Sample records for multiple feedback mechanisms

  1. 360 Degree Feedback: An Integrative Framework for Learning and Assessment

    ERIC Educational Resources Information Center

    Tee, Ding Ding; Ahmed, Pervaiz K.

    2014-01-01

    Feedback is widely acknowledged as the crux of a learning process. Multiplicities of research studies have been advanced to address the common "cri de coeur" of teachers and students for a constructive and effective feedback mechanism in the current higher educational settings. Nevertheless, existing pedagogical approaches in feedback…

  2. Dynamical nexus of water supply, hydropower and environment based on the modeling of multiple socio-natural processes: from socio-hydrological perspective

    NASA Astrophysics Data System (ADS)

    Liu, D.; Wei, X.; Li, H. Y.; Lin, M.; Tian, F.; Huang, Q.

    2017-12-01

    In the socio-hydrological system, the ecological functions and environmental services, which are chosen to maintain, are determined by the preference of the society, which is making the trade-off among the values of riparian vegetation, fish, river landscape, water supply, hydropower, navigation and so on. As the society develops, the preference of the value will change and the ecological functions and environmental services which are chosen to maintain will change. The aim of the study is to focus on revealing the feedback relationship of water supply, hydropower and environment and the dynamical feedback mechanism at macro-scale, and to establish socio-hydrological evolution model of the watershed based on the modeling of multiple socio-natural processes. The study will aim at the Han River in China, analyze the impact of the water supply and hydropower on the ecology, hydrology and other environment elements, and study the effect on the water supply and hydropower to ensure the ecological and environmental water of the different level. Water supply and ecology are usually competitive. In some reservoirs, hydropower and ecology are synergic relationship while they are competitive in some reservoirs. The study will analyze the multiple mechanisms to implement the dynamical feedbacks of environment to hydropower, set up the quantitative relationship description of the feedback mechanisms, recognize the dominant processes in the feedback relationships of hydropower and environment and then analyze the positive and negative feedbacks in the feedback networks. The socio-hydrological evolution model at the watershed scale will be built and applied to simulate the long-term evolution processes of the watershed of the current situation. Dynamical nexus of water supply, hydropower and environment will be investigated.

  3. The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems - a review.

    PubMed

    Maxwell, Paul S; Eklöf, Johan S; van Katwijk, Marieke M; O'Brien, Katherine R; de la Torre-Castro, Maricela; Boström, Christoffer; Bouma, Tjeerd J; Krause-Jensen, Dorte; Unsworth, Richard K F; van Tussenbroek, Brigitta I; van der Heide, Tjisse

    2017-08-01

    Seagrass meadows are vital ecosystems in coastal zones worldwide, but are also under global threat. One of the major hurdles restricting the success of seagrass conservation and restoration is our limited understanding of ecological feedback mechanisms. In these ecosystems, multiple, self-reinforcing feedbacks can undermine conservation efforts by masking environmental impacts until the decline is precipitous, or alternatively they can inhibit seagrass recovery in spite of restoration efforts. However, no clear framework yet exists for identifying or dealing with feedbacks to improve the management of seagrass ecosystems. Here we review the causes and consequences of multiple feedbacks between seagrass and biotic and/or abiotic processes. We demonstrate how feedbacks have the potential to impose or reinforce regimes of either seagrass dominance or unvegetated substrate, and how the strength and importance of these feedbacks vary across environmental gradients. Although a myriad of feedbacks have now been identified, the co-occurrence and likely interaction among feedbacks has largely been overlooked to date due to difficulties in analysis and detection. Here we take a fundamental step forward by modelling the interactions among two distinct above- and belowground feedbacks to demonstrate that interacting feedbacks are likely to be important for ecosystem resilience. On this basis, we propose a five-step adaptive management plan to address feedback dynamics for effective conservation and restoration strategies. The management plan provides guidance to aid in the identification and prioritisation of likely feedbacks in different seagrass ecosystems. © 2016 Cambridge Philosophical Society.

  4. Risk assessment and adaptive runoff utilization in water resource system considering the complex relationship among water supply, electricity generation and environment

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Zeng, X.; Mo, L.; Chen, L.; Jiang, Z.; Feng, Z.; Yuan, L.; He, Z.

    2017-12-01

    Generally, the adaptive utilization and regulation of runoff in the source region of China's southwest rivers is classified as a typical multi-objective collaborative optimization problem. There are grim competitions and incidence relation in the subsystems of water supply, electricity generation and environment, which leads to a series of complex problems represented by hydrological process variation, blocked electricity output and water environment risk. Mathematically, the difficulties of multi-objective collaborative optimization focus on the description of reciprocal relationships and the establishment of evolving model of adaptive systems. Thus, based on the theory of complex systems science, this project tries to carry out the research from the following aspects: the changing trend of coupled water resource, the covariant factor and driving mechanism, the dynamic evolution law of mutual feedback dynamic process in the supply-generation-environment coupled system, the environmental response and influence mechanism of coupled mutual feedback water resource system, the relationship between leading risk factor and multiple risk based on evolutionary stability and dynamic balance, the transfer mechanism of multiple risk response with the variation of the leading risk factor, the multidimensional coupled feedback system of multiple risk assessment index system and optimized decision theory. Based on the above-mentioned research results, the dynamic method balancing the efficiency of multiple objectives in the coupled feedback system and optimized regulation model of water resources is proposed, and the adaptive scheduling mode considering the internal characteristics and external response of coupled mutual feedback system of water resource is established. In this way, the project can make a contribution to the optimal scheduling theory and methodology of water resource management under uncertainty in the source region of Southwest River.

  5. Distributed force feedback in the spinal cord and the regulation of limb mechanics.

    PubMed

    Nichols, T Richard

    2018-03-01

    This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.

  6. New nonlinear control algorithms for multiple robot arms

    NASA Technical Reports Server (NTRS)

    Tarn, T. J.; Bejczy, A. K.; Yun, X.

    1988-01-01

    Multiple coordinated robot arms are modeled by considering the arms as closed kinematic chains and as a force-constrained mechanical system working on the same object simultaneously. In both formulations, a novel dynamic control method is discussed. It is based on feedback linearization and simultaneous output decoupling technique. By applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, it was found that by choosing a general output equation it became possible simultaneously to superimpose the position and velocity error feedback with the force-torque error feedback in the task space.

  7. Healthcare professional and patient codesign and validation of a mechanism for service users to feedback patient safety experiences following a care transfer: a qualitative study

    PubMed Central

    Scott, Jason; Heavey, Emily; Waring, Justin; Jones, Diana; Dawson, Pamela

    2016-01-01

    Objective To develop and validate a mechanism for patients to provide feedback on safety experiences following a care transfer between organisations. Design Qualitative study using participatory methods (codesign workshops) and cognitive interviews. Workshop data were analysed concurrently with participants, and cognitive interviews were thematically analysed using a deductive approach based on the developed feedback mechanism. Participants Expert patients (n=5) and healthcare professionals (n=11) were recruited purposively to develop the feedback mechanism in 2 workshops. Workshop 1 explored principles underpinning safety feedback mechanisms, and workshop 2 included the practical development of the feedback mechanism. Final design and content of the feedback mechanism (a safety survey) were verified by workshop participants, and cognitive interviews (n=28) were conducted with patients. Results Workshop participants identified that safety feedback mechanisms should be patient-centred, short and concise with clear signposting on how to complete, with an option to be anonymous and balanced between positive (safe) and negative (unsafe) experiences. The agreed feedback mechanism consisted of a survey split across 3 stages of the care transfer: departure, journey and arrival. Care across organisational boundaries was recognised as being complex, with healthcare professionals acknowledging the difficulty implementing changes that impact other organisations. Cognitive interview participants agreed the content of the survey was relevant but identified barriers to completion relating to the survey formatting and understanding of a care transfer. Conclusions Participatory, codesign principles helped overcome differences in understandings of safety in the complex setting of care transfers when developing a safety survey. Practical barriers to the survey's usability and acceptability to patients were identified, resulting in a modified survey design. Further research is required to determine the usability and acceptability of the survey to patients and healthcare professionals, as well as identifying how governance structures should accommodate patient feedback when relating to multiple health or social care providers. PMID:27406641

  8. Neural feedback for instantaneous spatiotemporal modulation of afferent pathways in bi-directional brain-machine interfaces.

    PubMed

    Liu, Jianbo; Khalil, Hassan K; Oweiss, Karim G

    2011-10-01

    In bi-directional brain-machine interfaces (BMIs), precisely controlling the delivery of microstimulation, both in space and in time, is critical to continuously modulate the neural activity patterns that carry information about the state of the brain-actuated device to sensory areas in the brain. In this paper, we investigate the use of neural feedback to control the spatiotemporal firing patterns of neural ensembles in a model of the thalamocortical pathway. Control of pyramidal (PY) cells in the primary somatosensory cortex (S1) is achieved based on microstimulation of thalamic relay cells through multiple-input multiple-output (MIMO) feedback controllers. This closed loop feedback control mechanism is achieved by simultaneously varying the stimulation parameters across multiple stimulation electrodes in the thalamic circuit based on continuous monitoring of the difference between reference patterns and the evoked responses of the cortical PY cells. We demonstrate that it is feasible to achieve a desired level of performance by controlling the firing activity pattern of a few "key" neural elements in the network. Our results suggest that neural feedback could be an effective method to facilitate the delivery of information to the cortex to substitute lost sensory inputs in cortically controlled BMIs.

  9. Climbing the Ladder of Star Formation Feedback

    NASA Astrophysics Data System (ADS)

    Frank, Adam

    2012-10-01

    While much is understood about isolated star formation, the opposite is true for star formation in clusters of both low and high mass. In particular the mechanisms by which many coevally formed stars affect their parent cloud environment remains poorly characterized. Fundamental questions such as interplay between multiple outflows, ionization fronts and turbulence are just beginning to be fully articulated. Distinguishing between the nature of feedback in clusters of different mass is also critical. In high mass clusters O stars are expected to dominate energetics while in low mass clusters multiple collimated outflows may represent the dominant feedback mechanism. Thus the issue of feedback modalities in clusters of different masses represents one of the major challenges to the next generation of star formation studies. In this proposal we seek to carry forward a focused theoretical study of feedback in both low and high-mass cluster environments with direct connections to observations. Using a state-of-the-art Adaptive Mesh Refinement MHD multi-physics code {developed by our group} we propose two computational studies: {1} multiple, interacting outflows and their role in altering the properties of a parent low mass cluster {2} Poorly collimated outburst/outflows from massive star{s} and their effect on high mass cluster star forming environments. In both cases we will use initial conditions derived from high-resolution AMR MHD simulations of cloud/cluster formation. Synthetic observations derived from the simulations {in a variety of emission lines from ions to atoms to molecules} will allow for direct contact with HST and other star formation databases.

  10. Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range.

    PubMed

    Bachmann, Julie; Raue, Andreas; Schilling, Marcel; Böhm, Martin E; Kreutz, Clemens; Kaschek, Daniel; Busch, Hauke; Gretz, Norbert; Lehmann, Wolf D; Timmer, Jens; Klingmüller, Ursula

    2011-07-19

    Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time-resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000-fold in vivo. Our modeling approach reveals dose-dependent feedback control as key property to regulate STAT5-mediated survival decisions over a broad range of ligand concentrations.

  11. Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.

    2015-05-01

    Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.

  12. Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.

    2015-01-01

    Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.

  13. Regulation of epidermal cell fate in Arabidopsis roots: the importance of multiple feedback loops

    PubMed Central

    Schiefelbein, John; Huang, Ling; Zheng, Xiaohua

    2014-01-01

    The specification of distinct cell types in multicellular organisms is accomplished via establishment of differential gene expression. A major question is the nature of the mechanisms that establish this differential expression in time and space. In plants, the formation of the hair and non-hair cell types in the root epidermis has been used as a model to understand regulation of cell specification. Recent findings show surprising complexity in the number and the types of regulatory interactions between the multiple transcription factor genes/proteins influencing root epidermis cell fate. Here, we describe this regulatory network and the importance of the multiple feedback loops for its establishment and maintenance. PMID:24596575

  14. Feedforward and Feedback Motor Control Abnormalities Implicate Cerebellar Dysfunctions in Autism Spectrum Disorder

    PubMed Central

    Mohanty, Suman; Greene, Rachel K.; Cook, Edwin H.; Vaillancourt, David E.; Sweeney, John A.

    2015-01-01

    Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. PMID:25653359

  15. Mechanisms in adaptive feedback control: photoisomerization in a liquid.

    PubMed

    Hoki, Kunihito; Brumer, Paul

    2005-10-14

    The underlying mechanism for Adaptive Feedback Control in the experimental photoisomerization of 3,3'-diethyl-2,2'-thiacyanine iodide (NK88) in methanol is exposed theoretically. With given laboratory limitations on laser output, the complicated electric fields are shown to achieve their targets in qualitatively simple ways. Further, control over the cis population without laser limitations reveals an incoherent pump-dump scenario as the optimal isomerization strategy. In neither case are there substantial contributions from quantum multiple-path interference or from nuclear wave packet coherence. Environmentally induced decoherence is shown to justify the use of a simplified theoretical model.

  16. Multiple electrokinetic actuators for feedback control of colloidal crystal size.

    PubMed

    Juárez, Jaime J; Mathai, Pramod P; Liddle, J Alexander; Bevan, Michael A

    2012-10-21

    We report a feedback control method to precisely target the number of colloidal particles in quasi-2D ensembles and their subsequent assembly into crystals in a quadrupole electrode. Our approach relies on tracking the number of particles within a quadrupole electrode, which is used in a real-time feedback control algorithm to dynamically actuate competing electrokinetic transport mechanisms. Particles are removed from the quadrupole using DC-field mediated electrophoretic-electroosmotic transport, while high-frequency AC-field mediated dielectrophoretic transport is used to concentrate and assemble colloidal crystals. Our results show successful control of the size of crystals containing 20 to 250 colloidal particles with less than 10% error. Assembled crystals are characterized by their radius of gyration, crystallinity, and number of edge particles, and demonstrate the expected size-dependent properties. Our findings demonstrate successful ensemble feedback control of the assembly of different sized colloidal crystals using multiple actuators, which has broad implications for control over nano- and micro- scale assembly processes involving colloidal components.

  17. Sexual behavior, risk perception, and HIV transmission can respond to HIV antiviral drugs and vaccines through multiple pathways.

    PubMed

    Tully, Stephen; Cojocaru, Monica; Bauch, Chris T

    2015-10-28

    There has been growing use of highly active antiretroviral treatment (HAART) for HIV and significant progress in developing prophylactic HIV vaccines. The simplest theories of counterproductive behavioral responses to such interventions tend to focus on single feedback mechanisms: for instance, HAART optimism makes infection less scary and thus promotes risky sexual behavior. Here, we develop an agent based, age-structured model of HIV transmission, risk perception, and partner selection in a core group to explore behavioral responses to interventions. We find that interventions can activate not one, but several feedback mechanisms that could potentially influence decision-making and HIV prevalence. In the model, HAART increases the attractiveness of unprotected sex, but it also increases perceived risk of infection and, on longer timescales, causes demographic impacts that partially counteract HAART optimism. Both HAART and vaccination usually lead to lower rates of unprotected sex on the whole, but intervention effectiveness depends strongly on whether individuals over- or under-estimate intervention coverage. Age-specific effects cause sexual behavior and HIV prevalence to change in opposite ways in old and young age groups. For complex infections like HIV-where interventions influence transmission, demography, sexual behavior and risk perception-we conclude that evaluations of behavioral responses should consider multiple feedback mechanisms.

  18. Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder.

    PubMed

    Mosconi, Matthew W; Mohanty, Suman; Greene, Rachel K; Cook, Edwin H; Vaillancourt, David E; Sweeney, John A

    2015-02-04

    Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. Copyright © 2015 the authors 0270-6474/15/352015-11$15.00/0.

  19. Feedback enhances the positive effects and reduces the negative effects of multiple-choice testing.

    PubMed

    Butler, Andrew C; Roediger, Henry L

    2008-04-01

    Multiple-choice tests are used frequently in higher education without much consideration of the impact this form of assessment has on learning. Multiple-choice testing enhances retention of the material tested (the testing effect); however, unlike other tests, multiple-choice can also be detrimental because it exposes students to misinformation in the form of lures. The selection of lures can lead students to acquire false knowledge (Roediger & Marsh, 2005). The present research investigated whether feedback could be used to boost the positive effects and reduce the negative effects of multiple-choice testing. Subjects studied passages and then received a multiple-choice test with immediate feedback, delayed feedback, or no feedback. In comparison with the no-feedback condition, both immediate and delayed feedback increased the proportion of correct responses and reduced the proportion of intrusions (i.e., lure responses from the initial multiple-choice test) on a delayed cued recall test. Educators should provide feedback when using multiple-choice tests.

  20. Dynamics of Implementation and Maintenance of Organizational Health Interventions.

    PubMed

    Jalali, Mohammad S; Rahmandad, Hazhir; Bullock, Sally Lawrence; Ammerman, Alice

    2017-08-15

    In this study, we present case studies to explore the dynamics of implementation and maintenance of health interventions. We analyze how specific interventions are built and eroded, how the building and erosion mechanisms are interconnected, and why we can see significantly different erosion rates across otherwise similar organizations. We use multiple comparative obesity prevention case studies to provide empirical information on the mechanisms of interest, and use qualitative systems modeling to integrate our evolving understanding into an internally consistent and transparent theory of the phenomenon. Our preliminary results identify reinforcing feedback mechanisms, including design of organizational processes, motivation of stakeholders, and communication among stakeholders, which influence implementation and maintenance of intervention components. Over time, these feedback mechanisms may drive a wedge between otherwise similar organizations, leading to distinct configurations of implementation and maintenance processes.

  1. Dynamic processes in regulation and some implications for biofeedback and biobehavioral interventions.

    PubMed

    Lehrer, Paul; Eddie, David

    2013-06-01

    Systems theory has long been used in psychology, biology, and sociology. This paper applies newer methods of control systems modeling for assessing system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning.

  2. Student Responses to a Flipped Introductory Physics Class with built-in Post-Video Feedback Quizzes

    NASA Astrophysics Data System (ADS)

    Ramos, Roberto

    We present and analyze student responses to multiple Introductory physics classes in a university setting, taught in a ''flipped'' class format. The classes included algebra- and calculus-based introductory physics. Outside class, students viewed over 100 online video lectures on Classical Mechanics, Electricity and Magnetism, and Modern Physics prepared by this author and in some cases, by a third-party lecture package available over YouTube. Inside the class, students solved and discussed problems and conceptual issues in greater detail. A pre-class online quiz was deployed as an important source of feedback. I will report on the student reactions to the feedback mechanism, student responses using data based on anonymous surveys, as well as on learning gains from pre-/post- physics diagnostic tests. The results indicate a broad mixture of responses to different lecture video packages that depend on learning styles and perceptions. Students preferred the online quizzes as a mechanism to validate their understanding. The learning gains based on FCI and CSEM surveys were significant.

  3. Delayed, but not immediate, feedback after multiple-choice questions increases performance on a subsequent short-answer, but not multiple-choice, exam: evidence for the dual-process theory of memory.

    PubMed

    Sinha, Neha; Glass, Arnold Lewis

    2015-01-01

    Three experiments, two performed in the laboratory and one embedded in a college psychology lecture course, investigated the effects of immediate versus delayed feedback following a multiple-choice exam on subsequent short answer and multiple-choice exams. Performance on the subsequent multiple-choice exam was not affected by the timing of the feedback on the prior exam; however, performance on the subsequent short answer exam was better following delayed than following immediate feedback. This was true regardless of the order in which immediate versus delayed feedback was given. Furthermore, delayed feedback only had a greater effect than immediate feedback on subsequent short answer performance following correct, confident responses on the prior exam. These results indicate that delayed feedback cues a student's prior response and increases subsequent recollection of that response. The practical implication is that delayed feedback is better than immediate feedback during academic testing.

  4. Quantum theory of multiple-input-multiple-output Markovian feedback with diffusive measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chia, A.; Wiseman, H. M.

    2011-07-15

    Feedback control engineers have been interested in multiple-input-multiple-output (MIMO) extensions of single-input-single-output (SISO) results of various kinds due to its rich mathematical structure and practical applications. An outstanding problem in quantum feedback control is the extension of the SISO theory of Markovian feedback by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)] to multiple inputs and multiple outputs. Here we generalize the SISO homodyne-mediated feedback theory to allow for multiple inputs, multiple outputs, and arbitrary diffusive quantum measurements. We thus obtain a MIMO framework which resembles the SISO theory and whose additional mathematical structure is highlighted by the extensivemore » use of vector-operator algebra.« less

  5. Dynamics of Implementation and Maintenance of Organizational Health Interventions

    PubMed Central

    Rahmandad, Hazhir; Bullock, Sally Lawrence; Ammerman, Alice

    2017-01-01

    In this study, we present case studies to explore the dynamics of implementation and maintenance of health interventions. We analyze how specific interventions are built and eroded, how the building and erosion mechanisms are interconnected, and why we can see significantly different erosion rates across otherwise similar organizations. We use multiple comparative obesity prevention case studies to provide empirical information on the mechanisms of interest, and use qualitative systems modeling to integrate our evolving understanding into an internally consistent and transparent theory of the phenomenon. Our preliminary results identify reinforcing feedback mechanisms, including design of organizational processes, motivation of stakeholders, and communication among stakeholders, which influence implementation and maintenance of intervention components. Over time, these feedback mechanisms may drive a wedge between otherwise similar organizations, leading to distinct configurations of implementation and maintenance processes. PMID:28809807

  6. Factors influencing responsiveness to feedback: on the interplay between fear, confidence, and reasoning processes.

    PubMed

    Eva, Kevin W; Armson, Heather; Holmboe, Eric; Lockyer, Jocelyn; Loney, Elaine; Mann, Karen; Sargeant, Joan

    2012-03-01

    Self-appraisal has repeatedly been shown to be inadequate as a mechanism for performance improvement. This has placed greater emphasis on understanding the processes through which self-perception and external feedback interact to influence professional development. As feedback is inevitably interpreted through the lens of one's self-perceptions it is important to understand how learners interpret, accept, and use feedback (or not) and the factors that influence those interpretations. 134 participants from 8 health professional training/continuing competence programs were recruited to participate in focus groups. Analyses were designed to (a) elicit understandings of the processes used by learners and physicians to interpret, accept and use (or not) data to inform their perceptions of their clinical performance, and (b) further understand the factors (internal and external) believed to influence interpretation of feedback. Multiple influences appear to impact upon the interpretation and uptake of feedback. These include confidence, experience, and fear of not appearing knowledgeable. Importantly, however, each could have a paradoxical effect of both increasing and decreasing receptivity. Less prevalent but nonetheless important themes suggested mechanisms through which cognitive reasoning processes might impede growth from formative feedback. Many studies have examined the effectiveness of feedback through variable interventions focused on feedback delivery. This study suggests that it is equally important to consider feedback from the perspective of how it is received. The interplay observed between fear, confidence, and reasoning processes reinforces the notion that there is no simple recipe for the delivery of effective feedback. These factors should be taken into account when trying to understand (a) why self-appraisal can be flawed, (b) why appropriate external feedback is vital (yet can be ineffective), and (c) why we may need to disentangle the goals of performance improvement from the goals of improving self-assessment.

  7. Automatic medical image annotation and keyword-based image retrieval using relevance feedback.

    PubMed

    Ko, Byoung Chul; Lee, JiHyeon; Nam, Jae-Yeal

    2012-08-01

    This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric-local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to each annotated keyword by combining probabilities of random forests with predefined body relation graph. To overcome the limitation of keyword-based image retrieval, we combine our image retrieval system with relevance feedback mechanism based on visual feature and pattern classifier. Compared with other annotation and relevance feedback algorithms, the proposed method shows both improved annotation performance and accurate retrieval results.

  8. Dynamic Processes in Regulation and Some Implications for Biofeedback and Biobehavioral Interventions

    PubMed Central

    Lehrer, Paul; Eddie, David

    2013-01-01

    Systems theory has long been applied in psychology, biology, and sociology. This paper applies newer methods of control systems modeling to the assessment of system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning. PMID:23572244

  9. System identification and sensorimotor determinants of flight maneuvers in an insect

    NASA Astrophysics Data System (ADS)

    Sponberg, Simon; Hall, Robert; Roth, Eatai

    Locomotor maneuvers are inherently closed-loop processes. They are generally characterized by the integration of multiple sensory inputs and adaptation or learning over time. To probe sensorimotor processing we take a system identification approach treating the underlying physiological systems as dynamic processes and altering the feedback topology in experiment and analysis. As a model system, we use agile hawk moths (Manduca sexta), which feed from real and robotic flowers while hovering in mid air. Moths rely on vision and mechanosensation to track floral targets and can do so at exceptionally low luminance levels despite hovering being a mechanically unstable behavior that requires neural feedback to stabilize. By altering the sensory environment and placing mechanical and visual signals in conflict we show a surprisingly simple linear summation of visual and mechanosensation produces a generative prediction of behavior to novel stimuli. Tracking performance is also limited more by the mechanics of flight than the magnitude of the sensory cue. A feedback systems approach to locomotor control results in new insights into how behavior emerges from the interaction of nonlinear physiological systems.

  10. Orchestrating Distributed Resource Ensembles for Petascale Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldin, Ilya; Mandal, Anirban; Ruth, Paul

    2014-04-24

    Distributed, data-intensive computational science applications of interest to DOE scientific com- munities move large amounts of data for experiment data management, distributed analysis steps, remote visualization, and accessing scientific instruments. These applications need to orchestrate ensembles of resources from multiple resource pools and interconnect them with high-capacity multi- layered networks across multiple domains. It is highly desirable that mechanisms are designed that provide this type of resource provisioning capability to a broad class of applications. It is also important to have coherent monitoring capabilities for such complex distributed environments. In this project, we addressed these problems by designing an abstractmore » API, enabled by novel semantic resource descriptions, for provisioning complex and heterogeneous resources from multiple providers using their native provisioning mechanisms and control planes: computational, storage, and multi-layered high-speed network domains. We used an extensible resource representation based on semantic web technologies to afford maximum flexibility to applications in specifying their needs. We evaluated the effectiveness of provisioning using representative data-intensive ap- plications. We also developed mechanisms for providing feedback about resource performance to the application, to enable closed-loop feedback control and dynamic adjustments to resource allo- cations (elasticity). This was enabled through development of a novel persistent query framework that consumes disparate sources of monitoring data, including perfSONAR, and provides scalable distribution of asynchronous notifications.« less

  11. Ant Colony Optimization Analysis on Overall Stability of High Arch Dam Basis of Field Monitoring

    PubMed Central

    Liu, Xiaoli; Chen, Hong-Xin; Kim, Jinxie

    2014-01-01

    A dam ant colony optimization (D-ACO) analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO) model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function of optimizing real concrete and rock mechanical parameter. The feedback analysis is then implemented with a modified ant colony algorithm. The algorithm performance is satisfactory, and the accuracy is verified. The m groups of feedback parameters, used to run a nonlinear FEM code, and the displacement and stress distribution are discussed. A feedback analysis of the deformation of the Lijiaxia arch dam and based on the modified ant colony optimization method is also conducted. By considering various material parameters obtained using different analysis methods, comparative analyses were conducted on dam displacements, stress distribution characteristics, and overall dam stability. The comparison results show that the proposal model can effectively solve for feedback multiple parameters of dam concrete and rock material and basically satisfy assessment requirements for geotechnical structural engineering discipline. PMID:25025089

  12. Feedback mechanisms of change: How problem alerts reported by youth clients and their caregivers impact clinician-reported session content

    PubMed Central

    Douglas, Susan R.; Jonghyuk, Bae; de Andrade, Ana Regina Vides; Tomlinson, M. Michele; Hargraves, Ryan Pamela; Bickman, Leonard

    2015-01-01

    Objective This study explored how clinician-reported content addressed in treatment sessions was predicted by clinician feedback group and multi-informant cumulative problem alerts that appeared in computerized feedback reports for 299 clients aged 11 to 18 years receiving home-based community mental health treatment. Method Measures included a clinician-report of content addressed in sessions and additional measures of treatment progress and process (e.g., therapeutic alliance) completed by clinicians, clients, and their caregivers. Item responses in the top 25th percentile in severity from these measures appeared as ‘problem alerts’ on corresponding computerized feedback reports. Clinicians randomized to the feedback group received feedback weekly while the control group did not. Analyses were conducted using the Cox proportional hazards regression for recurrent events. Results For all content domains, the results of the survival analyses indicated a robust effect of the feedback group on addressing specific content in sessions, with feedback associated with shorter duration to first occurrence and increased likelihood of addressing or focusing on a topic compared to the non-feedback group. Conclusion There appears to be an important relationship between feedback and cumulative problem alerts reported by multiple informants as they influence session content. PMID:26337327

  13. Algorithms for output feedback, multiple-model, and decentralized control problems

    NASA Technical Reports Server (NTRS)

    Halyo, N.; Broussard, J. R.

    1984-01-01

    The optimal stochastic output feedback, multiple-model, and decentralized control problems with dynamic compensation are formulated and discussed. Algorithms for each problem are presented, and their relationship to a basic output feedback algorithm is discussed. An aircraft control design problem is posed as a combined decentralized, multiple-model, output feedback problem. A control design is obtained using the combined algorithm. An analysis of the design is presented.

  14. Experimental evaluation of a miniature MR device for a wide range of human perceivable haptic sensations

    NASA Astrophysics Data System (ADS)

    Yang, Tae-Heon; Koo, Jeong-Hoi

    2017-12-01

    Humans can experience a realistic and vivid haptic sensations by the sense of touch. In order to have a fully immersive haptic experience, both kinaesthetic and vibrotactile information must be presented to human users. Currently, little haptic research has been performed on small haptic actuators that can covey both vibrotactile feedback based on the frequency of vibrations up to the human-perceivable limit and multiple levels of kinaesthetic feedback rapidly. Therefore, this study intends to design a miniature haptic device based on MR fluid and experimentally evaluate its ability to convey vibrotactile feedback up to 300 Hz along with kinaesthetic feedback. After constructing a prototype device, a series of testing was performed to evaluate its performance of the prototype using an experimental setup, consisting of a precision dynamic mechanical analyzer and an accelerometer. The kinaesthetic testing results show that the prototype device can provide the force rate up to 89% at 5 V (360 mA), which can be discretized into multiple levels of ‘just noticeable difference’ force rate, indicating that the device can convey a wide range of kinaesthetic sensations. To evaluate the high frequency vibrotactile feedback performance of the device, its acceleration responses were measured and processed using the FFT analysis. The results indicate that the device can convey high frequency vibrotactile sensations up to 300 Hz with the sufficiently large intensity of accelerations that human can feel.

  15. Promotion of cooperation induced by heterogeneity of both investment and payoff allocation in spatial public goods game

    NASA Astrophysics Data System (ADS)

    Fan, Ruguo; Zhang, Yingqing; Luo, Ming; Zhang, Hongjuan

    2017-01-01

    Heterogeneity has attracted mounting attention across multiple disciplines and is confirmed to be a greater promoter of cooperation. It is often the case that the heterogeneity always exists in investment and payoff allocation concurrently instead of separately. In addition, the factors that affect heterogeneous investment and payoff allocation are various. Inspired by this, this paper extends the previous models by incorporating heterogeneous investment and payoff allocation into the typical PGG model to further investigate the incentive mechanisms of cooperative behavior. In order to better understand the model, three different feedback mechanisms, namely the wealth-preference mechanism, the social-self-preference mechanism, and the mixed-preference mechanism, are addressed. The former two mechanisms correspond to the case of single factor and the latter corresponds to the case of double factors. The numerical simulations indicate that feedback mechanism by bridging the connections between the investment and the payoff allocation can reduce the free-rider problem. Furthermore, it is found that the cooperative frequency and average payoff perform better in the case of the mixed-preference mechanism where players will not only take previous payoff feedback as well as current investment but also their social status into their game decision-making process. In addition, full cooperation and profitability over all players can be promoted by means of increasing r or reducing α. At last, compared with another two classic networks, the extent of cooperation is promoted under the structures of the BA scale free networks.

  16. Midcingulate Motor Map and Feedback Detection: Converging Data from Humans and Monkeys

    PubMed Central

    Procyk, Emmanuel; Wilson, Charles R. E.; Stoll, Frederic M.; Faraut, Maïlys C. M.; Petrides, Michael; Amiez, Céline

    2016-01-01

    The functional and anatomical organization of the cingulate cortex across primate species is the subject of considerable and often confusing debate. The functions attributed to the midcingulate cortex (MCC) embrace, among others, feedback processing, pain, salience, action-reward association, premotor functions, and conflict monitoring. This multiplicity of functional concepts suggests either unresolved separation of functional contributions or integration and convergence. We here provide evidence from recent experiments in humans and from a meta-analysis of monkey data that MCC feedback-related activity is generated in the rostral cingulate premotor area by specific body maps directly related to the modality of feedback. As such, we argue for an embodied mechanism for adaptation and exploration in MCC. We propose arguments and precise tools to resolve the origins of performance monitoring signals in the medial frontal cortex, and to progress on issues regarding homology between human and nonhuman primate cingulate cortex. PMID:25217467

  17. Stroke patients’ utilisation of extrinsic feedback from computer-based technology in the home: a multiple case study realistic evaluation

    PubMed Central

    2014-01-01

    Background Evidence indicates that post − stroke rehabilitation improves function, independence and quality of life. A key aspect of rehabilitation is the provision of appropriate information and feedback to the learner. Advances in information and communications technology (ICT) have allowed for the development of various systems to complement stroke rehabilitation that could be used in the home setting. These systems may increase the provision of rehabilitation a stroke survivor receives and carries out, as well as providing a learning platform that facilitates long-term self-managed rehabilitation and behaviour change. This paper describes the application of an innovative evaluative methodology to explore the utilisation of feedback for post-stroke upper-limb rehabilitation in the home. Methods Using the principles of realistic evaluation, this study aimed to test and refine intervention theories by exploring the complex interactions of contexts, mechanisms and outcomes that arise from technology deployment in the home. Methods included focus groups followed by multi-method case studies (n = 5) before, during and after the use of computer-based equipment. Data were analysed in relation to the context-mechanism-outcome hypotheses case by case. This was followed by a synthesis of the findings to answer the question, ‘what works for whom and in what circumstances and respects?’ Results Data analysis reveals that to achieve desired outcomes through the use of ICT, key elements of computer feedback, such as accuracy, measurability, rewarding feedback, adaptability, and knowledge of results feedback, are required to trigger the theory-driven mechanisms underpinning the intervention. In addition, the pre-existing context and the personal and environmental contexts, such as previous experience of service delivery, personal goals, trust in the technology, and social circumstances may also enable or constrain the underpinning theory-driven mechanisms. Conclusions Findings suggest that the theory-driven mechanisms underpinning the utilisation of feedback from computer-based technology for home-based upper-limb post-stroke rehabilitation are dependent on key elements of computer feedback and the personal and environmental context. The identification of these elements may therefore inform the development of technology; therapy education and the subsequent adoption of technology and a self-management paradigm; long-term self-managed rehabilitation; and importantly, improvements in the physical and psychosocial aspects of recovery. PMID:24903401

  18. Stroke patients' utilisation of extrinsic feedback from computer-based technology in the home: a multiple case study realistic evaluation.

    PubMed

    Parker, Jack; Mawson, Susan; Mountain, Gail; Nasr, Nasrin; Zheng, Huiru

    2014-06-05

    Evidence indicates that post-stroke rehabilitation improves function, independence and quality of life. A key aspect of rehabilitation is the provision of appropriate information and feedback to the learner.Advances in information and communications technology (ICT) have allowed for the development of various systems to complement stroke rehabilitation that could be used in the home setting. These systems may increase the provision of rehabilitation a stroke survivor receives and carries out, as well as providing a learning platform that facilitates long-term self-managed rehabilitation and behaviour change. This paper describes the application of an innovative evaluative methodology to explore the utilisation of feedback for post-stroke upper-limb rehabilitation in the home. Using the principles of realistic evaluation, this study aimed to test and refine intervention theories by exploring the complex interactions of contexts, mechanisms and outcomes that arise from technology deployment in the home. Methods included focus groups followed by multi-method case studies (n = 5) before, during and after the use of computer-based equipment. Data were analysed in relation to the context-mechanism-outcome hypotheses case by case. This was followed by a synthesis of the findings to answer the question, 'what works for whom and in what circumstances and respects?' Data analysis reveals that to achieve desired outcomes through the use of ICT, key elements of computer feedback, such as accuracy, measurability, rewarding feedback, adaptability, and knowledge of results feedback, are required to trigger the theory-driven mechanisms underpinning the intervention. In addition, the pre-existing context and the personal and environmental contexts, such as previous experience of service delivery, personal goals, trust in the technology, and social circumstances may also enable or constrain the underpinning theory-driven mechanisms. Findings suggest that the theory-driven mechanisms underpinning the utilisation of feedback from computer-based technology for home-based upper-limb post-stroke rehabilitation are dependent on key elements of computer feedback and the personal and environmental context. The identification of these elements may therefore inform the development of technology; therapy education and the subsequent adoption of technology and a self-management paradigm; long-term self-managed rehabilitation; and importantly, improvements in the physical and psychosocial aspects of recovery.

  19. Oscillatory mode transition for supersonic open cavity flows

    NASA Astrophysics Data System (ADS)

    Kumar, Mayank; Vaidyanathan, Aravind

    2018-02-01

    The transition in the primary oscillatory mode in an open cavity has been experimentally investigated and the associated characteristics in a Mach 1.71 flow has been analyzed. The length-to-depth (L/D) ratios of the rectangular cavities are varied from 1.67 to 3.33. Unsteady pressure measurement and flow visualization are employed to understand the transitional flow physics. Flow visualization revealed the change in oscillation pattern from longitudinal mode to transverse mode and is also characterized by the presence of two bow shocks at the trailing edge instead of one. The transition is found to occur between L/D 1.67 and 2, marked by a change in the feedback mechanism, resulting in a shift from the vortex circulation driven transverse feedback mode to the oscillating shear layer driven longitudinal feedback mode. Cavities oscillating in the transition mode exhibit multiple tones of comparable strength. Correlation analysis indicated the shift in the feedback mechanism. Wavelet analysis revealed the temporal behaviour of tones during transition. Tone switching is observed in deeper cavities and is attributed to the occurrence of two bow shocks as evident from the temporo-spectral characteristics of transition that affects the shear layer modal shape.

  20. Head control: volitional aspects of rehabilitation training in patients with multiple sclerosis compared with healthy subjects.

    PubMed

    Cattaneo, Davide; Ferrarin, Maurizio; Frasson, William; Casiraghi, Anna

    2005-07-01

    To investigate the role of voluntary mechanisms and motor learning in head stability and the impact of longitudinal biofeedback training in head control. Crossover trial and single-subject research design. Neurorehabilitation research institute. Head stability during treadmill gait was measured in healthy subjects and patients with multiple sclerosis (MS). The experimental condition in which subjects walked on the treadmill was compared with that in which the head was voluntarily stabilized. In another experimental condition, augmented feedback of head displacement was provided by means of a laser mounted on the head that projected a laser beam on a screen. The motor learning was investigated with biofeedback training sessions. Positional feedback was represented by the laser beam, with subjects having to stabilize the beam while walking on the treadmill. Head angular oscillation in the sagittal and frontal planes. Results showed that on verbal request, healthy subjects and patients further stabilized the head during gait, especially in the sagittal plane. Short-term feedback of head displacement was no better than self-stabilization at improving head control. Conversely, the motor learning was evident in the rehabilitation protocol: after 10 to 15 training sessions, patients with MS showed a clinically relevant decrease of head angular oscillations. Voluntary mechanisms play a role in head stabilization during gait. Augmented biofeedback of head displacement may be effective in reducing head oscillations.

  1. Reduced-Order Modeling of Unsteady Aerodynamics Across Multiple Mach Regimes

    DTIC Science & Technology

    2013-01-01

    including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing ...Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Thesis Overview... Review Aeroelasticity, which is the study of the interaction between fluids and structures when a feedback mechanism exists between the fluid and the

  2. Simulations of neuromuscular control in lamprey swimming.

    PubMed Central

    Ekeberg, O; Grillner, S

    1999-01-01

    The neuronal generation of vertebrate locomotion has been extensively studied in the lamprey. Models at different levels of abstraction are being used to describe this system, from abstract nonlinear oscillators to interconnected model neurons comprising multiple compartments and a Hodgkin-Huxley representation of the most relevant ion channels. To study the role of sensory feedback by simulation, it eventually also becomes necessary to incorporate the mechanical movements in the models. By using simplifying models of muscle activation, body mechanics, counteracting water forces, and sensory feedback through stretch receptors and vestibular organs, we have been able to close the feedback loop to enable studies of the interaction between the neuronal and the mechanical systems. The neuromechanical simulations reveal that the currently known network is sufficient for generating a whole repertoire of swimming patterns. Swimming at different speeds and with different wavelengths, together with the performance of lateral turns can all be achieved by simply varying the brainstem input. The neuronal mechanisms behind pitch and roll manoeuvres are less clear. We have put forward a 'crossed-oscillators' hypothesis where partly separate dorsal and ventral circuits are postulated. Neuromechanical simulations of this system show that it is also capable of generating realistic pitch turns and rolls, and that vestibular signals can stabilize the posture during swimming. PMID:10382223

  3. Introductory Biology Students’ Conceptual Models and Explanations of the Origin of Variation

    PubMed Central

    Shaw, Neil; Momsen, Jennifer; Reinagel, Adam; Le, Paul; Taqieddin, Ranya; Long, Tammy

    2014-01-01

    Mutation is the key molecular mechanism generating phenotypic variation, which is the basis for evolution. In an introductory biology course, we used a model-based pedagogy that enabled students to integrate their understanding of genetics and evolution within multiple case studies. We used student-generated conceptual models to assess understanding of the origin of variation. By midterm, only a small percentage of students articulated complete and accurate representations of the origin of variation in their models. Targeted feedback was offered through activities requiring students to critically evaluate peers’ models. At semester's end, a substantial proportion of students significantly improved their representation of how variation arises (though one-third still did not include mutation in their models). Students’ written explanations of the origin of variation were mostly consistent with their models, although less effective than models in conveying mechanistic reasoning. This study contributes evidence that articulating the genetic origin of variation is particularly challenging for learners and may require multiple cycles of instruction, assessment, and feedback. To support meaningful learning of the origin of variation, we advocate instruction that explicitly integrates multiple scales of biological organization, assessment that promotes and reveals mechanistic and causal reasoning, and practice with explanatory models with formative feedback. PMID:25185235

  4. Pareto-Zipf law in growing systems with multiplicative interactions

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Toshiya; Tanimoto, Satoshi; Sekiyama, Makoto; Fujihara, Akihiro; Yamamoto, Hiroshi

    2018-06-01

    Numerical simulations of multiplicatively interacting stochastic processes with weighted selections were conducted. A feedback mechanism to control the weight w of selections was proposed. It becomes evident that when w is moderately controlled around 0, such systems spontaneously exhibit the Pareto-Zipf distribution. The simulation results are universal in the sense that microscopic details, such as parameter values and the type of control and weight, are irrelevant. The central ingredient of the Pareto-Zipf law is argued to be the mild control of interactions.

  5. Reliability of performance velocity for jump squats under feedback and nonfeedback conditions.

    PubMed

    Randell, Aaron D; Cronin, John B; Keogh, Justin Wl; Gill, Nicholas D; Pedersen, Murray C

    2011-12-01

    Randell, AD, Cronin, JB, Keogh, JWL, Gill, ND, and Pedersen, MC. Reliability of performance velocity for jump squats under feedback and nonfeedback conditions. J Strength Cond Res 25(12): 3514-3518, 2011-Advancements in the monitoring of kinematic and kinetic variables during resistance training have resulted in the ability to continuously monitor performance and provide feedback during training. If equipment and software can provide reliable instantaneous feedback related to the variable of interest during training, it is thought that this may result in goal-oriented movement tasks that increase the likelihood of transference to on-field performance or at the very least improve the mechanical variable of interest. The purpose of this study was to determine the reliability of performance velocity for jump squats under feedback and nonfeedback conditions over 3 consecutive training sessions. Twenty subjects were randomly allocated to a feedback or nonfeedback group, and each group performed a total of 3 "jump squat" training sessions with the velocity of each repetition measured using a linear position transducer. There was less change in mean velocities between sessions 1-2 and sessions 2-3 (0.07 and 0.02 vs. 0.13 and -0.04 m·s), less random variation (TE = 0.06 and 0.06 vs. 0.10 and 0.07 m·s) and greater consistency (intraclass correlation coefficient = 0.83 and 0.87 vs. 0.53 and 0.74) between sessions for the feedback condition as compared to the nonfeedback condition. It was concluded that there is approximately a 50-50 probability that the provision of feedback was beneficial to the performance in the squat jump over multiple sessions. It is suggested that this has the potential for increasing transference to on-field performance or at the very least improving the mechanical variable of interest.

  6. Automatic feedback to promote safe walking and speech loudness control in persons with multiple disabilities: two single-case studies.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Green, Vanessa A; Alberti, Gloria; Boccasini, Adele; Smaldone, Angela; Oliva, Doretta; Bosco, Andrea

    2014-08-01

    Assessing automatic feedback technologies to promote safe travel and speech loudness control in two men with multiple disabilities, respectively. The men were involved in two single-case studies. In Study I, the technology involved a microprocessor, two photocells, and a verbal feedback device. The man received verbal alerting/feedback when the photocells spotted an obstacle in front of him. In Study II, the technology involved a sound-detecting unit connected to a throat and an airborne microphone, and to a vibration device. Vibration occurred when the man's speech loudness exceeded a preset level. The man included in Study I succeeded in using the automatic feedback in substitution of caregivers' alerting/feedback for safe travel. The man of Study II used the automatic feedback to successfully reduce his speech loudness. Automatic feedback can be highly effective in helping persons with multiple disabilities improve their travel and speech performance.

  7. Stellar feedback in galaxies and the origin of galaxy-scale winds

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2012-04-01

    Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological simulations and semi-analytic models. These differ from typically adopted formulae with an explicit dependence on the gas surface density that can be very important in both low-density dwarf galaxies and high-density gas-rich galaxies.

  8. Feedback-related brain activity predicts learning from feedback in multiple-choice testing.

    PubMed

    Ernst, Benjamin; Steinhauser, Marco

    2012-06-01

    Different event-related potentials (ERPs) have been shown to correlate with learning from feedback in decision-making tasks and with learning in explicit memory tasks. In the present study, we investigated which ERPs predict learning from corrective feedback in a multiple-choice test, which combines elements from both paradigms. Participants worked through sets of multiple-choice items of a Swahili-German vocabulary task. Whereas the initial presentation of an item required the participants to guess the answer, corrective feedback could be used to learn the correct response. Initial analyses revealed that corrective feedback elicited components related to reinforcement learning (FRN), as well as to explicit memory processing (P300) and attention (early frontal positivity). However, only the P300 and early frontal positivity were positively correlated with successful learning from corrective feedback, whereas the FRN was even larger when learning failed. These results suggest that learning from corrective feedback crucially relies on explicit memory processing and attentional orienting to corrective feedback, rather than on reinforcement learning.

  9. Feedback from incident reporting: information and action to improve patient safety.

    PubMed

    Benn, J; Koutantji, M; Wallace, L; Spurgeon, P; Rejman, M; Healey, A; Vincent, C

    2009-02-01

    Effective feedback from incident reporting systems in healthcare is essential if organisations are to learn from failures in the delivery of care. Despite the wide-scale development and implementation of incident reporting in healthcare, studies in the UK suggest that information concerning system vulnerabilities could be better applied to improve operational safety within organisations. In this article, the findings and implications of research to identify forms of effective feedback from incident reporting are discussed, to promote best practices in this area. The research comprised a mixed methods review to investigate mechanisms of effective feedback for healthcare, drawing upon experience within established reporting programmes in high-risk industry and transport domains. Systematic searches of published literature were undertaken, and 23 case studies describing incident reporting programmes with feedback were identified for analysis from the international healthcare literature. Semistructured interviews were undertaken with 19 subject matter experts across a range of domains, including: civil aviation, maritime, energy, rail, offshore production and healthcare. In analysis, qualitative information from several sources was synthesised into practical requirements for developing effective feedback in healthcare. Both action and information feedback mechanisms were identified, serving safety awareness, improvement and motivational functions. The provision of actionable feedback that visibly improved systems was highlighted as important in promoting future reporting. Fifteen requirements for the design of effective feedback systems were identified, concerning: the role of leadership, the credibility and content of information, effective dissemination channels, the capacity for rapid action and the need for feedback at all levels of the organisation, among others. Above all, the safety-feedback cycle must be closed by ensuring that reporting, analysis and investigation result in timely corrective actions that effectively address vulnerabilities in existing work systems. Limited research evidence exists concerning the issue of effective forms of safety feedback within healthcare. Much valuable operational knowledge resides in safety management communities within high-risk industries. Multiple means of feeding back recommended actions and safety information may be usefully employed to promote safety awareness, improve clinical processes and promote future reporting. Further work is needed to establish best practices for feedback systems in healthcare that effectively close the safety loop.

  10. Stability of hand force production. I. Hand level control variables and multifinger synergies.

    PubMed

    Reschechtko, Sasha; Latash, Mark L

    2017-12-01

    We combined the theory of neural control of movement with referent coordinates and the uncontrolled manifold hypothesis to explore synergies stabilizing the hand action in accurate four-finger pressing tasks. In particular, we tested a hypothesis on two classes of synergies, those among the four fingers and those within a pair of control variables, stabilizing hand action under visual feedback and disappearing without visual feedback. Subjects performed four-finger total force and moment production tasks under visual feedback; the feedback was later partially or completely removed. The "inverse piano" device was used to lift and lower the fingers smoothly at the beginning and at the end of each trial. These data were used to compute pairs of hypothetical control variables. Intertrial analysis of variance within the finger force space was used to quantify multifinger synergies stabilizing both force and moment. A data permutation method was used to quantify synergies among control variables. Under visual feedback, synergies in the spaces of finger forces and hypothetical control variables were found to stabilize total force. Without visual feedback, the subjects showed a force drift to lower magnitudes and a moment drift toward pronation. This was accompanied by disappearance of the four-finger synergies and strong attenuation of the control variable synergies. The indexes of the two types of synergies correlated with each other. The findings are interpreted within the scheme with multiple levels of abundant variables. NEW & NOTEWORTHY We extended the idea of hierarchical control with referent spatial coordinates for the effectors and explored two types of synergies stabilizing multifinger force production tasks. We observed synergies among finger forces and synergies between hypothetical control variables that stabilized performance under visual feedback but failed to stabilize it after visual feedback had been removed. Indexes of two types of synergies correlated with each other. The data suggest the existence of multiple mechanisms stabilizing motor actions. Copyright © 2017 the American Physiological Society.

  11. ENHANCED 5-HT1A RECEPTOR-DEPENDENT FEEDBACK CONTROL OVER DORSAL RAPHE SEROTONIN NEURONS IN THE SERT KNOCKOUT MOUSE

    PubMed Central

    Soiza-Reilly, Mariano; Goodfellow, Nathalie M.; Lambe, Evelyn K.; Commons, Kathryn G.

    2014-01-01

    5-HT1A receptors are widely expressed in the brain and play a critical role in feedback inhibition of serotonin (5-HT) neurons through multiple mechanisms. Yet, it remains poorly understood how these feedback mechanisms, particularly those involving long-range projections, adapt in mood disorders. Here, we examined several aspects of 5-HT1A receptor function in the 5-HT transporter knockout mouse (SERT-KO), a model of vulnerability to stress and mood disorders. We found that in comparison to wild-type (WT) mice, SERT-KO mice had more passive coping in response to acute swim stress and this was accompanied by hypo-activation of medial prefrontal cortex (mPFC) Fos expression. Both of these effects were reversed by systemically blocking 5-HT1A receptors. Ex-vivo electrophysiological experiments showed that 5-HT exerted greater 5-HT1A-mediated inhibitory effects in the mPFC of SERT-KO mice compared to WT. Since 5-HT1A receptors in the mPFC provide a key feedback regulation of the dorsal raphe nucleus (DRN), we used a disinhibition strategy to examined endogenous feedback control of 5-HT neurons. Blocking 5-HT1A receptors disinhibited several fold more 5-HT neurons in the DRN of SERT-KO than in WT mice, revealing the presence of enhanced feedback inhibition of 5-HT neurons in the SERT-KO. Taken together our results indicate that increased stress sensitivity in the SERT-KO is associated with the enhanced capacity of 5-HT1A receptors to inhibit neurons in the mPFC as well as to exert feedback inhibition of DRN 5-HT neurons. PMID:25261781

  12. Midcingulate Motor Map and Feedback Detection: Converging Data from Humans and Monkeys.

    PubMed

    Procyk, Emmanuel; Wilson, Charles R E; Stoll, Frederic M; Faraut, Maïlys C M; Petrides, Michael; Amiez, Céline

    2016-02-01

    The functional and anatomical organization of the cingulate cortex across primate species is the subject of considerable and often confusing debate. The functions attributed to the midcingulate cortex (MCC) embrace, among others, feedback processing, pain, salience, action-reward association, premotor functions, and conflict monitoring. This multiplicity of functional concepts suggests either unresolved separation of functional contributions or integration and convergence. We here provide evidence from recent experiments in humans and from a meta-analysis of monkey data that MCC feedback-related activity is generated in the rostral cingulate premotor area by specific body maps directly related to the modality of feedback. As such, we argue for an embodied mechanism for adaptation and exploration in MCC. We propose arguments and precise tools to resolve the origins of performance monitoring signals in the medial frontal cortex, and to progress on issues regarding homology between human and nonhuman primate cingulate cortex. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Enhanced entrainability of genetic oscillators by period mismatch

    PubMed Central

    Hasegawa, Yoshihiko; Arita, Masanori

    2013-01-01

    Biological oscillators coordinate individual cellular components so that they function coherently and collectively. They are typically composed of multiple feedback loops, and period mismatch is unavoidable in biological implementations. We investigated the advantageous effect of this period mismatch in terms of a synchronization response to external stimuli. Specifically, we considered two fundamental models of genetic circuits: smooth and relaxation oscillators. Using phase reduction and Floquet multipliers, we numerically analysed their entrainability under different coupling strengths and period ratios. We found that a period mismatch induces better entrainment in both types of oscillator; the enhancement occurs in the vicinity of the bifurcation on their limit cycles. In the smooth oscillator, the optimal period ratio for the enhancement coincides with the experimentally observed ratio, which suggests biological exploitation of the period mismatch. Although the origin of multiple feedback loops is often explained as a passive mechanism to ensure robustness against perturbation, we study the active benefits of the period mismatch, which include increasing the efficiency of the genetic oscillators. Our findings show a qualitatively different perspective for both the inherent advantages of multiple loops and their essentiality. PMID:23389900

  14. Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems

    NASA Astrophysics Data System (ADS)

    Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.

    2007-09-01

    Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this non-conservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot.

  15. Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems

    PubMed Central

    Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.

    2008-01-01

    Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes, and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this nonconservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot. PMID:17873426

  16. Feedbacks in Human-Landscape Systems

    NASA Astrophysics Data System (ADS)

    Chin, Anne; Florsheim, Joan L.; Wohl, Ellen; Collins, Brian D.

    2014-01-01

    This article identifies key questions and challenges for geomorphologists in investigating coupled feedbacks in human-landscape systems. While feedbacks occur in the absence of human influences, they are also altered by human activity. Feedbacks are a key element to understanding human-influenced geomorphic systems in ways that extend our traditional approach of considering humans as unidirectional drivers of change. Feedbacks have been increasingly identified in Earth-environmental systems, with studies of coupled human-natural systems emphasizing ecological phenomena in producing emerging concepts for social-ecological systems. Enormous gaps or uncertainties in knowledge remain with respect to understanding impact-feedback loops within geomorphic systems with significant human alterations, where the impacted geomorphic systems in turn affect humans. Geomorphology should play an important role in public policy by identifying the many diffuse and subtle feedbacks of both local- and global-scale processes. This role is urgent, while time may still be available to mitigate the impacts that limit the sustainability of human societies. Challenges for geomorphology include identification of the often weak feedbacks that occur over varied time and space scales ranging from geologic time to single isolated events and very short time periods, the lack of available data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, the varied tools and metrics needed to represent both physical and human processes, and the need to collaborate with social scientists with expertise in the human causes of geomorphic change, as well as the human responses to such change.

  17. Three nested randomized controlled trials of peer-only or multiple stakeholder group feedback within Delphi surveys during core outcome and information set development.

    PubMed

    Brookes, Sara T; Macefield, Rhiannon C; Williamson, Paula R; McNair, Angus G; Potter, Shelley; Blencowe, Natalie S; Strong, Sean; Blazeby, Jane M

    2016-08-17

    Methods for developing a core outcome or information set require involvement of key stakeholders to prioritise many items and achieve agreement as to the core set. The Delphi technique requires participants to rate the importance of items in sequential questionnaires (or rounds) with feedback provided in each subsequent round such that participants are able to consider the views of others. This study examines the impact of receiving feedback from different stakeholder groups, on the subsequent rating of items and the level of agreement between stakeholders. Randomized controlled trials were nested within the development of three core sets each including a Delphi process with two rounds of questionnaires, completed by patients and health professionals. Participants rated items from 1 (not essential) to 9 (absolutely essential). For round 2, participants were randomized to receive feedback from their peer stakeholder group only (peer) or both stakeholder groups separately (multiple). Decisions as to which items to retain following each round were determined by pre-specified criteria. Whilst type of feedback did not impact on the percentage of items for which a participant subsequently changed their rating, or the magnitude of change, it did impact on items retained at the end of round 2. Each core set contained discordant items retained by one feedback group but not the other (3-22 % discordant items). Consensus between patients and professionals in items to retain was greater amongst those receiving multiple group feedback in each core set (65-82 % agreement for peer-only feedback versus 74-94 % for multiple feedback). In addition, differences in round 2 scores were smaller between stakeholder groups receiving multiple feedback than between those receiving peer group feedback only. Variability in item scores across stakeholders was reduced following any feedback but this reduction was consistently greater amongst the multiple feedback group. In the development of a core outcome or information set, providing feedback within Delphi questionnaires from all stakeholder groups separately may influence the final core set and improve consensus between the groups. Further work is needed to better understand how participants rate and re-rate items within a Delphi process. The three randomized controlled trials reported here were each nested within the development of a core information or outcome set to investigate processes in core outcome and information set development. Outcomes were not health-related and therefore trial registration was not applicable.

  18. Multiple-Try Feedback and Higher-Order Learning Outcomes

    ERIC Educational Resources Information Center

    Clariana, Roy B.; Koul, Ravinder

    2005-01-01

    Although feedback is an important component of computer-based instruction (CBI), the effects of feedback on higher-order learning outcomes are not well understood. Several meta-analyses provide two rules of thumb: any feedback is better than no feedback and feedback with more information is better than feedback with less information. …

  19. Proprioceptive feedback determines visuomotor gain in Drosophila

    PubMed Central

    Bartussek, Jan; Lehmann, Fritz-Olaf

    2016-01-01

    Multisensory integration is a prerequisite for effective locomotor control in most animals. Especially, the impressive aerial performance of insects relies on rapid and precise integration of multiple sensory modalities that provide feedback on different time scales. In flies, continuous visual signalling from the compound eyes is fused with phasic proprioceptive feedback to ensure precise neural activation of wing steering muscles (WSM) within narrow temporal phase bands of the stroke cycle. This phase-locked activation relies on mechanoreceptors distributed over wings and gyroscopic halteres. Here we investigate visual steering performance of tethered flying fruit flies with reduced haltere and wing feedback signalling. Using a flight simulator, we evaluated visual object fixation behaviour, optomotor altitude control and saccadic escape reflexes. The behavioural assays show an antagonistic effect of wing and haltere signalling on visuomotor gain during flight. Compared with controls, suppression of haltere feedback attenuates while suppression of wing feedback enhances the animal’s wing steering range. Our results suggest that the generation of motor commands owing to visual perception is dynamically controlled by proprioception. We outline a potential physiological mechanism based on the biomechanical properties of WSM and sensory integration processes at the level of motoneurons. Collectively, the findings contribute to our general understanding how moving animals integrate sensory information with dynamically changing temporal structure. PMID:26909184

  20. Radiative effects during the assembly of direct collapse black holes

    NASA Astrophysics Data System (ADS)

    Smith, Aaron; Becerra, Fernando; Bromm, Volker; Hernquist, Lars

    2017-11-01

    We perform a post-processing radiative feedback analysis on a 3D ab initio cosmological simulation of an atomic cooling halo under the direct collapse black hole (DCBH) scenario. We maintain the spatial resolution of the simulation by incorporating native ray-tracing on unstructured mesh data, including Monte Carlo Lyman α (Ly α) radiative transfer. DCBHs are born in gas-rich, metal-poor environments with the possibility of Compton-thick conditions, NH ≳ 1024 cm-2. Therefore, the surrounding gas is capable of experiencing the full impact of the bottled-up radiation pressure. In particular, we find that multiple scattering of Ly α photons provides an important source of mechanical feedback after the gas in the sub-parsec region becomes partially ionized, avoiding the bottleneck of destruction via the two-photon emission mechanism. We provide detailed discussion of the simulation environment, expansion of the ionization front, emission and escape of Ly α radiation, and Compton scattering. A sink particle prescription allows us to extract approximate limits on the post-formation evolution of the radiative feedback. Fully coupled Ly α radiation hydrodynamics will be crucial to consider in future DCBH simulations.

  1. 77 FR 59614 - Office of Citizen Services and Innovative Technologies; Information Collection; Data.gov Feedback...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... of Citizen Services and Innovative Technologies; Information Collection; Data.gov Feedback Mechanisms... regarding Data.gov Feedback Mechanisms. Public comments are particularly invited on: Whether this collection... Collection 3090- 0284, Data.gov Feedback Mechanisms, by any of the following methods: Regulations.gov : http...

  2. A new atomic force microscope force ramp technique using digital force feedback control reveals mechanically weak protein unfolding events.

    PubMed

    Kawakami, M; Smith, D A

    2008-12-10

    We have developed a new force ramp modification of the atomic force microscope (AFM) which can control multiple unfolding events of a multi-modular protein using software-based digital force feedback control. With this feedback the force loading rate can be kept constant regardless the length of soft elastic linkage or number of unfolded polypeptide domains. An unfolding event is detected as a sudden drop in force, immediately after which the feedback control reduces the applied force to a low value of a few pN by lowering the force set point. Hence the remaining folded domains can relax and the subsequent force ramp is applied to relaxed protein domains identically in each case. We have applied this technique to determine the kinetic parameters x(u), which is the distance between the native state and transition state, and α(0), which is the unfolding rate constant at zero force, for the mechanical unfolding of a pentamer of I27 domains of titin. In each force ramp the unfolding probability depends on the number of folded domains remaining in the system and we had to take account of this effect in the analysis of unfolding force data. We obtained values of x(u) and α(0) to be 0.28 nm and 1.02 × 10(-3) s(-1), which are in good agreement with those obtained from conventional constant velocity experiments. This method reveals unfolding data at low forces that are not seen in constant velocity experiments and corrects for the change in stiffness that occurs with most mechanical systems throughout the unfolding process to allow constant force ramp experiments to be carried out. In addition, a mechanically weak structure was detected, which formed from the fully extended polypeptide chain during a force quench. This indicates that the new technique will allow studies of the folding kinetics of previously hidden, mechanically weak species.

  3. Imaging graphite in air by scanning tunneling microscopy - Role of the tip

    NASA Technical Reports Server (NTRS)

    Colton, R. J.; Baker, S. M.; Driscoll, R. J.; Youngquist, M. G.; Baldeschwieler, J. D.; Kaiser, W. J.

    1988-01-01

    Atomically resolved images of highly oriented pyrolytic graphite (HOPG) in air at point contact have been obtained. Direct contact between tip and sample or contact through a contamination layer provides a conduction mechanism in addition to the exponential tunneling mechanism responsible for scanning tunneling microscopy (STM) imaging. Current-voltage (I-V) spectra were obtained while scanning in the current imaging mode with the feedback circuit interrupted in order to study the graphite imaging mechanism. Multiple tunneling tips are probably responsible for images without the expected hexagonal or trigonal symmetry. The observations indicate that the use of HOPG for testing and calibration of STM instrumentation may be misleading.

  4. Structural Inheritance of the Actin Cytoskeletal Organization Determines the Body Axis in Regenerating Hydra.

    PubMed

    Livshits, Anton; Shani-Zerbib, Lital; Maroudas-Sacks, Yonit; Braun, Erez; Keren, Kinneret

    2017-02-07

    Understanding how mechanics complement bio-signaling in defining patterns during morphogenesis is an outstanding challenge. Here, we utilize the multicellular polyp Hydra to investigate the role of the actomyosin cytoskeleton in morphogenesis. We find that the supra-cellular actin fiber organization is inherited from the parent Hydra and determines the body axis in regenerating tissue segments. This form of structural inheritance is non-trivial because of the tissue folding and dynamic actin reorganization involved. We further show that the emergence of multiple body axes can be traced to discrepancies in actin fiber alignment at early stages of the regeneration process. Mechanical constraints induced by anchoring regenerating Hydra on stiff wires suppressed the emergence of multiple body axes, highlighting the importance of mechanical feedbacks in defining and stabilizing the body axis. Together, these results constitute an important step toward the development of an integrated view of morphogenesis that incorporates mechanics. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Feedback power control strategies in wireless sensor networks with joint channel decoding.

    PubMed

    Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio

    2009-01-01

    In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as "balanced SNR" and "unbalanced SNR," respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm.

  6. Can job redesign interventions influence a broad range of employee outcomes by changing multiple job characteristics? A quasi-experimental study.

    PubMed

    Holman, David; Axtell, Carolyn

    2016-07-01

    Many job redesign interventions are based on a multiple mediator-multiple outcome model in which the job redesign intervention indirectly influences a broad range of employee outcomes by changing multiple job characteristics. As this model remains untested, the aim of this study is to test a multiple mediator-multiple outcome model of job redesign. Multilevel analysis of data from a quasi-experimental job redesign intervention in a call center confirmed the hypothesized model and showed that the job redesign intervention affected a broad range of employee outcomes (i.e., employee well-being, psychological contract fulfillment, and supervisor-rated job performance) through changes in 2 job characteristics (i.e., job control and feedback). The results provide further evidence for the efficacy and mechanisms of job redesign interventions. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Network feedback regulates motor output across a range of modulatory neuron activity

    PubMed Central

    Spencer, Robert M.

    2016-01-01

    Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5–35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation. PMID:27030739

  8. A soft and dexterous motor

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Tse, Tony Chun Hin; Inamura, Tokushu; O'Brien, Benjamin M.; McKay, Thomas; Gisby, Todd

    2011-03-01

    We present a soft, bearing-free artificial muscle motor that cannot only turn a shaft but also grip and reposition it through a flexible gear. The bearing-free operation provides a foundation for low complexity soft machines, with multiple degree-of-freedom actuation, that can act simultaneously as motors and manipulators. The mechanism also enables an artificial muscle controlled gear change. Future work will include self-sensing feedback for precision, multidegree-of-freedom operation.

  9. Opportunities to utilize traditional phenological knowledge to support adaptive management of social-ecological systems vulnerable to changes in climate and fire regimes

    Treesearch

    Christopher A. Armatas; Tyron J. Venn; Brooke B. McBride; Alan E. Watson; Steve J. Carver

    2016-01-01

    The field of adaptive management has been embraced by researchers and managers in the United States as an approach to improve natural resource stewardship in the face of uncertainty and complex environmental problems. Integrating multiple knowledge sources and feedback mechanisms is an important step in this approach. Our objective is to contribute to the...

  10. Using Real-Time Data and Corrective Teacher-Feedback as a Mechanism to Improve Children's Reading Skills: An Exploratory Study in the Millennium Village Site of Bonsaaso, Ghana

    ERIC Educational Resources Information Center

    Iyengar, Radhika; Muffly, Sarah; Akomaning-Mensah, Charles; Karim, Alia; Pokharel, Prabhas; Adeni, Sarayu

    2016-01-01

    Educational outcomes across multiple countries show large gaps between children's grade level curricular expectations and the actual learning levels of children. This paper discusses findings from an early grades literacy study and attempts to explore factors that potentially improve the English language learning results of Grades 3 and 4 learners…

  11. An improved car-following model with multiple preceding cars' velocity fluctuation feedback

    NASA Astrophysics Data System (ADS)

    Guo, Lantian; Zhao, Xiangmo; Yu, Shaowei; Li, Xiuhai; Shi, Zhongke

    2017-04-01

    In order to explore and evaluate the effects of velocity variation trend of multiple preceding cars used in the Cooperative Adaptive Cruise Control (CACC) strategy on the dynamic characteristic, fuel economy and emission of the corresponding traffic flow, we conduct a study as follows: firstly, with the real-time car-following (CF) data, the close relationship between multiple preceding cars' velocity fluctuation feedback and the host car's behaviors is explored, the evaluation results clearly show that multiple preceding cars' velocity fluctuation with different time window-width are highly correlated to the host car's acceleration/deceleration. Then, a microscopic traffic flow model is proposed to evaluate the effects of multiple preceding cars' velocity fluctuation feedback in the CACC strategy on the traffic flow evolution process. Finally, numerical simulations on fuel economy and exhaust emission of the traffic flow are also implemented by utilizing VT-micro model. Simulation results prove that considering multiple preceding cars' velocity fluctuation feedback in the control strategy of the CACC system can improve roadway traffic mobility, fuel economy and exhaust emission performance.

  12. Requirements for efficient cell-type proportioning: regulatory timescales, stochasticity and lateral inhibition

    NASA Astrophysics Data System (ADS)

    Pfeuty, B.; Kaneko, K.

    2016-04-01

    The proper functioning of multicellular organisms requires the robust establishment of precise proportions between distinct cell types. This developmental differentiation process typically involves intracellular regulatory and stochastic mechanisms to generate cell-fate diversity as well as intercellular signaling mechanisms to coordinate cell-fate decisions at tissue level. We thus surmise that key insights about the developmental regulation of cell-type proportion can be captured by the modeling study of clustering dynamics in population of inhibitory-coupled noisy bistable systems. This general class of dynamical system is shown to exhibit a very stable two-cluster state, but also metastability, collective oscillations or noise-induced state hopping, which can prevent from timely and reliably reaching a robust and well-proportioned clustered state. To circumvent these obstacles or to avoid fine-tuning, we highlight a general strategy based on dual-time positive feedback loops, such as mediated through transcriptional versus epigenetic mechanisms, which improves proportion regulation by coordinating early and flexible lineage priming with late and firm commitment. This result sheds new light on the respective and cooperative roles of multiple regulatory feedback, stochasticity and lateral inhibition in developmental dynamics.

  13. Implementing Audio Digital Feedback Loop Using the National Instruments RIO System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, G.; Byrd, J. M.

    2006-11-20

    Development of system for high precision RF distribution and laser synchronization at Berkeley Lab has been ongoing for several years. Successful operation of these systems requires multiple audio bandwidth feedback loops running at relatively high gains. Stable operation of the feedback loops requires careful design of the feedback transfer function. To allow for flexible and compact implementation, we have developed digital feedback loops on the National Instruments Reconfigurable Input/Output (RIO) platform. This platform uses an FPGA and multiple I/Os that can provide eight parallel channels running different filters. We present the design and preliminary experimental results of this system.

  14. Expression of ESR1 in Glutamatergic and GABAergic Neurons Is Essential for Normal Puberty Onset, Estrogen Feedback, and Fertility in Female Mice.

    PubMed

    Cheong, Rachel Y; Czieselsky, Katja; Porteous, Robert; Herbison, Allan E

    2015-10-28

    Circulating estradiol exerts a profound influence on the activity of the gonadotropin-releasing hormone (GnRH) neuronal network controlling fertility. Using genetic strategies enabling neuron-specific deletion of estrogen receptor α (Esr1), we examine here whether estradiol-modulated GABA and glutamate transmission are critical for the functioning of the GnRH neuron network in the female mouse. Using Vgat- and Vglut2-ires-Cre knock-in mice and ESR1 immunohistochemistry, we demonstrate that subpopulations of GABA and glutamate neurons throughout the limbic forebrain express ESR1, with ESR1-GABAergic neurons being more widespread and numerous than ESR1-glutamatergic neurons. We crossed Vgat- and Vglut2-ires-Cre mice with an Esr1(lox/lox) line to generate animals with GABA-neuron-specific or glutamate-neuron-specific deletion of Esr1. Vgat-ires-Cre;Esr1(lox/lox) mice were infertile, with abnormal estrous cycles, and exhibited a complete failure of the estrogen positive feedback mechanism responsible for the preovulatory GnRH surge. However, puberty onset and estrogen negative feedback were normal. Vglut2-ires-Cre;Esr1(lox/lox) mice were also infertile but displayed a wider range of deficits, including advanced puberty onset, abnormal negative feedback, and abolished positive feedback. Whereas <25% of preoptic kisspeptin neurons expressed Cre in Vgat- and Vglut2-ires-Cre lines, ∼70% of arcuate kisspeptin neurons were targeted in Vglut2-ires-Cre;Esr1(lox/lox) mice, possibly contributing to their advanced puberty phenotype. These observations show that, unexpectedly, ESR1-GABA neurons are only essential for the positive feedback mechanism. In contrast, we reveal the key importance of ESR1 in glutamatergic neurons for multiple estrogen feedback loops within the GnRH neuronal network required for fertility in the female mouse. Copyright © 2015 the authors 0270-6474/15/3514533-11$15.00/0.

  15. Exploring Occupational Therapy Students' Meaning of Feedback during Fieldwork Experiences

    ERIC Educational Resources Information Center

    Rathgeber, Karen Lynne

    2014-01-01

    Researchers have revealed that students' confidence and performance improve after they receive feedback from clinical supervisors regarding the delivery of quality patient care. Multiple studies of feedback have focused on the provision and acceptance of feedback; however, it was not known if or how students internalized feedback to promote…

  16. Feedbacks in human-landscape systems

    NASA Astrophysics Data System (ADS)

    Chin, Anne

    2015-04-01

    As human interactions with Earth systems intensify in the "Anthropocene", understanding the complex relationships among human activity, landscape change, and societal responses to those changes is increasingly important. Interdisciplinary research centered on the theme of "feedbacks" in human-landscape systems serves as a promising focus for unraveling these interactions. Deciphering interacting human-landscape feedbacks extends our traditional approach of considering humans as unidirectional drivers of change. Enormous challenges exist, however, in quantifying impact-feedback loops in landscapes with significant human alterations. This paper illustrates an example of human-landscape interactions following a wildfire in Colorado (USA) that elicited feedback responses. After the 2012 Waldo Canyon Fire, concerns for heightened flood potential and debris flows associated with post-fire hydrologic changes prompted local landowners to construct tall fences at the base of a burned watershed. These actions changed the sediment transport regime and promoted further landscape change and human responses in a positive feedback cycle. The interactions ultimately increase flood and sediment hazards, rather than dampening the effects of fire. A simple agent-based model, capable of integrating social and hydro-geomorphological data, demonstrates how such interacting impacts and feedbacks could be simulated. Challenges for fully capturing human-landscape feedback interactions include the identification of diffuse and subtle feedbacks at a range of scales, the availability of data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, and the varied metrics and data needed to represent both the physical and human systems. By collaborating with social scientists with expertise in the human causes of landscape change, as well as the human responses to those changes, geoscientists could more fully recognize and anticipate the coupled human-landscape interactions that will drive the evolution of Earth systems into the future.

  17. An expanding universe of circadian networks in higher plants.

    PubMed

    Pruneda-Paz, Jose L; Kay, Steve A

    2010-05-01

    Extensive circadian clock networks regulate almost every biological process in plants. Clock-controlled physiological responses are coupled with daily oscillations in environmental conditions resulting in enhanced fitness and growth vigor. Identification of core clock components and their associated molecular interactions has established the basic network architecture of plant clocks, which consists of multiple interlocked feedback loops. A hierarchical structure of transcriptional feedback overlaid with regulated protein turnover sets the pace of the clock and ultimately drives all clock-controlled processes. Although originally described as linear entities, increasing evidence suggests that many signaling pathways can act as both inputs and outputs within the overall network. Future studies will determine the molecular mechanisms involved in these complex regulatory loops. 2010 Elsevier Ltd. All rights reserved.

  18. Mathematical modelling of fluid transport and its regulation at multiple scales.

    PubMed

    Chara, Osvaldo; Brusch, Lutz

    2015-04-01

    Living matter equals water, to a first approximation, and water transport across barriers such as membranes and epithelia is vital. Water serves two competing functions. On the one hand, it is the fundamental solvent enabling random mobility of solutes and therefore biochemical reactions and intracellular signal propagation. Homeostasis of the intracellular water volume is required such that messenger concentration encodes the stimulus and not inverse volume fluctuations. On the other hand, water flow is needed for transport of solutes to and away from cells in a directed manner, threatening volume homeostasis and signal transduction fidelity of cells. Feedback regulation of fluid transport reconciles these competing objectives. The regulatory mechanisms often span across multiple spatial scales from cellular interactions up to the architecture of organs. Open questions relate to the dependency of water fluxes and steady state volumes on control parameters and stimuli. We here review selected mathematical models of feedback regulation of fluid transport at the cell scale and identify a general "core-shell" structure of such models. We propose that fluid transport models at other spatial scales can be constructed in a generalised core-shell framework, in which the core accounts for the biophysical effects of fluid transport whilst the shell reflects the regulatory mechanisms. We demonstrate the applicability of this framework for tissue lumen growth and suggest future experiments in zebrafish to test lumen size regulation mechanisms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Which Feedback Is More Effective for Pursuing Multiple Goals of Differing Importance? The Interaction Effects of Goal Importance and Performance Feedback Type on Self-Regulation and Task Achievement

    ERIC Educational Resources Information Center

    Lee, Hyunjoo

    2016-01-01

    This study examined how performance feedback type (progress vs. distance) affects Korean college students' self-regulation and task achievement according to relative goal importance in the pursuit of multiple goals. For this study, 146 students participated in a computerised task. The results showed the interaction effects of goal importance and…

  20. A minimal mathematical model combining several regulatory cycles from the budding yeast cell cycle.

    PubMed

    Sriram, K; Bernot, G; Képès, F

    2007-11-01

    A novel topology of regulatory networks abstracted from the budding yeast cell cycle is studied by constructing a simple nonlinear model. A ternary positive feedback loop with only positive regulations is constructed with elements that activates the subsequent element in a clockwise fashion. A ternary negative feedback loop with only negative regulations is constructed with the elements that inhibit the subsequent element in an anticlockwise fashion. Positive feedback loop exhibits bistability, whereas the negative feedback loop exhibits limit cycle oscillations. The novelty of the topology is that the corresponding elements in these two homogeneous feedback loops are linked by the binary positive feedback loops with only positive regulations. This results in the emergence of mixed feedback loops in the network that displays complex behaviour like the coexistence of multiple steady states, relaxation oscillations and chaos. Importantly, the arrangement of the feedback loops brings in the notion of checkpoint in the model. The model also exhibits domino-like behaviour, where the limit cycle oscillations take place in a stepwise fashion. As the aforementioned topology is abstracted from the budding yeast cell cycle, the events that govern the cell cycle are considered for the present study. In budding yeast, the sequential activation of the transcription factors, cyclins and their inhibitors form mixed feedback loops. The transcription factors that involve in the positive regulation in a clockwise orientation generates ternary positive feedback loop, while the cyclins and their inhibitors that involve in the negative regulation in an anticlockwise orientation generates ternary negative feedback loop. The mutual regulation between the corresponding elements in the transcription factors and the cyclins and their inhibitors generates binary positive feedback loops. The bifurcation diagram constructed for the whole system can be related to the different events of the cell cycle in terms of dynamical system theory. The checkpoint mechanism that plays an important role in different phases of the cell cycle are accounted for by silencing appropriate feedback loops in the model.

  1. Feedback Power Control Strategies in Wireless Sensor Networks with Joint Channel Decoding

    PubMed Central

    Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio

    2009-01-01

    In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as “balanced SNR” and “unbalanced SNR,” respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm. PMID:22291536

  2. Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling.

    PubMed

    Fernández-Ruiz, Antonio; Oliva, Azahara; Nagy, Gergő A; Maurer, Andrew P; Berényi, Antal; Buzsáki, György

    2017-03-08

    Theta-gamma phase coupling and spike timing within theta oscillations are prominent features of the hippocampus and are often related to navigation and memory. However, the mechanisms that give rise to these relationships are not well understood. Using high spatial resolution electrophysiology, we investigated the influence of CA3 and entorhinal inputs on the timing of CA1 neurons. The theta-phase preference and excitatory strength of the afferent CA3 and entorhinal inputs effectively timed the principal neuron activity, as well as regulated distinct CA1 interneuron populations in multiple tasks and behavioral states. Feedback potentiation of distal dendritic inhibition by CA1 place cells attenuated the excitatory entorhinal input at place field entry, coupled with feedback depression of proximal dendritic and perisomatic inhibition, allowing the CA3 input to gain control toward the exit. Thus, upstream inputs interact with local mechanisms to determine theta-phase timing of hippocampal neurons to support memory and spatial navigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Highly Stable Nanolattice Structures using Nonlinear Laser Lithography

    NASA Astrophysics Data System (ADS)

    Yavuz, Ozgun; Tokel, Onur; Ergecen, Emre; Pavlov, Ihor; Makey, Ghaith; Ilday, Fatih Omer

    Periodic nanopatterning is crucial for multiple technologies, including photovoltaics and display technologies. Conventional optical lithography techniques require complex masks, while e-beam and ion-beam lithography require expensive equipment. With the Nonlinear Laser Lithography (NLL) technique, we had recently shown that various surfaces can be covered with extremely periodic nanopatterns with ultrafast lasers through a single-step, maskless and inexpensive method. Here, we expand NLL nanopatterns to flexible materials, and also present a fully predictive model for the formation of NLL nanostructures as confirmed with experiments. In NLL, a nonlocal positive feedback mechanism (dipole scattering) competes with a rate limiting negative feedback mechanism. Here, we show that judicious use of the laser polarisation can constrain the lattice symmetry, while the nonlinearities regulate periodicity. We experimentally demonstrate that in addition to one dimensional periodic stripes, two dimensional lattices can be produced on surfaces. In particular, hexagonal and square lattices were produced, which are highly desired for display technologies. Notably, with this approach, we can tile flexible substrates, which can find applications in next generation display technologies.

  4. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity

    PubMed Central

    Lovatt, Ditte; Xu, Qiwu; Liu, Wei; Takano, Takahiro; Smith, Nathan A.; Schnermann, Jurgen; Tieu, Kim; Nedergaard, Maiken

    2012-01-01

    Adenosine is a potent anticonvulsant acting on excitatory synapses through A1 receptors. Cellular release of ATP, and its subsequent extracellular enzymatic degradation to adenosine, could provide a powerful mechanism for astrocytes to control the activity of neural networks during high-intensity activity. Despite adenosine's importance, the cellular source of adenosine remains unclear. We report here that multiple enzymes degrade extracellular ATP in brain tissue, whereas only Nt5e degrades AMP to adenosine. However, endogenous A1 receptor activation during cortical seizures in vivo or heterosynaptic depression in situ is independent of Nt5e activity, and activation of astrocytic ATP release via Ca2+ photolysis does not trigger synaptic depression. In contrast, selective activation of postsynaptic CA1 neurons leads to release of adenosine and synaptic depression. This study shows that adenosine-mediated synaptic depression is not a consequence of astrocytic ATP release, but is instead an autonomic feedback mechanism that suppresses excitatory transmission during prolonged activity. PMID:22421436

  5. Goals-feedback conditions and episodic memory: Mechanisms for memory gains in older and younger adults.

    PubMed

    West, Robin L; Dark-Freudeman, Alissa; Bagwell, Dana K

    2009-02-01

    Research has established that challenging memory goals always lead to score increases for younger adults, and can increase older adults' scores under supportive conditions. This study examined beliefs and on-task effort as potential mechanisms for these self-regulatory gains, in particular to learn whether episodic memory gains across multiple trials of shopping list recall are controlled by the same factors for young and old people. Goals with feedback led to higher recall and strategic categorisation than a control condition. Strategy usage was the strongest predictor of gains over trials for both age groups. Age, goal condition, and effort also predicted scores across the entire sample. Older adults' gains, but not younger adults' gains, were affected significantly by the interaction of self-efficacy beliefs and goal condition, and condition interacted with locus of control to predict younger adult gains. These results emphasise the importance of self-regulatory effort and positive beliefs for facilitating goal-related memory gains.

  6. Multiple Learning Approaches in the Professional Development of School Leaders -- Theoretical Perspectives and Empirical Findings on Self-assessment and Feedback

    ERIC Educational Resources Information Center

    Huber, Stephan Gerhard

    2013-01-01

    This article investigates the use of multiple learning approaches and different modes and types of learning in the (continuous) professional development (PD) of school leaders, particularly the use of self-assessment and feedback. First, formats and multiple approaches to professional learning are described. Second, a possible approach to…

  7. The role of tactile sensation in online and offline hierarchical control of multi-finger force synergy.

    PubMed

    Koh, Kyung; Kwon, Hyun Joon; Yoon, Bum Chul; Cho, Yongseok; Shin, Joon-Ho; Hahn, Jin-Oh; Miller, Ross H; Kim, Yoon Hyuk; Shim, Jae Kun

    2015-09-01

    The hand, one of the most versatile but mechanically redundant parts of the human body, must overcome imperfect motor commands and inherent noise in both the sensory and motor systems in order to produce desired motor actions. For example, it is nearly impossible to produce a perfectly consistent note during a single violin stroke or to produce the exact same note over multiple strokes, which we denote online and offline control, respectively. To overcome these challenges, the central nervous system synergistically integrates multiple sensory modalities and coordinates multiple motor effectors. Among these sensory modalities, tactile sensation plays an important role in manual motor tasks by providing hand-object contact information. The purpose of this study was to investigate the role of tactile feedback in individual finger actions and multi-finger interactions during constant force production tasks. We developed analytical techniques for the linear decomposition of the overall variance in the motor system in both online and offline control. We removed tactile feedback from the fingers and demonstrated that tactile sensors played a critical role in the online control of synergistic interactions between fingers. In contrast, the same sensors did not contribute to offline control. We also demonstrated that when tactile feedback was removed from the fingers, the combined motor output of individual fingers did not change while individual finger behaviors did. This finding supports the idea of hierarchical control where individual fingers at the lower level work together to stabilize the performance of combined motor output at the higher level.

  8. Network feedback regulates motor output across a range of modulatory neuron activity.

    PubMed

    Spencer, Robert M; Blitz, Dawn M

    2016-06-01

    Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5-35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation. Copyright © 2016 the American Physiological Society.

  9. Modeling the relativistic runaway electron avalanche and the feedback mechanism with GEANT4

    PubMed Central

    Skeltved, Alexander Broberg; Østgaard, Nikolai; Carlson, Brant; Gjesteland, Thomas; Celestin, Sebastien

    2014-01-01

    This paper presents the first study that uses the GEometry ANd Tracking 4 (GEANT4) toolkit to do quantitative comparisons with other modeling results related to the production of terrestrial gamma ray flashes and high-energy particle emission from thunderstorms. We will study the relativistic runaway electron avalanche (RREA) and the relativistic feedback process, as well as the production of bremsstrahlung photons from runaway electrons. The Monte Carlo simulations take into account the effects of electron ionization, electron by electron (Møller), and electron by positron (Bhabha) scattering as well as the bremsstrahlung process and pair production, in the 250 eV to 100 GeV energy range. Our results indicate that the multiplication of electrons during the development of RREAs and under the influence of feedback are consistent with previous estimates. This is important to validate GEANT4 as a tool to model RREAs and feedback in homogeneous electric fields. We also determine the ratio of bremsstrahlung photons to energetic electrons Nγ/Ne. We then show that the ratio has a dependence on the electric field, which can be expressed by the avalanche time τ(E) and the bremsstrahlung coefficient α(ε). In addition, we present comparisons of GEANT4 simulations performed with a “standard” and a “low-energy” physics list both validated in the 1 keV to 100 GeV energy range. This comparison shows that the choice of physics list used in GEANT4 simulations has a significant effect on the results. Key Points Testing the feedback mechanism with GEANT4 Validating the GEANT4 programming toolkit Study the ratio of bremsstrahlung photons to electrons at TGF source altitude PMID:26167437

  10. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex.

    PubMed

    Mejias, Jorge F; Murray, John D; Kennedy, Henry; Wang, Xiao-Jing

    2016-11-01

    Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions.

  11. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex

    PubMed Central

    Mejias, Jorge F.; Murray, John D.; Kennedy, Henry; Wang, Xiao-Jing

    2016-01-01

    Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions. PMID:28138530

  12. Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism

    DOE PAGES

    Yu, Yan; Notaro, Michael; Wang, Fuyao; ...

    2017-11-30

    Classic, model-based theory of land-atmosphere interactions across the Sahel promote positive vegetation-rainfall feedbacks dominated by surface albedo mechanism. However, neither the proposed positive vegetation-rainfall feedback nor its underlying albedo mechanism has been convincingly demonstrated using observational data. Here, we present observational evidence for the region’s proposed positive vegetation-rainfall feedback on the seasonal to interannual time scale, and find that it is associated with a moisture recycling mechanism, rather than the classic albedo-based mechanism. Positive anomalies of remotely sensed vegetation greenness across the Sahel during the late and post-monsoon periods favor enhanced evapotranspiration, precipitable water, convective activity and rainfall, indicative ofmore » amplified moisture recycling. The identified modest low-level cooling and anomalous atmospheric subsidence in response to positive vegetation greenness anomalies are counter to the responses expected through the classic vegetation-albedo feedback mechanism. The observational analysis further reveals enhanced dust emissions in response to diminished Sahel vegetation growth, potentially contributing to the positive vegetation-rainfall feedback.« less

  13. Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yan; Notaro, Michael; Wang, Fuyao

    Classic, model-based theory of land-atmosphere interactions across the Sahel promote positive vegetation-rainfall feedbacks dominated by surface albedo mechanism. However, neither the proposed positive vegetation-rainfall feedback nor its underlying albedo mechanism has been convincingly demonstrated using observational data. Here, we present observational evidence for the region’s proposed positive vegetation-rainfall feedback on the seasonal to interannual time scale, and find that it is associated with a moisture recycling mechanism, rather than the classic albedo-based mechanism. Positive anomalies of remotely sensed vegetation greenness across the Sahel during the late and post-monsoon periods favor enhanced evapotranspiration, precipitable water, convective activity and rainfall, indicative ofmore » amplified moisture recycling. The identified modest low-level cooling and anomalous atmospheric subsidence in response to positive vegetation greenness anomalies are counter to the responses expected through the classic vegetation-albedo feedback mechanism. The observational analysis further reveals enhanced dust emissions in response to diminished Sahel vegetation growth, potentially contributing to the positive vegetation-rainfall feedback.« less

  14. Influence of the feedback loops in the trp operon of B. subtilis on the system dynamic response and noise amplitude.

    PubMed

    Zamora-Chimal, Criseida; Santillán, Moisés; Rodríguez-González, Jesús

    2012-10-07

    In this paper we introduce a mathematical model for the tryptophan operon regulatory pathway in Bacillus subtilis. This model considers the transcription-attenuation, and the enzyme-inhibition regulatory mechanisms. Special attention is paid to the estimation of all the model parameters from reported experimental data. With the aid of this model we investigate, from a mathematical-modeling point of view, whether the existing multiplicity of regulatory feedback loops is advantageous in some sense, regarding the dynamic response and the biochemical noise in the system. The tryptophan operon dynamic behavior is studied by means of deterministic numeric simulations, while the biochemical noise is analyzed with the aid of stochastic simulations. The model feasibility is tested comparing its stochastic and deterministic results with experimental reports. Our results for the wildtype and for a couple of mutant bacterial strains suggest that the enzyme-inhibition feedback loop, dynamically accelerates the operon response, and plays a major role in the reduction of biochemical noise. Also, the transcription-attenuation feedback loop makes the trp operon sensitive to changes in the endogenous tryptophan level, and increases the amplitude of the biochemical noise. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The Role of Competitive Inhibition and Top-Down Feedback in Binding during Object Recognition

    PubMed Central

    Wyatte, Dean; Herd, Seth; Mingus, Brian; O’Reilly, Randall

    2012-01-01

    How does the brain bind together visual features that are processed concurrently by different neurons into a unified percept suitable for processes such as object recognition? Here, we describe how simple, commonly accepted principles of neural processing can interact over time to solve the brain’s binding problem. We focus on mechanisms of neural inhibition and top-down feedback. Specifically, we describe how inhibition creates competition among neural populations that code different features, effectively suppressing irrelevant information, and thus minimizing illusory conjunctions. Top-down feedback contributes to binding in a similar manner, but by reinforcing relevant features. Together, inhibition and top-down feedback contribute to a competitive environment that ensures only the most appropriate features are bound together. We demonstrate this overall proposal using a biologically realistic neural model of vision that processes features across a hierarchy of interconnected brain areas. Finally, we argue that temporal synchrony plays only a limited role in binding – it does not simultaneously bind multiple objects, but does aid in creating additional contrast between relevant and irrelevant features. Thus, our overall theory constitutes a solution to the binding problem that relies only on simple neural principles without any binding-specific processes. PMID:22719733

  16. Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis

    PubMed Central

    2018-01-01

    The shaping of individual cells requires a tight coordination of cell mechanics and growth. However, it is unclear how information about the mechanical state of the wall is relayed to the molecular processes building it, thereby enabling the coordination of cell wall expansion and assembly during morphogenesis. Combining theoretical and experimental approaches, we show that a mechanical feedback coordinating cell wall assembly and expansion is essential to sustain mating projection growth in budding yeast (Saccharomyces cerevisiae). Our theoretical results indicate that the mechanical feedback provided by the Cell Wall Integrity pathway, with cell wall stress sensors Wsc1 and Mid2 increasingly activating membrane-localized cell wall synthases Fks1/2 upon faster cell wall expansion, stabilizes mating projection growth without affecting cell shape. Experimental perturbation of the osmotic pressure and cell wall mechanics, as well as compromising the mechanical feedback through genetic deletion of the stress sensors, leads to cellular phenotypes that support the theoretical predictions. Our results indicate that while the existence of mechanical feedback is essential to stabilize mating projection growth, the shape and size of the cell are insensitive to the feedback. PMID:29346368

  17. Effect of external magnetic field on locking range of spintronic feedback nano oscillator

    NASA Astrophysics Data System (ADS)

    Singh, Hanuman; Konishi, K.; Bose, A.; Bhuktare, S.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.

    2018-05-01

    In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3) multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.

  18. Effects of Type and Strength of Force Feedback on Movement Time in a Target Selection Task

    NASA Technical Reports Server (NTRS)

    Rorie, Robert Conrad; Vu, Kim-Phuong L.; Marayong, Panadda; Robles, Jose; Strybel, Thomas Z.; Battiste, Vernol

    2013-01-01

    Future cockpits will likely include new onboard technologies, such as cockpit displays of traffic information, to help support future flight deck roles and responsibilities. These new technologies may benefit from multimodal feedback to aid pilot information processing. The current study investigated the effects of multiple levels of force feedback on operator performance in an aviation task. Participants were presented with two different types of force feedback (gravitational and spring force feedback) for a discrete targeting task, with multiple levels of gain examined for each force feedback type. Approach time and time in target were recorded. Results suggested that the two highest levels of gravitational force significantly reduced approach times relative to the lowest level of gravitational force. Spring force level only affected time in target. Implications of these findings for the design of future cockpit displays will be discussed.

  19. Tuning Cell and Tissue Development by Combining Multiple Mechanical Signals.

    PubMed

    Sinha, Ravi; Verdonschot, Nico; Koopman, Bart; Rouwkema, Jeroen

    2017-10-01

    Mechanical signals offer a promising way to control cell and tissue development. It has been established that cells constantly probe their mechanical microenvironment and employ force feedback mechanisms to modify themselves and when possible, their environment, to reach a homeostatic state. Thus, a correct mechanical microenvironment (external forces and mechanical properties and shapes of cellular surroundings) is necessary for the proper functioning of cells. In vitro or in the case of nonbiological implants in vivo, where cells are in an artificial environment, addition of the adequate mechanical signals can, therefore, enable the cells to function normally as in vivo. Hence, a wide variety of approaches have been developed to apply mechanical stimuli (such as substrate stretch, flow-induced shear stress, substrate stiffness, topography, and modulation of attachment area) to cells in vitro. These approaches have not just revealed the effects of the mechanical signals on cells but also provided ways for probing cellular molecules and structures that can provide a mechanistic understanding of the effects. However, they remain lower in complexity compared with the in vivo conditions, where the cellular mechanical microenvironment is the result of a combination of multiple mechanical signals. Therefore, combinations of mechanical stimuli have also been applied to cells in vitro. These studies have had varying focus-developing novel platforms to apply complex combinations of mechanical stimuli, observing the co-operation/competition between stimuli, combining benefits of multiple stimuli toward an application, or uncovering the underlying mechanisms of their action. In general, they provided new insights that could not have been predicted from previous knowledge. We present here a review of several such studies and the insights gained from them, thereby making a case for such studies to be continued and further developed.

  20. Random synaptic feedback weights support error backpropagation for deep learning

    NASA Astrophysics Data System (ADS)

    Lillicrap, Timothy P.; Cownden, Daniel; Tweed, Douglas B.; Akerman, Colin J.

    2016-11-01

    The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning.

  1. Random synaptic feedback weights support error backpropagation for deep learning

    PubMed Central

    Lillicrap, Timothy P.; Cownden, Daniel; Tweed, Douglas B.; Akerman, Colin J.

    2016-01-01

    The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning. PMID:27824044

  2. Output transformations and separation results for feedback linearisable delay systems

    NASA Astrophysics Data System (ADS)

    Cacace, F.; Conte, F.; Germani, A.

    2018-04-01

    The class of strict-feedback systems enjoys special properties that make it similar to linear systems. This paper proves that such a class is equivalent, under a change of coordinates, to the wider class of feedback linearisable systems with multiplicative input, when the multiplicative terms are functions of the measured variables only. We apply this result to the control problem of feedback linearisable nonlinear MIMO systems with input and/or output delays. In this way, we provide sufficient conditions under which a separation result holds for output feedback control and moreover a predictor-based controller exists. When these conditions are satisfied, we obtain that the existence of stabilising controllers for arbitrarily large delays in the input and/or the output can be proved for a wider class of systems than previously known.

  3. Kinetics of Inhibitory Feedback from Horizontal Cells to Photoreceptors: Implications for an Ephaptic Mechanism

    PubMed Central

    Warren, Ted J.; Van Hook, Matthew J.; Tranchina, Daniel

    2016-01-01

    Inhibitory feedback from horizontal cells (HCs) to cones generates center-surround receptive fields and color opponency in the retina. Mechanisms of HC feedback remain unsettled, but one hypothesis proposes that an ephaptic mechanism may alter the extracellular electrical field surrounding photoreceptor synaptic terminals, thereby altering Ca2+ channel activity and photoreceptor output. An ephaptic voltage change produced by current flowing through open channels in the HC membrane should occur with no delay. To test for this mechanism, we measured kinetics of inhibitory feedback currents in Ambystoma tigrinum cones and rods evoked by hyperpolarizing steps applied to synaptically coupled HCs. Hyperpolarizing HCs stimulated inward feedback currents in cones that averaged 8–9 pA and exhibited a biexponential time course with time constants averaging 14–17 ms and 120–220 ms. Measurement of feedback-current kinetics was limited by three factors: (1) HC voltage-clamp speed, (2) cone voltage-clamp speed, and (3) kinetics of Ca2+ channel activation or deactivation in the photoreceptor terminal. These factors totaled ∼4–5 ms in cones meaning that the true fast time constants for HC-to-cone feedback currents were 9–13 ms, slower than expected for ephaptic voltage changes. We also compared speed of feedback to feedforward glutamate release measured at the same cone/HC synapses and found a latency for feedback of 11–14 ms. Inhibitory feedback from HCs to rods was also significantly slower than either measurement kinetics or feedforward release. The finding that inhibitory feedback from HCs to photoreceptors involves a significant delay indicates that it is not due to previously proposed ephaptic mechanisms. SIGNIFICANCE STATEMENT Lateral inhibitory feedback from horizontal cells (HCs) to photoreceptors creates center-surround receptive fields and color-opponent interactions. Although underlying mechanisms remain unsettled, a longstanding hypothesis proposes that feedback is due to ephaptic voltage changes that regulate photoreceptor synaptic output by altering Ca2+ channel activity. Ephaptic processes should occur with no delay. We measured kinetics of inhibitory feedback currents evoked in photoreceptors with voltage steps applied to synaptically coupled HCs and found that feedback is too slow to be explained by ephaptic voltage changes generated by current flowing through continuously open channels in HC membranes. By eliminating the proposed ephaptic mechanism for HC feedback regulation of photoreceptor Ca2+ channels, our data support earlier proposals that synaptic cleft pH changes are more likely responsible. PMID:27683904

  4. Applications of multiple-constraint matrix updates to the optimal control of large structures

    NASA Technical Reports Server (NTRS)

    Smith, S. W.; Walcott, B. L.

    1992-01-01

    Low-authority control or vibration suppression in large, flexible space structures can be formulated as a linear feedback control problem requiring computation of displacement and velocity feedback gain matrices. To ensure stability in the uncontrolled modes, these gain matrices must be symmetric and positive definite. In this paper, efficient computation of symmetric, positive-definite feedback gain matrices is accomplished through the use of multiple-constraint matrix update techniques originally developed for structural identification applications. Two systems were used to illustrate the application: a simple spring-mass system and a planar truss. From these demonstrations, use of this multiple-constraint technique is seen to provide a straightforward approach for computing the low-authority gains.

  5. Delayed Instructional Feedback May Be More Effective, but Is This Contrary to Learners' Preferences?

    ERIC Educational Resources Information Center

    Lefevre, David; Cox, Benita

    2017-01-01

    This research investigates learners' preferences for the timing of feedback provided to multiple-choice questions within technology-based instruction, hitherto an area of little empirical attention. Digital materials are undergoing a period of renewed prominence within online learning and multiple-choice questions remain a common component. There…

  6. Normalization Ridge Regression in Practice II: The Estimation of Multiple Feedback Linkages.

    ERIC Educational Resources Information Center

    Bulcock, J. W.

    The use of the two-stage least squares (2 SLS) procedure for estimating nonrecursive social science models is often impractical when multiple feedback linkages are required. This is because 2 SLS is extremely sensitive to multicollinearity. The standard statistical solution to the multicollinearity problem is a biased, variance reduced procedure…

  7. Effects of Verbal and Written Performance Feedback on Treatment Adherence: Practical Application of Two Delivery Formats

    ERIC Educational Resources Information Center

    Kaufman, Dahlia; Codding, Robin S.; Markus, Keith A.; Tryon, Georgiana Shick; Kyse, Eden Nagler

    2013-01-01

    Verbal and written performance feedback for improving preschool and kindergarten teachers' treatment integrity of behavior plans was compared using a combined multiple-baseline and multiple-treatment design across teacher-student dyads with order counterbalanced as within-series conditions. Supplemental generalized least square regression analyses…

  8. Cytokinins and auxins control the expression of a gene in Nicotiana plumbaginifolia cells by feedback regulation.

    PubMed Central

    Dominov, J A; Stenzler, L; Lee, S; Schwarz, J J; Leisner, S; Howell, S H

    1992-01-01

    Both cytokinin (N6-benzyladenine [BA]) and auxin (2,4-dichlorophenoxyacetic acid [2,4-D]) stimulate the accumulation of an mRNA, represented by the cDNA pLS216, in Nicotiana plumbaginifolia suspension culture cells. The kinetics of RNA accumulation were different for the two hormones; however, the response to both was transient, and the magnitude of the response was dose dependent. Runoff transcription experiments demonstrated that the transient appearance of the RNA could be accounted for by feedback regulation of transcription and not by the induction of an RNA degradation system. The feedback mechanism appeared to desensitize the cells to further exposure of the hormone. In particular, cells became refractory to the subsequent addition of 2,4-D after the initial RNA accumulation response subsided. A very different response was observed when the second hormone was added to cells that had been desensitized to the first hormone. Under such conditions, BA produced a heightened response in cells desensitized to 2,4-D and vice versa. These findings support a model in which cytokinin further enhances the auxin response or prevents its feedback inhibition. The hormone-induced RNA accumulation was blocked by the protein kinase inhibitor staurosporin. On the other hand, the protein phosphatase inhibitor okadaic acid stimulated expression, and, in particular, okadaic acid was able to stimulate RNA accumulation in cells desensitized to auxin. This suggests that hormone activation involves phosphorylation of critical proteins on the hormone signaling pathway, whereas feedback inhibition may involve dephosphorylation of these proteins. The sequence of pLS216 is similar to genes in other plants that are stimulated by multiple agonists such as auxins, elicitors, and heavy metals, and to the gene encoding the stringent starvation protein in Escherichia coli. It is proposed that this gene family in various plants be called multiple stimulus response (msr) genes. PMID:1498603

  9. A design of hardware haptic interface for gastrointestinal endoscopy simulation.

    PubMed

    Gu, Yunjin; Lee, Doo Yong

    2011-01-01

    Gastrointestinal endoscopy simulations have been developed to train endoscopic procedures which require hundreds of practices to be competent in the skills. Even though realistic haptic feedback is important to provide realistic sensation to the user, most of previous simulations including commercialized simulation have mainly focused on providing realistic visual feedback. In this paper, we propose a novel design of portable haptic interface, which provides 2DOF force feedback, for the gastrointestinal endoscopy simulation. The haptic interface consists of translational and rotational force feedback mechanism which are completely decoupled, and gripping mechanism for controlling connection between the endoscope and the force feedback mechanism.

  10. Control theory for scanning probe microscopy revisited.

    PubMed

    Stirling, Julian

    2014-01-01

    We derive a theoretical model for studying SPM feedback in the context of control theory. Previous models presented in the literature that apply standard models for proportional-integral-derivative controllers predict a highly unstable feedback environment. This model uses features specific to the SPM implementation of the proportional-integral controller to give realistic feedback behaviour. As such the stability of SPM feedback for a wide range of feedback gains can be understood. Further consideration of mechanical responses of the SPM system gives insight into the causes of exciting mechanical resonances of the scanner during feedback operation.

  11. Contextual cuing contributes to the independent modification of multiple internal models for vocal control

    PubMed Central

    Keough, Dwayne

    2011-01-01

    Research on the control of visually guided limb movements indicates that the brain learns and continuously updates an internal model that maps the relationship between motor commands and sensory feedback. A growing body of work suggests that an internal model that relates motor commands to sensory feedback also supports vocal control. There is evidence from arm-reaching studies that shows that when provided with a contextual cue, the motor system can acquire multiple internal models, which allows an animal to adapt to different perturbations in diverse contexts. In this study we show that trained singers can rapidly acquire multiple internal models regarding voice fundamental frequency (F0). These models accommodate different perturbations to ongoing auditory feedback. Participants heard three musical notes and reproduced each one in succession. The musical targets could serve as a contextual cue to indicate which direction (up or down) feedback would be altered on each trial; however, participants were not explicitly instructed to use this strategy. When participants were gradually exposed to altered feedback adaptation was observed immediately following vocal onset. Aftereffects were target specific and did not influence vocal productions on subsequent trials. When target notes were no longer a contextual cue, adaptation occurred during altered feedback trials and evidence for trial-by-trial adaptation was found. These findings indicate that the brain is exceptionally sensitive to the deviations between auditory feedback and the predicted consequence of a motor command during vocalization. Moreover, these results indicate that, with contextual cues, the vocal control system may maintain multiple internal models that are capable of independent modification during different tasks or environments. PMID:21346208

  12. Using Task Clarification, Graphic Feedback, and Verbal Feedback to Increase Closing-Task Completion in a Privately Owned Restaurant.

    ERIC Educational Resources Information Center

    Austin, John; Weatherly, Nic L.; Gravina, Nicole E.

    2005-01-01

    An informant functional assessment was used to evaluate closing-task completion by servers and dishwashers at a restaurant. Based on the functional assessment results, an intervention consisting of task clarification, posted graphic feedback, and verbal feedback was implemented and evaluated with a multiple baseline design across two groups of…

  13. Making Sense of Assessment Feedback in Higher Education

    ERIC Educational Resources Information Center

    Evans, Carol

    2013-01-01

    This article presents a thematic analysis of the research evidence on assessment feedback in higher education (HE) from 2000 to 2012. The focus of the review is on the feedback that students receive within their coursework from multiple sources. The aims of this study are to (a) examine the nature of assessment feedback in HE through the…

  14. Novel patch modelling method for efficient simulation and prediction uncertainty analysis of multi-scale groundwater flow and transport processes

    NASA Astrophysics Data System (ADS)

    Sreekanth, J.; Moore, Catherine

    2018-04-01

    The application of global sensitivity and uncertainty analysis techniques to groundwater models of deep sedimentary basins are typically challenged by large computational burdens combined with associated numerical stability issues. The highly parameterized approaches required for exploring the predictive uncertainty associated with the heterogeneous hydraulic characteristics of multiple aquifers and aquitards in these sedimentary basins exacerbate these issues. A novel Patch Modelling Methodology is proposed for improving the computational feasibility of stochastic modelling analysis of large-scale and complex groundwater models. The method incorporates a nested groundwater modelling framework that enables efficient simulation of groundwater flow and transport across multiple spatial and temporal scales. The method also allows different processes to be simulated within different model scales. Existing nested model methodologies are extended by employing 'joining predictions' for extrapolating prediction-salient information from one model scale to the next. This establishes a feedback mechanism supporting the transfer of information from child models to parent models as well as parent models to child models in a computationally efficient manner. This feedback mechanism is simple and flexible and ensures that while the salient small scale features influencing larger scale prediction are transferred back to the larger scale, this does not require the live coupling of models. This method allows the modelling of multiple groundwater flow and transport processes using separate groundwater models that are built for the appropriate spatial and temporal scales, within a stochastic framework, while also removing the computational burden associated with live model coupling. The utility of the method is demonstrated by application to an actual large scale aquifer injection scheme in Australia.

  15. Aspects of body self-calibration

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P. A.

    2000-01-01

    The representation of body orientation and configuration is dependent on multiple sources of afferent and efferent information about ongoing and intended patterns of movement and posture. Under normal terrestrial conditions, we feel virtually weightless and we do not perceive the actual forces associated with movement and support of our body. It is during exposure to unusual forces and patterns of sensory feedback during locomotion that computations and mechanisms underlying the ongoing calibration of our body dimensions and movements are revealed. This review discusses the normal mechanisms of our position sense and calibration of our kinaesthetic, visual and auditory sensory systems, and then explores the adaptations that take place to transient Coriolis forces generated during passive body rotation. The latter are very rapid adaptations that allow body movements to become accurate again, even in the absence of visual feedback. Muscle spindle activity interpreted in relation to motor commands and internally modeled reafference is an important component in permitting this adaptation. During voluntary rotary movements of the body, the central nervous system automatically compensates for the Coriolis forces generated by limb movements. This allows accurate control to be maintained without our perceiving the forces generated.

  16. Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control.

    PubMed

    Maeda, Rodrigo S; Cluff, Tyler; Gribble, Paul L; Pruszynski, J Andrew

    2017-10-01

    Moving the arm is complicated by mechanical interactions that arise between limb segments. Such intersegmental dynamics cause torques applied at one joint to produce movement at multiple joints, and in turn, the only way to create single joint movement is by applying torques at multiple joints. We investigated whether the nervous system accounts for intersegmental limb dynamics across the shoulder, elbow, and wrist joints during self-initiated planar reaching and when countering external mechanical perturbations. Our first experiment tested whether the timing and amplitude of shoulder muscle activity account for interaction torques produced during single-joint elbow movements from different elbow initial orientations and over a range of movement speeds. We found that shoulder muscle activity reliably preceded movement onset and elbow agonist activity, and was scaled to compensate for the magnitude of interaction torques arising because of forearm rotation. Our second experiment tested whether elbow muscles compensate for interaction torques introduced by single-joint wrist movements. We found that elbow muscle activity preceded movement onset and wrist agonist muscle activity, and thus the nervous system predicted interaction torques arising because of hand rotation. Our third and fourth experiments tested whether shoulder muscles compensate for interaction torques introduced by different hand orientations during self-initiated elbow movements and to counter mechanical perturbations that caused pure elbow motion. We found that the nervous system predicted the amplitude and direction of interaction torques, appropriately scaling the amplitude of shoulder muscle activity during self-initiated elbow movements and rapid feedback control. Taken together, our results demonstrate that the nervous system robustly accounts for intersegmental dynamics and that the process is similar across the proximal to distal musculature of the arm as well as between feedforward (i.e., self-initiated) and feedback (i.e., reflexive) control. NEW & NOTEWORTHY Intersegmental dynamics complicate the mapping between applied joint torques and the resulting joint motions. We provide evidence that the nervous system robustly predicts these intersegmental limb dynamics across the shoulder, elbow, and wrist joints during reaching and when countering external perturbations. Copyright © 2017 the American Physiological Society.

  17. Estimating peer effects in networks with peer encouragement designs.

    PubMed

    Eckles, Dean; Kizilcec, René F; Bakshy, Eytan

    2016-07-05

    Peer effects, in which the behavior of an individual is affected by the behavior of their peers, are central to social science. Because peer effects are often confounded with homophily and common external causes, recent work has used randomized experiments to estimate effects of specific peer behaviors. These experiments have often relied on the experimenter being able to randomly modulate mechanisms by which peer behavior is transmitted to a focal individual. We describe experimental designs that instead randomly assign individuals' peers to encouragements to behaviors that directly affect those individuals. We illustrate this method with a large peer encouragement design on Facebook for estimating the effects of receiving feedback from peers on posts shared by focal individuals. We find evidence for substantial effects of receiving marginal feedback on multiple behaviors, including giving feedback to others and continued posting. These findings provide experimental evidence for the role of behaviors directed at specific individuals in the adoption and continued use of communication technologies. In comparison, observational estimates differ substantially, both underestimating and overestimating effects, suggesting that researchers and policy makers should be cautious in relying on them.

  18. Estimating peer effects in networks with peer encouragement designs

    PubMed Central

    Eckles, Dean; Kizilcec, René F.; Bakshy, Eytan

    2016-01-01

    Peer effects, in which the behavior of an individual is affected by the behavior of their peers, are central to social science. Because peer effects are often confounded with homophily and common external causes, recent work has used randomized experiments to estimate effects of specific peer behaviors. These experiments have often relied on the experimenter being able to randomly modulate mechanisms by which peer behavior is transmitted to a focal individual. We describe experimental designs that instead randomly assign individuals’ peers to encouragements to behaviors that directly affect those individuals. We illustrate this method with a large peer encouragement design on Facebook for estimating the effects of receiving feedback from peers on posts shared by focal individuals. We find evidence for substantial effects of receiving marginal feedback on multiple behaviors, including giving feedback to others and continued posting. These findings provide experimental evidence for the role of behaviors directed at specific individuals in the adoption and continued use of communication technologies. In comparison, observational estimates differ substantially, both underestimating and overestimating effects, suggesting that researchers and policy makers should be cautious in relying on them. PMID:27382145

  19. Switching of the positive feedback for RAS activation by a concerted function of SOS membrane association domains.

    PubMed

    Nakamura, Yuki; Hibino, Kayo; Yanagida, Toshio; Sako, Yasushi

    2016-01-01

    Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS.

  20. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.

    PubMed

    Matsuoka, Yu; Shimizu, Kazuyuki

    2013-10-20

    It is quite important to understand the basic principle embedded in the main metabolism for the interpretation of the fermentation data. For this, it may be useful to understand the regulation mechanism based on systems biology approach. In the present study, we considered the perturbation analysis together with computer simulation based on the models which include the effects of global regulators on the pathway activation for the main metabolism of Escherichia coli. Main focus is the acetate overflow metabolism and the co-fermentation of multiple carbon sources. The perturbation analysis was first made to understand the nature of the feed-forward loop formed by the activation of Pyk by FDP (F1,6BP), and the feed-back loop formed by the inhibition of Pfk by PEP in the glycolysis. Those together with the effect of transcription factor Cra caused by FDP level affected the glycolysis activity. The PTS (phosphotransferase system) acts as the feed-back system by repressing the glucose uptake rate for the increase in the glucose uptake rate. It was also shown that the increased PTS flux (or glucose consumption rate) causes PEP/PYR ratio to be decreased, and EIIA-P, Cya, cAMP-Crp decreased, where cAMP-Crp in turn repressed TCA cycle and more acetate is formed. This was further verified by the detailed computer simulation. In the case of multiple carbon sources such as glucose and xylose, it was shown that the sequential utilization of carbon sources was observed for wild type, while the co-consumption of multiple carbon sources with slow consumption rates were observed for the ptsG mutant by computer simulation, and this was verified by experiments. Moreover, the effect of a specific gene knockout such as Δpyk on the metabolic characteristics was also investigated based on the computer simulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Role of Working Memory and Strategy-Use in Feedback Effects on Children's Progression in Analogy Solving:an Explanatory Item Response Theory Account

    ERIC Educational Resources Information Center

    Stevenson, Claire E.

    2017-01-01

    This study contrasted the effects of tutoring, multiple try and no feedback on children's progression in analogy solving and examined individual differences herein. Feedback that includes additional hints or explanations leads to the greatest learning gains in adults. However, children process feedback differently from adults and effective…

  2. Mechanochemical Symmetry Breaking in Hydra Aggregates

    PubMed Central

    Mercker, Moritz; Köthe, Alexandra; Marciniak-Czochra, Anna

    2015-01-01

    Tissue morphogenesis comprises the self-organized creation of various patterns and shapes. Although detailed underlying mechanisms are still elusive in many cases, an increasing amount of experimental data suggests that chemical morphogen and mechanical processes are strongly coupled. Here, we develop and test a minimal model of the axis-defining step (i.e., symmetry breaking) in aggregates of the Hydra polyp. Based on previous findings, we combine osmotically driven shape oscillations with tissue mechanics and morphogen dynamics. We show that the model incorporating a simple feedback loop between morphogen patterning and tissue stretch reproduces a wide range of experimental data. Finally, we compare different hypothetical morphogen patterning mechanisms (Turing, tissue-curvature, and self-organized criticality). Our results suggest the experimental investigation of bigger (i.e., multiple head) aggregates as a key step for a deeper understanding of mechanochemical symmetry breaking in Hydra. PMID:25954896

  3. Rapid evolution of hosts begets species diversity at the cost of intraspecific diversity.

    PubMed

    Frickel, Jens; Theodosiou, Loukas; Becks, Lutz

    2017-10-17

    Ecosystems are complex food webs in which multiple species interact and ecological and evolutionary processes continuously shape populations and communities. Previous studies on eco-evolutionary dynamics have shown that the presence of intraspecific diversity affects community structure and function, and that eco-evolutionary feedback dynamics can be an important driver for its maintenance. Within communities, feedbacks are, however, often indirect, and they can feed back over many generations. Here, we studied eco-evolutionary feedbacks in evolving communities over many generations and compared two-species systems (virus-host and prey-predator) with a more complex three-species system (virus-host-predator). Both indirect density- and trait-mediated effects drove the dynamics in the complex system, where host-virus coevolution facilitated coexistence of predator and virus, and where coexistence, in return, lowered intraspecific diversity of the host population. Furthermore, ecological and evolutionary dynamics were significantly altered in the three-species system compared with the two-species systems. We found that the predator slowed host-virus coevolution in the complex system and that the virus' effect on the overall population dynamics was negligible when the three species coexisted. Overall, we show that a detailed understanding of the mechanism driving eco-evolutionary feedback dynamics is necessary for explaining trait and species diversity in communities, even in communities with only three species.

  4. Molecular genetic analysis of circadian timekeeping in Drosophila

    PubMed Central

    Hardin, Paul E.

    2014-01-01

    A genetic screen for mutants that alter circadian rhythms in Drosophila identified the first clock gene - the period (per) gene. The per gene is a central player within a transcriptional feedback loop that represents the core mechanism for keeping circadian time in Drosophila and other animals. The per feedback loop, or core loop, is interlocked with the Clock (Clk) feedback loop, but whether the Clk feedback loop contributes to circadian timekeeping is not known. A series of distinct molecular events are thought to control transcriptional feedback in the core loop. The time it takes to complete these events should take much less than 24h, thus delays must be imposed at different steps within the core loop. As new clock genes are identified, the molecular mechanisms responsible for these delays have been revealed in ever-increasing detail, and provide an in depth accounting of how transcriptional feedback loops keep circadian time. The phase of these feedback loops shift to maintain synchrony with environmental cycles, the most reliable of which is light. Although a great deal is known about cell-autonomous mechanisms of light-induced phase shifting by CRYPTOCHROME (CRY), much less is known about non-cell autonomous mechanisms. CRY mediates phase shifts through an uncharacterized mechanism in certain brain oscillator neurons, and carries out a dual role as a photoreceptor and transcription factor in other tissues. Here I will review how transcriptional feedback loops function to keep time in Drosophila, how they impose delays to maintain a 24h cycle, and how they maintain synchrony with environmental light:dark cycles. The transcriptional feedback loops that keep time in Drosophila are well conserved in other animals, thus what we learn about these loops in Drosophila should continue to provide insight into the operation of analogous transcriptional feedback loops in other animals. PMID:21924977

  5. Designing Crowdcritique Systems for Formative Feedback

    ERIC Educational Resources Information Center

    Easterday, Matthew W.; Rees Lewis, Daniel; Gerber, Elizabeth M.

    2017-01-01

    Intelligent tutors based on expert systems often struggle to provide formative feedback on complex, ill-defined problems where answers are unknown. Hybrid crowdsourcing systems that combine the intelligence of multiple novices in face-to-face settings might provide an alternate approach for providing intelligent formative feedback. The purpose of…

  6. Collective synchronization of self/non-self discrimination in T cell activation, across multiple spatio-temporal scales

    NASA Astrophysics Data System (ADS)

    Altan-Bonnet, Gregoire

    The immune system is a collection of cells whose function is to eradicate pathogenic infections and malignant tumors while protecting healthy tissues. Recent work has delineated key molecular and cellular mechanisms associated with the ability to discriminate self from non-self agents. For example, structural studies have quantified the biophysical characteristics of antigenic molecules (those prone to trigger lymphocyte activation and a subsequent immune response). However, such molecular mechanisms were found to be highly unreliable at the individual cellular level. We will present recent efforts to build experimentally validated computational models of the immune responses at the collective cell level. Such models have become critical to delineate how higher-level integration through nonlinear amplification in signal transduction, dynamic feedback in lymphocyte differentiation and cell-to-cell communication allows the immune system to enforce reliable self/non-self discrimination at the organism level. In particular, we will present recent results demonstrating how T cells tune their antigen discrimination according to cytokine cues, and how competition for cytokine within polyclonal populations of cells shape the repertoire of responding clones. Additionally, we will present recent theoretical and experimental results demonstrating how competition between diffusion and consumption of cytokines determine the range of cell-cell communications within lymphoid organs. Finally, we will discuss how biochemically explicit models, combined with quantitative experimental validation, unravel the relevance of new feedbacks for immune regulations across multiple spatial and temporal scales.

  7. Hierarchical representation of shapes in visual cortex—from localized features to figural shape segregation

    PubMed Central

    Tschechne, Stephan; Neumann, Heiko

    2014-01-01

    Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy. PMID:25157228

  8. Hierarchical representation of shapes in visual cortex-from localized features to figural shape segregation.

    PubMed

    Tschechne, Stephan; Neumann, Heiko

    2014-01-01

    Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.

  9. Transient dynamics of NbOx threshold switches explained by Poole-Frenkel based thermal feedback mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Ziwen; Kumar, Suhas; Nishi, Yoshio; Wong, H.-S. Philip

    2018-05-01

    Niobium oxide (NbOx) two-terminal threshold switches are potential candidates as selector devices in crossbar memory arrays and as building blocks for neuromorphic systems. However, the physical mechanism of NbOx threshold switches is still under debate. In this paper, we show that a thermal feedback mechanism based on Poole-Frenkel conduction can explain both the quasi-static and the transient electrical characteristics that are experimentally observed for NbOx threshold switches, providing strong support for the validity of this mechanism. Furthermore, a clear picture of the transient dynamics during the thermal-feedback-induced threshold switching is presented, providing useful insights required to model nonlinear devices where thermal feedback is important.

  10. Developmental remodeling of corticocortical feedback circuits in ferret visual cortex

    PubMed Central

    Khalil, Reem; Levitt, Jonathan B.

    2014-01-01

    Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from four to ten weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1, and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at four weeks postnatal, the retinotopic arrangement of feedback appears essentially adultlike; however, Suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also find significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18 which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. PMID:24665018

  11. Developmental remodeling of corticocortical feedback circuits in ferret visual cortex.

    PubMed

    Khalil, Reem; Levitt, Jonathan B

    2014-10-01

    Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from 4-10 weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1 and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at 4 weeks postnatal, the retinotopic arrangement of feedback appears essentially adult-like; however, suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also found significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18, which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. © 2014 Wiley Periodicals, Inc.

  12. The Effect of Feedback Delay and Feedback Type on Perceptual Category Learning: The Limits of Multiple Systems

    ERIC Educational Resources Information Center

    Dunn, John C.; Newell, Ben R.; Kalish, Michael L.

    2012-01-01

    Evidence that learning rule-based (RB) and information-integration (II) category structures can be dissociated across different experimental variables has been used to support the view that such learning is supported by multiple learning systems. Across 4 experiments, we examined the effects of 2 variables, the delay between response and feedback…

  13. Multiple-Choice Testing Using Immediate Feedback--Assessment Technique (IF AT®) Forms: Second-Chance Guessing vs. Second-Chance Learning?

    ERIC Educational Resources Information Center

    Merrel, Jeremy D.; Cirillo, Pier F.; Schwartz, Pauline M.; Webb, Jeffrey A.

    2015-01-01

    Multiple choice testing is a common but often ineffective method for evaluating learning. A newer approach, however, using Immediate Feedback Assessment Technique (IF AT®, Epstein Educational Enterprise, Inc.) forms, offers several advantages. In particular, a student learns immediately if his or her answer is correct and, in the case of an…

  14. The Effect of Performance Feedback Provided to Student-Teachers Working with Multiple Disabilities

    ERIC Educational Resources Information Center

    Safak, Pinar; Yilmaz, Hatice Cansu; Demiryurek, Pinar; Dogus, Mustafa

    2016-01-01

    The aim of the study was to investigate the effect of performance feedback (PF) provided to student teachers working with students with multiple disabilities and visual impairment (MDVI) on their teaching skills. The study group of the research was composed of 11 student teachers attending to the final year of the Teaching Students with Visual…

  15. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis.

    PubMed

    Seo, Pil Joon; Mas, Paloma

    2014-01-01

    The circadian clock is a cellular time-keeper mechanism that regulates biological rhythms with a period of ~24 h. The circadian rhythms in metabolism, physiology, and development are synchronized by environmental cues such as light and temperature. In plants, proper matching of the internal circadian time with the external environment confers fitness advantages on plant survival and propagation. Accordingly, plants have evolved elaborated regulatory mechanisms that precisely control the circadian oscillations. Transcriptional feedback regulation of several clock components has been well characterized over the past years. However, the importance of additional regulatory mechanisms such as chromatin remodeling, protein complexes, protein phosphorylation, and stability is only starting to emerge. The multiple layers of circadian regulation enable plants to properly synchronize with the environmental cycles and to fine-tune the circadian oscillations. This review focuses on the diverse posttranslational events that regulate circadian clock function. We discuss the mechanistic insights explaining how plants articulate a high degree of complexity in their regulatory networks to maintain circadian homeostasis and to generate highly precise waveforms of circadian expression and activity.

  16. Does Mechanism Matter? Student Recall of Electronic versus Handwritten Feedback

    ERIC Educational Resources Information Center

    Osterbur, Megan E.; Hammer, Elizabeth Yost; Hammer, Elliott

    2015-01-01

    Student consumption and recall of feedback are necessary preconditions of successful formative assessment. Drawing on Sadler's (1998) definition of formative assessment as that which is intended to accelerate learning and improve performance through the providing of feedback, we examine how the mechanism of transmission may impact student…

  17. Student Metacognitive Responses to Feedback: A Multiple Case Study

    ERIC Educational Resources Information Center

    DeMello, Kate

    2017-01-01

    This study explored how undergraduate students perceive, self-regulate, and respond to feedback from instructors on written work. The general problem was that students in college are not prepared to practice metacognitive regulation to promote learning, particularly in the context of utilizing instructor feedback on written work to improve their…

  18. Feedback for Thought: Examining the Influence of Feedback Constituents on Learning Experience

    ERIC Educational Resources Information Center

    Aoun, Chadi; Vatanasakdakul, Savanid; Ang, Karyne

    2018-01-01

    Reflective teaching practice is often heralded as a pillar of effective tuition. However, the perceptions of multiple forms of feedback among learners and their contributions to reflective learning is yet to attract significant attention, particularly in the Information Systems (IS) context. This research investigates the antecedent constituents…

  19. Feedback in Technology-Based Instruction: Learner Preferences

    ERIC Educational Resources Information Center

    Lefevre, David; Cox, Benita

    2016-01-01

    This research investigates learner preferences for the format of feedback?when using technology-based instruction (TBI). The primary method of data collection was to provide subjects with a range of options for TBI feedback following responses to multiple-choice questions and then observe their choices. A software tool both presented the feedback…

  20. Anatomically constrained neural network models for the categorization of facial expression

    NASA Astrophysics Data System (ADS)

    McMenamin, Brenton W.; Assadi, Amir H.

    2004-12-01

    The ability to recognize facial expression in humans is performed with the amygdala which uses parallel processing streams to identify the expressions quickly and accurately. Additionally, it is possible that a feedback mechanism may play a role in this process as well. Implementing a model with similar parallel structure and feedback mechanisms could be used to improve current facial recognition algorithms for which varied expressions are a source for error. An anatomically constrained artificial neural-network model was created that uses this parallel processing architecture and feedback to categorize facial expressions. The presence of a feedback mechanism was not found to significantly improve performance for models with parallel architecture. However the use of parallel processing streams significantly improved accuracy over a similar network that did not have parallel architecture. Further investigation is necessary to determine the benefits of using parallel streams and feedback mechanisms in more advanced object recognition tasks.

  1. Anatomically constrained neural network models for the categorization of facial expression

    NASA Astrophysics Data System (ADS)

    McMenamin, Brenton W.; Assadi, Amir H.

    2005-01-01

    The ability to recognize facial expression in humans is performed with the amygdala which uses parallel processing streams to identify the expressions quickly and accurately. Additionally, it is possible that a feedback mechanism may play a role in this process as well. Implementing a model with similar parallel structure and feedback mechanisms could be used to improve current facial recognition algorithms for which varied expressions are a source for error. An anatomically constrained artificial neural-network model was created that uses this parallel processing architecture and feedback to categorize facial expressions. The presence of a feedback mechanism was not found to significantly improve performance for models with parallel architecture. However the use of parallel processing streams significantly improved accuracy over a similar network that did not have parallel architecture. Further investigation is necessary to determine the benefits of using parallel streams and feedback mechanisms in more advanced object recognition tasks.

  2. Mechanisms and Feedbacks Causing Changes in Upper Stratospheric Ozone in the 21st Century

    NASA Technical Reports Server (NTRS)

    Oman, Luke; Waugh, D. W.; Kawa, S. R.; Stolarski, R. S.; Douglass, A. R.; Newman, P. A.

    2009-01-01

    Stratospheric ozone is expected to increase during the 21st century as the abundance of halogenated ozone-depleting substances decrease to 1960 values. However, climate change will likely alter this "recovery" of stratospheric ozone by changing stratospheric temperatures, circulation, and abundance of reactive chemical species. Here we quantity the contribution of different mechanisms to changes in upper stratospheric ozone from 1960 to 2100 in the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM), using multiple linear regression analysis applied to simulations using either Alb or A2 greenhouse gas (GHG) scenarios. In both these scenarios upper stratospheric ozone has a secular increase over the 21st century. For the simulation using the Alb GHG scenario, this increase is determined by the decrease in halogen amounts and the greenhouse gas induced cooling, with roughly equal contributions from each mechanism. There is a larger cooling in the simulation using the A2 GHG scenario, but also enhanced loss from higher NOy and HOx concentrations, which nearly offsets the increase due to cooler temperatures. The resulting ozone evolutions are similar in the A2 and Alb simulations. The response of ozone due to feedbacks from temperature and HOx changes, related to changing halogen concentrations, are also quantified using simulations with fixed halogen concentrations.

  3. Multistability and switching in oppositely-directed saturated coupler

    NASA Astrophysics Data System (ADS)

    Nithyanandan, K.; Shafeeque Ali, A. K.; Porsezian, K.; Nishad, M. P. M.; Tchofo Dinda, P.; Grelu, Ph.

    2018-06-01

    We investigate theoretically the optical multistability that takes place in a two-core oppositely-directed saturated coupler (ODSC) having negative index material (NIM) channel. The dynamics are studied using the Lagrangian variational method, and analytical solutions are constructed with Jacobi elliptic functions. The ODSC exhibits a bandgap as a consequence of the effective feedback mechanism due to the opposite directionality of the phase velocity and the Poynting vector in the NIM channel. Depending on the strength of the nonlinear saturation, the system admits multiple stable states. Considering the additional degrees of design freedom with respect to conventional nonlinear couplers, the ODSC could become an attractive choice for all-optical switching. The existence of multiple transmission resonance windows could also facilitate the realization of gap solitons.

  4. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.

    PubMed

    Leving, Marika T; Vegter, Riemer J K; Hartog, Johanneke; Lamoth, Claudine J C; de Groot, Sonja; van der Woude, Lucas H V

    2015-01-01

    It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear simultaneously during the motor learning process. Their relationship is most likely modified by other factors such as the amount of the intra-individual variability.

  5. Effects of Visual Feedback-Induced Variability on Motor Learning of Handrim Wheelchair Propulsion

    PubMed Central

    Leving, Marika T.; Vegter, Riemer J. K.; Hartog, Johanneke; Lamoth, Claudine J. C.; de Groot, Sonja; van der Woude, Lucas H. V.

    2015-01-01

    Background It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. Methods 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. Results The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. Conclusion These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear simultaneously during the motor learning process. Their relationship is most likely modified by other factors such as the amount of the intra-individual variability. PMID:25992626

  6. Exploring the bases for a mixed reality stroke rehabilitation system, Part II: design of interactive feedback for upper limb rehabilitation.

    PubMed

    Lehrer, Nicole; Chen, Yinpeng; Duff, Margaret; L Wolf, Steven; Rikakis, Thanassis

    2011-09-08

    Few existing interactive rehabilitation systems can effectively communicate multiple aspects of movement performance simultaneously, in a manner that appropriately adapts across various training scenarios. In order to address the need for such systems within stroke rehabilitation training, a unified approach for designing interactive systems for upper limb rehabilitation of stroke survivors has been developed and applied for the implementation of an Adaptive Mixed Reality Rehabilitation (AMRR) System. The AMRR system provides computational evaluation and multimedia feedback for the upper limb rehabilitation of stroke survivors. A participant's movements are tracked by motion capture technology and evaluated by computational means. The resulting data are used to generate interactive media-based feedback that communicates to the participant detailed, intuitive evaluations of his performance. This article describes how the AMRR system's interactive feedback is designed to address specific movement challenges faced by stroke survivors. Multimedia examples are provided to illustrate each feedback component. Supportive data are provided for three participants of varying impairment levels to demonstrate the system's ability to train both targeted and integrated aspects of movement. The AMRR system supports training of multiple movement aspects together or in isolation, within adaptable sequences, through cohesive feedback that is based on formalized compositional design principles. From preliminary analysis of the data, we infer that the system's ability to train multiple foci together or in isolation in adaptable sequences, utilizing appropriately designed feedback, can lead to functional improvement. The evaluation and feedback frameworks established within the AMRR system will be applied to the development of a novel home-based system to provide an engaging yet low-cost extension of training for longer periods of time.

  7. Exploring the bases for a mixed reality stroke rehabilitation system, Part II: Design of Interactive Feedback for upper limb rehabilitation

    PubMed Central

    2011-01-01

    Background Few existing interactive rehabilitation systems can effectively communicate multiple aspects of movement performance simultaneously, in a manner that appropriately adapts across various training scenarios. In order to address the need for such systems within stroke rehabilitation training, a unified approach for designing interactive systems for upper limb rehabilitation of stroke survivors has been developed and applied for the implementation of an Adaptive Mixed Reality Rehabilitation (AMRR) System. Results The AMRR system provides computational evaluation and multimedia feedback for the upper limb rehabilitation of stroke survivors. A participant's movements are tracked by motion capture technology and evaluated by computational means. The resulting data are used to generate interactive media-based feedback that communicates to the participant detailed, intuitive evaluations of his performance. This article describes how the AMRR system's interactive feedback is designed to address specific movement challenges faced by stroke survivors. Multimedia examples are provided to illustrate each feedback component. Supportive data are provided for three participants of varying impairment levels to demonstrate the system's ability to train both targeted and integrated aspects of movement. Conclusions The AMRR system supports training of multiple movement aspects together or in isolation, within adaptable sequences, through cohesive feedback that is based on formalized compositional design principles. From preliminary analysis of the data, we infer that the system's ability to train multiple foci together or in isolation in adaptable sequences, utilizing appropriately designed feedback, can lead to functional improvement. The evaluation and feedback frameworks established within the AMRR system will be applied to the development of a novel home-based system to provide an engaging yet low-cost extension of training for longer periods of time. PMID:21899779

  8. A mathematical model of the mevalonate cholesterol biosynthesis pathway.

    PubMed

    Pool, Frances; Currie, Richard; Sweby, Peter K; Salazar, José Domingo; Tindall, Marcus J

    2018-04-14

    We formulate, parameterise and analyse a mathematical model of the mevalonate pathway, a key pathway in the synthesis of cholesterol. Of high clinical importance, the pathway incorporates rate limiting enzymatic reactions with multiple negative feedbacks. In this work we investigate the pathway dynamics and demonstrate that rate limiting steps and negative feedbacks within it act in concert to tightly regulate intracellular cholesterol levels. Formulated using the theory of nonlinear ordinary differential equations and parameterised in the context of a hepatocyte, the governing equations are analysed numerically and analytically. Sensitivity and mathematical analysis demonstrate the importance of the two rate limiting enzymes 3-hydroxy-3-methylglutaryl-CoA reductase and squalene synthase in controlling the concentration of substrates within the pathway as well as that of cholesterol. The role of individual feedbacks, both global (between that of cholesterol and sterol regulatory element-binding protein 2; SREBP-2) and local internal (between substrates in the pathway) are investigated. We find that whilst the cholesterol SREBP-2 feedback regulates the overall system dynamics, local feedbacks activate within the pathway to tightly regulate the overall cellular cholesterol concentration. The network stability is analysed by constructing a reduced model of the full pathway and is shown to exhibit one real, stable steady-state. We close by addressing the biological question as to how farnesyl-PP levels are affected by CYP51 inhibition, and demonstrate that the regulatory mechanisms within the network work in unison to ensure they remain bounded. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Seeing the Errors You Feel Enhances Locomotor Performance but Not Learning.

    PubMed

    Roemmich, Ryan T; Long, Andrew W; Bastian, Amy J

    2016-10-24

    In human motor learning, it is thought that the more information we have about our errors, the faster we learn. Here, we show that additional error information can lead to improved motor performance without any concomitant improvement in learning. We studied split-belt treadmill walking that drives people to learn a new gait pattern using sensory prediction errors detected by proprioceptive feedback. When we also provided visual error feedback, participants acquired the new walking pattern far more rapidly and showed accelerated restoration of the normal walking pattern during washout. However, when the visual error feedback was removed during either learning or washout, errors reappeared with performance immediately returning to the level expected based on proprioceptive learning alone. These findings support a model with two mechanisms: a dual-rate adaptation process that learns invariantly from sensory prediction error detected by proprioception and a visual-feedback-dependent process that monitors learning and corrects residual errors but shows no learning itself. We show that our voluntary correction model accurately predicted behavior in multiple situations where visual feedback was used to change acquisition of new walking patterns while the underlying learning was unaffected. The computational and behavioral framework proposed here suggests that parallel learning and error correction systems allow us to rapidly satisfy task demands without necessarily committing to learning, as the relative permanence of learning may be inappropriate or inefficient when facing environments that are liable to change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Genome-Wide Negative Feedback Drives Transgenerational DNA Methylation Dynamics in Arabidopsis

    PubMed Central

    Kassam, Mohamed; Duvernois-Berthet, Evelyne; Cortijo, Sandra; Takashima, Kazuya; Saze, Hidetoshi; Toyoda, Atsushi; Fujiyama, Asao; Colot, Vincent; Kakutani, Tetsuji

    2015-01-01

    Epigenetic variations of phenotypes, especially those associated with DNA methylation, are often inherited over multiple generations in plants. The active and inactive chromatin states are heritable and can be maintained or even be amplified by positive feedback in a transgenerational manner. However, mechanisms controlling the transgenerational DNA methylation dynamics are largely unknown. As an approach to understand the transgenerational dynamics, we examined long-term effect of impaired DNA methylation in Arabidopsis mutants of the chromatin remodeler gene DDM1 (Decrease in DNA Methylation 1) through whole genome DNA methylation sequencing. The ddm1 mutation induces a drastic decrease in DNA methylation of transposable elements (TEs) and repeats in the initial generation, while also inducing ectopic DNA methylation at hundreds of loci. Unexpectedly, this ectopic methylation can only be seen after repeated self-pollination. The ectopic cytosine methylation is found primarily in the non-CG context and starts from 3’ regions within transcription units and spreads upstream. Remarkably, when chromosomes with reduced DNA methylation were introduced from a ddm1 mutant into a DDM1 wild-type background, the ddm1-derived chromosomes also induced analogous de novo accumulation of DNA methylation in trans. These results lead us to propose a model to explain the transgenerational DNA methylation redistribution by genome-wide negative feedback. The global negative feedback, together with local positive feedback, would ensure robust and balanced differentiation of chromatin states within the genome. PMID:25902052

  11. Mechanistic, Mathematical Model to Predict the Dynamics of Tissue Genesis in Bone Defects via Mechanical Feedback and Mediation of Biochemical Factors

    PubMed Central

    Moore, Shannon R.; Saidel, Gerald M.; Knothe, Ulf; Knothe Tate, Melissa L.

    2014-01-01

    The link between mechanics and biology in the generation and the adaptation of bone has been well studied in context of skeletal development and fracture healing. Yet, the prediction of tissue genesis within - and the spatiotemporal healing of - postnatal defects, necessitates a quantitative evaluation of mechano-biological interactions using experimental and clinical parameters. To address this current gap in knowledge, this study aims to develop a mechanistic mathematical model of tissue genesis using bone morphogenetic protein (BMP) to represent of a class of factors that may coordinate bone healing. Specifically, we developed a mechanistic, mathematical model to predict the dynamics of tissue genesis by periosteal progenitor cells within a long bone defect surrounded by periosteum and stabilized via an intramedullary nail. The emergent material properties and mechanical environment associated with nascent tissue genesis influence the strain stimulus sensed by progenitor cells within the periosteum. Using a mechanical finite element model, periosteal surface strains are predicted as a function of emergent, nascent tissue properties. Strains are then input to a mechanistic mathematical model, where mechanical regulation of BMP-2 production mediates rates of cellular proliferation, differentiation and tissue production, to predict healing outcomes. A parametric approach enables the spatial and temporal prediction of endochondral tissue regeneration, assessed as areas of cartilage and mineralized bone, as functions of radial distance from the periosteum and time. Comparing model results to histological outcomes from two previous studies of periosteum-mediated bone regeneration in a common ovine model, it was shown that mechanistic models incorporating mechanical feedback successfully predict patterns (spatial) and trends (temporal) of bone tissue regeneration. The novel model framework presented here integrates a mechanistic feedback system based on the mechanosensitivity of periosteal progenitor cells, which allows for modeling and prediction of tissue regeneration on multiple length and time scales. Through combination of computational, physical and engineering science approaches, the model platform provides a means to test new hypotheses in silico and to elucidate conditions conducive to endogenous tissue genesis. Next generation models will serve to unravel intrinsic differences in bone genesis by endochondral and intramembranous mechanisms. PMID:24967742

  12. An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition

    PubMed Central

    Brainard, Michael S.; Jin, Dezhe Z.

    2015-01-01

    Consecutive repetition of actions is common in behavioral sequences. Although integration of sensory feedback with internal motor programs is important for sequence generation, if and how feedback contributes to repetitive actions is poorly understood. Here we study how auditory feedback contributes to generating repetitive syllable sequences in songbirds. We propose that auditory signals provide positive feedback to ongoing motor commands, but this influence decays as feedback weakens from response adaptation during syllable repetitions. Computational models show that this mechanism explains repeat distributions observed in Bengalese finch song. We experimentally confirmed two predictions of this mechanism in Bengalese finches: removal of auditory feedback by deafening reduces syllable repetitions; and neural responses to auditory playback of repeated syllable sequences gradually adapt in sensory-motor nucleus HVC. Together, our results implicate a positive auditory-feedback loop with adaptation in generating repetitive vocalizations, and suggest sensory adaptation is important for feedback control of motor sequences. PMID:26448054

  13. Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback

    PubMed Central

    Wang, Zhaoyou; Safavi-Naeini, Amir H.

    2017-01-01

    A central goal of quantum optics is to generate large interactions between single photons so that one photon can strongly modify the state of another one. In cavity optomechanics, photons interact with the motional degrees of freedom of an optical resonator, for example, by imparting radiation pressure forces on a movable mirror or sensing minute fluctuations in the position of the mirror. Here, we show that the optical nonlinearity arising from these effects, typically too small to operate on single photons, can be sufficiently enhanced with feedback to generate large interactions between single photons. We propose a protocol that allows photons propagating in a waveguide to interact with each other through multiple bounces off an optomechanical system. The protocol is analysed by evolving the full many-body quantum state of the waveguide-coupled system, illustrating that large photon–photon interactions mediated by mechanical motion may be within experimental reach. PMID:28677674

  14. Suppression of thermal frequency noise in erbium-doped fiber random lasers.

    PubMed

    Saxena, Bhavaye; Bao, Xiaoyi; Chen, Liang

    2014-02-15

    Frequency and intensity noise are characterized for erbium-doped fiber (EDF) random lasers based on Rayleigh distributed feedback mechanism. We propose a theoretical model for the frequency noise of such random lasers using the property of random phase modulations from multiple scattering points in ultralong fibers. We find that the Rayleigh feedback suppresses the noise at higher frequencies by introducing a Lorentzian envelope over the thermal frequency noise of a long fiber cavity. The theoretical model and measured frequency noise agree quantitatively with two fitting parameters. The random laser exhibits a noise level of 6  Hz²/Hz at 2 kHz, which is lower than what is found in conventional narrow-linewidth EDF fiber lasers and nonplanar ring laser oscillators (NPROs) by a factor of 166 and 2, respectively. The frequency noise has a minimum value for an optimum length of the Rayleigh scattering fiber.

  15. Transdisciplinary Research and Evaluation for Community Health Initiatives

    PubMed Central

    Harper, Gary W.; Neubauer, Leah C.; Bangi, Audrey K.; Francisco, Vincent T.

    2010-01-01

    Transdisciplinary research and evaluation projects provide valuable opportunities to collaborate on interventions to improve the health and well-being of individuals and communities. Given team members’ diverse backgrounds and roles or responsibilities in such projects, members’ perspectives are significant in strengthening a project’s infrastructure and improving its organizational functioning. This article presents an evaluation mechanism that allows team members to express the successes and challenges incurred throughout their involvement in a multisite transdisciplinary research project. Furthermore, their feedback is used to promote future sustainability and growth. Guided by a framework known as organizational development, the evaluative process was conducted by a neutral entity, the Quality Assurance Team. A mixed-methods approach was utilized to garner feedback and clarify how the research project goals could be achieved more effectively and efficiently. The multiple benefits gained by those involved in this evaluation and implications for utilizing transdisciplinary research and evaluation teams for health initiatives are detailed. PMID:18936267

  16. Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoyou; Safavi-Naeini, Amir H.

    2017-07-01

    A central goal of quantum optics is to generate large interactions between single photons so that one photon can strongly modify the state of another one. In cavity optomechanics, photons interact with the motional degrees of freedom of an optical resonator, for example, by imparting radiation pressure forces on a movable mirror or sensing minute fluctuations in the position of the mirror. Here, we show that the optical nonlinearity arising from these effects, typically too small to operate on single photons, can be sufficiently enhanced with feedback to generate large interactions between single photons. We propose a protocol that allows photons propagating in a waveguide to interact with each other through multiple bounces off an optomechanical system. The protocol is analysed by evolving the full many-body quantum state of the waveguide-coupled system, illustrating that large photon-photon interactions mediated by mechanical motion may be within experimental reach.

  17. 78 FR 304 - Office of Citizen Services and Innovative Technologies; Submission for OMB Review; Data.gov...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ... of Citizen Services and Innovative Technologies; Submission for OMB Review; Data.gov Feedback... regarding Data.gov Feedback Mechanisms. A notice was published in the Federal Register at 77 FR 59614, on.... ADDRESSES: Submit comments identified by Information Collection 3090- 0284, Data.gov Feedback Mechanisms, by...

  18. The Additive Impact of Group and Individual Publicly Displayed Feedback: Examining Individual Response Patterns and Response Generalization in a Safe-Driving Occupational Intervention

    ERIC Educational Resources Information Center

    Ludwig, Timothy D.; Geller, E. Scott; Clarke, Steven W.

    2010-01-01

    Additive effects of publicly posting individual feedback following group goal-setting and feedback were evaluated. The turn-signal use of pizza deliverers was studied in a multiple baseline design across two pizza stores. After baseline observations, pizza deliverers voted on a group turn-signal goal and then received 4 weeks of group feedback on…

  19. Testing with feedback improves recall of information in informed consent: A proof of concept study.

    PubMed

    Roberts, Katherine J; Revenson, Tracey A; Urken, Mark L; Fleszar, Sara; Cipollina, Rebecca; Rowe, Meghan E; Reis, Laura L Dos; Lepore, Stephen J

    2016-08-01

    This study investigates whether applying educational testing approaches to an informed consent video for a medical procedure can lead to greater recall of the information presented. Undergraduate students (n=120) were randomly assigned to watch a 20-min video on informed consent under one of three conditions: 1) tested using multiple-choice knowledge questions and provided with feedback on their answers after each 5-min segment; 2) tested with multiple choice knowledge questions but not provided feedback after each segment; or 3) watched the video without knowledge testing. Participants who were tested and provided feedback had significantly greater information recall compared to those who were tested but not provided feedback and to those not tested. The effect of condition was stronger for moderately difficult questions versus easy questions. Inserting knowledge tests and providing feedback about the responses at timed intervals in videos can be effective in improving recall of information. Providing informed consent information through a video not only standardizes the material, but using testing with feedback inserted within the video has the potential to increase recall and retention of this material. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Switching of the positive feedback for RAS activation by a concerted function of SOS membrane association domains

    PubMed Central

    Nakamura, Yuki; Hibino, Kayo; Yanagida, Toshio; Sako, Yasushi

    2016-01-01

    Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS. PMID:27924253

  1. The Research of Multiple Attenuation Based on Feedback Iteration and Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Xu, X.; Tong, S.; Wang, L.

    2017-12-01

    How to solve the problem of multiple suppression is a difficult problem in seismic data processing. The traditional technology for multiple attenuation is based on the principle of the minimum output energy of the seismic signal, this criterion is based on the second order statistics, and it can't achieve the multiple attenuation when the primaries and multiples are non-orthogonal. In order to solve the above problems, we combine the feedback iteration method based on the wave equation and the improved independent component analysis (ICA) based on high order statistics to suppress the multiple waves. We first use iterative feedback method to predict the free surface multiples of each order. Then, in order to predict multiples from real multiple in amplitude and phase, we design an expanded pseudo multi-channel matching filtering method to get a more accurate matching multiple result. Finally, we present the improved fast ICA algorithm which is based on the maximum non-Gauss criterion of output signal to the matching multiples and get better separation results of the primaries and the multiples. The advantage of our method is that we don't need any priori information to the prediction of the multiples, and can have a better separation result. The method has been applied to several synthetic data generated by finite-difference model technique and the Sigsbee2B model multiple data, the primaries and multiples are non-orthogonal in these models. The experiments show that after three to four iterations, we can get the perfect multiple results. Using our matching method and Fast ICA adaptive multiple subtraction, we can not only effectively preserve the effective wave energy in seismic records, but also can effectively suppress the free surface multiples, especially the multiples related to the middle and deep areas.

  2. The Genre of Instructor Feedback in Doctoral Programs: A Corpus Linguistic Analysis

    ERIC Educational Resources Information Center

    Walters, Kelley Jo; Henry, Patricia; Vinella, Michael; Wells, Steve; Shaw, Melanie; Miller, James

    2015-01-01

    Providing transparent written feedback to doctoral students is essential to the learning process and preparation for the capstone. The purpose of this study was to conduct a qualitative exploration of faculty feedback on benchmark written assignments across multiple, online doctoral programs. The Corpus for this analysis included 236 doctoral…

  3. Balanced bridge feedback control system

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J. (Inventor)

    1990-01-01

    In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.

  4. Spatial climate patterns explain negligible variation in strength of compensatory density feedbacks in birds and mammals.

    PubMed

    Herrando-Pérez, Salvador; Delean, Steven; Brook, Barry W; Cassey, Phillip; Bradshaw, Corey J A

    2014-01-01

    The use of long-term population data to separate the demographic role of climate from density-modified demographic processes has become a major topic of ecological investigation over the last two decades. Although the ecological and evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation, disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series length) and phylogenetic non-independence. Climatic factors explained < 1% of the remaining variation in density-feedback strength across species, with the highest non-control, model-averaged effect sizes related to extreme precipitation variables. We could not link our results directly to other published studies, because ecologists use contrasting responses, predictors and statistical approaches to correlate density feedback and climate--at the expense of comparability in a macroecological context. Censuses of multiple populations within a given species, and a priori knowledge of the spatial scales at which density feedbacks interact with climate, seem to be necessary to determine cross-taxa variation in this phenomenon. Despite the availability of robust modelling tools, the appropriate data have not yet been gathered for most species, meaning that we cannot yet make any robust generalisations about how demographic feedbacks interact with climate.

  5. Spatial Climate Patterns Explain Negligible Variation in Strength of Compensatory Density Feedbacks in Birds and Mammals

    PubMed Central

    Herrando-Pérez, Salvador; Delean, Steven; Brook, Barry W.; Cassey, Phillip; Bradshaw, Corey J. A.

    2014-01-01

    The use of long-term population data to separate the demographic role of climate from density-modified demographic processes has become a major topic of ecological investigation over the last two decades. Although the ecological and evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation, disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series length) and phylogenetic non-independence. Climatic factors explained < 1% of the remaining variation in density-feedback strength across species, with the highest non-control, model-averaged effect sizes related to extreme precipitation variables. We could not link our results directly to other published studies, because ecologists use contrasting responses, predictors and statistical approaches to correlate density feedback and climate – at the expense of comparability in a macroecological context. Censuses of multiple populations within a given species, and a priori knowledge of the spatial scales at which density feedbacks interact with climate, seem to be necessary to determine cross-taxa variation in this phenomenon. Despite the availability of robust modelling tools, the appropriate data have not yet been gathered for most species, meaning that we cannot yet make any robust generalisations about how demographic feedbacks interact with climate. PMID:24618822

  6. Smith predictor-based multiple periodic disturbance compensation for long dead-time processes

    NASA Astrophysics Data System (ADS)

    Tan, Fang; Li, Han-Xiong; Shen, Ping

    2018-05-01

    Many disturbance rejection methods have been proposed for processes with dead-time, while these existing methods may not work well under multiple periodic disturbances. In this paper, a multiple periodic disturbance rejection is proposed under the Smith predictor configuration for processes with long dead-time. One feedback loop is added to compensate periodic disturbance while retaining the advantage of the Smith predictor. With information of the disturbance spectrum, the added feedback loop can remove multiple periodic disturbances effectively. The robust stability can be easily maintained through the rigorous analysis. Finally, simulation examples demonstrate the effectiveness and robustness of the proposed method for processes with long dead-time.

  7. Probabilistic Reversal Learning in Schizophrenia: Stability of Deficits and Potential Causal Mechanisms.

    PubMed

    Reddy, Lena Felice; Waltz, James A; Green, Michael F; Wynn, Jonathan K; Horan, William P

    2016-07-01

    Although individuals with schizophrenia show impaired feedback-driven learning on probabilistic reversal learning (PRL) tasks, the specific factors that contribute to these deficits remain unknown. Recent work has suggested several potential causes including neurocognitive impairments, clinical symptoms, and specific types of feedback-related errors. To examine this issue, we administered a PRL task to 126 stable schizophrenia outpatients and 72 matched controls, and patients were retested 4 weeks later. The task involved an initial probabilistic discrimination learning phase and subsequent reversal phases in which subjects had to adjust their responses to sudden shifts in the reinforcement contingencies. Patients showed poorer performance than controls for both the initial discrimination and reversal learning phases of the task, and performance overall showed good test-retest reliability among patients. A subgroup analysis of patients (n = 64) and controls (n = 49) with good initial discrimination learning revealed no between-group differences in reversal learning, indicating that the patients who were able to achieve all of the initial probabilistic discriminations were not impaired in reversal learning. Regarding potential contributors to impaired discrimination learning, several factors were associated with poor PRL, including higher levels of neurocognitive impairment, poor learning from both positive and negative feedback, and higher levels of indiscriminate response shifting. The results suggest that poor PRL performance in schizophrenia can be the product of multiple mechanisms. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Chemo-mechanical modeling of tumor growth in elastic epithelial tissue

    NASA Astrophysics Data System (ADS)

    Bratsun, Dmitry A.; Zakharov, Andrey P.; Pismen, Len

    2016-08-01

    We propose a multiscale chemo-mechanical model of the cancer tumor development in the epithelial tissue. The epithelium is represented by an elastic 2D array of polygonal cells with its own gene regulation dynamics. The model allows the simulation of the evolution of multiple cells interacting via the chemical signaling or mechanically induced strain. The algorithm includes the division and intercalation of cells as well as the transformation of normal cells into a cancerous state triggered by a local failure of the spatial synchronization of the cellular rhythms driven by transcription/translation processes. Both deterministic and stochastic descriptions of the system are given for chemical signaling. The transformation of cells means the modification of their respective parameters responsible for chemo-mechanical interactions. The simulations reproduce a distinct behavior of invasive and localized carcinoma. Generally, the model is designed in such a way that it can be readily modified to take account of any newly understood gene regulation processes and feedback mechanisms affecting chemo-mechanical properties of cells.

  9. Facial Feedback Mechanisms in Autistic Spectrum Disorders

    PubMed Central

    van den Heuvel, Claudia; Smeets, Raymond C.

    2008-01-01

    Facial feedback mechanisms of adolescents with Autistic Spectrum Disorders (ASD) were investigated utilizing three studies. Facial expressions, which became activated via automatic (Studies 1 and 2) or intentional (Study 2) mimicry, or via holding a pen between the teeth (Study 3), influenced corresponding emotions for controls, while individuals with ASD remained emotionally unaffected. Thus, individuals with ASD do not experience feedback from activated facial expressions as controls do. This facial feedback-impairment enhances our understanding of the social and emotional lives of individuals with ASD. PMID:18293075

  10. Feedback Conversations: Creating Feedback Dialogues with a New Textual Tool for Industrial Design Student Feedback

    ERIC Educational Resources Information Center

    Funk, Mathias; van Diggelen, Migchiel

    2017-01-01

    In this paper, the authors describe how a study of a large database of written university teacher feedback in the department of Industrial Design led to the development of a new conceptual framework for feedback and the design of a new feedback tool. This paper focuses on the translation of related work in the area of feedback mechanisms for…

  11. Feedback and efficient behavior

    PubMed Central

    2017-01-01

    Feedback is an effective tool for promoting efficient behavior: it enhances individuals’ awareness of choice consequences in complex settings. Our study aims to isolate the mechanisms underlying the effects of feedback on achieving efficient behavior in a controlled environment. We design a laboratory experiment in which individuals are not aware of the consequences of different alternatives and, thus, cannot easily identify the efficient ones. We introduce feedback as a mechanism to enhance the awareness of consequences and to stimulate exploration and search for efficient alternatives. We assess the efficacy of three different types of intervention: provision of social information, manipulation of the frequency, and framing of feedback. We find that feedback is most effective when it is framed in terms of losses, that it reduces efficiency when it includes information about inefficient peers’ behavior, and that a lower frequency of feedback does not disrupt efficiency. By quantifying the effect of different types of feedback, our study suggests useful insights for policymakers. PMID:28430787

  12. Feedback is the breakfast of champions: the significance of self-controlled formal feedback for autonomous task engagement.

    PubMed

    Meng, Liang; Yang, Zijing

    2018-01-03

    With the aim of examining the positive effect of the formal feedback mechanism itself beyond its informational aspect, we engaged participants in the stopwatch task and recorded their electroencephalogram throughout the experiment. This task requires a button press to stop the watch within a given time interval, the completion of which is simultaneously accompanied by adequate information on task performance. In the self-controlled feedback mode, participants could freely choose whether to request formal feedback after completing the task. In another mode, additional feedback was not provided. The 'non-choice' cue was found to elicit a more negative cue-elicited feedback negativity compared with 'choice', suggesting that the opportunity to solicit formal feedback was perceived as more desirable. In addition, a more enhanced stimulus-preceding negativity was observed prior to the task initiation cue in the self-controlled feedback condition, indicating that participants paid more sustained anticipatory attention during task preparation. Taken together, these electrophysiological results suggested an inherent reward within the formal feedback mechanism itself and the significance of self-controlled formal feedback for autonomous task engagement.

  13. Evaluating a more cost-efficient alternative to providing in-home feedback to parents: the use of spousal feedback.

    PubMed Central

    Harris, T A; Peterson, S L; Filliben, T L; Glassberg, M; Favell, J E

    1998-01-01

    We evaluated the contribution of spousal feedback to a parent education curriculum designed for parents of children with autism. A modified multiple baseline design across 3 husband-and-wife dyads was used to examine the effects of teaching parents to give each other feedback on their teaching performance. For 5 of 6 participants, improvement in teaching performance occurred following didactic presentations. However, additional improvement was observed for 5 participants when the spousal feedback component was implemented. PMID:9532757

  14. Learning from Feedback: Spacing and the Delay-Retention Effect

    ERIC Educational Resources Information Center

    Smith, Troy A.; Kimball, Daniel R.

    2010-01-01

    Most modern research on the effects of feedback during learning has assumed that feedback is an error correction mechanism. Recent studies of feedback-timing effects have suggested that feedback might also strengthen initially correct responses. In an experiment involving cued recall of trivia facts, we directly tested several theories of…

  15. Feedback in Action--The Mechanism of the Iris.

    ERIC Educational Resources Information Center

    Pingnet, B.; And Others

    1988-01-01

    Describes two demonstration experiments. Outlines a demonstration of the general principle of positive and negative feedback and the influence of time delays in feedback circuits. Elucidates the principle of negative feedback with a model of the iris of the eye. Emphasizes the importance of feedback in biological systems. (CW)

  16. Sample-Clock Phase-Control Feedback

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    To demodulate a communication signal, a receiver must recover and synchronize to the symbol timing of a received waveform. In a system that utilizes digital sampling, the fidelity of synchronization is limited by the time between the symbol boundary and closest sample time location. To reduce this error, one typically uses a sample clock in excess of the symbol rate in order to provide multiple samples per symbol, thereby lowering the error limit to a fraction of a symbol time. For systems with a large modulation bandwidth, the required sample clock rate is prohibitive due to current technological barriers and processing complexity. With precise control of the phase of the sample clock, one can sample the received signal at times arbitrarily close to the symbol boundary, thus obviating the need, from a synchronization perspective, for multiple samples per symbol. Sample-clock phase-control feedback was developed for use in the demodulation of an optical communication signal, where multi-GHz modulation bandwidths would require prohibitively large sample clock frequencies for rates in excess of the symbol rate. A custom mixedsignal (RF/digital) offset phase-locked loop circuit was developed to control the phase of the 6.4-GHz clock that samples the photon-counting detector output. The offset phase-locked loop is driven by a feedback mechanism that continuously corrects for variation in the symbol time due to motion between the transmitter and receiver as well as oscillator instability. This innovation will allow significant improvements in receiver throughput; for example, the throughput of a pulse-position modulation (PPM) with 16 slots can increase from 188 Mb/s to 1.5 Gb/s.

  17. Exploring the Influence of Context on Feedback at Medical School: A Video-Ethnography Study

    ERIC Educational Resources Information Center

    Urquhart, L. M.; Ker, J. S.; Rees, C. E.

    2018-01-01

    Feedback in medical education is complicated by the multiple contexts within which learning occurs. However, feedback research in medical education has typically focused on information provided by tutors to students with limited exploration of the influence of context. This research seeks to address this gap by exploring the influence of multiple…

  18. Effects of Asynchronous Audio Feedback on the Story Revision Practices of Students with Emotional/ Behavioral Disorders

    ERIC Educational Resources Information Center

    McKeown, Debra; Kimball, Kathleen; Ledford, Jennifer

    2015-01-01

    Young writers, especially students with disabilities, have difficulty writing complete essays, and when asked to revise often make only surface-level changes. Individualized feedback may lead to gains in writing achievement, but finding class time for feedback is difficult. Using a multiple probe across participants design, the effectiveness of…

  19. The Effects of Graphic Feedback, Goal-Setting, and Manager Praise on Customer Service Behaviors

    ERIC Educational Resources Information Center

    Loewy, Shannon; Bailey, Jon

    2007-01-01

    The current study used a multiple baseline design to investigate the effects of graphic feedback, goal setting, and manager praise on customer service behaviors in a large retail setting. Direct observation of customer greeting, eye contact, and smiling was used to collect data. After baseline data were collected feedback graphs were posted twice…

  20. Student Perceptions of Asynchronous Multimodal Instructor Feedback: A Multiple Case Study

    ERIC Educational Resources Information Center

    Lenards, Nishele Dyan

    2017-01-01

    Student dissatisfaction has been a problem in higher education with regard to the provision of assessment-related feedback. Due to the distant nature of online learning, instructors are faced with many challenges in delivering quality feedback because the communication is asynchronous and lacks social cues that are present in a F2F environment.…

  1. An Investigation of Response Generalization across Cleaning and Restocking Behaviors in the Context of Performance Feedback

    ERIC Educational Resources Information Center

    DeRiso, Anthony; Ludwig, Timothy D.

    2012-01-01

    The impact of task clarification and performance feedback on cleaning and restocking behaviors on both targeted and nontargeted behaviors was analyzed using an AB multiple baseline design across behaviors. Task clarification was presented on an enlarged poster to the serving staff at a fine dining restaurant. Group performance feedback was…

  2. Survey Feedback as an Organization Development Strategy in a Public School District.

    ERIC Educational Resources Information Center

    Rosenbach, William E.; And Others

    1983-01-01

    Survey feedback can be applied as an organization development (OD) technique in public school systems. The technique, if suited to goals of an OD effort, can result in multiple positive outcomes. In addition to improvements characteristic of OD, the results of survey feedback can be utilized in making strategic decisions. (Author/MH)

  3. Using Computer-Based Technology to Improve Feedback to Staff and Students on MCQ Assessments

    ERIC Educational Resources Information Center

    Malau-Aduli, Bunmi S.; Assenheimer, Dwight; Choi-Lundberg, Derek; Zimitat, Craig

    2014-01-01

    The massification of higher education (HE) has led to an unprecedented increase in the number of students in the classrooms, resulting in increased workload for teaching staff, sometimes leading to a great reliance on Multiple Choice Questions (MCQs) examinations with limited feedback provided to students. The central role of feedback in student…

  4. Rapid evolution of hosts begets species diversity at the cost of intraspecific diversity

    PubMed Central

    Frickel, Jens; Theodosiou, Loukas

    2017-01-01

    Ecosystems are complex food webs in which multiple species interact and ecological and evolutionary processes continuously shape populations and communities. Previous studies on eco-evolutionary dynamics have shown that the presence of intraspecific diversity affects community structure and function, and that eco-evolutionary feedback dynamics can be an important driver for its maintenance. Within communities, feedbacks are, however, often indirect, and they can feed back over many generations. Here, we studied eco-evolutionary feedbacks in evolving communities over many generations and compared two-species systems (virus–host and prey–predator) with a more complex three-species system (virus–host–predator). Both indirect density- and trait-mediated effects drove the dynamics in the complex system, where host–virus coevolution facilitated coexistence of predator and virus, and where coexistence, in return, lowered intraspecific diversity of the host population. Furthermore, ecological and evolutionary dynamics were significantly altered in the three-species system compared with the two-species systems. We found that the predator slowed host–virus coevolution in the complex system and that the virus’ effect on the overall population dynamics was negligible when the three species coexisted. Overall, we show that a detailed understanding of the mechanism driving eco-evolutionary feedback dynamics is necessary for explaining trait and species diversity in communities, even in communities with only three species. PMID:28973943

  5. Push-Pull and Feedback Mechanisms Can Align Signaling System Outputs with Inputs.

    PubMed

    Andrews, Steven S; Peria, William J; Yu, Richard C; Colman-Lerner, Alejandro; Brent, Roger

    2016-11-23

    Many cell signaling systems, including the yeast pheromone response system, exhibit "dose-response alignment" (DoRA), in which output of one or more downstream steps closely matches the fraction of occupied receptors. DoRA can improve the fidelity of transmitted dose information. Here, we searched systematically for biochemical network topologies that produced DoRA. Most networks, including many containing feedback and feedforward loops, could not produce DoRA. However, networks including "push-pull" mechanisms, in which the active form of a signaling species stimulates downstream activity and the nominally inactive form reduces downstream activity, enabled perfect DoRA. Networks containing feedbacks enabled DoRA, but only if they also compared feedback to input and adjusted output to match. Our results establish push-pull as a non-feedback mechanism to align output with variable input and maximize information transfer in signaling systems. They also suggest genetic approaches to determine whether particular signaling systems use feedback or push-pull control. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Comparison of Human and Humanoid Robot Control of Upright Stance

    PubMed Central

    Peterka, Robert J.

    2009-01-01

    There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to ~1 Hz) dynamic characteristics of human stance control. These subsystems are 1) a “sensory integration” mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions, and 2) an “effort control” mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions were humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the constraints on robot and human control are different. PMID:19665564

  7. Comparison of human and humanoid robot control of upright stance.

    PubMed

    Peterka, Robert J

    2009-01-01

    There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to approximately 1Hz) dynamic characteristics of human stance control. These subsystems are (1) a "sensory integration" mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions and (2) an "effort control" mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions where humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the constraints on robot and human control are different.

  8. Vegetation-rainfall feedbacks across the Sahel: a combined observational and modeling study

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y.

    2016-12-01

    The Sahel rainfall is characterized by large interannual variability. Past modeling studies have concluded that the Sahel rainfall variability is primarily driven by oceanic forcings and amplified by land-atmosphere interactions. However, the relative importance of oceanic versus terrestrial drivers has never been assessed from observations. The current understanding of vegetation's impacts on climate, i.e. positive vegetation-rainfall feedback through the albedo, moisture, and momentum mechanisms, comes from untested models. Neither the positive vegetation-rainfall feedback, nor the underlying mechanisms, has been fully resolved in observations. The current study fills the knowledge gap about the observed vegetation-rainfall feedbacks, through the application of the multivariate statistical method Generalized Equilibrium Feedback Assessment (GEFA) to observational data. According to GEFA, the observed oceanic impacts dominate over terrestrial impacts on Sahel rainfall, except in the post-monsoon period. Positive leaf area index (LAI) anomalies favor an extended, wetter monsoon across the Sahel, largely due to moisture recycling. The albedo mechanism is not responsible for this positive vegetation feedback on the seasonal-interannual time scale, which is too short for a grass-desert transition. A low-level stabilization and subsidence is observed in response to increased LAI - potentially responsible for a negative vegetation-rainfall feedback. However, the positive moisture feedback overwhelms the negative momentum feedback, resulting in an observed positive vegetation-rainfall feedback. We further applied GEFA to a fully-coupled Community Earth System Model (CESM) control run, as an example of evaluating climate models against the GEFA-based observational benchmark. In contrast to the observed positive vegetation-rainfall feedbacks, CESM simulates a negative vegetation-rainfall feedback across Sahel, peaking in the pre-monsoon season. The simulated negative feedback is largely due to the low-level stabilization caused by increased LAI. Positive moisture feedback is present in the CESM simulation, but an order weaker than the observed and weaker than the negative momentum feedback, thereby leading to the simulated negative vegetation-rainfall feedbacks.

  9. CGILS: Results from the First Phase of an International Project to Understand the Physical Mechanisms of Low Cloud Feedbacks in Single Column Models

    NASA Technical Reports Server (NTRS)

    Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter N.; Austin, Phillip H.; Bacmeister, Julio T.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; DelGenio, Anthony; hide

    2013-01-01

    1] CGILS-the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)-investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the "NESTS" negative cloud feedback and the "SCOPE" positive cloud feedback (Negative feedback from Surface Turbulence under weaker Subsidence-Shallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations

  10. Movement goals and feedback and feedforward control mechanisms in speech production

    PubMed Central

    Perkell, Joseph S.

    2010-01-01

    Studies of speech motor control are described that support a theoretical framework in which fundamental control variables for phonemic movements are multi-dimensional regions in auditory and somatosensory spaces. Auditory feedback is used to acquire and maintain auditory goals and in the development and function of feedback and feedforward control mechanisms. Several lines of evidence support the idea that speakers with more acute sensory discrimination acquire more distinct goal regions and therefore produce speech sounds with greater contrast. Feedback modification findings indicate that fluently produced sound sequences are encoded as feedforward commands, and feedback control serves to correct mismatches between expected and produced sensory consequences. PMID:22661828

  11. Movement goals and feedback and feedforward control mechanisms in speech production.

    PubMed

    Perkell, Joseph S

    2012-09-01

    Studies of speech motor control are described that support a theoretical framework in which fundamental control variables for phonemic movements are multi-dimensional regions in auditory and somatosensory spaces. Auditory feedback is used to acquire and maintain auditory goals and in the development and function of feedback and feedforward control mechanisms. Several lines of evidence support the idea that speakers with more acute sensory discrimination acquire more distinct goal regions and therefore produce speech sounds with greater contrast. Feedback modification findings indicate that fluently produced sound sequences are encoded as feedforward commands, and feedback control serves to correct mismatches between expected and produced sensory consequences.

  12. Efficacy of Synaptic Inhibition Depends on Multiple, Dynamically Interacting Mechanisms Implicated in Chloride Homeostasis

    PubMed Central

    Doyon, Nicolas; Prescott, Steven A.; Castonguay, Annie; Godin, Antoine G.; Kröger, Helmut; De Koninck, Yves

    2011-01-01

    Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABAA receptors (GABAARs). The impact of changes in steady state Cl− gradient is relatively straightforward to understand, but how dynamic interplay between Cl− influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl− load on a fast time scale, whereas Cl−extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl− gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABAAR-mediated inhibition, but increasing GABAAR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl−. Furthermore, if spiking persisted despite the presence of GABAAR input, Cl− accumulation became accelerated because of the large Cl− driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl− and pH regulation. Several model predictions were tested and confirmed by [Cl−]i imaging experiments. Our study has thus uncovered how Cl− regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K− accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention. PMID:21931544

  13. Using Task Clarification, Graphic Feedback, And Verbal Feedback To Increase Closing-Task Completion In A Privately Owned Restaurant

    PubMed Central

    Weatherly, Nic L; Gravina, Nicole E

    2005-01-01

    An informant functional assessment was used to evaluate closing-task completion by servers and dishwashers at a restaurant. Based on the functional assessment results, an intervention consisting of task clarification, posted graphic feedback, and verbal feedback was implemented and evaluated with a multiple baseline design across two groups of employees. Results showed an increase of 15% and 38% in task completion for the two groups. PMID:15898481

  14. Computational Models and Emergent Properties of Respiratory Neural Networks

    PubMed Central

    Lindsey, Bruce G.; Rybak, Ilya A.; Smith, Jeffrey C.

    2012-01-01

    Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components, including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions, enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered. PMID:23687564

  15. Does Stellar Feedback Create HI Holes? An HST/VLA Study of Holmberg II

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Skillman, E. D.; Cannon, J. M.; Dolphin, A. E.; Kennicutt, R. C., Jr.; Lee, J.; Walter, F.

    2010-01-01

    We use deep HST/ACS F555W and F814W photometry of resolved stars in the M81 Group dwarf irregular galaxy Holmberg II to study the hypothesis that the holes identified in the neutral ISM (HI) are created by stellar feedback. From the deep photometry, we construct color-magnitude diagrams (CMDs) and measure the star formation histories (SFHs) for stars contained in HI holes from two independent holes catalogs, as well as select control fields, i.e., similar sized regions that span a range of HI column densities. The recent SFHs confirm multiple episodes of star formation within most holes. Converting the recent SFHs into stellar feedback energies, we find that enough energy has been generated to have created all holes. However, the required energy is not always produced over a time scale that is less than the estimated kinematic age of the hole. A similar analysis of stars in the control fields finds that the stellar populations of the control fields and HI holes are statistically indistinguishable. However, because we are only sensitive to holes ˜ 100 pc in diameter, we cannot tell if there are smaller holes inside the control fields. The combination of the CMDs, recent SFHs, and locations of young stars shows that the stellar populations inside HI holes are not coherent, single-aged, stellar clusters, as previously suggested, but rather multi-age populations distributed across each hole. From a comparison of the modeled and observed integrated magnitudes, and the locations and energetics of stars inside of HI holes, we propose a potential new model: a viable mechanism for creating the observed HI holes in Holmberg II is stellar feedback from multiple generations of SF spread out over tens or hundreds of Myr, and thus, the concept of an age for an HI hole is intrinsically ambiguous.

  16. A feedback control model for network flow with multiple pure time delays

    NASA Technical Reports Server (NTRS)

    Press, J.

    1972-01-01

    A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.

  17. Dynamic modeling and hierarchical compound control of a novel 2-DOF flexible parallel manipulator with multiple actuation modes

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Song, Yimin; Sun, Tao; Jin, Xueying

    2018-03-01

    This paper addresses the problem of rigid-flexible coupling dynamic modeling and active control of a novel flexible parallel manipulator (PM) with multiple actuation modes. Firstly, based on the flexible multi-body dynamics theory, the rigid-flexible coupling dynamic model (RFDM) of system is developed by virtue of the augmented Lagrangian multipliers approach. For completeness, the mathematical models of permanent magnet synchronous motor (PMSM) and piezoelectric transducer (PZT) are further established and integrated with the RFDM of mechanical system to formulate the electromechanical coupling dynamic model (ECDM). To achieve the trajectory tracking and vibration suppression, a hierarchical compound control strategy is presented. Within this control strategy, the proportional-differential (PD) feedback controller is employed to realize the trajectory tracking of end-effector, while the strain and strain rate feedback (SSRF) controller is developed to restrain the vibration of the flexible links using PZT. Furthermore, the stability of the control algorithm is demonstrated based on the Lyapunov stability theory. Finally, two simulation case studies are performed to illustrate the effectiveness of the proposed approach. The results indicate that, under the redundant actuation mode, the hierarchical compound control strategy can guarantee the flexible PM achieves singularity-free motion and vibration attenuation within task workspace simultaneously. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and efficient controller design of other flexible PMs, especially the emerging ones with multiple actuation modes.

  18. Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations

    PubMed Central

    Safavynia, Seyed A.

    2012-01-01

    Recent evidence suggests that complex spatiotemporal patterns of muscle activity can be explained with a low-dimensional set of muscle synergies or M-modes. While it is clear that both spatial and temporal aspects of muscle coordination may be low dimensional, constraints on spatial versus temporal features of muscle coordination likely involve different neural control mechanisms. We hypothesized that the low-dimensional spatial and temporal features of muscle coordination are independent of each other. We further hypothesized that in reactive feedback tasks, spatially fixed muscle coordination patterns—or muscle synergies—are hierarchically recruited via time-varying neural commands based on delayed task-level feedback. We explicitly compared the ability of spatially fixed (SF) versus temporally fixed (TF) muscle synergies to reconstruct the entire time course of muscle activity during postural responses to anterior-posterior support-surface translations. While both SF and TF muscle synergies could account for EMG variability in a postural task, SF muscle synergies produced more consistent and physiologically interpretable results than TF muscle synergies during postural responses to perturbations. Moreover, a majority of SF muscle synergies were consistent in structure when extracted from epochs throughout postural responses. Temporal patterns of SF muscle synergy recruitment were well-reconstructed by delayed feedback of center of mass (CoM) kinematics and reproduced EMG activity of multiple muscles. Consistent with the idea that independent and hierarchical low-dimensional neural control structures define spatial and temporal patterns of muscle activity, our results suggest that CoM kinematics are a task variable used to recruit SF muscle synergies for feedback control of balance. PMID:21957219

  19. Beyond R0 Maximisation: On Pathogen Evolution and Environmental Dimensions.

    PubMed

    Lion, Sébastien; Metz, Johan A J

    2018-06-01

    A widespread tenet is that evolution of pathogens maximises their basic reproduction ratio, R 0 . The breakdown of this principle is typically discussed as exception. Here, we argue that a radically different stance is needed, based on evolutionarily stable strategy (ESS) arguments that take account of the 'dimension of the environmental feedback loop'. The R 0 maximisation paradigm requires this feedback loop to be one-dimensional, which notably excludes pathogen diversification. By contrast, almost all realistic ecological ingredients of host-pathogen interactions (density-dependent mortality, multiple infections, limited cross-immunity, multiple transmission routes, host heterogeneity, and spatial structure) will lead to multidimensional feedbacks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. A parametric LQ approach to multiobjective control system design

    NASA Technical Reports Server (NTRS)

    Kyr, Douglas E.; Buchner, Marc

    1988-01-01

    The synthesis of a constant parameter output feedback control law of constrained structure is set in a multiple objective linear quadratic regulator (MOLQR) framework. The use of intuitive objective functions such as model-following ability and closed-loop trajectory sensitivity, allow multiple objective decision making techniques, such as the surrogate worth tradeoff method, to be applied. For the continuous-time deterministic problem with an infinite time horizon, dynamic compensators as well as static output feedback controllers can be synthesized using a descent Anderson-Moore algorithm modified to impose linear equality constraints on the feedback gains by moving in feasible directions. Results of three different examples are presented, including a unique reformulation of the sensitivity reduction problem.

  1. Corticocortical feedback increases the spatial extent of normalization.

    PubMed

    Nassi, Jonathan J; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T

    2014-01-01

    Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a "normalization pool." Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing.

  2. Corticocortical feedback increases the spatial extent of normalization

    PubMed Central

    Nassi, Jonathan J.; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T.

    2014-01-01

    Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a “normalization pool.” Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing. PMID:24910596

  3. Increasing Resilience to Traumatic Stress: Understanding the Protective Role of Well-Being.

    PubMed

    Tory Toole, J; Rice, Mark A; Cargill, Jordan; Craddock, Travis J A; Nierenberg, Barry; Klimas, Nancy G; Fletcher, Mary Ann; Morris, Mariana; Zysman, Joel; Broderick, Gordon

    2018-01-01

    The brain maintains homeostasis in part through a network of feedback and feed-forward mechanisms, where neurochemicals and immune markers act as mediators. Using a previously constructed model of biobehavioral feedback, we found that in addition to healthy equilibrium another stable regulatory program supported chronic depression and anxiety. Exploring mechanisms that might underlie the contributions of subjective well-being to improved therapeutic outcomes in depression, we iteratively screened 288 candidate feedback patterns linking well-being to molecular signaling networks for those that maintained the original homeostatic regimes. Simulating stressful trigger events on each candidate network while maintaining high levels of subjective well-being isolated a specific feedback network where well-being was promoted by dopamine and acetylcholine, and itself promoted norepinephrine while inhibiting cortisol expression. This biobehavioral feedback mechanism was especially effective in reproducing well-being's clinically documented ability to promote resilience and protect against onset of depression and anxiety.

  4. Synergistic Effects on the Elderly People's Motor Control by Wearable Skin-Stretch Device Combined with Haptic Joystick

    PubMed Central

    Yoon, Han U.; Anil Kumar, Namita; Hur, Pilwon

    2017-01-01

    Cutaneous sensory feedback can be used to provide additional sensory cues to a person performing a motor task where vision is a dominant feedback signal. A haptic joystick has been widely used to guide a user by providing force feedback. However, the benefit of providing force feedback is still debatable due to performance dependency on factors such as the user's skill-level, task difficulty. Meanwhile, recent studies have shown the feasibility of improving a motor task performance by providing skin-stretch feedback. Therefore, a combination of two aforementioned feedback types is deemed to be promising to promote synergistic effects to consistently improve the person's motor performance. In this study, we aimed at identifying the effect of the combined haptic and skin-stretch feedbacks on the aged person's driving motor performance. For the experiment, 15 healthy elderly subjects (age 72.8 ± 6.6 years) were recruited and were instructed to drive a virtual power-wheelchair through four different courses with obstacles. Four augmented sensory feedback conditions were tested: no feedback, force feedback, skin-stretch feedback, and a combination of both force and skin-stretch feedbacks. While the haptic force was provided to the hand by the joystick, the skin-stretch was provided to the steering forearm by a custom-designed wearable skin-stretch device. We tested two hypotheses: (i) an elderly individual's motor control would benefit from receiving information about a desired trajectory from multiple sensory feedback sources, and (ii) the benefit does not depend on task difficulty. Various metrics related to skills and safety were used to evaluate the control performance. Repeated measure ANOVA was performed for those metrics with two factors: task scenario and the type of the augmented sensory feedback. The results revealed that elderly subjects' control performance significantly improved when the combined feedback of both haptic force and skin-stretch feedback was applied. The proposed approach suggest the feasibility to improve people's task performance by the synergistic effects of multiple augmented sensory feedback modalities. PMID:28690514

  5. The Effects of Performance Feedback and Social Reinforcement on Up-Selling at Fast-Food Restaurants

    ERIC Educational Resources Information Center

    Wiesman, Daryl W.

    2006-01-01

    The present study sought to evaluate the effects of feedback and positive social reinforcement on the performance of restaurant drive-thru window order-takers in asking customers to "upsize" their order at a specific prompt. A multiple baseline across settings was followed by the introduction of an intervention of weekly performance feedback and…

  6. Immediate vs. Delayed Feedback in a Computer-Managed Test: Effects on Long-Term Retention. Technical Report, March 1976-August 1976.

    ERIC Educational Resources Information Center

    Sturges, Persis T.

    This experiment was designed to test the effect of immediate and delayed feedback on retention of learning in an educational situation. Four groups of college undergraduates took a multiple-choice computer-managed test. Three of these groups received informative feedback (the entire item with the correct answer identified) either: (1) immediately…

  7. Towards Collaborative Professional Learning in the First Year Early Childhood Teacher Education Practicum: Issues in Negotiating the Multiple Interests of Stakeholder Feedback

    ERIC Educational Resources Information Center

    Brown, Alice; Danaher, Patrick

    2008-01-01

    This paper analyses data from two sources of stakeholder feedback--first year pre-service teachers and supervising teachers/centre directors--about the issues involved in creating more collaborative approaches to the first year early childhood teacher education practicum at an Australian regional university. The collection of this feedback was…

  8. Micro-Feedback Training:Learning the art of effective feedback

    PubMed Central

    Baseer, Najma; Mahboob, Usman; Degnan, James

    2017-01-01

    Multiple attributes are expected of postgraduate research supervisors. Provision of timely and effective face-to-face feedback is one such skill that carries enormous significance in supervisee’s professional development. Feedback allows the supervisees to improve upon their performances. Unfortunately, both supervisors and supervisees have contrasting approaches towards the ongoing feedback practices. This incongruence is attributed, in part, to a lack of structured pedagogic training among the medical professionals. A standardized schema is therefore required to acquire and harmonize this pedagogical skill. One such systemized way is a training method called microteaching. Microteaching has long been used to enhance and incorporate old and new undergraduate teaching skills, respectively. Here we propose a similar structured approach of micro-feedback to inculcate effective feedback skills among postgraduate research supervisors using feedback-based scenarios, simulated students, standardized checklists and audiovisual aids. Thus, micro-feedback exercise may prove to be quite promising in improving feedback practices of postgraduate research supervisors. PMID:29492091

  9. Give Better Feedback on Engineering Drawings

    ERIC Educational Resources Information Center

    Cobb, Robert, Jr.; Graham, Tony; Kapur, Arjun; Rhodes, Craig; Blackwell, Ellinor

    2005-01-01

    Most, if not all, systems have a mechanism that collects information to facilitate monitoring performance. This information is primarily used to modify the system to make it more efficient in performing desired tasks and, thus, attaining desired results. Similar to electrical, mechanical, or hydraulic systems, the feedback mechanism in an…

  10. Roles of Transcriptional and Translational Control Mechanisms in Regulation of Ribosomal Protein Synthesis in Escherichia coli.

    PubMed

    Burgos, Hector L; O'Connor, Kevin; Sanchez-Vazquez, Patricia; Gourse, Richard L

    2017-11-01

    Bacterial ribosome biogenesis is tightly regulated to match nutritional conditions and to prevent formation of defective ribosomal particles. In Escherichia coli , most ribosomal protein (r-protein) synthesis is coordinated with rRNA synthesis by a translational feedback mechanism: when r-proteins exceed rRNAs, specific r-proteins bind to their own mRNAs and inhibit expression of the operon. It was recently discovered that the second messenger nucleotide guanosine tetra and pentaphosphate (ppGpp), which directly regulates rRNA promoters, is also capable of regulating many r-protein promoters. To examine the relative contributions of the translational and transcriptional control mechanisms to the regulation of r-protein synthesis, we devised a reporter system that enabled us to genetically separate the cis -acting sequences responsible for the two mechanisms and to quantify their relative contributions to regulation under the same conditions. We show that the synthesis of r-proteins from the S20 and S10 operons is regulated by ppGpp following shifts in nutritional conditions, but most of the effect of ppGpp required the 5' region of the r-protein mRNA containing the target site for translational feedback regulation and not the promoter. These results suggest that most regulation of the S20 and S10 operons by ppGpp following nutritional shifts is indirect and occurs in response to changes in rRNA synthesis. In contrast, we found that the promoters for the S20 operon were regulated during outgrowth, likely in response to increasing nucleoside triphosphate (NTP) levels. Thus, r-protein synthesis is dynamic, with different mechanisms acting at different times. IMPORTANCE Bacterial cells have evolved complex and seemingly redundant strategies to regulate many high-energy-consuming processes. In E. coli , synthesis of ribosomal components is tightly regulated with respect to nutritional conditions by mechanisms that act at both the transcription and translation steps. In this work, we conclude that NTP and ppGpp concentrations can regulate synthesis of ribosomal proteins, but most of the effect of ppGpp is indirect as a consequence of translational feedback in response to changes in rRNA levels. Our results illustrate how effects of seemingly redundant regulatory mechanisms can be separated in time and that even when multiple mechanisms act concurrently their contributions are not necessarily equivalent. Copyright © 2017 American Society for Microbiology.

  11. Discriminability of Single and Multichannel Intracortical Microstimulation within Somatosensory Cortex

    PubMed Central

    Overstreet, Cynthia K.; Hellman, Randall B.; Ponce Wong, Ruben D.; Santos, Veronica J.; Helms Tillery, Stephen I.

    2016-01-01

    The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS) of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g., encoding contact events and pressure on multiple digits). In this study, we evaluated the ability of an awake, behaving non-human primate (Macaca mulatta) to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex. PMID:27995126

  12. Discriminability of Single and Multichannel Intracortical Microstimulation within Somatosensory Cortex.

    PubMed

    Overstreet, Cynthia K; Hellman, Randall B; Ponce Wong, Ruben D; Santos, Veronica J; Helms Tillery, Stephen I

    2016-01-01

    The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS) of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g., encoding contact events and pressure on multiple digits). In this study, we evaluated the ability of an awake, behaving non-human primate ( Macaca mulatta ) to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex.

  13. Subranging scheme for SQUID sensors

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor)

    2008-01-01

    A readout scheme for measuring the output from a SQUID-based sensor-array using an improved subranging architecture that includes multiple resolution channels (such as a coarse resolution channel and a fine resolution channel). The scheme employs a flux sensing circuit with a sensing coil connected in series to multiple input coils, each input coil being coupled to a corresponding SQUID detection circuit having a high-resolution SQUID device with independent linearizing feedback. A two-resolution configuration (course and fine) is illustrated with a primary SQUID detection circuit for generating a fine readout, and a secondary SQUID detection circuit for generating a course readout, both having feedback current coupled to the respective SQUID devices via feedback/modulation coils. The primary and secondary SQUID detection circuits function and derive independent feedback. Thus, the SQUID devices may be monitored independently of each other (and read simultaneously) to dramatically increase slew rates and dynamic range.

  14. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  15. The dissociable effects of punishment and reward on motor learning.

    PubMed

    Galea, Joseph M; Mallia, Elizabeth; Rothwell, John; Diedrichsen, Jörn

    2015-04-01

    A common assumption regarding error-based motor learning (motor adaptation) in humans is that its underlying mechanism is automatic and insensitive to reward- or punishment-based feedback. Contrary to this hypothesis, we show in a double dissociation that the two have independent effects on the learning and retention components of motor adaptation. Negative feedback, whether graded or binary, accelerated learning. While it was not necessary for the negative feedback to be coupled to monetary loss, it had to be clearly related to the actual performance on the preceding movement. Positive feedback did not speed up learning, but it increased retention of the motor memory when performance feedback was withdrawn. These findings reinforce the view that independent mechanisms underpin learning and retention in motor adaptation, reject the assumption that motor adaptation is independent of motivational feedback, and raise new questions regarding the neural basis of negative and positive motivational feedback in motor learning.

  16. The Interdisciplinary Curriculum for Oncology Palliative Care Education (iCOPE): meeting the challenge of interprofessional education.

    PubMed

    Head, Barbara A; Schapmire, Tara; Hermann, Carla; Earnshaw, Lori; Faul, Anna; Jones, Carol; Kayser, Karen; Martin, Amy; Shaw, Monica Ann; Woggon, Frank; Pfeifer, Mark

    2014-10-01

    Background: Interprofessional education is necessary to prepare students of the health professions for successful practice in today's health care environment. Because of its expertise in interdisciplinary practice and team-based care, palliative care should be leading the way in creating educational opportunities for students to learn the skills for team practice and provision of quality patient-centered care. Multiple barriers exist that can discourage those desiring to create and implement truly interdisciplinary curriculum. An interdisciplinary faculty team planned and piloted a mandatory interdisciplinary palliative oncology curriculum and responded to formative feedback. The project took place at a large public metropolitan university. Medical, nursing, and social work students and chaplains completing a clinical pastoral education internship participated in the curriculum. Formative feedback was received via the consultation of an interdisciplinary group of palliative education experts, focus groups from students, and student evaluations of each learning modality. Multiple barriers were experienced and successfully addressed by the faculty team. Curricular components were redesigned based on formative feedback. Openness to this feedback coupled with flexibility and compromise enabled the faculty team to create an efficient, sustainable, and feasible interdisciplinary palliative oncology curriculum. Interdisciplinary palliative education can be successful if faculty teams are willing to confront challenges, accept feedback on multiple levels, and compromise while maintaining focus on desired learner outcomes.

  17. An overview of neural function and feedback control in human communication.

    PubMed

    Hood, L J

    1998-01-01

    The speech and hearing mechanisms depend on accurate sensory information and intact feedback mechanisms to facilitate communication. This article provides a brief overview of some components of the nervous system important for human communication and some electrophysiological methods used to measure cortical function in humans. An overview of automatic control and feedback mechanisms in general and as they pertain to the speech motor system and control of the hearing periphery is also presented, along with a discussion of how the speech and auditory systems interact.

  18. Cellular Mechanisms of Gravitropic Response in Higher Plants

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei; Smolikova, Galina; Pozhvanov, Gregory; Suslov, Dmitry

    The evolutionary success of land plants in adaptation to the vectorial environmental factors was based mainly on the development of polarity systems. In result, normal plant ontogenesis is based on the positional information. Polarity is a tool by which the developing plant organs and tissues are mapped and the specific three-dimensional structure of the organism is created. It is due to their polar organization plants are able to orient themselves relative to the gravity vector and different vectorial cues, and to respond adequately to various stimuli. Gravitation is one of the most important polarized environmental factor that guides the development of plant organisms in space. Every plant can "estimate" its position relative to the gravity vector and correct it, if necessary, by means of polarized growth. The direction and the magnitude of gravitational stimulus are constant during the whole plant ontogenesis. The key plant response to the action of gravity is gravitropism, i.e. the directed growth of organs with respect to the gravity vector. This response is a very convenient model to study the mechanisms of plant orientation in space. The present report is focused on the main cellular mechanisms responsible for graviropic bending in higher plants. These mechanisms and structures include electric polarization of plant cells, Ca ({2+) }gradients, cytoskeleton, G-proteins, phosphoinositides and the machinery responsible for asymmetric auxin distribution. Those mechanisms tightly interact demonstrating some hierarchy and multiple feedbacks. The Ca (2+) gradients provide the primary physiological basis of polarity in plant cells. Calcium ions influence on the bioelectric potentials, the organization of actin cytoskeleton, the activity of Ca (2+) -binding proteins and Ca (2+) -dependent protein kinases. Protein kinases modulate transcription factors activity thereby regulating the gene expression and switching the developmental programs. Actin cytoskeleton affects the molecular machinery of polar auxin transport. It results in the changes of auxin gradients in plant organs and tissues, which modulate all cellular mechanisms of polarity via multiple feedback loops. The understanding of the mechanisms of plant organism orientation relative to the gravity vector will allow us to develop efficient technologies for plant growing in microgravity conditions at orbital space stations and during long piloted space flights. This work was supported by the grant of Russian Foundation for Basic Research (N 14-04-01-624) and by the grant of St.-Petersburg State University (N 1.38.233.2014).

  19. Climate policy to defeat the green paradox.

    PubMed

    Fölster, Stefan; Nyström, Johan

    2010-05-01

    Carbon dioxide emissions have accelerated since the signing of the Kyoto Protocol. This discouraging development may partly be blamed on accelerating world growth and on lags in policy instruments. However, it also raises serious question concerning whether policies to reduce CO2 emissions are as effective as generally assumed. In recent years, a considerable number of studies have identified various feedback mechanisms of climate policies that often erode, and occasionally reinforce, their effectiveness. These studies generally focus on a few feedback mechanisms at a time, without capturing the entire effect. Partial accounting of policy feedbacks is common in many climate scenarios. The IPCC, for example, only accounts for direct leakage and rebound effects. This article attempts to map the aggregate effects of different types of climate policy feedback mechanisms in a cohesive framework. Controlling feedback effects is essential if the policy measures are to make any difference on a global level. A general conclusion is that aggregate policy feedback mechanisms tend to make current climate policies much less effective than is generally assumed. In fact, various policy measures involve a definite risk of 'backfiring' and actually increasing CO2 emissions. This risk is particularly pronounced once effects of climate policies on the pace of innovation in climate technology are considered. To stand any chance of controlling carbon emissions, it is imperative that feedback mechanisms are integrated into emission scenarios, targets for emission reduction and implementation of climate policy. In many cases, this will reduce the scope for subsidies to renewable energy sources, but increase the scope for other measures such as schemes to return carbon dioxide to the ground and to mitigate emissions of greenhouse gases from wetlands and oceans. A framework that incorporates policy feedback effects necessitates rethinking the design of the national and regional emission targets. This leads us to a new way of formulating emission targets that include feedback effects, the global impact target. Once the full climate policy feedback mechanisms are accounted for, there are probably only three main routes in climate policy that stand a chance of mitigating global warming: (a) returning carbon to the ground, (b) technological leaps in zero-emission energy technology that make it profitable to leave much carbon in the ground even in Annex II countries and (c) international agreements that make it more profitable to leave carbon in the ground or in forests.

  20. Full Duplex, Spread Spectrum Radio System

    NASA Technical Reports Server (NTRS)

    Harvey, Bruce A.

    2000-01-01

    The goal of this project was to support the development of a full duplex, spread spectrum voice communications system. The assembly and testing of a prototype system consisting of a Harris PRISM spread spectrum radio, a TMS320C54x signal processing development board and a Zilog Z80180 microprocessor was underway at the start of this project. The efforts under this project were the development of multiple access schemes, analysis of full duplex voice feedback delays, and the development and analysis of forward error correction (FEC) algorithms. The multiple access analysis involved the selection between code division multiple access (CDMA), frequency division multiple access (FDMA) and time division multiple access (TDMA). Full duplex voice feedback analysis involved the analysis of packet size and delays associated with full loop voice feedback for confirmation of radio system performance. FEC analysis included studies of the performance under the expected burst error scenario with the relatively short packet lengths, and analysis of implementation in the TMS320C54x digital signal processor. When the capabilities and the limitations of the components used were considered, the multiple access scheme chosen was a combination TDMA/FDMA scheme that will provide up to eight users on each of three separate frequencies. Packets to and from each user will consist of 16 samples at a rate of 8,000 samples per second for a total of 2 ms of voice information. The resulting voice feedback delay will therefore be 4 - 6 ms. The most practical FEC algorithm for implementation was a convolutional code with a Viterbi decoder. Interleaving of the bits of each packet will be required to offset the effects of burst errors.

  1. New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events.

    PubMed

    Liu, Quan; Jia, Xingcan; Quan, Jiannong; Li, Jiayun; Li, Xia; Wu, Yongxue; Chen, Dan; Wang, Zifa; Liu, Yangang

    2018-04-17

    Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. Here, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; the increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.

  2. Dynamics of sustained use and abandonment of clean cooking systems: study protocol for community-based system dynamics modeling.

    PubMed

    Kumar, Praveen; Chalise, Nishesh; Yadama, Gautam N

    2016-04-26

    More than 3 billion of the world's population are affected by household air pollution from relying on unprocessed solid fuels for heating and cooking. Household air pollution is harmful to human health, climate, and environment. Sustained uptake and use of cleaner cooking technologies and fuels are proposed as solutions to this problem. In this paper, we present our study protocol aimed at understanding multiple interacting feedback mechanisms involved in the dynamic behavior between social, ecological, and technological systems driving sustained use or abandonment of cleaner cooking technologies among the rural poor in India. This study uses a comparative case study design to understand the dynamics of sustained use or abandonment of cleaner cooking technologies and fuels in four rural communities of Rajasthan, India. The study adopts a community based system dynamics modeling approach. We describe our approach of using community based system dynamics with rural communities to delineate the feedback mechanisms involved in the uptake and sustainment of clean cooking technologies. We develop a reference mode with communities showing the trend over time of use or abandonment of cleaner cooking technologies and fuels in these communities. Subsequently, the study develops a system dynamics model with communities to understand the complex sub-systems driving the behavior in these communities as reflected in the reference mode. We use group model building techniques to facilitate participation of relevant stakeholders in the four communities and elicit a narrative describing the feedback mechanisms underlying sustained adoption or abandonment of cleaner cooking technologies. In understanding the dynamics of feedback mechanisms in the uptake and exclusive use of cleaner cooking systems, we increase the likelihood of dissemination and implementation of efficacious interventions into everyday settings to improve the health and wellbeing of women and children most affected by household air pollution. The challenge is not confined to developing robust technical solutions to reduce household air pollution and exposure to improve respiratory health, and prevent associated diseases. The bigger challenge is to disseminate and implement cleaner cooking technologies and fuels in the context of various social, behavioral, and economic constraints faced by poor households and communities. The Institutional Review Board of Washington University in St. Louis has exempted community based system dynamics modeling from review.

  3. QuVis interactive simulations: tools to support quantum mechanics instruction

    NASA Astrophysics Data System (ADS)

    Kohnle, Antje

    2015-04-01

    Quantum mechanics holds a fascination for many students, but its mathematical complexity and counterintuitive results can present major barriers. The QuVis Quantum Mechanics Visualization Project (www.st-andrews.ac.uk/physics/quvis) aims to overcome these issues through the development and evaluation of interactive simulations with accompanying activities for the learning and teaching of quantum mechanics. Over 90 simulations are now available on the QuVis website. One collection of simulations is embedded in the Institute of Physics Quantum Physics website (quantumphysics.iop.org), which consists of freely available resources for an introductory course in quantum mechanics starting from two-level systems. Simulations support model-building by reducing complexity, focusing on fundamental ideas and making the invisible visible. They promote engaged exploration, sense-making and linking of multiple representations, and include high levels of interactivity and direct feedback. Simulations are research-based and evaluation with students informs all stages of the development process. Simulations are iteratively refined using student feedback in individual observation sessions and in-class trials. Evaluation has shown that the simulations can help students learn quantum mechanics concepts at both the introductory and advanced undergraduate level and that students perceive simulations to be beneficial to their learning. Recent activity includes the launch of a new collection of HTML5 simulations that run on both desktop and tablet-based devices and the introduction of a goal and reward structure in simulations through the inclusion of challenges. This presentation will give an overview of the QuVis resources, highlight recent work and outline future plans. QuVis is supported by the UK Institute of Physics, the UK Higher Education Academy and the University of St Andrews.

  4. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch

    PubMed Central

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A.; Larson, Charles R.

    2014-01-01

    The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing. PMID:24355545

  5. Common and distinct modulation of electrophysiological indices of feedback processing by autistic and psychopathic traits.

    PubMed

    Carter Leno, Virginia; Naples, Adam; Cox, Anthony; Rutherford, Helena; McPartland, James C

    2016-01-01

    Both autism spectrum disorder (ASD) and psychopathy are primarily characterized by social dysfunction; overlapping phenotypic features may reflect altered function in common brain mechanisms. The current study examined the degree to which neural response to social and nonsocial feedback is modulated by autistic versus psychopathic traits in a sample of typically developing adults (N = 31, 11 males, 18-52 years). Event-related potentials were recorded whilst participants completed a behavioral task and received feedback on task performance. Both autistic and psychopathic traits were associated with alterations in the neural correlates of feedback processing. Sensitivity to specific forms of feedback (social, nonsocial, positively valenced, negatively valenced) differed between the two traits. Autistic traits were associated with decreased sensitivity to social feedback. In contrast, the antisocial domain of psychopathic traits was associated with an overall decrease in sensitivity to feedback, and the interpersonal manipulation domain was associated with preserved processing of positively valenced feedback. Results suggest distinct alterations within specific mechanisms of feedback processing may underlie similar difficulties in social behavior.

  6. Mechanosensation is evolutionarily tuned to locomotor mechanics

    PubMed Central

    Aiello, Brett R.; Westneat, Mark W.; Hale, Melina E.

    2017-01-01

    The biomechanics of animal limbs has evolved to meet the functional demands for movement associated with different behaviors and environments. Effective movement relies not only on limb mechanics but also on appropriate mechanosensory feedback. By comparing sensory ability and mechanics within a phylogenetic framework, we show that peripheral mechanosensation has evolved with limb biomechanics, evolutionarily tuning the neuromechanical system to its functional demands. We examined sensory physiology and mechanics of the pectoral fins, forelimb homologs, in the fish family Labridae. Labrid fishes exhibit extraordinary morphological and behavioral diversity and use pectoral fin-based propulsion with fins ranging in shape from high aspect ratio (AR) wing-like fins to low AR paddle-like fins. Phylogenetic character analysis demonstrates that high AR fins evolved independently multiple times in this group. Four pairs of species were examined; each included a plesiomorphic low AR and a high AR species. Within each species pair, the high AR species demonstrated significantly stiffer fin rays in comparison with the low AR species. Afferent sensory nerve activity was recorded during fin ray bending. In all cases, afferents of stiffer fins were more sensitive at lower displacement amplitudes, demonstrating mechanosensory tuning to fin mechanics and a consistent pattern of correlated evolution. We suggest that these data provide a clear example of parallel evolution in a complex neuromechanical system, with a strong link between multiple phenotypic characters: pectoral fin shape, swimming behavior, fin ray stiffness, and mechanosensory sensitivity. PMID:28396411

  7. Hierarchical Feedback Modules and Reaction Hubs in Cell Signaling Networks

    PubMed Central

    Xu, Jianfeng; Lan, Yueheng

    2015-01-01

    Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks. PMID:25951347

  8. Clustering and negative feedback by endocytosis in planar cell polarity signaling is modulated by ubiquitinylation of prickle.

    PubMed

    Cho, Bomsoo; Pierre-Louis, Gandhy; Sagner, Andreas; Eaton, Suzanne; Axelrod, Jeffrey D

    2015-05-01

    The core components of the planar cell polarity (PCP) signaling system, including both transmembrane and peripheral membrane associated proteins, form asymmetric complexes that bridge apical intercellular junctions. While these can assemble in either orientation, coordinated cell polarization requires the enrichment of complexes of a given orientation at specific junctions. This might occur by both positive and negative feedback between oppositely oriented complexes, and requires the peripheral membrane associated PCP components. However, the molecular mechanisms underlying feedback are not understood. We find that the E3 ubiquitin ligase complex Cullin1(Cul1)/SkpA/Supernumerary limbs(Slimb) regulates the stability of one of the peripheral membrane components, Prickle (Pk). Excess Pk disrupts PCP feedback and prevents asymmetry. We show that Pk participates in negative feedback by mediating internalization of PCP complexes containing the transmembrane components Van Gogh (Vang) and Flamingo (Fmi), and that internalization is activated by oppositely oriented complexes within clusters. Pk also participates in positive feedback through an unknown mechanism promoting clustering. Our results therefore identify a molecular mechanism underlying generation of asymmetry in PCP signaling.

  9. An Analysis of Students' Perceptions of the Value and Efficacy of Instructors' Auditory and Text-Based Feedback Modalities across Multiple Conceptual Levels

    ERIC Educational Resources Information Center

    Ice, Phil; Swan, Karen; Diaz, Sebastian; Kupczynski, Lori; Swan-Dagen, Allison

    2010-01-01

    This article used work from the writing assessment literature to develop a framework for assessing the impact and perceived value of written, audio, and combined written and audio feedback strategies across four global and 22 discrete dimensions of feedback. Using a quasi-experimental research design, students at three U.S. universities were…

  10. Using Goals, Feedback, Reinforcement, and a Performance Matrix to Improve Customer Service in a Large Department Store

    ERIC Educational Resources Information Center

    Eikenhout, Nelson; Austin, John

    2005-01-01

    This study employed an ABAC and multiple baseline design to evaluate the effects of (B) feedback and (C) a package of feedback, goalsetting, and reinforcement (supervisor praise and an area-wide celebration as managed through a performance matrix, on a total of 14 various customer service behaviors for a total of 115 employees at a large…

  11. An exploratory pilot study of mechanisms of action within normative feedback for adult drinkers.

    PubMed

    Kuerbis, Alexis; Muench, Frederick J; Lee, Rufina; Pena, Juan; Hail, Lisa

    2016-01-01

    Background. Normative feedback (NF), or receiving information about one's drinking compared to peer drinking norms, is one of the most widely used brief interventions for prevention and intervention for hazardous alcohol use. NF has demonstrated predominantly small but significant effect sizes for intention to change and other drinking related outcomes. Identifying mechanisms of action may improve the effectiveness of NF; however, few studies have examined NF's mechanisms of action, particularly among adults. Objective. This study is an exploratory analysis of two theorized mechanisms of NF: discrepancy (specifically personal dissonance-the affective response to feedback) and belief in the accuracy of feedback. Method. Using Amazon's Mechanical Turk, 87 men (n = 56) and women (n = 31) completed an online survey during which they were asked about their perceptions about their drinking and actual drinking behaviors. Then participants were provided tailored NF and evaluated for their reactions. Severity of discrepancy was measured by the difference between one's estimated percentile ranking of drinking compared to peers and actual percentile ranking. Surprise and worry reported due to the discrepancy were proxies for personal dissonance. Participants were also asked if they believed the feedback and if they had any plans to change their drinking. Mediation analyses were implemented, exploring whether surprise, worry, or belief in the accuracy of feedback mediated severity of discrepancy's impact on plan for change. Results. Among this sample of adult drinkers, severity of discrepancy did not predict plan for change, and personal dissonance did not mediate severity of discrepancy. Severity of discrepancy was mediated by belief in the accuracy of feedback. In addition, viewing one's drinking as a problem prior to feedback and post-NF worry both predicted plan for change independently. Conclusions. Results revealed that NF may not work to create personal dissonance through discrepancy, but belief in the accuracy of feedback may be important. It appears the more one believes the feedback, the more one makes a plan for change, suggesting practitioners should be mindful of how information within feedback is presented. Findings also indicate NF may work by validating a preexisting perception that drinking is a problem instead of creating concern related to discrepancy where none existed. Limitations regarding generalizability are discussed.

  12. Audio Feedback to Physiotherapy Students for Viva Voce: How Effective Is "The Living Voice"?

    ERIC Educational Resources Information Center

    Munro, Wendy; Hollingworth, Linda

    2014-01-01

    Assessment and feedback remains one of the categories that students are least satisfied with within the United Kingdom National Student Survey. The Student Charter promotes the use of various formats of feedback to enhance student learning. This study evaluates the use of audio MP3 as an alternative feedback mechanism to written feedback for…

  13. Predictable 'meta-mechanisms' emerge from feedbacks between transpiration and plant growth and cannot be simply deduced from short-term mechanisms.

    PubMed

    Tardieu, François; Parent, Boris

    2017-06-01

    Growth under water deficit is controlled by short-term mechanisms but, because of numerous feedbacks, the combination of these mechanisms over time often results in outputs that cannot be deduced from the simple inspection of individual mechanisms. It can be analysed with dynamic models in which causal relationships between variables are considered at each time-step, allowing calculation of outputs that are routed back to inputs for the next time-step and that can change the system itself. We first review physiological mechanisms involved in seven feedbacks of transpiration on plant growth, involving changes in tissue hydraulic conductance, stomatal conductance, plant architecture and underlying factors such as hormones or aquaporins. The combination of these mechanisms over time can result in non-straightforward conclusions as shown by examples of simulation outputs: 'over production of abscisic acid (ABA) can cause a lower concentration of ABA in the xylem sap ', 'decreasing root hydraulic conductance when evaporative demand is maximum can improve plant performance' and 'rapid root growth can decrease yield'. Systems of equations simulating feedbacks over numerous time-steps result in logical and reproducible emergent properties that can be viewed as 'meta-mechanisms' at plant level, which have similar roles as mechanisms at cell level. © 2016 John Wiley & Sons Ltd.

  14. Negative soil moisture-precipitation feedback in dry and wet regions.

    PubMed

    Yang, Lingbin; Sun, Guoqing; Zhi, Lu; Zhao, Jianjun

    2018-03-05

    Soil moisture-precipitation (SM-P) feedback significantly influences the terrestrial water and energy cycles. However, the sign of the feedback and the associated physical mechanism have been debated, leaving a research gap regarding global water and climate changes. Based on Koster's framework, we estimate SM-P feedback using satellite remote sensing and ground observation data sets. Methodologically, the sign of the feedback is identified by the correlation between monthly soil moisture and next-month precipitation. The physical mechanism is investigated through coupling precipitation and soil moisture (P-SM), soil moisture ad evapotranspiration (SM-E) and evapotranspiration and precipitation (E-P) correlations. Our results demonstrate that although positive SM-P feedback is predominant over land, non-negligible negative feedback occurs in dry and wet regions. Specifically, 43.75% and 40.16% of the negative feedback occurs in the arid and humid climate zones. Physically, negative SM-P feedback depends on the SM-E correlation. In dry regions, evapotranspiration change is soil moisture limited. In wet regions, evapotranspiration change is energy limited. We conclude that the complex SM-E correlation results in negative SM-P feedback in dry and wet regions, and the cause varies based on the environmental and climatic conditions.

  15. Asynchronous, Decentralized DS-CDMA Using Feedback-Controlled Spreading Sequences for Time-Dispersive Channels

    NASA Astrophysics Data System (ADS)

    Miyatake, Teruhiko; Chiba, Kazuki; Hamamura, Masanori; Tachikawa, Shin'ichi

    We propose a novel asynchronous direct-sequence codedivision multiple access (DS-CDMA) using feedback-controlled spreading sequences (FCSSs) (FCSS/DS-CDMA). At the receiver of FCSS/DS-CDMA, the code-orthogonalizing filter (COF) produces a spreading sequence, and the receiver returns the spreading sequence to the transmitter. Then the transmitter uses the spreading sequence as its updated version. The performance of FCSS/DS-CDMA is evaluated over time-dispersive channels. The results indicate that FCSS/DS-CDMA greatly suppresses both the intersymbol interference (ISI) and multiple access interference (MAI) over time-invariant channels. FCSS/DS-CDMA is applicable to the decentralized multiple access.

  16. Sparsity-aware multiple relay selection in large multi-hop decode-and-forward relay networks

    NASA Astrophysics Data System (ADS)

    Gouissem, A.; Hamila, R.; Al-Dhahir, N.; Foufou, S.

    2016-12-01

    In this paper, we propose and investigate two novel techniques to perform multiple relay selection in large multi-hop decode-and-forward relay networks. The two proposed techniques exploit sparse signal recovery theory to select multiple relays using the orthogonal matching pursuit algorithm and outperform state-of-the-art techniques in terms of outage probability and computation complexity. To reduce the amount of collected channel state information (CSI), we propose a limited-feedback scheme where only a limited number of relays feedback their CSI. Furthermore, a detailed performance-complexity tradeoff investigation is conducted for the different studied techniques and verified by Monte Carlo simulations.

  17. Survey of Residents' Attitudes and Awareness Toward Teaching and Student Feedback

    PubMed Central

    Tuck, Keiran K.; Murchison, Charles; Flores, Christine; Kraakevik, Jeff

    2014-01-01

    Background Teaching medical students is an important component of residency; however, little is known about student feedback regarding resident teaching skills. Objective We sought to explore resident awareness of medical student feedback mechanisms and how feedback is obtained, and also identified attitudes about teaching more commonly found in residents who seek feedback. Methods We surveyed all resident physicians at a university-affiliated academic health center about awareness of student feedback regarding their teaching abilities, and their attitudes related to teaching that may impact whether residents seek feedback. Results Of 605 residents, 335 (55%) responded, with 72% (242 of 335) noting they did not formally review student feedback of their teaching with their advisor during regularly scheduled meetings, 42% (140 of 332) reporting they did not know of any formal feedback mechanisms, and 28.4% (95 of 334) reporting they had not received feedback from students in any format. Although only a quarter of residents solicit feedback always or often, more than half would like feedback always or often. Reported barriers to feedback included student apprehension, time constraints, and lack of a formal system. A majority of residents had positive attitudes toward teaching and felt that student feedback would help teaching ability and medical proficiency. Conclusions A large percentage of residents at 1 teaching institution reported not receiving feedback from students on their teaching abilities. Residents who did receive feedback were more likely to have actively solicited it. Overall, residents believe that this feedback from students would benefit their clinical and teaching performance. PMID:26140121

  18. Noise suppression for micromechanical resonator via intrinsic dynamic feedback

    NASA Astrophysics Data System (ADS)

    Ian, Hou; Gong, Zhi-Rui; Sun, Chang-Pu

    2008-09-01

    We study a dynamic mechanism to passively suppress the thermal noise of a micromechanical resonator through an intrinsic self-feedback that is genuinely non-Markovian. We use two coupled resonators, one as the target resonator and the other as an ancillary resonator, to illustrate the mechanism and its noise reduction effect. The intrinsic feedback is realized through the dynamics of coupling between the two resonators: the motions of the target resonator and the ancillary resonator mutually inthence each other in a cyclic fashion. Specifically, the states that the target resonator has attained earlier will affect the state it attains later due to the presence of the ancillary resonator. We show that the feedback mechanism will bring forth the effect of noise suppression in the spectrum of displacement, but not in the spectrum of momentum.

  19. Multimode four-wave mixing in an unresolved sideband optomechanical system

    NASA Astrophysics Data System (ADS)

    Li, Zongyang; You, Xiang; Li, Yongmin; Liu, Yong-Chun; Peng, Kunchi

    2018-03-01

    We have studied multimode four-wave mixing (FWM) in an unresolved sideband cavity optomechanical system. The radiation pressure coupling between the cavity fields and multiple mechanical modes results in the formation of a series of tripod-type energy-level systems, which induce the multimode FWM phenomenon. The FWM mechanism enables remarkable amplification of a weak signal field accompanied by the generation of an FWM field when only a microwatt-level pump field is applied. For proper system parameters, the amplified signal and FWM fields have equal intensity with opposite phases. The gain and frequency response bandwidth of the signal field can be dynamically tuned by varying the pump intensity, optomechanical coupling strength, and additional feedback control. Under certain conditions, the frequency response bandwidth can be very narrow and reaches the level of hertz.

  20. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids

    DOE PAGES

    Zhang, Xuebin; Liu, Chang-Jun

    2014-12-11

    Phenylpropanoid biosynthesis in plants engenders a vast variety of aromatic metabolites critically important for their growth, development, and environmental adaptation. Some of these aromatic compounds have high economic value. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway; it diverts the central flux of carbon from primary metabolism to the synthesis of myriad phenolics. Over the decades, many studies have shown that exquisite regulatory mechanisms at multiple levels control the transcription and the enzymatic activity of PALs. In this review, we present a current overview on our understanding of the complicated regulatory mechanisms governing PAL's activity; we particularlymore » highlight recent progresses in unraveling its post-translational modifications, its metabolite feedback regulation, and its enzyme organization.« less

  1. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuebin; Liu, Chang-Jun

    Phenylpropanoid biosynthesis in plants engenders a vast variety of aromatic metabolites critically important for their growth, development, and environmental adaptation. Some of these aromatic compounds have high economic value. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway; it diverts the central flux of carbon from primary metabolism to the synthesis of myriad phenolics. Over the decades, many studies have shown that exquisite regulatory mechanisms at multiple levels control the transcription and the enzymatic activity of PALs. In this review, we present a current overview on our understanding of the complicated regulatory mechanisms governing PAL's activity; we particularlymore » highlight recent progresses in unraveling its post-translational modifications, its metabolite feedback regulation, and its enzyme organization.« less

  2. CK1/Doubletime activity delays transcription activation in the circadian clock

    PubMed Central

    O'Neil, Jenna L; Merz, Gregory E; Dusad, Kritika; Crane, Brian R; Young, Michael W

    2018-01-01

    In the Drosophila circadian clock, Period (PER) and Timeless (TIM) proteins inhibit Clock-mediated transcription of per and tim genes until PER is degraded by Doubletime/CK1 (DBT)-mediated phosphorylation, establishing a negative feedback loop. Multiple regulatory delays within this feedback loop ensure ~24 hr periodicity. Of these delays, the mechanisms that regulate delayed PER degradation (and Clock reactivation) remain unclear. Here we show that phosphorylation of certain DBT target sites within a central region of PER affect PER inhibition of Clock and the stability of the PER/TIM complex. Our results indicate that phosphorylation of PER residue S589 stabilizes and activates PER inhibitory function in the presence of TIM, but promotes PER degradation in its absence. The role of DBT in regulating PER activity, stabilization and degradation ensures that these events are chronologically and biochemically linked, and contributes to the timing of an essential delay that influences the period of the circadian clock. PMID:29611807

  3. Inhibitory Control in the Cortico-Basal Ganglia-Thalamocortical Loop: Complex Regulation and Interplay with Memory and Decision Processes.

    PubMed

    Wei, Wei; Wang, Xiao-Jing

    2016-12-07

    We developed a circuit model of spiking neurons that includes multiple pathways in the basal ganglia (BG) and is endowed with feedback mechanisms at three levels: cortical microcircuit, corticothalamic loop, and cortico-BG-thalamocortical system. We focused on executive control in a stop signal task, which is known to depend on BG across species. The model reproduces a range of experimental observations and shows that the newly discovered feedback projection from external globus pallidus to striatum is crucial for inhibitory control. Moreover, stopping process is enhanced by the cortico-subcortical reverberatory dynamics underlying persistent activity, establishing interdependence between working memory and inhibitory control. Surprisingly, the stop signal reaction time (SSRT) can be adjusted by weights of certain connections but is insensitive to other connections in this complex circuit, suggesting novel circuit-based intervention for inhibitory control deficits associated with mental illness. Our model provides a unified framework for inhibitory control, decision making, and working memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Electrophysiological brain indices of risk behavior modification induced by contingent feedback.

    PubMed

    Megías, Alberto; Torres, Miguel Angel; Catena, Andrés; Cándido, Antonio; Maldonado, Antonio

    2018-02-01

    The main aim of this research was to study the effects of response feedback on risk behavior and the neural and cognitive mechanisms involved, as a function of the feedback contingency. Sixty drivers were randomly assigned to one of three feedback groups: contingent, non-contingent and no feedback. The participants' task consisted of braking or not when confronted with a set of risky driving situations, while their electroencephalographic activity was continuously recorded. We observed that contingent feedback, as opposed to non-contingent feedback, promoted changes in the response bias towards safer decisions. This behavioral modification implied a higher demand on cognitive control, reflected in a larger amplitude of the N400 component. Moreover, the contingent feedback, being predictable and entailing more informative value, gave rise to smaller SPN and larger FRN scores when compared with non-contingent feedback. Taken together, these findings provide a new and complex insight into the neurophysiological basis of the influence of feedback contingency on the processing of decision-making under risk. We suggest that response feedback, when contingent upon the risky behavior, appears to improve the functionality of the brain mechanisms involved in decision-making and can be a powerful tool for reducing the tendency to choose risky options in risk-prone individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback

    NASA Astrophysics Data System (ADS)

    You, Xiang; Li, Zongyang; Li, Yongmin

    2017-12-01

    A scheme to achieve strong quantum squeezing of a mechanical resonator in a membrane-in-the-middle optomechanical system is developed. To this end, simultaneous linear and nonlinear coupling between the mechanical resonator and the cavity modes is applied. A two-tone driving light field, comprising unequal red-detuned and blue-detuned sidebands, helps in generating a coherent feedback force through the linear coupling with the membrane resonator. Another driving light field with its amplitude modulated at twice the mechanical frequency drives the mechanical parametric amplification through a second-order coupling with the resonator. The combined effect produces strong quantum squeezing of the mechanical state. The proposed scheme is quite robust to excess second-order coupling observed in coherent feedback operations and can suppress the fluctuations in the mechanical quadrature to far below the zero point and achieve strong squeezing (greater than 10 dB) for realistic parameters.

  6. Local feedback mechanisms of the shallow water region around the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Xue, Pengfei; Eltahir, Elfatih A. B.; Malanotte-Rizzoli, Paola; Wei, Jun

    2014-10-01

    The focus of this study is the local-scale air-sea feedback mechanisms over the shallow shelf water region (water depth <200 m) of the Maritime Continent (MC). MC was selected as a pilot study site for its extensive shallow water coverage, geographic complexity, and importance in the global climate system. To identify the local-scale air-sea feedback processes, we ran numerical experiments with perturbed surface layer water temperature using a coupled ocean-atmosphere model and an uncoupled ocean model. By examining the responses of the coupled and uncoupled models to the water temperature perturbation, we identify that, at a local-scale, a negative feedback process through the coupled dynamics that tends to restore the SST from its perturbation could dominate the shallow water region of the MC at a short time scale of several days. The energy budget shows that 38% of initial perturbation-induced heat energy was adjusted through the air-sea feedback mechanisms within 2 weeks, of which 58% is directly transferred into the atmosphere by the adjustment of latent heat flux due to the evaporative cooling mechanism. The increased inputs of heat and moisture into the lower atmosphere then modifies its thermal structure and increases the formation of low-level clouds, which act as a shield preventing incoming solar radiation from reaching the sea surface, accounts for 38% of the total adjustment of surface heat fluxes, serving as the second mechanism for the negative feedback process. The adjustment of sensible heat flux and net longwave radiation play a secondary role. The response of the coupled system to the SST perturbation suggests a response time scale of the coupled feedback process of about 3-5 days. The two-way air-sea feedback tightly links the surface heat fluxes, clouds and SST, and can play an important role in regulating the short-term variability of the SST over the shallow shelf water regions.

  7. Functions of behavior change interventions when implementing multi-professional teamwork at an emergency department: a comparative case study

    PubMed Central

    2014-01-01

    Background While there is strong support for the benefits of working in multi-professional teams in health care, the implementation of multi-professional teamwork is reported to be complex and challenging. Implementation strategies combining multiple behavior change interventions are recommended, but the understanding of how and why the behavior change interventions influence staff behavior is limited. There is a lack of studies focusing on the functions of different behavior change interventions and the mechanisms driving behavior change. In this study, applied behavior analysis is used to analyze the function and impact of different behavior change interventions when implementing multi-professional teamwork. Methods A comparative case study design was applied. Two sections of an emergency department implemented multi-professional teamwork involving changes in work processes, aimed at increasing inter-professional collaboration. Behavior change interventions and staff behavior change were studied using observations, interviews and document analysis. Using a hybrid thematic analysis, the behavior change interventions were categorized according to the DCOM® model. The functions of the behavior change interventions were then analyzed using applied behavior analysis. Results The two sections used different behavior change interventions, resulting in a large difference in the degree of staff behavior change. The successful section enabled staff performance of teamwork behaviors with a strategy based on ongoing problem-solving and frequent clarification of directions. Managerial feedback initially played an important role in motivating teamwork behaviors. Gradually, as staff started to experience positive outcomes of the intervention, motivation for teamwork behaviors was replaced by positive task-generated feedback. Conclusions The functional perspective of applied behavior analysis offers insight into the behavioral mechanisms that describe how and why behavior change interventions influence staff behavior. The analysis demonstrates how enabling behavior change interventions, managerial feedback and task-related feedback interact in their influence on behavior and have complementary functions during different stages of implementation. PMID:24885212

  8. Visual Feedback Dominates the Sense of Agency for Brain-Machine Actions

    PubMed Central

    Evans, Nathan; Gale, Steven; Schurger, Aaron; Blanke, Olaf

    2015-01-01

    Recent advances in neuroscience and engineering have led to the development of technologies that permit the control of external devices through real-time decoding of brain activity (brain-machine interfaces; BMI). Though the feeling of controlling bodily movements (sense of agency; SOA) has been well studied and a number of well-defined sensorimotor and cognitive mechanisms have been put forth, very little is known about the SOA for BMI-actions. Using an on-line BMI, and verifying that our subjects achieved a reasonable level of control, we sought to describe the SOA for BMI-mediated actions. Our results demonstrate that discrepancies between decoded neural activity and its resultant real-time sensory feedback are associated with a decrease in the SOA, similar to SOA mechanisms proposed for bodily actions. However, if the feedback discrepancy serves to correct a poorly controlled BMI-action, then the SOA can be high and can increase with increasing discrepancy, demonstrating the dominance of visual feedback on the SOA. Taken together, our results suggest that bodily and BMI-actions rely on common mechanisms of sensorimotor integration for agency judgments, but that visual feedback dominates the SOA in the absence of overt bodily movements or proprioceptive feedback, however erroneous the visual feedback may be. PMID:26066840

  9. Using crowdsourcing technology for testing multilingual public health promotion materials.

    PubMed

    Turner, Anne M; Kirchhoff, Katrin; Capurro, Daniel

    2012-06-04

    Effective communication of public health messages is a key strategy for health promotion by public health agencies. Creating effective health promotion materials requires careful message design and feedback from representatives of target populations. This is particularly true when the target audiences are hard to reach as limited English proficiency groups. Traditional methods of soliciting feedback--such as focus groups and convenience sample interviews--are expensive and time consuming. As a result, adequate feedback from target populations is often insufficient due to the time and resource constraints characteristic to public health. To describe a pilot study investigating the use of crowdsourcing technology as a method to gather rapid and relevant feedback on the design of health promotion messages for oral health. Our goal was to better describe the demographics of participants responding to a crowdsourcing survey and to test whether crowdsourcing could be used to gather feedback from English-speaking and Spanish-speaking participants in a short period of time and at relatively low costs. We developed health promotion materials on pediatric dental health issues in four different formats and in two languages (English and Spanish). We then designed an online survey to elicit feedback on format preferences and made it available in both languages via the Amazon Mechanical Turk crowdsourcing platform. We surveyed 236 native English-speaking and 163 native Spanish-speaking participants in less than 12 days, at a cost of US $374. Overall, Spanish-speaking participants originated from a wider distribution of countries than the overall Latino population in the United States. Most participants were in the 18- to 29-year age range and had some college or graduate education. Participants provided valuable input for the health promotion material design. Our results indicate that crowdsourcing can be an effective method for recruiting and gaining feedback from English-speaking and Spanish-speaking people. Compared with traditional methods, crowdsourcing has the potential to reach more diverse populations than convenience sampling, while substantially reducing the time and cost of gathering participant feedback. More widespread adoption of this method could streamline the development of effective health promotion materials in multiple languages.

  10. The Physical Origin of Long Gas Depletion Times in Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2017-08-18

    We present a model that elucidates why gas depletion times in galaxies are long compared to the time scales of the processes driving the evolution of the interstellar medium. We show that global depletion times are not set by any "bottleneck" in the process of gas evolution towards the star-forming state. Instead, depletion times are long because star-forming gas converts only a small fraction of its mass into stars before it is dispersed by dynamical and feedback processes. Thus, complete depletion requires that gas transitions between star-forming and non-star-forming states multiple times. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in galaxy simulations. In particular, the model explains the mechanism by which feedback self-regulates star formation rate in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolatedmore » $$L_*$$-sized disk galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is close to linear on kiloparsec scales, even though a non-linear relation is adopted in simulation cells. This difference is due to stellar feedback, which breaks the self-similar scaling of the gas density PDF with the average gas surface density.« less

  11. Investigations of the pathogenesis of acquired pendular nystagmus

    NASA Technical Reports Server (NTRS)

    Averbuch-Heller, L.; Zivotofsky, A. Z.; Das, V. E.; DiScenna, A. O.; Leigh, R. J.

    1995-01-01

    We investigated the pathogenesis of acquired pendular nystagmus (APN) in six patients, three of whom had multiple sclerosis. First, we tested the hypothesis that the oscillations of APN are due to a delay in visual feedback secondary, for example, to demyelination of the optic nerves. We manipulated the latency to onset of visually guided eye movements using an electronic technique that induces sinusoidal oscillations in normal subjects. This manipulation did not change the characteristics of the APN, but did superimpose lower-frequency oscillations similar to those induced in normal subjects. These results are consistent with current models for smooth (non-saccadic) eye movements, which predict that prolongation of visual feedback could not account for the high-frequency oscillations that often characterize APN. Secondly, we attempted to determine whether an increase in the gain of the visually-enhanced vestibulo-ocular reflex (VOR), produced by viewing a near target, was accompanied by a commensurate increase in the amplitude of APN. Increases in horizontal or vertical VOR gain during near viewing occurred in four patients, but only two of them showed a parallel increase in APN amplitude. On the other hand, APN amplitude decreased during viewing of the near target in the two patients who showed no change in VOR gain. Taken together, these data suggest that neither delayed visual feedback nor a disorder of central vestibular mechanisms is primarily responsible for APN. More likely, these ocular oscillations are produced by abnormalities of internal feedback circuits, such as the reciprocal connections between brainstem nuclei and cerebellum.

  12. Do microbial processes regulate the stability of a coral atoll's enclosed pelagic ecosystem?

    EPA Science Inventory

    Complex marine ecosystems contain multiple feedback cycles that can cause unexpected responses to perturbations. To better predict these responses, complicated models are increasingly being developed to enable the study of feedback cycles. However, the sparseness of ecological da...

  13. Calibrating Star Formation: The Link between Feedback and Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela

    2005-07-01

    Stellar feedback - the return of mass and energy from star formation to the interstellar medium - is one of the primary engines of galaxy evolution. Yet, the theoretical foundation of mechanical feedback is, to date, unconstrained by observations. We propose to investigate this fundamental aspect of star formation on a sample of two local actively star-forming galaxies, NGC4449, and Holmberg II. The two galaxies have been selected to occupy an unexplored, yet crucial for quantifying mechanical feedback, niche in the two-parameter space of star formation intensity and galaxy mass. ACS/WFC and WFPC2 narrow-band observations in the light of H-beta, [OIII], H-alpha, and [NII] will be obtained for both galaxies, in order to: {1} discriminate the feedback-induced shock fronts from the photoionization regions; {2} map the shocks inside and around the starburst regions; and {3} measure the energy budget of the star-formation-produced shocks. These observations, complemented by existing data, will yield: {1} the efficiency of the feedback, i.e. the fraction of the star formation's mechanical energy that is transported out of the starburst volume rather than confined or radiated away; {2} the dependence of this efficiency on the two fundamental parameters of star formation intensity and stellar mass. The high angular resolution of HST is crucial for separating the spatially narrow shock fronts { 5 pc, 0.25" at 4 Mpc} from the more extended photoionization fronts. The legacy from this project will be the most complete quantitative measurement of the energetics associated with feedback processes. We will secure the first milestone for placing feedback mechanisms on a solid physical ground, and for understanding quantitatively their role on the energetics, structure, and star formation history of galaxies at all redshifts.

  14. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch.

    PubMed

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A; Larson, Charles R

    2014-02-01

    The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caridade, Marta; Graca, Luis; Ribeiro, Ruy M.

    To maintain immunological balance the organism has to be tolerant to self while remaining competent to mount an effective immune response against third-party antigens. An important mechanism of this immune regulation involves the action of regulatory T-cell (Tregs). In this mini-review, we discuss some of the known and proposed mechanisms by which Tregs exert their influence in the context of immune regulation, and the contribution of mathematical modeling for these mechanistic studies. These models explore the mechanisms of action of regulatory T cells, and include hypotheses of multiple signals, delivered through simultaneous antigen-presenting cell (APC) conjugation; interaction of feedback loopsmore » between APC, Tregs, and effector cells; or production of specific cytokines that act on effector cells. As the field matures, and competing models are winnowed out, it is likely that we will be able to quantify how tolerance-inducing strategies, such as CD4-blockade, affect T-cell dynamics and what mechanisms explain the observed behavior of T-cell based tolerance.« less

  16. Soft Somatosensitive Actuators via Embedded 3D Printing.

    PubMed

    Truby, Ryan L; Wehner, Michael; Grosskopf, Abigail K; Vogt, Daniel M; Uzel, Sebastien G M; Wood, Robert J; Lewis, Jennifer A

    2018-04-01

    Humans possess manual dexterity, motor skills, and other physical abilities that rely on feedback provided by the somatosensory system. Herein, a method is reported for creating soft somatosensitive actuators (SSAs) via embedded 3D printing, which are innervated with multiple conductive features that simultaneously enable haptic, proprioceptive, and thermoceptive sensing. This novel manufacturing approach enables the seamless integration of multiple ionically conductive and fluidic features within elastomeric matrices to produce SSAs with the desired bioinspired sensing and actuation capabilities. Each printed sensor is composed of an ionically conductive gel that exhibits both long-term stability and hysteresis-free performance. As an exemplar, multiple SSAs are combined into a soft robotic gripper that provides proprioceptive and haptic feedback via embedded curvature, inflation, and contact sensors, including deep and fine touch contact sensors. The multimaterial manufacturing platform enables complex sensing motifs to be easily integrated into soft actuating systems, which is a necessary step toward closed-loop feedback control of soft robots, machines, and haptic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Embryo mechanics: balancing force production with elastic resistance during morphogenesis.

    PubMed

    Davidson, Lance A

    2011-01-01

    Morphogenesis requires the spatial and temporal control of embryo mechanics, including force production and mechanical resistance to those forces, to coordinate tissue deformation and large-scale movements. Thus, biomechanical processes play a key role in directly shaping the embryo. Additional roles for embryo mechanics during development may include the patterning of positional information and to provide feedback to ensure the success of morphogenetic movements in shaping the larval body and organs. To understand the multiple roles of mechanics during development requires familiarity with engineering principles of the mechanics of structures, the viscoelastic properties of biomaterials, and the integration of force and stress within embryonic structures as morphogenesis progresses. In this chapter, we review the basic engineering principles of biomechanics as they relate to morphogenesis, introduce methods for quantifying embryo mechanics and the limitations of these methods, and outline a formalism for investigating the role of embryo mechanics in birth defects. We encourage the nascent field of embryo mechanics to adopt standard engineering terms and test methods so that studies of diverse organisms can be compared and universal biomechanical principles can be revealed. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. How we give personalised audio feedback after summative OSCEs.

    PubMed

    Harrison, Christopher J; Molyneux, Adrian J; Blackwell, Sara; Wass, Valerie J

    2015-04-01

    Students often receive little feedback after summative objective structured clinical examinations (OSCEs) to enable them to improve their performance. Electronic audio feedback has shown promise in other educational areas. We investigated the feasibility of electronic audio feedback in OSCEs. An electronic OSCE system was designed, comprising (1) an application for iPads allowing examiners to mark in the key consultation skill domains, provide "tick-box" feedback identifying strengths and difficulties, and record voice feedback; (2) a feedback website giving students the opportunity to view/listen in multiple ways to the feedback. Acceptability of the audio feedback was investigated, using focus groups with students and questionnaires with both examiners and students. 87 (95%) students accessed the examiners' audio comments; 83 (90%) found the comments useful and 63 (68%) reported changing the way they perform a skill as a result of the audio feedback. They valued its highly personalised, relevant nature and found it much more useful than written feedback. Eighty-nine per cent of examiners gave audio feedback to all students on their stations. Although many found the method easy, lack of time was a factor. Electronic audio feedback provides timely, personalised feedback to students after a summative OSCE provided enough time is allocated to the process.

  19. Follower-Centered Perspective on Feedback: Effects of Feedback Seeking on Identification and Feedback Environment.

    PubMed

    Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na

    2017-01-01

    In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals' need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environment through supervisor identification. The article consists of an empirical study with a sample of 264 employees in China; here, participants complete a series of questionnaires in three waves. After controlling for the effects of demography, the results indicate that supervisor identification partially mediates the relationship between feedback-seeking (including feedback monitoring and feedback inquiry) and the supervisor-feedback environment. Implications are also discussed.

  20. Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder.

    PubMed

    Wittenborn, A K; Rahmandad, H; Rick, J; Hosseinichimeh, N

    2016-02-01

    Depression is a complex public health problem with considerable variation in treatment response. The systemic complexity of depression, or the feedback processes among diverse drivers of the disorder, contribute to the persistence of depression. This paper extends prior attempts to understand the complex causal feedback mechanisms that underlie depression by presenting the first broad boundary causal loop diagram of depression dynamics. We applied qualitative system dynamics methods to map the broad feedback mechanisms of depression. We used a structured approach to identify candidate causal mechanisms of depression in the literature. We assessed the strength of empirical support for each mechanism and prioritized those with support from validation studies. Through an iterative process, we synthesized the empirical literature and created a conceptual model of major depressive disorder. The literature review and synthesis resulted in the development of the first causal loop diagram of reinforcing feedback processes of depression. It proposes candidate drivers of illness, or inertial factors, and their temporal functioning, as well as the interactions among drivers of depression. The final causal loop diagram defines 13 key reinforcing feedback loops that involve nine candidate drivers of depression. Future research is needed to expand upon this initial model of depression dynamics. Quantitative extensions may result in a better understanding of the systemic syndrome of depression and contribute to personalized methods of evaluation, prevention and intervention.

  1. Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder

    PubMed Central

    Wittenborn, A. K.; Rahmandad, H.; Rick, J.; Hosseinichimeh, N.

    2016-01-01

    Background Depression is a complex public health problem with considerable variation in treatment response. The systemic complexity of depression, or the feedback processes among diverse drivers of the disorder, contribute to the persistence of depression. This paper extends prior attempts to understand the complex causal feedback mechanisms that underlie depression by presenting the first broad boundary causal loop diagram of depression dynamics. Method We applied qualitative system dynamics methods to map the broad feedback mechanisms of depression. We used a structured approach to identify candidate causal mechanisms of depression in the literature. We assessed the strength of empirical support for each mechanism and prioritized those with support from validation studies. Through an iterative process, we synthesized the empirical literature and created a conceptual model of major depressive disorder. Results The literature review and synthesis resulted in the development of the first causal loop diagram of reinforcing feedback processes of depression. It proposes candidate drivers of illness, or inertial factors, and their temporal functioning, as well as the interactions among drivers of depression. The final causal loop diagram defines 13 key reinforcing feedback loops that involve nine candidate drivers of depression. Conclusions Future research is needed to expand upon this initial model of depression dynamics. Quantitative extensions may result in a better understanding of the systemic syndrome of depression and contribute to personalized methods of evaluation, prevention and intervention. PMID:26621339

  2. Evidence of isometric function of the flexor hallucis longus muscle in normal gait.

    PubMed

    Kirane, Y M; Michelson, J D; Sharkey, N A

    2008-01-01

    Studying mechanics of the muscles spanning multiple joints provides insights into intersegmental dynamics and movement coordination. Multiarticular muscles are thought to function at "near-isometric" lengths to transfer mechanical energy between the adjacent body segments. Flexor hallucis longus (FHL) is a multiarticular flexor of the great toe; however, its potential isometric function has received little attention. We used a robotic loading apparatus to investigate FHL mechanics during simulated walking in cadaver feet, and hypothesized that physiological force transmission across the foot can occur with isometric FHL function. The extrinsic foot tendons, stripped of the muscle fibers, were connected to computer-controlled linear actuators. The FHL activity was controlled using force-feedback (FC) based upon electromyographic data from healthy subjects, and subsequently, isometric positional feedback (PC), maintaining the FHL myotendinous junction stationary during simulated walking. Tendon forces and excursions were recorded, as were the strains within the first metatarsal. Forces in the metatarsal and metatarsophalangeal joint were derived from these strains. The FHL tendon excursion under FC was 6.57+/-3.13mm. The forces generated in the FHL tendon, metatarsal and metatarsophalangeal joint with the FHL under isometric PC were not significantly different in pattern from FC. These observations provide evidence that physiological forces could be generated along the great toe with isometric FHL function. A length servo mechanism such as the stretch reflex could likely control the isometric FHL function during in vivo locomotion; this could have interesting implications regarding the conditions of impaired stretch reflex such as spastic paresis and peripheral neuropathies.

  3. Homeostasis of exercise hyperpnea and optimal sensorimotor integration: the internal model paradigm.

    PubMed

    Poon, Chi-Sang; Tin, Chung; Yu, Yunguo

    2007-10-15

    Homeostasis is a basic tenet of biomedicine and an open problem for many physiological control systems. Among them, none has been more extensively studied and intensely debated than the dilemma of exercise hyperpnea - a paradoxical homeostatic increase of respiratory ventilation that is geared to metabolic demands instead of the normal chemoreflex mechanism. Classical control theory has led to a plethora of "feedback/feedforward control" or "set point" hypotheses for homeostatic regulation, yet so far none of them has proved satisfactory in explaining exercise hyperpnea and its interactions with other respiratory inputs. Instead, the available evidence points to a far more sophisticated respiratory controller capable of integrating multiple afferent and efferent signals in adapting the ventilatory pattern toward optimality relative to conflicting homeostatic, energetic and other objectives. This optimality principle parsimoniously mimics exercise hyperpnea, chemoreflex and a host of characteristic respiratory responses to abnormal gas exchange or mechanical loading/unloading in health and in cardiopulmonary diseases - all without resorting to a feedforward "exercise stimulus". Rather, an emergent controller signal encoding the projected metabolic level is predicted by the principle as an exercise-induced 'mental percept' or 'internal model', presumably engendered by associative learning (operant conditioning or classical conditioning) which achieves optimality through continuous identification of, and adaptation to, the causal relationship between respiratory motor output and resultant chemical-mechanical afferent feedbacks. This internal model self-tuning adaptive control paradigm opens a new challenge and exciting opportunity for experimental and theoretical elucidations of the mechanisms of respiratory control - and of homeostatic regulation and sensorimotor integration in general.

  4. New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Quan; Jia, Xingcan; Quan, Jiannong

    Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. In this paper, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; themore » increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.« less

  5. New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events

    DOE PAGES

    Liu, Quan; Jia, Xingcan; Quan, Jiannong; ...

    2018-04-17

    Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. In this paper, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; themore » increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.« less

  6. Transition in the waiting-time distribution of price-change events in a global socioeconomic system

    NASA Astrophysics Data System (ADS)

    Zhao, Guannan; McDonald, Mark; Fenn, Dan; Williams, Stacy; Johnson, Nicholas; Johnson, Neil F.

    2013-12-01

    The goal of developing a firmer theoretical understanding of inhomogeneous temporal processes-in particular, the waiting times in some collective dynamical system-is attracting significant interest among physicists. Quantifying the deviations between the waiting-time distribution and the distribution generated by a random process may help unravel the feedback mechanisms that drive the underlying dynamics. We analyze the waiting-time distributions of high-frequency foreign exchange data for the best executable bid-ask prices across all major currencies. We find that the lognormal distribution yields a good overall fit for the waiting-time distribution between currency rate changes if both short and long waiting times are included. If we restrict our study to long waiting times, each currency pair’s distribution is consistent with a power-law tail with exponent near to 3.5. However, for short waiting times, the overall distribution resembles one generated by an archetypal complex systems model in which boundedly rational agents compete for limited resources. Our findings suggest that a gradual transition arises in trading behavior between a fast regime in which traders act in a boundedly rational way and a slower one in which traders’ decisions are driven by generic feedback mechanisms across multiple timescales and hence produce similar power-law tails irrespective of currency type.

  7. Programming generality into a performance feedback writing intervention: A randomized controlled trial.

    PubMed

    Hier, Bridget O; Eckert, Tanya L

    2016-06-01

    Substantial numbers of students in the United States are performing below grade-level expectations in core academic areas, and these deficits are most pronounced in the area of writing. Although performance feedback procedures have been shown to produce promising short-term improvements in elementary-aged students' writing skills, evidence of maintenance and generalization of these intervention effects is limited. The purpose of this study was to examine the immediate, generalized, and sustained effects of incorporating multiple exemplar training into the performance feedback procedures of a writing intervention using a randomized controlled trial (RCT). Results indicated that although the addition of multiple exemplar training did not improve students' writing performance on measures of stimulus and response generalization, it did result in greater maintenance of intervention effects in comparison to students who received performance feedback without generality programming and students who engaged in weekly writing practice alone. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  8. Power Law Patch Scaling and Lack of Characteristic Wavelength Suggest "Scale-Free" Processes Drive Pattern Formation in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Kaplan, D. A.; Casey, S. T.; Cohen, M. J.; Acharya, S.; Jawitz, J. W.

    2016-12-01

    A century of hydrologic modification has altered the physical and biological drivers of landscape processes in the Everglades (Florida, USA). Restoring the ridge-slough patterned landscape, a dominant feature of the historical system, is a priority, but requires an understanding of pattern genesis and degradation mechanisms. Physical experiments to evaluate alternative pattern formation mechanisms are limited by the long time scales of peat accumulation and loss, necessitating model-based comparisons, where support for a particular mechanism is based on model replication of extant patterning and trajectories of degradation. However, multiple mechanisms yield patch elongation in the direction of historical flow (a central feature of ridge-slough patterning), limiting the utility of that characteristic for discriminating among alternatives. Using data from vegetation maps, we investigated the statistical features of ridge-slough spatial patterning (ridge density, patch perimeter, elongation, patch-size distributions, and spatial periodicity) to establish more rigorous criteria for evaluating model performance and to inform controls on pattern variation across the contemporary system. Two independent analyses (2-D periodograms and patch size distributions) provide strong evidence against regular patterning, with the landscape exhibiting neither a characteristic wavelength nor a characteristic patch size, both of which are expected under conditions that produce regular patterns. Rather, landscape properties suggest robust scale-free patterning, indicating genesis from the coupled effects of local facilitation and a global negative feedback operating uniformly at the landscape-scale. This finding challenges widespread invocation of scale-dependent negative feedbacks for explaining ridge-slough pattern origins. These results help discern among genesis mechanisms and provide an improved statistical description of the landscape that can be used to compare among model outputs, as well as to assess the success of future restoration projects.

  9. Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light.

    PubMed

    Schäfermeier, Clemens; Kerdoncuff, Hugo; Hoff, Ulrich B; Fu, Hao; Huck, Alexander; Bilek, Jan; Harris, Glen I; Bowen, Warwick P; Gehring, Tobias; Andersen, Ulrik L

    2016-11-29

    Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics.

  10. Analysis of the Auditory Feedback and Phonation in Normal Voices.

    PubMed

    Arbeiter, Mareike; Petermann, Simon; Hoppe, Ulrich; Bohr, Christopher; Doellinger, Michael; Ziethe, Anke

    2018-02-01

    The aim of this study was to investigate the auditory feedback mechanisms and voice quality during phonation in response to a spontaneous pitch change in the auditory feedback. Does the pitch shift reflex (PSR) change voice pitch and voice quality? Quantitative and qualitative voice characteristics were analyzed during the PSR. Twenty-eight healthy subjects underwent transnasal high-speed video endoscopy (HSV) at 8000 fps during sustained phonation [a]. While phonating, the subjects heard their sound pitched up for 700 cents (interval of a fifth), lasting 300 milliseconds in their auditory feedback. The electroencephalography (EEG), acoustic voice signal, electroglottography (EGG), and high-speed-videoendoscopy (HSV) were analyzed to compare feedback mechanisms for the pitched and unpitched condition of the phonation paradigm statistically. Furthermore, quantitative and qualitative voice characteristics were analyzed. The PSR was successfully detected within all signals of the experimental tools (EEG, EGG, acoustic voice signal, HSV). A significant increase of the perturbation measures and an increase of the values of the acoustic parameters during the PSR were observed, especially for the audio signal. The auditory feedback mechanism seems not only to control for voice pitch but also for voice quality aspects.

  11. First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives

    NASA Astrophysics Data System (ADS)

    Kravitz, Ben; MacMartin, Douglas G.; Mills, Michael J.; Richter, Jadwiga H.; Tilmes, Simone; Lamarque, Jean-Francois; Tribbia, Joseph J.; Vitt, Francis

    2017-12-01

    We describe the first simulations of stratospheric sulfate aerosol geoengineering using multiple injection locations to meet multiple simultaneous surface temperature objectives. Simulations were performed using CESM1(WACCM), a coupled atmosphere-ocean general circulation model with fully interactive stratospheric chemistry, dynamics (including an internally generated quasi-biennial oscillation), and a sophisticated treatment of sulfate aerosol formation, microphysical growth, and deposition. The objectives are defined as maintaining three temperature features at their 2020 levels against a background of the RCP8.5 scenario over the period 2020-2099. These objectives are met using a feedback mechanism in which the rate of sulfur dioxide injection at each of the four locations is adjusted independently every year of simulation. Even in the presence of uncertainties, nonlinearities, and variability, the objectives are met, predominantly by SO2 injection at 30°N and 30°S. By the last year of simulation, the feedback algorithm calls for a total injection rate of 51 Tg SO2 per year. The injections are not in the tropics, which results in a greater degree of linearity of the surface climate response with injection amount than has been found in many previous studies using injection at the equator. Because the objectives are defined in terms of annual mean temperature, the required geongineering results in "overcooling" during summer and "undercooling" during winter. The hydrological cycle is also suppressed as compared to the reference values corresponding to the year 2020. The demonstration we describe in this study is an important step toward understanding what geoengineering can do and what it cannot do.

  12. Dynamics of nonlinear feedback control.

    PubMed

    Snippe, H P; van Hateren, J H

    2007-05-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.

  13. Adaptive method with intercessory feedback control for an intelligent agent

    DOEpatents

    Goldsmith, Steven Y.

    2004-06-22

    An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.

  14. MQW Optical Feedback Modulators And Phase Shifters

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J.

    1995-01-01

    Laser diodes equipped with proposed multiple-quantum-well (MQW) optical feedback modulators prove useful in variety of analog and digital optical-communication applications, including fiber-optic signal-distribution networks and high-speed, low-crosstalk interconnections among super computers or very-high-speed integrated circuits. Development exploits accompanying electro-optical aspect of QCSE - variation in index of refraction with applied electric field. Also exploits sensitivity of laser diodes to optical feedback. Approach is reverse of prior approach.

  15. RADIATIVE AND MOMENTUM-BASED MECHANICAL ACTIVE GALACTIC NUCLEUS FEEDBACK IN A THREE-DIMENSIONAL GALAXY EVOLUTION CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ena; Ostriker, Jeremiah P.; Naab, Thorsten

    2012-08-01

    We study the growth of black holes (BHs) in galaxies using three-dimensional smoothed particle hydrodynamic simulations with new implementations of the momentum mechanical feedback, and restriction of accreted elements to those that are gravitationally bound to the BH. We also include the feedback from the X-ray radiation emitted by the BH, which heats the surrounding gas in the host galaxies, and adds radial momentum to the fluid. We perform simulations of isolated galaxies and merging galaxies and test various feedback models with the new treatment of the Bondi radius criterion. We find that overall the BH growth is similar tomore » what has been obtained by earlier works using the Springel, Di Matteo, and Hernquist algorithms. However, the outflowing wind velocities and mechanical energy emitted by winds are considerably higher (v{sub w} {approx} 1000-3000 km s{sup -1}) compared to the standard thermal feedback model (v{sub w} {approx} 50-100 km s{sup -1}). While the thermal feedback model emits only 0.1% of BH released energy in winds, the momentum feedback model emits more than 30% of the total energy released by the BH in winds. In the momentum feedback model, the degree of fluctuation in both radiant and wind output is considerably larger than in standard treatments. We check that the new model of BH mass accretion agrees with analytic results for the standard Bondi problem.« less

  16. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis.

    PubMed

    Markovic, Marko; Schweisfurth, Meike A; Engels, Leonard F; Bentz, Tashina; Wüstefeld, Daniela; Farina, Dario; Dosen, Strahinja

    2018-03-27

    To effectively replace the human hand, a prosthesis should seamlessly respond to user intentions but also convey sensory information back to the user. Restoration of sensory feedback is rated highly by the prosthesis users, and feedback is critical for grasping in able-bodied subjects. Nonetheless, the benefits of feedback in prosthetics are still debated. The lack of consensus is likely due to the complex nature of sensory feedback during prosthesis control, so that its effectiveness depends on multiple factors (e.g., task complexity, user learning). We evaluated the impact of these factors with a longitudinal assessment in six amputee subjects, using a clinical setup (socket, embedded control) and a range of tasks (box and blocks, block turn, clothespin and cups relocation). To provide feedback, we have proposed a novel vibrotactile stimulation scheme capable of transmitting multiple variables from a multifunction prosthesis. The subjects wore a bracelet with four by two uniformly placed vibro-tactors providing information on contact, prosthesis state (active function), and grasping force. The subjects also completed a questionnaire for the subjective evaluation of the feedback. The tests demonstrated that feedback was beneficial only in the complex tasks (block turn, clothespin and cups relocation), and that the training had an important, task-dependent impact. In the clothespin relocation and block turn tasks, training allowed the subjects to establish successful feedforward control, and therefore, the feedback became redundant. In the cups relocation task, however, the subjects needed some training to learn how to properly exploit the feedback. The subjective evaluation of the feedback was consistently positive, regardless of the objective benefits. These results underline the multifaceted nature of closed-loop prosthesis control as, depending on the context, the same feedback interface can have different impact on performance. Finally, even if the closed-loop control does not improve the performance, it could be beneficial as it seems to improve the subjective experience. Therefore, in this study we demonstrate, for the first time, the relevance of an advanced, multi-variable feedback interface for dexterous, multi-functional prosthesis control in a clinically relevant setting.

  17. Investigating Expectations and Experiences of Audio and Written Assignment Feedback in First-Year Undergraduate Students

    ERIC Educational Resources Information Center

    Fawcett, Hannah; Oldfield, Jeremy

    2016-01-01

    Previous research suggests that audio feedback may be an important mechanism for facilitating effective and timely assignment feedback. The present study examined expectations and experiences of audio and written feedback provided through "turnitin for iPad®" from students within the same cohort and assignment. The results showed that…

  18. Using Quality Management Tools to Enhance Feedback from Student Evaluations

    ERIC Educational Resources Information Center

    Jensen, John B.; Artz, Nancy

    2005-01-01

    Statistical tools found in the service quality assessment literature--the "T"[superscript 2] statistic combined with factor analysis--can enhance the feedback instructors receive from student ratings. "T"[superscript 2] examines variability across multiple sets of ratings to isolate individual respondents with aberrant response…

  19. Facial Feedback Mechanisms in Autistic Spectrum Disorders

    ERIC Educational Resources Information Center

    Stel, Marielle; van den Heuvel, Claudia; Smeets, Raymond C.

    2008-01-01

    Facial feedback mechanisms of adolescents with Autistic Spectrum Disorders (ASD) were investigated utilizing three studies. Facial expressions, which became activated via automatic (Studies 1 and 2) or intentional (Study 2) mimicry, or via holding a pen between the teeth (Study 3), influenced corresponding emotions for controls, while individuals…

  20. 78 FR 13057 - Agency Information Collection Activities; Information Collection; IT Dashboard Feedback Mechanism

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ...: Lalit Bajaj, Program Manager, Office of Innovative Technology Services and Solutions, Office of Citizen... ( itdashboard.gov ) provides agencies and the public access to view details of Federal information technology... Information Collection Activities; Information Collection; IT Dashboard Feedback Mechanism AGENCY: Office of...

  1. 78 FR 36190 - Agency Information Collection Activities; Submission for OMB Review; IT Dashboard Feedback Mechanism

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    .... FOR FURTHER INFORMATION CONTACT: Lalit Bajaj, Program Manager, Office of Innovative Technology... to view details of Federal information technology investments online and to track their progress over... Information Collection Activities; Submission for OMB Review; IT Dashboard Feedback Mechanism AGENCY: Office...

  2. Follower-Centered Perspective on Feedback: Effects of Feedback Seeking on Identification and Feedback Environment

    PubMed Central

    Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na

    2017-01-01

    In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals’ need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environment through supervisor identification. The article consists of an empirical study with a sample of 264 employees in China; here, participants complete a series of questionnaires in three waves. After controlling for the effects of demography, the results indicate that supervisor identification partially mediates the relationship between feedback-seeking (including feedback monitoring and feedback inquiry) and the supervisor-feedback environment. Implications are also discussed. PMID:28919872

  3. Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.

    ERIC Educational Resources Information Center

    Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand

    2003-01-01

    Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…

  4. Goals and Objectives to Optimize the Value of an Acute Pain Service in Perioperative Pain Management.

    PubMed

    Le-Wendling, Linda; Glick, Wesley; Tighe, Patrick

    2017-12-01

    As newer pharmacologic and procedural interventions, technology, and data on outcomes in pain management are becoming available, effective acute pain management will require a dedicated Acute Pain Service (APS) to help determine the most optimal pain management plan for the patients. Goals for pain management must take into consideration the side effect profile of drugs and potential complications of procedural interventions. Multiple objective optimization is the combination of multiple different objectives for acute pain management. Simple use of opioids, for example, can reduce all pain to minimal levels, but at what cost to the patient, the medical system, and to public health as a whole? Many models for APS exist based on personnel's skills, knowledge and experience, but effective use of an APS will also require allocation of time, space, financial, and personnel resources with clear objectives and a feedback mechanism to guide changes to acute pain medicine practices to meet the constantly evolving medical field. Physician-based practices have the advantage of developing protocols for the management of low-variability, high-occurrence scenarios in addition to tailoring care to individual patients with high-variability, low-occurrence scenarios. Frequent feedback and data collection/assessment on patient outcomes is essential in evaluating the efficacy of the Acute Pain Service's intervention in improving patient outcomes in the acute and perioperative setting.

  5. Mechanisms Underlying CD4+ Treg Immune Regulation in the Adult: From Experiments to Models

    DOE PAGES

    Caridade, Marta; Graca, Luis; Ribeiro, Ruy M.

    2013-11-18

    To maintain immunological balance the organism has to be tolerant to self while remaining competent to mount an effective immune response against third-party antigens. An important mechanism of this immune regulation involves the action of regulatory T-cell (Tregs). In this mini-review, we discuss some of the known and proposed mechanisms by which Tregs exert their influence in the context of immune regulation, and the contribution of mathematical modeling for these mechanistic studies. These models explore the mechanisms of action of regulatory T cells, and include hypotheses of multiple signals, delivered through simultaneous antigen-presenting cell (APC) conjugation; interaction of feedback loopsmore » between APC, Tregs, and effector cells; or production of specific cytokines that act on effector cells. As the field matures, and competing models are winnowed out, it is likely that we will be able to quantify how tolerance-inducing strategies, such as CD4-blockade, affect T-cell dynamics and what mechanisms explain the observed behavior of T-cell based tolerance.« less

  6. Mechanisms Limiting Body Growth in Mammals

    PubMed Central

    Lui, Julian C.

    2011-01-01

    Recent studies have begun to provide insight into a long-standing mystery in biology—why body growth in animals is rapid in early life but then progressively slows, thus imposing a limit on adult body size. This growth deceleration in mammals is caused by potent suppression of cell proliferation in multiple tissues and is driven primarily by local, rather than systemic, mechanisms. Recent evidence suggests that this progressive decline in proliferation results from a genetic program that occurs in multiple organs and involves the down-regulation of a large set of growth-promoting genes. This program does not appear to be driven simply by time, but rather depends on growth itself, suggesting that the limit on adult body size is imposed by a negative feedback loop. Different organs appear to use different types of information to precisely target their adult size. For example, skeletal and cardiac muscle growth are negatively regulated by myostatin, the concentration of which depends on muscle mass itself. Liver growth appears to be modulated by bile acid flux, a parameter that reflects organ function. In pancreas, organ size appears to be limited by the initial number of progenitor cells, suggesting a mechanism based on cell-cycle counting. Further elucidation of the fundamental mechanisms suppressing juvenile growth is likely to yield important insights into the pathophysiology of childhood growth disorders and of the unrestrained growth of cancer. In addition, improved understanding of these growth-suppressing mechanisms may someday allow their therapeutic suspension in adult tissues to facilitate tissue regeneration. PMID:21441345

  7. Identifying thresholds in pattern-process relationships: a new cross-scale interactions experiment at the Jornada Basin LTER

    USDA-ARS?s Scientific Manuscript database

    Interactions among ecological patterns and processes at multiple scales play a significant role in threshold behaviors in arid systems. Black grama grasslands and mesquite shrublands are hypothesized to operate under unique sets of feedbacks: grasslands are maintained by fine-scale biotic feedbacks ...

  8. Instructive Feedback Embedded within Group Instruction for Children Diagnosed with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Leaf, Justin B.; Cihon, Joseph H.; Alcalay, Aditt; Mitchell, Erin; Townley-Cochran, Donna; Miller, Kevin; Leaf, Ronald; Taubman, Mitchell; McEachin, John

    2017-01-01

    The present study evaluated the effects of instructive feedback embedded within a group discrete trial teaching to teach tact relations to nine children diagnosed with autism spectrum disorder using a nonconcurrent multiple-baseline design. Dependent variables included correct responses for: primary targets (directly taught), secondary targets…

  9. Adherence with Universal Precautions after Immediate, Personalized Performance Feedback

    ERIC Educational Resources Information Center

    Luke, Molli M.; Alavosius, Mark

    2011-01-01

    We evaluated the effects of immediate, personalized performance feedback on adherence with hand hygiene by health-care staff in the context of a multiple baseline design across participants. Target behaviors reached mastery levels and were maintained near 100% throughout 2 months of maintenance probes. (Contains 1 table and 1 figure.)

  10. An Evaluation of Interventions to Facilitate Algebra Problem Solving

    ERIC Educational Resources Information Center

    Mayfield, Kristin H.; Glenn, Irene M.

    2008-01-01

    Three participants were trained on 6 target algebra skills and subsequently received a series of 5 instructional interventions (cumulative practice, tiered feedback, feedback plus solution sequence instruction, review practice, and transfer training) in a multiple baseline across skills design. The effects of the interventions on the performance…

  11. Symposium Proceedings on Quantitative Feedback Theory Held in Fairborn, Ohio on 2-4 August 1992.

    DTIC Science & Technology

    1992-08-01

    modification. This permits a drastic reduction in the cost of feedback, in terms of loop bandwidth and effect of sensor noise . This is the first...High- frequency Bound ( UHB ) but its main use is to ensure that at high frequencies the controlled system cannot go unstable and has sufficient noise ...a 5-cascaded multiple-loop feedback system giving significant reductions in sensor noise amplification (peak reduced by a factor of 4), is

  12. The 'sensory tolerance limit': A hypothetical construct determining exercise performance?

    PubMed

    Hureau, Thomas J; Romer, Lee M; Amann, Markus

    2018-02-01

    Neuromuscular fatigue compromises exercise performance and is determined by central and peripheral mechanisms. Interactions between the two components of fatigue can occur via neural pathways, including feedback and feedforward processes. This brief review discusses the influence of feedback and feedforward mechanisms on exercise limitation. In terms of feedback mechanisms, particular attention is given to group III/IV sensory neurons which link limb muscle with the central nervous system. Central corollary discharge, a copy of the neural drive from the brain to the working muscles, provides a signal from the motor system to sensory systems and is considered a feedforward mechanism that might influence fatigue and consequently exercise performance. We highlight findings from studies supporting the existence of a 'critical threshold of peripheral fatigue', a previously proposed hypothesis based on the idea that a negative feedback loop operates to protect the exercising limb muscle from severe threats to homeostasis during whole-body exercise. While the threshold theory remains to be disproven within a given task, it is not generalisable across different exercise modalities. The 'sensory tolerance limit', a more theoretical concept, may address this issue and explain exercise tolerance in more global terms and across exercise modalities. The 'sensory tolerance limit' can be viewed as a negative feedback loop which accounts for the sum of all feedback (locomotor muscles, respiratory muscles, organs, and muscles not directly involved in exercise) and feedforward signals processed within the central nervous system with the purpose of regulating the intensity of exercise to ensure that voluntary activity remains tolerable.

  13. Reward abundance interferes with error-based learning in a visuomotor adaptation task

    PubMed Central

    Oostwoud Wijdenes, Leonie; Rigterink, Tessa; Overvliet, Krista E.; Smeets, Joeren B. J.

    2018-01-01

    The brain rapidly adapts reaching movements to changing circumstances by using visual feedback about errors. Providing reward in addition to error feedback facilitates the adaptation but the underlying mechanism is unknown. Here, we investigate whether the proportion of trials rewarded (the ‘reward abundance’) influences how much participants adapt to their errors. We used a 3D multi-target pointing task in which reward alone is insufficient for motor adaptation. Participants (N = 423) performed the pointing task with feedback based on a shifted hand-position. On a proportion of trials we gave them rewarding feedback that their hand hit the target. Half of the participants only received this reward feedback. The other half also received feedback about endpoint errors. In different groups, we varied the proportion of trials that was rewarded. As expected, participants who received feedback about their errors did adapt, but participants who only received reward-feedback did not. Critically, participants who received abundant rewards adapted less to their errors than participants who received less reward. Thus, reward abundance negatively influences how much participants learn from their errors. Probably participants used a mechanism that relied more on the reward feedback when the reward was abundant. Because participants could not adapt to the reward, this interfered with adaptation to errors. PMID:29513681

  14. Effect of inhibitory feedback on correlated firing of spiking neural network.

    PubMed

    Xie, Jinli; Wang, Zhijie

    2013-08-01

    Understanding the properties and mechanisms that generate different forms of correlation is critical for determining their role in cortical processing. Researches on retina, visual cortex, sensory cortex, and computational model have suggested that fast correlation with high temporal precision appears consistent with common input, and correlation on a slow time scale likely involves feedback. Based on feedback spiking neural network model, we investigate the role of inhibitory feedback in shaping correlations on a time scale of 100 ms. Notably, the relationship between the correlation coefficient and inhibitory feedback strength is non-monotonic. Further, computational simulations show how firing rate and oscillatory activity form the basis of the mechanisms underlying this relationship. When the mean firing rate holds unvaried, the correlation coefficient increases monotonically with inhibitory feedback, but the correlation coefficient keeps decreasing when the network has no oscillatory activity. Our findings reveal that two opposing effects of the inhibitory feedback on the firing activity of the network contribute to the non-monotonic relationship between the correlation coefficient and the strength of the inhibitory feedback. The inhibitory feedback affects the correlated firing activity by modulating the intensity and regularity of the spike trains. Finally, the non-monotonic relationship is replicated with varying transmission delay and different spatial network structure, demonstrating the universality of the results.

  15. Drag reduction of a car model by linear genetic programming control

    NASA Astrophysics Data System (ADS)

    Li, Ruiying; Noack, Bernd R.; Cordier, Laurent; Borée, Jacques; Harambat, Fabien

    2017-08-01

    We investigate open- and closed-loop active control for aerodynamic drag reduction of a car model. Turbulent flow around a blunt-edged Ahmed body is examined at ReH≈ 3× 105 based on body height. The actuation is performed with pulsed jets at all trailing edges (multiple inputs) combined with a Coanda deflection surface. The flow is monitored with 16 pressure sensors distributed at the rear side (multiple outputs). We apply a recently developed model-free control strategy building on genetic programming in Dracopoulos and Kent (Neural Comput Appl 6:214-228, 1997) and Gautier et al. (J Fluid Mech 770:424-441, 2015). The optimized control laws comprise periodic forcing, multi-frequency forcing and sensor-based feedback including also time-history information feedback and combinations thereof. Key enabler is linear genetic programming (LGP) as powerful regression technique for optimizing the multiple-input multiple-output control laws. The proposed LGP control can select the best open- or closed-loop control in an unsupervised manner. Approximately 33% base pressure recovery associated with 22% drag reduction is achieved in all considered classes of control laws. Intriguingly, the feedback actuation emulates periodic high-frequency forcing. In addition, the control identified automatically the only sensor which listens to high-frequency flow components with good signal to noise ratio. Our control strategy is, in principle, applicable to all multiple actuators and sensors experiments.

  16. Combining Computational Modeling and Neuroimaging to Examine Multiple Category Learning Systems in the Brain

    PubMed Central

    Nomura, Emi M.; Reber, Paul J.

    2012-01-01

    Considerable evidence has argued in favor of multiple neural systems supporting human category learning, one based on conscious rule inference and one based on implicit information integration. However, there have been few attempts to study potential system interactions during category learning. The PINNACLE (Parallel Interactive Neural Networks Active in Category Learning) model incorporates multiple categorization systems that compete to provide categorization judgments about visual stimuli. Incorporating competing systems requires inclusion of cognitive mechanisms associated with resolving this competition and creates a potential credit assignment problem in handling feedback. The hypothesized mechanisms make predictions about internal mental states that are not always reflected in choice behavior, but may be reflected in neural activity. Two prior functional magnetic resonance imaging (fMRI) studies of category learning were re-analyzed using PINNACLE to identify neural correlates of internal cognitive states on each trial. These analyses identified additional brain regions supporting the two types of category learning, regions particularly active when the systems are hypothesized to be in maximal competition, and found evidence of covert learning activity in the “off system” (the category learning system not currently driving behavior). These results suggest that PINNACLE provides a plausible framework for how competing multiple category learning systems are organized in the brain and shows how computational modeling approaches and fMRI can be used synergistically to gain access to cognitive processes that support complex decision-making machinery. PMID:24962771

  17. Computer-Generated Feedback on Student Writing

    ERIC Educational Resources Information Center

    Ware, Paige

    2011-01-01

    A distinction must be made between "computer-generated scoring" and "computer-generated feedback". Computer-generated scoring refers to the provision of automated scores derived from mathematical models built on organizational, syntactic, and mechanical aspects of writing. In contrast, computer-generated feedback, the focus of this article, refers…

  18. Using Crowdsourcing Technology for Testing Multilingual Public Health Promotion Materials

    PubMed Central

    Kirchhoff, Katrin; Capurro, Daniel

    2012-01-01

    Background Effective communication of public health messages is a key strategy for health promotion by public health agencies. Creating effective health promotion materials requires careful message design and feedback from representatives of target populations. This is particularly true when the target audiences are hard to reach as limited English proficiency groups. Traditional methods of soliciting feedback—such as focus groups and convenience sample interviews—are expensive and time consuming. As a result, adequate feedback from target populations is often insufficient due to the time and resource constraints characteristic to public health. Objective To describe a pilot study investigating the use of crowdsourcing technology as a method to gather rapid and relevant feedback on the design of health promotion messages for oral health. Our goal was to better describe the demographics of participants responding to a crowdsourcing survey and to test whether crowdsourcing could be used to gather feedback from English-speaking and Spanish-speaking participants in a short period of time and at relatively low costs. Methods We developed health promotion materials on pediatric dental health issues in four different formats and in two languages (English and Spanish). We then designed an online survey to elicit feedback on format preferences and made it available in both languages via the Amazon Mechanical Turk crowdsourcing platform. Results We surveyed 236 native English-speaking and 163 native Spanish-speaking participants in less than 12 days, at a cost of US $374. Overall, Spanish-speaking participants originated from a wider distribution of countries than the overall Latino population in the United States. Most participants were in the 18- to 29-year age range and had some college or graduate education. Participants provided valuable input for the health promotion material design. Conclusions Our results indicate that crowdsourcing can be an effective method for recruiting and gaining feedback from English-speaking and Spanish-speaking people. Compared with traditional methods, crowdsourcing has the potential to reach more diverse populations than convenience sampling, while substantially reducing the time and cost of gathering participant feedback. More widespread adoption of this method could streamline the development of effective health promotion materials in multiple languages. PMID:22664384

  19. Active Galactic Nucleus Feedback in an Isolated Elliptical Galaxy: The Effect of Strong Radiative Feedback in the Kinetic Mode

    NASA Astrophysics Data System (ADS)

    Gan, Zhaoming; Yuan, Feng; Ostriker, Jeremiah P.; Ciotti, Luca; Novak, Gregory S.

    2014-07-01

    Based on two-dimensional high-resolution hydrodynamic numerical simulation, we study the mechanical and radiative feedback effects from the central active galactic nucleus (AGN) on the cosmological evolution of an isolated elliptical galaxy. The inner boundary of the simulation domain is carefully chosen so that the fiducial Bondi radius is resolved and the accretion rate of the black hole is determined self-consistently. It is well known that when the accretion rates are high and low, the central AGNs will be in cold and hot accretion modes, which correspond to the radiative and kinetic feedback modes, respectively. The emitted spectrum from the hot accretion flows is harder than that from the cold accretion flows, which could result in a higher Compton temperature accompanied by a more efficient radiative heating, according to previous theoretical works. Such a difference of the Compton temperature between the two feedback modes, the focus of this study, has been neglected in previous works. Significant differences in the kinetic feedback mode are found as a result of the stronger Compton heating. More importantly, if we constrain models to correctly predict black hole growth and AGN duty cycle after cosmological evolution, we find that the favored model parameters are constrained: mechanical feedback efficiency diminishes with decreasing luminosity (the maximum efficiency being ~= 10-3.5), and X-ray Compton temperature increases with decreasing luminosity, although models with fixed mechanical efficiency and Compton temperature can be found that are satisfactory as well. We conclude that radiative feedback in the kinetic mode is much more important than previously thought.

  20. THE EFFECT OF FEEDBACK ON THE ACCURACY OF CHECKLIST COMPLETION DURING INSTRUMENT FLIGHT TRAINING

    PubMed Central

    Rantz, William G; Dickinson, Alyce M; Sinclair, Gilbert A; Van Houten, Ron

    2009-01-01

    This study examined whether pilots completed airplane checklists more accurately when they receive postflight graphic and verbal feedback. Participants were 8 college students who are pilots with an instrument rating. The task consisted of flying a designated flight pattern using a personal computer aviation training device (PCATD). The dependent variables were the number of checklist items completed correctly. A multiple baseline design across pairs of participants with withdrawal of treatment was employed in this study. During baseline, participants were given postflight technical feedback. During intervention, participants were given postflight graphic feedback on checklist use and praise for improvements along with technical feedback. The intervention produced near perfect checklist performance, which was maintained following a return to the baseline conditions. PMID:20190914

  1. Increased atmospheric carbon dioxide and climate feedback mechanisms

    NASA Technical Reports Server (NTRS)

    Cess, R. D.

    1982-01-01

    As a consequence of fossil fuel burning, the atmospheric concentration of carbon dioxide has increased from 314 ppm in 1958, when detailed measurements of this quantity began, to a present value of 335 ppm; and it is estimated that during the next century, the CO2 concentration will double relative to its assumed preindustrial value of 290 ppm. Since CO2 is an infrared-active gas, increases in its atmospheric concentration would lead to a larger infrared opacity for the atmospheric which, by normal logic, would result in a warmer Earth. A number of modeling endeavors suggest a 2 to 4 C increase in global mean surface temperature with doubling of the CO2 concentration. But such estimates of CO2-induced warming are highly uncertain because of a lack of knowledge of climate feedback mechanisms. Interactive influences upon the solar and infrared opacities of the Earth-atmosphere system can either amplify or damp a climate-forcing mechanism such as increasing CO2. Climate feedback mechanisms discussed include climate sensitivity, cloudiness-radiation feedback, climate change predictions, and interactive atmospheric chemistry.

  2. On the dynamic forcing of short-term climate fluctuations by feedback mechanisms

    NASA Technical Reports Server (NTRS)

    Reiter, E. R.

    1979-01-01

    Various internal feedback mechanisms in the ocean atmosphere system were studied. A variability pattern of sea surface temperature with a quasibiennial oscillation (QBO) was detected off the coast of Senegal, in the Gulf of Guinea and even in the Gulf Stream as it leaves the North American continental shelf. Possible physical connections between some of these QBO's were pointed out by a hypothetical feedback model. Interaction of a QBO with the annual cycle may lead to beating frequencies resembling climatic trends of a duration of several years.

  3. Feedback Specificity, Information Processing, and Transfer of Training

    ERIC Educational Resources Information Center

    Goodman, Jodi S.; Wood, Robert E.; Chen, Zheng

    2011-01-01

    This study examines the effects of feedback specificity on transfer of training and the mechanisms through which feedback can enhance or inhibit transfer. We used concurrent verbal protocol methodology to elicit and operationalize the explicit information processing activities used by 48 trainees performing the Furniture Factory computer…

  4. Nutrient feedbacks to soil heterotrophic nitrogen fixation in forests

    USGS Publications Warehouse

    Perakis, Steven; Pett-Ridge, Julie C.; Catricala, Christina E.

    2017-01-01

    Multiple nutrient cycles regulate biological nitrogen (N) fixation in forests, yet long-term feedbacks between N-fixation and coupled element cycles remain largely unexplored. We examined soil nutrients and heterotrophic N-fixation across a gradient of 24 temperate conifer forests shaped by legacies of symbiotic N-fixing trees. We observed positive relationships among mineral soil pools of N, carbon (C), organic molybdenum (Mo), and organic phosphorus (P) across sites, evidence that legacies of symbiotic N-fixing trees can increase the abundance of multiple elements important to heterotrophic N-fixation. Soil N accumulation lowered rates of heterotrophic N-fixation in organic horizons due to both N inhibition of nitrogenase enzymes and declines in soil organic matter quality. Experimental fertilization of organic horizon soil revealed widespread Mo limitation of heterotrophic N-fixation, especially at sites where soil Mo was scarce relative to C. Fertilization also revealed widespread absence of P limitation, consistent with high soil P:Mo ratios. Responses of heterotrophic N-fixation to added Mo (positive) and N (negative) were correlated across sites, evidence that multiple nutrient controls of heterotrophic N-fixation were more common than single-nutrient effects. We propose a conceptual model where symbiotic N-fixation promotes coupled N, C, P, and Mo accumulation in soil, leading to positive feedback that relaxes nutrient limitation of overall N-fixation, though heterotrophic N-fixation is primarily suppressed by strong negative feedback from long-term soil N accumulation.

  5. Steady-State Solutions Originating from an Enhanced Nonlinear Feedback in a Hybrid Opto-mechanical System

    NASA Astrophysics Data System (ADS)

    Fan, Qiu-Bo; Wang, Yi-Ru; Chen, Jin; Pan, Yue-Wu; Han, Bai-Ping; Fu, Chang-Bao; Sun, Yan

    2017-06-01

    The steady-state properties of a hybrid system are investigated in this paper. Many cold atoms in the four-level tripod configuration are confined in an optical cavity with a movable end mirror. The confined cold atoms are driven with two external classical fields and an internal cavity field. The internal cavity field is excited by an external driving field and shows a radiation pressure upon the movable end mirror. The coupling of atom-light and opto-mechanical interactions is enhanced by embedding a four-level atomic system in a typical opto-mechanical cavity. And an enhanced nonlinear feedback mechanism is offered by the enhanced coupling, which permits the observation of five and three steady-state solutions for relevant variables near two-photon resonance. The enhanced nonlinear feedback mechanism also allows us to observe the obvious difference in the double-EIT phenomenon between the atom-assisted opto-mechanical system and usual atom-field system.

  6. High School Feedback: An Analysis of States' Current Efforts

    ERIC Educational Resources Information Center

    Data Quality Campaign, 2011

    2011-01-01

    There is increased demand from multiple stakeholders for information about K-12 students' success after high school. When this information is provided back to high schools, it is often referred to as "high school feedback" information. This working document captures knowledge about states' capacity to and progress in providing high school feedback…

  7. The Use of Email to Coach Preservice Early Childhood Teachers

    ERIC Educational Resources Information Center

    Barton, Erin E.; Fuller, Elizabeth A.; Schnitz, Alana

    2016-01-01

    The purpose of this study was to examine the impact of performance feedback on preservice teachers' use of recommended practices within inclusive early childhood classrooms. A multiple baseline design across behaviors was used to examine the relation between performance feedback delivered via email and practicum students' use of target-recommended…

  8. The Effects of Item by Item Feedback Given during an Ability Test.

    ERIC Educational Resources Information Center

    Whetton, C.; Childs, R.

    1981-01-01

    Answer-until-correct (AUC) is a procedure for providing feedback during a multiple-choice test, giving an increased range of scores. The performance of secondary students on a verbal ability test using AUC procedures was compared with a group using conventional instructions. AUC scores considerably enhanced reliability but not validity.…

  9. The Problems of Multiple Feedback Estimation.

    ERIC Educational Resources Information Center

    Bulcock, Jeffrey W.

    The use of two-stage least squares (2SLS) for the estimation of feedback linkages is inappropriate for nonorthogonal data sets because 2SLS is extremely sensitive to multicollinearity. It is argued that what is needed is use of a different estimating criterion than the least squares criterion. Theoretically the variance normalization criterion has…

  10. Effects of Response-Driven Feedback in Computer Science Learning

    ERIC Educational Resources Information Center

    Fernandez Aleman, J. L.; Palmer-Brown, D.; Jayne, C.

    2011-01-01

    This paper presents the results of a project on generating diagnostic feedback for guided learning in a first-year course on programming and a Master's course on software quality. An online multiple-choice questions (MCQs) system is integrated with neural network-based data analysis. Findings about how students use the system suggest that the…

  11. Using Real-Time Visual Feedback to Improve Posture at Computer Workstations

    ERIC Educational Resources Information Center

    Sigurdsson, Sigurdur O.; Austin, John

    2008-01-01

    The purpose of the current study was to examine the effects of a multicomponent intervention that included discrimination training, real-time visual feedback, and self-monitoring on postural behavior at a computer workstation in a simulated office environment. Using a nonconcurrent multiple baseline design across 8 participants, the study assessed…

  12. Spacecraft nonlinear control

    NASA Technical Reports Server (NTRS)

    Sheen, Jyh-Jong; Bishop, Robert H.

    1992-01-01

    The feedback linearization technique is applied to the problem of spacecraft attitude control and momentum management with control moment gyros (CMGs). The feedback linearization consists of a coordinate transformation, which transforms the system to a companion form, and a nonlinear feedback control law to cancel the nonlinear dynamics resulting in a linear equivalent model. Pole placement techniques are then used to place the closed-loop poles. The coordinate transformation proposed here evolves from three output functions of relative degree four, three, and two, respectively. The nonlinear feedback control law is presented. Stability in a neighborhood of a controllable torque equilibrium attitude (TEA) is guaranteed and this fact is demonstrated by the simulation results. An investigation of the nonlinear control law shows that singularities exist in the state space outside the neighborhood of the controllable TEA. The nonlinear control law is simplified by a standard linearization technique and it is shown that the linearized nonlinear controller provides a natural way to select control gains for the multiple-input, multiple-output system. Simulation results using the linearized nonlinear controller show good performance relative to the nonlinear controller in the neighborhood of the TEA.

  13. Combining lightning leader and relativistic feedback discharge models of terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.

    2016-12-01

    Lightning leader models of terrestrial gamma-ray flashes (TGFs) are based on the observations that leaders emit bursts of hard x-rays. These x-rays are thought to be generated by runaway electrons created in the high-field regions associated with the leader tips and/or streamers heads. Inside a thunderstorm, it has been proposed that these runaway electrons may experience additional relativistic runaway electron avalanche (RREA) multiplication, increasing the number and the average energy of the electrons, and possibly resulting in a TGF. When modeling TGFs it is important to include the discharge currents resulting from the ionization produced by the runaway electrons, since these currents may alter the electric fields and affect the TGF. In addition, relativistic feedback effects, caused by backward propagating positrons and backscattered x-rays, need to be included, since relativistic feedback limits the size of the electric field and the amount of a RREA multiplication that may occur. In this presentation, a lightning leader model of terrestrial gamma-ray flashes that includes the effects of the discharge currents and relativistic feedback will be described and compared with observations.

  14. Combined contributions of feedforward and feedback inputs to bottom-up attention

    PubMed Central

    Khorsand, Peyman; Moore, Tirin; Soltani, Alireza

    2015-01-01

    In order to deal with a large amount of information carried by visual inputs entering the brain at any given point in time, the brain swiftly uses the same inputs to enhance processing in one part of visual field at the expense of the others. These processes, collectively called bottom-up attentional selection, are assumed to solely rely on feedforward processing of the external inputs, as it is implied by the nomenclature. Nevertheless, evidence from recent experimental and modeling studies points to the role of feedback in bottom-up attention. Here, we review behavioral and neural evidence that feedback inputs are important for the formation of signals that could guide attentional selection based on exogenous inputs. Moreover, we review results from a modeling study elucidating mechanisms underlying the emergence of these signals in successive layers of neural populations and how they depend on feedback from higher visual areas. We use these results to interpret and discuss more recent findings that can further unravel feedforward and feedback neural mechanisms underlying bottom-up attention. We argue that while it is descriptively useful to separate feedforward and feedback processes underlying bottom-up attention, these processes cannot be mechanistically separated into two successive stages as they occur at almost the same time and affect neural activity within the same brain areas using similar neural mechanisms. Therefore, understanding the interaction and integration of feedforward and feedback inputs is crucial for better understanding of bottom-up attention. PMID:25784883

  15. The Group Objective Structured Clinical Experience: building communication skills in the clinical reasoning context.

    PubMed

    Konopasek, Lyuba; Kelly, Kevin V; Bylund, Carma L; Wenderoth, Suzanne; Storey-Johnson, Carol

    2014-07-01

    Students are rarely taught communication skills in the context of clinical reasoning training. The purpose of this project was to combine the teaching of communication skills using SPs with clinical reasoning exercises in a Group Objective Structured Clinical Experience (GOSCE) to study feasibility of the approach, the effect on learners' self-efficacy and attitude toward learning communication skills, and the effect of providing multiple sources of immediate, collaborative feedback. GOSCE sessions were piloted in Pediatrics and Medicine clerkships with students assessing their own performance and receiving formative feedback on communication skills from peers, standardized patients (SPs), and faculty. The sessions were evaluated using a retrospective pre/post-training questionnaire rating changes in self-efficacy and attitudes, and the value of the feedback. Results indicate a positive impact on attitudes toward learning communication skills and self-efficacy regarding communication in the clinical setting. Also, learners considered feedback by peers, SPs, and faculty valuable in each GOSCE. The GOSCE is an efficient and learner-centered method to attend to multiple goals of teaching communication skills, clinical reasoning, self-assessment, and giving feedback in a formative setting. The GOSCE is a low-resource, feasible strategy for experiential learning in communication skills and clinical reasoning. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis

    PubMed Central

    Lin, Chuwen; Yao, Erica; Zhang, Kuan; Jiang, Xuan; Croll, Stacey; Thompson-Peer, Katherine; Chuang, Pao-Tien

    2017-01-01

    Branching morphogenesis is a fundamental program for tissue patterning. We show that active YAP, a key mediator of Hippo signaling, is distributed throughout the murine lung epithelium and loss of epithelial YAP severely disrupts branching. Failure to branch is restricted to regions where YAP activity is removed. This suggests that YAP controls local epithelial cell properties. In support of this model, mechanical force production is compromised and cell proliferation is reduced in Yap mutant lungs. We propose that defective force generation and insufficient epithelial cell number underlie the branching defects. Through genomic analysis, we also uncovered a feedback control of pMLC levels, which is critical for mechanical force production, likely through the direct induction of multiple regulators by YAP. Our work provides a molecular pathway that could control epithelial cell properties required for proper morphogenetic movement and pattern formation. DOI: http://dx.doi.org/10.7554/eLife.21130.001 PMID:28323616

  17. Feedback Processes in Multimedia Language Learning Software

    ERIC Educational Resources Information Center

    Kartal, Erdogan

    2010-01-01

    Feedback has been one of the important elements of learning and teaching theories and still pervades the literature and instructional models, especially computer and web-based ones. However, the mechanisms about feedback dominating the fundamentals of all the instructional models designed for self-learning have changed considerably with the…

  18. Making the Grade: Using Instructional Feedback and Evaluation to Inspire Evidence-Based Teaching

    ERIC Educational Resources Information Center

    Brickman, Peggy; Gormally, Cara; Martella, Amedee Marchand

    2016-01-01

    Typically, faculty receive feedback about teaching via two mechanisms: end-of-semester student evaluations and peer observation. However, instructors require more sustained encouragement and constructive feedback when implementing evidence-based teaching practices. Our study goal was to characterize the landscape of current instructional-feedback…

  19. Understanding feedbacks between ocean acidification and coral reef metabolism

    NASA Astrophysics Data System (ADS)

    Takeshita, Yuichiro

    2017-03-01

    Biogeochemical feedbacks from benthic metabolism have been hypothesized as a potential mechanism to buffer some effects of ocean acidification on coral reefs. The article in JGR-Oceans by DeCarlo et al. demonstrates the importance of benthic community health on this feedback from Dongsha Atoll in the South China Sea.

  20. First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives: DESIGNING STRATOSPHERIC GEOENGINEERING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Ben; MacMartin, Douglas G.; Mills, Michael J.

    We describe the first simulations of stratospheric sulfate aerosol geoengineering using multiple injection locations to meet multiple simultaneous surface temperature objectives. Simulations were performed using CESM1(WACCM), a coupled atmosphere-ocean general circulation model with fully interactive stratospheric chemistry, dynamics (including an internally generated quasi-biennial oscillation), and a sophisticated treatment of sulfate aerosol formation, microphysical growth, and deposition. The objectives are defined as maintaining three temperature features at their 2020 levels against a background of the RCP8.5 scenario over the period 2020-2099. These objectives are met using a feedback mechanism in which the rate of sulfur dioxide injection at each of themore » four locations is adjusted independently every year of simulation. Even in the presence of uncertainties, nonlinearities, and variability, the objectives are met, predominantly by SO2 injection at 30°N and 30°S. By the last year of simulation, the feedback algorithm calls for a total injection rate of 51 Tg SO2 per year. The injections are not in the tropics, which results in a greater degree of linearity of the surface climate response with injection amount than has been found in many previous studies using injection at the equator. Because the objectives are defined in terms of annual mean temperature, the required geeongineering results in "overcooling" during summer and "undercooling" during winter. The hydrological cycle is also suppressed as compared to the reference values corresponding to the year 2020. The demonstration we describe in this study is an important step toward understanding what geoengineering can do and what it cannot do.« less

  1. Is sensorimotor BCI performance influenced differently by mono, stereo, or 3-D auditory feedback?

    PubMed

    McCreadie, Karl A; Coyle, Damien H; Prasad, Girijesh

    2014-05-01

    Imagination of movement can be used as a control method for a brain-computer interface (BCI) allowing communication for the physically impaired. Visual feedback within such a closed loop system excludes those with visual problems and hence there is a need for alternative sensory feedback pathways. In the context of substituting the visual channel for the auditory channel, this study aims to add to the limited evidence that it is possible to substitute visual feedback for its auditory equivalent and assess the impact this has on BCI performance. Secondly, the study aims to determine for the first time if the type of auditory feedback method influences motor imagery performance significantly. Auditory feedback is presented using a stepped approach of single (mono), double (stereo), and multiple (vector base amplitude panning as an audio game) loudspeaker arrangements. Visual feedback involves a ball-basket paradigm and a spaceship game. Each session consists of either auditory or visual feedback only with runs of each type of feedback presentation method applied in each session. Results from seven subjects across five sessions of each feedback type (visual, auditory) (10 sessions in total) show that auditory feedback is a suitable substitute for the visual equivalent and that there are no statistical differences in the type of auditory feedback presented across five sessions.

  2. Learning feedback and feedforward control in a mirror-reversed visual environment.

    PubMed

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi; Diedrichsen, Jörn

    2015-10-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. Copyright © 2015 the American Physiological Society.

  3. Learning feedback and feedforward control in a mirror-reversed visual environment

    PubMed Central

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi

    2015-01-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. PMID:26245313

  4. Re-Visiting the Use of Behavior Theory in Graduate Education: A Comparative Study of Instructor Feedback on Graduate Student Anxiety

    ERIC Educational Resources Information Center

    Davis, Sarita; Coleman, Sylvia Shavon

    2007-01-01

    The purpose of this study is to improve educators' feedback mechanisms in ways that will reduce student anxiety. The relationship between graduate student anxiety levels, instructor feedback, and the effects of the use of red or green ink as instruments of feedback is examined. The sample (N = 52) comprised first year full-time and part-time MSW…

  5. Social is special: A normative framework for teaching with and learning from evaluative feedback.

    PubMed

    Ho, Mark K; MacGlashan, James; Littman, Michael L; Cushman, Fiery

    2017-10-01

    Humans often attempt to influence one another's behavior using rewards and punishments. How does this work? Psychologists have often assumed that "evaluative feedback" influences behavior via standard learning mechanisms that learn from environmental contingencies. On this view, teaching with evaluative feedback involves leveraging learning systems designed to maximize an organism's positive outcomes. Yet, despite its parsimony, programs of research predicated on this assumption, such as ones in developmental psychology, animal behavior, and human-robot interaction, have had limited success. We offer an explanation by analyzing the logic of evaluative feedback and show that specialized learning mechanisms are uniquely favored in the case of evaluative feedback from a social partner. Specifically, evaluative feedback works best when it is treated as communicating information about the value of an action rather than as a form of reward to be maximized. This account suggests that human learning from evaluative feedback depends on inferences about communicative intent, goals and other mental states-much like learning from other sources, such as demonstration, observation and instruction. Because these abilities are especially developed in humans, the present account also explains why evaluative feedback is far more widespread in humans than non-human animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Modeling the hypothalamus-pituitary-adrenal axis: A review and extension.

    PubMed

    Hosseinichimeh, Niyousha; Rahmandad, Hazhir; Wittenborn, Andrea K

    2015-10-01

    Multiple models of the hypothalamus-pituitary-adrenal (HPA) axis have been developed to characterize the oscillations seen in the hormone concentrations and to examine HPA axis dysfunction. We reviewed the existing models, then replicated and compared five of them by finding their correspondence to a dataset consisting of ACTH and cortisol concentrations of 17 healthy individuals. We found that existing models use different feedback mechanisms, vary in the level of details and complexities, and offer inconsistent conclusions. None of the models fit the validation dataset well. Therefore, we re-calibrated the best performing model using partial calibration and extended the model by adding individual fixed effects and an exogenous circadian function. Our estimated parameters reduced the mean absolute percent error significantly and offer a validated reference model that can be used in diverse applications. Our analysis suggests that the circadian and ultradian cycles are not created endogenously by the HPA axis feedbacks, which is consistent with the recent literature on the circadian clock and HPA axis. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Basal ganglia and Dopamine Contributions to Probabilistic Category Learning

    PubMed Central

    Shohamy, D.; Myers, C.E.; Kalanithi, J.; Gluck, M.A.

    2009-01-01

    Studies of the medial temporal lobe and basal ganglia memory systems have recently been extended towards understanding the neural systems contributing to category learning. The basal ganglia, in particular, have been linked to probabilistic category learning in humans. A separate parallel literature in systems neuroscience has emerged, indicating a role for the basal ganglia and related dopamine inputs in reward prediction and feedback processing. Here, we review behavioral, neuropsychological, functional neuroimaging, and computational studies of basal ganglia and dopamine contributions to learning in humans. Collectively, these studies implicate the basal ganglia in incremental, feedback-based learning that involves integrating information across multiple experiences. The medial temporal lobes, by contrast, contribute to rapid encoding of relations between stimuli and support flexible generalization of learning to novel contexts and stimuli. By breaking down our understanding of the cognitive and neural mechanisms contributing to different aspects of learning, recent studies are providing insight into how, and when, these different processes support learning, how they may interact with each other, and the consequence of different forms of learning for the representation of knowledge. PMID:18061261

  8. Open Touch/Sound Maps: A system to convey street data through haptic and auditory feedback

    NASA Astrophysics Data System (ADS)

    Kaklanis, Nikolaos; Votis, Konstantinos; Tzovaras, Dimitrios

    2013-08-01

    The use of spatial (geographic) information is becoming ever more central and pervasive in today's internet society but the most of it is currently inaccessible to visually impaired users. However, access in visual maps is severely restricted to visually impaired and people with blindness, due to their inability to interpret graphical information. Thus, alternative ways of a map's presentation have to be explored, in order to enforce the accessibility of maps. Multiple types of sensory perception like touch and hearing may work as a substitute of vision for the exploration of maps. The use of multimodal virtual environments seems to be a promising alternative for people with visual impairments. The present paper introduces a tool for automatic multimodal map generation having haptic and audio feedback using OpenStreetMap data. For a desired map area, an elevation map is being automatically generated and can be explored by touch, using a haptic device. A sonification and a text-to-speech (TTS) mechanism provide also audio navigation information during the haptic exploration of the map.

  9. Multiple Resource Use Efficiency (mRUE): A New Concept for Ecosystem Production.

    PubMed

    Han, Juanjuan; Chen, Jiquan; Miao, Yuan; Wan, Shiqiang

    2016-11-21

    The resource-driven concept, which is an important school for investigating ecosystem production, has been applied for decades. However, the regulatory mechanisms of production by multiple resources remain unclear. We formulated a new algorithm model that integrates multiple resource uses to study ecosystem production and tested its applications on a water-availability gradient in semi-arid grassland. The result of our experiment showed that changes in water availability significantly affected the resources of light and nitrogen, and altered the relationships among multiple resource absorption rate (ε), multiple resource use efficiency (mRUE), and available resource (R avail ). The increased water availability suppressed ecosystem mRUE (i.e., "declining marginal returns"); The changes in mRUE had a negative effect on ε (i.e., "inverse feedback"). These two processes jointly regulated that the stimulated single resource availability would promote ecosystem production rather than suppress it, even when mRUE was reduced. This study illustrated the use of the mRUE model in exploring the coherent relationships among the key parameters on regulating the ecosystem production for future modeling, and evaluated the sensitivity of this conceptual model under different dataset properties. However, this model needs extensive validation by the ecological community before it can extrapolate this method to other ecosystems in the future.

  10. Ventromedial prefrontal and anterior cingulate cortex adopt choice and default reference frames during sequential multialternative choice

    PubMed Central

    Boorman, Erie D; Rushworth, Matthew F; Behrens, Tim E

    2013-01-01

    Although damage to medial frontal cortex causes profound decision-making impairments, it has been difficult to pinpoint the relative contributions of key anatomical subdivisions. Here we use fMRI to examine the contributions of human ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortex (dACC) during sequential choices between multiple alternatives – two key features of choices made in ecological settings. By carefully constructing options whose current value at any given decision was dissociable from their longer-term value, we were able to examine choices in current and long-term frames of reference. We present evidence showing that activity at choice and feedback in vmPFC and dACC was tied to the current choice and the best long-term option, respectively. vmPFC, mid-cingulate, and PCC encoded the relative value between the chosen and next-best option at each sequential decision, whereas dACC encoded the relative value of adapting choices from the option with the highest value in the longer-term. Furthermore, at feedback we identify temporally dissociable effects that predict repetition of the current choice and adaptation away from the long-term best option in vmPFC and dACC, respectively. These functional dissociations at choice and feedback suggest that sequential choices are subject to competing cortical mechanisms. PMID:23392656

  11. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity

    PubMed Central

    Vasileva, Mina; Sauer, Michael

    2018-01-01

    Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. PMID:29377885

  12. Earth system feedback statistically extracted from the Indian Ocean deep-sea sediments recording Eocene hyperthermals.

    PubMed

    Yasukawa, Kazutaka; Nakamura, Kentaro; Fujinaga, Koichiro; Ikehara, Minoru; Kato, Yasuhiro

    2017-09-12

    Multiple transient global warming events occurred during the early Palaeogene. Although these events, called hyperthermals, have been reported from around the globe, geologic records for the Indian Ocean are limited. In addition, the recovery processes from relatively modest hyperthermals are less constrained than those from the severest and well-studied hothouse called the Palaeocene-Eocene Thermal Maximum. In this study, we constructed a new and high-resolution geochemical dataset of deep-sea sediments clearly recording multiple Eocene hyperthermals in the Indian Ocean. We then statistically analysed the high-dimensional data matrix and extracted independent components corresponding to the biogeochemical responses to the hyperthermals. The productivity feedback commonly controls and efficiently sequesters the excess carbon in the recovery phases of the hyperthermals via an enhanced biological pump, regardless of the magnitude of the events. Meanwhile, this negative feedback is independent of nannoplankton assemblage changes generally recognised in relatively large environmental perturbations.

  13. Teaching Pharmacology Graduate Students how to Write an NIH Grant Application

    PubMed Central

    O’Donnell, Lauren A.; Surratt, Christopher K.

    2015-01-01

    Objective. To fill the gap in grant writing training in pharmacology graduate education using an active-learning strategy. Design. Graduate students wrote subsections of a grant according to NIH guidelines. Students revised their applications based on multiple rounds of critiques from professors and peers throughout a semester-long scientific writing course. Assessment. Prerevision and postrevision grant drafts were graded. Students were provided with questionnaires assessing their perception of the process. To determine the impact of feedback on the proposals, the quality of the pre/postrevision drafts was assessed by professors who were blinded and unaffiliated with the course. Conclusion. Student grades improved significantly upon resubmission. Perceptions of the proposals by blinded faculty members favored revised submissions based on multiple criteria. Survey feedback indicated an increase in student confidence in grant writing ability. The results of 3 independent measures demonstrate that intensive feedback on scientific writing improved the quality of student proposals. PMID:28435165

  14. Teaching Pharmacology Graduate Students how to Write an NIH Grant Application.

    PubMed

    Leak, Rehana K; O'Donnell, Lauren A; Surratt, Christopher K

    2015-11-25

    Objective. To fill the gap in grant writing training in pharmacology graduate education using an active-learning strategy. Design. Graduate students wrote subsections of a grant according to NIH guidelines. Students revised their applications based on multiple rounds of critiques from professors and peers throughout a semester-long scientific writing course. Assessment. Prerevision and postrevision grant drafts were graded. Students were provided with questionnaires assessing their perception of the process. To determine the impact of feedback on the proposals, the quality of the pre/postrevision drafts was assessed by professors who were blinded and unaffiliated with the course. Conclusion. Student grades improved significantly upon resubmission. Perceptions of the proposals by blinded faculty members favored revised submissions based on multiple criteria. Survey feedback indicated an increase in student confidence in grant writing ability. The results of 3 independent measures demonstrate that intensive feedback on scientific writing improved the quality of student proposals.

  15. Increased cognitive load enables unlearning in procedural category learning.

    PubMed

    Crossley, Matthew J; Maddox, W Todd; Ashby, F Gregory

    2018-04-19

    Interventions for drug abuse and other maladaptive habitual behaviors may yield temporary success but are often fragile and relapse is common. This implies that current interventions do not erase or substantially modify the representations that support the underlying addictive behavior-that is, they do not cause true unlearning. One example of an intervention that fails to induce true unlearning comes from Crossley, Ashby, and Maddox (2013, Journal of Experimental Psychology: General), who reported that a sudden shift to random feedback did not cause unlearning of category knowledge obtained through procedural systems, and they also reported results suggesting that this failure is because random feedback is noncontingent on behavior. These results imply the existence of a mechanism that (a) estimates feedback contingency and (b) protects procedural learning from modification when feedback contingency is low (i.e., during random feedback). This article reports the results of an experiment in which increasing cognitive load via an explicit dual task during the random feedback period facilitated unlearning. This result is consistent with the hypothesis that the mechanism that protects procedural learning when feedback contingency is low depends on executive function. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Challenges and Recent Developments in Hearing Aids: Part II. Feedback and Occlusion Effect Reduction Strategies, Laser Shell Manufacturing Processes, and Other Signal Processing Technologies

    PubMed Central

    Chung, King

    2004-01-01

    This is the second part of a review on the challenges and recent developments in hearing aids. Feedback and the occlusion effect pose great challenges in hearing aid design and usage. Yet, conventional solutions to feedback and the occlusion effect often create a dilemma: the solution to one often leads to the other. This review discusses the advanced signal processing strategies to reduce feedback and some new approaches to reduce the occlusion effect. Specifically, the causes of three types of feedback (acoustic, mechanical, and electromagnetic) are discussed. The strategies currently used to reduce acoustic feedback (i.e., adaptive feedback reduction algorithms using adaptive gain reduction, notch filtering, and phase cancellation strategies) and the design of new receivers that are built to reduce mechanical and electromagnetic feedback are explained. In addition, various new strategies (i.e., redesigned sound delivery devices and receiver-in-the-ear-canal hearing aid configuration) to reduce the occlusion effect are reviewed. Many manufacturers have recently adopted laser shell-manufacturing technologies to overcome problems associated with manufacturing custom hearing aid shells. The mechanisms of selected laser sintering and stereo lithographic apparatus and the properties of custom shells produced by these two processes are reviewed. Further, various new developments in hearing aid transducers, telecoils, channel-free amplification, open-platform programming options, rechargeable hearing aids, ear-level frequency modulated (FM) receivers, wireless Bluetooth FM systems, and wireless programming options are briefly explained and discussed. Finally, the applications of advanced hearing aid technologies to enhance other devices such as cochlear implants, hearing protectors, and cellular phones are discussed. PMID:15735871

  17. Active galactic nucleus feedback in an isolated elliptical galaxy: The effect of strong radiative feedback in the kinetic mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Zhaoming; Yuan, Feng; Ostriker, Jeremiah P.

    2014-07-10

    Based on two-dimensional high-resolution hydrodynamic numerical simulation, we study the mechanical and radiative feedback effects from the central active galactic nucleus (AGN) on the cosmological evolution of an isolated elliptical galaxy. The inner boundary of the simulation domain is carefully chosen so that the fiducial Bondi radius is resolved and the accretion rate of the black hole is determined self-consistently. It is well known that when the accretion rates are high and low, the central AGNs will be in cold and hot accretion modes, which correspond to the radiative and kinetic feedback modes, respectively. The emitted spectrum from the hotmore » accretion flows is harder than that from the cold accretion flows, which could result in a higher Compton temperature accompanied by a more efficient radiative heating, according to previous theoretical works. Such a difference of the Compton temperature between the two feedback modes, the focus of this study, has been neglected in previous works. Significant differences in the kinetic feedback mode are found as a result of the stronger Compton heating. More importantly, if we constrain models to correctly predict black hole growth and AGN duty cycle after cosmological evolution, we find that the favored model parameters are constrained: mechanical feedback efficiency diminishes with decreasing luminosity (the maximum efficiency being ≅ 10{sup –3.5}), and X-ray Compton temperature increases with decreasing luminosity, although models with fixed mechanical efficiency and Compton temperature can be found that are satisfactory as well. We conclude that radiative feedback in the kinetic mode is much more important than previously thought.« less

  18. Cultivating Engagement and Enjoyment in Exergames Using Feedback, Challenge, and Rewards.

    PubMed

    Lyons, Elizabeth J

    2015-02-01

    This article reviews theoretical and empirical evidence related to three mechanisms for encouraging enjoyment during exergame play: Feedback, challenge, and rewards. A literature search and narrative review were conducted. Feedback is found in nearly all exergames, and richer, more in-depth feedback is associated with increased activity. Challenge is a vital component of any videogame, and exergames include physical as well as cognitive challenges. Flow states have traditionally been conceptualized as occurring when an optimal match between player skills and game challenge occurs. However, failure and retrial are necessary for feelings of overall satisfaction and fun, despite not necessarily being ideally fun or satisfying themselves. Rewards are a more complicated issue, with significant theoretical and empirical evidence suggesting positive and negative effects of reward systems. How rewards are integrated into the mechanics and storyline of the game likely impacts how they are perceived and, thus, their effectiveness. Finally, integration of these mechanisms into exergames requires specific attention to both cognitive and physical implementations. Movements that are not themselves enjoyable or engaging may lead to cheating and lower energy expenditure. Feedback, challenge, and rewards are promising mechanisms by which exergames could become more enjoyable. How these concepts are operationalized can affect physical and psychological reactions to exergames. Attention to these concepts in future exergame development and implementation would benefit theory, research, and practice.

  19. Cultivating Engagement and Enjoyment in Exergames Using Feedback, Challenge, and Rewards

    PubMed Central

    2015-01-01

    Abstract Objective: This article reviews theoretical and empirical evidence related to three mechanisms for encouraging enjoyment during exergame play: Feedback, challenge, and rewards. Materials and Methods: A literature search and narrative review were conducted. Results: Feedback is found in nearly all exergames, and richer, more in-depth feedback is associated with increased activity. Challenge is a vital component of any videogame, and exergames include physical as well as cognitive challenges. Flow states have traditionally been conceptualized as occurring when an optimal match between player skills and game challenge occurs. However, failure and retrial are necessary for feelings of overall satisfaction and fun, despite not necessarily being ideally fun or satisfying themselves. Rewards are a more complicated issue, with significant theoretical and empirical evidence suggesting positive and negative effects of reward systems. How rewards are integrated into the mechanics and storyline of the game likely impacts how they are perceived and, thus, their effectiveness. Finally, integration of these mechanisms into exergames requires specific attention to both cognitive and physical implementations. Movements that are not themselves enjoyable or engaging may lead to cheating and lower energy expenditure. Conclusions: Feedback, challenge, and rewards are promising mechanisms by which exergames could become more enjoyable. How these concepts are operationalized can affect physical and psychological reactions to exergames. Attention to these concepts in future exergame development and implementation would benefit theory, research, and practice. PMID:26181675

  20. Two passive mechanical conditions modulate power generation by the outer hair cells

    PubMed Central

    Gracewski, Sheryl M.

    2017-01-01

    In the mammalian cochlea, small vibrations of the sensory epithelium are amplified due to active electro-mechanical feedback of the outer hair cells. The level of amplification is greater in the base than in the apex of the cochlea. Theoretical studies have used longitudinally varying active feedback properties to reproduce the location-dependent amplification. The active feedback force has been considered to be proportional to the basilar membrane displacement or velocity. An underlying assumption was that organ of Corti mechanics are governed by rigid body kinematics. However, recent progress in vibration measurement techniques reveals that organ of Corti mechanics are too complicated to be fully represented with rigid body kinematics. In this study, two components of the active feedback are considered explicitly—organ of Corti mechanics, and outer hair cell electro-mechanics. Physiological properties for the outer hair cells were incorporated, such as the active force gain, mechano-transduction properties, and membrane RC time constant. Instead of a kinematical model, a fully deformable 3D finite element model was used. We show that the organ of Corti mechanics dictate the longitudinal trend of cochlear amplification. Specifically, our results suggest that two mechanical conditions are responsible for location-dependent cochlear amplification. First, the phase of the outer hair cell’s somatic force with respect to its elongation rate varies along the cochlear length. Second, the local stiffness of the organ of Corti complex felt by individual outer hair cells varies along the cochlear length. We describe how these two mechanical conditions result in greater amplification toward the base of the cochlea. PMID:28880884

  1. Receiver-Assisted Congestion Control to Achieve High Throughput in Lossy Wireless Networks

    NASA Astrophysics Data System (ADS)

    Shi, Kai; Shu, Yantai; Yang, Oliver; Luo, Jiarong

    2010-04-01

    Many applications would require fast data transfer in high-speed wireless networks nowadays. However, due to its conservative congestion control algorithm, Transmission Control Protocol (TCP) cannot effectively utilize the network capacity in lossy wireless networks. In this paper, we propose a receiver-assisted congestion control mechanism (RACC) in which the sender performs loss-based control, while the receiver is performing delay-based control. The receiver measures the network bandwidth based on the packet interarrival interval and uses it to compute a congestion window size deemed appropriate for the sender. After receiving the advertised value feedback from the receiver, the sender then uses the additive increase and multiplicative decrease (AIMD) mechanism to compute the correct congestion window size to be used. By integrating the loss-based and the delay-based congestion controls, our mechanism can mitigate the effect of wireless losses, alleviate the timeout effect, and therefore make better use of network bandwidth. Simulation and experiment results in various scenarios show that our mechanism can outperform conventional TCP in high-speed and lossy wireless environments.

  2. Quantum feedback cooling of a mechanical oscillator using variational measurements: tweaking Heisenberg’s microscope

    NASA Astrophysics Data System (ADS)

    Habibi, Hojat; Zeuthen, Emil; Ghanaatshoar, Majid; Hammerer, Klemens

    2016-08-01

    We revisit the problem of preparing a mechanical oscillator in the vicinity of its quantum-mechanical ground state by means of feedback cooling based on continuous optical detection of the oscillator position. In the parameter regime relevant to ground-state cooling, the optical back-action and imprecision noise set the bottleneck of achievable cooling and must be carefully balanced. This can be achieved by adapting the phase of the local oscillator in the homodyne detection realizing a so-called variational measurement. The trade-off between accurate position measurement and minimal disturbance can be understood in terms of Heisenberg’s microscope and becomes particularly relevant when the measurement and feedback processes happen to be fast within the quantum coherence time of the system to be cooled. This corresponds to the regime of large quantum cooperativity {C}{{q}}≳ 1, which was achieved in recent experiments on feedback cooling. Our method provides a simple path to further pushing the limits of current state-of-the-art experiments in quantum optomechanics.

  3. A Post-Transcriptional Feedback Mechanism for Noise Suppression and Fate Stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Maike M. K.; Wen, Winnie Y.; Ingerman, Elena

    Diverse biological systems utilize fluctuations (“noise”) in gene expression to drive lineage-commitment decisions. However, once a commitment is made, noise becomes detrimental to reliable function, and the mechanisms enabling post-commitment noise suppression are unclear. Here, we find that architectural constraints on noise suppression are overcome to stabilize fate commitment. Using single-molecule and time-lapse imaging, we find that—after a noise-driven event—human immunodeficiency virus (HIV) strongly attenuates expression noise through a non-transcriptional negative-feedback circuit. Feedback is established through a serial cascade of post-transcriptional splicing, whereby proteins generated from spliced mRNAs auto-deplete their own precursor unspliced mRNAs. Strikingly, this auto-depletion circuitry minimizes noisemore » to stabilize HIV’s commitment decision, and a noise-suppression molecule promotes stabilization. Lastly, this feedback mechanism for noise suppression suggests a functional role for delayed splicing in other systems and may represent a generalizable architecture of diverse homeostatic signaling circuits.« less

  4. A Post-Transcriptional Feedback Mechanism for Noise Suppression and Fate Stabilization

    DOE PAGES

    Hansen, Maike M. K.; Wen, Winnie Y.; Ingerman, Elena; ...

    2018-05-10

    Diverse biological systems utilize fluctuations (“noise”) in gene expression to drive lineage-commitment decisions. However, once a commitment is made, noise becomes detrimental to reliable function, and the mechanisms enabling post-commitment noise suppression are unclear. Here, we find that architectural constraints on noise suppression are overcome to stabilize fate commitment. Using single-molecule and time-lapse imaging, we find that—after a noise-driven event—human immunodeficiency virus (HIV) strongly attenuates expression noise through a non-transcriptional negative-feedback circuit. Feedback is established through a serial cascade of post-transcriptional splicing, whereby proteins generated from spliced mRNAs auto-deplete their own precursor unspliced mRNAs. Strikingly, this auto-depletion circuitry minimizes noisemore » to stabilize HIV’s commitment decision, and a noise-suppression molecule promotes stabilization. Lastly, this feedback mechanism for noise suppression suggests a functional role for delayed splicing in other systems and may represent a generalizable architecture of diverse homeostatic signaling circuits.« less

  5. Acknowledging selection at sub-organismal levels resolves controversy on pro-cooperation mechanisms

    PubMed Central

    Shou, Wenying

    2015-01-01

    Cooperators who pay a cost to produce publically-available benefits can be exploited by cheaters who do not contribute fairly. How might cooperation persist against cheaters? Two classes of mechanisms are known to promote cooperation: 'partner choice', where a cooperator preferentially interacts with cooperative over cheating partners; and 'partner fidelity feedback', where repeated interactions between individuals ensure that cheaters suffer as their cooperative partners languish (see, for example, Momeni et al., 2013). However when both mechanisms can act, differentiating them has generated controversy. Here, I resolve this controversy by noting that selection can operate on organismal and sub-organismal 'entities' such that partner fidelity feedback at sub-organismal level can appear as partner choice at organismal level. I also show that cooperation between multicellular eukaryotes and mitochondria is promoted by partner fidelity feedback and partner choice between sub-organismal entities, in addition to being promoted by partner fidelity feedback between hosts and symbionts, as was previously known. DOI: http://dx.doi.org/10.7554/eLife.10106.001 PMID:26714105

  6. Modeling trial by trial and block feedback in perceptual learning

    PubMed Central

    Liu, Jiajuan; Dosher, Barbara; Lu, Zhong-Lin

    2014-01-01

    Feedback has been shown to play a complex role in visual perceptual learning. It is necessary for performance improvement in some conditions while not others. Different forms of feedback, such as trial-by-trial feedback or block feedback, may both facilitate learning, but with different mechanisms. False feedback can abolish learning. We account for all these results with the Augmented Hebbian Reweight Model (AHRM). Specifically, three major factors in the model advance performance improvement: the external trial-by-trial feedback when available, the self-generated output as an internal feedback when no external feedback is available, and the adaptive criterion control based on the block feedback. Through simulating a comprehensive feedback study (Herzog & Fahle 1997, Vision Research, 37 (15), 2133–2141), we show that the model predictions account for the pattern of learning in seven major feedback conditions. The AHRM can fully explain the complex empirical results on the role of feedback in visual perceptual learning. PMID:24423783

  7. Investigation of control system of traction electric drive with feedbacks on load

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. K.; Iov, I. A.; Iov, A. A.

    2018-03-01

    In the article, by the example of a walking excavator, the results of a study of a control system of traction electric drive with a rigid and flexible feedback on the load are mentioned. Based on the analysis of known works, the calculation scheme has been chosen; the equations of motion of the electromechanical system have been obtained, taking into account the elasticity of the rope and feedbacks on the load in the elastic element. A simulation model of this system has been developed and mathematical modeling of the transient processes to evaluate the influence of feedback on the dynamic characteristics of the mechanism and its efficiency of work was carried out. It is shown that the use of rigid and flexible feedbacks makes it possible to reduce dynamic loads in the traction mechanism and to limit the elastic oscillation of the executive mechanism in transient operating modes in comparison with the standard control system; however, there is some decrease in productivity. It has been also established that the sign-variable of the loading of the electric drive, connected with the opening of the backlashes in the gearbox due to the action of feedbacks on the load in the elastic element, under certain conditions, can lead to undesirable phenomena in the operation of the drive and a decrease in the reliability of its operation.

  8. Multiple greenhouse gas feedbacks from the land biosphere under future climate change scenarios

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin; Roth, Raphael; Joos, Fortunat; Spahni, Renato; Steinacher, Marco; Zaehle, Soenke; Bouwman, Lex; Xu-Ri, Xu-Ri; Prentice, Colin

    2013-04-01

    Atmospheric concentrations of the three important greenhouse gases (GHG) CO2, CH4, and N2O are mediated by processes in the terrestrial biosphere. The sensitivity of terrestrial GHG emissions to climate and CO2 contributed to the sharp rise in atmospheric GHG concentrations since preindustrial times and leads to multiple feedbacks between the terrestrial biosphere and the climate system. The strength of these feedbacks is determined by (i) the sensitivity of terrestrial GHG emissions to climate and CO2 and (ii) the greenhouse warming potential of the respective gas. Here, we quantify feedbacks from CO2, CH4, N2O, and land surface albedo in a consistent and comprehensive framework based on a large set of simulations conducted with an Earth System Model of Intermediate Complexity. The modeled sensitivities of CH4 and N2O emissions are tested, demonstrating that independent data for non-land (anthropogenic, oceanic, etc.) GHG emissions, combined with simulated emissions from natural and agricultural land reproduces historical atmospheric budgets within their uncertainties. 21st-century scenarios for climate, land use change and reactive nitrogen inputs (Nr) are applied to investigate future GHG emissions. Results suggest that in a business-as-usual scenario, terrestrial N2O emissions increase from 9.0 by today to 9.8-11.1 (RCP 2.6) and 14.2-17.0 TgN2O-N/yr by 2100 (RCP 8.5). Without anthropogenic Nr inputs, the amplification is reduced by 24-32%. Soil CH4 emissions increase from 221 at present to 228-245 in RCP 2.6 and to 303-343 TgCH4/yr in RCP 8.5, and the land becomes a net source of C by 2100 AD. Feedbacks from land imply an additional warming of 1.3-1.5°C by 2300 in RCP 8.5, 0.4-0.5°C of which are due to N2O and CH4. The combined effect of multiple GHGs and albedo represents an increasingly positive total feedback to anthropogenic climate change with positive individual feedbacks from CH4, N2O, and albedo outweighing the diminishing negative feedback from CO2 fertilisation of terrestrial C storage. This positive feedback from terrestrial biogeochemistry amplifies the traditionally defined physical equilibrium climate sensitivity by 23-28%, Strong mitigation, reducing Nr inputs and preserving natural vegetation limits the amplification of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier of anthropogenic climate change.

  9. Disrupting vagal feedback affects birdsong motor control.

    PubMed

    Méndez, Jorge M; Dall'asén, Analía G; Goller, Franz

    2010-12-15

    Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback.

  10. Disrupting vagal feedback affects birdsong motor control

    PubMed Central

    Méndez, Jorge M.; Dall'Asén, Analía G.; Goller, Franz

    2010-01-01

    Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback. PMID:21113000

  11. The Role of Possible Feedback Mechanisms in the Effects of Altered Gravity on Formation and Function of Gravireceptors of Mollusks and Fish

    NASA Technical Reports Server (NTRS)

    Kondrachuk, Alexander V.; Boyle, Richard D.

    2005-01-01

    The variety of the effects of altered gravity (AG) on development and function of gravireceptors cannot be explained by simple feedback mechanism that correlates gravity level and weight of test mass. The reaction of organisms to the change of gravity depends on the phase of their development. To predict this reaction we need to know the details of the mechanisms of gravireceptor formation

  12. Self-Verification and Depressive Symptoms in Marriage and Courtship: A Multiple Pathway Model.

    ERIC Educational Resources Information Center

    Katz, Jennifer; Beach, Steven R. H.

    1997-01-01

    Examines whether self-verifying feedback may lead to decreased depressive symptoms. Results, based on 138 married women and 258 dating women, showed full mediational effects in the married sample and partial effects in the dating sample. Findings suggest that partner self-verifying feedback may intensify the effect of self-esteem on depression.…

  13. Effects of Individualized Video Feedback Combined with Group Parent Training on Inappropriate Maternal Behavior

    ERIC Educational Resources Information Center

    Phaneuf, Leah; McIntyre, Laura Lee

    2007-01-01

    The effects of adding individualized video feedback (IVF) to Webster-Stratton's (2000, 2001) group-based parent training program (GT) were evaluated using a multiple baseline design across four mother-child dyads. During all phases of the study, inappropriate maternal behavior was recorded from videotapes of playtime with their preschoolers with…

  14. Students' Talk about the Climate of Feedback Interventions in the Critique

    ERIC Educational Resources Information Center

    Dannels, Deanna P.; Housley Gaffney, Amy L.; Martin, Kelly Norris

    2011-01-01

    Similar to many courses in communication, oral communication is central to the learning goals in the discipline of design. Design critiques, the primary communication activity in design classrooms, occur in every studio course multiple times. One key feature of the critique, as an oral genre, is the amount of time and emphasis placed on feedback.…

  15. The Effects of Task Clarification, Visual Prompts, and Graphic Feedback on Customer Greeting and Up-Selling in a Restaurant

    ERIC Educational Resources Information Center

    Squires, James; Wilder, David A.; Fixsen, Amanda; Hess, Erica; Rost, Kristen; Curran, Ryan; Zonneveld, Kimberly

    2007-01-01

    An intervention consisting of task clarification, visual prompts, and graphic feedback was evaluated to increase customer greeting and up-selling in a restaurant. A combination multiple baseline and reversal design was used to evaluate intervention effects. Although all interventions improved performance over baseline, the delivery of graphic…

  16. The Effects of Task Clarification, Feedback, and Goal Setting on Student Advisors' Office Behaviors and Customer Service

    ERIC Educational Resources Information Center

    Tittelbach, Danielle; DeAngelis, Maureen; Sturmey, Peter; Alvero, Alicia M.

    2007-01-01

    This study evaluated the effects of feedback, task clarification and goal-setting on office behaviors and customer service of ten undergraduate participants that served as university advisors. A multiple baseline design was implemented across three target behaviors: client greeting, front-desk behaviors, and punctuality. During intervention the…

  17. Effects of Differential Feedback on the Answering of Two Types of Questions by Fifth- and Sixth-Graders.

    ERIC Educational Resources Information Center

    Peeck, J.

    1979-01-01

    Fifth- and sixth-graders were tested with multiple-choice fact and inference questions about a reading passage, then given feedback either with or without the text present. Retesting occurred four days later. Results corroborated recent findings on age-related improvement in inferential processing comprehension and memory. (Author/SJL)

  18. Video Modeling by Experts with Video Feedback to Enhance Gymnastics Skills

    ERIC Educational Resources Information Center

    Boyer, Eva; Miltenberger, Raymond G.; Batsche, Catherine; Fogel, Victoria

    2009-01-01

    The effects of combining video modeling by experts with video feedback were analyzed with 4 female competitive gymnasts (7 to 10 years old) in a multiple baseline design across behaviors. During the intervention, after the gymnast performed a specific gymnastics skill, she viewed a video segment showing an expert gymnast performing the same skill…

  19. Using Performance Feedback of Reciprocal Teaching Strategies to Increase Reading Comprehension Srategy Use with Seventh Grade Students with Comprehension Difficulties

    ERIC Educational Resources Information Center

    Burns, Matthew K.; Maki, Kathrin E.; Karich, Abbey C.; Coolong-Chaffin, Melissa

    2017-01-01

    The current study used a multiple-baseline design to examine the effect of providing performance feedback on comprehension strategy use and reading comprehension. The participants were four seventh grade students with comprehension difficulties. The students were taught the reciprocal teaching comprehension strategies of generating questions,…

  20. An Evaluation of the Effectiveness of an Automated Observation and Feedback System on Safe Sitting Postures

    ERIC Educational Resources Information Center

    Yu, Eunjeong; Moon, Kwangsu; Oah, Shezeen; Lee, Yohaeng

    2013-01-01

    This study evaluated the effectiveness of an automated observation and feedback system in improving safe sitting postures. Participants were four office workers. The dependent variables were the percentages of time participants spent in five safe body positions during experimental sessions. We used a multiple-baseline design counterbalanced across…

  1. Action Research to Improve Methods of Delivery and Feedback in an Access Grid Room Environment

    ERIC Educational Resources Information Center

    McArthur, Lynne C.; Klass, Lara; Eberhard, Andrew; Stacey, Andrew

    2011-01-01

    This article describes a qualitative study which was undertaken to improve the delivery methods and feedback opportunity in honours mathematics lectures which are delivered through Access Grid Rooms. Access Grid Rooms are facilities that provide two-way video and audio interactivity across multiple sites, with the inclusion of smart boards. The…

  2. The Effects of Constant Time Delay and Instructive Feedback on the Acquisition of English and Spanish Sight Words

    ERIC Educational Resources Information Center

    Appelman, Michelle; Vail, Cynthia O.; Lieberman-Betz, Rebecca G.

    2014-01-01

    The authors of this study evaluated the acquisition of instructive feedback information presented to four kindergarten children with mild delays taught in dyads using a constant time delay (CTD) procedure. They also assessed the learning of observational (dyadic partner) information within this instructional arrangement. A multiple probe design…

  3. Models of vocal learning in the songbird: Historical frameworks and the stabilizing critic.

    PubMed

    Nick, Teresa A

    2015-10-01

    Birdsong is a form of sensorimotor learning that involves a mirror-like system that activates with both song hearing and production. Early models of song learning, based on behavioral measures, identified key features of vocal plasticity, such as the requirements for memorization of a tutor song and auditory feedback during song practice. The concept of a comparator, which compares the memory of the tutor song to auditory feedback, featured prominently. Later models focused on linking anatomically-defined neural modules to behavioral concepts, such as the comparator. Exploiting the anatomical modularity of the songbird brain, localized lesions illuminated mechanisms of the neural song system. More recent models have integrated neuronal mechanisms identified in other systems with observations in songbirds. While these models explain multiple aspects of song learning, they must incorporate computational elements based on unknown biological mechanisms to bridge the motor-to-sensory delay and/or transform motor signals into the sensory domain. Here, I introduce the stabilizing critic hypothesis, which enables sensorimotor learning by (1) placing a purely sensory comparator afferent of the song system and (2) endowing song system disinhibitory interneuron networks with the capacity both to bridge the motor-sensory delay through prolonged bursting and to stabilize song segments selectively based on the comparator signal. These proposed networks stabilize an otherwise variable signal generated by both putative mirror neurons and a cortical-basal ganglia-thalamic loop. This stabilized signal then temporally converges with a matched premotor signal in the efferent song motor cortex, promoting spike-timing-dependent plasticity in the premotor circuitry and behavioral song learning. © 2014 Wiley Periodicals, Inc.

  4. Spike timing precision of neuronal circuits.

    PubMed

    Kilinc, Deniz; Demir, Alper

    2018-06-01

    Spike timing is believed to be a key factor in sensory information encoding and computations performed by the neurons and neuronal circuits. However, the considerable noise and variability, arising from the inherently stochastic mechanisms that exist in the neurons and the synapses, degrade spike timing precision. Computational modeling can help decipher the mechanisms utilized by the neuronal circuits in order to regulate timing precision. In this paper, we utilize semi-analytical techniques, which were adapted from previously developed methods for electronic circuits, for the stochastic characterization of neuronal circuits. These techniques, which are orders of magnitude faster than traditional Monte Carlo type simulations, can be used to directly compute the spike timing jitter variance, power spectral densities, correlation functions, and other stochastic characterizations of neuronal circuit operation. We consider three distinct neuronal circuit motifs: Feedback inhibition, synaptic integration, and synaptic coupling. First, we show that both the spike timing precision and the energy efficiency of a spiking neuron are improved with feedback inhibition. We unveil the underlying mechanism through which this is achieved. Then, we demonstrate that a neuron can improve on the timing precision of its synaptic inputs, coming from multiple sources, via synaptic integration: The phase of the output spikes of the integrator neuron has the same variance as that of the sample average of the phases of its inputs. Finally, we reveal that weak synaptic coupling among neurons, in a fully connected network, enables them to behave like a single neuron with a larger membrane area, resulting in an improvement in the timing precision through cooperation.

  5. Optimal integral force feedback for active vibration control

    NASA Astrophysics Data System (ADS)

    Teo, Yik R.; Fleming, Andrew J.

    2015-11-01

    This paper proposes an improvement to Integral Force Feedback (IFF), which is a popular method for active vibration control of structures and mechanical systems. Benefits of IFF include robustness, guaranteed stability and simplicity. However, the maximum damping performance is dependent on the stiffness of the system; hence, some systems cannot be adequately controlled. In this paper, an improvement to the classical force feedback control scheme is proposed. The improved method achieves arbitrary damping for any mechanical system by introducing a feed-through term. The proposed improvement is experimentally demonstrated by actively damping an objective lens assembly for a high-speed confocal microscope.

  6. A Dynamic Social Feedback System to Support Learning and Social Interaction in Higher Education

    ERIC Educational Resources Information Center

    Thoms, Brian

    2011-01-01

    In this research, we examine the design, construction, and implementation of a dynamic, easy to use, feedback mechanism for social software. The tool was integrated into an existing university's online learning community (OLC). In line with constructivist learning models and practical information systems (IS) design, the feedback system provides…

  7. Factors Influencing Responsiveness to Feedback: On the Interplay between Fear, Confidence, and Reasoning Processes

    ERIC Educational Resources Information Center

    Eva, Kevin W.; Armson, Heather; Holmboe, Eric; Lockyer, Jocelyn; Loney, Elaine; Mann, Karen; Sargeant, Joan

    2012-01-01

    Self-appraisal has repeatedly been shown to be inadequate as a mechanism for performance improvement. This has placed greater emphasis on understanding the processes through which self-perception and external feedback interact to influence professional development. As feedback is inevitably interpreted through the lens of one's self-perceptions it…

  8. Separable Neural Mechanisms Contribute to Feedback Processing in a Rule-Learning Task

    ERIC Educational Resources Information Center

    Zanolie, K.; Van Leijenhorst, L.; Rombouts, S. A. R. B.; Crone, E. A.

    2008-01-01

    To adjust performance appropriately to environmental demands, it is important to monitor ongoing action and process performance feedback for possible errors. In this study, we used fMRI to test whether medial prefrontal cortex (PFC)/anterior cingulate cortex (ACC) and dorsolateral (DL) PFC have different roles in feedback processing. Twenty adults…

  9. Neural Correlates of the Lombard Effect in Primate Auditory Cortex

    PubMed Central

    Eliades, Steven J.

    2012-01-01

    Speaking is a sensory-motor process that involves constant self-monitoring to ensure accurate vocal production. Self-monitoring of vocal feedback allows rapid adjustment to correct perceived differences between intended and produced vocalizations. One important behavior in vocal feedback control is a compensatory increase in vocal intensity in response to noise masking during vocal production, commonly referred to as the Lombard effect. This behavior requires mechanisms for continuously monitoring auditory feedback during speaking. However, the underlying neural mechanisms are poorly understood. Here we show that when marmoset monkeys vocalize in the presence of masking noise that disrupts vocal feedback, the compensatory increase in vocal intensity is accompanied by a shift in auditory cortex activity toward neural response patterns seen during vocalizations under normal feedback condition. Furthermore, we show that neural activity in auditory cortex during a vocalization phrase predicts vocal intensity compensation in subsequent phrases. These observations demonstrate that the auditory cortex participates in self-monitoring during the Lombard effect, and may play a role in the compensation of noise masking during feedback-mediated vocal control. PMID:22855821

  10. Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate.

    PubMed

    Zhai, Tianrui; Wang, Yonglu; Chen, Li; Zhang, Xinping

    2015-08-07

    Tunable multi-wavelength polymer lasers based on two-dimensional distributed feedback structures are fabricated on a transparent flexible substrate using interference ablation. A scalene triangular lattice structure was designed to support stable tri-wavelength lasing emission and was achieved through multiple exposure processes. Three wavelengths were controlled by three periods of the compound cavity. Mode competition among different cavity modes was observed by changing the pump fluence. Both a redshift and blueshift of the laser wavelength could be achieved by bending the soft substrate. These results not only provide insight into the physical mechanisms behind co-cavity polymer lasers but also introduce new laser sources and laser designs for white light lasers.

  11. Why self-controlled feedback enhances motor learning: Answers from electroencephalography and indices of motivation.

    PubMed

    Grand, Kirk F; Bruzi, Alessandro T; Dyke, Ford B; Godwin, Maurice M; Leiker, Amber M; Thompson, Andrew G; Buchanan, Taylor L; Miller, Matthew W

    2015-10-01

    It was tested whether learners who choose when to receive augmented feedback while practicing a motor skill exhibit enhanced augmented feedback processing and intrinsic motivation, along with superior learning, relative to learners who do not control their feedback. Accordingly, participants were assigned to either self-control (Self) or yoked groups and asked to practice a non-dominant arm beanbag toss. Self participants received augmented feedback at their discretion, whereas Yoked participants were given feedback schedules matched to Self counterparts. Participants' visual feedback was occluded, and when they received augmented feedback, their processing of it was indexed with the electroencephalography-derived feedback-related negativity (FRN). Participants self-reported intrinsic motivation via the Intrinsic Motivation Inventory (IMI) after practice, and completed a retention and transfer test the next day to index learning. Results partially support the hypothesis. Specifically, Self participants reported higher IMI scores, exhibited larger FRNs, and demonstrated better accuracy on the transfer test, but not on the retention test, nor did they exhibit greater consistency on the retention or transfer tests. Additionally, post-hoc multiple regression analysis indicated FRN amplitude predicted transfer test accuracy (accounting for IMI score). Results suggest self-controlled feedback schedules enhance feedback processing, which enhances the transfer of a newly acquired motor skill. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Perceived Insider Status and Feedback Reactions: A Dual Path of Feedback Motivation Attribution.

    PubMed

    Chen, Xiao; Liao, JianQiao; Wu, Weijiong; Zhang, Wei

    2017-01-01

    Many studies have evaluated how the characteristics of feedback receiver, feedback deliverer and feedback information influence psychological feedback reactions of the feedback receiver while largely neglecting that feedback intervention is a kind of social interaction process. To address this issue, this study proposes that employees' perceived insider status (PIS), as a kind of employee-organization relationship, could also influence employees' reactions to supervisory feedback. In particular, this study investigates the influence of PIS focusing on affective and cognitive feedback reactions, namely feedback satisfaction and feedback utility. Surveys were conducted in a machinery manufacturing company in the Guangdong province of China. Samples were collected from 192 employees. Data analysis demonstrated that PIS and feedback utility possessed a U-shaped relationship, whereas PIS and feedback satisfaction exhibited positively linear relationships. The analysis identified two kinds of mediating mechanisms related to feedback satisfaction and feedback utility. Internal feedback motivation attribution partially mediated the relationship between PIS and feedback satisfaction but failed to do the same with respect to the relationship between PIS and feedback utility. In contrast, external feedback motivation attribution partially mediated the relationship between PIS and feedback utility while failing to mediate the relationship between PIS and feedback satisfaction. Theoretical contributions and practical implications of the findings are discussed at the end of the paper.

  13. Perceived Insider Status and Feedback Reactions: A Dual Path of Feedback Motivation Attribution

    PubMed Central

    Chen, Xiao; Liao, JianQiao; Wu, Weijiong; Zhang, Wei

    2017-01-01

    Many studies have evaluated how the characteristics of feedback receiver, feedback deliverer and feedback information influence psychological feedback reactions of the feedback receiver while largely neglecting that feedback intervention is a kind of social interaction process. To address this issue, this study proposes that employees’ perceived insider status (PIS), as a kind of employee-organization relationship, could also influence employees’ reactions to supervisory feedback. In particular, this study investigates the influence of PIS focusing on affective and cognitive feedback reactions, namely feedback satisfaction and feedback utility. Surveys were conducted in a machinery manufacturing company in the Guangdong province of China. Samples were collected from 192 employees. Data analysis demonstrated that PIS and feedback utility possessed a U-shaped relationship, whereas PIS and feedback satisfaction exhibited positively linear relationships. The analysis identified two kinds of mediating mechanisms related to feedback satisfaction and feedback utility. Internal feedback motivation attribution partially mediated the relationship between PIS and feedback satisfaction but failed to do the same with respect to the relationship between PIS and feedback utility. In contrast, external feedback motivation attribution partially mediated the relationship between PIS and feedback utility while failing to mediate the relationship between PIS and feedback satisfaction. Theoretical contributions and practical implications of the findings are discussed at the end of the paper. PMID:28507527

  14. Higher incentives can impair performance: neural evidence on reinforcement and rationality

    PubMed Central

    Achtziger, Anja; Hügelschäfer, Sabine; Steinhauser, Marco

    2015-01-01

    Standard economic thinking postulates that increased monetary incentives should increase performance. Human decision makers, however, frequently focus on past performance, a form of reinforcement learning occasionally at odds with rational decision making. We used an incentivized belief-updating task from economics to investigate this conflict through measurements of neural correlates of reward processing. We found that higher incentives fail to improve performance when immediate feedback on decision outcomes is provided. Subsequent analysis of the feedback-related negativity, an early event-related potential following feedback, revealed the mechanism behind this paradoxical effect. As incentives increase, the win/lose feedback becomes more prominent, leading to an increased reliance on reinforcement and more errors. This mechanism is relevant for economic decision making and the debate on performance-based payment. PMID:25816816

  15. Multisource feedback to graduate nurses: a multimethod study.

    PubMed

    McPhee, Samantha; Phillips, Nicole M; Ockerby, Cherene; Hutchinson, Alison M

    2017-11-01

    (1) To explore graduate nurses' perceptions of the influence of multisource feedback on their performance and (2) to explore perceptions of Clinical Nurse Educators involved in providing feedback regarding feasibility and benefit of the approach. Graduate registered nurses are expected to provide high-quality care for patients in demanding and unpredictable clinical environments. Receiving feedback is essential to their development. Performance appraisals are a common method used to provide feedback and typically involve a single source of feedback. Alternatively, multisource feedback allows the learner to gain insight into performance from a variety of perspectives. This study explores multisource feedback in an Australian setting within the graduate nurse context. Multimethod study. Eleven graduates were given structured performance feedback from four raters: Nurse Unit Manager, Clinical Nurse Educator, preceptor and a self-appraisal. Thirteen graduates received standard single-rater appraisals. Data regarding perceptions of feedback for both groups were obtained using a questionnaire. Semistructured interviews were conducted with nurses who received multisource feedback and the educators. In total, 94% (n = 15) of survey respondents perceived feedback was important during the graduate year. Four themes emerged from interviews: informal feedback, appropriateness of raters, elements of delivery and creating an appraisal process that is 'more real'. Multisource feedback was perceived as more beneficial compared to single-rater feedback. Educators saw value in multisource feedback; however, perceived barriers were engaging raters and collating feedback. Some evidence exists to indicate that feedback from multiple sources is valued by graduates. Further research in a larger sample and with more experienced nurses is required. Evidence resulting from this study indicates that multisource feedback is valued by both graduates and educators and informs graduates' development and transition into the role. Thus, a multisource approach to feedback for graduate nurses should be considered. © 2016 John Wiley & Sons Ltd.

  16. Causal Loop Analysis of coastal geomorphological systems

    NASA Astrophysics Data System (ADS)

    Payo, Andres; Hall, Jim W.; French, Jon; Sutherland, James; van Maanen, Barend; Nicholls, Robert J.; Reeve, Dominic E.

    2016-03-01

    As geomorphologists embrace ever more sophisticated theoretical frameworks that shift from simple notions of evolution towards single steady equilibria to recognise the possibility of multiple response pathways and outcomes, morphodynamic modellers are facing the problem of how to keep track of an ever-greater number of system feedbacks. Within coastal geomorphology, capturing these feedbacks is critically important, especially as the focus of activity shifts from reductionist models founded on sediment transport fundamentals to more synthesist ones intended to resolve emergent behaviours at decadal to centennial scales. This paper addresses the challenge of mapping the feedback structure of processes controlling geomorphic system behaviour with reference to illustrative applications of Causal Loop Analysis at two study cases: (1) the erosion-accretion behaviour of graded (mixed) sediment beds, and (2) the local alongshore sediment fluxes of sand-rich shorelines. These case study examples are chosen on account of their central role in the quantitative modelling of geomorphological futures and as they illustrate different types of causation. Causal loop diagrams, a form of directed graph, are used to distil the feedback structure to reveal, in advance of more quantitative modelling, multi-response pathways and multiple outcomes. In the case of graded sediment bed, up to three different outcomes (no response, and two disequilibrium states) can be derived from a simple qualitative stability analysis. For the sand-rich local shoreline behaviour case, two fundamentally different responses of the shoreline (diffusive and anti-diffusive), triggered by small changes of the shoreline cross-shore position, can be inferred purely through analysis of the causal pathways. Explicit depiction of feedback-structure diagrams is beneficial when developing numerical models to explore coastal morphological futures. By explicitly mapping the feedbacks included and neglected within a model, the modeller can readily assess if critical feedback loops are included.

  17. Medical student perspective: working toward specific and actionable clinical clerkship feedback.

    PubMed

    Moss, Haley A; Derman, Peter B; Clement, R Carter

    2012-01-01

    Feedback on the wards is an important component of medical student education. Medical schools have incorporated formalized feedback mechanisms such as clinical encounter cards and standardized patient encounters into clinical curricula. However, the system could be further improved as medical students frequently feel uncomfortable requesting feedback, and are often dissatisfied with the quality of the feedback they receive. This article explores the shortcomings of the existing medical student feedback system and examines the relevant literature in an effort to shed light on areas in which the system can be enhanced. The discussion focuses on resident-provided feedback but is broadly applicable to delivering feedback in general. A review of the organizational psychology and business administration literature on fostering effective feedback was performed. These insights were then applied to the setting of medical education. Providing effective feedback requires training and forethought. Feedback itself should be specific and actionable. Utilizing these strategies will help medical students and educators get the most out of existing feedback systems.

  18. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    PubMed Central

    2010-01-01

    Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG) and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance motor output up to 32%. Enhancement observed in experimental data exceeded 32%. Enhancement within this symmetrical four-CPG neural architecture was more sensitive to relatively small interlimb coupling gains. Excitatory sensory feedback gains could produce greater output amplitudes, but larger gains were required for entrainment compared to inhibitory sensory feedback gains. Conclusions Based on these simulations, symmetrical interlimb coupling can account for much, but not all of the excitatory neural coupling between upper and lower limbs during rhythmic locomotor-like movements. PMID:21143960

  19. Generalized fast feedback system in the SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, L.; Allison, S.; Gromme, T.

    A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLCmore » and have proven to be invaluable in stabilizing the machine.« less

  20. Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation.

    PubMed

    El-Taher, A E; Harper, P; Babin, S A; Churkin, D V; Podivilov, E V; Ania-Castanon, J D; Turitsyn, S K

    2011-01-15

    We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ~22-km-long optical fiber. Twenty-two lasing lines with spacing of ~100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power.

  1. Influence of accurate and inaccurate 'split-time' feedback upon 10-mile time trial cycling performance.

    PubMed

    Wilson, Mathew G; Lane, Andy M; Beedie, Chris J; Farooq, Abdulaziz

    2012-01-01

    The objective of the study is to examine the impact of accurate and inaccurate 'split-time' feedback upon a 10-mile time trial (TT) performance and to quantify power output into a practically meaningful unit of variation. Seven well-trained cyclists completed four randomised bouts of a 10-mile TT on a SRM™ cycle ergometer. TTs were performed with (1) accurate performance feedback, (2) without performance feedback, (3) and (4) false negative and false positive 'split-time' feedback showing performance 5% slower or 5% faster than actual performance. There were no significant differences in completion time, average power output, heart rate or blood lactate between the four feedback conditions. There were significantly lower (p < 0.001) average [Formula: see text] (ml min(-1)) and [Formula: see text] (l min(-1)) scores in the false positive (3,485 ± 596; 119 ± 33) and accurate (3,471 ± 513; 117 ± 22) feedback conditions compared to the false negative (3,753 ± 410; 127 ± 27) and blind (3,772 ± 378; 124 ± 21) feedback conditions. Cyclists spent a greater amount of time in a '20 watt zone' 10 W either side of average power in the negative feedback condition (fastest) than the accurate feedback (slowest) condition (39.3 vs. 32.2%, p < 0.05). There were no significant differences in the 10-mile TT performance time between accurate and inaccurate feedback conditions, despite significantly lower average [Formula: see text] and [Formula: see text] scores in the false positive and accurate feedback conditions. Additionally, cycling with a small variation in power output (10 W either side of average power) produced the fastest TT. Further psycho-physiological research should examine the mechanism(s) why lower [Formula: see text] and [Formula: see text] scores are observed when cycling in a false positive or accurate feedback condition compared to a false negative or blind feedback condition.

  2. CpG-B Oligodeoxynucleotides Inhibit TLR-Dependent and -Independent Induction of Type I IFN in Dendritic Cells

    PubMed Central

    Liu, Yi C.; Gray, Reginald C.; Hardy, Gareth A. D.; Kuchtey, John; Abbott, Derek W.; Emancipator, Steven N.; Harding, Clifford V.

    2010-01-01

    CpG oligodeoxynucleotides (ODNs) signal through TLR9 to induce type I IFN (IFN-αβ) in dendritic cells (DCs). CpG-A ODNs are more efficacious than CpG-B ODNs for induction of IFN-αβ. Because IFN-αβ may contribute to autoimmunity, it is important to identify mechanisms to inhibit induction of IFN-αβ. In our studies, CpG-B ODN inhibited induction of IFN-αβ by CpG-A ODN, whereas induction of TNF-α and IL-12p40 by CpG-A ODN was not affected. CpG-B inhibition of IFN-αβ was observed in FLT3 ligand-induced murine DCs, purified murine myeloid DCs, plasmacytoid DCs, and human PBMCs. CpG-B ODN inhibited induction of IFN-αβ by agonists of multiple receptors, including MyD88-dependent TLRs (CpG-AODN signaling via TLR9, or R837 or Sendai virus signaling via TLR7) and MyD88-independent receptors (polyinosinic:polycytidylic acid signaling via TLR3 or ds break-DNA signaling via a cytosolic pathway). CpG-B ODN did not inhibit the IFN-αβ positive feedback loop second-wave IFN-αβ, because IFN-αβ–induced expression of IFN-αβ was unaffected, and CpG-B inhibition of IFN-αβ was manifested in IFN-αβR−/− DCs, which lack the positive feedback mechanism. Rather, CpG-B ODN inhibited early TLR-induced first wave IFN-α4 and IFN-β. Chromatin immunoprecipitation revealed that association of IFN regulatory factor 1 with the IFN-α4 and IFN-β promoters was induced by CpG-A ODN but not CpG-B ODN. Moreover, CpG-A–induced association of IFN regulatory factor 1 with these promoters was inhibited by CpG-B ODN. Our studies demonstrate a novel mechanism of transcriptional regulation of first-wave IFN-αβ that selectively inhibits induction of IFN-αβ downstream of multiple receptors and may provide targets for future therapeutic inhibition of IFN-αβ expression in vivo. PMID:20181884

  3. An ultrahigh-performance liquid chromatography method with electrospray ionization tandem mass spectrometry for simultaneous quantification of five phytohormones in medicinal plant Glycyrrhiza uralensis under abscisic acid stress.

    PubMed

    Xiang, Yu; Song, Xiaona; Qiao, Jing; Zang, Yimei; Li, Yanpeng; Liu, Yong; Liu, Chunsheng

    2015-07-01

    An efficient simplified method was developed to determine multiple classes of phytohormones simultaneously in the medicinal plant Glycyrrhiza uralensis. Ultrahigh-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC/ESI-MS/MS) with multiple reaction monitoring (MRM) in negative mode was used for quantification. The five studied phytohormones are gibberellic acid (GA3), abscisic acid (ABA), jasmonic acid (JA), indole-3-acetic acid, and salicylic acid (SA). Only 100 mg of fresh leaves was needed, with one purification step based on C18 solid-phase extraction. Cinnamic acid was chosen as the internal standard instead of isotope-labeled internal standards. Under the optimized conditions, the five phytohormones with internal standard were separated within 4 min, with good linearities and high sensitivity. The validated method was applied to monitor the spatial and temporal changes of the five phytohormones in G. uralensis under ABA stress. The levels of GA3, ABA, JA, and SA in leaves of G. uralensis were increased at different times and with different tendencies in the reported stress mode. These changes in phytohormone levels are discussed in the context of a possible feedback regulation mechanism. Understanding this mechanism will provide a good chance of revealing the mutual interplay between different biosynthetic routes, which could further help elucidate the mechanisms of effective composition accumulation in medicinal plants.

  4. On a theory of the evolution of surface cold fronts

    NASA Technical Reports Server (NTRS)

    Levy, Gad; Bretherton, Christopher S.

    1987-01-01

    The governing vorticity and divergence equations in the surface layer are derived and the roles of the different terms and feedback mechanisms are investigated in semigeostrophic and nongeostrophic cold-frontal systems. A planetary boundary layer model is used to perform sensitivity tests to determine that in a cold front the ageostrophic feedback mechanism as defined by Orlanski and Ross tends to act as a positive feedback mechanism, enhancing vorticity and convergence growth. Therefore, it cannot explain the phase shift between convergence and vorticity as simulated by Orlanski and Ross. An alternative plausible, though tentative, explanation in terms of a gravity wave is offered. It is shown that when the geostrophic deformation increases, nonlinear terms in the divergence equation may become important and further destabilize the system.

  5. Optical bending sensor using distributed feedback solid state dye lasers on optical fiber.

    PubMed

    Kubota, Hiroyuki; Oomi, Soichiro; Yoshioka, Hiroaki; Watanabe, Hirofumi; Oki, Yuji

    2012-07-02

    Novel type of optical fiber sensor was proposed and demonstrated. The print-like fabrication technique fabricates multiple distributed feedback solid state dye lasers on a polymeric optical fiber (POF) with tapered coupling. This multi-active-sidecore structure was easily fabricated and provides multiple functions. Mounting the lasers on the same point of a multimode POF demonstrated a bending radius sensitivity of 20 m without any supports. Two axis directional sensing without cross talk was also confirmed. A more complicated mounting formation can demonstrate a twisted POF. The temperature property of the sensor was also studied, and elimination of the temperature influence was experimentally attained.

  6. Human-Centered Design and Evaluation of Haptic Cueing for Teleoperation of Multiple Mobile Robots.

    PubMed

    Son, Hyoung Il; Franchi, Antonio; Chuang, Lewis L; Kim, Junsuk; Bulthoff, Heinrich H; Giordano, Paolo Robuffo

    2013-04-01

    In this paper, we investigate the effect of haptic cueing on a human operator's performance in the field of bilateral teleoperation of multiple mobile robots, particularly multiple unmanned aerial vehicles (UAVs). Two aspects of human performance are deemed important in this area, namely, the maneuverability of mobile robots and the perceptual sensitivity of the remote environment. We introduce metrics that allow us to address these aspects in two psychophysical studies, which are reported here. Three fundamental haptic cue types were evaluated. The Force cue conveys information on the proximity of the commanded trajectory to obstacles in the remote environment. The Velocity cue represents the mismatch between the commanded and actual velocities of the UAVs and can implicitly provide a rich amount of information regarding the actual behavior of the UAVs. Finally, the Velocity+Force cue is a linear combination of the two. Our experimental results show that, while maneuverability is best supported by the Force cue feedback, perceptual sensitivity is best served by the Velocity cue feedback. In addition, we show that large gains in the haptic feedbacks do not always guarantee an enhancement in the teleoperator's performance.

  7. Modeling the Arrest of Tissue Growth in Epithelia

    NASA Astrophysics Data System (ADS)

    Golden, Alexander; Lubensky, David

    The mechanisms of control and eventual arrest of growth of tissues is an area that has received considerable attention, both experimentally and in the development of quantitative models. In particular, the Drosophila wing disc epithelium appears to robustly arrive at a unique final size. One mechanism that has the potential to play a role in the eventual cessation of growth is mechanical feedback from stresses induced by nonuniform growth. There is experimental support for an effect on the tissue growth rate by such mechanical stresses, and a number of numerical or cell-based models have been proposed that show that the arrest of growth can be achieved by mechanical feedback. We introduce an analytic framework that allows us to understand different coarse-grained feedback mechanisms on the same terms. We use the framework to distinguish between families of models that do not have a unique final size and those that do and give rough estimates for how much variability in the eventual organ size can be expected in models that do not have a unique final size. NSF Grant DMR-1056456.

  8. Neural cryptography with feedback.

    PubMed

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  9. Vocal Responses to Perturbations in Voice Auditory Feedback in Individuals with Parkinson's Disease

    PubMed Central

    Liu, Hanjun; Wang, Emily Q.; Metman, Leo Verhagen; Larson, Charles R.

    2012-01-01

    Background One of the most common symptoms of speech deficits in individuals with Parkinson's disease (PD) is significantly reduced vocal loudness and pitch range. The present study investigated whether abnormal vocalizations in individuals with PD are related to sensory processing of voice auditory feedback. Perturbations in loudness or pitch of voice auditory feedback are known to elicit short latency, compensatory responses in voice amplitude or fundamental frequency. Methodology/Principal Findings Twelve individuals with Parkinson's disease and 13 age- and sex- matched healthy control subjects sustained a vowel sound (/α/) and received unexpected, brief (200 ms) perturbations in voice loudness (±3 or 6 dB) or pitch (±100 cents) auditory feedback. Results showed that, while all subjects produced compensatory responses in their voice amplitude or fundamental frequency, individuals with PD exhibited larger response magnitudes than the control subjects. Furthermore, for loudness-shifted feedback, upward stimuli resulted in shorter response latencies than downward stimuli in the control subjects but not in individuals with PD. Conclusions/Significance The larger response magnitudes in individuals with PD compared with the control subjects suggest that processing of voice auditory feedback is abnormal in PD. Although the precise mechanisms of the voice feedback processing are unknown, results of this study suggest that abnormal voice control in individuals with PD may be related to dysfunctional mechanisms of error detection or correction in sensory feedback processing. PMID:22448258

  10. On wave-CISK and the evaporation-wind feedback for the Madden-Julian oscillation

    NASA Technical Reports Server (NTRS)

    Kirtman, B.; Vernekar, A.

    1993-01-01

    The combined effects of Kelvin wave-CISK and the evaporation-wind (E-W) feedback are proposed as a possible mechanism for the Madden-Julian oscillation. A very simple single vertical mode model has been employed to examine the effects of both these processes on moist Kelvin waves. The effects of wave-induced moisture convergence is parameterized by reducing the moist static stability, and CISK occurs when the moist static stability becomes negative. The E-W feedback in the presence of mean easterlies leads to unstable Kelvin modes. The presence of mean westerlies leads to decaying Kelvin modes. When CISK and the E-W feedback work in concert, an unstable Kelvin mode develops that has phase speeds of propagation between 5 m/s and 10 m/s for a large range of parameter values. On the other hand, the E-W feedback mechanism alone, in the case when CISK is not operating, produces the phase speeds of the observed Madden-Julian oscillation for only a very limited range of parameter values.

  11. Load speed regulation in compliant mechanical transmission systems using feedback and feedforward control actions.

    PubMed

    Raul, P R; Dwivedula, R V; Pagilla, P R

    2016-07-01

    The problem of controlling the load speed of a mechanical transmission system consisting of a belt-pulley and gear-pair is considered. The system is modeled as two inertia (motor and load) connected by a compliant transmission. If the transmission is assumed to be rigid, then using either the motor or load speed feedback provides the same result. However, with transmission compliance, due to belts or long shafts, the stability characteristics and performance of the closed-loop system are quite different when either motor or load speed feedback is employed. We investigate motor and load speed feedback schemes by utilizing the singular perturbation method. We propose and discuss a control scheme that utilizes both motor and load speed feedback, and design an adaptive feedforward action to reject load torque disturbances. The control algorithms are implemented on an experimental platform that is typically used in roll-to-roll manufacturing and results are shown and discussed. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Identification of neural structures involved in stuttering using vibrotactile feedback.

    PubMed

    Cheadle, Oliver; Sorger, Clarissa; Howell, Peter

    Feedback delivered over auditory and vibratory afferent pathways has different effects on the fluency of people who stutter (PWS). These features were exploited to investigate the neural structures involved in stuttering. The speech signal vibrated locations on the body (vibrotactile feedback, VTF). Eleven PWS read passages under VTF and control (no-VTF) conditions. All combinations of vibration amplitude, synchronous or delayed VTF and vibrator position (hand, sternum or forehead) were presented. Control conditions were performed at the beginning, middle and end of test sessions. Stuttering rate, but not speaking rate, differed between the control and VTF conditions. Notably, speaking rate did not change between when VTF was delayed versus when it was synchronous in contrast with what happens with auditory feedback. This showed that cerebellar mechanisms, which are affected when auditory feedback is delayed, were not implicated in the fluency-enhancing effects of VTF, suggesting that there is a second fluency-enhancing mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Closing the Loop on Student Feedback: The Case of Australian and Scottish Universities

    ERIC Educational Resources Information Center

    Shah, Mahsood; Cheng, Ming; Fitzgerald, Robert

    2017-01-01

    Universities have a long history of collecting student feedback using surveys and other mechanisms. The last decade has witnessed a significant shift in how student feedback is systematically collected, analysed, reported, and used by governments and institutions. This shift is due to a number of factors, including changes in government policy…

  14. A Case Study of Representing Signal Transduction in Liver Cells as a Feedback Control Problem

    ERIC Educational Resources Information Center

    Singh, Abhay; Jayaraman, Arul; Hahn, Juergen

    2007-01-01

    Cell signaling pathways often contain feedback loops where proteins are produced that regulate signaling. While feedback regulatory mechanisms are commonly found in signaling pathways, there is no example available in the literature that is simple enough to be presented in an undergraduate control class. This paper presents a simulation study of…

  15. Arctic energy budget in relation to sea-ice variability on monthly to annual time scales

    NASA Astrophysics Data System (ADS)

    Krikken, Folmer; Hazeleger, Wilco

    2015-04-01

    The strong decrease in Arctic sea-ice in recent years has triggered a strong interest in Arctic sea-ice predictions on seasonal to decadal time scales. Hence, it is key to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. The authors report on an analysis of natural variability of Arctic sea-ice from an energy budget perspective, using 15 CMIP5 climate models, and comparing these results to atmospheric and oceanic reanalyses data. We quantify the persistence of sea ice anomalies and the cross-correlation with the surface and top energy budget components. The Arctic energy balance components primarily indicate the important role of the seasonal sea-ice albedo feedback, in which sea-ice anomalies in the melt season reemerge in the growth season. This is a robust anomaly reemergence mechanism among all 15 climate models. The role of ocean lies mainly in storing heat content anomalies in spring, and releasing them in autumn. Ocean heat flux variations only play a minor role. The role of clouds is further investigated. We demonstrate that there is no direct atmospheric response of clouds to spring sea-ice anomalies, but a delayed response is evident in autumn. Hence, there is no cloud-ice feedback in late spring and summer, but there is a cloud-ice feedback in autumn, which strengthens the ice-albedo feedback. Anomalies in insolation are positively correlated with sea-ice variability. This is primarily a result of reduced multiple-reflection of insolation due to an albedo decrease. This effect counteracts the sea-ice albedo effect up to 50%. ERA-Interim and ORAS4 confirm the main findings from the climate models.

  16. Performance, Accuracy, Data Delivery, and Feedback Methods in Order Selection: A Comparison of Voice, Handheld, and Paper Technologies

    ERIC Educational Resources Information Center

    Ludwig, Timothy D.; Goomas, David T.

    2007-01-01

    Field study was conducted in auto-parts after-market distribution centers where selectors used handheld computers to receive instructions and feedback about their product selection process. A wireless voice-interaction technology was then implemented in a multiple baseline fashion across three departments of a warehouse (N = 14) and was associated…

  17. Improving School Improvement: Development and Validation of the CSIS-360, a 360-Degree Feedback Assessment for School Improvement Specialists

    ERIC Educational Resources Information Center

    McDougall, Christie M.

    2013-01-01

    The purpose of the mixed methods study was to develop and validate the CSIS-360, a 360-degree feedback assessment to measure competencies of school improvement specialists from multiple perspectives. The study consisted of eight practicing school improvement specialists from a variety of settings. The specialists nominated 23 constituents to…

  18. Delayed Feedback Disrupts the Procedural-Learning System but Not the Hypothesis-Testing System in Perceptual Category Learning

    ERIC Educational Resources Information Center

    Maddox, W. Todd; Ing, A. David

    2005-01-01

    W. T. Maddox, F. G. Ashby, and C. J. Bohil (2003) found that delayed feedback adversely affects information-integration but not rule-based category learning in support of a multiple-systems approach to category learning. However, differences in the number of stimulus dimensions relevant to solving the task and perceptual similarity failed to rule…

  19. Promoting Effective Teacher-Feedback: From Theory to Practice through a Multiple Component Trajectory for Professional Development

    ERIC Educational Resources Information Center

    Voerman, Lia; Meijer, Paulien C.; Korthagen, Fred; Simons, Robert Jan

    2015-01-01

    This study describes an evaluation of a theory-based trajectory for professional development called FeTiP (Feedback-Theory into Practice) that aims to have an observable effect on teacher classroom behavior. FeTiP is a multicomponent trajectory for professional development and combines several types of interventions. Its goal is to help teachers…

  20. Insights into low-latitude cloud feedbacks from high-resolution models.

    PubMed

    Bretherton, Christopher S

    2015-11-13

    Cloud feedbacks are a leading source of uncertainty in the climate sensitivity simulated by global climate models (GCMs). Low-latitude boundary-layer and cumulus cloud regimes are particularly problematic, because they are sustained by tight interactions between clouds and unresolved turbulent circulations. Turbulence-resolving models better simulate such cloud regimes and support the GCM consensus that they contribute to positive global cloud feedbacks. Large-eddy simulations using sub-100 m grid spacings over small computational domains elucidate marine boundary-layer cloud response to greenhouse warming. Four observationally supported mechanisms contribute: 'thermodynamic' cloudiness reduction from warming of the atmosphere-ocean column, 'radiative' cloudiness reduction from CO2- and H2O-induced increase in atmospheric emissivity aloft, 'stability-induced' cloud increase from increased lower tropospheric stratification, and 'dynamical' cloudiness increase from reduced subsidence. The cloudiness reduction mechanisms typically dominate, giving positive shortwave cloud feedback. Cloud-resolving models with horizontal grid spacings of a few kilometres illuminate how cumulonimbus cloud systems affect climate feedbacks. Limited-area simulations and superparameterized GCMs show upward shift and slight reduction of cloud cover in a warmer climate, implying positive cloud feedbacks. A global cloud-resolving model suggests tropical cirrus increases in a warmer climate, producing positive longwave cloud feedback, but results are sensitive to subgrid turbulence and ice microphysics schemes. © 2015 The Author(s).

  1. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in themore » largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.« less

  2. Reward and Visual Feedback Relative to the Performance and Mechanical Efficiency of High School Girls in the Standing Broad Jump.

    ERIC Educational Resources Information Center

    Zebas, Carole J.

    This study focuses on changes occurring in selected mechanical components of high school girls performing the standing broad jump, and collects data pertaining to the effects of monetary reward and videotape feedback upon the following components: (a) distance jumped, (b) maximum angle of knee flexion, (c) maximum angle of hip flexion, (d) hip…

  3. The relativistic feedback discharge model of terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  4. Hydrologic controls on aperiodic spatial organization of the ridge-slough patterned landscape

    NASA Astrophysics Data System (ADS)

    Casey, Stephen T.; Cohen, Matthew J.; Acharya, Subodh; Kaplan, David A.; Jawitz, James W.

    2016-11-01

    A century of hydrologic modification has altered the physical and biological drivers of landscape processes in the Everglades (Florida, USA). Restoring the ridge-slough patterned landscape, a dominant feature of the historical system, is a priority but requires an understanding of pattern genesis and degradation mechanisms. Physical experiments to evaluate alternative pattern formation mechanisms are limited by the long timescales of peat accumulation and loss, necessitating model-based comparisons, where support for a particular mechanism is based on model replication of extant patterning and trajectories of degradation. However, multiple mechanisms yield a central feature of ridge-slough patterning (patch elongation in the direction of historical flow), limiting the utility of that characteristic for discriminating among alternatives. Using data from vegetation maps, we investigated the statistical features of ridge-slough spatial patterning (ridge density, patch perimeter, elongation, patch size distributions, and spatial periodicity) to establish more rigorous criteria for evaluating model performance and to inform controls on pattern variation across the contemporary system. Mean water depth explained significant variation in ridge density, total perimeter, and length : width ratios, illustrating an important pattern response to existing hydrologic gradients. Two independent analyses (2-D periodograms and patch size distributions) provide strong evidence against regular patterning, with the landscape exhibiting neither a characteristic wavelength nor a characteristic patch size, both of which are expected under conditions that produce regular patterns. Rather, landscape properties suggest robust scale-free patterning, indicating genesis from the coupled effects of local facilitation and a global negative feedback operating uniformly at the landscape scale. Critically, this challenges widespread invocation of scale-dependent negative feedbacks for explaining ridge-slough pattern origins. These results help discern among genesis mechanisms and provide an improved statistical description of the landscape that can be used to compare among model outputs, as well as to assess the success of future restoration projects.

  5. Feedback in clinical education, part I: Characteristics of feedback provided by approved clinical instructors.

    PubMed

    Nottingham, Sara; Henning, Jolene

    2014-01-01

    Providing students with feedback is an important component of athletic training clinical education; however, little information is known about the feedback that Approved Clinical Instructors (ACIs; now known as preceptors) currently provide to athletic training students (ATSs). To characterize the feedback provided by ACIs to ATSs during clinical education experiences. Qualitative study. One National Collegiate Athletic Association Division I athletic training facility and 1 outpatient rehabilitation clinic that were clinical sites for 1 entry-level master's degree program accredited by the Commission on Accreditation of Athletic Training Education. A total of 4 ACIs with various experience levels and 4 second-year ATSs. Extensive field observations were audio recorded, transcribed, and integrated with field notes for analysis. The constant comparative approach of open, axial, and selective coding was used to inductively analyze data and develop codes and categories. Member checking, triangulation, and peer debriefing were used to promote trustworthiness of the study. The ACIs gave 88 feedback statements in 45 hours and 10 minutes of observation. Characteristics of feedback categories included purpose, timing, specificity, content, form, and privacy. Feedback that ACIs provided included several components that made each feedback exchange unique. The ACIs in our study provided feedback that is supported by the literature, suggesting that ACIs are using current recommendations for providing feedback. Feedback needs to be investigated across multiple athletic training education programs to gain more understanding of certain areas of feedback, including frequency, privacy, and form.

  6. Sources of protons and a role for bicarbonate in inhibitory feedback from horizontal cells to cones in Ambystoma tigrinum retina.

    PubMed

    Warren, Ted J; Van Hook, Matthew J; Supuran, Claudiu T; Thoreson, Wallace B

    2016-11-15

    In the vertebrate retina, photoreceptors influence the signalling of neighbouring photoreceptors through lateral-inhibitory interactions mediated by horizontal cells (HCs). These interactions create antagonistic centre-surround receptive fields important for detecting edges and generating chromatically opponent responses in colour vision. The mechanisms responsible for inhibitory feedback from HCs involve changes in synaptic cleft pH that modulate photoreceptor calcium currents. However, the sources of synaptic protons involved in feedback and the mechanisms for their removal from the cleft when HCs hyperpolarize to light remain unknown. Our results indicate that Na + -H + exchangers are the principal source of synaptic cleft protons involved in HC feedback but that synaptic cleft alkalization during light-evoked hyperpolarization of HCs also involves changes in bicarbonate transport across the HC membrane. In addition to delineating processes that establish lateral inhibition in the retina, these results contribute to other evidence showing the key role for pH in regulating synaptic signalling throughout the nervous system. Lateral-inhibitory feedback from horizontal cells (HCs) to photoreceptors involves changes in synaptic cleft pH accompanying light-evoked changes in HC membrane potential. We analysed HC to cone feedback by studying surround-evoked light responses of cones and by obtaining paired whole cell recordings from cones and HCs in salamander retina. We tested three potential sources for synaptic cleft protons: (1) generation by extracellular carbonic anhydrase (CA), (2) release from acidic synaptic vesicles and (3) Na + /H + exchangers (NHEs). Neither antagonizing extracellular CA nor blocking loading of protons into synaptic vesicles eliminated feedback. However, feedback was eliminated when extracellular Na + was replaced with choline and significantly reduced by an NHE inhibitor, cariporide. Depriving NHEs of intracellular protons by buffering HC cytosol with a pH 9.2 pipette solution eliminated feedback, whereas alkalinizing the cone cytosol did not, suggesting that HCs are a major source for protons in feedback. We also examined mechanisms for changing synaptic cleft pH in response to changes in HC membrane potential. Increasing the trans-membrane proton gradient by lowering the extracellular pH from 7.8 to 7.4 to 7.1 strengthened feedback. While maintaining constant extracellular pH with 1 mm HEPES, removal of bicarbonate abolished feedback. Elevating intracellular bicarbonate levels within HCs prevented this loss of feedback. A bicarbonate transport inhibitor, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), also blocked feedback. Together, these results suggest that NHEs are the primary source of extracellular protons in HC feedback but that changes in cleft pH accompanying changes in HC membrane voltage also require bicarbonate flux across the HC membrane. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  7. Sources of protons and a role for bicarbonate in inhibitory feedback from horizontal cells to cones in Ambystoma tigrinum retina

    PubMed Central

    Warren, Ted J.; Van Hook, Matthew J.; Supuran, Claudiu T.

    2016-01-01

    Key points In the vertebrate retina, photoreceptors influence the signalling of neighbouring photoreceptors through lateral‐inhibitory interactions mediated by horizontal cells (HCs). These interactions create antagonistic centre‐surround receptive fields important for detecting edges and generating chromatically opponent responses in colour vision.The mechanisms responsible for inhibitory feedback from HCs involve changes in synaptic cleft pH that modulate photoreceptor calcium currents. However, the sources of synaptic protons involved in feedback and the mechanisms for their removal from the cleft when HCs hyperpolarize to light remain unknown.Our results indicate that Na+–H+ exchangers are the principal source of synaptic cleft protons involved in HC feedback but that synaptic cleft alkalization during light‐evoked hyperpolarization of HCs also involves changes in bicarbonate transport across the HC membrane.In addition to delineating processes that establish lateral inhibition in the retina, these results contribute to other evidence showing the key role for pH in regulating synaptic signalling throughout the nervous system. Abstract Lateral‐inhibitory feedback from horizontal cells (HCs) to photoreceptors involves changes in synaptic cleft pH accompanying light‐evoked changes in HC membrane potential. We analysed HC to cone feedback by studying surround‐evoked light responses of cones and by obtaining paired whole cell recordings from cones and HCs in salamander retina. We tested three potential sources for synaptic cleft protons: (1) generation by extracellular carbonic anhydrase (CA), (2) release from acidic synaptic vesicles and (3) Na+/H+ exchangers (NHEs). Neither antagonizing extracellular CA nor blocking loading of protons into synaptic vesicles eliminated feedback. However, feedback was eliminated when extracellular Na+ was replaced with choline and significantly reduced by an NHE inhibitor, cariporide. Depriving NHEs of intracellular protons by buffering HC cytosol with a pH 9.2 pipette solution eliminated feedback, whereas alkalinizing the cone cytosol did not, suggesting that HCs are a major source for protons in feedback. We also examined mechanisms for changing synaptic cleft pH in response to changes in HC membrane potential. Increasing the trans‐membrane proton gradient by lowering the extracellular pH from 7.8 to 7.4 to 7.1 strengthened feedback. While maintaining constant extracellular pH with 1 mm HEPES, removal of bicarbonate abolished feedback. Elevating intracellular bicarbonate levels within HCs prevented this loss of feedback. A bicarbonate transport inhibitor, 4,4′‐diisothiocyano‐2,2′‐stilbenedisulfonic acid (DIDS), also blocked feedback. Together, these results suggest that NHEs are the primary source of extracellular protons in HC feedback but that changes in cleft pH accompanying changes in HC membrane voltage also require bicarbonate flux across the HC membrane. PMID:27345444

  8. The Multiple Component Alternative for Gifted Education.

    ERIC Educational Resources Information Center

    Swassing, Ray

    1984-01-01

    The Multiple Component Model (MCM) of gifted education includes instruction which may overlap in literature, history, art, enrichment, languages, science, physics, math, music, and dance. The model rests on multifactored identification and requires systematic development and selection of components with ongoing feedback and evaluation. (CL)

  9. Feedback regulation in a stem cell model with acute myeloid leukaemia.

    PubMed

    Jiao, Jianfeng; Luo, Min; Wang, Ruiqi

    2018-04-24

    The haematopoietic lineages with leukaemia lineages are considered in this paper. In particular, we mainly consider that haematopoietic lineages are tightly controlled by negative feedback inhibition of end-product. Actually, leukemia has been found 100 years ago. Up to now, the exact mechanism is still unknown, and many factors are thought to be associated with the pathogenesis of leukemia. Nevertheless, it is very necessary to continue the profound study of the pathogenesis of leukemia. Here, we propose a new mathematical model which include some negative feedback inhibition from the terminally differentiated cells of haematopoietic lineages to the haematopoietic stem cells and haematopoietic progenitor cells in order to describe the regulatory mechanisms mentioned above by a set of ordinary differential equations. Afterwards, we carried out detailed dynamical bifurcation analysis of the model, and obtained some meaningful results. In this work, we mainly perform the analysis of the mathematic model by bifurcation theory and numerical simulations. We have not only incorporated some new negative feedback mechanisms to the existing model, but also constructed our own model by using the modeling method of stem cell theory with probability method. Through a series of qualitative analysis and numerical simulations, we obtain that the weak negative feedback for differentiation probability is conducive to the cure of leukemia. However, with the strengthening of negative feedback, leukemia will be more difficult to be cured, and even induce death. In contrast, strong negative feedback for differentiation rate of progenitor cells can promote healthy haematopoiesis and suppress leukaemia. These results demonstrate that healthy progenitor cells are bestowed a competitive advantage over leukaemia stem cells. Weak g 1 , g 2 , and h 1 enable the system stays in the healthy state. However, strong h 2 can promote healthy haematopoiesis and suppress leukaemia.

  10. Sensory-motor interactions for vocal pitch monitoring in non-primary human auditory cortex.

    PubMed

    Greenlee, Jeremy D W; Behroozmand, Roozbeh; Larson, Charles R; Jackson, Adam W; Chen, Fangxiang; Hansen, Daniel R; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A

    2013-01-01

    The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (-100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70-150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control.

  11. Sensory-Motor Interactions for Vocal Pitch Monitoring in Non-Primary Human Auditory Cortex

    PubMed Central

    Larson, Charles R.; Jackson, Adam W.; Chen, Fangxiang; Hansen, Daniel R.; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A.

    2013-01-01

    The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (−100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70–150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control. PMID:23577157

  12. Return of spontaneous circulation and long-term survival according to feedback provided by automated external defibrillators.

    PubMed

    Agerskov, M; Hansen, M B; Nielsen, A M; Møller, T P; Wissenberg, M; Rasmussen, L S

    2017-11-01

    We aimed to investigate the effect of automated external defibrillator (AED) feedback mechanisms on survival in out-of-hospital cardiac arrest (OHCA) victims. In addition, we investigated converting rates in patients with shockable rhythms according to AED shock waveforms and energy levels. We collected data on OHCA occurring between 2011 and 2014 in the Capital Region of Denmark where an AED was applied prior to ambulance arrival. Patient data were obtained from the Danish Cardiac Arrest Registry and medical records. AED data were retrieved from the Emergency Medical Dispatch Centre (EMDC) and information on feedback mechanisms, energy waveform and energy level was downloaded from the applied AEDs. A total of 196 OHCAs had an AED applied prior to ambulance arrival; 62 of these (32%) provided audio visual (AV) feedback while no feedback was provided in 134 (68%). We found no difference in return of spontaneous circulation (ROSC) at hospital arrival according to AV-feedback; 34 (55%, 95% confidence interval (CI) [13-67]) vs. 72 (54%, 95% CI [45-62]), P = 1 (odds ratio (OR) 1.1, 95% CI [0.6-1.9]) or 30-day survival; 24 (39%, 95% CI [28-51]) vs. 53 (40%, 95% CI [32-49]), P = 0.88 (OR 1.1 (95% CI [0.6-2.0])). Moreover, we found no difference in converting rates among patients with initial shockable rhythm receiving one or more shocks according to AED energy waveform and energy level. No difference in survival after OHCA according to AED feedback mechanisms, nor any difference in converting rates according to AED waveform or energy levels was detected. © 2017 The Authors. Acta Anaesthesiologica Scandinavica published by John Wiley & Sons Ltd on behalf of Acta Anaesthesiologica Scandinavica Foundation.

  13. Adaptive receiver structures for asynchronous CDMA systems

    NASA Astrophysics Data System (ADS)

    Rapajic, Predrag B.; Vucetic, Branka S.

    1994-05-01

    Adaptive linear and decision feedback receiver structures for coherent demodulation in asynchronous code division multiple access (CDMA) systems are considered. It is assumed that the adaptive receiver has no knowledge of the signature waveforms and timing of other users. The receiver is trained by a known training sequence prior to data transmission and continuously adjusted by an adaptive algorithm during data transmission. The proposed linear receiver is as simple as a standard single-user detector receiver consisting of a matched filter with constant coefficients, but achieves essential advantages with respect to timing recovery, multiple access interference elimination, near/far effect, narrowband and frequency-selective fading interference suppression, and user privacy. An adaptive centralized decision feedback receiver has the same advantages of the linear receiver but, in addition, achieves a further improvement in multiple access interference cancellation at the expense of higher complexity. The proposed receiver structures are tested by simulation over a channel with multipath propagation, multiple access interference, narrowband interference, and additive white Gaussian noise.

  14. A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback.

    PubMed

    Gaume, A; Vialatte, A; Mora-Sánchez, A; Ramdani, C; Vialatte, F B

    2016-09-01

    We believe that the missing keystone to design effective and efficient biofeedback and neurofeedback protocols is a comprehensive model of the mechanisms of feedback learning. In this manuscript we review the learning models in behavioral, developmental and cognitive psychology, and derive a synthetic model of the psychological perspective on biofeedback. We afterwards review the neural correlates of feedback learning mechanisms, and present a general neuroscience model of biofeedback. We subsequently show how biomedical engineering principles can be applied to design efficient feedback protocols. We finally present an integrative psychoengineering model of the feedback learning processes, and provide new guidelines for the efficient design of biofeedback and neurofeedback protocols. We identify five key properties, (1) perceptibility=can the subject perceive the biosignal?, (2) autonomy=can the subject regulate by himself?, (3) mastery=degree of control over the biosignal, (4) motivation=rewards system of the biofeedback, and (5) learnability=possibility of learning. We conclude with guidelines for the investigation and promotion of these properties in biofeedback protocols. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Negative feedback in ants: crowding results in less trail pheromone deposition

    PubMed Central

    Czaczkes, Tomer J.; Grüter, Christoph; Ratnieks, Francis L. W.

    2013-01-01

    Crowding in human transport networks reduces efficiency. Efficiency can be increased by appropriate control mechanisms, which are often imposed externally. Ant colonies also have distribution networks to feeding sites outside the nest and can experience crowding. However, ants do not have external controllers or leaders. Here, we report a self-organized negative feedback mechanism, based on local information, which downregulates the production of recruitment signals in crowded parts of a network by Lasius niger ants. We controlled crowding by manipulating trail width and the number of ants on a trail, and observed a 5.6-fold reduction in the number of ants depositing trail pheromone from least to most crowded conditions. We also simulated crowding by placing glass beads covered in nest-mate cuticular hydrocarbons on the trail. After 10 bead encounters over 20 cm, forager ants were 45 per cent less likely to deposit pheromone. The mechanism of negative feedback reported here is unusual in that it acts by downregulating the production of a positive feedback signal, rather than by direct inhibition or the production of an inhibitory signal. PMID:23365196

  16. Relative contribution of feedback processes to Arctic amplification of temperature change in MIROC GCM

    NASA Astrophysics Data System (ADS)

    Yoshimori, Masakazu; Watanabe, Masahiro; Abe-Ouchi, Ayako; Shiogama, Hideo; Ogura, Tomoo

    2013-04-01

    The finding that surface warming over the Arctic exceeds that over the rest of the world under global warming is a robust feature among general circulation models (GCMs). While various mechanisms have been proposed, quantifying their relative contributions is an important task in order to understand model behavior and operating mechanisms. Here we apply a recently proposed feedback analysis technique to a GCM under different external forcings including elevated and lowered CO2 concentrations, and increased solar irradiance. First, the contribution of feedbacks to Arctic temperature change is investigated. Surface air temperature response in the Arctic is amplified by albedo, water vapor, and large-scale condensation feedbacks from that without a feedback although a part of it is suppressed by evaporative cooling feedback. Second, the contribution of feedbacks to Arctic amplification (AA) relative to global average is investigated. Under the positive radiative forcings, the albedo feedback contributes to AA predominantly through warming the Arctic more than the low latitudes while the evaporative cooling feedback contributes to AA predominantly by cooling the low latitudes more than the Arctic. Their relative effects vary with the applied forcing, however, and the latter dominates over the former in the increased solar irradiance and lowered CO2 experiments. The large-scale condensation plus evaporative cooling feedback and the dynamical feedback contribute positively and negatively to AA, respectively. These results are consistent with an increase and a decrease of latent heat and dry-static energy transport, respectively, into the Arctic under the positive radiative forcings. An important contribution is thus made via changes in hydrological cycle and not via the 'dry' heat transport process. A larger response near the surface than aloft in the Arctic is maintained by the albedo, water vapor, and dynamical feedbacks, in which the albedo and water vapor feedbacks contribute through warming the surface more than aloft, and the dynamical feedback contributes by cooling aloft more than the surface. In our experiments, ocean and sea ice dynamics play a secondary role. It is shown that a different magnitude of CO2 increase introduces a latitudinal and seasonal difference into the feedbacks.

  17. Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics

    PubMed Central

    Liu, Xuemei; Wang, Ruiyi; Li, Yunhua; Song, Dongdong

    2015-01-01

    We study the deformation and haptic feedback of soft tissue in virtual surgery based on a liver model by using a force feedback device named PHANTOM OMNI developed by SensAble Company in USA. Although a significant amount of research efforts have been dedicated to simulating the behaviors of soft tissue and implementing force feedback, it is still a challenging problem. This paper introduces a kind of meshfree method for deformation simulation of soft tissue and force computation based on viscoelastic mechanical model and smoothed particle hydrodynamics (SPH). Firstly, viscoelastic model can present the mechanical characteristics of soft tissue which greatly promotes the realism. Secondly, SPH has features of meshless technique and self-adaption, which supply higher precision than methods based on meshes for force feedback computation. Finally, a SPH method based on dynamic interaction area is proposed to improve the real time performance of simulation. The results reveal that SPH methodology is suitable for simulating soft tissue deformation and force feedback calculation, and SPH based on dynamic local interaction area has a higher computational efficiency significantly compared with usual SPH. Our algorithm has a bright prospect in the area of virtual surgery. PMID:26417380

  18. A kinesthetic washout filter for force-feedback rendering.

    PubMed

    Danieau, Fabien; Lecuyer, Anatole; Guillotel, Philippe; Fleureau, Julien; Mollet, Nicolas; Christie, Marc

    2015-01-01

    Today haptic feedback can be designed and associated to audiovisual content (haptic-audiovisuals or HAV). Although there are multiple means to create individual haptic effects, the issue of how to properly adapt such effects on force-feedback devices has not been addressed and is mostly a manual endeavor. We propose a new approach for the haptic rendering of HAV, based on a washout filter for force-feedback devices. A body model and an inverse kinematics algorithm simulate the user's kinesthetic perception. Then, the haptic rendering is adapted in order to handle transitions between haptic effects and to optimize the amplitude of effects regarding the device capabilities. Results of a user study show that this new haptic rendering can successfully improve the HAV experience.

  19. The neural circuit and synaptic dynamics underlying perceptual decision-making

    NASA Astrophysics Data System (ADS)

    Liu, Feng

    2015-03-01

    Decision-making with several choice options is central to cognition. To elucidate the neural mechanisms of multiple-choice motion discrimination, we built a continuous recurrent network model to represent a local circuit in the lateral intraparietal area (LIP). The network is composed of pyramidal cells and interneurons, which are directionally tuned. All neurons are reciprocally connected, and the synaptic connectivity strength is heterogeneous. Specifically, we assume two types of inhibitory connectivity to pyramidal cells: opposite-feature and similar-feature inhibition. The model accounted for both physiological and behavioral data from monkey experiments. The network is endowed with slow excitatory reverberation, which subserves the buildup and maintenance of persistent neural activity, and predominant feedback inhibition, which underlies the winner-take-all competition and attractor dynamics. The opposite-feature and opposite-feature inhibition have different effects on decision-making, and only their combination allows for a categorical choice among 12 alternatives. Together, our work highlights the importance of structured synaptic inhibition in multiple-choice decision-making processes.

  20. Web-Based Problem-Solving Assignment and Grading System

    NASA Astrophysics Data System (ADS)

    Brereton, Giles; Rosenberg, Ronald

    2014-11-01

    In engineering courses with very specific learning objectives, such as fluid mechanics and thermodynamics, it is conventional to reinforce concepts and principles with problem-solving assignments and to measure success in problem solving as an indicator of student achievement. While the modern-day ease of copying and searching for online solutions can undermine the value of traditional assignments, web-based technologies also provide opportunities to generate individualized well-posed problems with an infinite number of different combinations of initial/final/boundary conditions, so that the probability of any two students being assigned identical problems in a course is vanishingly small. Such problems can be designed and programmed to be: single or multiple-step, self-grading, allow students single or multiple attempts; provide feedback when incorrect; selectable according to difficulty; incorporated within gaming packages; etc. In this talk, we discuss the use of a homework/exam generating program of this kind in a single-semester course, within a web-based client-server system that ensures secure operation.

  1. Advanced feedback control methods in EXTRAP T2R reversed field pinch

    NASA Astrophysics Data System (ADS)

    Yadikin, D.; Brunsell, P. R.; Paccagnella, R.

    2006-07-01

    Previous experiments in the EXTRAP T2R reversed field pinch device have shown the possibility of suppression of multiple resistive wall modes (RWM). A feedback system has been installed in EXTRAP T2R having 100% coverage of the toroidal surface by the active coil array. Predictions based on theory and the previous experimental results show that the number of active coils should be sufficient for independent stabilization of all unstable RWMs in the EXTRAP T2R. Experiments using different feedback schemes are performed, comparing the intelligent shell, the fake rotating shell, and the mode control with complex feedback gains. Stabilization of all unstable RWMs throughout the discharge duration of td≈10τw is seen using the intelligent shell feedback scheme. Mode rotation and the control of selected Fourier harmonics is obtained simultaneously using the mode control scheme with complex gains. Different sensor signals are studied. A feedback system with toroidal magnetic field sensors could have an advantage of lower feedback gain needed for the RWM suppression compared to the system with radial magnetic field sensors. In this study, RWM suppression is demonstrated, using also the toroidal field component as a sensor signal in the feedback system.

  2. A Study of the Design and Implementation of the ASR-Based iCASL System with Corrective Feedback to Facilitate English Learning

    ERIC Educational Resources Information Center

    Wang, Yi-Hsuan; Young, Shelley Shwu-Ching

    2014-01-01

    The purpose of the study is to explore and describe how to implement a pedagogical ASR-based intelligent computer-assisted speaking learning (iCASL) system to support adult learners with a private, flexible and individual learning environment to practice English pronunciation. The iCASL system integrates multiple levels of corrective feedback and…

  3. Modulating Retro-Reflectors for Space, Tracking, Acquisition and Ranging using Multiple Quantum Well Technology (Preprint)

    DTIC Science & Technology

    2002-01-01

    feedback signals were derived from the motion of the platform rather than directly measured, though an actual spacecraft would likely utilize... large position error spikes due to target motion reversal. Of course, these tracking errors are highly dependent on the feedback gains chosen for the...Key Words: MQW Retromodulators, Modulating Retroreflector(s),Inter- spacecraft communications and navigation, space control

  4. Characterization and Dynamic Analysis of Long-Cavity Multi-Section Gain- Levered Quantum-Dot Lasers

    DTIC Science & Technology

    2013-03-01

    test setup .................................................................... 8 Figure 5: Comparison of a Fabry – Perot and distributed feedback...for example Fabry – Perot and distributed-feedback designs), with each possessing advantages and disadvantages that will be discussed in detail in...contrast to Fabry – Perot cavities (two discrete mirrors) that result in lasing over multiple longitudinal modes supported by the cavity. Figure 5 shows

  5. Incorporating Video Feedback into Self-Management Training to Promote Generalization of Social Initiations by Children with Autism

    ERIC Educational Resources Information Center

    Deitchman, Carole; Reeve, Sharon A.; Reeve, Kenneth F.; Progar, Patrick R.

    2010-01-01

    Self-monitoring is a well-studied and widely used self-management skill in which a person observes and records his or her own behavior. Video feedback (VFB) occurs when an instructor videotapes a child's performances and reviews the footage with the child and potentially allows the child to score or evaluate their own behavior. A multiple-probe…

  6. Enhancement of vegetation-rainfall feedbacks on the Australian summer monsoon by the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Notaro, Michael

    2018-01-01

    A regional climate modeling analysis of the Australian monsoon system reveals a substantial modulation of vegetation-rainfall feedbacks by the Madden Julian Oscillation (MJO), both of which operate at similar sub-seasonal time scales, as evidence that the intensity of land-atmosphere interactions is sensitive to the background atmospheric state. Based on ensemble experiments with imposed modification of northern Australian leaf area index (LAI), the atmospheric responses to LAI anomalies are composited for negative and positive modes of the propagating MJO. In the regional climate model (RCM), northern Australian vegetation feedbacks are characterized by evapotranspiration (ET)-driven rainfall responses, with the moisture feedback mechanism dominating over albedo and roughness feedback mechanisms. During November-April, both Tropical Rainfall Measuring Mission and RCM data reveal MJO's pronounced influence on rainfall patterns across northern Australia, tropical Indian Ocean, Timor Sea, Arafura Sea, and Gulf of Carpentaria, with the MJO dominating over vegetation feedbacks in terms of regulating monsoon rainfall variability. Convectively-active MJO phases support an enhancement of positive vegetation feedbacks on monsoon rainfall. While the MJO imposes minimal regulation of ET responses to LAI anomalies, the vegetation feedback-induced responses in precipitable water, cloud water, and rainfall are greatly enhanced during convectively-active MJO phases over northern Australia, which are characterized by intense low-level convergence and efficient precipitable water conversion. The sub-seasonal response of vegetation-rainfall feedback intensity to the MJO is complex, with significant enhancement of rainfall responses to LAI anomalies in February during convectively-active MJO phases compared to minimal modulation by the MJO during prior and subsequent calendar months.

  7. Anonymity and Electronics: Adapting Preparation for Radiology Resident Examination.

    PubMed

    Chapman, Teresa; Reid, Janet R; O'Conner, Erin E

    2017-06-01

    Diagnostic radiology resident assessment has evolved from a traditional oral examination to computerized testing. Teaching faculty struggle to reconcile the differences between traditional teaching methods and residents' new preferences for computerized testing models generated by new examination styles. We aim to summarize the collective experiences of senior residents at three different teaching hospitals who participated in case review sessions using a computer-based, interactive, anonymous teaching tool, rather than the Socratic method. Feedback was collected from radiology residents following participation in a senior resident case review session using Nearpod, which allows residents to anonymously respond to the teaching material. Subjective resident feedback was uniformly enthusiastic. Ninety percent of residents favor a case-based board review incorporating multiple-choice questions, and 94% favor an anonymous response system. Nearpod allows for inclusion of multiple-choice questions while also providing direct feedback to the teaching faculty, helping to direct the instruction and clarify residents' gaps in knowledge before the Core Examination. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  8. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  9. Formation tracker design of multiple mobile robots with wheel perturbations: adaptive output-feedback approach

    NASA Astrophysics Data System (ADS)

    Yoo, Sung Jin

    2016-11-01

    This paper presents a theoretical design approach for output-feedback formation tracking of multiple mobile robots under wheel perturbations. It is assumed that these perturbations are unknown and the linear and angular velocities of the robots are unmeasurable. First, adaptive state observers for estimating unmeasurable velocities of the robots are developed under the robots' kinematics and dynamics including wheel perturbation effects. Then, we derive a virtual-structure-based formation tracker scheme according to the observer dynamic surface design procedure. The main difficulty of the output-feedback control design is to manage the coupling problems between unmeasurable velocities and unknown wheel perturbation effects. These problems are avoided by using the adaptive technique and the function approximation property based on fuzzy logic systems. From the Lyapunov stability analysis, it is shown that point tracking errors of each robot and synchronisation errors for the desired formation converge to an adjustable neighbourhood of the origin, while all signals in the controlled closed-loop system are semiglobally uniformly ultimately bounded.

  10. Synchronization of tunable asymmetric square-wave pulses in delay-coupled optoelectronic oscillators.

    PubMed

    Martínez-Llinàs, Jade; Colet, Pere; Erneux, Thomas

    2015-03-01

    We consider a model for two delay-coupled optoelectronic oscillators under positive delayed feedback as prototypical to study the conditions for synchronization of asymmetric square-wave oscillations, for which the duty cycle is not half of the period. We show that the scenario arising for positive feedback is much richer than with negative feedback. First, it allows for the coexistence of multiple in- and out-of-phase asymmetric periodic square waves for the same parameter values. Second, it is tunable: The period of all the square-wave periodic pulses can be tuned with the ratio of the delays, and the duty cycle of the asymmetric square waves can be changed with the offset phase while the total period remains constant. Finally, in addition to the multiple in- and out-of-phase periodic square waves, low-frequency periodic asymmetric solutions oscillating in phase may coexist for the same values of the parameters. Our analytical results are in agreement with numerical simulations and bifurcation diagrams obtained by using continuation techniques.

  11. Interventions to Reduce College Student Drinking: State of the Evidence for Mechanisms of Behavior Change

    PubMed Central

    Reid, Allecia E.; Carey, Kate B.

    2015-01-01

    Interventions to reduce college student drinking, although efficacious, generally yield only small effects on behavior change. Examining mechanisms of change may help to improve the magnitude of intervention effects by identifying effective and ineffective active ingredients. Informed by guidelines for establishing mechanisms of change, we conducted a systematic review of alcohol interventions for college students to identify (a) which constructs have been examined and received support as mediators, (b) circumstances that enhance the likelihood of detecting mediation, and (c) the extent of evidence for mechanisms of change. We identified 61 trials that examined 22 potential mediators of intervention efficacy. Descriptive norms consistently mediated normative feedback interventions. Motivation to change consistently failed to mediate motivational interviewing interventions. Multiple active ingredient interventions were not substantially more likely to find evidence of mediation than single ingredient interventions. Delivering intervention content remotely reduced likelihood of finding support for mediation. With the exception of descriptive norms, there is inadequate evidence for the psychosocial constructs purported as mechanisms of change in the college drinking literature. Evidence for mechanisms will be yielded by future studies that map all active ingredients to targeted psychosocial outcomes and that assess potential mediators early, inclusively, and at appropriate intervals following interventions. PMID:26164065

  12. Nonrotating Convective Self-Aggregation in a Limited Area AGCM

    NASA Astrophysics Data System (ADS)

    Arnold, Nathan P.; Putman, William M.

    2018-04-01

    We present nonrotating simulations with the Goddard Earth Observing System (GEOS) atmospheric general circulation model (AGCM) in a square limited area domain over uniform sea surface temperature. As in previous studies, convection spontaneously aggregates into humid clusters, driven by a combination of radiative and moisture-convective feedbacks. The aggregation is qualitatively independent of resolution, with horizontal grid spacing from 3 to 110 km, with both explicit and parameterized deep convection. A budget for the spatial variance of column moist static energy suggests that longwave radiative and surface flux feedbacks help establish aggregation, while the shortwave feedback contributes to its maintenance. Mechanism-denial experiments confirm that aggregation does not occur without interactive longwave radiation. Ice cloud radiative effects help support the humid convecting regions but are not essential for aggregation, while liquid clouds have a negligible effect. Removing the dependence of parameterized convection on tropospheric humidity reduces the intensity of aggregation but does not prevent the formation of dry regions. In domain sizes less than (5,000 km)2, the aggregation forms a single cluster, while larger domains develop multiple clusters. Larger domains initialized with a single large cluster are unable to maintain them, suggesting an upper size limit. Surface wind speed increases with domain size, implying that maintenance of the boundary layer winds may limit cluster size. As cluster size increases, large boundary layer temperature anomalies develop to maintain the surface pressure gradient, leading to an increase in the depth of parameterized convective heating and an increase in gross moist stability.

  13. Deterministic entanglement of superconducting qubits by parity measurement and feedback.

    PubMed

    Ristè, D; Dukalski, M; Watson, C A; de Lange, G; Tiggelman, M J; Blanter, Ya M; Lehnert, K W; Schouten, R N; DiCarlo, L

    2013-10-17

    The stochastic evolution of quantum systems during measurement is arguably the most enigmatic feature of quantum mechanics. Measuring a quantum system typically steers it towards a classical state, destroying the coherence of an initial quantum superposition and the entanglement with other quantum systems. Remarkably, the measurement of a shared property between non-interacting quantum systems can generate entanglement, starting from an uncorrelated state. Of special interest in quantum computing is the parity measurement, which projects the state of multiple qubits (quantum bits) to a state with an even or odd number of excited qubits. A parity meter must discern the two qubit-excitation parities with high fidelity while preserving coherence between same-parity states. Despite numerous proposals for atomic, semiconducting and superconducting qubits, realizing a parity meter that creates entanglement for both even and odd measurement results has remained an outstanding challenge. Here we perform a time-resolved, continuous parity measurement of two superconducting qubits using the cavity in a three-dimensional circuit quantum electrodynamics architecture and phase-sensitive parametric amplification. Using postselection, we produce entanglement by parity measurement reaching 88 per cent fidelity to the closest Bell state. Incorporating the parity meter in a feedback-control loop, we transform the entanglement generation from probabilistic to fully deterministic, achieving 66 per cent fidelity to a target Bell state on demand. These realizations of a parity meter and a feedback-enabled deterministic measurement protocol provide key ingredients for active quantum error correction in the solid state.

  14. Cessation of oscillations in a chemo-mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Phogat, Richa; Tiwari, Ishant; Kumar, Pawan; Rivera, Marco; Parmananda, Punit

    2018-06-01

    In this paper, different methods for cessation of oscillations in a chemo-mechanical oscillator [mercury beating heart (MBH)] are presented. The first set of experiments were carried out on a single MBH oscillator. To achieve cessation of oscillations, two protocols, namely, inverted feedback and delayed feedback were employed. In the second set of experiments, two quasi-identical MBH oscillators are considered. They are first synchronized via a bidirectional attractive coupling. These two synchronized oscillators are thereafter coupled with a unidirectional repulsive coupling and the system dynamics were observed. Subsequently, in the next protocol, the effect of a unidirectional delay coupling on the two synchronized oscillators was explored. The cessation of oscillations in all the above experimental setups was observed as the feedback/coupling was switched on at a suitable strength. Oscillatory dynamics of the system were restored when the feedback/coupling was switched off.

  15. Failure of feedback as a putative common mechanism of spreading depolarizations in migraine and stroke

    NASA Astrophysics Data System (ADS)

    Dahlem, Markus A.; Schneider, Felix M.; Schöll, Eckehard

    2008-06-01

    The stability of cortical function depends critically on proper regulation. Under conditions of migraine and stroke a breakdown of transmembrane chemical gradients can spread through cortical tissue. A concomitant component of this emergent spatio-temporal pattern is a depolarization of cells detected as slow voltage variations. The propagation velocity of ˜3mm/min indicates a contribution of diffusion. We propose a mechanism for spreading depolarizations (SD) that rests upon a nonlocal or noninstantaneous feedback in a reaction-diffusion system. Depending upon the characteristic space and time scales of the feedback, the propagation of cortical SD can be suppressed by shifting the bifurcation line, which separates the parameter regime of pulse propagation from the regime where a local disturbance dies out. The optimization of this feedback is elaborated for different control schemes and ranges of control parameters.

  16. Higher incentives can impair performance: neural evidence on reinforcement and rationality.

    PubMed

    Achtziger, Anja; Alós-Ferrer, Carlos; Hügelschäfer, Sabine; Steinhauser, Marco

    2015-11-01

    Standard economic thinking postulates that increased monetary incentives should increase performance. Human decision makers, however, frequently focus on past performance, a form of reinforcement learning occasionally at odds with rational decision making. We used an incentivized belief-updating task from economics to investigate this conflict through measurements of neural correlates of reward processing. We found that higher incentives fail to improve performance when immediate feedback on decision outcomes is provided. Subsequent analysis of the feedback-related negativity, an early event-related potential following feedback, revealed the mechanism behind this paradoxical effect. As incentives increase, the win/lose feedback becomes more prominent, leading to an increased reliance on reinforcement and more errors. This mechanism is relevant for economic decision making and the debate on performance-based payment. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Understanding The Neural Mechanisms Involved In Sensory Control Of Voice Production

    PubMed Central

    Parkinson, Amy L.; Flagmeier, Sabina G.; Manes, Jordan L.; Larson, Charles R.; Rogers, Bill; Robin, Donald A.

    2012-01-01

    Auditory feedback is important for the control of voice fundamental frequency (F0). In the present study we used neuroimaging to identify regions of the brain responsible for sensory control of the voice. We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. To determine the neural substrates involved in these audio-vocal responses, subjects underwent fMRI scanning while vocalizing with or without pitch-shifted feedback. The comparison of shifted and unshifted vocalization revealed activation bilaterally in the superior temporal gyrus (STG) in response to the pitch shifted feedback. We hypothesize that the STG activity is related to error detection by auditory error cells located in the superior temporal cortex and efference copy mechanisms whereby this region is responsible for the coding of a mismatch between actual and predicted voice F0. PMID:22406500

  18. Feedback linearizing control of a MIMO power system

    NASA Astrophysics Data System (ADS)

    Ilyes, Laszlo

    Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.

  19. Unifying Views of Autism Spectrum Disorders: A Consideration of Autoregulatory Feedback Loops

    PubMed Central

    Mullins, Caitlin; Fishell, Gord

    2017-01-01

    Understanding the mechanisms underlying autism spectrum disorders (ASD) is a challenging goal. Here we review recent progress on several fronts, including genetics, proteomics, biochemistry and electrophysiology, that raise motivation for forming a viable pathophysiological hypothesis. In place of a traditionally unidirectional progression, we put forward a framework that extends homeostatic hypotheses by explicitly emphasizing autoregulatory feedback loops and known synaptic biology. The regulated biological feature can be neuronal electrical activity, the collective strength of synapses onto a dendritic branch, the local concentration of a signaling molecule, or the relative strengths of synaptic excitation and inhibition. The sensor of the biological variable (which we have termed the homeostat) engages mechanisms that operate as negative feedback elements to keep the biological variable tightly confined. We categorize known ASD-associated gene products according to their roles in such feedback loops, and provide detailed commentary for exemplar genes within each module. PMID:26985722

  20. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    PubMed

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  1. The role of auditory and kinaesthetic feedback mechanisms on phonatory stability in children.

    PubMed

    Rathna Kumar, S B; Azeem, Suhail; Choudhary, Abhishek Kumar; Prakash, S G R

    2013-12-01

    Auditory feedback plays an important role in phonatory control. When auditory feedback is disrupted, various changes are observed in vocal motor control. Vocal intensity and fundamental frequency (F0) levels tend to increase in response to auditory masking. Because of the close reflexive links between the auditory and phonatory systems, it is likely that phonatory stability may be disrupted when auditory feedback is disrupted or altered. However, studies on phonatory stability under auditory masking condition in adult subjects showed that most of the subjects maintained normal levels of phonatory stability. The authors in the earlier investigations suggested that auditory feedback is not the sole contributor to vocal motor control and phonatory stability, a complex neuromuscular reflex system known as kinaesthetic feedback may play a role in controlling phonatory stability when auditory feedback is disrupted or lacking. This proposes the need to further investigate this phenomenon as to whether children show similar patterns of phonatory stability under auditory masking since their neuromotor systems are still at developmental stage, less mature and are less resistant to altered auditory feedback than adults. A total of 40 normal hearing and speaking children (20 male and 20 female) between the age group of 6 and 8 years participated as subjects. The acoustic parameters such as shimmer, jitter and harmonic-to-noise ratio (HNR) were measures and compared between no masking condition (0 dB ML) and masking condition (90 dB ML). Despite the neuromotor systems being less mature in children and less resistant than adults to altered auditory feedback, most of the children in the study demonstrated increased phonatory stability which was reflected by reduced shimmer, jitter and increased HNR values. This study implicates that most of the children demonstrate well established patterns of kinaesthetic feedback, which might have allowed them to maintain normal levels of vocal motor control even in the presence of disturbed auditory feedback. Hence, it can be concluded that children also exhibit kinaesthetic feedback mechanism to control phonatory stability when auditory feedback is disrupted which in turn highlights the importance of kinaesthetic feedback to be included in the therapeutic/intervention approaches for children with hearing and neurogenic speech deficits.

  2. Multisite Light-Induced Phosphorylation of the Transcription Factor PIF3 Is Necessary for Both Its Rapid Degradation and Concomitant Negative Feedback Modulation of Photoreceptor phyB Levels in Arabidopsis[C][W

    PubMed Central

    Ni, Weimin; Xu, Shou-Ling; Chalkley, Robert J.; Pham, Thao Nguyen D.; Guan, Shenheng; Maltby, Dave A.; Burlingame, Alma L.; Wang, Zhi-Yong; Quail, Peter H.

    2013-01-01

    Plants constantly monitor informational light signals using sensory photoreceptors, which include the phytochrome (phy) family (phyA to phyE), and adjust their growth and development accordingly. Following light-induced nuclear translocation, photoactivated phy molecules bind to and induce rapid phosphorylation and degradation of phy-interacting basic Helix Loop Helix (bHLH) transcription factors (PIFs), such as PIF3, thereby regulating the expression of target genes. However, the mechanisms underlying the signal-relay process are still not fully understood. Here, using mass spectrometry, we identify multiple, in vivo, light-induced Ser/Thr phosphorylation sites in PIF3. Using transgenic expression of site-directed mutants of PIF3, we provide evidence that a set of these phosphorylation events acts collectively to trigger rapid degradation of the PIF3 protein in response to initial exposure of dark-grown seedlings to light. In addition, we show that phyB-induced PIF3 phosphorylation is also required for the known negative feedback modulation of phyB levels in prolonged light, potentially through codegradation of phyB and PIF3. This mutually regulatory intermolecular transaction thus provides a mechanism with the dual capacity to promote early, graded, or threshold regulation of the primary, PIF3-controlled transcriptional network in response to initial light exposure, and later, to attenuate global sensitivity to the light signal through reductions in photoreceptor levels upon prolonged exposure. PMID:23903316

  3. Economics of ingot slicing with an internal diameter saw for low-cost solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Liu, J. K.; Fiegl, G.

    1981-01-01

    Slicing of silicon ingots using diamond impregnated internal diameter blade saws has been a standard technology of the semiconductor industry. This paper describes work on improvements to this technology for 10 cm diameter ingot slicing. Ingot rotation, dynamic blade edge control with feedback, mechanized blade dressing and development of thinner blades are the approaches tried. A comparison of the results for wafering with and without ingot rotation is also made. A sensitivity analysis of the major cost elements in wafering is performed for 10 cm diameter ingot and extended to the 15 cm diameter ingot case. Various parameter values such as machine cost, feed rate and consumable materials cost are identified both for single and multiple ingot slicing.

  4. Simultaneous Tracking of Multiple Points Using a Wiimote

    NASA Astrophysics Data System (ADS)

    Skeffington, Alex; Scully, Kyle

    2012-11-01

    This paper reviews the construction of an inexpensive motion tracking and data logging system, which can be used for a wide variety of teaching experiments ranging from entry-level physics courses to advanced courses. The system utilizes an affordable infrared camera found in a Nintendo Wiimote to track IR LEDs mounted to the objects to be tracked. Two quick experiments are presented using the motion tracking system to demonstrate the diversity of tasks this system can handle. The first experiment uses the Wiimote to record the harmonic motion of oscillating masses on a near-frictionless surface, while the second experiment uses the Wiimote as part of a feedback mechanism in a rotational system. The construction, capabilities, demonstrations, and suggested improvements of the system are reported here.

  5. Mechanoelectric feedback in a model of the passively inflated left ventricle.

    PubMed

    Vetter, F J; McCulloch, A D

    2001-05-01

    Mechanoelectric feedback has been described in isolated cells and intact ventricular myocardium, but the mechanical stimulus that governs mechanosensitive channel activity in intact tissue is unknown. To study the interaction of myocardial mechanics and electrophysiology in multiple dimensions, we used a finite element model of the rabbit ventricles to simulate electrical propagation through passively loaded myocardium. Electrical propagation was simulated using the collocation-Galerkin finite element method. A stretch-dependent current was added in parallel to the ionic currents in the Beeler-Reuter ventricular action potential model. We investigated different mechanical coupling parameters to simulate stretch-dependent conductance modulated by either fiber strain, cross-fiber strain, or a combination of the two. In response to pressure loading, the conductance model governed by fiber strain alone reproduced the epicardial decrease in action potential amplitude as observed in experimental preparations of the passively loaded rabbit heart. The model governed by only cross-fiber strain reproduced the transmural gradient in action potential amplitude as observed in working canine heart experiments, but failed to predict a sufficient decrease in amplitude at the epicardium. Only the model governed by both fiber and cross-fiber strain reproduced the epicardial and transmural changes in action potential amplitude similar to experimental observations. In addition, dispersion of action potential duration nearly doubled with the same model. These results suggest that changes in action potential characteristics may be due not only to length changes along the long axis direction of the myofiber, but also due to deformation in the plane transverse to the fiber axis. The model provides a framework for investigating how cellular biophysics affect the function of the intact ventricles.

  6. Activated RhoA Is a Positive Feedback Regulator of the Lbc Family of Rho Guanine Nucleotide Exchange Factor Proteins*

    PubMed Central

    Medina, Frank; Carter, Angela M.; Dada, Olugbenga; Gutowski, Stephen; Hadas, Jana; Chen, Zhe; Sternweis, Paul C.

    2013-01-01

    The monomeric Rho GTPases are essential for cellular regulation including cell architecture and movement. A direct mechanism for hormonal regulation of the RhoA-type GTPases is their modulation by the G12 and G13 proteins via RH (RGS homology) containing RhoGEFs. In addition to the interaction of the G protein α subunits with the RH domain, activated RhoA also binds to the pleckstrin homology (PH) domain of PDZRhoGEF. The latter interaction is now extended to all seven members of the homologous Lbc family of RhoGEFs which includes the RH-RhoGEFs. This is evinced by direct measurements of binding or through effects on selected signaling pathways in cells. Overexpression of these PH domains alone can block RhoA-dependent signaling in cells to various extents. Whereas activated RhoA does not modulate the intrinsic activity of the RhoGEFs, activated RhoA associated with phospholipid vesicles can facilitate increased activity of soluble RhoGEFs on vesicle-delimited substrate (RhoA-GDP). This demonstrates feasibility of the hypothesis that binding of activated RhoA to the PH domains acts as a positive feedback mechanism. This is supported by cellular studies in which mutation of this binding site on PH strongly attenuates the stimulation of RhoA observed by overexpression of five of the RhoGEF DH-PH domains. This mutation is even more dramatic in the context of full-length p115RhoGEF. The utilization of this mechanism by multiple RhoGEFs suggests that this regulatory paradigm may be a common feature in the broader family of RhoGEFs. PMID:23493395

  7. Controller design for a class of nonlinear MIMO coupled system using multiple models and second level adaptation.

    PubMed

    Pandey, Vinay Kumar; Kar, Indrani; Mahanta, Chitralekha

    2017-07-01

    In this paper, an adaptive control method using multiple models with second level adaptation is proposed for a class of nonlinear multi-input multi-output (MIMO) coupled systems. Multiple estimation models are used to tune the unknown parameters at the first level. The second level adaptation provides a single parameter vector for the controller. A feedback linearization technique is used to design a state feedback control. The efficacy of the designed controller is validated by conducting real time experiment on a laboratory setup of twin rotor MIMO system (TRMS). The TRMS setup is discussed in detail and the experiments were performed for regulation and tracking problem for pitch and yaw control using different reference signals. An Extended Kalman Filter (EKF) has been used to observe the unavailable states of the TRMS. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Control your anger! The neural basis of aggression regulation in response to negative social feedback

    PubMed Central

    van Duijvenvoorde, Anna C. K.; Bakermans-Kranenburg, Marian J.; Crone, Eveline A.

    2016-01-01

    Abstract Negative social feedback often generates aggressive feelings and behavior. Prior studies have investigated the neural basis of negative social feedback, but the underlying neural mechanisms of aggression regulation following negative social feedback remain largely undiscovered. In the current study, participants viewed pictures of peers with feedback (positive, neutral or negative) to the participant’s personal profile. Next, participants responded to the peer feedback by pressing a button, thereby producing a loud noise toward the peer, as an index of aggression. Behavioral analyses showed that negative feedback led to more aggression (longer noise blasts). Conjunction neuroimaging analyses revealed that both positive and negative feedback were associated with increased activity in the medial prefrontal cortex (PFC) and bilateral insula. In addition, more activation in the right dorsal lateral PFC (dlPFC) during negative feedback vs neutral feedback was associated with shorter noise blasts in response to negative social feedback, suggesting a potential role of dlPFC in aggression regulation, or top-down control over affective impulsive actions. This study demonstrates a role of the dlPFC in the regulation of aggressive social behavior. PMID:26755768

  9. An Artificial Immune System with Feedback Mechanisms for Effective Handling of Population Size

    NASA Astrophysics Data System (ADS)

    Gao, Shangce; Wang, Rong-Long; Ishii, Masahiro; Tang, Zheng

    This paper represents a feedback artificial immune system (FAIS). Inspired by the feedback mechanisms in the biological immune system, the proposed algorithm effectively manipulates the population size by increasing and decreasing B cells according to the diversity of the current population. Two kinds of assessments are used to evaluate the diversity aiming to capture the characteristics of the problem on hand. Furthermore, the processing of adding and declining the number of population is designed. The validity of the proposed algorithm is tested for several traveling salesman benchmark problems. Simulation results demonstrate the efficiency of the proposed algorithm when compared with the traditional genetic algorithm and an improved clonal selection algorithm.

  10. Generation of mechanical oscillation applicable to vibratory rate gyroscopes

    NASA Technical Reports Server (NTRS)

    Lemkin, Mark A. (Inventor); Juneau, Thor N. (Inventor); Clark, William A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    To achieve a drive-axis oscillation with improved frequency and amplitude stability, additional feedback loops are used to adjust force-feedback loop parameters. An amplitude-control loop measures oscillation amplitude, compares this value to the desired level, and adjusts damping of the mechanical sense-element to grow or shrink oscillation amplitude as appropriate. A frequency-tuning loop measures the oscillation frequency, compares this value with a highly stable reference, and adjusts the gain in the force-feedback loop to keep the drive-axis oscillation frequency at the reference value. The combined topology simultaneously controls both amplitude and frequency. Advantages of the combined topology include improved stability, fast oscillation start-up, low power consumption, and excellent shock rejection.

  11. Feedback in Clinical Education, Part I: Characteristics of Feedback Provided by Approved Clinical Instructors

    PubMed Central

    Nottingham, Sara; Henning, Jolene

    2014-01-01

    Context Providing students with feedback is an important component of athletic training clinical education; however, little information is known about the feedback that Approved Clinical Instructors (ACIs; now known as preceptors) currently provide to athletic training students (ATSs). Objective To characterize the feedback provided by ACIs to ATSs during clinical education experiences. Design Qualitative study. Setting One National Collegiate Athletic Association Division I athletic training facility and 1 outpatient rehabilitation clinic that were clinical sites for 1 entry-level master's degree program accredited by the Commission on Accreditation of Athletic Training Education. Patients or Other Participants A total of 4 ACIs with various experience levels and 4 second-year ATSs. Data Collection and Analysis Extensive field observations were audio recorded, transcribed, and integrated with field notes for analysis. The constant comparative approach of open, axial, and selective coding was used to inductively analyze data and develop codes and categories. Member checking, triangulation, and peer debriefing were used to promote trustworthiness of the study. Results The ACIs gave 88 feedback statements in 45 hours and 10 minutes of observation. Characteristics of feedback categories included purpose, timing, specificity, content, form, and privacy. Conclusions Feedback that ACIs provided included several components that made each feedback exchange unique. The ACIs in our study provided feedback that is supported by the literature, suggesting that ACIs are using current recommendations for providing feedback. Feedback needs to be investigated across multiple athletic training education programs to gain more understanding of certain areas of feedback, including frequency, privacy, and form. PMID:24143902

  12. An autoethnographic exploration of the use of goal oriented feedback to enhance brief clinical teaching encounters.

    PubMed

    Farrell, Laura; Bourgeois-Law, Gisele; Ajjawi, Rola; Regehr, Glenn

    2017-03-01

    Supervision in the outpatient context is increasingly in the form of single day interactions between students and preceptors. This creates difficulties for effective feedback, which often depends on a strong relationship of trust between preceptor and student. Building on feedback theories focusing on the relational and dialogic aspects of feedback, this study explored the use of goal-oriented feedback in brief encounters with learners. This study used autoethnography to explore one preceptor's feedback interactions over an eight-month period both in the ambulatory setting and on the wards. Data included written narrative reflections on feedback interactions with twenty-three learners informed by discussions with colleagues and repeated reading of feedback literature. Thematic and narrative analyses of data were performed iteratively. Data analysis emphasized four recurrent themes. (1) Goal discussions were most effective when initiated early and integrated throughout the learning experience. (2) Both learner and preceptor goals were multiple and varied, and feedback needed to reflect this complexity. (3) Negotiation or co-construction of goals was important when considering the focus of feedback discussions in order to create safer, more effective interactions. (4) Goal oriented interactions offer potential benefits to the learner and preceptor. Goal oriented feedback promotes dialogue as it requires both preceptor and learner to acknowledge and negotiate learning goals throughout their interaction. In doing so, feedback becomes an explicit component of the preceptor-learner relationship. This enhances feedback interactions even in relatively brief encounters, and may begin an early educational alliance that can be elaborated with longer interactions.

  13. Forcings and feedbacks in the GeoMIP ensemble for a reduction in solar irradiance and increase in CO2

    NASA Astrophysics Data System (ADS)

    Huneeus, Nicolas; Boucher, Olivier; Alterskjær, Kari; Cole, Jason N. S.; Curry, Charles L.; Ji, Duoying; Jones, Andy; Kravitz, Ben; Kristjánsson, Jón Egill; Moore, John C.; Muri, Helene; Niemeier, Ulrike; Rasch, Phil; Robock, Alan; Singh, Balwinder; Schmidt, Hauke; Schulz, Michael; Tilmes, Simone; Watanabe, Shingo; Yoon, Jin-Ho

    2014-05-01

    The effective radiative forcings (including rapid adjustments) and feedbacks associated with an instantaneous quadrupling of the preindustrial CO2 concentration and a counterbalancing reduction of the solar constant are investigated in the context of the Geoengineering Model Intercomparison Project (GeoMIP). The forcing and feedback parameters of the net energy flux, as well as its different components at the top-of-atmosphere (TOA) and surface, were examined in 10 Earth System Models to better understand the impact of solar radiation management on the energy budget. In spite of their very different nature, the feedback parameter and its components at the TOA and surface are almost identical for the two forcing mechanisms, not only in the global mean but also in their geographical distributions. This conclusion holds for each of the individual models despite intermodel differences in how feedbacks affect the energy budget. This indicates that the climate sensitivity parameter is independent of the forcing (when measured as an effective radiative forcing). We also show the existence of a large contribution of the cloudy-sky component to the shortwave effective radiative forcing at the TOA suggesting rapid cloud adjustments to a change in solar irradiance. In addition, the models present significant diversity in the spatial distribution of the shortwave feedback parameter in cloudy regions, indicating persistent uncertainties in cloud feedback mechanisms.

  14. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection

    PubMed Central

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung. PMID:28912729

  15. Conducting an audit to improve the facilitation of emergency maternal and newborn referral in northern Ghana.

    PubMed

    Awoonor-Williams, John Koku; Bailey, Patricia E; Yeji, Francis; Adongo, Ayire Emmanuel; Baffoe, Peter; Williams, Afua; Mercer, Sarah

    2015-10-01

    Ghana Health Service conducted an audit to strengthen the referral system for pregnant or recently pregnant women and newborns in northern Ghana. The audit took place in 16 facilities with two 3-month cycles of data collection in 2011. Midwife-led teams tracked 446 referred women until they received definitive treatment. Between the two audit cycles, teams identified and implemented interventions to address gaps in referral services. During this time period, we observed important increases in facilitating referral mechanisms, including a decrease in the dependence on taxis in favour of national or facility ambulances/vehicles; an increase in health workers escorting referrals to the appropriate receiving facility; greater use of referral slips and calling ahead to alert receiving facilities and higher feedback rates. As referral systems require attention from multiple levels of engagement, on the provider end we found that regional managers increasingly resolved staffing shortages; district management addressed the costliness and lack of transport and increased midwives' ability to communicate with pregnant women and drivers; and that facility staff increasingly adhered to guidelines and facilitating mechanisms. By conducting an audit of maternal and newborn referrals, the Ghana Health Service identified areas for improvement that service providers and management at multiple levels addressed, demonstrating a platform for problem solving that could be a model elsewhere.

  16. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection.

    PubMed

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung.

  17. Investigation of efficiency of electric drive control system of excavator traction mechanism based on feedback on load

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. K.; Iov, I. A.; Iov, A. A.

    2018-05-01

    The article presents the results of a study of the efficiency of the electric drive control system of the traction mechanism of a dragline based on the use of feedback on load in the traction cable. The investigations were carried out using a refined electromechanical model of the traction mechanism, which took into account not only the elastic elements of the gearbox, the backlashes in it and the changes in the kinematic parameters of the mechanism during operation, but also the mechanical characteristics of the electric drive and the features of its control system. By mathematical modeling of the transient processes of the electromechanical system, it is shown that the introduction of feedback on the load in the elastic element allows one to reduce the dynamic loads in the traction mechanism and to limit the elastic oscillations of the actuating mechanism in comparison with the standard control system. Fixed as a general decrease in the dynamic load of the nodes of traction mechanism in the modes of loading and latching of the bucket, and a decrease the operating time of the mechanism at maximum load. At the same time, undesirable phenomena in the operation of the electric drive were also associated with the increase in the recovery time of the steady-state value of the speed of the actuating mechanism under certain operating conditions, which can lead to a decrease in the reliability of the mechanical part and the productivity of the traction mechanism.

  18. Model depicting aspects of audit and feedback that impact physicians' acceptance of clinical performance feedback.

    PubMed

    Payne, Velma L; Hysong, Sylvia J

    2016-07-13

    Audit and feedback (A&F) is a strategy that has been used in various disciplines for performance and quality improvement. There is limited research regarding medical professionals' acceptance of clinical-performance feedback and whether feedback impacts clinical practice. The objectives of our research were to (1) investigate aspects of A&F that impact physicians' acceptance of performance feedback; (2) determine actions physicians take when receiving feedback; and (3) determine if feedback impacts physicians' patient-management behavior. In this qualitative study, we employed grounded theory methods to perform a secondary analysis of semi-structured interviews with 12 VA primary care physicians. We analyzed a subset of interview questions from the primary study, which aimed to determine how providers of high, low and moderately performing VA medical centers use performance feedback to maintain and improve quality of care, and determine perceived utility of performance feedback. Based on the themes emergent from our analysis and their observed relationships, we developed a model depicting aspects of the A&F process that impact feedback acceptance and physicians' patient-management behavior. The model is comprised of three core components - Reaction, Action and Impact - and depicts elements associated with feedback recipients' reaction to feedback, action taken when feedback is received, and physicians modifying their patient-management behavior. Feedback characteristics, the environment, external locus-of-control components, core values, emotion and the assessment process induce or deter reaction, action and impact. Feedback characteristics (content and timeliness), and the procedural justice of the assessment process (unjust penalties) impact feedback acceptance. External locus-of-control elements (financial incentives, competition), the environment (patient volume, time constraints) and emotion impact patient-management behavior. Receiving feedback generated intense emotion within physicians. The underlying source of the emotion was the assessment process, not the feedback. The emotional response impacted acceptance, impelled action or inaction, and impacted patient-management behavior. Emotion intensity was associated with type of action taken (defensive, proactive, retroactive). Feedback acceptance and impact have as much to do with the performance assessment process as it does the feedback. In order to enhance feedback acceptance and the impact of feedback, developers of clinical performance systems and feedback interventions should consider multiple design elements.

  19. Design Experimentation with Multiple Perspectives: The GenScope Assessment Project.

    ERIC Educational Resources Information Center

    Hickey, Daniel T.; Kruger, Ann Cale; Frederick, Laura D.; Schafer, Nancy Jo; Zuiker, Steven

    The GenScope Assessment Project is studying assessment in the context of a month-long computer-supported learning environment for introductory genetics. Across three annual iterations with multiple teachers, project researchers manipulated the materials, incentives, and contexts in which students were invited to use formative feedback on…

  20. Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays.

    PubMed

    Wang, Min; Ge, Shuzhi Sam; Hong, Keum-Shik

    2010-11-01

    This paper presents adaptive neural tracking control for a class of non-affine pure-feedback systems with multiple unknown state time-varying delays. To overcome the design difficulty from non-affine structure of pure-feedback system, mean value theorem is exploited to deduce affine appearance of state variables x(i) as virtual controls α(i), and of the actual control u. The separation technique is introduced to decompose unknown functions of all time-varying delayed states into a series of continuous functions of each delayed state. The novel Lyapunov-Krasovskii functionals are employed to compensate for the unknown functions of current delayed state, which is effectively free from any restriction on unknown time-delay functions and overcomes the circular construction of controller caused by the neural approximation of a function of u and [Formula: see text] . Novel continuous functions are introduced to overcome the design difficulty deduced from the use of one adaptive parameter. To achieve uniformly ultimate boundedness of all the signals in the closed-loop system and tracking performance, control gains are effectively modified as a dynamic form with a class of even function, which makes stability analysis be carried out at the present of multiple time-varying delays. Simulation studies are provided to demonstrate the effectiveness of the proposed scheme.

  1. Real-time feedback on knee abduction moment does not improve frontal-plane knee mechanics during jump landings.

    PubMed

    Beaulieu, M L; Palmieri-Smith, R M

    2014-08-01

    Excessive knee abduction loading is a contributing factor to anterior cruciate ligament (ACL) injury risk. The purpose of this study was to determine whether a double-leg landing training program with real-time visual feedback improves frontal-plane mechanics during double- and single-leg landings. Knee abduction angles and moments and vertical ground reaction forces (GRF) of 21 recreationally active women were quantified for double- and single-leg landings before and after the training program. This program consisted of two sessions of double-leg jump landings with real-time visual feedback on knee abduction moments for the experimental group and without real-time feedback for the control group. No significant differences were found between training groups. In comparison with pre-training data, peak knee abduction moments decreased 12% post-training for both double- and single-leg landings; whereas peak vertical GRF decreased 8% post-training for double-leg landings only, irrespective of training group. Real-time feedback on knee abduction moments, therefore, did not significantly improve frontal-plane knee mechanics during landings. The effect of the training program on knee abduction moments, however, transferred from the double-leg landings (simple task) to single-leg landings (more complex task). Consequently, ACL injury prevention efforts may not need to focus on complex tasks during which injury occurs. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Learning and feedback from the Danish patient safety incident reporting system can be improved.

    PubMed

    Moeller, Anders Damgaard; Rasmussen, Kurt; Nielsen, Kent Jacob

    2016-06-01

    The perceived usefulness of incident reporting systems is an important motivational factor for reporting. The usefulness may be facilitated by well-established feedback mechanisms and by learning processes. The aim of this study was to investigate how feedback mechanisms and learning processes were implemented at four Danish hospital units all located in one of the five Danish regions. Based on the concepts of feedback and learning from incident processes, a questionnaire was developed and distributed to 335 patient safety representatives from 200 departments at four Danish hospital units in one of the five Danish regions. The study showed that external reporters were rarely contacted for dialogue, grouped front-line staff were sparsely involved in the learning process, few evaluated the effectiveness of implemented interventions and personal factors were frequently perceived as a primary contributory factor to these incidents. In contrast, the patient safety representatives perceived their competencies as sufficient for the job, internal reporters were often contacted for dialogue, evaluation was widely used and management supported the work with incident reports. The results of the study identified several shortcomings in the implementation of learning processes and feedback mechanisms. The apparent existence of a person-focused approach stands out as an element of notice. The insufficient implementation we observed indicates that there is room for improvement in the efforts made to maximise learning from incidents in the investigated population. not relevant. not relevant.

  3. Students Mental Representation of Biology Diagrams/Pictures Conventions Based on Formation of Causal Network

    NASA Astrophysics Data System (ADS)

    Sampurno, A. W.; Rahmat, A.; Diana, S.

    2017-09-01

    Diagrams/pictures conventions is one form of visual media that often used to assist students in understanding the biological concepts. The effectiveness of use diagrams/pictures in biology learning at school level has also been mostly reported. This study examines the ability of high school students in reading diagrams/pictures biological convention which is described by Mental Representation based on formation of causal networks. The study involved 30 students 11th grade MIA senior high school Banten Indonesia who are studying the excretory system. MR data obtained by Instrument worksheet, developed based on CNET-protocol, in which there are diagrams/drawings of nephron structure and urinary mechanism. Three patterns formed MR, namely Markov chain, feedback control with a single measurement, and repeated feedback control with multiple measurement. The third pattern is the most dominating pattern, differences in the pattern of MR reveal the difference in how and from which point the students begin to uncover important information contained in the diagram to establish a causal networks. Further analysis shows that a difference in the pattern of MR relate to how complex the students process the information contained in the diagrams/pictures.

  4. Isoflurane Impairs Low-Frequency Feedback but Leaves High-Frequency Feedforward Connectivity Intact in the Fly Brain.

    PubMed

    Cohen, Dror; van Swinderen, Bruno; Tsuchiya, Naotsugu

    2018-01-01

    Hierarchically organized brains communicate through feedforward (FF) and feedback (FB) pathways. In mammals, FF and FB are mediated by higher and lower frequencies during wakefulness. FB is preferentially impaired by general anesthetics in multiple mammalian species. This suggests FB serves critical functions in waking brains. The brain of Drosophila melanogaster (fruit fly) is also hierarchically organized, but the presence of FB in these brains is not established. Here, we studied FB in the fly brain, by simultaneously recording local field potentials (LFPs) from low-order peripheral structures and higher-order central structures. We analyzed the data using Granger causality (GC), the first application of this analysis technique to recordings from the insect brain. Our analysis revealed that low frequencies (0.1-5 Hz) mediated FB from the center to the periphery, while higher frequencies (10-45 Hz) mediated FF in the opposite direction. Further, isoflurane anesthesia preferentially reduced FB. Our results imply that the spectral characteristics of FF and FB may be a signature of hierarchically organized brains that is conserved from insects to mammals. We speculate that general anesthetics may induce unresponsiveness across species by targeting the mechanisms that support FB.

  5. Isoflurane Impairs Low-Frequency Feedback but Leaves High-Frequency Feedforward Connectivity Intact in the Fly Brain

    PubMed Central

    2018-01-01

    Abstract Hierarchically organized brains communicate through feedforward (FF) and feedback (FB) pathways. In mammals, FF and FB are mediated by higher and lower frequencies during wakefulness. FB is preferentially impaired by general anesthetics in multiple mammalian species. This suggests FB serves critical functions in waking brains. The brain of Drosophila melanogaster (fruit fly) is also hierarchically organized, but the presence of FB in these brains is not established. Here, we studied FB in the fly brain, by simultaneously recording local field potentials (LFPs) from low-order peripheral structures and higher-order central structures. We analyzed the data using Granger causality (GC), the first application of this analysis technique to recordings from the insect brain. Our analysis revealed that low frequencies (0.1–5 Hz) mediated FB from the center to the periphery, while higher frequencies (10–45 Hz) mediated FF in the opposite direction. Further, isoflurane anesthesia preferentially reduced FB. Our results imply that the spectral characteristics of FF and FB may be a signature of hierarchically organized brains that is conserved from insects to mammals. We speculate that general anesthetics may induce unresponsiveness across species by targeting the mechanisms that support FB. PMID:29541686

  6. Research Matters

    ERIC Educational Resources Information Center

    VanDeWeghe, Rick

    2005-01-01

    The critical role played by the teacher feedback on the students' drafts is discussed. The standards-based scales measuring content, organization, and mechanics was used to determine the quality of students' writing and the teachers' feedback commentaries were considered either content level or surface level.

  7. Clustering in Cell Cycle Dynamics with General Response/Signaling Feedback

    PubMed Central

    Young, Todd R.; Fernandez, Bastien; Buckalew, Richard; Moses, Gregory; Boczko, Erik M.

    2011-01-01

    Motivated by experimental and theoretical work on autonomous oscillations in yeast, we analyze ordinary differential equations models of large populations of cells with cell-cycle dependent feedback. We assume a particular type of feedback that we call Responsive/Signaling (RS), but do not specify a functional form of the feedback. We study the dynamics and emergent behaviour of solutions, particularly temporal clustering and stability of clustered solutions. We establish the existence of certain periodic clustered solutions as well as “uniform” solutions and add to the evidence that cell-cycle dependent feedback robustly leads to cell-cycle clustering. We highlight the fundamental differences in dynamics between systems with negative and positive feedback. For positive feedback systems the most important mechanism seems to be the stability of individual isolated clusters. On the other hand we find that in negative feedback systems, clusters must interact with each other to reinforce coherence. We conclude from various details of the mathematical analysis that negative feedback is most consistent with observations in yeast experiments. PMID:22001733

  8. Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands

    USGS Publications Warehouse

    Turnbull, L.; Wilcox, B.P.; Belnap, J.; Ravi, S.; D'Odorico, P.; Childers, D.; Gwenzi, W.; Okin, G.; Wainwright, J.; Caylor, K.K.; Sankey, T.

    2012-01-01

    Ecohydrological feedbacks are likely to be critical for understanding the mechanisms by which changes in exogenous forces result in ecosystem state change. We propose that in drylands, the dynamics of ecosystem state change are determined by changes in the type (stabilizing vs amplifying) and strength of ecohydrological feedbacks following a change in exogenous forces. Using a selection of five case studies from drylands, we explore the characteristics of ecohydrological feedbacks and resulting dynamics of ecosystem state change. We surmise that stabilizing feedbacks are critical for the provision of plant-essential resources in drylands. Exogenous forces that break these stabilizing feedbacks can alter the state of the system, although such changes are potentially reversible if strong amplifying ecohydrological feedbacks do not develop. The case studies indicate that if amplifying ecohydrological feedbacks do develop, they are typically associated with abiotic processes such as runoff, erosion (by wind and water), and fire. These amplifying ecohydrological feedbacks progressively modify the system in ways that are long-lasting and possibly irreversible on human timescales.

  9. Mode-selective control of thermal Brownian vibration of micro-resonator (Generation of a thermal no-equilibrium state by mechanical feedback control)

    NASA Astrophysics Data System (ADS)

    Kawamura, Y.; Kanegae, R.

    2017-09-01

    Recently, there have been various attempts to dampen the vibration amplitude of the Brownian motion of a microresonator below the thermal vibration amplitude, with the goal of reaching the quantum ground vibration level. To further develop the approach of reaching the quantum ground state, it is essential to clarify whether or not coupling exists between the different vibration modes of the resonator. In this paper, the mode-selective control of thermal Brownian vibration is shown. The first and the second vibration modes of a micro-cantilever moved by a random Brownian motion are cooled selectively and independently below the thermal vibration amplitude, as determined by the statistical thermodynamic theory, using a mechanical feedback control method. This experimental result shows that the thermal no-equilibrium condition was generated by mechanical feedback control.

  10. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    PubMed

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2018-06-01

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  11. Decision feedback loop for tracking a polyphase modulated carrier

    NASA Technical Reports Server (NTRS)

    Simon, M. K. (Inventor)

    1974-01-01

    A multiple phase modulated carrier tracking loop for use in a frequency shift keying system is described in which carrier tracking efficiency is improved by making use of the decision signals made on the data phase transmitted in each T-second interval. The decision signal is used to produce a pair of decision-feedback quadrature signals for enhancing the loop's performance in developing a loop phase error signal.

  12. A Non-Gaussian Stock Price Model: Options, Credit and a Multi-Timescale Memory

    NASA Astrophysics Data System (ADS)

    Borland, L.

    We review a recently proposed model of stock prices, based on astatistical feedback model that results in a non-Gaussian distribution of price changes. Applications to option pricing and the pricing of debt is discussed. A generalization to account for feedback effects over multiple timescales is also presented. This model reproduces most of the stylized facts (ie statistical anomalies) observed in real financial markets.

  13. A Scalable Framework for CSI Feedback in FDD Massive MIMO via DL Path Aligning

    NASA Astrophysics Data System (ADS)

    Luo, Xiliang; Cai, Penghao; Zhang, Xiaoyu; Hu, Die; Shen, Cong

    2017-09-01

    Unlike the time-division duplexing (TDD) systems, the downlink (DL) and uplink (UL) channels are not reciprocal anymore in the case of frequency-division duplexing (FDD). However, some long-term parameters, e.g. the time delays and angles of arrival (AoAs) of the channel paths, still enjoy reciprocity. In this paper, by efficiently exploiting the aforementioned limited reciprocity, we address the DL channel state information (CSI) feedback in a practical wideband massive multiple-input multiple-output (MIMO) system operating in the FDD mode. With orthogonal frequency-division multiplexing (OFDM) waveform and assuming frequency-selective fading channels, we propose a scalable framework for the DL pilots design, DL CSI acquisition, and the corresponding CSI feedback in the UL. In particular, the base station (BS) can transmit the FFT-based pilots with the carefully-selected phase shifts. Then the user can rely on the so-called time-domain aggregate channel (TAC) to derive the feedback of reduced imensionality according to either its own knowledge about the statistics of the DL channels or the instruction from the serving BS. We demonstrate that each user can just feed back one scalar number per DL channel path for the BS to recover the DL CSIs. Comprehensive numerical results further corroborate our designs.

  14. Type-II Superlattice Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Huang, Jun

    Type-II superlattice avalanche photodiodes have shown advantages compared to conventional mercury cadmium telluride photodiodes for infrared wavelength detection. However, surface or interface leakage current has been a major issue for superlattice avalanche photodiodes, especially in infrared wavelength region. First, passivation of the superlattice device with ammonium sulfide and thioacetamide was carried out, and its surface quality was studied by X-ray Photoelectron Spectroscopy. The study showed that both ammonium sulfide and thiacetamide passivation can actively remove the native oxide at the surface. Thiacetamide passivation combine more sulfur bonds with III-V elements than that of ammonium sulfide. Another X-ray photoelectron spectra of thiacetamide-treated atomic layer deposited zinc sulfide capped InAs/GaSb superlattice was performed to investigate the interface sulfur bond conditions. Sb--S and As--S bonds disappear while In-S bond gets enhanced, indicating that Indium Sulfide should be the major components at the interface after ZnS deposition. Second, the simulation of electrical characteristics for zinc sulfide, silicon nitride and silicon dioxide passivated superlattice devices was performed by SILVACO software to fit the experimental results and to discover the surface current mechanism. Different surface current mechanism strengths were found. Third, several novel dual-carrier avalanche photodiode structures were designed and simulated. The structures had alternate carrier multiplication regions, placed next to a wider electron multiplication region, creating dual-carrier multiplication feedback systems. Gain and excess noise factor of these structures were simulated and compared based on the dead space multiplication theory under uniform electric field. From the simulation, the applied bias can be greatly lowered or the thickness can be shrunk to achieve the same gain from the conventional device. The width of the thin region was the most critical parameter determining the device performance.

  15. A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.

    2014-01-01

    While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.

  16. A Computational Framework for 3D Mechanical Modeling of Plant Morphogenesis with Cellular Resolution

    PubMed Central

    Gilles, Benjamin; Hamant, Olivier; Boudaoud, Arezki; Traas, Jan; Godin, Christophe

    2015-01-01

    The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth. PMID:25569615

  17. A negative feedback mechanism for the long-term stabilization of the earth's surface temperature

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Hays, P. B.; Kasting, J. F.

    1981-01-01

    It is suggested that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism, in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, which in turn depends on the carbon dioxide partial pressure through the greenhouse effect. Although the quantitative details of this mechanism are speculative, it appears able to partially stabilize the earth's surface temperature against the steady increase of solar luminosity, believed to have occurred since the origin of the solar system.

  18. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-07-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disc galaxy set-ups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disc. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation, and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine-tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, and require a better star formation prescription or most likely some combination of these issues.

  19. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-04-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.

  20. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.

    PubMed

    Hu, Zhenkai; Yoon, Chae-Hyun; Park, Samuel Byeongjun; Jo, Yung-Ho

    2016-07-01

    We propose a portable haptic device providing grasp (kinesthetic) and push-pull (cutaneous) sensations for optical-motion-capture master interfaces. Although optical-motion-capture master interfaces for surgical robot systems can overcome the stiffness, friction, and coupling problems of mechanical master interfaces, it is difficult to add haptic feedback to an optical-motion-capture master interface without constraining the free motion of the operator's hands. Therefore, we utilized a Bowden cable-driven mechanism to provide the grasp and push-pull sensation while retaining the free hand motion of the optical-motion capture master interface. To evaluate the haptic device, we construct a 2-DOF force sensing/force feedback system. We compare the sensed force and the reproduced force of the haptic device. Finally, a needle insertion test was done to evaluate the performance of the haptic interface in the master-slave system. The results demonstrate that both the grasp force feedback and the push-pull force feedback provided by the haptic interface closely matched with the sensed forces of the slave robot. We successfully apply our haptic interface in the optical-motion-capture master-slave system. The results of the needle insertion test showed that our haptic feedback can provide more safety than merely visual observation. We develop a suitable haptic device to produce both kinesthetic grasp force feedback and cutaneous push-pull force feedback. Our future research will include further objective performance evaluations of the optical-motion-capture master-slave robot system with our haptic interface in surgical scenarios.

  1. Role of measurement in feedback-controlled quantum engines

    NASA Astrophysics Data System (ADS)

    Yi, Juyeon; Kim, Yong Woon

    2018-01-01

    In feedback controls, measurement is an essential step in designing protocols according to outcomes. For quantum mechanical systems, measurement has another effect; to supply energy to the measured system. We verify that in feedback-controlled quantum engines, measurement plays a dual role; not only as an auxiliary to perform feedback control but also as an energy supply to drive the engines. We consider a specific engine cycle exploiting feedback control followed by projective measurement and show that the maximum bound of the extractable work is set by both the efficacy of the feedback control and the energy change caused by projective measurement. We take a concrete example of an engine using an immobile spin-1/2 particle as a working substance and suggest two possible scenarios for work extraction.

  2. Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks

    NASA Technical Reports Server (NTRS)

    Somerville, Richard C. J.; Iacobellis, Sam

    1987-01-01

    The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.

  3. Confounding factors in using upward feedback to assess the quality of medical training: a systematic review.

    PubMed

    Zhou, Anli Yue; Baker, Paul

    2014-01-01

    Upward feedback is becoming more widely used in medical training as a means of quality control. Multiple biases exist, thus the accuracy of upward feedback is debatable. This study aims to identify factors that could influence upward feedback, especially in medical training. A systematic review using a structured search strategy was performed. Thirty-five databases were searched. Results were reviewed and relevant abstracts were shortlisted. All studies in English, both medical and non-medical literature, were included. A simple pro-forma was used initially to identify the pertinent areas of upward feedback, so that a focused pro-forma could be designed for data extraction. A total of 204 articles were reviewed. Most studies on upward feedback bias were evaluative studies and only covered Kirkpatrick level 1-reaction. Most studies evaluated trainers or training, were used for formative purposes and presented quantitative data. Accountability and confidentiality were the most common overt biases, whereas method of feedback was the most commonly implied bias within articles. Although different types of bias do exist, upward feedback does have a role in evaluating medical training. Accountability and confidentiality were the most common biases. Further research is required to evaluate which types of bias are associated with specific survey characteristics and which are potentially modifiable.

  4. Competition between Local Collisions and Collective Hydrodynamic Feedback Controls Traffic Flows in Microfluidic Networks

    NASA Astrophysics Data System (ADS)

    Belloul, M.; Engl, W.; Colin, A.; Panizza, P.; Ajdari, A.

    2009-05-01

    By studying the repartition of monodisperse droplets at a simple T junction, we show that the traffic of discrete fluid systems in microfluidic networks results from two competing mechanisms, whose significance is driven by confinement. Traffic is dominated by collisions occurring at the junction for small droplets and by collective hydrodynamic feedback for large ones. For each mechanism, we present simple models in terms of the pertinent dimensionless parameters of the problem.

  5. Quantifying climate feedbacks in polar regions.

    PubMed

    Goosse, Hugues; Kay, Jennifer E; Armour, Kyle C; Bodas-Salcedo, Alejandro; Chepfer, Helene; Docquier, David; Jonko, Alexandra; Kushner, Paul J; Lecomte, Olivier; Massonnet, François; Park, Hyo-Seok; Pithan, Felix; Svensson, Gunilla; Vancoppenolle, Martin

    2018-05-15

    The concept of feedback is key in assessing whether a perturbation to a system is amplified or damped by mechanisms internal to the system. In polar regions, climate dynamics are controlled by both radiative and non-radiative interactions between the atmosphere, ocean, sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a process-oriented evaluation of climate models, a clear understanding of the processes responsible for polar climate changes, and a reduction in uncertainty associated with model projections. This quantification can be performed using a simple and consistent approach that is valid for a wide range of feedbacks, offering the opportunity for more systematic feedback analyses and a better understanding of polar climate changes.

  6. In praise of feedback: an effective intervention for college students who are heavy drinkers.

    PubMed

    Walters, S T

    2000-03-01

    The efficacy of brief motivational feedback to reduce drinking among college students has been reported by several researchers. As an extension of this theoretical and applied framework, the author tested the use of mailed feedback to influence the drinking behavior of students self-identified as moderate-to-heavy drinkers in two randomized trials. A 6-week follow-up of the efforts suggested the efficacy of the feedback intervention at reducing alcohol consumption. The feedback mechanism used in the studies is described in detail and possible reasons for its efficacy are explored. In light of the cost-effective nature of this intervention, it may warrant a place in larger campus prevention programs.

  7. Regulating recognition decisions through incremental reinforcement learning.

    PubMed

    Han, Sanghoon; Dobbins, Ian G

    2009-06-01

    Does incremental reinforcement learning influence recognition memory judgments? We examined this question by subtly altering the relative validity or availability of feedback in order to differentially reinforce old or new recognition judgments. Experiment 1 probabilistically and incorrectly indicated that either misses or false alarms were correct in the context of feedback that was otherwise accurate. Experiment 2 selectively withheld feedback for either misses or false alarms in the context of feedback that was otherwise present. Both manipulations caused prominent shifts of recognition memory decision criteria that remained for considerable periods even after feedback had been altogether removed. Overall, these data demonstrate that incremental reinforcement-learning mechanisms influence the degree of caution subjects exercise when evaluating explicit memories.

  8. Feasibility and impact of providing feedback to vaccinating medical clinics: evaluating a public health intervention.

    PubMed

    Brousseau, Nicholas; Sauvageau, Chantal; Ouakki, Manale; Audet, Diane; Kiely, Marilou; Couture, Colette; Paré, Alain; Deceuninck, Geneviève

    2010-12-03

    Vaccine coverage (VC) at a given age is a widely-used indicator for measuring the performance of vaccination programs. However, there is increasing data suggesting that measuring delays in administering vaccines complements the measure of VC. Providing feedback to vaccinators is recognized as an effective strategy for improving vaccine coverage, but its implementation has not been widely documented in Canada. The objective of this study was to evaluate the feasibility of providing personalized feedback to vaccinators and its impact on vaccination delays (VD). In April and May 2008, a one-hour personalized feedback session was provided to health professionals in vaccinating medical clinics in the Quebec City region. VD for vaccines administered at two and twelve months of age were presented. Data from the regional vaccination registry were analysed for participating clinics. Two 12-month periods before and after the intervention were compared, namely from April 1st, 2007 to March 31st, 2008 and from June 1st, 2008 to May 31st, 2009. Ten medical clinics out of the twelve approached (83%), representing more than 2500 vaccinated children, participated in the project. Preparing and conducting the feedback involved 20 hours of work and expenses of $1000 per clinic. Based on a delay of one month, 94% of first doses of DTaP-Polio-Hib and 77% of meningococcal vaccine doses respected the vaccination schedule both before and after the intervention. Following the feedback, respect of the vaccination schedule increased for vaccines planned at 12 months for the four clinics that had modified their vaccination practices related to multiple injections (depending on the clinic, VD decreased by 24.4%, 32.0%, 40.2% and 44.6% respectively, p < 0.001 for all comparisons). The present study shows that it is feasible to provide personalized feedback to vaccinating clinics. While it may have encouraged positive changes in practice concerning multiple injections, this intervention on its own did not impact vaccination delays of the clinics visited. It is possible that feedback integrated into other types of effective interventions and sustained over time may have more impact on VD.

  9. REDBACK: an Open-Source Highly Scalable Simulation Tool for Rock Mechanics with Dissipative Feedbacks

    NASA Astrophysics Data System (ADS)

    Poulet, T.; Veveakis, M.; Paesold, M.; Regenauer-Lieb, K.

    2014-12-01

    Multiphysics modelling has become an indispensable tool for geoscientists to simulate the complex behaviours observed in their various fields of study where multiple processes are involved, including thermal, hydraulic, mechanical and chemical (THMC) laws. This modelling activity involves simulations that are computationally expensive and its soaring uptake is tightly linked to the increasing availability of supercomputing power and easy access to powerful nonlinear solvers such as PETSc (http://www.mcs.anl.gov/petsc/). The Multiphysics Object-Oriented Simulation Environment (MOOSE) is a finite-element, multiphysics framework (http://mooseframework.org) that can harness such computational power and allow scientists to develop easily some tightly-coupled fully implicit multiphysics simulations that run automatically in parallel on large clusters. This open-source framework provides a powerful tool to collaborate on numerical modelling activities and we are contributing to its development with REDBACK (https://github.com/pou036/redback), a module for Rock mEchanics with Dissipative feedBACKs. REDBACK builds on the tensor mechanics finite strain implementation available in MOOSE to provide a THMC simulator where the energetic formulation highlights the importance of all dissipative terms in the coupled system of equations. We show first applications of fully coupled dehydration reactions triggering episodic fluid transfer through shear zones (Alevizos et al, 2014). The dimensionless approach used allows focusing on the critical underlying variables which are driving the resulting behaviours observed and this tool is specifically designed to study material instabilities underpinning geological features like faulting, folding, boudinage, shearing, fracturing, etc. REDBACK provides a collaborative and educational tool which captures the physical and mathematical understanding of such material instabilities and provides an easy way to apply this knowledge to realistic scenarios, where the size and complexity of the geometries considered, along with the material parameters distributions, add as many sources of different instabilities. References: Alevizos, S., T. Poulet, and E. Veveakis (2014), J. Geophys. Res., 119, 4558-4582, doi:10.1002/2013JB010070.

  10. Novel aspects of glucocorticoid actions.

    PubMed

    Uchoa, E T; Aguilera, G; Herman, J P; Fiedler, J L; Deak, T; de Sousa, M B C

    2014-09-01

    Normal hypothalamic-pituitary-adrenal (HPA) axis activity leading to the rhythmic and episodic release of adrenal glucocorticoids (GCs) is essential for body homeostasis and survival during stress. Acting through specific intracellular receptors in the brain and periphery, GCs regulate behaviour, as well as metabolic, cardiovascular, immune and neuroendocrine activities. By contrast to chronic elevated levels, circadian and acute stress-induced increases in GCs are necessary for hippocampal neuronal survival and memory acquisition and consolidation, as a result of the inhibition of apoptosis, the facilitation of glutamatergic neurotransmission and the formation of excitatory synapses, and the induction of immediate early genes and dendritic spine formation. In addition to metabolic actions leading to increased energy availability, GCs have profound effects on feeding behaviour, mainly via the modulation of orexigenic and anorixegenic neuropeptides. Evidence is also emerging that, in addition to the recognised immune suppressive actions of GCs by counteracting adrenergic pro-inflammatory actions, circadian elevations have priming effects in the immune system, potentiating acute defensive responses. In addition, negative-feedback by GCs involves multiple mechanisms leading to limited HPA axis activation and prevention of the deleterious effects of excessive GC production. Adequate GC secretion to meet body demands is tightly regulated by a complex neural circuitry controlling hypothalamic corticotrophin-releasing hormone (CRH) and vasopressin secretion, which are the main regulators of pituitary adrenocorticotrophic hormone (ACTH). Rapid feedback mechanisms, likely involving nongenomic actions of GCs, mediate the immediate inhibition of hypothalamic CRH and ACTH secretion, whereas intermediate and delayed mechanisms mediated by genomic actions involve the modulation of limbic circuitry and peripheral metabolic messengers. Consistent with their key adaptive roles, HPA axis components are evolutionarily conserved, being present in the earliest vertebrates. An understanding of these basic mechanisms may lead to novel approaches for the development of diagnostic and therapeutic tools for disorders related to stress and alterations of GC secretion. © 2014 British Society for Neuroendocrinology.

  11. Intermittent control with ankle, hip, and mixed strategies during quiet standing: a theoretical proposal based on a double inverted pendulum model.

    PubMed

    Suzuki, Yasuyuki; Nomura, Taishin; Casadio, Maura; Morasso, Pietro

    2012-10-07

    Human upright posture, as a mechanical system, is characterized by an instability of saddle type, involving both stable and unstable dynamic modes. The brain stabilizes such system by generating active joint torques, according to a time-delayed neural feedback control. What is still unsolved is a clear understanding of the control strategies and the control mechanisms that are used by the central nervous system in order to stabilize the unstable posture in a robust way while maintaining flexibility. Most studies in this direction have been limited to the single inverted pendulum model, which is useful for formalizing fundamental mechanical aspects but insufficient for addressing more general issues concerning neural control strategies. Here we consider a double inverted pendulum model in the sagittal plane with small passive viscoelasticity at the ankle and hip joints. Despite difficulties in stabilizing the double pendulum model in the presence of the large feedback delay, we show that robust and flexible stabilization of the upright posture can be established by an intermittent control mechanism that achieves the goal of stabilizing the body posture according to a "divide and conquer strategy", which switches among different controllers in different parts of the state space of the double inverted pendulum. Remarkably, it is shown that a global, robust stability is achieved even if the individual controllers are unstable and the information exploited for switching from one controller to another is severely delayed, as it happens in biological reality. Moreover, the intermittent controller can automatically resolve coordination among multiple active torques associated with the muscle synergy, leading to the emergence of distinct temporally coordinated active torque patterns, referred to as the intermittent ankle, hip, and mixed strategies during quiet standing, depending on the passive elasticity at the hip joint. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples

    PubMed Central

    2010-01-01

    Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions. PMID:20967426

  13. The effect of Nintendo® Wii® on balance in people with multiple sclerosis: a pilot randomized control study.

    PubMed

    Brichetto, Giampaolo; Spallarossa, Patricio; de Carvalho, Maria L Lopes; Battaglia, Mario A

    2013-08-01

    Improvement of sensory strategies is a relevant part of balance rehabilitation in multiple sclerosis (MS). This study aimed to Assess the effectiveness of visual-feedback exercises in improving balance in MS. We divided 36 patients into Wii and control-treated groups that underwent balance rehabilitation. Outcomes were obtained for Berg Balance Scale (BBS), Modified Fatigue Impact Scale, and sway area under conditions of opened and closed eyes. BBS showed a statistically significant improvement (from 49.6 to 54.6 points, p < 0.05) in the Wii group. Interactive visual-feedback exercises such as Wii could be more effective than the current standard protocol in improving balance disorders in MS.

  14. Decoupling suspension controller based on magnetic flux feedback.

    PubMed

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  15. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    PubMed Central

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced. PMID:23844415

  16. Leader-following control of multiple nonholonomic systems over directed communication graphs

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Djapic, Vladimir

    2016-06-01

    This paper considers the leader-following control problem of multiple nonlinear systems with directed communication topology and a leader. If the state of each system is measurable, distributed state feedback controllers are proposed using neighbours' state information with the aid of Lyapunov techniques and properties of Laplacian matrix for time-invariant communication graph and time-varying communication graph. It is shown that the state of each system exponentially converges to the state of a leader. If the state of each system is not measurable, distributed observer-based output feedback control laws are proposed. As an application of the proposed results, formation control of wheeled mobile robots is studied. The simulation results show the effectiveness of the proposed results.

  17. Flight-determined stability analysis of multiple-input-multiple-output control systems

    NASA Technical Reports Server (NTRS)

    Burken, John J.

    1992-01-01

    Singular value analysis can give conservative stability margin results. Applying structure to the uncertainty can reduce this conservatism. This paper presents flight-determined stability margins for the X-29A lateral-directional, multiloop control system. These margins are compared with the predicted unscaled singular values and scaled structured singular values. The algorithm was further evaluated with flight data by changing the roll-rate-to-aileron command-feedback gain by +/- 20 percent. Minimum eigenvalues of the return difference matrix which bound the singular values are also presented. Extracting multiloop singular values from flight data and analyzing the feedback gain variations validates this technique as a measure of robustness. This analysis can be used for near-real-time flight monitoring and safety testing.

  18. Flight-determined stability analysis of multiple-input-multiple-output control systems

    NASA Technical Reports Server (NTRS)

    Burken, John J.

    1992-01-01

    Singular value analysis can give conservative stability margin results. Applying structure to the uncertainty can reduce this conservatism. This paper presents flight-determined stability margins for the X-29A lateral-directional, multiloop control system. These margins are compared with the predicted unscaled singular values and scaled structured singular values. The algorithm was further evaluated with flight data by changing the roll-rate-to-aileron-command-feedback gain by +/- 20 percent. Also presented are the minimum eigenvalues of the return difference matrix which bound the singular values. Extracting multiloop singular values from flight data and analyzing the feedback gain variations validates this technique as a measure of robustness. This analysis can be used for near-real-time flight monitoring and safety testing.

  19. Smartphones, Smart Feedback: Using Mobile Devices to Collect In-the-Moment Feedback.

    PubMed

    Havel, Lauren Koehler; Powell, Samantha D; Cabaniss, Deborah L; Arbuckle, Melissa R

    2017-02-01

    The goal of this study was to streamline the collection of resident feedback in order to support faculty development and program improvement in psychiatry training. The authors developed and implemented a brief, free, mobile survey to track resident feedback and class attendance. Prior to instituting this system, resident feedback was obtained semi-annually for each course (n = 90) and not each individual class. In comparison, this new system allowed the authors to collect feedback on 477 of the 519 classes held over the 2014-15 academic year (92 %). Written comments about the curriculum increased over tenfold from 42 in 2013-14 to 541 during a comparative time period in 2014-15. One year after instituting this new system, resident participation increased to 81 % on average (compared to 64 % previously). Mobile devices may provide an inexpensive and relatively untapped mechanism for improving the process of collecting resident feedback and tracking class attendance.

  20. Effects of Oxytocin and Vasopressin on Preferential Brain Responses to Negative Social Feedback.

    PubMed

    Gozzi, Marta; Dashow, Erica M; Thurm, Audrey; Swedo, Susan E; Zink, Caroline F

    2017-06-01

    Receiving negative social feedback can be detrimental to emotional, cognitive, and physical well-being, and fear of negative social feedback is a prominent feature of mental illnesses that involve social anxiety. A large body of evidence has implicated the neuropeptides oxytocin and vasopressin in the modulation of human neural activity underlying social cognition, including negative emotion processing; however, the influence of oxytocin and vasopressin on neural activity elicited during negative social evaluation remains unknown. Here 21 healthy men underwent functional magnetic resonance imaging in a double-blind, placebo-controlled, crossover design to determine how intranasally administered oxytocin and vasopressin modulated neural activity when receiving negative feedback on task performance from a study investigator. We found that under placebo, a preferential response to negative social feedback compared with positive social feedback was evoked in brain regions putatively involved in theory of mind (temporoparietal junction), pain processing (anterior insula and supplementary motor area), and identification of emotionally important visual cues in social perception (right fusiform). These activations weakened with oxytocin and vasopressin administration such that neural responses to receiving negative social feedback were not significantly greater than positive social feedback. Our results show effects of both oxytocin and vasopressin on the brain network involved in negative social feedback, informing the possible use of a pharmacological approach targeting these regions in multiple disorders with impairments in social information processing.

Top