding their drawings students exhibited a fragmented understanding that lacked coherence. Faculty are encouraged to have students draw molecular level representations to make their mental models more explicit, complete, and coherent. This is in contrast to recognition and identification tasks, which do not adequately probe mental models and molecular level understanding. © 2013 by The International Union of Biochemistry and Molecular Biology.
NASA Astrophysics Data System (ADS)
Niebert, Kai; Gropengiesser, Harald
2015-04-01
In recent years, researchers have become aware of the experiential grounding of scientific thought. Accordingly, research has shown that metaphorical mappings between experience-based source domains and abstract target domains are omnipresent in everyday and scientific language. The theory of conceptual metaphor explains these findings based on the assumption that understanding is embodied. Embodied understanding arises from recurrent bodily and social experience with our environment. As our perception is adapted to a medium-scale dimension, our embodied conceptions originate from this mesocosmic scale. With respect to this epistemological principle, we distinguish between micro-, meso- and macrocosmic phenomena. We use these insights to analyse how external representations of phenomena in the micro- and macrocosm can foster learning when they (a) address the students' learning demand by affording a mesocosmic experience or (b) assist reflection on embodied conceptions by representing their image schematic structure. We base our considerations on empirical evidence from teaching experiments on phenomena from the microcosm (microbial growth and signal conduction in neurons) and the macrocosm (greenhouse effect and carbon cycle). We discuss how the theory of conceptual metaphor can inform the development of external representations.
Representation and presentation of requirements knowledge
NASA Technical Reports Server (NTRS)
Johnson, W. L.; Feather, Martin S.; Harris, David R.
1992-01-01
An approach to representation and presentation of knowledge used in the ARIES, an experimental requirements/specification environment, is described. The approach applies the notion of a representation architecture to the domain of software engineering and incorporates a strong coupling to a transformation system. It is characterized by a single highly expressive underlying representation, interfaced simultaneously to multiple presentations, each with notations of differing degrees of expressivity. This enables analysts to use multiple languages for describing systems and have these descriptions yield a single consistent model of the system.
ERIC Educational Resources Information Center
Stadtler, Marc; Bromme, Rainer
2007-01-01
Drawing on the theory of documents representation (Perfetti et al., Toward a theory of documents representation. In: H. v. Oostendorp & S. R. Goldman (Eds.), "The construction of mental representations during reading." Mahwah, NJ: Erlbaum, 1999), we argue that successfully dealing with multiple documents on the World Wide Web requires readers to…
Disjunctivism, hallucinations, and metacognition.
Jérôme, Dokic; Jean-Rémy, Martin
2012-09-01
Perceptual experiences have been construed either as representational mental states-Representationalism-or as direct mental relations to the external world-Disjunctivism. Both conceptions are critical reactions to the so-called 'Argument from Hallucination', according to which perceptions cannot be about the external world, since they are subjectively indiscriminable from other, hallucinatory experiences, which are about sense-data or mind-dependent entities. Representationalism agrees that perceptions and hallucinations share their most specific mental kind, but accounts for hallucinations as misrepresentations of the external world. According to Disjunctivism, the phenomenal character of perceptions is exhausted by worldly objects and features, and thus must be different from the phenomenal character of hallucinations. Disjunctivism claims that subjective indiscriminability is not the result of a common experiential ground, but is because of our inability to discriminate, from the inside, hallucinations from perceptions. At first sight, Representationalism is more congenial to the way cognitive science deals with perception. However, empirically oriented revisions of Disjunctivism could be developed and tested by giving a metacognitive account of hallucinations. Two versions of this account can be formulated, depending on whether metacognition is understood as explicit metarepresentation or as implicit monitoring of first-order informational states. The first version faces serious objections, but the second is more promising, as it embodies a more realistic view of perceptual phenomenology as having both sensory and affective aspects. Affect-based phenomenology is constituted by various metacognitive feelings, such as the feeling of being perceptually confronted with the world itself, rather than with pictures or mere representations. WIREs Cogn Sci 2012 doi: 10.1002/wcs.1190 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.
On the Inclusion of Externally Controlled Actions in Action Planning
ERIC Educational Resources Information Center
Tsai, Jessica Chia-Chin; Knoblich, Gunther; Sebanz, Natalie
2011-01-01
According to ideomotor theories, perceiving action effects produced by others triggers corresponding action representations in the observer. We tested whether this principle extends to actions performed by externally controlled limbs and tools. Participants performed a go-no-go version of a spatial compatibility task in which their own actions…
Using Student Contributions and Multiple Representations To Develop Mathematical Language.
ERIC Educational Resources Information Center
Herbel-Eisenmann, Beth A.
2002-01-01
Describes a way to introduce and use mathematical language as an alternative to using vocabulary lists to introduce students to mathematical language in mathematics classrooms. Draws on multiple representations and student language. (YDS)
Sher-Censor, Efrat; Khafi, Tamar Y.; Yates, Tuppett M.
2016-01-01
Consistent with models of environmental sensitivity (Pluess, 2015), research suggests that the effects of parents’ behaviors on child adjustment are stronger among children who struggle to regulate their thoughts, feelings, and behaviors compared to children with better self-regulation. This study extended prior research by assessing maternal representations of the child, which presumably underlie mothers’ parenting behaviors, to evaluate the moderating influence of preschoolers’ self-regulation on relations between mothers’ representations and changes in children’s negative and positive developmental adjustment outcomes from preschool to first grade. Participants were 187 mothers and their preschoolers. Mothers’ representations were assessed via the coherence of their verbal narratives regarding their preschooler and teachers reported on preschoolers’ self-regulation. In preschool and first grade, examiners rated children’s externalizing behavior problems and ego-resilience, and teachers rated children’s externalizing behavior problems and peer acceptance. Consistent with the environmental sensitivity framework, the coherence of mothers’ narratives predicted changes in adjustment among children with self-regulation difficulties, but not among children with better self-regulation. Preschoolers with self-regulation difficulties whose mothers produced incoherent narratives showed increased externalizing behavior problems, decreased ego-resilience and lower peer acceptance across the transition to school. In contrast, preschoolers with better self-regulation did not evidence such effects when their mothers produced incoherent narratives. The implications of these findings for understanding and supporting children’s adjustment during the early school years are discussed. PMID:27598254
Sher-Censor, Efrat; Khafi, Tamar Y; Yates, Tuppett M
2016-11-01
Consistent with models of environmental sensitivity (Pluess, 2015), research suggests that the effects of parents' behaviors on child adjustment are stronger among children who struggle to regulate their thoughts, feelings, and behaviors compared with children with better self-regulation. This study extended prior research by assessing maternal representations of the child, which presumably underlie mothers' parenting behaviors, to evaluate the moderating influence of preschoolers' self-regulation on relations between mothers' representations and changes in children's negative and positive developmental adjustment outcomes from preschool to first grade. Participants were 187 mothers and their preschoolers. Mothers' representations were assessed via the coherence of their verbal narratives regarding their preschooler and teachers reported on preschoolers' self-regulation. In preschool and first grade, examiners rated children's externalizing behavior problems and ego-resilience, and teachers rated children's externalizing behavior problems and peer acceptance. Consistent with the environmental sensitivity framework, the coherence of mothers' narratives predicted changes in adjustment among children with self-regulation difficulties, but not among children with better self-regulation. Preschoolers with self-regulation difficulties whose mothers produced incoherent narratives showed increased externalizing behavior problems, decreased ego-resilience, and lower peer acceptance across the transition to school. In contrast, preschoolers with better self-regulation did not evidence such effects when their mothers produced incoherent narratives. The implications of these findings for understanding and supporting children's adjustment during the early school years are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Lambrey, Simon; Berthoz, Alain
2007-09-01
Numerous data in the literature provide evidence for gender differences in spatial orientation. In particular, it has been suggested that spatial representations of large-scale environments are more accurate in terms of metric information in men than in women but are richer in landmark information in women than in men. One explanatory hypothesis is that men and women differ in terms of navigational processes they used in daily life. The present study investigated this hypothesis by distinguishing two navigational processes: spatial updating by self-motion and landmark-based orientation. Subjects were asked to perform a pointing task in three experimental conditions, which differed in terms of reliability of the external landmarks that could be used. Two groups of subjects were distinguished, a mobile group and an immobile group, in which spatial updating of environmental locations did not have the same degree of importance for the correct performance of the pointing task. We found that men readily relied on an internal egocentric representation of where landmarks were expected to be in order to perform the pointing task, a representation that could be updated during self-motion (spatial updating). In contrast, women seemed to take their bearings more readily on the basis of the stable landmarks of the external world. We suggest that this gender difference in spatial orientation is not due to differences in information processing abilities but rather due to the differences in higher level strategies.
A Methodology for Multiple Rule System Integration and Resolution Within a Singular Knowledge Base
NASA Technical Reports Server (NTRS)
Kautzmann, Frank N., III
1988-01-01
Expert Systems which support knowledge representation by qualitative modeling techniques experience problems, when called upon to support integrated views embodying description and explanation, especially when other factors such as multiple causality, competing rule model resolution, and multiple uses of knowledge representation are included. A series of prototypes are being developed to demonstrate the feasibility of automating the process of systems engineering, design and configuration, and diagnosis and fault management. A study involves not only a generic knowledge representation; it must also support multiple views at varying levels of description and interaction between physical elements, systems, and subsystems. Moreover, it will involve models of description and explanation for each level. This multiple model feature requires the development of control methods between rule systems and heuristics on a meta-level for each expert system involved in an integrated and larger class of expert system. The broadest possible category of interacting expert systems is described along with a general methodology for the knowledge representation and control of mutually exclusive rule systems.
Gong, Yang; Zhang, Jiajie
2011-04-01
In a distributed information search task, data representation and cognitive distribution jointly affect user search performance in terms of response time and accuracy. Guided by UFuRT (User, Function, Representation, Task), a human-centered framework, we proposed a search model and task taxonomy. The model defines its application in the context of healthcare setting. The taxonomy clarifies the legitimate operations for each type of search task of relational data. We then developed experimental prototypes of hyperlipidemia data displays. Based on the displays, we tested the search tasks performance through two experiments. The experiments are of a within-subject design with a random sample of 24 participants. The results support our hypotheses and validate the prediction of the model and task taxonomy. In this study, representation dimensions, data scales, and search task types are the main factors in determining search efficiency and effectiveness. Specifically, the more external representations provided on the interface the better search task performance of users. The results also suggest the ideal search performance occurs when the question type and its corresponding data scale representation match. The implications of the study lie in contributing to the effective design of search interface for relational data, especially laboratory results, which could be more effectively designed in electronic medical records.
Teaching and Evaluation Materials Utilizing Multiple Representations in Mechanics
ERIC Educational Resources Information Center
Savinainen, A.; Nieminen, P.; Makynen, A.; Viiri, J.
2013-01-01
In this paper, we present materials and teaching ideas utilizing multiple representations in the contexts of kinematics and the force concept. These ideas and materials are substantiated by evidence and can be readily used in teaching with no special training. In addition, we briefly discuss two multiple-choice tests based on physics education…
ERIC Educational Resources Information Center
Crim, Courtney L.; Kennedy, Kimberley D.; Thornton, Jenifer S.
2013-01-01
This article reviews the relevant literature in regard to differentiation, multiple intelligences, and aesthetic representations. Next, it presents the methodology, reports findings, and discusses themes related to the authors' research questions. Finally, it concludes that tapping into students' multiple intelligence strength(s) is an excellent…
ERIC Educational Resources Information Center
Hill, Matthew; Sharma, Manjula Devi
2015-01-01
To succeed within scientific disciplines, using representations, including those based on words, graphs, equations, and diagrams, is important. Research indicates that the use of discipline specific representations (sometimes referred to as expert generated representations), as well as multi-representational use, is critical for problem solving…
The working memory stroop effect: when internal representations clash with external stimuli.
Kiyonaga, Anastasia; Egner, Tobias
2014-08-01
Working memory (WM) has recently been described as internally directed attention, which implies that WM content should affect behavior exactly like an externally perceived and attended stimulus. We tested whether holding a color word in WM, rather than attending to it in the external environment, can produce interference in a color-discrimination task, which would mimic the classic Stroop effect. Over three experiments, the WM Stroop effect recapitulated core properties of the classic attentional Stroop effect, displaying equivalent congruency effects, additive contributions from stimulus- and response-level congruency, and susceptibility to modulation by the percentage of congruent and incongruent trials. Moreover, WM maintenance was inversely related to attentional demands during the WM delay between stimulus presentation and recall, with poorer memory performance following incongruent than congruent trials. Together, these results suggest that WM and attention rely on the same resources and operate over the same representations. © The Author(s) 2014.
Properties of heuristic search strategies
NASA Technical Reports Server (NTRS)
Vanderbrug, G. J.
1973-01-01
A directed graph is used to model the search space of a state space representation with single input operators, an AND/OR is used for problem reduction representations, and a theorem proving graph is used for state space representations with multiple input operators. These three graph models and heuristic strategies for searching them are surveyed. The completeness, admissibility, and optimality properties of search strategies which use the evaluation function f = (1 - omega)g = omega(h) are presented and interpreted using a representation of the search process in the plane. The use of multiple output operators to imply dependent successors, and thus obtain a formalism which includes all three types of representations, is discussed.
NASA Astrophysics Data System (ADS)
Alami, Y.; Sinaga, P.; Setiawan, A.
2018-05-01
Based on recommendations from the Physics Education literature recommend the use of multiple representations to help students solve problems. The use of some good representations is considered important to study physics, so many good motivations to learn how students use multiple representations while solving problems and to learn how to solve problems using multiple representations. This study aims to explore the profile of high school students’ problem solving abilities and this study is part of a larger research focus on improving this ability in students in physics. The data is needed to determine the appropriate treatment to be used in subsequent research. A purposive sampling technique was used in this study and a survey was conducted to collect data. 74 students from one high school in Bandung were involved in this research.
Creating Joint Representations of Collaborative Problem Solving with Multi-Touch Technology
ERIC Educational Resources Information Center
Mercier, E.; Higgins, S.
2014-01-01
Multi-touch surfaces have the potential to change the nature of computer-supported collaborative learning, allowing more equitable access to shared digital content. In this paper, we explore how large multi-touch tables can be used by groups of students as an external representation of their group interaction processes. Video data from 24 groups…
Multimodal Literacies in Science: Currency, Coherence and Focus
NASA Astrophysics Data System (ADS)
Klein, Perry D.; Kirkpatrick, Lori C.
2010-01-01
Since the 1990s, researchers have increasingly drawn attention to the multiplicity of representations used in science. This issue of RISE advances this line of research by placing such representations at the centre of science teaching and learning. The authors show that representations do not simply transmit scientific information; they are integral to reasoning about scientific phenomena. This focus on thinking with representations mediates between well-resolved representations and formal reasoning of disciplinary science, and the capacity-limited, perceptually-driven nature of human cognition. The teaching practices described here build on three key principles: Each representation is interpreted through others; natural language is a sign system that is used to interpret a variety of other kinds of representations; and this chain of signs or representations is ultimately grounded in bodily experiences of perception and action. In these papers, the researchers provide examples and analysis of teachers scaffolding students in using representations to construct new knowledge, and in constructing new representations to express and develop their knowledge. The result is a new delineation of the power and the challenges of teaching science with multiple representations.
Optimization of digital designs
NASA Technical Reports Server (NTRS)
Miles, Lowell H. (Inventor); Whitaker, Sterling R. (Inventor)
2009-01-01
An application specific integrated circuit is optimized by translating a first representation of its digital design to a second representation. The second representation includes multiple syntactic expressions that admit a representation of a higher-order function of base Boolean values. The syntactic expressions are manipulated to form a third representation of the digital design.
Lower extremity control during turns initiated with and without hip external rotation.
Zaferiou, Antonia M; Flashner, Henryk; Wilcox, Rand R; McNitt-Gray, Jill L
2017-02-08
The pirouette turn is often initiated in neutral and externally rotated hip positions by dancers. This provides an opportunity to investigate how dancers satisfy the same mechanical objectives at the whole-body level when using different leg kinematics. The purpose of this study was to compare lower extremity control strategies during the turn initiation phase of pirouettes performed with and without hip external rotation. Skilled dancers (n=5) performed pirouette turns with and without hip external rotation. Joint kinetics during turn initiation were determined for both legs using ground reaction forces (GRFs) and segment kinematics. Hip muscle activations were monitored using electromyography. Using probability-based statistical methods, variables were compared across turn conditions as a group and within-dancer. Despite differences in GRFs and impulse generation between turn conditions, at least 90% of each GRF was aligned with the respective leg plane. A majority of the net joint moments at the ankle, knee, and hip acted about an axis perpendicular to the leg plane. However, differences in shank alignment relative to the leg plane affected the distribution of the knee net joint moment when represented with respect to the shank versus the thigh. During the initiation of both turns, most participants used ankle plantar flexor moments, knee extensor moments, flexor and abductor moments at the push leg׳s hip, and extensor and abductor moments at the turn leg׳s hip. Representation of joint kinetics using multiple reference systems assisted in understanding control priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Valanides, Nicos; Efthymiou, Irene; Angeli, Charoula
2013-01-01
Fifty-six third-year kindergarten student teachers (KTS) were presented with an experimental setting for investigating shadow phenomena. Prior to performing any specific experiment, KTS were asked to externalize their ideas about shadow phenomena corresponding to different configurations of the experimental setting through the use of drawings…
ERIC Educational Resources Information Center
Stacks, Ann M.
2007-01-01
This study examines the relationship between disorganized attachment representations, defensive dysregulation in preschool children's doll play story narratives and child externalizing behaviour. Preschool children (n = 53) participated in the George and Solomon (1990, 1996, 2000) "Six-Year Attachment Doll Play Procedure" and their mothers…
NASA Astrophysics Data System (ADS)
Nieminen, Pasi; Savinainen, Antti; Viiri, Jouni
2010-07-01
This study investigates students’ ability to interpret multiple representations consistently (i.e., representational consistency) in the context of the force concept. For this purpose we developed the Representational Variant of the Force Concept Inventory (R-FCI), which makes use of nine items from the 1995 version of the Force Concept Inventory (FCI). These original FCI items were redesigned using various representations (such as motion map, vectorial and graphical), yielding 27 multiple-choice items concerning four central concepts underpinning the force concept: Newton’s first, second, and third laws, and gravitation. We provide some evidence for the validity and reliability of the R-FCI; this analysis is limited to the student population of one Finnish high school. The students took the R-FCI at the beginning and at the end of their first high school physics course. We found that students’ (n=168) representational consistency (whether scientifically correct or not) varied considerably depending on the concept. On average, representational consistency and scientifically correct understanding increased during the instruction, although in the post-test only a few students performed consistently both in terms of representations and scientifically correct understanding. We also compared students’ (n=87) results of the R-FCI and the FCI, and found that they correlated quite well.
NASA Astrophysics Data System (ADS)
Zou, Xueli
In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.
ERIC Educational Resources Information Center
Nichols, Kim; Ranasinghe, Muditha; Hanan, Jim
2013-01-01
Interacting with and translating across multiple representations is an essential characteristic of expertise and representational fluency. In this study, we explored the effect of interacting with and translating between representations in a computer simulation or in a paper-based assignment on scientific accuracy of undergraduate science…
NASA Astrophysics Data System (ADS)
Yanti, Y. R.; Amin, S. M.; Sulaiman, R.
2018-01-01
This study described representation of students who have musical, logical-mathematic and naturalist intelligence in solving a problem. Subjects were selected on the basis of multiple intelligence tests (TPM) consists of 108 statements, with 102 statements adopted from Chislet and Chapman and 6 statements equal to eksistensial intelligences. Data were analyzed based on problem-solving tests (TPM) and interviewing. See the validity of the data then problem-solving tests (TPM) and interviewing is given twice with an analyzed using the representation indikator and the problem solving step. The results showed that: the stage of presenting information known, stage of devising a plan, and stage of carrying out the plan those three subjects were using same form of representation. While he stage of presenting information asked and stage of looking back, subject of logical-mathematic was using different forms of representation with subjects of musical and naturalist intelligence. From this research is expected to provide input to the teacher in determining the learning strategy that will be used by considering the representation of students with the basis of multiple intelligences.
de-Graft Aikins, Ama
2014-01-01
Ghanaian women's food beliefs and practices during pregnancy and the scope for developing more effective maternal health interventions were explored in this study. Thirty-five multiethnic Ghanaian women between the ages of 29 and 75 were interviewed about pregnancy food beliefs and practices. I show that, based on the data analysis, their knowledge about food was drawn from lifeworlds (family and friends), educational settings, health professionals, mass media, and body-self knowledge (unique pregnancy experiences). Core lay ideas converged with expert knowledge on maternal health nutrition. Multiple external factors (e.g., economics, cultural representations of motherhood) and internal factors (e.g., the unpredictable demands of the pregnant body) influenced pregnancy food practices. I suggest and discuss a need for culturally situated multilevel interventions.
Promoting Decimal Number Sense and Representational Fluency
ERIC Educational Resources Information Center
Suh, Jennifer M.; Johnston, Chris; Jamieson, Spencer; Mills, Michelle
2008-01-01
The abstract nature of mathematics requires the communication of mathematical ideas through multiple representations, such as words, symbols, pictures, objects, or actions. Building representational fluency involves using mathematical representations flexibly and being able to interpret and translate among these different models and mathematical…
Neural representation of the self-heard biosonar click in bottlenose dolphins (Tursiops truncatus).
Finneran, James J; Mulsow, Jason; Houser, Dorian S; Schlundt, Carolyn E
2017-05-01
The neural representation of the dolphin broadband biosonar click was investigated by measuring auditory brainstem responses (ABRs) to "self-heard" clicks masked with noise bursts having various high-pass cutoff frequencies. Narrowband ABRs were obtained by sequentially subtracting responses obtained with noise having lower high-pass cutoff frequencies from those obtained with noise having higher cutoff frequencies. For comparison to the biosonar data, ABRs were also measured in a passive listening experiment, where external clicks and masking noise were presented to the dolphins and narrowband ABRs were again derived using the subtractive high-pass noise technique. The results showed little change in the peak latencies of the ABR to the self-heard click from 28 to 113 kHz; i.e., the high-frequency neural responses to the self-heard click were delayed relative to those of an external, spectrally "pink" click. The neural representation of the self-heard click is thus highly synchronous across the echolocation frequencies and does not strongly resemble that of a frequency modulated downsweep (i.e., decreasing-frequency chirp). Longer ABR latencies at higher frequencies are hypothesized to arise from spectral differences between self-heard clicks and external clicks, forward masking from previously emitted biosonar clicks, or neural inhibition accompanying the emission of clicks.
Neural representation of the self-heard biosonar click in bottlenose dolphins (Tursiops truncatus)
Finneran, James J.; Mulsow, Jason; Houser, Dorian S.; Schlundt, Carolyn E.
2017-01-01
The neural representation of the dolphin broadband biosonar click was investigated by measuring auditory brainstem responses (ABRs) to “self-heard” clicks masked with noise bursts having various high-pass cutoff frequencies. Narrowband ABRs were obtained by sequentially subtracting responses obtained with noise having lower high-pass cutoff frequencies from those obtained with noise having higher cutoff frequencies. For comparison to the biosonar data, ABRs were also measured in a passive listening experiment, where external clicks and masking noise were presented to the dolphins and narrowband ABRs were again derived using the subtractive high-pass noise technique. The results showed little change in the peak latencies of the ABR to the self-heard click from 28 to 113 kHz; i.e., the high-frequency neural responses to the self-heard click were delayed relative to those of an external, spectrally “pink” click. The neural representation of the self-heard click is thus highly synchronous across the echolocation frequencies and does not strongly resemble that of a frequency modulated downsweep (i.e., decreasing-frequency chirp). Longer ABR latencies at higher frequencies are hypothesized to arise from spectral differences between self-heard clicks and external clicks, forward masking from previously emitted biosonar clicks, or neural inhibition accompanying the emission of clicks. PMID:28599518
ERIC Educational Resources Information Center
Holloway, Ian D.; Ansari, Daniel
2010-01-01
Because number is an abstract quality of a set, the way in which a number is externally represented does not change its quantitative meaning. In this study, we examined the development of the brain regions that support format-independent representation of numerical magnitude. We asked children and adults to perform both symbolic (Hindu-Arabic…
ERIC Educational Resources Information Center
Banerjee, Banmali
2010-01-01
Methods and procedures for successfully solving math word problems have been, and continue to be a mystery to many U.S. high school students. Previous studies suggest that the contextual and mathematical understanding of a word problem, along with the development of schemas and their related external representations, positively contribute to…
Connecting and Using Multiple Representations
ERIC Educational Resources Information Center
Nielsen, Maria E.; Bostic, Jonathan D.
2018-01-01
"Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014) emphasizes eight teaching practices for effective mathematics teaching, one of which is to "use and connect multiple representations" (NCTM 2014, p. 24). An action that describes how teachers might promote this practice is to "allocate substantial…
Space-time modeling using environmental constraints in a mobile robot system
NASA Technical Reports Server (NTRS)
Slack, Marc G.
1990-01-01
Grid-based models of a robot's local environment have been used by many researchers building mobile robot control systems. The attraction of grid-based models is their clear parallel between the internal model and the external world. However, the discrete nature of such representations does not match well with the continuous nature of actions and usually serves to limit the abilities of the robot. This work describes a spatial modeling system that extracts information from a grid-based representation to form a symbolic representation of the robot's local environment. The approach makes a separation between the representation provided by the sensing system and the representation used by the action system. Separation allows asynchronous operation between sensing and action in a mobile robot, as well as the generation of a more continuous representation upon which to base actions.
3-D World Modeling For An Autonomous Robot
NASA Astrophysics Data System (ADS)
Goldstein, M.; Pin, F. G.; Weisbin, C. R.
1987-01-01
This paper presents a methodology for a concise representation of the 3-D world model for a mobile robot, using range data. The process starts with the segmentation of the scene into "objects" that are given a unique label, based on principles of range continuity. Then the external surface of each object is partitioned into homogeneous surface patches. Contours of surface patches in 3-D space are identified by estimating the normal and curvature associated with each pixel. The resulting surface patches are then classified as planar, convex or concave. Since the world model uses a volumetric representation for the 3-D environment, planar surfaces are represented by thin volumetric polyhedra. Spherical and cylindrical surfaces are extracted and represented by appropriate volumetric primitives. All other surfaces are represented using the boolean union of spherical volumes (as described in a separate paper by the same authors). The result is a general, concise representation of the external 3-D world, which allows for efficient and robust 3-D object recognition.
32 CFR 776.29 - Imputed disqualification: General rule.
Code of Federal Regulations, 2012 CFR
2012-07-01
... their federal, state, and local bar rules governing the representation of multiple or adverse clients within the same office before such representation is initiated, as such representation may expose them to... military (or Government) service may require representation of opposing sides by covered USG attorneys...
32 CFR 776.29 - Imputed disqualification: General rule.
Code of Federal Regulations, 2014 CFR
2014-07-01
... their federal, state, and local bar rules governing the representation of multiple or adverse clients within the same office before such representation is initiated, as such representation may expose them to... military (or Government) service may require representation of opposing sides by covered USG attorneys...
32 CFR 776.29 - Imputed disqualification: General rule.
Code of Federal Regulations, 2013 CFR
2013-07-01
... their federal, state, and local bar rules governing the representation of multiple or adverse clients within the same office before such representation is initiated, as such representation may expose them to... military (or Government) service may require representation of opposing sides by covered USG attorneys...
Path-integral representation for the relativistic particle propagators and BFV quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fradkin, E.S.; Gitman, D.M.
1991-11-15
The path-integral representations for the propagators of scalar and spinor fields in an external electromagnetic field are derived. The Hamiltonian form of such expressions can be interpreted in the sense of Batalin-Fradkin-Vilkovisky quantization of one-particle theory. The Lagrangian representation as derived allows one to extract in a natural way the expressions for the corresponding gauge-invariant (reparametrization- and supergauge-invariant) actions for pointlike scalar and spinning particles. At the same time, the measure and ranges of integrations, admissible gauge conditions, and boundary conditions can be exactly established.
ERIC Educational Resources Information Center
Martschinke, Sabine
1996-01-01
Examines types of graphical representation as to their suitability for knowledge acquisition in primary grades. Uses the concept of mental models to clarify the relationship between external presentation and internal representation of knowledge. Finds that students who learned with highly elaborated and highly structured pictures displayed the…
ERIC Educational Resources Information Center
Cuero, Kimberley K.; Bonner, Jennifer; Smith, Brittaney; Schwartz, Michelle; Touchstone, Rose; Vela, Yvonne
2008-01-01
Based on Elliot Eisner's notions of multiple forms of representation and Rosenblatt's aesthetic/efferent responses to reading, a teacher educator/researcher had her undergraduate students explore their connections, using aesthetic representations, to a course entitled "Reading Comprehension". Each aesthetic representation revealed the complexities…
Narrative, memory and social representations: a conversation between history and social psychology.
Jovchelovitch, Sandra
2012-12-01
This paper explores relations between narrative, memory and social representations by examining how social representations express the ways in which communities deal with the historical past. Drawing on a case study of social representations of the Brazilian public sphere, it shows how a specific narrative of origins re-invents history as a useful mythological resource for defending identity, building inter-group solidarity and maintaining social cohesion. Produced by a time-travelling dialogue between multiple sources, this historical narrative is functional both to transform, to stabilise and give resilience to specific social representations of public life. The Brazilian case shows that historical narratives, which tend to be considered as part of the stable core of representational fields, are neither homogenous nor consensual but open polyphasic platforms for the construction of alternative, often contradictory, representations. These representations do not go away because they are ever changing and situated, recruit multiple ways of thinking and fulfil functions of identity, inter-group solidarity and social cohesion. In the disjunction between historiography and the past as social representation are the challenges and opportunities for the dialogue between historians and social psychologists.
Making Connections: Elementary Teachers' Construction of Division Word Problems and Representations
ERIC Educational Resources Information Center
Timmerman, Maria A.
2014-01-01
If teachers make few connections among multiple representations of division, supporting students in using representations to develop operation sense demanded by national standards will not occur. Studies have investigated how prospective and practicing teachers use representations to develop knowledge of fraction division. However, few studies…
Using Computer-Assisted Multiple Representations in Learning Geometry Proofs
ERIC Educational Resources Information Center
Wong, Wing-Kwong; Yin, Sheng-Kai; Yang, Hsi-Hsun; Cheng, Ying-Hao
2011-01-01
Geometry theorem proving involves skills that are difficult to learn. Instead of working with abstract and complicated representations, students might start with concrete, graphical representations. A proof tree is a graphical representation of a formal proof, with each node representing a proposition or given conditions. A computer-assisted…
The Effects of Multiple Linked Representations on Student Learning in Mathematics.
ERIC Educational Resources Information Center
Ozgun-Koca, S. Asli
This study investigated the effects on student understanding of linear relationships using the linked representation software VideoPoint as compared to using semi-linked representation software. It investigated students' attitudes towards and preferences for mathematical representations--equations, tables, or graphs. An Algebra I class was divided…
The representation of multiplication and division facts in memory.
De Brauwer, Jolien; Fias, Wim
2011-01-01
Recently, using a training paradigm, Campbell and Agnew (2009) observed cross-operation response time savings with nonidentical elements (e.g., practice 3 + 2, test 5 - 2) for addition and subtraction, showing that a single memory representation underlies addition and subtraction performance. Evidence for cross-operation savings between multiplication and division have been described frequently (e.g., Campbell, Fuchs-Lacelle, & Phenix, 2006) but they have always been attributed to a mediation strategy (reformulating a division problem as a multiplication problem, e.g., Campbell et al., 2006). Campbell and Agnew (2009) therefore concluded that there exists a fundamental difference between addition and subtraction on the one hand and multiplication and division on the other hand. However, our results suggest that retrieval savings between inverse multiplication and division problems can be observed. Even for small problems (solved by direct retrieval) practicing a division problem facilitated the corresponding multiplication problem and vice versa. These findings indicate that shared memory representations underlie multiplication and division retrieval. Hence, memory and learning processes do not seem to differ fundamentally between addition-subtraction and multiplication-division.
Craft, David
2010-10-01
A discrete set of points and their convex combinations can serve as a sparse representation of the Pareto surface in multiple objective convex optimization. We develop a method to evaluate the quality of such a representation, and show by example that in multiple objective radiotherapy planning, the number of Pareto optimal solutions needed to represent Pareto surfaces of up to five dimensions grows at most linearly with the number of objectives. The method described is also applicable to the representation of convex sets. Copyright © 2009 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
On squares of representations of compact Lie algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeier, Robert, E-mail: robert.zeier@ch.tum.de; Zimborás, Zoltán, E-mail: zimboras@gmail.com
We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the summore » of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.« less
Using Multiple Representations to Teach Composition of Functions
ERIC Educational Resources Information Center
Steketee, Scott; Scher, Daniel
2012-01-01
Composition of functions is one of the five big ideas identified in NCTM's "Developing Essential Understanding of Functions, Grades 9-12" (Cooney, Beckmann, and Lloyd 2010). Through multiple representations (another big idea) and the use of The Geometer's Sketchpad[R] (GSP), students can directly manipulate variables and thus see dynamic visual…
Asymmetric Translation between Multiple Representations in Chemistry
ERIC Educational Resources Information Center
Lin, Yulan I.; Son, Ji Y.; Rudd, James A., II
2016-01-01
Experts are more proficient in manipulating and translating between multiple representations (MRs) of a given concept than novices. Studies have shown that instruction using MR can increase student understanding of MR, and one model for MR instruction in chemistry is the chemistry triplet proposed by Johnstone. Concreteness fading theory suggests…
An Evaluation of Multimodal Interactions with Technology while Learning Science Concepts
ERIC Educational Resources Information Center
Anastopoulou, Stamatina; Sharples, Mike; Baber, Chris
2011-01-01
This paper explores the value of employing multiple modalities to facilitate science learning with technology. In particular, it is argued that when multiple modalities are employed, learners construct strong relations between physical movement and visual representations of motion. Body interactions with visual representations, enabled by…
ERIC Educational Resources Information Center
Pierce, Robyn; Stacey, Kaye; Wander, Roger; Ball, Lynda
2011-01-01
Current technologies incorporating sophisticated mathematical analysis software (calculation, graphing, dynamic geometry, tables, and more) provide easy access to multiple representations of mathematical problems. Realising the affordances of such technology for students' learning requires carefully designed lessons. This paper reports on design…
ERIC Educational Resources Information Center
Ozdemir, S.; Reis, Z. Ayvaz
2013-01-01
Mathematics is an important discipline, providing crucial tools, such as problem solving, to improve our cognitive abilities. In order to solve a problem, it is better to envision and represent through multiple means. Multiple representations can help a person to redefine a problem with his/her own words in that envisioning process. Dynamic and…
Learning-Induced Plasticity in Medial Prefrontal Cortex Predicts Preference Malleability
Garvert, Mona M.; Moutoussis, Michael; Kurth-Nelson, Zeb; Behrens, Timothy E.J.; Dolan, Raymond J.
2015-01-01
Summary Learning induces plasticity in neuronal networks. As neuronal populations contribute to multiple representations, we reasoned plasticity in one representation might influence others. We used human fMRI repetition suppression to show that plasticity induced by learning another individual’s values impacts upon a value representation for oneself in medial prefrontal cortex (mPFC), a plasticity also evident behaviorally in a preference shift. We show this plasticity is driven by a striatal “prediction error,” signaling the discrepancy between the other’s choice and a subject’s own preferences. Thus, our data highlight that mPFC encodes agent-independent representations of subjective value, such that prediction errors simultaneously update multiple agents’ value representations. As the resulting change in representational similarity predicts interindividual differences in the malleability of subjective preferences, our findings shed mechanistic light on complex human processes such as the powerful influence of social interaction on beliefs and preferences. PMID:25611512
Multiple idiopathic external apical root resorption: report of four cases.
Cholia, S S; Wilson, P H R; Makdissi, J
2005-07-01
Multiple idiopathic external root resorption is an unusual condition that may present in a cervical or an apical form. In this article, we review the published literature relating to multiple idiopathic external apical root resorption and present four clinical cases. We consider the aetiology of this condition and discuss the various treatment options.
Wanting, liking, and preference construction.
Dai, Xianchi; Brendl, C Miguel; Ariely, Dan
2010-06-01
According to theories on preference construction, multiple preferences result from multiple contexts (e.g., loss vs. gain frames). This implies that people can have different representations of a preference in different contexts. Drawing on Berridge's (1999) distinction between unconscious liking and wanting, we hypothesize that people may have multiple representations of a preference toward an object even within a single context. Specifically, we propose that people can have different representations of an object's motivational value, or incentive value, versus its emotional value, or likability, even when the object is placed in the same context. Study 1 establishes a divergence between incentive value and likability of faces using behavioral measures. Studies 2A and 2B, using self-report measures, provide support for our main hypothesis that people are perfectly aware of these distinct representations and are able to access them concurrently at will. We also discuss implications of our findings for the truism that people seek pleasure and for expectancy-value theories.
Video based object representation and classification using multiple covariance matrices.
Zhang, Yurong; Liu, Quan
2017-01-01
Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.
Transformations in the Visual Representation of a Figural Pattern
ERIC Educational Resources Information Center
Montenegro, Paula; Costa, Cecília; Lopes, Bernardino
2018-01-01
Multiple representations of a given mathematical object/concept are one of the biggest difficulties encountered by students. The aim of this study is to investigate the impact of the use of visual representations in teaching and learning algebra. In this paper, we analyze the transformations from and to visual representations that were performed…
Psychophysical Reverse Correlation with Multiple Response Alternatives
Dai, Huanping; Micheyl, Christophe
2011-01-01
Psychophysical reverse-correlation methods such as the “classification image” technique provide a unique tool to uncover the internal representations and decision strategies of individual participants in perceptual tasks. Over the last thirty years, these techniques have gained increasing popularity among both visual and auditory psychophysicists. However, thus far, principled applications of the psychophysical reverse-correlation approach have been almost exclusively limited to two-alternative decision (detection or discrimination) tasks. Whether and how reverse-correlation methods can be applied to uncover perceptual templates and decision strategies in situations involving more than just two response alternatives remains largely unclear. Here, the authors consider the problem of estimating perceptual templates and decision strategies in stimulus identification tasks with multiple response alternatives. They describe a modified correlational approach, which can be used to solve this problem. The approach is evaluated under a variety of simulated conditions, including different ratios of internal-to-external noise, different degrees of correlations between the sensory observations, and various statistical distributions of stimulus perturbations. The results indicate that the proposed approach is reasonably robust, suggesting that it could be used in future empirical studies. PMID:20695712
The Nature of Change Detection and Online Representations of Scenes
ERIC Educational Resources Information Center
Ryan,J ennifer D.; Cohen, Neal J.
2004-01-01
This article provides evidence for implicit change detection and for the contribution of multiple memory sources to online representations. Multiple eye-movement measures distinguished original from changed scenes, even when college students had no conscious awareness for the change. Patients with amnesia showed a systematic deficit on 1 class of…
ERIC Educational Resources Information Center
Bergey, Bradley W.; Cromley, Jennifer G.; Newcombe, Nora S.
2015-01-01
There is growing evidence that targeted instruction can improve diagram comprehension, yet one of the skills identified in the diagram comprehension literature--coordinating multiple representations--has rarely been directly taught to students and tested as a classroom intervention. We created a Coordinating Multiple Representation (CMR)…
Wait-Time and Multiple Representation Levels in Chemistry Lessons
ERIC Educational Resources Information Center
Li, Winnie Sim Siew; Arshad, Mohammad Yusof
2014-01-01
Wait-time is an important aspect in a teaching and learning process, especially after the teacher has posed questions to students, as it is one of the factors in determining quality of students' responses. This article describes the practices of wait-time one after teacher's questions at multiple representation levels among twenty three chemistry…
Real-World Contexts, Multiple Representations, Student-Invented Terminology, and Y-Intercept
ERIC Educational Resources Information Center
Davis, Jon D.
2007-01-01
One classroom using two units from a "Standards"-based curriculum was the focus of a study designed to examine the effects of real-world contexts, delays in the introduction of formal mathematics terminology, and multiple function representations on student understanding. Students developed their own terminology for y-intercept, which was tightly…
Coordinating Multiple Representations in a Reform Calculus Textbook
ERIC Educational Resources Information Center
Chang, Briana L.; Cromley, Jennifer G.; Tran, Nhi
2015-01-01
Coordination of multiple representations (CMR) is widely recognized as a critical skill in mathematics and is frequently demanded in reform calculus textbooks. However, little is known about the prevalence of coordination tasks in such textbooks. We coded 707 instances of CMR in a widely used reform calculus textbook and analyzed the distributions…
Learning by Understanding: The Role of Multiple Representations in Learning Algebra.
ERIC Educational Resources Information Center
Brenner, Mary E.; Mayer, Richard E.; Moseley, Bryan; Brar, Theresa; Duran, Richard; Reed, Barbara Smith; Webb, David
1997-01-01
In posttest results, 76 prealgebra students who learned about functions in a unit emphasizing multiple formats, anchoring learning in a thematic context, and problem solving in cooperative groups were more successful at problem solving and problem representation than were 56 comparison students conventionally taught. Similar results were found for…
ERIC Educational Resources Information Center
Chandrasegaran, A. L.; Treagust, David F.; Mocerino, Mauro
2011-01-01
This study involved the evaluation of the efficacy of a planned instructional program to facilitate understanding of the macroscopic, submicroscopic and symbolic representational systems when describing and explaining chemical reactions by sixty-five Grade 9 students in a Singapore secondary school. A two-tier multiple-choice diagnostic instrument…
Coordinating Multiple Representations in a Reform Calculus Textbook
ERIC Educational Resources Information Center
Chang, Briana L.; Cromley, Jennifer G.; Tran, Nhi
2016-01-01
Coordination of multiple representations (CMR) is widely recognized as a critical skill in mathematics and is frequently demanded in reform calculus textbooks. However, little is known about the prevalence of coordination tasks in such textbooks. We coded 707 instances of CMR in a widely used reform calculus textbook and analyzed the distributions…
ERIC Educational Resources Information Center
Rosengrant, David
2011-01-01
Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists. These representations include: pictures, free-body diagrams, energy bar charts, electrical circuits, and, more recently, computer simulations and…
ERIC Educational Resources Information Center
Rau, Martina A.; Aleven, Vincent; Rummel, Nikol
2017-01-01
Prior research shows that representational competencies that enable students to use graphical representations to reason and solve tasks is key to learning in many science, technology, engineering, and mathematics domains. We focus on two types of representational competencies: (1) "sense making" of connections by verbally explaining how…
ERIC Educational Resources Information Center
Goodwin, Amanda P.; Gilbert, Jennifer K.; Cho, Sun-Joo; Kearns, Devin M.
2014-01-01
The current study models reader, item, and word contributions to the lexical representations of 39 morphologically complex words for 172 middle school students using a crossed random-effects item response model with multiple outcomes. We report 3 findings. First, results suggest that lexical representations can be characterized by separate but…
Improving the learning of clinical reasoning through computer-based cognitive representation.
Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A
2014-01-01
Objective Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.
Improving the learning of clinical reasoning through computer-based cognitive representation
Wu, Bian; Wang, Minhong; Johnson, Janice M.; Grotzer, Tina A.
2014-01-01
Objective Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results A significant improvement was found in students’ learning products from the beginning to the end of the study, consistent with students’ report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction. PMID:25518871
Improving the learning of clinical reasoning through computer-based cognitive representation.
Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A
2014-01-01
Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.
Using Multiple Representations to Resolve Conflict in Student Conceptual Understanding of Chemistry
NASA Astrophysics Data System (ADS)
Daubenmire, Paul L.
Much like a practiced linguist, expert chemists utilize the power and elegance of chemical symbols to understand what is happening at the atomic level and to manipulate atoms and molecules to effect an observable change at the macroscopic level. Unfortunately, beginning chemistry is often taught in a way that emphasizes memorizing the symbolic representations of equations and reactions without much opportunity to meaningfully connect the observable macroscopic phenomena with an understanding of the chemistry taking place at the atomic level. The compartmentalized manner of chemistry instruction in most chemistry classrooms further nullifies the efficacy of the triplet relationship to connect between macroscopic observations, symbolic representations, and atomic scale views. If symbolic representations are presented as the goal of instruction, rather than as the means to gain understanding, then students will be impaired in developing a coherent understanding of chemical principles. This dissertation describes the development and implementation of an interview study to examine how undergraduate students interpreted multiple representations of a chemical equilibrium. To establish a baseline of ideas, students first were coached to verbally generate successive representations. They were then cued to think about the chemistry occurring between atoms and ions at the molecular level. Next, an experiment involving a change in states of matter and color was performed which paralleled the symbolic representations. Through self-explanations and verbalizing of conjectures, students were encouraged to explore, interpret, and refine their understanding of the observations related to the chemical symbols presented to them. Finally, with the goal of fostering a deeper understanding of the process of equilibrium, a dynamic visualization of the molecular level was introduced as a tool for helping students connect these multiple representations. This study revealed that one way in which students develop conceptual understanding and resolve conflicts between different representations of the same phenomena is by verbalizing their ideas as a conjecture (as a verbal explanation to advance towards a hypothesis). Thus, it is proposed that symbolic representations are most effective viewed not as an end goal but as a bridge for connecting macroscopic, visible phenomena with what is occurring at the molecular, invisible level. When the focus on merely memorizing chemical equations and symbols is removed, students can gain a coherent understanding of the meaning available when multiple representations are viewed together.
ERIC Educational Resources Information Center
Won, Mihye; Yoon, Heojeong; Treagust, David F.
2014-01-01
The purpose of this study was to understand how students utilized multiple representations to learn and explain science concepts, in this case the human breathing mechanism. The study was conducted with Grade 11 students in a human biology class. Semistructured interviews and a two-tier diagnostic test were administered to evaluate students'…
ERIC Educational Resources Information Center
Beyranevand, Matthew L.
2010-01-01
Although it is difficult to find any current literature that does not encourage use of multiple representations in mathematics classrooms, there has been very limited research that compared such practice to student achievement level on standardized tests. This study examined the associations between students' achievement levels and their (a)…
ERIC Educational Resources Information Center
Flores, Raymond; Koontz, Esther; Inan, Fethi A.; Alagic, Mara
2015-01-01
This study examined the impact of the order of two teaching approaches on students' abilities and on-task behaviors while learning how to solve percentage problems. Two treatment groups were compared. MR first received multiple representation instruction followed by traditional algorithmic instruction and TA first received these teaching…
ERIC Educational Resources Information Center
Yilmaz, Yasemin; Durmus, Soner; Yaman, Hakan
2018-01-01
This study investigated the pattern problems posed by middle school mathematics preservice teachers using multiple representations to determine both their pattern knowledge levels and their abilities to transfer this knowledge to students. The design of the study is the survey method, one of the quantitative research methods. The study group was…
ERIC Educational Resources Information Center
Namdar, Bahadir; Shen, Ji
2016-01-01
Using multiple representations and argumentation are two fundamental processes in science. With the advancements of information communication technologies, these two processes are blended more so than ever before. However, little is known about how these two processes interact with each other in student learning. Hence, we conducted a design-based…
Object-based benefits without object-based representations.
Fougnie, Daryl; Cormiea, Sarah M; Alvarez, George A
2013-08-01
Influential theories of visual working memory have proposed that the basic units of memory are integrated object representations. Key support for this proposal is provided by the same object benefit: It is easier to remember multiple features of a single object than the same set of features distributed across multiple objects. Here, we replicate the object benefit but demonstrate that features are not stored as single, integrated representations. Specifically, participants could remember 10 features better when arranged in 5 objects compared to 10 objects, yet memory for one object feature was largely independent of memory for the other object feature. These results rule out the possibility that integrated representations drive the object benefit and require a revision of the concept of object-based memory representations. We propose that working memory is object-based in regard to the factors that enhance performance but feature based in regard to the level of representational failure. PsycINFO Database Record (c) 2013 APA, all rights reserved.
ERIC Educational Resources Information Center
Borba, Marcelo; Confrey, Jere
Function Probe is a multi-representational software for Apple Macintosh computers. It was designed to allow students to approach problems in different ways and/or use different representations. This case study describes a 16-year-old student as he creates a path among a variety of representations of transformations of functions while using the…
Integration of internal and external facial features in 8- to 10-year-old children and adults.
Meinhardt-Injac, Bozana; Persike, Malte; Meinhardt, Günter
2014-06-01
Investigation of whole-part and composite effects in 4- to 6-year-old children gave rise to claims that face perception is fully mature within the first decade of life (Crookes & McKone, 2009). However, only internal features were tested, and the role of external features was not addressed, although external features are highly relevant for holistic face perception (Sinha & Poggio, 1996; Axelrod & Yovel, 2010, 2011). In this study, 8- to 10-year-old children and adults performed a same-different matching task with faces and watches. In this task participants attended to either internal or external features. Holistic face perception was tested using a congruency paradigm, in which face and non-face stimuli either agreed or disagreed in both features (congruent contexts) or just in the attended ones (incongruent contexts). In both age groups, pronounced context congruency and inversion effects were found for faces, but not for watches. These findings indicate holistic feature integration for faces. While inversion effects were highly similar in both age groups, context congruency effects were stronger for children. Moreover, children's face matching performance was generally better when attending to external compared to internal features. Adults tended to perform better when attending to internal features. Our results indicate that both adults and 8- to 10-year-old children integrate external and internal facial features into holistic face representations. However, in children's face representations external features are much more relevant. These findings suggest that face perception is holistic but still not adult-like at the end of the first decade of life. Copyright © 2014 Elsevier B.V. All rights reserved.
Multiple Representations-Based Face Sketch-Photo Synthesis.
Peng, Chunlei; Gao, Xinbo; Wang, Nannan; Tao, Dacheng; Li, Xuelong; Li, Jie
2016-11-01
Face sketch-photo synthesis plays an important role in law enforcement and digital entertainment. Most of the existing methods only use pixel intensities as the feature. Since face images can be described using features from multiple aspects, this paper presents a novel multiple representations-based face sketch-photo-synthesis method that adaptively combines multiple representations to represent an image patch. In particular, it combines multiple features from face images processed using multiple filters and deploys Markov networks to exploit the interacting relationships between the neighboring image patches. The proposed framework could be solved using an alternating optimization strategy and it normally converges in only five outer iterations in the experiments. Our experimental results on the Chinese University of Hong Kong (CUHK) face sketch database, celebrity photos, CUHK Face Sketch FERET Database, IIIT-D Viewed Sketch Database, and forensic sketches demonstrate the effectiveness of our method for face sketch-photo synthesis. In addition, cross-database and database-dependent style-synthesis evaluations demonstrate the generalizability of this novel method and suggest promising solutions for face identification in forensic science.
Vietnamese Document Representation and Classification
NASA Astrophysics Data System (ADS)
Nguyen, Giang-Son; Gao, Xiaoying; Andreae, Peter
Vietnamese is very different from English and little research has been done on Vietnamese document classification, or indeed, on any kind of Vietnamese language processing, and only a few small corpora are available for research. We created a large Vietnamese text corpus with about 18000 documents, and manually classified them based on different criteria such as topics and styles, giving several classification tasks of different difficulty levels. This paper introduces a new syllable-based document representation at the morphological level of the language for efficient classification. We tested the representation on our corpus with different classification tasks using six classification algorithms and two feature selection techniques. Our experiments show that the new representation is effective for Vietnamese categorization, and suggest that best performance can be achieved using syllable-pair document representation, an SVM with a polynomial kernel as the learning algorithm, and using Information gain and an external dictionary for feature selection.
NASA Astrophysics Data System (ADS)
Allen, Emily Christine
Mental models for scientific learning are often defined as, "cognitive tools situated between experiments and theories" (Duschl & Grandy, 2012). In learning, these cognitive tools are used to not only take in new information, but to help problem solve in new contexts. Nancy Nersessian (2008) describes a mental model as being "[loosely] characterized as a representation of a system with interactive parts with representations of those interactions. Models can be qualitative, quantitative, and/or simulative (mental, physical, computational)" (p. 63). If conceptual parts used by the students in science education are inaccurate, then the resulting model will not be useful. Students in college general chemistry courses are presented with multiple abstract topics and often struggle to fit these parts into complete models. This is especially true for topics that are founded on quantum concepts, such as atomic structure and molecular bonding taught in college general chemistry. The objectives of this study were focused on how students use visual tools introduced during instruction to reason with atomic and molecular structure, what misconceptions may be associated with these visual tools, and how visual modeling skills may be taught to support students' use of visual tools for reasoning. The research questions for this study follow from Gilbert's (2008) theory that experts use multiple representations when reasoning and modeling a system, and Kozma and Russell's (2005) theory of representational competence levels. This study finds that as students developed greater command of their understanding of abstract quantum concepts, they spontaneously provided additional representations to describe their more sophisticated models of atomic and molecular structure during interviews. This suggests that when visual modeling with multiple representations is taught, along with the limitations of the representations, it can assist students in the development of models for reasoning about abstract topics such as atomic and molecular structure. There is further gain if students' difficulties with these representations are targeted through the use additional instruction such as a workbook that requires the students to exercise their visual modeling skills.
NASA Astrophysics Data System (ADS)
Suzuki, Akito
2008-04-01
We study a model of the quantized electromagnetic field interacting with an external static source ρ in the Feynman (Lorentz) gauge and construct the quantized radiation field Aμ (μ=0,1,2,3) as an operator-valued distribution acting on the Fock space F with an indefinite metric. By using the Gupta subsidiary condition ∂μAμ(x)(+)Ψ=0, one can select the physical subspace Vphys. According to the Gupta-Bleuler formalism, Vphys is a non-negative subspace so that elements of Vphys, called physical states, can be probabilistically interpretable. Indeed, assuming that the external source ρ is infrared regular, i.e., ρ̂/∣k∣3/2ɛL2(R3), we can characterize the physical subspace Vphys and show that Vphys is non-negative. In addition, we find that the Hamiltonian of the model is reduced to the Hamiltonian of the transverse photons with the Coulomb interaction. We, however, prove that the physical subspace is trivial, i.e., Vphys={0}, if and only if the external source ρ is infrared singular, i.e., ρ̂/∣k∣3/2∉L2(R3). We also discuss a representation different from the above representation such that the physical subspace is not trivial under the infrared singular condition.
Thoughts on representation in therapy of Holocaust survivors.
Moore, Yael
2009-12-01
This paper presents the problems of representation and lack of representation in treating Holocaust survivors, through clinical vignettes and various theoreticians. The years of Nazi persecution and murder brought about a destruction of symbolization and turning inner and external reality into the Thing itself, the concrete, or, in Lacan's words, 'The Thing'. The paper presents two ideas related to praxis as well as theory in treating Holocaust survivors: the first is related to the therapist's treatment of the Holocaust nightmare expressing the traumatic events just as they happened 63 years previously; the second deals with the attempt at subjectification, in contrast to the objectification forced by the Nazis on their victims.
A coupled-oscillator model of olfactory bulb gamma oscillations
2017-01-01
The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING), best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity. PMID:29140973
Optimal actuator location within a morphing wing scissor mechanism configuration
NASA Astrophysics Data System (ADS)
Joo, James J.; Sanders, Brian; Johnson, Terrence; Frecker, Mary I.
2006-03-01
In this paper, the optimal location of a distributed network of actuators within a scissor wing mechanism is investigated. The analysis begins by developing a mechanical understanding of a single cell representation of the mechanism. This cell contains four linkages connected by pin joints, a single actuator, two springs to represent the bidirectional behavior of a flexible skin, and an external load. Equilibrium equations are developed using static analysis and the principle of virtual work equations. An objective function is developed to maximize the efficiency of the unit cell model. It is defined as useful work over input work. There are two constraints imposed on this problem. The first is placed on force transferred from the external source to the actuator. It should be less than the blocked actuator force. The other is to require the ratio of output displacement over input displacement, i.e., geometrical advantage (GA), of the cell to be larger than a prescribed value. Sequential quadratic programming is used to solve the optimization problem. This process suggests a systematic approach to identify an optimum location of an actuator and to avoid the selection of location by trial and error. Preliminary results show that optimum locations of an actuator can be selected out of feasible regions according to the requirements of the problem such as a higher GA, a higher efficiency, or a smaller transferred force from external force. Results include analysis of single and multiple cell wing structures and some experimental comparisons.
Multimedia Learning: Beyond Modality. Commentary.
ERIC Educational Resources Information Center
Reimann, P.
2003-01-01
Identifies and summarizes instructional messages in the articles in this theme issue and also identifies central theoretical issues, focusing on: (1) external representations; (2) dual coding theory; and (3) the effects of animations on learning. (SLD)
NASA Technical Reports Server (NTRS)
Miles, J. H.
1974-01-01
A rational function is presented for the acoustic spectra generated by deflection of engine exhaust jets for under-the-wing and over-the-wing versions of externally blown flaps. The functional representation is intended to provide a means for compact storage of data and for data analysis. The expressions are based on Fourier transform functions for the Strouhal normalized pressure spectral density, and on a correction for reflection effects based on the N-independent-source model of P. Thomas extended by use of a reflected ray transfer function. Curve fit comparisons are presented for blown flap data taken from turbofan engine tests and from large scale cold-flow model tests. Application of the rational function to scrubbing noise theory is also indicated.
ERIC Educational Resources Information Center
Sunyono; Yuanita, L.; Ibrahim, M.
2015-01-01
The aim of this research is identify the effectiveness of a multiple representation-based learning model, which builds a mental model within the concept of atomic structure. The research sample of 108 students in 3 classes is obtained randomly from among students of Mathematics and Science Education Studies using a stratified random sampling…
ERIC Educational Resources Information Center
Rau, Martina A.; Aleven, Vincent; Rummel, Nikol
2017-01-01
Prior research shows that multiple representations can enhance learning, provided that students make connections among them. We hypothesized that support for connection making is most effective in enhancing learning of domain knowledge if it helps students both in making sense of these connections and in becoming perceptually fluent in making…
What Students Choose to Do and Have to Say about Use of Multiple Representations in College Algebra
ERIC Educational Resources Information Center
Herman, Marlena
2007-01-01
This report summarizes findings on strategies chosen by students (n=38) when solving algebra problems related to various functions with the freedom to use a TI-83 graphing calculator, influences on student problem-solving strategy choices, student ability to approach algebra problems with use of multiple representations, and student beliefs on how…
ERIC Educational Resources Information Center
Nixon, Ryan S.; Smith, Leigh K.; Wimmer, Jennifer J.
2015-01-01
This quasi-experimental study investigated how explicit instruction about multiple modes of representation (MMR) impacted grades 7 (n = 61) and 8 (n = 141) students' learning and multimodal use on end-of-unit assessments. Half of each teacher's (n = 3) students received an intervention consisting of explicit instruction on MMR in science…
Learning with Multiple Representations: An Example of a Revision Lesson in Mathematics
ERIC Educational Resources Information Center
Wong, Darren; Poo, Sng Peng; Hock, Ng Eng; Kang, Wee Loo
2011-01-01
We describe an example of learning with multiple representations in an A-level revision lesson on mechanics. The context of the problem involved the motion of a ball thrown vertically upwards in air and studying how the associated physical quantities changed during its flight. Different groups of students were assigned to look at the ball's motion…
ERIC Educational Resources Information Center
Rau, Martina A.; Scheines, Richard
2012-01-01
Although learning from multiple representations has been shown to be effective in a variety of domains, little is known about the mechanisms by which it occurs. We analyzed log data on error-rate, hint-use, and time-spent obtained from two experiments with a Cognitive Tutor for fractions. The goal of the experiments was to compare learning from…
NASA Astrophysics Data System (ADS)
Suminar, Iin; Muslim, Liliawati, Winny
2017-05-01
The purpose of this research was to identify student's written argument embedded in scientific inqury investigation and argumentation skill using integrated argument-based inquiry with multiple representation approach. This research was using quasi experimental method with the nonequivalent pretest-posttest control group design. Sample ot this research was 10th grade students at one of High School in Bandung using two classes, they were 26 students of experiment class and 26 students of control class. Experiment class using integrated argument-based inquiry with multiple representation approach, while control class using argument-based inquiry. This study was using argumentation worksheet and argumentation test. Argumentation worksheet encouraged students to formulate research questions, design experiment, observe experiment and explain the data as evidence, construct claim, warrant, embedded multiple modus representation and reflection. Argumentation testinclude problem which asks students to explain evidence, warrants, and backings support of each claim. The result of this research show experiment class students's argumentation skill performed better than control class students that
Attitude Error Representations for Kalman Filtering
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Bauer, Frank H. (Technical Monitor)
2002-01-01
The quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation. The quaternion must obey a unit norm constraint, though, which has led to the development of an extended Kalman filter using a quaternion for the global attitude estimate and a three-component representation for attitude errors. We consider various attitude error representations for this Multiplicative Extended Kalman Filter and its second-order extension.
Sartori, Andrea C; Wadley, Virginia G; Clay, Olivio J; Parisi, Jeanine M; Rebok, George W; Crowe, Michael
2012-06-01
We examined the relationship of cognitive and functional measures with life space (a measure of spatial mobility examining extent of movement within a person's environment) in older adults, and investigated the potential moderating role of personal control beliefs. Internal control beliefs reflect feelings of competence and personal agency, while attributions of external control imply a more dependent or passive point of view. Participants were 2,737 adults from the ACTIVE study, with a mean age of 74 years. Females comprised 76% of the sample, with good minority representation (27% African American). In multiple regression models controlling for demographic factors, cognitive domains of memory, reasoning, and processing speed were significantly associated with life space (p < .001 for each), and reasoning ability appeared most predictive (B = .117). Measures of everyday function also showed significant associations with life space, independent from the traditional cognitive measures. Interactions between cognitive function and control beliefs were tested, and external control beliefs moderated the relationship between memory and life space, with the combination of high objective memory and low external control beliefs yielding the highest life space (t = -2.07; p = .039). In conclusion, older adults with better cognitive function have a larger overall life space. Performance-based measures of everyday function may also be useful in assessing the functional outcome of life space. Additionally, subjective external control beliefs may moderate the relationship between objective cognitive function and life space. Future studies examining the relationships between these factors longitudinally appear worthwhile to further elucidate the interrelationships of cognitive function, control beliefs, and life space. PsycINFO Database Record (c) 2012 APA, all rights reserved
Do Knowledge-Component Models Need to Incorporate Representational Competencies?
ERIC Educational Resources Information Center
Rau, Martina Angela
2017-01-01
Traditional knowledge-component models describe students' content knowledge (e.g., their ability to carry out problem-solving procedures or their ability to reason about a concept). In many STEM domains, instruction uses multiple visual representations such as graphs, figures, and diagrams. The use of visual representations implies a…
Drawing Connections across Conceptually Related Visual Representations in Science
ERIC Educational Resources Information Center
Hansen, Janice
2013-01-01
This dissertation explored beliefs about learning from multiple related visual representations in science, and compared beliefs to learning outcomes. Three research questions were explored: 1) What beliefs do pre-service teachers, non-educators and children have about learning from visual representations? 2) What format of presenting those…
Multimodal Literacies in Science: Currency, Coherence and Focus
ERIC Educational Resources Information Center
Klein, Perry D.; Kirkpatrick, Lori C.
2010-01-01
Since the 1990s, researchers have increasingly drawn attention to the multiplicity of representations used in science. This issue of "RISE" advances this line of research by placing such representations at the centre of science teaching and learning. The authors show that representations do not simply transmit scientific information; they are…
Student Difficulties Regarding Symbolic and Graphical Representations of Vector Fields
ERIC Educational Resources Information Center
Bollen, Laurens; van Kampen, Paul; Baily, Charles; Kelly, Mossy; De Cock, Mieke
2017-01-01
The ability to switch between various representations is an invaluable problem-solving skill in physics. In addition, research has shown that using multiple representations can greatly enhance a person's understanding of mathematical and physical concepts. This paper describes a study of student difficulties regarding interpreting, constructing,…
Conditions for the Effectiveness of Multiple Visual Representations in Enhancing STEM Learning
ERIC Educational Resources Information Center
Rau, Martina A.
2017-01-01
Visual representations play a critical role in enhancing science, technology, engineering, and mathematics (STEM) learning. Educational psychology research shows that adding visual representations to text can enhance students' learning of content knowledge, compared to text-only. But should students learn with a single type of visual…
ERIC Educational Resources Information Center
McPadden, Daryl; Brewe, Eric
2017-01-01
Representation use is a critical skill for learning, problem solving, and communicating in science, especially in physics where multiple representations often scaffold the understanding of a phenomenon. University Modeling Instruction, which is an active-learning, research-based introductory physics curriculum centered on students' use of…
Luciano, Margaret M; Mathieu, John E; Ruddy, Thomas M
2014-03-01
External leaders continue to be an important source of influence even when teams are empowered, but it is not always clear how they do so. Extending research on structurally empowered teams, we recognize that teams' external leaders are often responsible for multiple teams. We adopt a multilevel approach to model external leader influences at both the team level and the external leader level of analysis. In doing so, we distinguish the influence of general external leader behaviors (i.e., average external leadership) from those that are directed differently toward the teams that they lead (i.e., relative external leadership). Analysis of data collected from 451 individuals, in 101 teams, reporting to 25 external leaders, revealed that both relative and average external leadership related positively to team empowerment. In turn, team empowerment related positively to team performance and member job satisfaction. However, while the indirect effects were all positive, we found that relative external leadership was not directly related to team performance, and average external leadership evidenced a significant negative direct influence. Additionally, relative external leadership exhibited a significant direct positive influence on member job satisfaction as anticipated, whereas average external leadership did not. These findings attest to the value in distinguishing external leaders' behaviors that are exhibited consistently versus differentially across empowered teams. Implications and future directions for the study and management of external leaders overseeing multiple teams are discussed.
NASA Astrophysics Data System (ADS)
Mathar, Richard J.
Long-baseline interferometry detects fringes created by superposition of two beams of light collected by two telescopes pointing into a common direction. The external path difference is commonly compensated by adding a variable optical path length (delay) through air for one beam such that the optical path difference between the beams remains close to zero near the detector. The ABCD formula assigns a (wrapped) phase to the signals A to D of an interference pattern shifted by multiples of 90 degrees in phase. We study the interplay between a broad spectral passband of the optics and the dispersion of the air in the compensating delay, which leads to small deviations between the ABCD phase and the reduced, monochromatic group-delay representation of the wave packets. This adds dispersion to the effects that have been discussed for evacuated interferometers before (Milman 2005).
Integrating pedagogical content knowledge and pedagogical/psychological knowledge in mathematics
Harr, Nora; Eichler, Andreas; Renkl, Alexander
2014-01-01
In teacher education at universities, general pedagogical and psychological principles are often treated separately from subject matter knowledge and therefore run the risk of not being applied in the teaching subject. In an experimental study (N = 60 mathematics student teachers) we investigated the effects of providing aspects of general pedagogical/psychological knowledge (PPK) and pedagogical content knowledge (PCK) in an integrated or separated way. In both conditions (“integrated” vs. “separated”), participants individually worked on computer-based learning environments addressing the same topic: use and handling of multiple external representations, a central issue in mathematics. We experimentally varied whether PPK aspects and PCK aspects were treated integrated or apart from one another. As expected, the integrated condition led to greater application of pedagogical/psychological aspects and an increase in applying both knowledge types simultaneously compared to the separated condition. Overall, our findings indicate beneficial effects of an integrated design in teacher education. PMID:25191300
Integrating pedagogical content knowledge and pedagogical/psychological knowledge in mathematics.
Harr, Nora; Eichler, Andreas; Renkl, Alexander
2014-01-01
In teacher education at universities, general pedagogical and psychological principles are often treated separately from subject matter knowledge and therefore run the risk of not being applied in the teaching subject. In an experimental study (N = 60 mathematics student teachers) we investigated the effects of providing aspects of general pedagogical/psychological knowledge (PPK) and pedagogical content knowledge (PCK) in an integrated or separated way. In both conditions ("integrated" vs. "separated"), participants individually worked on computer-based learning environments addressing the same topic: use and handling of multiple external representations, a central issue in mathematics. We experimentally varied whether PPK aspects and PCK aspects were treated integrated or apart from one another. As expected, the integrated condition led to greater application of pedagogical/psychological aspects and an increase in applying both knowledge types simultaneously compared to the separated condition. Overall, our findings indicate beneficial effects of an integrated design in teacher education.
Psychology of knowledge representation.
Grimm, Lisa R
2014-05-01
Every cognitive enterprise involves some form of knowledge representation. Humans represent information about the external world and internal mental states, like beliefs and desires, and use this information to meet goals (e.g., classification or problem solving). Unfortunately, researchers do not have direct access to mental representations. Instead, cognitive scientists design experiments and implement computational models to develop theories about the mental representations present during task performance. There are several main types of mental representation and corresponding processes that have been posited: spatial, feature, network, and structured. Each type has a particular structure and a set of processes that are capable of accessing and manipulating information within the representation. The structure and processes determine what information can be used during task performance and what information has not been represented at all. As such, the different types of representation are likely used to solve different kinds of tasks. For example, structured representations are more complex and computationally demanding, but are good at representing relational information. Researchers interested in human psychology would benefit from considering how knowledge is represented in their domain of inquiry. For further resources related to this article, please visit the WIREs website. The author has declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
Progress made in reducing MAGSAT data and displaying magnetic field perturbations caused primarily by external currents is reported. A periodic and repeatable perturbation pattern is described that arises from external current effects but appears as unique signatures associated with upper middle latitudes on the Earth's surface. Initial testing of the modeling procedure that was developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere and magnetosphere is also discussed. The modeling technique utilizes a linear current element representation of the large scale space current system.
ERIC Educational Resources Information Center
Wichaidit, Patcharee Rompayom; Wichaidit, Sittichai
2016-01-01
Learning chemistry may be difficult for students for several reasons, such as the abstract nature of many chemistry concepts and the fact that students may view chemistry as irrelevant to their everyday lives. Teaching chemistry in familiar contexts and the use of multiple representations are seen as effective approaches for enhancing students'…
ERIC Educational Resources Information Center
Vinz, Ruth
Focusing on three literature teachers who have lived with and through the changing representations of the discipline, this paper, an examination of the nature of inquiry in literature education, describes the multiple realities that such teachers must negotiate for themselves and their students. The paper discusses conceptions of reflective…
An ellipsoidal representation of human hand anthropometry
NASA Technical Reports Server (NTRS)
Buchholz, Bryan; Armstrong, Thomas J.
1991-01-01
Anthropometric data concerning the heometry of the hand's surface are presently modeled as a function of gross external hand measurements; an effort is made to evaluate the accuracy with which ellipsoids describe the geometry of the hand segments. Graphical comparisons indicate that differences between the ellipsoidal approximations and the breadth and depth measurements were greatest near the joints. On the bases of the present data, a set of overlapping ellipsoids could furnish a more accurate representation of hand geometry for adaptation to ellipsoid segment-geometry employing biomechanical models.
Orienting Attention to Sound Object Representations Attenuates Change Deafness
ERIC Educational Resources Information Center
Backer, Kristina C.; Alain, Claude
2012-01-01
According to the object-based account of attention, multiple objects coexist in short-term memory (STM), and we can selectively attend to a particular object of interest. Although there is evidence that attention can be directed to visual object representations, the assumption that attention can be oriented to sound object representations has yet…
Research-Based Worksheets on Using Multiple Representations in Science Classrooms
ERIC Educational Resources Information Center
Hill, Matthew; Sharma, Manjula
2015-01-01
The ability to represent the world like a scientist is difficult to teach; it is more than simply knowing the representations (e.g., graphs, words, equations and diagrams). For meaningful science learning to take place, consideration needs to be given to explicitly integrating representations into instructional methods, linked to the content, and…
Calibrating Bayesian Network Representations of Social-Behavioral Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, Paul D.; Walsh, Stephen J.
2010-04-08
While human behavior has long been studied, recent and ongoing advances in computational modeling present opportunities for recasting research outcomes in human behavior. In this paper we describe how Bayesian networks can represent outcomes of human behavior research. We demonstrate a Bayesian network that represents political radicalization research – and show a corresponding visual representation of aspects of this research outcome. Since Bayesian networks can be quantitatively compared with external observations, the representation can also be used for empirical assessments of the research which the network summarizes. For a political radicalization model based on published research, we show this empiricalmore » comparison with data taken from the Minorities at Risk Organizational Behaviors database.« less
Methods and computer readable medium for improved radiotherapy dosimetry planning
Wessol, Daniel E.; Frandsen, Michael W.; Wheeler, Floyd J.; Nigg, David W.
2005-11-15
Methods and computer readable media are disclosed for ultimately developing a dosimetry plan for a treatment volume irradiated during radiation therapy with a radiation source concentrated internally within a patient or incident from an external beam. The dosimetry plan is available in near "real-time" because of the novel geometric model construction of the treatment volume which in turn allows for rapid calculations to be performed for simulated movements of particles along particle tracks therethrough. The particles are exemplary representations of alpha, beta or gamma emissions emanating from an internal radiation source during various radiotherapies, such as brachytherapy or targeted radionuclide therapy, or they are exemplary representations of high-energy photons, electrons, protons or other ionizing particles incident on the treatment volume from an external source. In a preferred embodiment, a medical image of a treatment volume irradiated during radiotherapy having a plurality of pixels of information is obtained.
Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C
2015-08-12
Human parietal cortex plays a central role in encoding visuospatial information and multiple visual maps exist within the intraparietal sulcus (IPS), with each hemisphere symmetrically representing contralateral visual space. Two forms of hemispheric asymmetries have been identified in parietal cortex ventrolateral to visuotopic IPS. Key attentional processes are localized to right lateral parietal cortex in the temporoparietal junction and long-term memory (LTM) retrieval processes are localized to the left lateral parietal cortex in the angular gyrus. Here, using fMRI, we investigate how spatial representations of visuotopic IPS are influenced by stimulus-guided visuospatial attention and by LTM-guided visuospatial attention. We replicate prior findings that a hemispheric asymmetry emerges under stimulus-guided attention: in the right hemisphere (RH), visual maps IPS0, IPS1, and IPS2 code attentional targets across the visual field; in the left hemisphere (LH), IPS0-2 codes primarily contralateral targets. We report the novel finding that, under LTM-guided attention, both RH and LH IPS0-2 exhibit bilateral responses and hemispheric symmetry re-emerges. Therefore, we demonstrate that both hemispheres of IPS0-2 are independently capable of dynamically changing spatial coding properties as attentional task demands change. These findings have important implications for understanding visuospatial and memory-retrieval deficits in patients with parietal lobe damage. The human parietal lobe contains multiple maps of the external world that spatially guide perception, action, and cognition. Maps in each cerebral hemisphere code information from the opposite side of space, not from the same side, and the two hemispheres are symmetric. Paradoxically, damage to specific parietal regions that lack spatial maps can cause patients to ignore half of space (hemispatial neglect syndrome), but only for right (not left) hemisphere damage. Conversely, the left parietal cortex has been linked to retrieval of vivid memories regardless of space. Here, we investigate possible underlying mechanisms in healthy individuals. We demonstrate two forms of dynamic changes in parietal spatial representations: an asymmetric one for stimulus-guided attention and a symmetric one for long-term memory-guided attention. Copyright © 2015 the authors 0270-6474/15/3511358-06$15.00/0.
Unified double- and single-sided homogeneous Green’s function representations
van der Neut, Joost; Slob, Evert
2016-01-01
In wave theory, the homogeneous Green’s function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green’s function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green’s function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green’s function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green’s function retrieval. PMID:27436983
Unified double- and single-sided homogeneous Green's function representations
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Slob, Evert
2016-06-01
In wave theory, the homogeneous Green's function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green's function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green's function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green's function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green's function retrieval.
2007-05-01
sufficient for explaining how theory -of- mind emerges in normally developing children . As confirmation of its plausibility, our theory explains the... autism . While there are a number of different substrate elements that we believe are operative during theory of mind computations, three elements in...15. SUBJECT TERMS PMESII, multiple representations, integrated reasoning, hybrid systems, social cognition, theory of mind 16. SECURITY
NASA Technical Reports Server (NTRS)
Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Huang; Peng, Chung Kang;
2016-01-01
The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time- frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and nonstationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.
Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua
2016-01-01
The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities. PMID:26953180
Torres, Nuno; Maia, Joana; Veríssimo, Manuela; Fernandes, Marilia; Silva, Filipa
2012-01-01
The present work analyses differences in the attachment representations of institutionalized children as compared with children from low and high educational level living with their natural families. Participants were 91 Portuguese children, 52% girls, aged 48-96 months. There were three different groups: 19 institutionalized children, 16 low educational level families' children and 56 from high educational level families'. Attachment representations were assessed for Security of the narratives of the Attachment Story Completion Task (ASCT). Psychopathological symptoms were assessed using the Child Behaviour Checklist for parents and caretakers. Verbal skills were assessed using the Wechsler Preschool and Primary Scale of Intelligence--Revised. Results show that institutionalized children have significantly lower security of attachment representations, less verbal skills and higher aggressive behaviour than the other two groups. Attachment representations were associated with social/withdrawal and aggression, independently of age, verbal skills and parents' education. The main effect of institutionalization on externalizing aggressive behaviour was completely mediated by the security of attachment representations. Copyright © 2010 John Wiley & Sons, Ltd.
Representation learning via Dual-Autoencoder for recommendation.
Zhuang, Fuzhen; Zhang, Zhiqiang; Qian, Mingda; Shi, Chuan; Xie, Xing; He, Qing
2017-06-01
Recommendation has provoked vast amount of attention and research in recent decades. Most previous works employ matrix factorization techniques to learn the latent factors of users and items. And many subsequent works consider external information, e.g., social relationships of users and items' attributions, to improve the recommendation performance under the matrix factorization framework. However, matrix factorization methods may not make full use of the limited information from rating or check-in matrices, and achieve unsatisfying results. Recently, deep learning has proven able to learn good representation in natural language processing, image classification, and so on. Along this line, we propose a new representation learning framework called Recommendation via Dual-Autoencoder (ReDa). In this framework, we simultaneously learn the new hidden representations of users and items using autoencoders, and minimize the deviations of training data by the learnt representations of users and items. Based on this framework, we develop a gradient descent method to learn hidden representations. Extensive experiments conducted on several real-world data sets demonstrate the effectiveness of our proposed method compared with state-of-the-art matrix factorization based methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Attention to memory: orienting attention to sound object representations.
Backer, Kristina C; Alain, Claude
2014-01-01
Despite a growing acceptance that attention and memory interact, and that attention can be focused on an active internal mental representation (i.e., reflective attention), there has been a paucity of work focusing on reflective attention to 'sound objects' (i.e., mental representations of actual sound sources in the environment). Further research on the dynamic interactions between auditory attention and memory, as well as its degree of neuroplasticity, is important for understanding how sound objects are represented, maintained, and accessed in the brain. This knowledge can then guide the development of training programs to help individuals with attention and memory problems. This review article focuses on attention to memory with an emphasis on behavioral and neuroimaging studies that have begun to explore the mechanisms that mediate reflective attentional orienting in vision and more recently, in audition. Reflective attention refers to situations in which attention is oriented toward internal representations rather than focused on external stimuli. We propose four general principles underlying attention to short-term memory. Furthermore, we suggest that mechanisms involved in orienting attention to visual object representations may also apply for orienting attention to sound object representations.
Knowledge-based vision and simple visual machines.
Cliff, D; Noble, J
1997-01-01
The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong. PMID:9304684
Redundant binary number representation for an inherently parallel arithmetic on optical computers.
De Biase, G A; Massini, A
1993-02-10
A simple redundant binary number representation suitable for digital-optical computers is presented. By means of this representation it is possible to build an arithmetic with carry-free parallel algebraic sums carried out in constant time and parallel multiplication in log N time. This redundant number representation naturally fits the 2's complement binary number system and permits the construction of inherently parallel arithmetic units that are used in various optical technologies. Some properties of this number representation and several examples of computation are presented.
Illusions of having small or large invisible bodies influence visual perception of object size
van der Hoort, Björn; Ehrsson, H. Henrik
2016-01-01
The size of our body influences the perceived size of the world so that objects appear larger to children than to adults. The mechanisms underlying this effect remain unclear. It has been difficult to dissociate visual rescaling of the external environment based on an individual’s visible body from visual rescaling based on a central multisensory body representation. To differentiate these potential causal mechanisms, we manipulated body representation without a visible body by taking advantage of recent developments in body representation research. Participants experienced the illusion of having a small or large invisible body while object-size perception was tested. Our findings show that the perceived size of test-objects was determined by the size of the invisible body (inverse relation), and by the strength of the invisible body illusion. These findings demonstrate how central body representation directly influences visual size perception, without the need for a visible body, by rescaling the spatial representation of the environment. PMID:27708344
ERIC Educational Resources Information Center
Defeyter, Margaret Anne; Avons, S. E.; German, Tamsin C.
2007-01-01
Research suggests that while information about design is a central feature of older children's artifact representations it may be less important in the artifact representations of younger children. Three experiments explore the pattern of responses that 5- and 7-year-old children generate when asked to produce multiple uses for familiar…
ERIC Educational Resources Information Center
Rau, Martina A.
2018-01-01
To learn content knowledge in science, technology, engineering, and math domains, students need to make connections among visual representations. This article considers two kinds of connection-making skills: (1) "sense-making skills" that allow students to verbally explain mappings among representations and (2) "perceptual…
The Effects of Multiple Linked Representations on Students' Learning of Linear Relationships
ERIC Educational Resources Information Center
Ozgun-Koca, S. Asli
2004-01-01
The focus of this study was on comparing three groups of Algebra I 9th-year students: one group using linked representation software, the second group using similar software but with semi-linked representations, and the control group in order to examine the effects on students' understanding of linear relationships. Data collection methods…
ERIC Educational Resources Information Center
Rau, M. A.; Aleven, V.; Rummel, N.
2011-01-01
Graphical representations (GRs) of the learning content are often used for instruction (Ainsworth, 2006). When used in learning technology, GRs can be especially useful since they allow for interactions across representations that are physically impossible, for instance by dragging and dropping symbolic statements into a chart that automatically…
Beam profiles measured with thermoluminescent dosimeters
NASA Technical Reports Server (NTRS)
Lucks, H.; Marcowitz, S. M.; Wheeler, R. W.
1969-01-01
Beam profilometer, using thermoluminescent dosimeters, gives a quantitative and qualitative representation of the focus of an external protron beam of a synchrotron. The total number of particles in the beam, particle distribution, and the shape of the beam are determined.
Constructivism and the Epistemic Object.
ERIC Educational Resources Information Center
Lewin, Philip
Investigators influenced by Anglo-American epistemology have frequently misinterpreted Piaget's genetic constructivism as an empirical psychology, seeing knowledge acquisition as a process in which representations of the world come into increasingly close correspondence with an ontologically unproblematic external reality. Both this interpretation…
Online evaluation of novel choices by simultaneous representation of multiple memories
Barron, Helen C; Dolan, Raymond J; Behrens, Timothy E J
2014-01-01
Prior experience plays a critical role in decision making. It enables explicit representation of potential outcomes and provides training to valuation mechanisms. However, we can also make choices in the absence of prior experience, by merely imagining the consequences of a new experience. Here, using fMRI repetition suppression in humans, we show how neuronal representations of novel rewards can be constructed and evaluated. A likely novel experience is constructed by invoking multiple independent memories within hippocampus and medial prefrontal cortex. This construction persists for only a short time period, during which new associations are observed between the memories for component items. Together these findings suggest that in the absence of direct experience, co-activation of multiple relevant memories can provide a training signal to the valuation system which allows the consequences of new experiences to be imagined and acted upon. PMID:24013592
Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex
Lafer-Sousa, Rosa; Conway, Bevil R.
2014-01-01
Visual-object processing culminates in inferior temporal (IT) cortex. To assess the organization of IT, we measured fMRI responses in alert monkey to achromatic images (faces, fruit, bodies, places) and colored gratings. IT contained multiple color-biased regions, which were typically ventral to face patches and, remarkably, yoked to them, spaced regularly at four locations predicted by known anatomy. Color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement. Responses to non-face shapes were found across IT, but were stronger outside color-biased regions and face patches, consistent with multiple parallel streams. IT also contained multiple coarse eccentricity maps: face patches overlapped central representations; color-biased regions spanned mid-peripheral representations; and place-biased regions overlapped peripheral representations. These results suggest that IT comprises parallel, multi-stage processing networks subject to one organizing principle. PMID:24141314
Neural basis for dynamic updating of object representation in visual working memory.
Takahama, Sachiko; Miyauchi, Satoru; Saiki, Jun
2010-02-15
In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely cooperates with a so-called "frontoparietal network", and subregions of the frontoparietal network can be decomposed into those sensitive to spatial updating and feature binding. The anterior prefrontal cortex identifies changes in object representation by comparing memory and perceptual representations rather than maintaining object representations per se, as previously suggested. Copyright 2009 Elsevier Inc. All rights reserved.
Geometrical interpretation for the outer SU(3) outer multiplicity label
NASA Technical Reports Server (NTRS)
Draayer, Jerry P.; Troltenier, D.
1995-01-01
A geometrical interpretation for the outer multiplicity rho that occurs in a reduction of the product of two SU(3) representations, (lambda(sub pi), mu(sub pi)) x (lambda(sub nu), mu(sub nu)) approaches sigma(sub rho)(lambda, mu)(sub rho), is introduced. This coupling of proton (pi) and neutron (nu) representations arises, for example, in both boson and fermion descriptions of heavy deformed nuclei. Attributing a geometry to the coupling raises the possibility of introducing a simple interaction that provides a physically meaningful way for distinguishing multiple occurrences of (lambda, mu) values that can arise in such products.
A network of spiking neurons for computing sparse representations in an energy efficient way
Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B.
2013-01-01
Computing sparse redundant representations is an important problem both in applied mathematics and neuroscience. In many applications, this problem must be solved in an energy efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating via low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, such operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We compare the numerical performance of HDA with existing algorithms and show that in the asymptotic regime the representation error of HDA decays with time, t, as 1/t. We show that HDA is stable against time-varying noise, specifically, the representation error decays as 1/t for Gaussian white noise. PMID:22920853
A network of spiking neurons for computing sparse representations in an energy-efficient way.
Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B
2012-11-01
Computing sparse redundant representations is an important problem in both applied mathematics and neuroscience. In many applications, this problem must be solved in an energy-efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating by low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, the operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We show that the numerical performance of HDA is on par with existing algorithms. In the asymptotic regime, the representation error of HDA decays with time, t, as 1/t. HDA is stable against time-varying noise; specifically, the representation error decays as 1/√t for gaussian white noise.
NASA Astrophysics Data System (ADS)
Lecun, Yann; Bengio, Yoshua; Hinton, Geoffrey
2015-05-01
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey
2015-05-28
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
The Influence of Tablet PCs on Students' Use of Multiple Representations in Lab Reports
NASA Astrophysics Data System (ADS)
Guelman, Clarisa Bercovich; De Leone, Charles; Price, Edward
2009-11-01
This study examined how different tools influenced students' use of representations in the Physics laboratory. In one section of a lab course, every student had a Tablet PC that served as a digital-ink based lab notebook. Students could seamlessly create hand-drawn graphics and equations, and write lab reports on the same computer used for data acquisition, simulation, and analysis. In another lab section, students used traditional printed lab guides, kept paper notebooks, and then wrote lab reports on regular laptops. Analysis of the lab reports showed differences between the sections' use of multiple representations, including an increased use of diagrams and equations by the Tablet users.
Modeling the Webgraph: How Far We Are
NASA Astrophysics Data System (ADS)
Donato, Debora; Laura, Luigi; Leonardi, Stefano; Millozzi, Stefano
The following sections are included: * Introduction * Preliminaries * WebBase * In-degree and out-degree * PageRank * Bipartite cliques * Strongly connected components * Stochastic models of the webgraph * Models of the webgraph * A multi-layer model * Large scale simulation * Algorithmic techniques for generating and measuring webgraphs * Data representation and multifiles * Generating webgraphs * Traversal with two bits for each node * Semi-external breadth first search * Semi-external depth first search * Computation of the SCCs * Computation of the bow-tie regions * Disjoint bipartite cliques * PageRank * Summary and outlook
Modification of Electron Cyclotron Maser Operation by Application of an External Signal.
1987-03-31
start-up phase jitter in the presence of this external priming signal can be estimated by using the method of David [30]. A lumped circuit representation...27. K.E. Kreischer, R.J. Temkin, H.R. Fetterman , and W.I. Mulligan, IEEE Trans. Microwave Theory Tech. MTT-32, 481 (1984). 28. I.G. Zarnitsyna and G.S...Nusinovich, Radiophys. Quant. Electron. 17, 1418 (1974). 29. G.S. Nusinovich, Radiophys. Quant. Electron. 19, 1301 (1976). 30. E.E. David Jr., Proc
77 FR 64568 - Medley Capital Corporation, et al.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
... Capital Corporation, et al.; Notice of Application October 16, 2012. AGENCY: Securities and Exchange.... Applicants: Medley Capital Corporation (the ``Company''), MCC Advisors LLC (the ``Investment Adviser.... Applicants' Representations 1. The Company, a Delaware corporation, is an externally managed, non-diversified...
Binney, Richard J; Hoffman, Paul; Lambon Ralph, Matthew A
2016-09-06
A growing body of recent convergent evidence indicates that the anterior temporal lobe (ATL) has connectivity-derived graded differences in semantic function: the ventrolateral region appears to be the transmodal, omni-category center-point of the hub whilst secondary contributions come from the peripheries of the hub in a manner that reflects their differential connectivity to different input/output modalities. One of the key challenges for this neurocognitive theory is how different types of concept, especially those with less reliance upon external sensory experience (such as abstract and social concepts), are coded across the graded ATL hub. We were able to answer this key question by using distortion-corrected fMRI to detect functional activations across the entire ATL region and thus to map the neural basis of social and psycholinguistically-matched abstract concepts. Both types of concept engaged a core left-hemisphere semantic network, including the ventrolateral ATL, prefrontal regions and posterior MTG. Additionally, we replicated previous findings of weaker differential activation of the superior and polar ATL for the processing of social stimuli, in addition to the stronger, omni-category activation observed in the vATL. These results are compatible with the view of the ATL as a graded transmodal substrate for the representation of coherent concepts. © The Author 2016. Published by Oxford University Press.
Binney, Richard J.; Hoffman, Paul; Lambon Ralph, Matthew A.
2016-01-01
A growing body of recent convergent evidence indicates that the anterior temporal lobe (ATL) has connectivity-derived graded differences in semantic function: the ventrolateral region appears to be the transmodal, omni-category center-point of the hub whilst secondary contributions come from the peripheries of the hub in a manner that reflects their differential connectivity to different input/output modalities. One of the key challenges for this neurocognitive theory is how different types of concept, especially those with less reliance upon external sensory experience (such as abstract and social concepts), are coded across the graded ATL hub. We were able to answer this key question by using distortion-corrected fMRI to detect functional activations across the entire ATL region and thus to map the neural basis of social and psycholinguistically-matched abstract concepts. Both types of concept engaged a core left-hemisphere semantic network, including the ventrolateral ATL, prefrontal regions and posterior MTG. Additionally, we replicated previous findings of weaker differential activation of the superior and polar ATL for the processing of social stimuli, in addition to the stronger, omni-category activation observed in the vATL. These results are compatible with the view of the ATL as a graded transmodal substrate for the representation of coherent concepts. PMID:27600844
Interfacing to the brain’s motor decisions
2017-01-01
It has been long known that neural activity, recorded with electrophysiological methods, contains rich information about a subject’s motor intentions, sensory experiences, allocation of attention, action planning, and even abstract thoughts. All these functions have been the subject of neurophysiological investigations, with the goal of understanding how neuronal activity represents behavioral parameters, sensory inputs, and cognitive functions. The field of brain-machine interfaces (BMIs) strives for a somewhat different goal: it endeavors to extract information from neural modulations to create a communication link between the brain and external devices. Although many remarkable successes have been already achieved in the BMI field, questions remain regarding the possibility of decoding high-order neural representations, such as decision making. Could BMIs be employed to decode the neural representations of decisions underlying goal-directed actions? In this review we lay out a framework that describes the computations underlying goal-directed actions as a multistep process performed by multiple cortical and subcortical areas. We then discuss how BMIs could connect to different decision-making steps and decode the neural processing ongoing before movements are initiated. Such decision-making BMIs could operate as a system with prediction that offers many advantages, such as shorter reaction time, better error processing, and improved unsupervised learning. To present the current state of the art, we review several recent BMIs incorporating decision-making components. PMID:28003406
Multiple external hazards compound level 3 PSA methods research of nuclear power plant
NASA Astrophysics Data System (ADS)
Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina
2017-01-01
2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.
Mathematics Teacher Candidates' Skills of Using Multiple Representations for Division of Fractions
ERIC Educational Resources Information Center
Biber, Abdullah Çagri
2014-01-01
The aim of this study is to reveal teacher candidates' preference regarding uses of verbal, symbolic, number line, and/or model representations of fraction divisions, and to investigate their skill of transferring from one representation type to the others. Case study was used as the research method in this study. The case that is examined within…
ERIC Educational Resources Information Center
Brar, Rozy
2010-01-01
There is a strong push from within mathematics education reform to incorporate representations in math classrooms (Behr, Harel, Post, & Lesh, 1993; Kieren, 1993; NCTM, 2000). However, questions regarding what representations should be used (for a given topic) and how representations should be used (such that students gain a deep understanding of…
ERIC Educational Resources Information Center
Olander, Clas; Wickman, Per-Olof; Tytler, Russell; Ingerman, Åke
2018-01-01
The aim of this article is to investigate students' meaning-making processes of multiple representations during a teaching sequence about the human body in lower secondary school. Two main influences are brought together to accomplish the analysis: on the one hand, theories on signs and representations as scaffoldings for learning and, on the…
What do we mean by prediction in language comprehension?
Kuperberg, Gina R.; Jaeger, T. Florian
2016-01-01
We consider several key aspects of prediction in language comprehension: its computational nature, the representational level(s) at which we predict, whether we use higher level representations to predictively pre-activate lower level representations, and whether we ‘commit’ in any way to our predictions, beyond pre-activation. We argue that the bulk of behavioral and neural evidence suggests that we predict probabilistically and at multiple levels and grains of representation. We also argue that we can, in principle, use higher level inferences to predictively pre-activate information at multiple lower representational levels. We also suggest that the degree and level of predictive pre-activation might be a function of the expected utility of prediction, which, in turn, may depend on comprehenders’ goals and their estimates of the relative reliability of their prior knowledge and the bottom-up input. Finally, we argue that all these properties of language understanding can be naturally explained and productively explored within a multi-representational hierarchical actively generative architecture whose goal is to infer the message intended by the producer, and in which predictions play a crucial role in explaining the bottom-up input. PMID:27135040
Güçlü, Umut; van Gerven, Marcel A J
2017-01-15
Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects. Copyright © 2015 Elsevier Inc. All rights reserved.
Asymmetric translation between multiple representations in chemistry
NASA Astrophysics Data System (ADS)
Lin, Yulan I.; Son, Ji Y.; Rudd, James A., II
2016-03-01
Experts are more proficient in manipulating and translating between multiple representations (MRs) of a given concept than novices. Studies have shown that instruction using MR can increase student understanding of MR, and one model for MR instruction in chemistry is the chemistry triplet proposed by Johnstone. Concreteness fading theory suggests that presenting concrete representations before abstract representations can increase the effectiveness of MR instruction; however, little work has been conducted on varying the order of different representations during instruction and the role of concreteness in assessment. In this study, we investigated the application of concreteness fading to MR instruction and assessment in teaching chemistry. In two experiments, undergraduate students in either introductory psychology courses or general chemistry courses were given MR instruction on phase changes using different orders of presentation and MR assessment questions based on the representations in the chemistry triplet. Our findings indicate that the order of presentation based on levels of concreteness in MR chemistry instruction is less important than implementation of comprehensive MR assessments. Even after MR instruction, students display an asymmetric understanding of the chemical phenomenon on the MR assessments. Greater emphasis on MR assessments may be an important component in MR instruction that effectively moves novices toward more expert MR understanding.
Joint Smoothed l₀-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar.
Liu, Jing; Zhou, Weidong; Juwono, Filbert H
2017-05-08
Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.
ERIC Educational Resources Information Center
Westermann, Gert; Mareschal, Denis; Johnson, Mark H.; Sirois, Sylvain; Spratling, Michael W.; Thomas, Michael S. C.
2007-01-01
Neuroconstructivism is a theoretical framework focusing on the construction of representations in the developing brain. Cognitive development is explained as emerging from the experience-dependent development of neural structures supporting mental representations. Neural development occurs in the context of multiple interacting constraints acting…
NASA Astrophysics Data System (ADS)
Kondrat'ev, B. P.
1993-06-01
A method is developed for the representation of the potential energy of homogeneous gravitating, as well as electrically charged, bodies in the form of special series. These series contain members consisting of products of the corresponding coefficients appearing in the expansion of external and internal Newtonian potentials in Legendre polynomial series. Several versions of the representation of potential energy through these series are possible. A formula which expresses potential energy not as a volume integral, as is the convention, but as an integral over the body surface is derived. The method is tested for the particular cases of sphere and ellipsoid, and the convergence of the found series is shown.
Communication: Multiple-property-based diabatization for open-shell van der Waals molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karman, Tijs; Avoird, Ad van der; Groenenboom, Gerrit C., E-mail: gerritg@theochem.ru.nl
2016-03-28
We derive a new multiple-property-based diabatization algorithm. The transformation between adiabatic and diabatic representations is determined by requiring a set of properties in both representations to be related by a similarity transformation. This set of properties is determined in the adiabatic representation by rigorous electronic structure calculations. In the diabatic representation, the same properties are determined using model diabatic states defined as products of undistorted monomer wave functions. This diabatic model is generally applicable to van der Waals molecules in arbitrary electronic states. Application to locating seams of conical intersections and collisional transfer of electronic excitation energy is demonstrated formore » O{sub 2} − O{sub 2} in low-lying excited states. Property-based diabatization for this test system included all components of the electric quadrupole tensor, orbital angular momentum, and spin-orbit coupling.« less
NASA Astrophysics Data System (ADS)
Gori, Luca; Sodini, Mauro
2014-03-01
This paper analyses the mathematical properties of an economic growth model with overlapping generations, endogenous labour supply, and multiplicative external habits. The dynamics of the economy is characterised by a two-dimensional map describing the time evolution of capital and labour supply. We show that if the relative importance of external habits in the utility function is sufficiently high, multiple (determinate or indeterminate) fixed points and poverty traps can exist. In addition, periodic or quasiperiodic behaviour and/or coexistence of attractors may occur.
Use of altimetry data in a sampling-function approach to the geoid
NASA Technical Reports Server (NTRS)
Lundquist, C. A.; Giacaglia, G. E. O.
1972-01-01
Problems associated with using an altimetry sampling function approach to the geoid are examined. They include: (1) conventent mathematical representation of short-wavelength (eventually approximately 1 deg) features of the geoid or geopotential, (2) utilization of detailed data from only part of the globe (i.e., the oceans) (3) application of appropriate formalism to relate the sea-level equipotential below the atmospheric mass to the external potential above the atmosphere, (4) mathematical applicability of an adopted geopotential representation on the surface of the physical geoid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullrich, C. A.; Kohn, W.
An electron density distribution n(r) which can be represented by that of a single-determinant ground state of noninteracting electrons in an external potential v(r) is called pure-state v -representable (P-VR). Most physical electronic systems are P-VR. Systems which require a weighted sum of several such determinants to represent their density are called ensemble v -representable (E-VR). This paper develops formal Kohn-Sham equations for E-VR physical systems, using the appropriate coupling constant integration. It also derives local density- and generalized gradient approximations, and conditions and corrections specific to ensembles.
The receptive field is dead. Long live the receptive field?
Fairhall, Adrienne
2014-01-01
Advances in experimental techniques, including behavioral paradigms using rich stimuli under closed loop conditions and the interfacing of neural systems with external inputs and outputs, reveal complex dynamics in the neural code and require a revisiting of standard concepts of representation. High-throughput recording and imaging methods along with the ability to observe and control neuronal subpopulations allow increasingly detailed access to the neural circuitry that subserves these representations and the computations they support. How do we harness theory to build biologically grounded models of complex neural function? PMID:24618227
Quantum lattice representations for vector solitons in external potentials
NASA Astrophysics Data System (ADS)
Vahala, George; Vahala, Linda; Yepez, Jeffrey
2006-03-01
A quantum lattice algorithm is developed to examine the effect of an external potential well on exactly integrable vector Manakov solitons. It is found that the exact solutions to the coupled nonlinear Schrodinger equations act like quasi-solitons in weak potentials, leading to mode-locking, trapping and untrapping. Stronger potential wells will lead to the emission of radiation modes from the quasi-soliton initial conditions. If the external potential is applied to that particular mode polarization, then the radiation will be trapped within the potential well. The algorithm developed leads to a finite difference scheme that is unconditionally stable. The Manakov system in an external potential is very closely related to the Gross-Pitaevskii equation for the ground state wave functions of a coupled BEC state at T=0 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Takeshi; Kato, Shigeki
2007-06-14
In quantum-mechanical/molecular-mechanical (QM/MM) treatment of chemical reactions in condensed phases, one solves the electronic Schroedinger equation for the solute (or an active site) under the electrostatic field from the environment. This Schroedinger equation depends parametrically on the solute nuclear coordinates R and the external electrostatic potential V. This fact suggests that one may use R and V as natural collective coordinates for describing the entire system, where V plays the role of collective solvent variables. In this paper such an (R,V) representation of the QM/MM canonical ensemble is described, with particular focus on how to treat charge transfer processes inmore » this representation. As an example, the above method is applied to the proton-coupled electron transfer of a ubiquinol analog with phenoxyl radical in acetonitrile solvent. Ab initio free-energy surfaces are calculated as functions of R and V using the reference interaction site model self-consistent field method, the equilibrium points and the minimum free-energy crossing point are located in the (R,V) space, and then the kinetic isotope effects (KIEs) are evaluated approximately. The results suggest that a stiffer proton potential at the transition state may be responsible for unusual KIEs observed experimentally for related systems.« less
Stochastic simulation of ecohydrological interactions between vegetation and groundwater
NASA Astrophysics Data System (ADS)
Dwelle, M. C.; Ivanov, V. Y.; Sargsyan, K.
2017-12-01
The complex interactions between groundwater and vegetation in the Amazon rainforest may yield vital ecophysiological interactions in specific landscape niches such as buffering plant water stress during dry season or suppression of water uptake due to anoxic conditions. Representation of such processes is greatly impacted by both external and internal sources of uncertainty: inaccurate data and subjective choice of model representation. The models that can simulate these processes are complex and computationally expensive, and therefore make it difficult to address uncertainty using traditional methods. We use the ecohydrologic model tRIBS+VEGGIE and a novel uncertainty quantification framework applied to the ZF2 watershed near Manaus, Brazil. We showcase the capability of this framework for stochastic simulation of vegetation-hydrology dynamics. This framework is useful for simulation with internal and external stochasticity, but this work will focus on internal variability of groundwater depth distribution and model parameterizations. We demonstrate the capability of this framework to make inferences on uncertain states of groundwater depth from limited in situ data, and how the realizations of these inferences affect the ecohydrological interactions between groundwater dynamics and vegetation function. We place an emphasis on the probabilistic representation of quantities of interest and how this impacts the understanding and interpretation of the dynamics at the groundwater-vegetation interface.
Gluons and gravitons at one loop from ambitwistor strings
NASA Astrophysics Data System (ADS)
Geyer, Yvonne; Monteiro, Ricardo
2018-03-01
We present new and explicit formulae for the one-loop integrands of scattering amplitudes in non-supersymmetric gauge theory and gravity, valid for any number of particles. The results exhibit the colour-kinematics duality in gauge theory and the double-copy relation to gravity, in a form that was recently observed in supersymmetric theories. The new formulae are expressed in a particular representation of the loop integrand, with only one quadratic propagator, which arises naturally from the framework of the loop-level scattering equations. The starting point in our work are the expressions based on the scattering equations that were recently derived from ambitwistor string theory. We turn these expressions into explicit formulae depending only on the loop momentum, the external momenta and the external polarisations. These formulae are valid in any number of spacetime dimensions for pure Yang-Mills theory (gluon) and its natural double copy, NS-NS gravity (graviton, dilaton, B-field), and we also present formulae in four spacetime dimensions for pure gravity (graviton). We perform several tests of our results, such as checking gauge invariance and directly matching our four-particle formulae to previously known expressions. While these tests would be elaborate in a Feynman-type representation of the loop integrand, they become straightforward in the representation we use.
The vestibular system: a spatial reference for bodily self-consciousness
Pfeiffer, Christian; Serino, Andrea; Blanke, Olaf
2014-01-01
Self-consciousness is the remarkable human experience of being a subject: the “I”. Self-consciousness is typically bound to a body, and particularly to the spatial dimensions of the body, as well as to its location and displacement in the gravitational field. Because the vestibular system encodes head position and movement in three-dimensional space, vestibular cortical processing likely contributes to spatial aspects of bodily self-consciousness. We review here recent data showing vestibular effects on first-person perspective (the feeling from where “I” experience the world) and self-location (the feeling where “I” am located in space). We compare these findings to data showing vestibular effects on mental spatial transformation, self-motion perception, and body representation showing vestibular contributions to various spatial representations of the body with respect to the external world. Finally, we discuss the role for four posterior brain regions that process vestibular and other multisensory signals to encode spatial aspects of bodily self-consciousness: temporoparietal junction, parietoinsular vestibular cortex, ventral intraparietal region, and medial superior temporal region. We propose that vestibular processing in these cortical regions is critical in linking multisensory signals from the body (personal and peripersonal space) with external (extrapersonal) space. Therefore, the vestibular system plays a critical role for neural representations of spatial aspects of bodily self-consciousness. PMID:24860446
bioWeb3D: an online webGL 3D data visualisation tool.
Pettit, Jean-Baptiste; Marioni, John C
2013-06-07
Data visualization is critical for interpreting biological data. However, in practice it can prove to be a bottleneck for non trained researchers; this is especially true for three dimensional (3D) data representation. Whilst existing software can provide all necessary functionalities to represent and manipulate biological 3D datasets, very few are easily accessible (browser based), cross platform and accessible to non-expert users. An online HTML5/WebGL based 3D visualisation tool has been developed to allow biologists to quickly and easily view interactive and customizable three dimensional representations of their data along with multiple layers of information. Using the WebGL library Three.js written in Javascript, bioWeb3D allows the simultaneous visualisation of multiple large datasets inputted via a simple JSON, XML or CSV file, which can be read and analysed locally thanks to HTML5 capabilities. Using basic 3D representation techniques in a technologically innovative context, we provide a program that is not intended to compete with professional 3D representation software, but that instead enables a quick and intuitive representation of reasonably large 3D datasets.
Factors influencing infants’ ability to update object representations in memory
Moher, Mariko; Feigenson, Lisa
2013-01-01
Remembering persisting objects over occlusion is critical to representing a stable environment. Infants remember hidden objects at multiple locations and can update their representation of a hidden array when an object is added or subtracted. However, the factors influencing these updating abilities have received little systematic exploration. Here we examined the flexibility of infants’ ability to update object representations. We tested 11-month-olds in a looking-time task in which objects were added to or subtracted from two hidden arrays. Across five experiments, infants successfully updated their representations of hidden arrays when the updating occurred successively at one array before beginning at the other. But when updating required alternating between two arrays, infants failed. However, simply connecting the two arrays with a thin strip of foam-core led infants to succeed. Our results suggest that infants’ construal of an event strongly affects their ability to update memory representations of hidden objects. When construing an event as containing multiple updates to the same array, infants succeed, but when construing the event as requiring the revisiting and updating of previously attended arrays, infants fail. PMID:24049245
Taxonomy development and knowledge representation of nurses' personal cognitive artifacts.
McLane, Sharon; Turley, James P
2009-11-14
Nurses prepare knowledge representations, or summaries of patient clinical data, each shift. These knowledge representations serve multiple purposes, including support of working memory, workload organization and prioritization, critical thinking, and reflection. This summary is integral to internal knowledge representations, working memory, and decision-making. Study of this nurse knowledge representation resulted in development of a taxonomy of knowledge representations necessary to nursing practice.This paper describes the methods used to elicit the knowledge representations and structures necessary for the work of clinical nurses, described the development of a taxonomy of this knowledge representation, and discusses translation of this methodology to the cognitive artifacts of other disciplines. Understanding the development and purpose of practitioner's knowledge representations provides important direction to informaticists seeking to create information technology alternatives. The outcome of this paper is to suggest a process template for transition of cognitive artifacts to an information system.
Dynamic Organization of Hierarchical Memories
Kurikawa, Tomoki; Kaneko, Kunihiko
2016-01-01
In the brain, external objects are categorized in a hierarchical way. Although it is widely accepted that objects are represented as static attractors in neural state space, this view does not take account interaction between intrinsic neural dynamics and external input, which is essential to understand how neural system responds to inputs. Indeed, structured spontaneous neural activity without external inputs is known to exist, and its relationship with evoked activities is discussed. Then, how categorical representation is embedded into the spontaneous and evoked activities has to be uncovered. To address this question, we studied bifurcation process with increasing input after hierarchically clustered associative memories are learned. We found a “dynamic categorization”; neural activity without input wanders globally over the state space including all memories. Then with the increase of input strength, diffuse representation of higher category exhibits transitions to focused ones specific to each object. The hierarchy of memories is embedded in the transition probability from one memory to another during the spontaneous dynamics. With increased input strength, neural activity wanders over a narrower state space including a smaller set of memories, showing more specific category or memory corresponding to the applied input. Moreover, such coarse-to-fine transitions are also observed temporally during transient process under constant input, which agrees with experimental findings in the temporal cortex. These results suggest the hierarchy emerging through interaction with an external input underlies hierarchy during transient process, as well as in the spontaneous activity. PMID:27618549
Using the Logarithm of Odds to Define a Vector Space on Probabilistic Atlases
Pohl, Kilian M.; Fisher, John; Bouix, Sylvain; Shenton, Martha; McCarley, Robert W.; Grimson, W. Eric L.; Kikinis, Ron; Wells, William M.
2007-01-01
The Logarithm of the Odds ratio (LogOdds) is frequently used in areas such as artificial neural networks, economics, and biology, as an alternative representation of probabilities. Here, we use LogOdds to place probabilistic atlases in a linear vector space. This representation has several useful properties for medical imaging. For example, it not only encodes the shape of multiple anatomical structures but also captures some information concerning uncertainty. We demonstrate that the resulting vector space operations of addition and scalar multiplication have natural probabilistic interpretations. We discuss several examples for placing label maps into the space of LogOdds. First, we relate signed distance maps, a widely used implicit shape representation, to LogOdds and compare it to an alternative that is based on smoothing by spatial Gaussians. We find that the LogOdds approach better preserves shapes in a complex multiple object setting. In the second example, we capture the uncertainty of boundary locations by mapping multiple label maps of the same object into the LogOdds space. Third, we define a framework for non-convex interpolations among atlases that capture different time points in the aging process of a population. We evaluate the accuracy of our representation by generating a deformable shape atlas that captures the variations of anatomical shapes across a population. The deformable atlas is the result of a principal component analysis within the LogOdds space. This atlas is integrated into an existing segmentation approach for MR images. We compare the performance of the resulting implementation in segmenting 20 test cases to a similar approach that uses a more standard shape model that is based on signed distance maps. On this data set, the Bayesian classification model with our new representation outperformed the other approaches in segmenting subcortical structures. PMID:17698403
Multiple Sparse Representations Classification
Plenge, Esben; Klein, Stefan S.; Niessen, Wiro J.; Meijering, Erik
2015-01-01
Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and sparsity level. PMID:26177106
Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen
2016-07-07
Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.
In (or outside of) your neck of the woods: laterality in spatial body representation
Hach, Sylvia; Schütz-Bosbach, Simone
2014-01-01
Beside language, space is to date the most widely recognized lateralized systems. For example, it has been shown that even mental representations of space and the spatial representation of abstract concepts display lateralized characteristics. For the most part, this body of literature describes space as distal or something outside of the observer or actor. What has been strangely absent in the literature on the whole and specifically in the spatial literature until recently is the most proximal space imaginable – the body. In this review, we will summarize three strands of literature showing laterality in body representations. First, evidence of hemispheric asymmetries in body space in health and, second in body space in disease will be examined. Third, studies pointing to differential contributions of the right and left hemisphere to illusory body (space) will be summarized. Together these studies show hemispheric asymmetries to be evident in body representations at the level of simple somatosensory and proprioceptive representations. We propose a novel working hypothesis, whereby neural systems dedicated to processing action-oriented information about one’s own body space may ontogenetically serve as a template for the perception of the external world. PMID:24600421
Davis, Nathaniel J. L. K.; Böhm, Marcus L.; Tabachnyk, Maxim; Wisnivesky-Rocca-Rivarola, Florencia; Jellicoe, Tom C.; Ducati, Caterina; Ehrler, Bruno; Greenham, Neil C.
2015-01-01
Multiple-exciton generation—a process in which multiple charge-carrier pairs are generated from a single optical excitation—is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley–Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation. PMID:26411283
Jansen-Osmann, Petra; Richter, Stefanie; Konczak, Jürgen; Kalveram, Karl-Theodor
2002-03-01
When humans perform goal-directed arm movements under the influence of an external damping force, they learn to adapt to these external dynamics. After removal of the external force field, they reveal kinematic aftereffects that are indicative of a neural controller that still compensates the no longer existing force. Such behavior suggests that the adult human nervous system uses a neural representation of inverse arm dynamics to control upper-extremity motion. Central to the notion of an inverse dynamic model (IDM) is that learning generalizes. Consequently, aftereffects should be observable even in untrained workspace regions. Adults have shown such behavior, but the ontogenetic development of this process remains unclear. This study examines the adaptive behavior of children and investigates whether learning a force field in one hemifield of the right arm workspace has an effect on force adaptation in the other hemifield. Thirty children (aged 6-10 years) and ten adults performed 30 degrees elbow flexion movements under two conditions of external damping (negative and null). We found that learning to compensate an external damping force transferred to the opposite hemifield, which indicates that a model of the limb dynamics rather than an association of visited space and experienced force was acquired. Aftereffects were more pronounced in the younger children and readaptation to a null-force condition was prolonged. This finding is consistent with the view that IDMs in children are imprecise neural representations of the actual arm dynamics. It indicates that the acquisition of IDMs is a developmental achievement and that the human motor system is inherently flexible enough to adapt to any novel force within the limits of the organism's biomechanics.
Linear network representation of multistate models of transport.
Sandblom, J; Ring, A; Eisenman, G
1982-01-01
By introducing external driving forces in rate-theory models of transport we show how the Eyring rate equations can be transformed into Ohm's law with potentials that obey Kirchhoff's second law. From such a formalism the state diagram of a multioccupancy multicomponent system can be directly converted into linear network with resistors connecting nodal (branch) points and with capacitances connecting each nodal point with a reference point. The external forces appear as emf or current generators in the network. This theory allows the algebraic methods of linear network theory to be used in solving the flux equations for multistate models and is particularly useful for making proper simplifying approximation in models of complex membrane structure. Some general properties of linear network representation are also deduced. It is shown, for instance, that Maxwell's reciprocity relationships of linear networks lead directly to Onsager's relationships in the near equilibrium region. Finally, as an example of the procedure, the equivalent circuit method is used to solve the equations for a few transport models. PMID:7093425
Cognitive, perceptual and action-oriented representations of falling objects.
Zago, Myrka; Lacquaniti, Francesco
2005-01-01
We interact daily with moving objects. How accurate are our predictions about objects' motions? What sources of information do we use? These questions have received wide attention from a variety of different viewpoints. On one end of the spectrum are the ecological approaches assuming that all the information about the visual environment is present in the optic array, with no need to postulate conscious or unconscious representations. On the other end of the spectrum are the constructivist approaches assuming that a more or less accurate representation of the external world is built in the brain using explicit or implicit knowledge or memory besides sensory inputs. Representations can be related to naive physics or to context cue-heuristics or to the construction of internal copies of environmental invariants. We address the issue of prediction of objects' fall at different levels. Cognitive understanding and perceptual judgment of simple Newtonian dynamics can be surprisingly inaccurate. By contrast, motor interactions with falling objects are often very accurate. We argue that the pragmatic action-oriented behaviour and the perception-oriented behaviour may use different modes of operation and different levels of representation.
Computational effects of inlet representation on powered hypersonic, airbreathing models
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Tatum, Kenneth E.
1993-01-01
Computational results are presented to illustrate the powered aftbody effects of representing the scramjet inlet on a generic hypersonic vehicle with a fairing, to divert the external flow, as compared to an operating flow-through scramjet inlet. This study is pertinent to the ground testing of hypersonic, airbreathing models employing scramjet exhaust flow simulation in typical small-scale hypersonic wind tunnels. The comparison of aftbody effects due to inlet representation is well-suited for computational study, since small model size typically precludes the ability to ingest flow into the inlet and perform exhaust simulation at the same time. Two-dimensional analysis indicates that, although flowfield differences exist for the two types of inlet representations, little, if any, difference in surface aftbody characteristics is caused by fairing over the inlet.
Texture-Based Correspondence Display
NASA Technical Reports Server (NTRS)
Gerald-Yamasaki, Michael
2004-01-01
Texture-based correspondence display is a methodology to display corresponding data elements in visual representations of complex multidimensional, multivariate data. Texture is utilized as a persistent medium to contain a visual representation model and as a means to create multiple renditions of data where color is used to identify correspondence. Corresponding data elements are displayed over a variety of visual metaphors in a normal rendering process without adding extraneous linking metadata creation and maintenance. The effectiveness of visual representation for understanding data is extended to the expression of the visual representation model in texture.
ERIC Educational Resources Information Center
Unal, Hasan
2008-01-01
The importance of visualisation and multiple representations in mathematics has been stressed, especially in a context of problem solving. Hanna and Sidoli comment that "Diagrams and other visual representations have long been welcomed as heuristic accompaniments to proof, where they not only facilitate the understanding of theorems and their…
Multiple Objects Fusion Tracker Using a Matching Network for Adaptively Represented Instance Pairs
Oh, Sang-Il; Kang, Hang-Bong
2017-01-01
Multiple-object tracking is affected by various sources of distortion, such as occlusion, illumination variations and motion changes. Overcoming these distortions by tracking on RGB frames, such as shifting, has limitations because of material distortions caused by RGB frames. To overcome these distortions, we propose a multiple-object fusion tracker (MOFT), which uses a combination of 3D point clouds and corresponding RGB frames. The MOFT uses a matching function initialized on large-scale external sequences to determine which candidates in the current frame match with the target object in the previous frame. After conducting tracking on a few frames, the initialized matching function is fine-tuned according to the appearance models of target objects. The fine-tuning process of the matching function is constructed as a structured form with diverse matching function branches. In general multiple object tracking situations, scale variations for a scene occur depending on the distance between the target objects and the sensors. If the target objects in various scales are equally represented with the same strategy, information losses will occur for any representation of the target objects. In this paper, the output map of the convolutional layer obtained from a pre-trained convolutional neural network is used to adaptively represent instances without information loss. In addition, MOFT fuses the tracking results obtained from each modality at the decision level to compensate the tracking failures of each modality using basic belief assignment, rather than fusing modalities by selectively using the features of each modality. Experimental results indicate that the proposed tracker provides state-of-the-art performance considering multiple objects tracking (MOT) and KITTIbenchmarks. PMID:28420194
A review of reward processing and motivational impairment in schizophrenia.
Strauss, Gregory P; Waltz, James A; Gold, James M
2014-03-01
This article reviews and synthesizes research on reward processing in schizophrenia, which has begun to provide important insights into the cognitive and neural mechanisms associated with motivational impairments. Aberrant cortical-striatal interactions may be involved with multiple reward processing abnormalities, including: (1) dopamine-mediated basal ganglia systems that support reinforcement learning and the ability to predict cues that lead to rewarding outcomes; (2) orbitofrontal cortex-driven deficits in generating, updating, and maintaining value representations; (3) aberrant effort-value computations, which may be mediated by disrupted anterior cingulate cortex and midbrain dopamine functioning; and (4) altered activation of the prefrontal cortex, which is important for generating exploratory behaviors in environments where reward outcomes are uncertain. It will be important for psychosocial interventions targeting negative symptoms to account for abnormalities in each of these reward processes, which may also have important interactions; suggestions for novel behavioral intervention strategies that make use of external cues, reinforcers, and mobile technology are discussed.
Distributed Representation of Visual Objects by Single Neurons in the Human Brain
Valdez, André B.; Papesh, Megan H.; Treiman, David M.; Smith, Kris A.; Goldinger, Stephen D.
2015-01-01
It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. PMID:25834044
Assessment of representational competence in kinematics
NASA Astrophysics Data System (ADS)
Klein, P.; Müller, A.; Kuhn, J.
2017-06-01
A two-tier instrument for representational competence in the field of kinematics (KiRC) is presented, designed for a standard (1st year) calculus-based introductory mechanics course. It comprises 11 multiple choice (MC) and 7 multiple true-false (MTF) questions involving multiple representational formats, such as graphs, pictures, and formal (mathematical) expressions (1st tier). Furthermore, students express their answer confidence for selected items, providing additional information (2nd tier). Measurement characteristics of KiRC were assessed in a validation sample (pre- and post-test, N =83 and N =46 , respectively), including usefulness for measuring learning gain. Validity is checked by interviews and by benchmarking KiRC against related measures. Values for item difficulty, discrimination, and consistency are in the desired ranges; in particular, a good reliability was obtained (KR 20 =0.86 ). Confidence intervals were computed and a replication study yielded values within the latter. For practical and research purposes, KiRC as a diagnostic tool goes beyond related extant instruments both for the representational formats (e.g., mathematical expressions) and for the scope of content covered (e.g., choice of coordinate systems). Together with the satisfactory psychometric properties it appears a versatile and reliable tool for assessing students' representational competency in kinematics (and of its potential change). Confidence judgments add further information to the diagnostic potential of the test, in particular for representational misconceptions. Moreover, we present an analytic result for the question—arising from guessing correction or educational considerations—of how the total effect size (Cohen's d ) varies upon combination of two test components with known individual effect sizes, and then discuss the results in the case of KiRC (MC and MTF combination). The introduced method of test combination analysis can be applied to any test comprising two components for the purpose of finding effect size ranges.
Gersch, Timothy M.; Schnitzer, Brian S.; Dosher, Barbara A.; Kowler, Eileen
2012-01-01
Saccadic eye movements and perceptual attention work in a coordinated fashion to allow selection of the objects, features or regions with the greatest momentary need for limited visual processing resources. This study investigates perceptual characteristics of pre-saccadic shifts of attention during a sequence of saccades using the visual manipulations employed to study mechanisms of attention during maintained fixation. The first part of this paper reviews studies of the connections between saccades and attention, and their significance for both saccadic control and perception. The second part presents three experiments that examine the effects of pre-saccadic shifts of attention on vision during sequences of saccades. Perceptual enhancements at the saccadic goal location relative to non-goal locations were found across a range of stimulus contrasts, with either perceptual discrimination or detection tasks, with either single or multiple perceptual targets, and regardless of the presence of external noise. The results show that the preparation of saccades can evoke a variety of attentional effects, including attentionally-mediated changes in the strength of perceptual representations, selection of targets for encoding in visual memory, exclusion of external noise, or changes in the levels of internal visual noise. The visual changes evoked by saccadic planning make it possible for the visual system to effectively use saccadic eye movements to explore the visual environment. PMID:22809798
NASA Astrophysics Data System (ADS)
Ojeda-Guillén, D.; Mota, R. D.; Granados, V. D.
2015-03-01
We show that the (2+1)-dimensional Dirac-Moshinsky oscillator coupled to an external magnetic field can be treated algebraically with the SU(1,1) group theory and its group basis. We use the su(1,1) irreducible representation theory to find the energy spectrum and the eigenfunctions. Also, with the su(1,1) group basis we construct the relativistic coherent states in a closed form for this problem. Supported by SNI-México, COFAA-IPN, EDI-IPN, EDD-IPN, SIP-IPN project number 20140598
Investigating Students' Similarity Judgments in Organic Chemistry
ERIC Educational Resources Information Center
Graulich, N.; Bhattacharyya, G.
2017-01-01
Organic chemistry is possibly the most visual science of all chemistry disciplines. The process of scientific inquiry in organic chemistry relies on external representations, such as Lewis structures, mechanisms, and electron arrows. Information about chemical properties or driving forces of mechanistic steps is not available through direct…
Efficacy of Simulation-Based Learning of Electronics Using Visualization and Manipulation
ERIC Educational Resources Information Center
Chen, Yu-Lung; Hong, Yu-Ru; Sung, Yao-Ting; Chang, Kuo-En
2011-01-01
Software for simulation-based learning of electronics was implemented to help learners understand complex and abstract concepts through observing external representations and exploring concept models. The software comprises modules for visualization and simulative manipulation. Differences in learning performance of using the learning software…
A framework for investigating animal consciousness.
Droege, Paula; Braithwaite, Victoria A
2015-01-01
An assessment of consciousness in nonverbal animals requires a framework for research that extends testing methods beyond subjective report. This chapter proposes a working definition of consciousness in terms of temporal representation that provides the critical link between internal phenomenology and external behavior and neural structure. Our claim is that consciousness represents the present moment as distinct from the past and the future in order to flexibly respond to stimuli. We discuss behavioral and neural evidence that indicates the capacity for both flexible response and temporal representation, and we illustrate these capacities in fish, a taxonomic group that challenges human intuitions about consciousness.
Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex
Poort, Jasper; Khan, Adil G.; Pachitariu, Marius; Nemri, Abdellatif; Orsolic, Ivana; Krupic, Julija; Bauza, Marius; Sahani, Maneesh; Keller, Georg B.; Mrsic-Flogel, Thomas D.; Hofer, Sonja B.
2015-01-01
Summary We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli. PMID:26051421
Optimized scalar promotion with load and splat SIMD instructions
Eichenberger, Alexander E; Gschwind, Michael K; Gunnels, John A
2013-10-29
Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.
Optimized scalar promotion with load and splat SIMD instructions
Eichenberger, Alexandre E [Chappaqua, NY; Gschwind, Michael K [Chappaqua, NY; Gunnels, John A [Yorktown Heights, NY
2012-08-28
Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.
NASA Astrophysics Data System (ADS)
Waight, Noemi; Gillmeister, Kristina
2014-04-01
This study examined teachers' and students' initial conceptions of computer-based models—Flash and NetLogo models—and documented how teachers and students reconciled notions of multiple representations featuring macroscopic, submicroscopic and symbolic representations prior to actual intervention in eight high school chemistry classrooms. Individual in-depth interviews were conducted with 32 students and 6 teachers. Findings revealed an interplay of complex factors that functioned as opportunities and obstacles in the implementation of technologies in science classrooms. Students revealed preferences for the Flash models as opposed to the open-ended NetLogo models. Altogether, due to lack of content and modeling background knowledge, students experienced difficulties articulating coherent and blended understandings of multiple representations. Concurrently, while the aesthetic and interactive features of the models were of great value, they did not sustain students' initial curiosity and opportunities to improve understandings about chemistry phenomena. Most teachers recognized direct alignment of the Flash model with their existing curriculum; however, the benefits were relegated to existing procedural and passive classroom practices. The findings have implications for pedagogical approaches that address the implementation of computer-based models, function of models, models as multiple representations and the role of background knowledge and cognitive load, and the role of teacher vision and classroom practices.
Incremental Implicit Learning of Bundles of Statistical Patterns
Qian, Ting; Jaeger, T. Florian; Aslin, Richard N.
2016-01-01
Forming an accurate representation of a task environment often takes place incrementally as the information relevant to learning the representation only unfolds over time. This incremental nature of learning poses an important problem: it is usually unclear whether a sequence of stimuli consists of only a single pattern, or multiple patterns that are spliced together. In the former case, the learner can directly use each observed stimulus to continuously revise its representation of the task environment. In the latter case, however, the learner must first parse the sequence of stimuli into different bundles, so as to not conflate the multiple patterns. We created a video-game statistical learning paradigm and investigated 1) whether learners without prior knowledge of the existence of multiple “stimulus bundles” — subsequences of stimuli that define locally coherent statistical patterns — could detect their presence in the input, and 2) whether learners are capable of constructing a rich representation that encodes the various statistical patterns associated with bundles. By comparing human learning behavior to the predictions of three computational models, we find evidence that learners can handle both tasks successfully. In addition, we discuss the underlying reasons for why the learning of stimulus bundles occurs even when such behavior may seem irrational. PMID:27639552
Online Multi-Modal Robust Non-Negative Dictionary Learning for Visual Tracking
Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang
2015-01-01
Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality. PMID:25961715
Online multi-modal robust non-negative dictionary learning for visual tracking.
Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang
2015-01-01
Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality.
Multiple Intelligences for Differentiated Learning
ERIC Educational Resources Information Center
Williams, R. Bruce
2007-01-01
There is an intricate literacy to Gardner's multiple intelligences theory that unlocks key entry points for differentiated learning. Using a well-articulated framework, rich with graphic representations, Williams provides a comprehensive discussion of multiple intelligences. He moves the teacher and students from curiosity, to confidence, to…
Studying action representation in children via motor imagery.
Gabbard, Carl
2009-12-01
The use of motor imagery is a widely used experimental paradigm for the study of cognitive aspects of action planning and control in adults. Furthermore, there are indications that motor imagery provides a window into the process of action representation. These notions complement internal model theory suggesting that such representations allow predictions (estimates) about the mapping of the self to parameters of the external world; processes that enable successful planning and execution of action. The ability to mentally represent action is important to the development of motor control. This paper presents a critical review of motor imagery research conducted with children (typically developing and special populations) with focus on its merits and possible shortcomings in studying action representation. Included in the review are age-related findings, possible brain structures involved, experimental paradigms, and recommendations for future work. The merits of this review are associated with the apparent increasing attraction for using and studying motor imagery to understand the developmental aspects of action processing in children.
Cortical Representations of Speech in a Multitalker Auditory Scene.
Puvvada, Krishna C; Simon, Jonathan Z
2017-09-20
The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory scene, with both attended and unattended speech streams represented with almost equal fidelity. We also show that higher-order auditory cortical areas, by contrast, represent an attended speech stream separately from, and with significantly higher fidelity than, unattended speech streams. Furthermore, the unattended background streams are represented as a single undivided background object rather than as distinct background objects. Copyright © 2017 the authors 0270-6474/17/379189-08$15.00/0.
bioWeb3D: an online webGL 3D data visualisation tool
2013-01-01
Background Data visualization is critical for interpreting biological data. However, in practice it can prove to be a bottleneck for non trained researchers; this is especially true for three dimensional (3D) data representation. Whilst existing software can provide all necessary functionalities to represent and manipulate biological 3D datasets, very few are easily accessible (browser based), cross platform and accessible to non-expert users. Results An online HTML5/WebGL based 3D visualisation tool has been developed to allow biologists to quickly and easily view interactive and customizable three dimensional representations of their data along with multiple layers of information. Using the WebGL library Three.js written in Javascript, bioWeb3D allows the simultaneous visualisation of multiple large datasets inputted via a simple JSON, XML or CSV file, which can be read and analysed locally thanks to HTML5 capabilities. Conclusions Using basic 3D representation techniques in a technologically innovative context, we provide a program that is not intended to compete with professional 3D representation software, but that instead enables a quick and intuitive representation of reasonably large 3D datasets. PMID:23758781
Vaughn, Brian E.; Waters, Theodore E. A.; Steele, Ryan D.; Roisman, Glenn I.; Bost, Kelly K.; Truitt, Warren; Waters, Harriet S.; Booth-LaForce, Cathryn
2016-01-01
Although attachment theory claims that early attachment representations reflecting the quality of the child’s “lived experiences” are maintained across developmental transitions, evidence that has emerged over the last decade suggests that the association between early relationship quality and adolescents’ attachment representations is fairly modest in magnitude. We used aspects of parenting beyond sensitivity over childhood and adolescence and early security to predict adolescents’ scripted attachment representations. At age 18 years, 673 participants from the NICHD Study of Early Child Care and Youth Development (SECCYD) completed the Attachment Script Assessment (ASA) from which we derived an assessment of secure base script knowledge. Measures of secure base support from childhood through age 15 years (e.g., parental monitoring of child activity, father presence in the home) were selected as predictors and accounted for an additional 8% of the variance in secure base script knowledge scores above and beyond direct observations of sensitivity and early attachment status alone, suggesting that adolescents’ scripted attachment representations reflect multiple domains of parenting. Cognitive and demographic variables also significantly increased predicted variance in secure base script knowledge by 2% each. PMID:27032953
Testing the exclusivity effect in location memory.
Clark, Daniel P A; Dunn, Andrew K; Baguley, Thom
2013-01-01
There is growing literature exploring the possibility of parallel retrieval of location memories, although this literature focuses primarily on the speed of retrieval with little attention to the accuracy of location memory recall. Baguley, Lansdale, Lines, and Parkin (2006) found that when a person has two or more memories for an object's location, their recall accuracy suggests that only one representation can be retrieved at a time (exclusivity). This finding is counterintuitive given evidence of non-exclusive recall in the wider memory literature. The current experiment explored the exclusivity effect further and aimed to promote an alternative outcome (i.e., independence or superadditivity) by encouraging the participants to combine multiple representations of space at encoding or retrieval. This was encouraged by using anchor (points of reference) labels that could be combined to form a single strongly associated combination. It was hypothesised that the ability to combine the anchor labels would allow the two representations to be retrieved concurrently, generating higher levels of recall accuracy. The results demonstrate further support for the exclusivity hypothesis, showing no significant improvement in recall accuracy when there are multiple representations of a target object's location as compared to a single representation.
Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming
2018-02-28
The brain represents visual objects with topographic cortical patterns. To address how distributed visual representations enable object categorization, we established predictive encoding models based on a deep residual network, and trained them to predict cortical responses to natural movies. Using this predictive model, we mapped human cortical representations to 64,000 visual objects from 80 categories with high throughput and accuracy. Such representations covered both the ventral and dorsal pathways, reflected multiple levels of object features, and preserved semantic relationships between categories. In the entire visual cortex, object representations were organized into three clusters of categories: biological objects, non-biological objects, and background scenes. In a finer scale specific to each cluster, object representations revealed sub-clusters for further categorization. Such hierarchical clustering of category representations was mostly contributed by cortical representations of object features from middle to high levels. In summary, this study demonstrates a useful computational strategy to characterize the cortical organization and representations of visual features for rapid categorization.
The conventionality of pictorial representation in interstellar messages
NASA Astrophysics Data System (ADS)
Vakoch, D. A.
2000-06-01
Pictorial messages have previously been advocated for interstellar communication because such messages are presumed to be capable of presenting information in a non-arbitrary and easily intelligible manner. In contrast to this view, pictorial messages actually represent information in a partially conventional way. This point is demonstrated by examining pictorial representations of human beings from a range of cultures. While such representations may be understood quite readily by individuals familiar with the conventions of a particular culture, to the uninitiated outsider, such representations can be unintelligible. In spite of the partially arbitrary nature of pictorial representation, we may be able to construct messages that would teach extraterrestrial intelligence (ETI) some of the conventions by which we view pictures. One such approach is to pair numerical information about geometrical objects with pictorial representations of the same objects. Problems of conventionality can also be addressed in part through use of (1) multiple representations of the same object, (2) contextual cues, (3) three- and four-dimensional representations and (4) non-visual representations.
Graphical Language Games: Interactional Constraints on Representational Form
ERIC Educational Resources Information Center
Healey, Patrick G. T.; Swoboda, Nik; Umata, Ichiro; King, James
2007-01-01
The emergence of shared symbol systems is considered to be a pivotal moment in human evolution and human development. These changes are normally explained by reference to changes in people's internal cognitive processes. We present 2 experiments which provide evidence that changes in the external, collaborative processes that people use to…
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1981-01-01
Progress is reported in reading MAGSAT tapes in modeling procedure developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere. The modeling technique utilizes a linear current element representation of the large-scale space-current system.
Learning STEM through Integrative Visual Representations
ERIC Educational Resources Information Center
Virk, Satyugjit Singh
2013-01-01
Previous cognitive models of memory have not comprehensively taken into account the internal cognitive load of chunking isolated information and have emphasized the external cognitive load of visual presentation only. Under the Virk Long Term Working Memory Multimedia Model of cognitive load, drawing from the Cowan model, students presented with…
[The representation of physical pain in art and the Greek escultural group of the Laocoonte].
Roqué, M H; Ruival, C; Roqué, C M
2006-01-01
It makes reference to the symptoms and signs of external pain and internal man suffering, masterly represented on marble by greek sculptors of Ancient Greece. A demonstration of the importance of literature and sculpture as an humanistic complement for teaching History of Medicine.
Our Perception of Woman as Determined by Language.
ERIC Educational Resources Information Center
Ayim, Maryann
Recognition of gender as a significant factor in the social parameters of language is a very recent phenomonon. The external aspects of language as they relate to sexism have social and political ramifications. Using Peirce's definition of sign, which encompasses the representation, the object, and its interpretation, sexually stereotypic language…
Top-Down Predictions in the Cognitive Brain
ERIC Educational Resources Information Center
Kveraga, Kestutis; Ghuman, Avniel S.; Bar, Moshe
2007-01-01
The human brain is not a passive organ simply waiting to be activated by external stimuli. Instead, we propose that the brain continuously employs memory of past experiences to interpret sensory information and predict the immediately relevant future. The basic elements of this proposal include analogical mapping, associative representations and…
Mapping and Managing Knowledge and Information in Resource-Based Learning
ERIC Educational Resources Information Center
Tergan, Sigmar-Olaf; Graber, Wolfgang; Neumann, Anja
2006-01-01
In resource-based learning scenarios, students are often overwhelmed by the complexity of task-relevant knowledge and information. Techniques for the external interactive representation of individual knowledge in graphical format may help them to cope with complex problem situations. Advanced computer-based concept-mapping tools have the potential…
Design of a Cognitive Tool to Enhance Problemsolving Performance
ERIC Educational Resources Information Center
Lee, Youngmin; Nelson, David
2005-01-01
The design of a cognitive tool to support problem-solving performance for external representation of knowledge is described. The limitations of conventional knowledge maps are analyzed in proposing the tool. The design principles and specifications are described. This tool is expected to enhance learners problem-solving performance by allowing…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-27
... balance of perspectives, professional qualifications, and experience. The Act specifies that members must... regions of the country, and the Council strives for a diverse representation. The professional backgrounds..., development, implementation and/or management of environmental education nationally. Persons having questions...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-28
... balance of perspectives, professional qualifications, and experience. The Act specifies that members must... regions of the country, and the Council strives for a diverse representation. The professional backgrounds..., implementation and/or management of environmental education nationally. Additionally, a supporting letter of...
Palmer, Colin J; Seth, Anil K; Hohwy, Jakob
2015-11-01
The mental states of other people are components of the external world that modulate the activity of our sensory epithelia. Recent probabilistic frameworks that cast perception as unconscious inference on the external causes of sensory input can thus be expanded to enfold the brain's representation of others' mental states. This paper examines this subject in the context of the debate concerning the extent to which we have perceptual awareness of other minds. In particular, we suggest that the notion of perceptual presence helps to refine this debate: are others' mental states experienced as veridical qualities of the perceptual world around us? This experiential aspect of social cognition may be central to conditions such as autism spectrum disorder, where representations of others' mental states seem to be selectively compromised. Importantly, recent work ties perceptual presence to the counterfactual predictions of hierarchical generative models that are suggested to perform unconscious inference in the brain. This enables a characterisation of mental state representations in terms of their associated counterfactual predictions, allowing a distinction between spontaneous and explicit forms of mentalising within the framework of predictive processing. This leads to a hypothesis that social cognition in autism spectrum disorder is characterised by a diminished set of counterfactual predictions and the reduced perceptual presence of others' mental states. Copyright © 2015 Elsevier Inc. All rights reserved.
Cullen, Kathleen E.
2014-01-01
The vestibular system is vital for maintaining an accurate representation of self-motion. As one moves (or is moved) toward a new place in the environment, signals from the vestibular sensors are relayed to higher-order centers. It is generally assumed the vestibular system provides a veridical representation of head motion to these centers for the perception of self-motion and spatial memory. In support of this idea, evidence from lesion studies suggests that vestibular inputs are required for the directional tuning of head direction cells in the limbic system as well as neurons in areas of multimodal association cortex. However, recent investigations in monkeys and mice challenge the notion that early vestibular pathways encode an absolute representation of head motion. Instead, processing at the first central stage is inherently multimodal. This minireview highlights recent progress that has been made towards understanding how the brain processes and interprets self-motion signals encoded by the vestibular otoliths and semicircular canals during everyday life. The following interrelated questions are considered. What information is available to the higher-order centers that contribute to self-motion perception? How do we distinguish between our own self-generated movements and those of the external world? And lastly, what are the implications of differences in the processing of these active vs. passive movements for spatial memory? PMID:24454282
TGF-beta signaling proteins and the Protein Ontology.
Arighi, Cecilia N; Liu, Hongfang; Natale, Darren A; Barker, Winona C; Drabkin, Harold; Blake, Judith A; Smith, Barry; Wu, Cathy H
2009-05-06
The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or post-translational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. PRO is manually curated on the basis of PrePRO, an automatically generated file with content derived from standard protein data sources. Manual curation ensures that the treatment of the protein classes and the internal and external relationships conform to the PRO framework. The current release of PRO is based upon experimental data from mouse and human proteins wherein equivalent protein forms are represented by single terms. In addition to the PRO ontology, the annotation of PRO terms is released as a separate PRO association file, which contains, for each given PRO term, an annotation from the experimentally characterized sub-types as well as the corresponding database identifiers and sequence coordinates. The annotations are added in the form of relationship to other ontologies. Whenever possible, equivalent forms in other species are listed to facilitate cross-species comparison. Splice and allelic variants, gene fusion products and modified protein forms are all represented as entities in the ontology. Therefore, PRO provides for the representation of protein entities and a resource for describing the associated data. This makes PRO useful both for proteomics studies where isoforms and modified forms must be differentiated, and for studies of biological pathways, where representations need to take account of the different ways in which the cascade of events may depend on specific protein modifications. PRO provides a framework for the formal representation of protein classes and protein forms in the OBO Foundry. It is designed to enable data retrieval and integration and machine reasoning at the molecular level of proteins, thereby facilitating cross-species comparisons, pathway analysis, disease modeling and the generation of new hypotheses.
Evaluating and Evolving Metadata in Multiple Dialects
NASA Technical Reports Server (NTRS)
Kozimore, John; Habermann, Ted; Gordon, Sean; Powers, Lindsay
2016-01-01
Despite many long-term homogenization efforts, communities continue to develop focused metadata standards along with related recommendations and (typically) XML representations (aka dialects) for sharing metadata content. Different representations easily become obstacles to sharing information because each representation generally requires a set of tools and skills that are designed, built, and maintained specifically for that representation. In contrast, community recommendations are generally described, at least initially, at a more conceptual level and are more easily shared. For example, most communities agree that dataset titles should be included in metadata records although they write the titles in different ways.
Multiplicative Versus Additive Filtering for Spacecraft Attitude Determination
NASA Technical Reports Server (NTRS)
Markley, F. Landis
2003-01-01
The absence of a globally nonsingular three-parameter representation of rotations forces attitude Kalman filters to estimate either a singular or a redundant attitude representation. We compare two filtering strategies using simplified kinematics and measurement models. Our favored strategy estimates a three-parameter representation of attitude deviations from a reference attitude specified by a higher- dimensional nonsingular parameterization. The deviations from the reference are assumed to be small enough to avoid any singularity or discontinuity of the three-dimensional parameterization. We point out some disadvantages of the other strategy, which directly estimates the four-parameter quaternion representation.
Integrating multiple data sources for malware classification
Anderson, Blake Harrell; Storlie, Curtis B; Lane, Terran
2015-04-28
Disclosed herein are representative embodiments of tools and techniques for classifying programs. According to one exemplary technique, at least one graph representation of at least one dynamic data source of at least one program is generated. Also, at least one graph representation of at least one static data source of the at least one program is generated. Additionally, at least using the at least one graph representation of the at least one dynamic data source and the at least one graph representation of the at least one static data source, the at least one program is classified.
In defense of abstract conceptual representations.
Binder, Jeffrey R
2016-08-01
An extensive program of research in the past 2 decades has focused on the role of modal sensory, motor, and affective brain systems in storing and retrieving concept knowledge. This focus has led in some circles to an underestimation of the need for more abstract, supramodal conceptual representations in semantic cognition. Evidence for supramodal processing comes from neuroimaging work documenting a large, well-defined cortical network that responds to meaningful stimuli regardless of modal content. The nodes in this network correspond to high-level "convergence zones" that receive broadly crossmodal input and presumably process crossmodal conjunctions. It is proposed that highly conjunctive representations are needed for several critical functions, including capturing conceptual similarity structure, enabling thematic associative relationships independent of conceptual similarity, and providing efficient "chunking" of concept representations for a range of higher order tasks that require concepts to be configured as situations. These hypothesized functions account for a wide range of neuroimaging results showing modulation of the supramodal convergence zone network by associative strength, lexicality, familiarity, imageability, frequency, and semantic compositionality. The evidence supports a hierarchical model of knowledge representation in which modal systems provide a mechanism for concept acquisition and serve to ground individual concepts in external reality, whereas broadly conjunctive, supramodal representations play an equally important role in concept association and situation knowledge.
Vessel classification in overhead satellite imagery using weighted "bag of visual words"
NASA Astrophysics Data System (ADS)
Parameswaran, Shibin; Rainey, Katie
2015-05-01
Vessel type classification in maritime imagery is a challenging problem and has applications to many military and surveillance applications. The ability to classify a vessel correctly varies significantly depending on its appearance which in turn is affected by external factors such as lighting or weather conditions, viewing geometry and sea state. The difficulty in classifying vessels also varies among different ship types as some types of vessels show more within-class variation than others. In our previous work, we showed that the bag of visual words" (V-BoW) was an effective feature representation for this classification task in the maritime domain. The V-BoW feature representation is analogous to the bag of words" (BoW) representation used in information retrieval (IR) application in text or natural language processing (NLP) domain. It has been shown in the textual IR applications that the performance of the BoW feature representation can be improved significantly by applying appropriate term-weighting such as log term frequency, inverse document frequency etc. Given the close correspondence between textual BoW (T-BoW) and V-BoW feature representations, we propose to apply several well-known term weighting schemes from the text IR domain on V-BoW feature representation to increase its ability to discriminate between ship types.
On Transitions between Representations: The Role of Contextual Reasoning in Calculus Problem Solving
ERIC Educational Resources Information Center
Zazkis, Dov
2016-01-01
This article argues for a shift in how researchers discuss and examine students' uses and understandings of multiple representations within a calculus context. An extension of Zazkis, Dubinsky, and Dautermann's (1996) visualization/analysis framework to include contextual reasoning is proposed. Several examples that detail transitions between…
ERIC Educational Resources Information Center
Bull, Glen; Garofalo, Joe
2010-01-01
The ability to move from one representation of data to another is one of the key characteristics of expert mathematicians and scientists. Cloud computing will offer more opportunities to create and display multiple representations of data, making this skill even more important in the future. The advent of the Internet led to widespread…
Critiquing Borders: Teaching about Religions in a Postcolonial World
ERIC Educational Resources Information Center
Ramey, Steven W.
2006-01-01
In a postcolonial environment, our students will encounter multiple representations and diverse followers of various religions outside the classroom. Students need to think critically about the representations of all religions and recognize the humanity of all people. Too often, students leave courses discussing one or more world religions with an…
A Simple Method for Calculating Clebsch-Gordan Coefficients
ERIC Educational Resources Information Center
Klink, W. H.; Wickramasekara, S.
2010-01-01
This paper presents a simple method for calculating Clebsch-Gordan coefficients for the tensor product of two unitary irreducible representations (UIRs) of the rotation group. The method also works for multiplicity-free irreducible representations appearing in the tensor product of any number of UIRs of the rotation group. The generalization to…
The "Double Bind" of Re-presentation in Qualitative Research Methods.
ERIC Educational Resources Information Center
Smithmier, Angela
A current movement in qualitative research is a preoccupation with representation of the "other" (Denzin and Lincoln 1994). Feminists, critical theorists and postmodernists have questioned the dominant, legitimized social order and remained sensitive to the multiple issues related to and emanating from power. This paper briefly reviews the…
Gaze movements and spatial working memory in collision avoidance: a traffic intersection task
Hardiess, Gregor; Hansmann-Roth, Sabrina; Mallot, Hanspeter A.
2013-01-01
Street crossing under traffic is an everyday activity including collision detection as well as avoidance of objects in the path of motion. Such tasks demand extraction and representation of spatio-temporal information about relevant obstacles in an optimized format. Relevant task information is extracted visually by the use of gaze movements and represented in spatial working memory. In a virtual reality traffic intersection task, subjects are confronted with a two-lane intersection where cars are appearing with different frequencies, corresponding to high and low traffic densities. Under free observation and exploration of the scenery (using unrestricted eye and head movements) the overall task for the subjects was to predict the potential-of-collision (POC) of the cars or to adjust an adequate driving speed in order to cross the intersection without collision (i.e., to find the free space for crossing). In a series of experiments, gaze movement parameters, task performance, and the representation of car positions within working memory at distinct time points were assessed in normal subjects as well as in neurological patients suffering from homonymous hemianopia. In the following, we review the findings of these experiments together with other studies and provide a new perspective of the role of gaze behavior and spatial memory in collision detection and avoidance, focusing on the following questions: (1) which sensory variables can be identified supporting adequate collision detection? (2) How do gaze movements and working memory contribute to collision avoidance when multiple moving objects are present and (3) how do they correlate with task performance? (4) How do patients with homonymous visual field defects (HVFDs) use gaze movements and working memory to compensate for visual field loss? In conclusion, we extend the theory of collision detection and avoidance in the case of multiple moving objects and provide a new perspective on the combined operation of external (bottom-up) and internal (top-down) cues in a traffic intersection task. PMID:23760667
Daemi, Mehdi; Harris, Laurence R; Crawford, J Douglas
2016-01-01
Animals try to make sense of sensory information from multiple modalities by categorizing them into perceptions of individual or multiple external objects or internal concepts. For example, the brain constructs sensory, spatial representations of the locations of visual and auditory stimuli in the visual and auditory cortices based on retinal and cochlear stimulations. Currently, it is not known how the brain compares the temporal and spatial features of these sensory representations to decide whether they originate from the same or separate sources in space. Here, we propose a computational model of how the brain might solve such a task. We reduce the visual and auditory information to time-varying, finite-dimensional signals. We introduce controlled, leaky integrators as working memory that retains the sensory information for the limited time-course of task implementation. We propose our model within an evidence-based, decision-making framework, where the alternative plan units are saliency maps of space. A spatiotemporal similarity measure, computed directly from the unimodal signals, is suggested as the criterion to infer common or separate causes. We provide simulations that (1) validate our model against behavioral, experimental results in tasks where the participants were asked to report common or separate causes for cross-modal stimuli presented with arbitrary spatial and temporal disparities. (2) Predict the behavior in novel experiments where stimuli have different combinations of spatial, temporal, and reliability features. (3) Illustrate the dynamics of the proposed internal system. These results confirm our spatiotemporal similarity measure as a viable criterion for causal inference, and our decision-making framework as a viable mechanism for target selection, which may be used by the brain in cross-modal situations. Further, we suggest that a similar approach can be extended to other cognitive problems where working memory is a limiting factor, such as target selection among higher numbers of stimuli and selections among other modality combinations.
Effect of external magnetic field on locking range of spintronic feedback nano oscillator
NASA Astrophysics Data System (ADS)
Singh, Hanuman; Konishi, K.; Bose, A.; Bhuktare, S.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.
2018-05-01
In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3) multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.
Yudron, Monica; Jones, Stephanie M.; Raver, C. Cybele
2016-01-01
In this paper, we examine common methods for using individual-level data to represent classroom composition by examining exemplary studies that thoughtfully incorporate such measures. Building on these studies, and using data from the Chicago School Readiness Project (CSRP), this paper examines theoretical and analytical implications of a set of different transformations of individual ratings of child externalizing behaviors in order to examine and compare the influence of these representations of classroom composition on Kindergarten internalizing behaviors, social competence, and attention/impulsivity problems. Results indicate that each Kindergarten outcome is influenced by distinct aspects of classroom composition of externalizing behaviors. Kindergarten internalizing behaviors are positively associated with the proportion of children in the Head Start classroom who started with externalizing scores above the 75th percentile regardless of the average value of externalizing behaviors in the classroom. In contrast, Kindergarten social competence is predicted by three aspects of the classroom distribution of externalizing behaviors in the fall of Head Start—the classroom mean, standard deviation, and skew. Finally, Kindergarten attention/impulsivity problems were not associated with any aspect of classroom composition of externalizing behavior examined in this paper. PMID:28275289
[Attachment Representation and Emotion Regulation in Patients with Burnout Syndrome].
Söllner, Wolfgang; Behringer, Johanna; Böhme, Stephanie; Stein, Barbara; Reiner, Iris; Spangler, Gottfried
2016-06-01
Burnout describes a syndrome of exhaustion resulting from insufficient coping with work-related distress. We investigated if patients that are being clinically treated for burnout show insecure and unresolved attachment representation more often compared with healthy controls. 50 out of 60 consecutive burnout patients participated in the study. Mental representation of attachment was measured by using the Adult Attachment Interview. Additionally, we administered the Self Report Questionnaire to Assess Emotional Experience and Emotion Regulation and several burnout specific questionnaires. A population sample was used as control group. Burnout patients were classified as insecurely attached significantly more often than controls. Unresolved attachment status concerning loss or trauma was found significantly more often within the burnout sample. Patients with insecure attachment representation reported a lower subjective significance of work. Patients with avoidant insecure attachment showed more depersonalisation. Patients with unresolved loss/trauma reported less social support. They showed more passive-negative emotion experience and emotion regulation characterized by externalization. The results of the study suggest that an insecure or unresolved attachment representation might constitute an intrapersonal risk factor for the development of burnout syndrome. © Georg Thieme Verlag KG Stuttgart · New York.
Visual representation of spatiotemporal structure
NASA Astrophysics Data System (ADS)
Schill, Kerstin; Zetzsche, Christoph; Brauer, Wilfried; Eisenkolb, A.; Musto, A.
1998-07-01
The processing and representation of motion information is addressed from an integrated perspective comprising low- level signal processing properties as well as higher-level cognitive aspects. For the low-level processing of motion information we argue that a fundamental requirement is the existence of a spatio-temporal memory. Its key feature, the provision of an orthogonal relation between external time and its internal representation, is achieved by a mapping of temporal structure into a locally distributed activity distribution accessible in parallel by higher-level processing stages. This leads to a reinterpretation of the classical concept of `iconic memory' and resolves inconsistencies on ultra-short-time processing and visual masking. The spatial-temporal memory is further investigated by experiments on the perception of spatio-temporal patterns. Results on the direction discrimination of motion paths provide evidence that information about direction and location are not processed and represented independent of each other. This suggests a unified representation on an early level, in the sense that motion information is internally available in form of a spatio-temporal compound. For the higher-level representation we have developed a formal framework for the qualitative description of courses of motion that may occur with moving objects.
A sensorimotor account of vision and visual consciousness.
O'Regan, J K; Noë, A
2001-10-01
Many current neurophysiological, psychophysical, and psychological approaches to vision rest on the idea that when we see, the brain produces an internal representation of the world. The activation of this internal representation is assumed to give rise to the experience of seeing. The problem with this kind of approach is that it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness. An alternative proposal is made here. We propose that seeing is a way of acting. It is a particular way of exploring the environment. Activity in internal representations does not generate the experience of seeing. The outside world serves as its own, external, representation. The experience of seeing occurs when the organism masters what we call the governing laws of sensorimotor contingency. The advantage of this approach is that it provides a natural and principled way of accounting for visual consciousness, and for the differences in the perceived quality of sensory experience in the different sensory modalities. Several lines of empirical evidence are brought forward in support of the theory, in particular: evidence from experiments in sensorimotor adaptation, visual "filling in," visual stability despite eye movements, change blindness, sensory substitution, and color perception.
A model for process representation and synthesis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Thomas, R. H.
1971-01-01
The problem of representing groups of loosely connected processes is investigated, and a model for process representation useful for synthesizing complex patterns of process behavior is developed. There are three parts, the first part isolates the concepts which form the basis for the process representation model by focusing on questions such as: What is a process; What is an event; Should one process be able to restrict the capabilities of another? The second part develops a model for process representation which captures the concepts and intuitions developed in the first part. The model presented is able to describe both the internal structure of individual processes and the interface structure between interacting processes. Much of the model's descriptive power derives from its use of the notion of process state as a vehicle for relating the internal and external aspects of process behavior. The third part demonstrates by example that the model for process representation is a useful one for synthesizing process behavior patterns. In it the model is used to define a variety of interesting process behavior patterns. The dissertation closes by suggesting how the model could be used as a semantic base for a very potent language extension facility.
Shi, Jun; Liu, Xiao; Li, Yan; Zhang, Qi; Li, Yingjie; Ying, Shihui
2015-10-30
Electroencephalography (EEG) based sleep staging is commonly used in clinical routine. Feature extraction and representation plays a crucial role in EEG-based automatic classification of sleep stages. Sparse representation (SR) is a state-of-the-art unsupervised feature learning method suitable for EEG feature representation. Collaborative representation (CR) is an effective data coding method used as a classifier. Here we use CR as a data representation method to learn features from the EEG signal. A joint collaboration model is established to develop a multi-view learning algorithm, and generate joint CR (JCR) codes to fuse and represent multi-channel EEG signals. A two-stage multi-view learning-based sleep staging framework is then constructed, in which JCR and joint sparse representation (JSR) algorithms first fuse and learning the feature representation from multi-channel EEG signals, respectively. Multi-view JCR and JSR features are then integrated and sleep stages recognized by a multiple kernel extreme learning machine (MK-ELM) algorithm with grid search. The proposed two-stage multi-view learning algorithm achieves superior performance for sleep staging. With a K-means clustering based dictionary, the mean classification accuracy, sensitivity and specificity are 81.10 ± 0.15%, 71.42 ± 0.66% and 94.57 ± 0.07%, respectively; while with the dictionary learned using the submodular optimization method, they are 80.29 ± 0.22%, 71.26 ± 0.78% and 94.38 ± 0.10%, respectively. The two-stage multi-view learning based sleep staging framework outperforms all other classification methods compared in this work, while JCR is superior to JSR. The proposed multi-view learning framework has the potential for sleep staging based on multi-channel or multi-modality polysomnography signals. Copyright © 2015 Elsevier B.V. All rights reserved.
Bidirectional associations in multiplication memory: conditions of negative and positive transfer.
Campbell, Jamie I D; Robert, Nicole D
2008-05-01
A variety of experimental evidence indicates that the memory representation for multiplication facts (e.g., 6 x 9 = 54) incorporates bidirectional links with a forward association from factors to product and a reverse association from product to factors. Surprisingly, the authors did not find evidence in Experiment 1 of facilitative transfer-of-practice from multiplication (6 x 9 = ?) to factoring (54 = ? x ?); in fact, multiplication practice produced item-specific interference with factoring. Similarly, the authors found no evidence in Experiment 2 that repetition of specific factoring problems (54 = ? x ?) facilitated performance of corresponding multiplication problems (6 x 9 = ?). In Experiment 3, participants practiced both multiplication and factoring and presented facilitative transfer in both directions. Thus, bidirectional facilitation occurred if both operations were practiced, but interference occurred when only one operation was practiced. We propose that this seemingly paradoxical behavior occurs because it is adaptive for the bidirectional retrieval structure to retain operational flexibility in the context of practicing both operations, whereas it is adaptive to specialize the memory representation for the practiced operation (i.e., factoring or multiplication) when only one operation is practiced.
Haberman, Jason; Brady, Timothy F; Alvarez, George A
2015-04-01
Ensemble perception, including the ability to "see the average" from a group of items, operates in numerous feature domains (size, orientation, speed, facial expression, etc.). Although the ubiquity of ensemble representations is well established, the large-scale cognitive architecture of this process remains poorly defined. We address this using an individual differences approach. In a series of experiments, observers saw groups of objects and reported either a single item from the group or the average of the entire group. High-level ensemble representations (e.g., average facial expression) showed complete independence from low-level ensemble representations (e.g., average orientation). In contrast, low-level ensemble representations (e.g., orientation and color) were correlated with each other, but not with high-level ensemble representations (e.g., facial expression and person identity). These results suggest that there is not a single domain-general ensemble mechanism, and that the relationship among various ensemble representations depends on how proximal they are in representational space. (c) 2015 APA, all rights reserved).
Distributed representation of visual objects by single neurons in the human brain.
Valdez, André B; Papesh, Megan H; Treiman, David M; Smith, Kris A; Goldinger, Stephen D; Steinmetz, Peter N
2015-04-01
It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. Copyright © 2015 the authors 0270-6474/15/355180-07$15.00/0.
The parietal cortex in sensemaking: the dissociation of multiple types of spatial information.
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction.
The Parietal Cortex in Sensemaking: The Dissociation of Multiple Types of Spatial Information
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction. PMID:23710165
ERIC Educational Resources Information Center
Mrug, Sylvie; Windle, Michael
2010-01-01
Background: Violence exposure within each setting of community, school, or home has been linked with internalizing and externalizing problems. Although many children experience violence in multiple contexts, the effects of such cross-contextual exposure have not been studied. This study addresses this gap by examining independent and interactive…
Mof-Tree: A Spatial Access Method To Manipulate Multiple Overlapping Features.
ERIC Educational Resources Information Center
Manolopoulos, Yannis; Nardelli, Enrico; Papadopoulos, Apostolos; Proietti, Guido
1997-01-01
Investigates the manipulation of large sets of two-dimensional data representing multiple overlapping features, and presents a new access method, the MOF-tree. Analyzes storage requirements and time with respect to window query operations involving multiple features. Examines both the pointer-based and pointerless MOF-tree representations.…
The Duffin-Kemmer-Petiau oscillator
NASA Technical Reports Server (NTRS)
Nedjadi, Youcef; Barrett, Roger
1995-01-01
In view of current interest in relativistic spin-one systems and the recent work on the Dirac Oscillator, we introduce the Duffin-Kemmer-Petiau (DKP) equation obtained by using an external potential linear in r. Since, in the non-relativistic limit, the spin 1 representation leads to a harmonic oscillator with a spin-orbit coupling of the Thomas form, we call the equation the DKP oscillator. This oscillator is a relativistic generalization of the quantum harmonic oscillator for scalar and vector bosons. We show that it conserves total angular momentum and that it is exactly solvable. We calculate and discuss the eigenspectrum of the DKP oscillator in the spin 1 representation.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Vanderburg, J. D.
1977-01-01
A vehicle geometric definition based upon quadrilateral surface elements to produce realistic pictures of an aerospace vehicle. The PCSYS programs can be used to visually check geometric data input, monitor geometric perturbations, and to visualize the complex spatial inter-relationships between the internal and external vehicle components. PCSYS has two major component programs. The between program, IMAGE, draws a complex aerospace vehicle pictorial representation based on either an approximate but rapid hidden line algorithm or without any hidden line algorithm. The second program, HIDDEN, draws a vehicle representation using an accurate but time consuming hidden line algorithm.
Sparse representation of whole-brain fMRI signals for identification of functional networks.
Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming
2015-02-01
There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.
Perceptual Categorization of Cat and Dog Silhouettes by 3- to 4-Month-Old Infants.
ERIC Educational Resources Information Center
Quinn, Paul C.; Eimas, Peter D.; Tarr, Michael
2001-01-01
Four experiments utilizing the familiarization-novelty preference procedure examined whether 3- and 4-month-olds could form categorical representations for cats versus dogs from the perceptual information available in silhouettes. Findings indicated that general shape or external contour information centered about the head was sufficient for…
ERIC Educational Resources Information Center
Mansyur, Jusman; Darsikin
2016-01-01
This paper describes an instructional design for introductory physics that integrates previous research results of physics problem-solving and the use of external representation into direct instruction (DI). The research is a part of research in obtaining an established instructional design to support mental-modeling ability. By integrating with…
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
The status of the initial testing of the modeling procedure developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere and magnetosphere is reported. The modeling technique utilizes a linear current element representation of the large scale space-current system.
Using Graphical Notations to Assess Children's Experiencing of Simple and Complex Musical Fragments
ERIC Educational Resources Information Center
Verschaffel, Lieven; Reybrouck, Mark; Janssens, Marjan; Van Dooren, Wim
2010-01-01
The aim of this study was to analyze children's graphical notations as external representations of their experiencing when listening to simple sonic stimuli and complex musical fragments. More specifically, we assessed the impact of four factors on children's notations: age, musical background, complexity of the fragment, and most salient…
ERIC Educational Resources Information Center
Niebert, Kai; Gropengiesser, Harald
2015-01-01
In recent years, researchers have become aware of the experiential grounding of scientific thought. Accordingly, research has shown that metaphorical mappings between experience-based source domains and abstract target domains are omnipresent in everyday and scientific language. The theory of conceptual metaphor explains these findings based on…
ERIC Educational Resources Information Center
Schnotz, Wolfgang; Kurschner, Christian
2008-01-01
This article investigates whether different formats of visualizing information result in different mental models constructed in learning from pictures, whether the different mental models lead to different patterns of performance in subsequently presented tasks, and how these visualization effects can be modified by further external…
Library Services in Institutions for Mentally and Developmentally Disabled Adults.
ERIC Educational Resources Information Center
Ensor, Pat
To improve the quality of life of institutionalized individuals, libraries can serve as a constructive escape mechanism for dealing with stress, a representation of external reality, and a therapeutic agent, in addition to offering bibliotherapy. Ideally, the library should be an integral part of the institution and provide a user-appropriate…
ERIC Educational Resources Information Center
Schonborn, Konrad J.; Bogeholz, Susanne
2009-01-01
Recent curriculum reform promotes core competencies such as desired "content knowledge" and "communication" for meaningful learning in biology. Understanding in biology is demonstrated when pupils can apply acquired knowledge to new tasks. This process requires the transfer of knowledge and the subordinate process of translation across external…
Learner-Information Interaction: A Macro-Level Framework Characterizing Visual Cognitive Tools
ERIC Educational Resources Information Center
Sedig, Kamran; Liang, Hai-Ning
2008-01-01
Visual cognitive tools (VCTs) are external mental aids that maintain and display visual representations (VRs) of information (i.e., structures, objects, concepts, ideas, and problems). VCTs allow learners to operate upon the VRs to perform epistemic (i.e., reasoning and knowledge-based) activities. In VCTs, the mechanism by which learners operate…
The Representation of Library Value in Extra-Institutional Evaluations of University Quality
ERIC Educational Resources Information Center
Jackson, Brian
2017-01-01
The ways in which university quality assessments are developed reveal a great deal about value constructs surrounding higher education. Measures developed and consumed by external stakeholders, in particular, indicate which elements of academia are broadly perceived to be most reflective of quality. This paper examines the historical context of…
Design of a Three-Dimensional Cognitive Mapping Approach to Support Inquiry Learning
ERIC Educational Resources Information Center
Chen, Juanjuan; Wang, Minhong; Dede, Chris; Grotzer, Tina A.
2017-01-01
The use of external representations has the potential to facilitate inquiry learning, especially hypothesis generation and reasoning, which typically present difficulties for students. This study describes a novel three-dimensional cognitive mapping (3DCM) approach that supports inquiry learning by allowing learners to combine the information on a…
ERIC Educational Resources Information Center
Schonborn, Konrad J.; Anderson, Trevor R.
2010-01-01
External representations (ERs), such as diagrams, animations, and dynamic models are vital tools for communicating and constructing knowledge in biochemistry. To build a meaningful understanding of structure, function, and process, it is essential that students become visually literate by mastering key cognitive skills that are essential for…
A Study of Pre-Service Teachers Use of Representations in Their Proportional Reasoning
ERIC Educational Resources Information Center
Johnson, Kim
2017-01-01
Proportional reasoning is important to the field of mathematics education because it lies at the crossroads of additive reasoning in the elementary school and multiplicative reasoning needed for more advanced mathematics. This research reports on the representations used by pre-service teachers (PSTs) as they responded to tasks involving…
Effect of Algorithms' Multiple Representations in the Context of Programming Education
ERIC Educational Resources Information Center
Siozou, Stefania; Tselios, Nikolaos; Komis, Vassilis
2008-01-01
Purpose: The purpose of this paper is to compare the effect of different representations while teaching basic algorithmic concepts to novice programmers. Design/methodology/approach: A learning activity was designed and mediated with two conceptually different learning environments, each one used by a different group. The first group used the…
Unitary vs Multiple Semantics: PET Studies of Word and Picture Processing
ERIC Educational Resources Information Center
Bright, P.; Moss, H.; Tyler, L. K.
2004-01-01
In this paper we examine a central issue in cognitive neuroscience: are there separate conceptual representations associated with different input modalities (e.g., Paivio, 1971, 1986; Warrington & Shallice, 1984) or do inputs from different modalities converge on to the same set of representations (e.g., Caramazza, Hillis, Rapp, & Romani, 1990;…
ERIC Educational Resources Information Center
Li, Na; Black, John B.
2016-01-01
Chemistry knowledge can be represented at macro-, micro- and symbolic levels, and learning a chemistry topic requires students to engage in multiple representational activities. This study focused on scaffolding for inter-level connection-making in learning chemistry knowledge with graphical simulations. We also tested whether different sequences…
Impact of Context and Representation on Year 10 Students' Expression of Conceptions of Rate
ERIC Educational Resources Information Center
Herbert, Sandra
2010-01-01
Rate is an important, but difficult mathematical concept. More than twenty years of research, especially with calculus students, report difficulties with this concept. This paper reports on an alternative analysis, from the perspective of multiple representations and context, of interviews probing twenty Victorian Year 10 students' conceptions of…
ERIC Educational Resources Information Center
Gebre, Engida H.; Polman, Joseph L.
2016-01-01
This study presents descriptive analysis of young adults' use of multiple representations in the context of science news reporting. Across one semester, 71 high school students, in a socioeconomically diverse suburban secondary school in Midwestern United States, participated in activities of researching science topics of their choice and…
ERIC Educational Resources Information Center
Nichols, Kim; Hanan, Jim; Ranasinghe, Muditha
2013-01-01
This study used an interactive dynamic simulation of action potential to explore social practices of learning among first year undergraduate biology students. It aimed to create a learning environment that fosters knowledge building discourse through working with multiple concept-specific representations. Three hundred and eighty-nine students and…
Developing Box Plots While Navigating the Maze of Data Representations
ERIC Educational Resources Information Center
Duncan, Bruce; Fitzallen, Noleine
2013-01-01
The learning sequence described in this article was developed to provide students with a demonstration of the development of box plots from authentic data as an illustration of the advantages gained from using multiple forms of data representation. The sequence follows an authentic process that starts with a problem to which data representations…
ERIC Educational Resources Information Center
Sturge-Apple, Melissa L.; Davies, Patrick T.; Winter, Marcia A.; Cummings, E. Mark; Schermerhorn, Alice
2008-01-01
This study examined how children's insecure internal representations of interparental and parent-child relationships served as explanatory mechanisms in multiple pathways linking interparental conflict and parent emotional unavailability with the emotional and classroom engagement difficulties the children had in their adjustment to school. With…
ERIC Educational Resources Information Center
Hwang, Wu-Yuin; Hu, Shih-Shin
2013-01-01
Learning geometry emphasizes the importance of exploring different representations such as virtual manipulatives, written math formulas, and verbal explanations, which help students build math concepts and develop critical thinking. Besides helping individuals construct math knowledge, peer interaction also plays a crucial role in promoting an…
Identity from Variation: Representations of Faces Derived from Multiple Instances
ERIC Educational Resources Information Center
Burton, A. Mike; Kramer, Robin S. S.; Ritchie, Kay L.; Jenkins, Rob
2016-01-01
Research in face recognition has tended to focus on discriminating between individuals, or "telling people apart." It has recently become clear that it is also necessary to understand how images of the same person can vary, or "telling people together." Learning a new face, and tracking its representation as it changes from…
The Role of Multiple Representations in the Understanding of Ideal Gas Problems
ERIC Educational Resources Information Center
Madden, Sean P.; Jones, Loretta L.; Rahm, Jrene
2011-01-01
This study examined the representational competence of students as they solved problems dealing with the temperature-pressure relationship for ideal gases. Seven students enrolled in a first-semester general chemistry course and two advanced undergraduate science majors participated in the study. The written work and transcripts from videotaped…
ERIC Educational Resources Information Center
Dündar, Sefa
2015-01-01
Using multiple representations of a problem can reveal the relationship between complex concepts by expressing the same mathematical condition differently and can contribute to the meaningful learning of mathematical concepts. The purpose of this study is to assess the performances of mathematics teacher-candidates on trigonometry problems…
NASA Astrophysics Data System (ADS)
Olander, Clas; Wickman, Per-Olof; Tytler, Russell; Ingerman, Åke
2018-01-01
The aim of this article is to investigate students' meaning-making processes of multiple representations during a teaching sequence about the human body in lower secondary school. Two main influences are brought together to accomplish the analysis: on the one hand, theories on signs and representations as scaffoldings for learning and, on the other hand, pragmatist theories on how continuity between the purposes of different inquiry activities can be sustained. Data consist of 10 videotaped and transcribed lessons with 14-year-old students (N = 26) in Sweden. The analysis focused instances where meaning of representations was negotiated. Findings indicate that continuity is established in multiple ways, for example, as the use of metaphors articulated as an interlanguage expression that enables the students (and the teacher) to maintain the conversation and explain pressing issues in ways that support of the end-in-view of the immediate action. Continuity is also established between every day and scientific registers and between organisation levels as well as between the smaller parts and the whole system.
Chen, Qi; Mirman, Daniel
2012-04-01
One of the core principles of how the mind works is the graded, parallel activation of multiple related or similar representations. Parallel activation of multiple representations has been particularly important in the development of theories and models of language processing, where coactivated representations (neighbors) have been shown to exhibit both facilitative and inhibitory effects on word recognition and production. Researchers generally ascribe these effects to interactive activation and competition, but there is no unified explanation for why the effects are facilitative in some cases and inhibitory in others. We present a series of simulations of a simple domain-general interactive activation and competition model that is broadly consistent with more specialized domain-specific models of lexical processing. The results showed that interactive activation and competition can indeed account for the complex pattern of reversals. Critically, the simulations revealed a core computational principle that determines whether neighbor effects are facilitative or inhibitory: strongly active neighbors exert a net inhibitory effect, and weakly active neighbors exert a net facilitative effect.
Generative Representations for Evolving Families of Designs
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2003-01-01
Since typical evolutionary design systems encode only a single artifact with each individual, each time the objective changes a new set of individuals must be evolved. When this objective varies in a way that can be parameterized, a more general method is to use a representation in which a single individual encodes an entire class of artifacts. In addition to saving time by preventing the need for multiple evolutionary runs, the evolution of parameter-controlled designs can create families of artifacts with the same style and a reuse of parts between members of the family. In this paper an evolutionary design system is described which uses a generative representation to encode families of designs. Because a generative representation is an algorithmic encoding of a design, its input parameters are a way to control aspects of the design it generates. By evaluating individuals multiple times with different input parameters the evolutionary design system creates individuals in which the input parameter controls specific aspects of a design. This system is demonstrated on two design substrates: neural-networks which solve the 3/5/7-parity problem and three-dimensional tables of varying heights.
Feynman formulas for semigroups generated by an iterated Laplace operator
NASA Astrophysics Data System (ADS)
Buzinov, M. S.
2017-04-01
In the present paper, we find representations of a one-parameter semigroup generated by a finite sum of iterated Laplace operators and an additive perturbation (the potential). Such semigroups and the evolution equations corresponding to them find applications in the field of physics, chemistry, biology, and pattern recognition. The representations mentioned above are obtained in the form of Feynman formulas, i.e., in the form of a limit of multiple integrals as the multiplicity tends to infinity. The term "Feynman formula" was proposed by Smolyanov. Smolyanov's approach uses Chernoff's theorems. A simple form of representations thus obtained enables one to use them for numerical modeling the dynamics of the evolution system as a method for the approximation of solutions of equations. The problems considered in this note can be treated using the approach suggested by Remizov (see also the monograph of Smolyanov and Shavgulidze on path integrals). The representations (of semigroups) obtained in this way are more complicated than those given by the Feynman formulas; however, it is possible to bypass some analytical difficulties.
A knowledge base of the chemical compounds of intermediary metabolism.
Karp, P D
1992-08-01
This paper describes a publicly available knowledge base of the chemical compounds involved in intermediary metabolism. We consider the motivations for constructing a knowledge base of metabolic compounds, the methodology by which it was constructed, and the information that it currently contains. Currently the knowledge base describes 981 compounds, listing for each: synonyms for its name, a systematic name, CAS registry number, chemical formula, molecular weight, chemical structure and two-dimensional display coordinates for the structure. The Compound Knowledge Base (CompoundKB) illustrates several methodological principles that should guide the development of biological knowledge bases. I argue that biological datasets should be made available in multiple representations to increase their accessibility to end users, and I present multiple representations of the CompoundKB (knowledge base, relational data base and ASN. 1 representations). I also analyze the general characteristics of these representations to provide an understanding of their relative advantages and disadvantages. Another principle is that the error rate of biological data bases should be estimated and documented-this analysis is performed for the CompoundKB.
Representation control increases task efficiency in complex graphical representations.
Moritz, Julia; Meyerhoff, Hauke S; Meyer-Dernbecher, Claudia; Schwan, Stephan
2018-01-01
In complex graphical representations, the relevant information for a specific task is often distributed across multiple spatial locations. In such situations, understanding the representation requires internal transformation processes in order to extract the relevant information. However, digital technology enables observers to alter the spatial arrangement of depicted information and therefore to offload the transformation processes. The objective of this study was to investigate the use of such a representation control (i.e. the users' option to decide how information should be displayed) in order to accomplish an information extraction task in terms of solution time and accuracy. In the representation control condition, the participants were allowed to reorganize the graphical representation and reduce information density. In the control condition, no interactive features were offered. We observed that participants in the representation control condition solved tasks that required reorganization of the maps faster and more accurate than participants without representation control. The present findings demonstrate how processes of cognitive offloading, spatial contiguity, and information coherence interact in knowledge media intended for broad and diverse groups of recipients.
Representation control increases task efficiency in complex graphical representations
Meyerhoff, Hauke S.; Meyer-Dernbecher, Claudia; Schwan, Stephan
2018-01-01
In complex graphical representations, the relevant information for a specific task is often distributed across multiple spatial locations. In such situations, understanding the representation requires internal transformation processes in order to extract the relevant information. However, digital technology enables observers to alter the spatial arrangement of depicted information and therefore to offload the transformation processes. The objective of this study was to investigate the use of such a representation control (i.e. the users' option to decide how information should be displayed) in order to accomplish an information extraction task in terms of solution time and accuracy. In the representation control condition, the participants were allowed to reorganize the graphical representation and reduce information density. In the control condition, no interactive features were offered. We observed that participants in the representation control condition solved tasks that required reorganization of the maps faster and more accurate than participants without representation control. The present findings demonstrate how processes of cognitive offloading, spatial contiguity, and information coherence interact in knowledge media intended for broad and diverse groups of recipients. PMID:29698443
Weight shifting operators and conformal blocks
NASA Astrophysics Data System (ADS)
Karateev, Denis; Kravchuk, Petr; Simmons-Duffin, David
2018-02-01
We introduce a large class of conformally-covariant differential operators and a crossing equation that they obey. Together, these tools dramatically simplify calculations involving operators with spin in conformal field theories. As an application, we derive a formula for a general conformal block (with arbitrary internal and external representations) in terms of derivatives of blocks for external scalars. In particular, our formula gives new expressions for "seed conformal blocks" in 3d and 4d CFTs. We also find simple derivations of identities between external-scalar blocks with different dimensions and internal spins. We comment on additional applications, including deriving recursion relations for general conformal blocks, reducing inversion formulae for spinning operators to inversion formulae for scalars, and deriving identities between general 6 j symbols (Racah-Wigner coefficients/"crossing kernels") of the conformal group.
The Differential Role of Verbal and Spatial Working Memory in the Neural Basis of Arithmetic
Demir, Özlem Ece; Prado, Jérôme; Booth, James R.
2014-01-01
We examine the relations of verbal and spatial WM ability to the neural bases of arithmetic in school-age children. We independently localize brain regions subserving verbal versus spatial representations. For multiplication, higher verbal WM ability is associated with greater recruitment of the left temporal cortex, identified by the verbal localizer. For multiplication and subtraction, higher spatial WM ability is associated with greater recruitment of right parietal cortex, identified by the spatial localizer. Depending on their WM ability, children engage different neural systems that manipulate different representations to solve arithmetic problems. PMID:25144257
Multiple time-scales and the developmental dynamics of social systems
Flack, Jessica C.
2012-01-01
To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the ‘coarseness’ of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems. PMID:22641819
Wood, Guilherme; Nuerk, Hans-Christoph; Moeller, Korbinian; Geppert, Barbara; Schnitker, Ralph; Weber, Jochen; Willmes, Klaus
2008-01-02
Number processing recruits a complex network of multiple numerical representations. Usually the components of this network are examined in a between-task approach with the disadvantage of relying upon different instructions, tasks, and inhomogeneous stimulus sets across different studies. A within-task approach may avoid these disadvantages and access involved numerical representations more specifically. In the present study we employed a within-task approach to investigate numerical representations activated in the number bisection task (NBT) using parametric rapid event-related fMRI. Participants were to judge whether the central number of a triplet was also its arithmetic mean (e.g. 23_26_29) or not (e.g. 23_25_29). Activation in the left inferior parietal cortex was associated with the deployment of arithmetic fact knowledge, while activation of the intraparietal cortex indicated more intense magnitude processing, instrumental aspects of calculation and integration of the base-10 structure of two-digit numbers. These results replicate evidence from the literature. Furthermore, activation in the dorsolateral and ventrolateral prefrontal cortex revealed mechanisms of feature monitoring and inhibition as well as allocation of cognitive resources recruited to solve a specific triplet. We conclude that the network of numerical representations should rather be studied in a within-task approach than in varying between-task approaches.
Multiple time-scales and the developmental dynamics of social systems.
Flack, Jessica C
2012-07-05
To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the 'coarseness' of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems.
NASA Astrophysics Data System (ADS)
Cherri, Abdallah K.; Alam, Mohammed S.
1998-07-01
Highly-efficient two-step recoded and one-step nonrecoded trinary signed-digit (TSD) carry-free adders subtracters are presented on the basis of redundant-bit representation for the operands digits. It has been shown that only 24 (30) minterms are needed to implement the two-step recoded (the one-step nonrecoded) TSD addition for any operand length. Optical implementation of the proposed arithmetic can be carried out by use of correlation- or matrix-multiplication-based schemes, saving 50% of the system memory. Furthermore, we present four different multiplication designs based on our proposed recoded and nonrecoded TSD adders. Our multiplication designs require a small number of reduced minterms to generate the multiplication partial products. Finally, a recently proposed pipelined iterative-tree algorithm can be used in the TSD adders multipliers; consequently, efficient use of all available adders can be made.
Cherri, A K; Alam, M S
1998-07-10
Highly-efficient two-step recoded and one-step nonrecoded trinary signed-digit (TSD) carry-free adders-subtracters are presented on the basis of redundant-bit representation for the operands' digits. It has been shown that only 24 (30) minterms are needed to implement the two-step recoded (the one-step nonrecoded) TSD addition for any operand length. Optical implementation of the proposed arithmetic can be carried out by use of correlation- or matrix-multiplication-based schemes, saving 50% of the system memory. Furthermore, we present four different multiplication designs based on our proposed recoded and nonrecoded TSD adders. Our multiplication designs require a small number of reduced minterms to generate the multiplication partial products. Finally, a recently proposed pipelined iterative-tree algorithm can be used in the TSD adders-multipliers; consequently, efficient use of all available adders can be made.
Multichannel activity propagation across an engineered axon network
NASA Astrophysics Data System (ADS)
Chen, H. Isaac; Wolf, John A.; Smith, Douglas H.
2017-04-01
Objective. Although substantial progress has been made in mapping the connections of the brain, less is known about how this organization translates into brain function. In particular, the massive interconnectivity of the brain has made it difficult to specifically examine data transmission between two nodes of the connectome, a central component of the ‘neural code.’ Here, we investigated the propagation of multiple streams of asynchronous neuronal activity across an isolated in vitro ‘connectome unit.’ Approach. We used the novel technique of axon stretch growth to create a model of a long-range cortico-cortical network, a modular system consisting of paired nodes of cortical neurons connected by axon tracts. Using optical stimulation and multi-electrode array recording techniques, we explored how input patterns are represented by cortical networks, how these representations shift as they are transmitted between cortical nodes and perturbed by external conditions, and how well the downstream node distinguishes different patterns. Main results. Stimulus representations included direct, synaptic, and multiplexed responses that grew in complexity as the distance between the stimulation source and recorded neuron increased. These representations collapsed into patterns with lower information content at higher stimulation frequencies. With internodal activity propagation, a hierarchy of network pathways, including latent circuits, was revealed using glutamatergic blockade. As stimulus channels were added, divergent, non-linear effects were observed in local versus distant network layers. Pairwise difference analysis of neuronal responses suggested that neuronal ensembles generally outperformed individual cells in discriminating input patterns. Significance. Our data illuminate the complexity of spiking activity propagation in cortical networks in vitro, which is characterized by the transformation of an input into myriad outputs over several network layers. These results provide insight into how the brain potentially processes information and generates the neural code and could guide the development of clinical therapies based on multichannel brain stimulation.
Improved Collision-Detection Method for Robotic Manipulator
NASA Technical Reports Server (NTRS)
Leger, Chris
2003-01-01
An improved method has been devised for the computational prediction of a collision between (1) a robotic manipulator and (2) another part of the robot or an external object in the vicinity of the robot. The method is intended to be used to test commanded manipulator trajectories in advance so that execution of the commands can be stopped before damage is done. The method involves utilization of both (1) mathematical models of the robot and its environment constructed manually prior to operation and (2) similar models constructed automatically from sensory data acquired during operation. The representation of objects in this method is simpler and more efficient (with respect to both computation time and computer memory), relative to the representations used in most prior methods. The present method was developed especially for use on a robotic land vehicle (rover) equipped with a manipulator arm and a vision system that includes stereoscopic electronic cameras. In this method, objects are represented and collisions detected by use of a previously developed technique known in the art as the method of oriented bounding boxes (OBBs). As the name of this technique indicates, an object is represented approximately, for computational purposes, by a box that encloses its outer boundary. Because many parts of a robotic manipulator are cylindrical, the OBB method has been extended in this method to enable the approximate representation of cylindrical parts by use of octagonal or other multiple-OBB assemblies denoted oriented bounding prisms (OBPs), as in the example of Figure 1. Unlike prior methods, the OBB/OBP method does not require any divisions or transcendental functions; this feature leads to greater robustness and numerical accuracy. The OBB/OBP method was selected for incorporation into the present method because it offers the best compromise between accuracy on the one hand and computational efficiency (and thus computational speed) on the other hand.
Separating Decision and Encoding Noise in Signal Detection Tasks
Cabrera, Carlos Alexander; Lu, Zhong-Lin; Dosher, Barbara Anne
2015-01-01
In this paper we develop an extension to the Signal Detection Theory (SDT) framework to separately estimate internal noise arising from representational and decision processes. Our approach constrains SDT models with decision noise by combining a multi-pass external noise paradigm with confidence rating responses. In a simulation study we present evidence that representation and decision noise can be separately estimated over a range of representative underlying representational and decision noise level configurations. These results also hold across a number of decision rules and show resilience to rule miss-specification. The new theoretical framework is applied to a visual detection confidence-rating task with three and five response categories. This study compliments and extends the recent efforts of researchers (Benjamin, Diaz, & Wee, 2009; Mueller & Weidemann, 2008; Rosner & Kochanski, 2009, Kellen, Klauer, & Singmann, 2012) to separate and quantify underlying sources of response variability in signal detection tasks. PMID:26120907
Plurality of Birth and Infant Mortality Due to External Causes in the United States, 2000-2010.
Ahrens, Katherine A; Thoma, Marie E; Rossen, Lauren M; Warner, Margaret; Simon, Alan E
2017-03-01
Risk of death during the first year of life due to external causes, such as unintentional injury and homicide, may be higher among twins and higher-order multiples than among singletons in the United States. We used national birth cohort linked birth-infant death data (2000-2010) to evaluate the risk of infant mortality due to external causes in multiples versus singletons in the United States. Risk of death from external causes during the study period was 3.6 per 10,000 live births in singletons and 5.1 per 10,000 live births in multiples. Using log-binomial regression, the corresponding unadjusted risk ratio was 1.40 (95% confidence interval (CI): 1.30, 1.50). After adjustment for maternal age, marital status, race/ethnicity, and education, the risk ratio was 1.68 (95% CI: 1.56, 1.81). Infant deaths due to external causes were most likely to occur between 2 and 7 months of age. Applying inverse probability weighting and assuming a hypothetical intervention where no infants were low birth weight, the adjusted controlled direct effect of plurality on infant mortality due to external causes was 1.64 (95% CI: 1.39, 1.97). Twins and higher-order multiples were at greater risk of infant mortality due to external causes, particularly between 2 and 7 months of age, and this risk appeared to be mediated largely by factors other than low-birth-weight status. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.
2015-02-08
We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.
Hosseinbor, A. Pasha; Chung, Moo K.; Koay, Cheng Guan; Schaefer, Stacey M.; van Reekum, Carien M.; Schmitz, Lara Peschke; Sutterer, Matt; Alexander, Andrew L.; Davidson, Richard J.
2015-01-01
Image-based parcellation of the brain often leads to multiple disconnected anatomical structures, which pose significant challenges for analyses of morphological shapes. Existing shape models, such as the widely used spherical harmonic (SPHARM) representation, assume topological invariance, so are unable to simultaneously parameterize multiple disjoint structures. In such a situation, SPHARM has to be applied separately to each individual structure. We present a novel surface parameterization technique using 4D hyperspherical harmonics in representing multiple disjoint objects as a single analytic function, terming it HyperSPHARM. The underlying idea behind Hyper-SPHARM is to stereographically project an entire collection of disjoint 3D objects onto the 4D hypersphere and subsequently simultaneously parameterize them with the 4D hyperspherical harmonics. Hence, HyperSPHARM allows for a holistic treatment of multiple disjoint objects, unlike SPHARM. In an imaging dataset of healthy adult human brains, we apply HyperSPHARM to the hippocampi and amygdalae. The HyperSPHARM representations are employed as a data smoothing technique, while the HyperSPHARM coefficients are utilized in a support vector machine setting for object classification. HyperSPHARM yields nearly identical results as SPHARM, as will be shown in the paper. Its key advantage over SPHARM lies computationally; Hyper-SPHARM possess greater computational efficiency than SPHARM because it can parameterize multiple disjoint structures using much fewer basis functions and stereographic projection obviates SPHARM's burdensome surface flattening. In addition, HyperSPHARM can handle any type of topology, unlike SPHARM, whose analysis is confined to topologically invariant structures. PMID:25828650
Excitatory Local Interneurons Enhance Tuning of Sensory Information
Assisi, Collins; Stopfer, Mark; Bazhenov, Maxim
2012-01-01
Neurons in the insect antennal lobe represent odors as spatiotemporal patterns of activity that unfold over multiple time scales. As these patterns unspool they decrease the overlap between odor representations and thereby increase the ability of the olfactory system to discriminate odors. Using a realistic model of the insect antennal lobe we examined two competing components of this process –lateral excitation from local excitatory interneurons, and slow inhibition from local inhibitory interneurons. We found that lateral excitation amplified differences between representations of similar odors by recruiting projection neurons that did not receive direct input from olfactory receptors. However, this increased sensitivity also amplified noisy variations in input and compromised the ability of the system to respond reliably to multiple presentations of the same odor. Slow inhibition curtailed the spread of projection neuron activity and increased response reliability. These competing influences must be finely balanced in order to decorrelate odor representations. PMID:22807661
Examining student heuristic usage in a hydrogen bonding assessment.
Miller, Kathryn; Kim, Thomas
2017-09-01
This study investigates the role of representational competence in student responses to an assessment of hydrogen bonding. The assessment couples the use of a multiple-select item ("Choose all that apply") with an open-ended item to allow for an examination of students' cognitive processes as they relate to the assignment of hydrogen bonding within a structural representation. Response patterns from the multiple-select item implicate heuristic usage as a contributing factor to students' incorrect responses. The use of heuristics is further supported by the students' corresponding responses to the open-ended assessment item. Taken together, these data suggest that poor representational competence may contribute to students' previously observed inability to correctly navigate the concept of hydrogen bonding. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):411-416, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Predicting perceptual quality of images in realistic scenario using deep filter banks
NASA Astrophysics Data System (ADS)
Zhang, Weixia; Yan, Jia; Hu, Shiyong; Ma, Yang; Deng, Dexiang
2018-03-01
Classical image perceptual quality assessment models usually resort to natural scene statistic methods, which are based on an assumption that certain reliable statistical regularities hold on undistorted images and will be corrupted by introduced distortions. However, these models usually fail to accurately predict degradation severity of images in realistic scenarios since complex, multiple, and interactive authentic distortions usually appear on them. We propose a quality prediction model based on convolutional neural network. Quality-aware features extracted from filter banks of multiple convolutional layers are aggregated into the image representation. Furthermore, an easy-to-implement and effective feature selection strategy is used to further refine the image representation and finally a linear support vector regression model is trained to map image representation into images' subjective perceptual quality scores. The experimental results on benchmark databases present the effectiveness and generalizability of the proposed model.
Transductive multi-view zero-shot learning.
Fu, Yanwei; Hospedales, Timothy M; Xiang, Tao; Gong, Shaogang
2015-11-01
Most existing zero-shot learning approaches exploit transfer learning via an intermediate semantic representation shared between an annotated auxiliary dataset and a target dataset with different classes and no annotation. A projection from a low-level feature space to the semantic representation space is learned from the auxiliary dataset and applied without adaptation to the target dataset. In this paper we identify two inherent limitations with these approaches. First, due to having disjoint and potentially unrelated classes, the projection functions learned from the auxiliary dataset/domain are biased when applied directly to the target dataset/domain. We call this problem the projection domain shift problem and propose a novel framework, transductive multi-view embedding, to solve it. The second limitation is the prototype sparsity problem which refers to the fact that for each target class, only a single prototype is available for zero-shot learning given a semantic representation. To overcome this problem, a novel heterogeneous multi-view hypergraph label propagation method is formulated for zero-shot learning in the transductive embedding space. It effectively exploits the complementary information offered by different semantic representations and takes advantage of the manifold structures of multiple representation spaces in a coherent manner. We demonstrate through extensive experiments that the proposed approach (1) rectifies the projection shift between the auxiliary and target domains, (2) exploits the complementarity of multiple semantic representations, (3) significantly outperforms existing methods for both zero-shot and N-shot recognition on three image and video benchmark datasets, and (4) enables novel cross-view annotation tasks.
ERIC Educational Resources Information Center
Son, Ji-Won; Lee, Ji-Eun
2016-01-01
Despite the importance of teacher fractional knowledge, there are several areas of teacher understanding that are not well understood. The purpose of this study was to characterise profiles of pre-service teachers' (PSTs) mathematical competence on the topic of fraction multiplication by examining PSTs' understanding of multiplication of fractions…
Information Integration in Multiple Cue Judgment: A Division of Labor Hypothesis
ERIC Educational Resources Information Center
Juslin, Peter; Karlsson, Linnea; Olsson, Henrik
2008-01-01
There is considerable evidence that judgment is constrained to additive integration of information. The authors propose an explanation of why serial and additive cognitive integration can produce accurate multiple cue judgment both in additive and non-additive environments in terms of an adaptive division of labor between multiple representations.…
ERIC Educational Resources Information Center
Zhang, Zhidong
2016-01-01
This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…
Severtson, Dolores J; Baumann, Linda C; Brown, Roger L
2006-04-01
The common sense model (CSM) shows how people process information to construct representations, or mental models, that guide responses to health threats. We applied the CSM to understand how people responded to information about arsenic-contaminated well water. Constructs included external information (arsenic level and information use), experience (perceived water quality and arsenic-related health effects), representations, safety judgments, opinions about policies to mitigate environmental arsenic, and protective behavior. Of 649 surveys mailed to private well users with arsenic levels exceeding the maximum contaminant level, 545 (84%) were analyzed. Structural equation modeling quantified CSM relationships. Both external information and experience had substantial effects on behavior. Participants who identified a water problem were more likely to reduce exposure to arsenic. However, about 60% perceived good water quality and 60% safe water. Participants with higher arsenic levels selected higher personal safety thresholds and 20% reported a lower arsenic level than indicated by their well test. These beliefs would support judgments of safe water. A variety of psychological and contextual factors may explain judgments of safe water when information suggested otherwise. Information use had an indirect effect on policy beliefs through understanding environmental causes of arsenic. People need concrete information about environmental risk at both personal and environmental-systems levels to promote a comprehensive understanding and response. The CSM explained responses to arsenic information and may have application to other environmental risks.
Integrable generalizations of non-linear multiple three-wave interaction models
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1989-07-01
Integrable generalizations of multiple three-wave interaction models in terms of r-matrix formulation are investigated. The Lax representations, complete sets of first integrals in involution are constructed, the quantization leading to Gaudin's models is discussed.
Action simulation: time course and representational mechanisms
Springer, Anne; Parkinson, Jim; Prinz, Wolfgang
2013-01-01
The notion of action simulation refers to the ability to re-enact foreign actions (i.e., actions observed in other individuals). Simulating others' actions implies a mirroring of their activities, based on one's own sensorimotor competencies. Here, we discuss theoretical and experimental approaches to action simulation and the study of its representational underpinnings. One focus of our discussion is on the timing of internal simulation and its relation to the timing of external action, and a paradigm that requires participants to predict the future course of actions that are temporarily occluded from view. We address transitions between perceptual mechanisms (referring to action representation before and after occlusion) and simulation mechanisms (referring to action representation during occlusion). Findings suggest that action simulation runs in real-time; acting on newly created action representations rather than relying on continuous visual extrapolations. A further focus of our discussion pertains to the functional characteristics of the mechanisms involved in predicting other people's actions. We propose that two processes are engaged, dynamic updating and static matching, which may draw on both semantic and motor information. In a concluding section, we discuss these findings in the context of broader theoretical issues related to action and event representation, arguing that a detailed functional analysis of action simulation in cognitive, neural, and computational terms may help to further advance our understanding of action cognition and motor control. PMID:23847563
GraDit: graph-based data repair algorithm for multiple data edits rule violations
NASA Astrophysics Data System (ADS)
Ode Zuhayeni Madjida, Wa; Gusti Bagus Baskara Nugraha, I.
2018-03-01
Constraint-based data cleaning captures data violation to a set of rule called data quality rules. The rules consist of integrity constraint and data edits. Structurally, they are similar, where the rule contain left hand side and right hand side. Previous research proposed a data repair algorithm for integrity constraint violation. The algorithm uses undirected hypergraph as rule violation representation. Nevertheless, this algorithm can not be applied for data edits because of different rule characteristics. This study proposed GraDit, a repair algorithm for data edits rule. First, we use bipartite-directed hypergraph as model representation of overall defined rules. These representation is used for getting interaction between violation rules and clean rules. On the other hand, we proposed undirected graph as violation representation. Our experimental study showed that algorithm with undirected graph as violation representation model gave better data quality than algorithm with undirected hypergraph as representation model.
VLSI architectures for computing multiplications and inverses in GF(2m)
NASA Technical Reports Server (NTRS)
Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.
1985-01-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
VLSI architectures for computing multiplications and inverses in GF(2-m)
NASA Technical Reports Server (NTRS)
Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.; Reed, I. S.
1983-01-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
Hosseinbor, A. Pasha; Chung, Moo K.; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matt; Alexander, Andrew L.; Davidson, Richard J.
2014-01-01
We present a novel surface parameterization technique using hyperspherical harmonics (HSH) in representing compact, multiple, disconnected brain subcortical structures as a single analytic function. The proposed hyperspherical harmonic representation (HyperSPHARM) has many advantages over the widely used spherical harmonic (SPHARM) parameterization technique. SPHARM requires flattening 3D surfaces to 3D sphere which can be time consuming for large surface meshes, and can’t represent multiple disconnected objects with single parameterization. On the other hand, HyperSPHARM treats 3D object, via simple stereographic projection, as a surface of 4D hypersphere with extremely large radius, hence avoiding the computationally demanding flattening process. HyperSPHARM is shown to achieve a better reconstruction with only 5 basis compared to SPHARM that requires more than 441. PMID:24505716
VLSI architectures for computing multiplications and inverses in GF(2m).
Wang, C C; Truong, T K; Shao, H M; Deutsch, L J; Omura, J K; Reed, I S
1985-08-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that can be easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. In this paper, a pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal basis representation used together with this multiplier, a pipeline architecture is developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable, and therefore, naturally suitable for VLSI implementation.
ERIC Educational Resources Information Center
Stull, Andrew T.; Hegarty, Mary
2016-01-01
This study investigated the development of representational competence among organic chemistry students by using 3D (concrete and virtual) models as aids for teaching students to translate between multiple 2D diagrams. In 2 experiments, students translated between different diagrams of molecules and received verbal feedback in 1 of the following 3…
The Born Digital Graduate: Multiple Representations of and within Digital Humanities PhD Theses
ERIC Educational Resources Information Center
Webb, Sharon; Teehan, Aja; Keating, John
2013-01-01
This chapter examines the production and utilisation of digital tools to create and present a born-digital theses, and in so doing, considers the changing function of traditional theses. It asks how (relatively) new technologies and methodologies should affect the representation and function of graduate scholarship in the Digital Humanities (DH),…
ERIC Educational Resources Information Center
Flores, Margaret M.; Hinton, Vanessa; Strozier, Shaunita D.
2014-01-01
Based on Common Core Standards (2010), mathematics interventions should emphasize conceptual understanding of numbers and operations as well as fluency. For students at risk for failure, the concrete-representational-abstract (CRA) sequence and the Strategic Instruction Model (SIM) have been shown effective in teaching computation with an emphasis…
ERIC Educational Resources Information Center
Adadan, Emine; Oner, Diler
2014-01-01
This multiple case study investigated how two preservice chemistry teachers' pedagogical content knowledge (PCK) representations of behavior of gases progressed in the context of a semester-long chemistry teaching methods course. The change in the participants' PCK components was interpreted with respect to the theoretical PCK learning…
ERIC Educational Resources Information Center
Waight, Noemi; Gillmeister, Kristina
2014-01-01
This study examined teachers' and students' initial conceptions of computer-based models--Flash and NetLogo models--and documented how teachers and students reconciled notions of multiple representations featuring macroscopic, submicroscopic and symbolic representations prior to actual intervention in eight high school chemistry…
ERIC Educational Resources Information Center
Yakubova, Gulnoza; Hughes, Elizabeth M.; Shinaberry, Megan
2016-01-01
The purpose of this study was to determine the effectiveness of a video modeling intervention with concrete-representational-abstract instructional sequence in teaching mathematics concepts to students with autism spectrum disorder (ASD). A multiple baseline across skills design of single-case experimental methodology was used to determine the…
ERIC Educational Resources Information Center
Alnizami, Reema
2017-01-01
This study examined the math talk and the use of multiple representations in elementary classrooms of 134 beginning teachers, all in their second year of teaching. A quantitative correlational research design was employed to investigate the research questions. The data were collected using a log instrument, the Instructional Practices Log in…
The relative importance of external and internal features of facial composites.
Frowd, Charlie; Bruce, Vicki; McIntyre, Alex; Hancock, Peter
2007-02-01
Three experiments are reported that compare the quality of external with internal regions within a set of facial composites using two matching-type tasks. Composites are constructed with the aim of triggering recognition from people familiar with the targets, and past research suggests internal face features dominate representations of familiar faces in memory. However the experiments reported here show that the internal regions of composites are very poorly matched against the faces they purport to represent, while external feature regions alone were matched almost as well as complete composites. In Experiments 1 and 2 the composites used were constructed by participant-witnesses who were unfamiliar with the targets and therefore were predicted to demonstrate a bias towards the external parts of a face. In Experiment 3 we compared witnesses who were familiar or unfamiliar with the target items, but for both groups the external features were much better reproduced in the composites, suggesting it is the process of composite construction itself which is responsible for the poverty of the internal features. Practical implications of these results are discussed.
Flooding Capability for River-based Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L.; Prescott, Steven; Ryan, Emerald
2015-10-01
This report describes the initial investigation into modeling and simulation tools for application of riverine flooding representation as part of the Risk-Informed Safety Margin Characterization (RISMC) Pathway external hazards evaluations. The report provides examples of different flooding conditions and scenarios that could impact river and watershed systems. Both 2D and 3D modeling approaches are described.
ERIC Educational Resources Information Center
Cangelosi, Angelo
2007-01-01
In this paper we present the "grounded adaptive agent" computational framework for studying the emergence of communication and language. This modeling framework is based on simulations of population of cognitive agents that evolve linguistic capabilities by interacting with their social and physical environment (internal and external symbol…
ERIC Educational Resources Information Center
Wetzels, Sandra A. J.; Kester, Liesbeth; van Merrienboer, Jeroen J. G.; Broers, Nick J.
2011-01-01
Background: Prior knowledge activation facilitates learning. Note taking during prior knowledge activation (i.e., note taking directed at retrieving information from memory) might facilitate the activation process by enabling learners to build an external representation of their prior knowledge. However, taking notes might be less effective in…
Modeling, Simulation, and Characterization of Distributed Multi-Agent Systems
2012-01-01
capabilities (vision, LIDAR , differential global positioning, ultrasonic proximity sensing, etc.), the agents comprising a MAS tend to have somewhat lesser...on the simultaneous localization and mapping ( SLAM ) problem [19]. SLAM acknowledges that externally-provided localization information is not...continually-updated mapping databases, generates a comprehensive representation of the spatial and spectral environment. Many times though, inherent SLAM
Stimulating Students' Use of External Representations for a Distance Education Time Machine Design
ERIC Educational Resources Information Center
Baaki, John; Luo, Tian
2017-01-01
As faculty members in an instructional design and technology (IDT) program, we wanted to help our graduate students better understand and experience how designers design in the real world. We aimed to design a reflective and collaborative learning environment where we sparked students to engage in reflection, ideation, and the iterative process of…
Tracing the Building of Robert's Connections in Mathematical Problem Solving: A Sixteen-Year Study
ERIC Educational Resources Information Center
Ahluwalia, Anoop
2011-01-01
This research analyzes how external representations created by a student, Robert, helped him in building mathematical understanding over a sixteen-year period. Robert (also known as Bobby), was an original participant of the Rutgers longitudinal study where students were encouraged to work on problem-solving tasks with minimum intervention (Maher,…
ERIC Educational Resources Information Center
Ford, Michael J.
2003-01-01
Offers a psychological role that external representations can play in the process of refining intuitive ideas into scientific knowledge. Presents an argument for this role through historical analysis of Galileo's ramp experiments, then through documentation of an innovative 6th grade classroom activity. (Contains 19 references.) (Author/YDS)
Teachers' and Students' Preliminary Stages in Physics Problem Solving
ERIC Educational Resources Information Center
Mansyur, Jusman
2015-01-01
This paper describes the preliminary stages in physics problem-solving related to the use of external representation. This empirical study was carried out using a phenomenographic approach to analyze data from individual thinking-aloud and interviews with 8 senior high school students and 7 physics teachers. The result of this study is a set of…
Probabilistic Solution of Inverse Problems.
1985-09-01
AODRESSIl differentI from Conat.oildun 0111C*) It. SECURITY CLASS (ofll ~e vport) Office of Naval Research UCASFE Information Systems ...report describes research done within the Laboratory for Information and Decision Systems and the Artificial Intelligence Laboratory at the Massachusetts...analysis of systems endowed with perceptual abilities is the construction of internal representations of the physical structures in the external world
Verbal Self-Monitoring in the Second Language
ERIC Educational Resources Information Center
Broos, Wouter P. J.; Duyck, Wouter; Hartsuiker, Robert J.
2016-01-01
Speakers monitor their own speech for errors. To do so, they may rely on perception of their own speech (external monitoring) but also on an internal speech representation (internal monitoring). While there are detailed accounts of monitoring in first language (L1) processing, it is not clear if and how monitoring is different in a second language…
ERIC Educational Resources Information Center
Troadec, Bertrand; Zarhbouch, Benaissa; Frede, Valerie
2009-01-01
The non-computational brand of cognitivism is based on the premise that performances, including those of children, are generated by mental models or representations, i.e., "internal" resources. The sociocultural approach, on the other hand, regards context, i.e., an "external" resource, as the chief means of elaborating…
Localization of Unitary Braid Group Representations
NASA Astrophysics Data System (ADS)
Rowell, Eric C.; Wang, Zhenghan
2012-05-01
Governed by locality, we explore a connection between unitary braid group representations associated to a unitary R-matrix and to a simple object in a unitary braided fusion category. Unitary R-matrices, namely unitary solutions to the Yang-Baxter equation, afford explicitly local unitary representations of braid groups. Inspired by topological quantum computation, we study whether or not it is possible to reassemble the irreducible summands appearing in the unitary braid group representations from a unitary braided fusion category with possibly different positive multiplicities to get representations that are uniformly equivalent to the ones from a unitary R-matrix. Such an equivalence will be called a localization of the unitary braid group representations. We show that the q = e π i/6 specialization of the unitary Jones representation of the braid groups can be localized by a unitary 9 × 9 R-matrix. Actually this Jones representation is the first one in a family of theories ( SO( N), 2) for an odd prime N > 1, which are conjectured to be localizable. We formulate several general conjectures and discuss possible connections to physics and computer science.
ERIC Educational Resources Information Center
Axelsson, Anna Karin
2015-01-01
Background: Children with profound intellectual and multiple disabilities need support to function in an optimal way. However, there is a limited knowledge about the role of external personal assistants working in the children's home. Materials and Methods: A mixed method study was performed including qualitative data from interviews with 11…
Learning viewpoint invariant perceptual representations from cluttered images.
Spratling, Michael W
2005-05-01
In order to perform object recognition, it is necessary to form perceptual representations that are sufficiently specific to distinguish between objects, but that are also sufficiently flexible to generalize across changes in location, rotation, and scale. A standard method for learning perceptual representations that are invariant to viewpoint is to form temporal associations across image sequences showing object transformations. However, this method requires that individual stimuli be presented in isolation and is therefore unlikely to succeed in real-world applications where multiple objects can co-occur in the visual input. This paper proposes a simple modification to the learning method that can overcome this limitation and results in more robust learning of invariant representations.
Phase transitions in Pareto optimal complex networks
NASA Astrophysics Data System (ADS)
Seoane, Luís F.; Solé, Ricard
2015-09-01
The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.
Sensory noise predicts divisive reshaping of receptive fields
Deneve, Sophie; Gutkin, Boris
2017-01-01
In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics. PMID:28622330
Sensory noise predicts divisive reshaping of receptive fields.
Chalk, Matthew; Masset, Paul; Deneve, Sophie; Gutkin, Boris
2017-06-01
In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics.
Mental Imagery Scale: a new measurement tool to assess structural features of mental representations
NASA Astrophysics Data System (ADS)
D'Ercole, Martina; Castelli, Paolo; Giannini, Anna Maria; Sbrilli, Antonella
2010-05-01
Mental imagery is a quasi-perceptual experience which resembles perceptual experience, but occurring without (appropriate) external stimuli. It is a form of mental representation and is often considered centrally involved in visuo-spatial reasoning and inventive and creative thought. Although imagery ability is assumed to be functionally independent of verbal systems, it is still considered to interact with verbal representations, enabling objects to be named and names to evoke images. In literature, most measurement tools for evaluating imagery capacity are self-report instruments focusing on differences in individuals. In the present work, we applied a Mental Imagery Scale (MIS) to mental images derived from verbal descriptions in order to assess the structural features of such mental representations. This is a key theme for those disciplines which need to turn objects and representations into words and vice versa, such as art or architectural didactics. To this aim, an MIS questionnaire was administered to 262 participants. The questionnaire, originally consisting of a 33-item 5-step Likert scale, was reduced to 28 items covering six areas: (1) Image Formation Speed, (2) Permanence/Stability, (3) Dimensions, (4) Level of Detail/Grain, (5) Distance and (6) Depth of Field or Perspective. Factor analysis confirmed our six-factor hypothesis underlying the 28 items.
Evaluating and Evolving Metadata in Multiple Dialects
NASA Astrophysics Data System (ADS)
Kozimor, J.; Habermann, T.; Powers, L. A.; Gordon, S.
2016-12-01
Despite many long-term homogenization efforts, communities continue to develop focused metadata standards along with related recommendations and (typically) XML representations (aka dialects) for sharing metadata content. Different representations easily become obstacles to sharing information because each representation generally requires a set of tools and skills that are designed, built, and maintained specifically for that representation. In contrast, community recommendations are generally described, at least initially, at a more conceptual level and are more easily shared. For example, most communities agree that dataset titles should be included in metadata records although they write the titles in different ways. This situation has led to the development of metadata repositories that can ingest and output metadata in multiple dialects. As an operational example, the NASA Common Metadata Repository (CMR) includes three different metadata dialects (DIF, ECHO, and ISO 19115-2). These systems raise a new question for metadata providers: if I have a choice of metadata dialects, which should I use and how do I make that decision? We have developed a collection of metadata evaluation tools that can be used to evaluate metadata records in many dialects for completeness with respect to recommendations from many organizations and communities. We have applied these tools to over 8000 collection and granule metadata records in four different dialects. This large collection of identical content in multiple dialects enables us to address questions about metadata and dialect evolution and to answer those questions quantitatively. We will describe those tools and results from evaluating the NASA CMR metadata collection.
Efficient vibration mode analysis of aircraft with multiple external store configurations
NASA Technical Reports Server (NTRS)
Karpel, M.
1988-01-01
A coupling method for efficient vibration mode analysis of aircraft with multiple external store configurations is presented. A set of low-frequency vibration modes, including rigid-body modes, represent the aircraft. Each external store is represented by its vibration modes with clamped boundary conditions, and by its rigid-body inertial properties. The aircraft modes are obtained from a finite-element model loaded by dummy rigid external stores with fictitious masses. The coupling procedure unloads the dummy stores and loads the actual stores instead. The analytical development is presented, the effects of the fictitious mass magnitudes are discussed, and a numerical example is given for a combat aircraft with external wing stores. Comparison with vibration modes obtained by a direct (full-size) eigensolution shows very accurate coupling results. Once the aircraft and stores data bases are constructed, the computer time for analyzing any external store configuration is two to three orders of magnitude less than that of a direct solution.
Phononic heat transport in nanomechanical structures: steady-state and pumping
NASA Astrophysics Data System (ADS)
Sena-Junior, Marcone I.; Lima, Leandro R. F.; Lewenkopf, Caio H.
2017-10-01
We study the heat transport due to phonons in nanomechanical structures using a phase space representation of non-equilibrium Green’s functions. This representation accounts for the atomic degrees of freedom making it particularly suited for the description of small (molecular) junctions systems. We rigorously show that for the steady state limit our formalism correctly recovers the heuristic Landauer-like heat conductance for a quantum coherent molecular system coupled to thermal reservoirs. We find general expressions for the non-stationary heat current due to an external periodic drive. In both cases we discuss the quantum thermodynamic properties of the systems. We apply our formalism to the case of a diatomic molecular junction.
Martin, Alex
2016-08-01
In this article, I discuss some of the latest functional neuroimaging findings on the organization of object concepts in the human brain. I argue that these data provide strong support for viewing concepts as the products of highly interactive neural circuits grounded in the action, perception, and emotion systems. The nodes of these circuits are defined by regions representing specific object properties (e.g., form, color, and motion) and thus are property-specific, rather than strictly modality-specific. How these circuits are modified by external and internal environmental demands, the distinction between representational content and format, and the grounding of abstract social concepts are also discussed.
Extracting the information of coastline shape and its multiple representations
NASA Astrophysics Data System (ADS)
Liu, Ying; Li, Shujun; Tian, Zhen; Chen, Huirong
2007-06-01
According to studying the coastline, a new way of multiple representations is put forward in the paper. That is stimulating human thinking way when they generalized, building the appropriate math model and describing the coastline with graphics, extracting all kinds of the coastline shape information. The coastline automatic generalization will be finished based on the knowledge rules and arithmetic operators. Showing the information of coastline shape by building the curve Douglas binary tree, it can reveal the shape character of coastline not only microcosmically but also macroscopically. Extracting the information of coastline concludes the local characteristic point and its orientation, the curve structure and the topology trait. The curve structure can be divided the single curve and the curve cluster. By confirming the knowledge rules of the coastline generalization, the generalized scale and its shape parameter, the coastline automatic generalization model is established finally. The method of the multiple scale representation of coastline in this paper has some strong points. It is human's thinking mode and can keep the nature character of the curve prototype. The binary tree structure can control the coastline comparability, avoid the self-intersect phenomenon and hold the unanimous topology relationship.
A Probabilistic Palimpsest Model of Visual Short-term Memory
Matthey, Loic; Bays, Paul M.; Dayan, Peter
2015-01-01
Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ. PMID:25611204
A probabilistic palimpsest model of visual short-term memory.
Matthey, Loic; Bays, Paul M; Dayan, Peter
2015-01-01
Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ.
Feature generation and representations for protein-protein interaction classification.
Lan, Man; Tan, Chew Lim; Su, Jian
2009-10-01
Automatic detecting protein-protein interaction (PPI) relevant articles is a crucial step for large-scale biological database curation. The previous work adopted POS tagging, shallow parsing and sentence splitting techniques, but they achieved worse performance than the simple bag-of-words representation. In this paper, we generated and investigated multiple types of feature representations in order to further improve the performance of PPI text classification task. Besides the traditional domain-independent bag-of-words approach and the term weighting methods, we also explored other domain-dependent features, i.e. protein-protein interaction trigger keywords, protein named entities and the advanced ways of incorporating Natural Language Processing (NLP) output. The integration of these multiple features has been evaluated on the BioCreAtIvE II corpus. The experimental results showed that both the advanced way of using NLP output and the integration of bag-of-words and NLP output improved the performance of text classification. Specifically, in comparison with the best performance achieved in the BioCreAtIvE II IAS, the feature-level and classifier-level integration of multiple features improved the performance of classification 2.71% and 3.95%, respectively.
Spinal cord injury affects the interplay between visual and sensorimotor representations of the body
Ionta, Silvio; Villiger, Michael; Jutzeler, Catherine R; Freund, Patrick; Curt, Armin; Gassert, Roger
2016-01-01
The brain integrates multiple sensory inputs, including somatosensory and visual inputs, to produce a representation of the body. Spinal cord injury (SCI) interrupts the communication between brain and body and the effects of this deafferentation on body representation are poorly understood. We investigated whether the relative weight of somatosensory and visual frames of reference for body representation is altered in individuals with incomplete or complete SCI (affecting lower limbs’ somatosensation), with respect to controls. To study the influence of afferent somatosensory information on body representation, participants verbally judged the laterality of rotated images of feet, hands, and whole-bodies (mental rotation task) in two different postures (participants’ body parts were hidden from view). We found that (i) complete SCI disrupts the influence of postural changes on the representation of the deafferented body parts (feet, but not hands) and (ii) regardless of posture, whole-body representation progressively deteriorates proportionally to SCI completeness. These results demonstrate that the cortical representation of the body is dynamic, responsive, and adaptable to contingent conditions, in that the role of somatosensation is altered and partially compensated with a change in the relative weight of somatosensory versus visual bodily representations. PMID:26842303
Time on your hands: Perceived duration of sensory events is biased toward concurrent actions.
Yon, Daniel; Edey, Rosanna; Ivry, Richard B; Press, Clare
2017-02-01
Perceptual systems must rapidly generate accurate representations of the world from sensory inputs that are corrupted by internal and external noise. We can typically obtain more veridical representations by integrating information from multiple channels, but this integration can lead to biases when inputs are, in fact, not from the same source. Although a considerable amount is known about how different sources of information are combined to influence what we perceive, it is not known whether temporal features are combined. It is vital to address this question given the divergent predictions made by different models of cue combination and time perception concerning the plausibility of cross-modal temporal integration, and the implications that such integration would have for research programs in action control and social cognition. Here we present four experiments investigating the influence of movement duration on the perceived duration of an auditory tone. Participants either explicitly (Experiments 1-2) or implicitly (Experiments 3-4) produced hand movements of shorter or longer durations, while judging the duration of a concurrently presented tone (500-950 ms in duration). Across all experiments, judgments of tone duration were attracted toward the duration of executed movements (i.e., tones were perceived to be longer when executing a movement of longer duration). Our results demonstrate that temporal information associated with movement biases perceived auditory duration, placing important constraints on theories modeling cue integration for state estimation, as well as models of time perception, action control and social cognition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Bilateral external ear canal osteomas - discussion on a clinical case.
Gheorghe, D C; Stanciu, A E; Ulici, A; Zamfir-Chiru-Anton, A
2016-01-01
Osteomas of the external ear are uncommon benign tumors that need to be differentiated from the external ear canal exostoses, bony proliferations that are linked mainly to cold-water exposure. Clinical manifestations vary from no symptoms to recurrent local infections and external ear cholesteatoma. Objective: presenting a rare case that we did not find described in the published literature. A patient with multiple long-term asymptomatic osteomas of both external ear canals presented to our department. Material: Data recorded from the patient's medical record was reviewed and analyzed. Surgery was performed and histology confirmed the presumptive diagnosis. Results: There was a discrepancy between the local severity of the disease, with a complete obstruction of his ear canals, and the long-term disease-free status of the patient. Conclusion: We hypothesized about the etiology of these multiple bilateral osteomas of the EAC, in light of the clinical and surgical findings.
NASA Astrophysics Data System (ADS)
Jiang, Guo-Qian; Xie, Ping; Wang, Xiao; Chen, Meng; He, Qun
2017-11-01
The performance of traditional vibration based fault diagnosis methods greatly depends on those handcrafted features extracted using signal processing algorithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised representation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal structures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at different scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multiscale representations. Finally, the multiscale representations are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches.
Measuring the Performance and Intelligence of Systems: Proceedings of the 2002 PerMIS Workshop
NASA Technical Reports Server (NTRS)
Messina, E. R.; Meystel, A. M.
2002-01-01
Contents include the following: Performance Metrics; Performance of Multiple Agents; Performance of Mobility Systems; Performance of Planning Systems; General Discussion Panel 1; Uncertainty of Representation I; Performance of Robots in Hazardous Domains; Modeling Intelligence; Modeling of Mind; Measuring Intelligence; Grouping: A Core Procedure of Intelligence; Uncertainty in Representation II; Towards Universal Planning/Control Systems.
ERIC Educational Resources Information Center
Chan, Chitat; Ting, Wai-Fong
2012-01-01
This study explores whether the deficit approach to understanding youth, which has been widely critiqued in contemporary youth studies, could still be a dominant paradigm in an emerging curriculum which emphasises multiple-perspective thinking. The analysis compares the representations of youth in selected reference sources at different levels of…
ERIC Educational Resources Information Center
Chandrasegaran, A. L.; Treagust, David F.; Mocerino, Mauro
2009-01-01
An alternative program of instruction was implemented with 33 high-achieving Grade 9 students (15-16 years old) in Singapore that overtly focused on the use of macroscopic, submicroscopic, and symbolic representations to describe and explain the changes that occurred during the burning of metals, reactions of dilute acids, ionic precipitations,…
Syntactic levels, lexicalism, and ellipsis: The jury is still out.
Hartsuiker, Robert J; Bernolet, Sarah
2017-01-01
Structural priming data are sometimes compatible with several theoretical views, as shown here for three key theoretical claims. One reason is that prime sentences affect multiple representational levels driving syntactic choice. Additionally, priming is affected by further cognitive functions (e.g., memory). We therefore see priming as a useful tool for the investigation of linguistic representation but not the only tool.
ERIC Educational Resources Information Center
Strickland, Tricia K.; Maccini, Paula
2013-01-01
We examined the effects of the Concrete-Representational-Abstract Integration strategy on the ability of secondary students with learning disabilities to multiply linear algebraic expressions embedded within contextualized area problems. A multiple-probe design across three participants was used. Results indicated that the integration of the…
ERIC Educational Resources Information Center
Thigpen, L. Christine
2012-01-01
The purpose of this study was to explore teaching styles and how frequently teachers with a variety of teaching styles incorporate multiple representations, such as manipulatives, drawings, counters, etc., in the middle school mathematics classroom. Through this explanatory mixed methods study it was possible to collect the quantitative data in…
ERIC Educational Resources Information Center
Mondini, Sara; Luzzatti, Claudio; Zonca, Giusy; Pistarini, Caterina; Semenza, Carlo
2004-01-01
This study seeks information on the mental representation of Verb-Noun (VN) nominal compounds through neuropsychological methods. The lexical retrieval of compound nouns is tested in 30 aphasic patients using a visual confrontation naming task. The target names are VN compounds, Noun-Noun (NN) compounds, and long morphologically simple nouns…
Theory of Mind in the Wild: Toward Tackling the Challenges of Everyday Mental State Reasoning
Wertz, Annie E.; German, Tamsin C.
2013-01-01
A complete understanding of the cognitive systems underwriting theory of mind (ToM) abilities requires articulating how mental state representations are generated and processed in everyday situations. Individuals rarely announce their intentions prior to acting, and actions are often consistent with multiple mental states. In order for ToM to operate effectively in such situations, mental state representations should be generated in response to certain actions, even when those actions occur in the presence of mental state content derived from other aspects of the situation. Results from three experiments with preschool children and adults demonstrate that mental state information is indeed generated based on an approach action cue in situations that contain competing mental state information. Further, the frequency with which participants produced or endorsed explanations that include mental states about an approached object decreased when the competing mental state information about a different object was made explicit. This set of experiments provides some of the first steps toward identifying the observable action cues that are used to generate mental state representations in everyday situations and offers insight into how both young children and adults processes multiple mental state representations. PMID:24069160
Wang, Anran; Wang, Jian; Lin, Hongfei; Zhang, Jianhai; Yang, Zhihao; Xu, Kan
2017-12-20
Biomedical event extraction is one of the most frontier domains in biomedical research. The two main subtasks of biomedical event extraction are trigger identification and arguments detection which can both be considered as classification problems. However, traditional state-of-the-art methods are based on support vector machine (SVM) with massive manually designed one-hot represented features, which require enormous work but lack semantic relation among words. In this paper, we propose a multiple distributed representation method for biomedical event extraction. The method combines context consisting of dependency-based word embedding, and task-based features represented in a distributed way as the input of deep learning models to train deep learning models. Finally, we used softmax classifier to label the example candidates. The experimental results on Multi-Level Event Extraction (MLEE) corpus show higher F-scores of 77.97% in trigger identification and 58.31% in overall compared to the state-of-the-art SVM method. Our distributed representation method for biomedical event extraction avoids the problems of semantic gap and dimension disaster from traditional one-hot representation methods. The promising results demonstrate that our proposed method is effective for biomedical event extraction.
Female political representation and child health: Evidence from a multilevel analysis.
Quamruzzaman, Amm; Lange, Matthew
2016-10-24
This article explores the impact of female political representation in national parliaments on child health through a multilevel analysis. Using available Demographic and Health Surveys, we employ both cross-sectional data for 51 low- and middle-income countries and longitudinal data for 20 countries with multiple surveys. For both the cross-sectional and longitudinal analyses, female representation is negatively related to infant mortality and positively related to measles vaccination status. To explore potential mechanisms, we control for state spending on health and analyze whether the impact of female representation depends on a critical mass of female representatives. The analysis offers evidence that state spending accounts for some of the mediation effect and that the impact of female representation on infant death depends on a critical mass. Copyright © 2016 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... Submission of Technology Transfer Center (TTC) External Customer Satisfaction Surveys (NCI) The Federal... project titled, ``Technology Transfer Center (TTC) External Customer Satisfaction Survey (NCI)'' was... will include multiple customer satisfaction surveys over the course of three years. At this time, only...
Multiple shadows from distorted static black holes
NASA Astrophysics Data System (ADS)
Grover, Jai; Kunz, Jutta; Nedkova, Petya; Wittig, Alexander; Yazadjiev, Stoytcho
2018-04-01
We study the local shadow of the Schwarzschild black hole with a quadrupole distortion and the influence of the external gravitational field on the photon dynamics. The external matter sources modify the light ring structure and lead to the appearance of multiple shadow images. In the case of negative quadrupole moments we identify the most prominent mechanism causing multiple shadow formation. Furthermore, we obtain a condition under which this mechanism can be realized. This condition depends on the quadrupole moment, but also on the position of the observer and the celestial sphere.
Wapenaar, Kees
2017-06-01
A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.
NASA Astrophysics Data System (ADS)
Abbasi, Ashkan; Monadjemi, Amirhassan; Fang, Leyuan; Rabbani, Hossein
2018-03-01
We present a nonlocal weighted sparse representation (NWSR) method for reconstruction of retinal optical coherence tomography (OCT) images. To reconstruct a high signal-to-noise ratio and high-resolution OCT images, utilization of efficient denoising and interpolation algorithms are necessary, especially when the original data were subsampled during acquisition. However, the OCT images suffer from the presence of a high level of noise, which makes the estimation of sparse representations a difficult task. Thus, the proposed NWSR method merges sparse representations of multiple similar noisy and denoised patches to better estimate a sparse representation for each patch. First, the sparse representation of each patch is independently computed over an overcomplete dictionary, and then a nonlocal weighted sparse coefficient is computed by averaging representations of similar patches. Since the sparsity can reveal relevant information from noisy patches, combining noisy and denoised patches' representations is beneficial to obtain a more robust estimate of the unknown sparse representation. The denoised patches are obtained by applying an off-the-shelf image denoising method and our method provides an efficient way to exploit information from noisy and denoised patches' representations. The experimental results on denoising and interpolation of spectral domain OCT images demonstrated the effectiveness of the proposed NWSR method over existing state-of-the-art methods.
Shifting Attention within Memory Representations Involves Early Visual Areas
Munneke, Jaap; Belopolsky, Artem V.; Theeuwes, Jan
2012-01-01
Prior studies have shown that spatial attention modulates early visual cortex retinotopically, resulting in enhanced processing of external perceptual representations. However, it is not clear whether the same visual areas are modulated when attention is focused on, and shifted within a working memory representation. In the current fMRI study participants were asked to memorize an array containing four stimuli. After a delay, participants were presented with a verbal cue instructing them to actively maintain the location of one of the stimuli in working memory. Additionally, on a number of trials a second verbal cue instructed participants to switch attention to the location of another stimulus within the memorized representation. Results of the study showed that changes in the BOLD pattern closely followed the locus of attention within the working memory representation. A decrease in BOLD-activity (V1–V3) was observed at ROIs coding a memory location when participants switched away from this location, whereas an increase was observed when participants switched towards this location. Continuous increased activity was obtained at the memorized location when participants did not switch. This study shows that shifting attention within memory representations activates the earliest parts of visual cortex (including V1) in a retinotopic fashion. We conclude that even in the absence of visual stimulation, early visual areas support shifting of attention within memorized representations, similar to when attention is shifted in the outside world. The relationship between visual working memory and visual mental imagery is discussed in light of the current findings. PMID:22558165